Home | History | Annotate | Line # | Download | only in kern
kern_descrip.c revision 1.210
      1 /*	$NetBSD: kern_descrip.c,v 1.210 2011/01/28 18:44:44 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_descrip.c	8.8 (Berkeley) 2/14/95
     66  */
     67 
     68 /*
     69  * File descriptor management.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_descrip.c,v 1.210 2011/01/28 18:44:44 pooka Exp $");
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/filedesc.h>
     78 #include <sys/kernel.h>
     79 #include <sys/proc.h>
     80 #include <sys/file.h>
     81 #include <sys/socket.h>
     82 #include <sys/socketvar.h>
     83 #include <sys/stat.h>
     84 #include <sys/ioctl.h>
     85 #include <sys/fcntl.h>
     86 #include <sys/pool.h>
     87 #include <sys/unistd.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/conf.h>
     90 #include <sys/event.h>
     91 #include <sys/kauth.h>
     92 #include <sys/atomic.h>
     93 #include <sys/syscallargs.h>
     94 #include <sys/cpu.h>
     95 #include <sys/kmem.h>
     96 #include <sys/vnode.h>
     97 #include <sys/sysctl.h>
     98 #include <sys/ktrace.h>
     99 
    100 static int	file_ctor(void *, void *, int);
    101 static void	file_dtor(void *, void *);
    102 static int	fdfile_ctor(void *, void *, int);
    103 static void	fdfile_dtor(void *, void *);
    104 static int	filedesc_ctor(void *, void *, int);
    105 static void	filedesc_dtor(void *, void *);
    106 static int	filedescopen(dev_t, int, int, lwp_t *);
    107 
    108 static int sysctl_kern_file(SYSCTLFN_PROTO);
    109 static int sysctl_kern_file2(SYSCTLFN_PROTO);
    110 static void fill_file(struct kinfo_file *, const file_t *, const fdfile_t *,
    111 		      int, pid_t);
    112 
    113 kmutex_t	filelist_lock;	/* lock on filehead */
    114 struct filelist	filehead;	/* head of list of open files */
    115 u_int		nfiles;		/* actual number of open files */
    116 
    117 static pool_cache_t filedesc_cache;
    118 static pool_cache_t file_cache;
    119 static pool_cache_t fdfile_cache;
    120 
    121 const struct cdevsw filedesc_cdevsw = {
    122 	filedescopen, noclose, noread, nowrite, noioctl,
    123 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER | D_MPSAFE,
    124 };
    125 
    126 /* For ease of reading. */
    127 __strong_alias(fd_putvnode,fd_putfile)
    128 __strong_alias(fd_putsock,fd_putfile)
    129 
    130 /*
    131  * Initialize the descriptor system.
    132  */
    133 void
    134 fd_sys_init(void)
    135 {
    136 	static struct sysctllog *clog;
    137 
    138 	mutex_init(&filelist_lock, MUTEX_DEFAULT, IPL_NONE);
    139 
    140 	file_cache = pool_cache_init(sizeof(file_t), coherency_unit, 0,
    141 	    0, "file", NULL, IPL_NONE, file_ctor, file_dtor, NULL);
    142 	KASSERT(file_cache != NULL);
    143 
    144 	fdfile_cache = pool_cache_init(sizeof(fdfile_t), coherency_unit, 0,
    145 	    PR_LARGECACHE, "fdfile", NULL, IPL_NONE, fdfile_ctor, fdfile_dtor,
    146 	    NULL);
    147 	KASSERT(fdfile_cache != NULL);
    148 
    149 	filedesc_cache = pool_cache_init(sizeof(filedesc_t), coherency_unit,
    150 	    0, 0, "filedesc", NULL, IPL_NONE, filedesc_ctor, filedesc_dtor,
    151 	    NULL);
    152 	KASSERT(filedesc_cache != NULL);
    153 
    154 	sysctl_createv(&clog, 0, NULL, NULL,
    155 		       CTLFLAG_PERMANENT, CTLTYPE_NODE, "kern", NULL,
    156 		       NULL, 0, NULL, 0, CTL_KERN, CTL_EOL);
    157 	sysctl_createv(&clog, 0, NULL, NULL,
    158 		       CTLFLAG_PERMANENT,
    159 		       CTLTYPE_STRUCT, "file",
    160 		       SYSCTL_DESCR("System open file table"),
    161 		       sysctl_kern_file, 0, NULL, 0,
    162 		       CTL_KERN, KERN_FILE, CTL_EOL);
    163 	sysctl_createv(&clog, 0, NULL, NULL,
    164 		       CTLFLAG_PERMANENT,
    165 		       CTLTYPE_STRUCT, "file2",
    166 		       SYSCTL_DESCR("System open file table"),
    167 		       sysctl_kern_file2, 0, NULL, 0,
    168 		       CTL_KERN, KERN_FILE2, CTL_EOL);
    169 }
    170 
    171 static bool
    172 fd_isused(filedesc_t *fdp, unsigned fd)
    173 {
    174 	u_int off = fd >> NDENTRYSHIFT;
    175 
    176 	KASSERT(fd < fdp->fd_dt->dt_nfiles);
    177 
    178 	return (fdp->fd_lomap[off] & (1 << (fd & NDENTRYMASK))) != 0;
    179 }
    180 
    181 /*
    182  * Verify that the bitmaps match the descriptor table.
    183  */
    184 static inline void
    185 fd_checkmaps(filedesc_t *fdp)
    186 {
    187 #ifdef DEBUG
    188 	fdtab_t *dt;
    189 	u_int fd;
    190 
    191 	dt = fdp->fd_dt;
    192 	if (fdp->fd_refcnt == -1) {
    193 		/*
    194 		 * fd_free tears down the table without maintaining its bitmap.
    195 		 */
    196 		return;
    197 	}
    198 	for (fd = 0; fd < dt->dt_nfiles; fd++) {
    199 		if (fd < NDFDFILE) {
    200 			KASSERT(dt->dt_ff[fd] ==
    201 			    (fdfile_t *)fdp->fd_dfdfile[fd]);
    202 		}
    203 		if (dt->dt_ff[fd] == NULL) {
    204 			KASSERT(!fd_isused(fdp, fd));
    205 		} else if (dt->dt_ff[fd]->ff_file != NULL) {
    206 			KASSERT(fd_isused(fdp, fd));
    207 		}
    208 	}
    209 #else	/* DEBUG */
    210 	/* nothing */
    211 #endif	/* DEBUG */
    212 }
    213 
    214 static int
    215 fd_next_zero(filedesc_t *fdp, uint32_t *bitmap, int want, u_int bits)
    216 {
    217 	int i, off, maxoff;
    218 	uint32_t sub;
    219 
    220 	KASSERT(mutex_owned(&fdp->fd_lock));
    221 
    222 	fd_checkmaps(fdp);
    223 
    224 	if (want > bits)
    225 		return -1;
    226 
    227 	off = want >> NDENTRYSHIFT;
    228 	i = want & NDENTRYMASK;
    229 	if (i) {
    230 		sub = bitmap[off] | ((u_int)~0 >> (NDENTRIES - i));
    231 		if (sub != ~0)
    232 			goto found;
    233 		off++;
    234 	}
    235 
    236 	maxoff = NDLOSLOTS(bits);
    237 	while (off < maxoff) {
    238 		if ((sub = bitmap[off]) != ~0)
    239 			goto found;
    240 		off++;
    241 	}
    242 
    243 	return (-1);
    244 
    245  found:
    246 	return (off << NDENTRYSHIFT) + ffs(~sub) - 1;
    247 }
    248 
    249 static int
    250 fd_last_set(filedesc_t *fd, int last)
    251 {
    252 	int off, i;
    253 	fdfile_t **ff = fd->fd_dt->dt_ff;
    254 	uint32_t *bitmap = fd->fd_lomap;
    255 
    256 	KASSERT(mutex_owned(&fd->fd_lock));
    257 
    258 	fd_checkmaps(fd);
    259 
    260 	off = (last - 1) >> NDENTRYSHIFT;
    261 
    262 	while (off >= 0 && !bitmap[off])
    263 		off--;
    264 
    265 	if (off < 0)
    266 		return (-1);
    267 
    268 	i = ((off + 1) << NDENTRYSHIFT) - 1;
    269 	if (i >= last)
    270 		i = last - 1;
    271 
    272 	/* XXX should use bitmap */
    273 	while (i > 0 && (ff[i] == NULL || !ff[i]->ff_allocated))
    274 		i--;
    275 
    276 	return (i);
    277 }
    278 
    279 static inline void
    280 fd_used(filedesc_t *fdp, unsigned fd)
    281 {
    282 	u_int off = fd >> NDENTRYSHIFT;
    283 	fdfile_t *ff;
    284 
    285 	ff = fdp->fd_dt->dt_ff[fd];
    286 
    287 	KASSERT(mutex_owned(&fdp->fd_lock));
    288 	KASSERT((fdp->fd_lomap[off] & (1 << (fd & NDENTRYMASK))) == 0);
    289 	KASSERT(ff != NULL);
    290 	KASSERT(ff->ff_file == NULL);
    291    	KASSERT(!ff->ff_allocated);
    292 
    293    	ff->ff_allocated = 1;
    294 	fdp->fd_lomap[off] |= 1 << (fd & NDENTRYMASK);
    295 	if (__predict_false(fdp->fd_lomap[off] == ~0)) {
    296 		KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
    297 		    (1 << (off & NDENTRYMASK))) == 0);
    298 		fdp->fd_himap[off >> NDENTRYSHIFT] |= 1 << (off & NDENTRYMASK);
    299 	}
    300 
    301 	if ((int)fd > fdp->fd_lastfile) {
    302 		fdp->fd_lastfile = fd;
    303 	}
    304 
    305 	fd_checkmaps(fdp);
    306 }
    307 
    308 static inline void
    309 fd_unused(filedesc_t *fdp, unsigned fd)
    310 {
    311 	u_int off = fd >> NDENTRYSHIFT;
    312 	fdfile_t *ff;
    313 
    314 	ff = fdp->fd_dt->dt_ff[fd];
    315 
    316 	/*
    317 	 * Don't assert the lock is held here, as we may be copying
    318 	 * the table during exec() and it is not needed there.
    319 	 * procfs and sysctl are locked out by proc::p_reflock.
    320 	 *
    321 	 * KASSERT(mutex_owned(&fdp->fd_lock));
    322 	 */
    323 	KASSERT(ff != NULL);
    324 	KASSERT(ff->ff_file == NULL);
    325    	KASSERT(ff->ff_allocated);
    326 
    327 	if (fd < fdp->fd_freefile) {
    328 		fdp->fd_freefile = fd;
    329 	}
    330 
    331 	if (fdp->fd_lomap[off] == ~0) {
    332 		KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
    333 		    (1 << (off & NDENTRYMASK))) != 0);
    334 		fdp->fd_himap[off >> NDENTRYSHIFT] &=
    335 		    ~(1 << (off & NDENTRYMASK));
    336 	}
    337 	KASSERT((fdp->fd_lomap[off] & (1 << (fd & NDENTRYMASK))) != 0);
    338 	fdp->fd_lomap[off] &= ~(1 << (fd & NDENTRYMASK));
    339 	ff->ff_allocated = 0;
    340 
    341 	KASSERT(fd <= fdp->fd_lastfile);
    342 	if (fd == fdp->fd_lastfile) {
    343 		fdp->fd_lastfile = fd_last_set(fdp, fd);
    344 	}
    345 	fd_checkmaps(fdp);
    346 }
    347 
    348 /*
    349  * Look up the file structure corresponding to a file descriptor
    350  * and return the file, holding a reference on the descriptor.
    351  */
    352 inline file_t *
    353 fd_getfile(unsigned fd)
    354 {
    355 	filedesc_t *fdp;
    356 	fdfile_t *ff;
    357 	file_t *fp;
    358 	fdtab_t *dt;
    359 
    360 	/*
    361 	 * Look up the fdfile structure representing this descriptor.
    362 	 * We are doing this unlocked.  See fd_tryexpand().
    363 	 */
    364 	fdp = curlwp->l_fd;
    365 	dt = fdp->fd_dt;
    366 	if (__predict_false(fd >= dt->dt_nfiles)) {
    367 		return NULL;
    368 	}
    369 	ff = dt->dt_ff[fd];
    370 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    371 	if (__predict_false(ff == NULL)) {
    372 		return NULL;
    373 	}
    374 
    375 	/* Now get a reference to the descriptor. */
    376 	if (fdp->fd_refcnt == 1) {
    377 		/*
    378 		 * Single threaded: don't need to worry about concurrent
    379 		 * access (other than earlier calls to kqueue, which may
    380 		 * hold a reference to the descriptor).
    381 		 */
    382 		ff->ff_refcnt++;
    383 	} else {
    384 		/*
    385 		 * Multi threaded: issue a memory barrier to ensure that we
    386 		 * acquire the file pointer _after_ adding a reference.  If
    387 		 * no memory barrier, we could fetch a stale pointer.
    388 		 */
    389 		atomic_inc_uint(&ff->ff_refcnt);
    390 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    391 		membar_enter();
    392 #endif
    393 	}
    394 
    395 	/*
    396 	 * If the file is not open or is being closed then put the
    397 	 * reference back.
    398 	 */
    399 	fp = ff->ff_file;
    400 	if (__predict_true(fp != NULL)) {
    401 		return fp;
    402 	}
    403 	fd_putfile(fd);
    404 	return NULL;
    405 }
    406 
    407 /*
    408  * Release a reference to a file descriptor acquired with fd_getfile().
    409  */
    410 void
    411 fd_putfile(unsigned fd)
    412 {
    413 	filedesc_t *fdp;
    414 	fdfile_t *ff;
    415 	u_int u, v;
    416 
    417 	fdp = curlwp->l_fd;
    418 	ff = fdp->fd_dt->dt_ff[fd];
    419 
    420 	KASSERT(fd < fdp->fd_dt->dt_nfiles);
    421 	KASSERT(ff != NULL);
    422 	KASSERT((ff->ff_refcnt & FR_MASK) > 0);
    423 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    424 
    425 	if (fdp->fd_refcnt == 1) {
    426 		/*
    427 		 * Single threaded: don't need to worry about concurrent
    428 		 * access (other than earlier calls to kqueue, which may
    429 		 * hold a reference to the descriptor).
    430 		 */
    431 		if (__predict_false((ff->ff_refcnt & FR_CLOSING) != 0)) {
    432 			fd_close(fd);
    433 			return;
    434 		}
    435 		ff->ff_refcnt--;
    436 		return;
    437 	}
    438 
    439 	/*
    440 	 * Ensure that any use of the file is complete and globally
    441 	 * visible before dropping the final reference.  If no membar,
    442 	 * the current CPU could still access memory associated with
    443 	 * the file after it has been freed or recycled by another
    444 	 * CPU.
    445 	 */
    446 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    447 	membar_exit();
    448 #endif
    449 
    450 	/*
    451 	 * Be optimistic and start out with the assumption that no other
    452 	 * threads are trying to close the descriptor.  If the CAS fails,
    453 	 * we lost a race and/or it's being closed.
    454 	 */
    455 	for (u = ff->ff_refcnt & FR_MASK;; u = v) {
    456 		v = atomic_cas_uint(&ff->ff_refcnt, u, u - 1);
    457 		if (__predict_true(u == v)) {
    458 			return;
    459 		}
    460 		if (__predict_false((v & FR_CLOSING) != 0)) {
    461 			break;
    462 		}
    463 	}
    464 
    465 	/* Another thread is waiting to close the file: join it. */
    466 	(void)fd_close(fd);
    467 }
    468 
    469 /*
    470  * Convenience wrapper around fd_getfile() that returns reference
    471  * to a vnode.
    472  */
    473 int
    474 fd_getvnode(unsigned fd, file_t **fpp)
    475 {
    476 	vnode_t *vp;
    477 	file_t *fp;
    478 
    479 	fp = fd_getfile(fd);
    480 	if (__predict_false(fp == NULL)) {
    481 		return EBADF;
    482 	}
    483 	if (__predict_false(fp->f_type != DTYPE_VNODE)) {
    484 		fd_putfile(fd);
    485 		return EINVAL;
    486 	}
    487 	vp = fp->f_data;
    488 	if (__predict_false(vp->v_type == VBAD)) {
    489 		/* XXX Is this case really necessary? */
    490 		fd_putfile(fd);
    491 		return EBADF;
    492 	}
    493 	*fpp = fp;
    494 	return 0;
    495 }
    496 
    497 /*
    498  * Convenience wrapper around fd_getfile() that returns reference
    499  * to a socket.
    500  */
    501 int
    502 fd_getsock(unsigned fd, struct socket **sop)
    503 {
    504 	file_t *fp;
    505 
    506 	fp = fd_getfile(fd);
    507 	if (__predict_false(fp == NULL)) {
    508 		return EBADF;
    509 	}
    510 	if (__predict_false(fp->f_type != DTYPE_SOCKET)) {
    511 		fd_putfile(fd);
    512 		return ENOTSOCK;
    513 	}
    514 	*sop = fp->f_data;
    515 	return 0;
    516 }
    517 
    518 /*
    519  * Look up the file structure corresponding to a file descriptor
    520  * and return it with a reference held on the file, not the
    521  * descriptor.
    522  *
    523  * This is heavyweight and only used when accessing descriptors
    524  * from a foreign process.  The caller must ensure that `p' does
    525  * not exit or fork across this call.
    526  *
    527  * To release the file (not descriptor) reference, use closef().
    528  */
    529 file_t *
    530 fd_getfile2(proc_t *p, unsigned fd)
    531 {
    532 	filedesc_t *fdp;
    533 	fdfile_t *ff;
    534 	file_t *fp;
    535 	fdtab_t *dt;
    536 
    537 	fdp = p->p_fd;
    538 	mutex_enter(&fdp->fd_lock);
    539 	dt = fdp->fd_dt;
    540 	if (fd >= dt->dt_nfiles) {
    541 		mutex_exit(&fdp->fd_lock);
    542 		return NULL;
    543 	}
    544 	if ((ff = dt->dt_ff[fd]) == NULL) {
    545 		mutex_exit(&fdp->fd_lock);
    546 		return NULL;
    547 	}
    548 	if ((fp = ff->ff_file) == NULL) {
    549 		mutex_exit(&fdp->fd_lock);
    550 		return NULL;
    551 	}
    552 	mutex_enter(&fp->f_lock);
    553 	fp->f_count++;
    554 	mutex_exit(&fp->f_lock);
    555 	mutex_exit(&fdp->fd_lock);
    556 
    557 	return fp;
    558 }
    559 
    560 /*
    561  * Internal form of close.  Must be called with a reference to the
    562  * descriptor, and will drop the reference.  When all descriptor
    563  * references are dropped, releases the descriptor slot and a single
    564  * reference to the file structure.
    565  */
    566 int
    567 fd_close(unsigned fd)
    568 {
    569 	struct flock lf;
    570 	filedesc_t *fdp;
    571 	fdfile_t *ff;
    572 	file_t *fp;
    573 	proc_t *p;
    574 	lwp_t *l;
    575 	u_int refcnt;
    576 
    577 	l = curlwp;
    578 	p = l->l_proc;
    579 	fdp = l->l_fd;
    580 	ff = fdp->fd_dt->dt_ff[fd];
    581 
    582 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    583 
    584 	mutex_enter(&fdp->fd_lock);
    585 	KASSERT((ff->ff_refcnt & FR_MASK) > 0);
    586 	if (__predict_false(ff->ff_file == NULL)) {
    587 		/*
    588 		 * Another user of the file is already closing, and is
    589 		 * waiting for other users of the file to drain.  Release
    590 		 * our reference, and wake up the closer.
    591 		 */
    592 		atomic_dec_uint(&ff->ff_refcnt);
    593 		cv_broadcast(&ff->ff_closing);
    594 		mutex_exit(&fdp->fd_lock);
    595 
    596 		/*
    597 		 * An application error, so pretend that the descriptor
    598 		 * was already closed.  We can't safely wait for it to
    599 		 * be closed without potentially deadlocking.
    600 		 */
    601 		return (EBADF);
    602 	}
    603 	KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
    604 
    605 	/*
    606 	 * There may be multiple users of this file within the process.
    607 	 * Notify existing and new users that the file is closing.  This
    608 	 * will prevent them from adding additional uses to this file
    609 	 * while we are closing it.
    610 	 */
    611 	fp = ff->ff_file;
    612 	ff->ff_file = NULL;
    613 	ff->ff_exclose = false;
    614 
    615 	/*
    616 	 * We expect the caller to hold a descriptor reference - drop it.
    617 	 * The reference count may increase beyond zero at this point due
    618 	 * to an erroneous descriptor reference by an application, but
    619 	 * fd_getfile() will notice that the file is being closed and drop
    620 	 * the reference again.
    621 	 */
    622 	if (fdp->fd_refcnt == 1) {
    623 		/* Single threaded. */
    624 		refcnt = --(ff->ff_refcnt);
    625 	} else {
    626 		/* Multi threaded. */
    627 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    628 		membar_producer();
    629 #endif
    630 		refcnt = atomic_dec_uint_nv(&ff->ff_refcnt);
    631 	}
    632 	if (__predict_false(refcnt != 0)) {
    633 		/*
    634 		 * Wait for other references to drain.  This is typically
    635 		 * an application error - the descriptor is being closed
    636 		 * while still in use.
    637 		 * (Or just a threaded application trying to unblock its
    638 		 * thread that sleeps in (say) accept()).
    639 		 */
    640 		atomic_or_uint(&ff->ff_refcnt, FR_CLOSING);
    641 
    642 		/*
    643 		 * Remove any knotes attached to the file.  A knote
    644 		 * attached to the descriptor can hold references on it.
    645 		 */
    646 		mutex_exit(&fdp->fd_lock);
    647 		if (!SLIST_EMPTY(&ff->ff_knlist)) {
    648 			knote_fdclose(fd);
    649 		}
    650 
    651 		/*
    652 		 * Since the file system code doesn't know which fd
    653 		 * each request came from (think dup()), we have to
    654 		 * ask it to return ERESTART for any long-term blocks.
    655 		 * The re-entry through read/write/etc will detect the
    656 		 * closed fd and return EBAFD.
    657 		 * Blocked partial writes may return a short length.
    658 		 */
    659 		(*fp->f_ops->fo_restart)(fp);
    660 		mutex_enter(&fdp->fd_lock);
    661 
    662 		/*
    663 		 * We need to see the count drop to zero at least once,
    664 		 * in order to ensure that all pre-existing references
    665 		 * have been drained.  New references past this point are
    666 		 * of no interest.
    667 		 * XXX (dsl) this may need to call fo_restart() after a
    668 		 * timeout to guarantee that all the system calls exit.
    669 		 */
    670 		while ((ff->ff_refcnt & FR_MASK) != 0) {
    671 			cv_wait(&ff->ff_closing, &fdp->fd_lock);
    672 		}
    673 		atomic_and_uint(&ff->ff_refcnt, ~FR_CLOSING);
    674 	} else {
    675 		/* If no references, there must be no knotes. */
    676 		KASSERT(SLIST_EMPTY(&ff->ff_knlist));
    677 	}
    678 
    679 	/*
    680 	 * POSIX record locking dictates that any close releases ALL
    681 	 * locks owned by this process.  This is handled by setting
    682 	 * a flag in the unlock to free ONLY locks obeying POSIX
    683 	 * semantics, and not to free BSD-style file locks.
    684 	 * If the descriptor was in a message, POSIX-style locks
    685 	 * aren't passed with the descriptor.
    686 	 */
    687 	if (__predict_false((p->p_flag & PK_ADVLOCK) != 0 &&
    688 	    fp->f_type == DTYPE_VNODE)) {
    689 		lf.l_whence = SEEK_SET;
    690 		lf.l_start = 0;
    691 		lf.l_len = 0;
    692 		lf.l_type = F_UNLCK;
    693 		mutex_exit(&fdp->fd_lock);
    694 		(void)VOP_ADVLOCK(fp->f_data, p, F_UNLCK, &lf, F_POSIX);
    695 		mutex_enter(&fdp->fd_lock);
    696 	}
    697 
    698 	/* Free descriptor slot. */
    699 	fd_unused(fdp, fd);
    700 	mutex_exit(&fdp->fd_lock);
    701 
    702 	/* Now drop reference to the file itself. */
    703 	return closef(fp);
    704 }
    705 
    706 /*
    707  * Duplicate a file descriptor.
    708  */
    709 int
    710 fd_dup(file_t *fp, int minfd, int *newp, bool exclose)
    711 {
    712 	proc_t *p;
    713 	int error;
    714 
    715 	p = curproc;
    716 
    717 	while ((error = fd_alloc(p, minfd, newp)) != 0) {
    718 		if (error != ENOSPC) {
    719 			return error;
    720 		}
    721 		fd_tryexpand(p);
    722 	}
    723 
    724 	curlwp->l_fd->fd_dt->dt_ff[*newp]->ff_exclose = exclose;
    725 	fd_affix(p, fp, *newp);
    726 	return 0;
    727 }
    728 
    729 /*
    730  * dup2 operation.
    731  */
    732 int
    733 fd_dup2(file_t *fp, unsigned new)
    734 {
    735 	filedesc_t *fdp;
    736 	fdfile_t *ff;
    737 	fdtab_t *dt;
    738 
    739 	fdp = curlwp->l_fd;
    740 
    741 	/*
    742 	 * Ensure there are enough slots in the descriptor table,
    743 	 * and allocate an fdfile_t up front in case we need it.
    744 	 */
    745 	while (new >= fdp->fd_dt->dt_nfiles) {
    746 		fd_tryexpand(curproc);
    747 	}
    748 	ff = pool_cache_get(fdfile_cache, PR_WAITOK);
    749 
    750 	/*
    751 	 * If there is already a file open, close it.  If the file is
    752 	 * half open, wait for it to be constructed before closing it.
    753 	 * XXX Potential for deadlock here?
    754 	 */
    755 	mutex_enter(&fdp->fd_lock);
    756 	while (fd_isused(fdp, new)) {
    757 		mutex_exit(&fdp->fd_lock);
    758 		if (fd_getfile(new) != NULL) {
    759 			(void)fd_close(new);
    760 		} else {
    761 			/*
    762 			 * Crummy, but unlikely to happen.
    763 			 * Can occur if we interrupt another
    764 			 * thread while it is opening a file.
    765 			 */
    766 			kpause("dup2", false, 1, NULL);
    767 		}
    768 		mutex_enter(&fdp->fd_lock);
    769 	}
    770 	dt = fdp->fd_dt;
    771 	if (dt->dt_ff[new] == NULL) {
    772 		KASSERT(new >= NDFDFILE);
    773 		dt->dt_ff[new] = ff;
    774 		ff = NULL;
    775 	}
    776 	fd_used(fdp, new);
    777 	mutex_exit(&fdp->fd_lock);
    778 
    779 	/* Slot is now allocated.  Insert copy of the file. */
    780 	fd_affix(curproc, fp, new);
    781 	if (ff != NULL) {
    782 		pool_cache_put(fdfile_cache, ff);
    783 	}
    784 	return 0;
    785 }
    786 
    787 /*
    788  * Drop reference to a file structure.
    789  */
    790 int
    791 closef(file_t *fp)
    792 {
    793 	struct flock lf;
    794 	int error;
    795 
    796 	/*
    797 	 * Drop reference.  If referenced elsewhere it's still open
    798 	 * and we have nothing more to do.
    799 	 */
    800 	mutex_enter(&fp->f_lock);
    801 	KASSERT(fp->f_count > 0);
    802 	if (--fp->f_count > 0) {
    803 		mutex_exit(&fp->f_lock);
    804 		return 0;
    805 	}
    806 	KASSERT(fp->f_count == 0);
    807 	mutex_exit(&fp->f_lock);
    808 
    809 	/* We held the last reference - release locks, close and free. */
    810         if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE) {
    811         	lf.l_whence = SEEK_SET;
    812 		lf.l_start = 0;
    813 		lf.l_len = 0;
    814 		lf.l_type = F_UNLCK;
    815 		(void)VOP_ADVLOCK(fp->f_data, fp, F_UNLCK, &lf, F_FLOCK);
    816 	}
    817 	if (fp->f_ops != NULL) {
    818 		error = (*fp->f_ops->fo_close)(fp);
    819 	} else {
    820 		error = 0;
    821 	}
    822 	KASSERT(fp->f_count == 0);
    823 	KASSERT(fp->f_cred != NULL);
    824 	pool_cache_put(file_cache, fp);
    825 
    826 	return error;
    827 }
    828 
    829 /*
    830  * Allocate a file descriptor for the process.
    831  */
    832 int
    833 fd_alloc(proc_t *p, int want, int *result)
    834 {
    835 	filedesc_t *fdp;
    836 	int i, lim, last, error;
    837 	u_int off, new;
    838 	fdtab_t *dt;
    839 
    840 	KASSERT(p == curproc || p == &proc0);
    841 
    842 	fdp = p->p_fd;
    843 
    844 	/*
    845 	 * Search for a free descriptor starting at the higher
    846 	 * of want or fd_freefile.
    847 	 */
    848 	mutex_enter(&fdp->fd_lock);
    849 	fd_checkmaps(fdp);
    850 	dt = fdp->fd_dt;
    851 	KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
    852 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
    853 	last = min(dt->dt_nfiles, lim);
    854 	for (;;) {
    855 		if ((i = want) < fdp->fd_freefile)
    856 			i = fdp->fd_freefile;
    857 		off = i >> NDENTRYSHIFT;
    858 		new = fd_next_zero(fdp, fdp->fd_himap, off,
    859 		    (last + NDENTRIES - 1) >> NDENTRYSHIFT);
    860 		if (new == -1)
    861 			break;
    862 		i = fd_next_zero(fdp, &fdp->fd_lomap[new],
    863 		    new > off ? 0 : i & NDENTRYMASK, NDENTRIES);
    864 		if (i == -1) {
    865 			/*
    866 			 * Free file descriptor in this block was
    867 			 * below want, try again with higher want.
    868 			 */
    869 			want = (new + 1) << NDENTRYSHIFT;
    870 			continue;
    871 		}
    872 		i += (new << NDENTRYSHIFT);
    873 		if (i >= last) {
    874 			break;
    875 		}
    876 		if (dt->dt_ff[i] == NULL) {
    877 			KASSERT(i >= NDFDFILE);
    878 			dt->dt_ff[i] = pool_cache_get(fdfile_cache, PR_WAITOK);
    879 		}
    880 		KASSERT(dt->dt_ff[i]->ff_file == NULL);
    881 		fd_used(fdp, i);
    882 		if (want <= fdp->fd_freefile) {
    883 			fdp->fd_freefile = i;
    884 		}
    885 		*result = i;
    886 		KASSERT(i >= NDFDFILE ||
    887 		    dt->dt_ff[i] == (fdfile_t *)fdp->fd_dfdfile[i]);
    888 		fd_checkmaps(fdp);
    889 		mutex_exit(&fdp->fd_lock);
    890 		return 0;
    891 	}
    892 
    893 	/* No space in current array.  Let the caller expand and retry. */
    894 	error = (dt->dt_nfiles >= lim) ? EMFILE : ENOSPC;
    895 	mutex_exit(&fdp->fd_lock);
    896 	return error;
    897 }
    898 
    899 /*
    900  * Allocate memory for a descriptor table.
    901  */
    902 static fdtab_t *
    903 fd_dtab_alloc(int n)
    904 {
    905 	fdtab_t *dt;
    906 	size_t sz;
    907 
    908 	KASSERT(n > NDFILE);
    909 
    910 	sz = sizeof(*dt) + (n - NDFILE) * sizeof(dt->dt_ff[0]);
    911 	dt = kmem_alloc(sz, KM_SLEEP);
    912 #ifdef DIAGNOSTIC
    913 	memset(dt, 0xff, sz);
    914 #endif
    915 	dt->dt_nfiles = n;
    916 	dt->dt_link = NULL;
    917 	return dt;
    918 }
    919 
    920 /*
    921  * Free a descriptor table, and all tables linked for deferred free.
    922  */
    923 static void
    924 fd_dtab_free(fdtab_t *dt)
    925 {
    926 	fdtab_t *next;
    927 	size_t sz;
    928 
    929 	do {
    930 		next = dt->dt_link;
    931 		KASSERT(dt->dt_nfiles > NDFILE);
    932 		sz = sizeof(*dt) +
    933 		    (dt->dt_nfiles - NDFILE) * sizeof(dt->dt_ff[0]);
    934 #ifdef DIAGNOSTIC
    935 		memset(dt, 0xff, sz);
    936 #endif
    937 		kmem_free(dt, sz);
    938 		dt = next;
    939 	} while (dt != NULL);
    940 }
    941 
    942 /*
    943  * Allocate descriptor bitmap.
    944  */
    945 static void
    946 fd_map_alloc(int n, uint32_t **lo, uint32_t **hi)
    947 {
    948 	uint8_t *ptr;
    949 	size_t szlo, szhi;
    950 
    951 	KASSERT(n > NDENTRIES);
    952 
    953 	szlo = NDLOSLOTS(n) * sizeof(uint32_t);
    954 	szhi = NDHISLOTS(n) * sizeof(uint32_t);
    955 	ptr = kmem_alloc(szlo + szhi, KM_SLEEP);
    956 	*lo = (uint32_t *)ptr;
    957 	*hi = (uint32_t *)(ptr + szlo);
    958 }
    959 
    960 /*
    961  * Free descriptor bitmap.
    962  */
    963 static void
    964 fd_map_free(int n, uint32_t *lo, uint32_t *hi)
    965 {
    966 	size_t szlo, szhi;
    967 
    968 	KASSERT(n > NDENTRIES);
    969 
    970 	szlo = NDLOSLOTS(n) * sizeof(uint32_t);
    971 	szhi = NDHISLOTS(n) * sizeof(uint32_t);
    972 	KASSERT(hi == (uint32_t *)((uint8_t *)lo + szlo));
    973 	kmem_free(lo, szlo + szhi);
    974 }
    975 
    976 /*
    977  * Expand a process' descriptor table.
    978  */
    979 void
    980 fd_tryexpand(proc_t *p)
    981 {
    982 	filedesc_t *fdp;
    983 	int i, numfiles, oldnfiles;
    984 	fdtab_t *newdt, *dt;
    985 	uint32_t *newhimap, *newlomap;
    986 
    987 	KASSERT(p == curproc || p == &proc0);
    988 
    989 	fdp = p->p_fd;
    990 	newhimap = NULL;
    991 	newlomap = NULL;
    992 	oldnfiles = fdp->fd_dt->dt_nfiles;
    993 
    994 	if (oldnfiles < NDEXTENT)
    995 		numfiles = NDEXTENT;
    996 	else
    997 		numfiles = 2 * oldnfiles;
    998 
    999 	newdt = fd_dtab_alloc(numfiles);
   1000 	if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1001 		fd_map_alloc(numfiles, &newlomap, &newhimap);
   1002 	}
   1003 
   1004 	mutex_enter(&fdp->fd_lock);
   1005 	dt = fdp->fd_dt;
   1006 	KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
   1007 	if (dt->dt_nfiles != oldnfiles) {
   1008 		/* fdp changed; caller must retry */
   1009 		mutex_exit(&fdp->fd_lock);
   1010 		fd_dtab_free(newdt);
   1011 		if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1012 			fd_map_free(numfiles, newlomap, newhimap);
   1013 		}
   1014 		return;
   1015 	}
   1016 
   1017 	/* Copy the existing descriptor table and zero the new portion. */
   1018 	i = sizeof(fdfile_t *) * oldnfiles;
   1019 	memcpy(newdt->dt_ff, dt->dt_ff, i);
   1020 	memset((uint8_t *)newdt->dt_ff + i, 0,
   1021 	    numfiles * sizeof(fdfile_t *) - i);
   1022 
   1023 	/*
   1024 	 * Link old descriptor array into list to be discarded.  We defer
   1025 	 * freeing until the last reference to the descriptor table goes
   1026 	 * away (usually process exit).  This allows us to do lockless
   1027 	 * lookups in fd_getfile().
   1028 	 */
   1029 	if (oldnfiles > NDFILE) {
   1030 		if (fdp->fd_refcnt > 1) {
   1031 			newdt->dt_link = dt;
   1032 		} else {
   1033 			fd_dtab_free(dt);
   1034 		}
   1035 	}
   1036 
   1037 	if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1038 		i = NDHISLOTS(oldnfiles) * sizeof(uint32_t);
   1039 		memcpy(newhimap, fdp->fd_himap, i);
   1040 		memset((uint8_t *)newhimap + i, 0,
   1041 		    NDHISLOTS(numfiles) * sizeof(uint32_t) - i);
   1042 
   1043 		i = NDLOSLOTS(oldnfiles) * sizeof(uint32_t);
   1044 		memcpy(newlomap, fdp->fd_lomap, i);
   1045 		memset((uint8_t *)newlomap + i, 0,
   1046 		    NDLOSLOTS(numfiles) * sizeof(uint32_t) - i);
   1047 
   1048 		if (NDHISLOTS(oldnfiles) > NDHISLOTS(NDFILE)) {
   1049 			fd_map_free(oldnfiles, fdp->fd_lomap, fdp->fd_himap);
   1050 		}
   1051 		fdp->fd_himap = newhimap;
   1052 		fdp->fd_lomap = newlomap;
   1053 	}
   1054 
   1055 	/*
   1056 	 * All other modifications must become globally visible before
   1057 	 * the change to fd_dt.  See fd_getfile().
   1058 	 */
   1059 	membar_producer();
   1060 	fdp->fd_dt = newdt;
   1061 	KASSERT(newdt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
   1062 	fd_checkmaps(fdp);
   1063 	mutex_exit(&fdp->fd_lock);
   1064 }
   1065 
   1066 /*
   1067  * Create a new open file structure and allocate a file descriptor
   1068  * for the current process.
   1069  */
   1070 int
   1071 fd_allocfile(file_t **resultfp, int *resultfd)
   1072 {
   1073 	kauth_cred_t cred;
   1074 	file_t *fp;
   1075 	proc_t *p;
   1076 	int error;
   1077 
   1078 	p = curproc;
   1079 
   1080 	while ((error = fd_alloc(p, 0, resultfd)) != 0) {
   1081 		if (error != ENOSPC) {
   1082 			return error;
   1083 		}
   1084 		fd_tryexpand(p);
   1085 	}
   1086 
   1087 	fp = pool_cache_get(file_cache, PR_WAITOK);
   1088 	if (fp == NULL) {
   1089 		return ENFILE;
   1090 	}
   1091 	KASSERT(fp->f_count == 0);
   1092 	KASSERT(fp->f_msgcount == 0);
   1093 	KASSERT(fp->f_unpcount == 0);
   1094 
   1095 	/* Replace cached credentials if not what we need. */
   1096 	cred = curlwp->l_cred;
   1097 	if (__predict_false(cred != fp->f_cred)) {
   1098 		kauth_cred_free(fp->f_cred);
   1099 		kauth_cred_hold(cred);
   1100 		fp->f_cred = cred;
   1101 	}
   1102 
   1103 	/*
   1104 	 * Don't allow recycled files to be scanned.
   1105 	 * See uipc_usrreq.c.
   1106 	 */
   1107 	if (__predict_false((fp->f_flag & FSCAN) != 0)) {
   1108 		mutex_enter(&fp->f_lock);
   1109 		atomic_and_uint(&fp->f_flag, ~FSCAN);
   1110 		mutex_exit(&fp->f_lock);
   1111 	}
   1112 
   1113 	fp->f_advice = 0;
   1114 	fp->f_offset = 0;
   1115 	*resultfp = fp;
   1116 
   1117 	return 0;
   1118 }
   1119 
   1120 /*
   1121  * Successful creation of a new descriptor: make visible to the process.
   1122  */
   1123 void
   1124 fd_affix(proc_t *p, file_t *fp, unsigned fd)
   1125 {
   1126 	fdfile_t *ff;
   1127 	filedesc_t *fdp;
   1128 
   1129 	KASSERT(p == curproc || p == &proc0);
   1130 
   1131 	/* Add a reference to the file structure. */
   1132 	mutex_enter(&fp->f_lock);
   1133 	fp->f_count++;
   1134 	mutex_exit(&fp->f_lock);
   1135 
   1136 	/*
   1137 	 * Insert the new file into the descriptor slot.
   1138 	 *
   1139 	 * The memory barriers provided by lock activity in this routine
   1140 	 * ensure that any updates to the file structure become globally
   1141 	 * visible before the file becomes visible to other LWPs in the
   1142 	 * current process.
   1143 	 */
   1144 	fdp = p->p_fd;
   1145 	ff = fdp->fd_dt->dt_ff[fd];
   1146 
   1147 	KASSERT(ff != NULL);
   1148 	KASSERT(ff->ff_file == NULL);
   1149 	KASSERT(ff->ff_allocated);
   1150 	KASSERT(fd_isused(fdp, fd));
   1151 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1152 
   1153 	/* No need to lock in order to make file initially visible. */
   1154 	ff->ff_file = fp;
   1155 }
   1156 
   1157 /*
   1158  * Abort creation of a new descriptor: free descriptor slot and file.
   1159  */
   1160 void
   1161 fd_abort(proc_t *p, file_t *fp, unsigned fd)
   1162 {
   1163 	filedesc_t *fdp;
   1164 	fdfile_t *ff;
   1165 
   1166 	KASSERT(p == curproc || p == &proc0);
   1167 
   1168 	fdp = p->p_fd;
   1169 	ff = fdp->fd_dt->dt_ff[fd];
   1170 
   1171 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1172 
   1173 	mutex_enter(&fdp->fd_lock);
   1174 	KASSERT(fd_isused(fdp, fd));
   1175 	fd_unused(fdp, fd);
   1176 	mutex_exit(&fdp->fd_lock);
   1177 
   1178 	if (fp != NULL) {
   1179 		KASSERT(fp->f_count == 0);
   1180 		KASSERT(fp->f_cred != NULL);
   1181 		pool_cache_put(file_cache, fp);
   1182 	}
   1183 }
   1184 
   1185 static int
   1186 file_ctor(void *arg, void *obj, int flags)
   1187 {
   1188 	file_t *fp = obj;
   1189 
   1190 	memset(fp, 0, sizeof(*fp));
   1191 
   1192 	mutex_enter(&filelist_lock);
   1193 	if (__predict_false(nfiles >= maxfiles)) {
   1194 		mutex_exit(&filelist_lock);
   1195 		tablefull("file", "increase kern.maxfiles or MAXFILES");
   1196 		return ENFILE;
   1197 	}
   1198 	nfiles++;
   1199 	LIST_INSERT_HEAD(&filehead, fp, f_list);
   1200 	mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
   1201 	fp->f_cred = curlwp->l_cred;
   1202 	kauth_cred_hold(fp->f_cred);
   1203 	mutex_exit(&filelist_lock);
   1204 
   1205 	return 0;
   1206 }
   1207 
   1208 static void
   1209 file_dtor(void *arg, void *obj)
   1210 {
   1211 	file_t *fp = obj;
   1212 
   1213 	mutex_enter(&filelist_lock);
   1214 	nfiles--;
   1215 	LIST_REMOVE(fp, f_list);
   1216 	mutex_exit(&filelist_lock);
   1217 
   1218 	kauth_cred_free(fp->f_cred);
   1219 	mutex_destroy(&fp->f_lock);
   1220 }
   1221 
   1222 static int
   1223 fdfile_ctor(void *arg, void *obj, int flags)
   1224 {
   1225 	fdfile_t *ff = obj;
   1226 
   1227 	memset(ff, 0, sizeof(*ff));
   1228 	cv_init(&ff->ff_closing, "fdclose");
   1229 
   1230 	return 0;
   1231 }
   1232 
   1233 static void
   1234 fdfile_dtor(void *arg, void *obj)
   1235 {
   1236 	fdfile_t *ff = obj;
   1237 
   1238 	cv_destroy(&ff->ff_closing);
   1239 }
   1240 
   1241 file_t *
   1242 fgetdummy(void)
   1243 {
   1244 	file_t *fp;
   1245 
   1246 	fp = kmem_alloc(sizeof(*fp), KM_SLEEP);
   1247 	if (fp != NULL) {
   1248 		memset(fp, 0, sizeof(*fp));
   1249 		mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
   1250 	}
   1251 	return fp;
   1252 }
   1253 
   1254 void
   1255 fputdummy(file_t *fp)
   1256 {
   1257 
   1258 	mutex_destroy(&fp->f_lock);
   1259 	kmem_free(fp, sizeof(*fp));
   1260 }
   1261 
   1262 /*
   1263  * Create an initial filedesc structure.
   1264  */
   1265 filedesc_t *
   1266 fd_init(filedesc_t *fdp)
   1267 {
   1268 #ifdef DIAGNOSTIC
   1269 	unsigned fd;
   1270 #endif
   1271 
   1272 	if (__predict_true(fdp == NULL)) {
   1273 		fdp = pool_cache_get(filedesc_cache, PR_WAITOK);
   1274 	} else {
   1275 		KASSERT(fdp == &filedesc0);
   1276 		filedesc_ctor(NULL, fdp, PR_WAITOK);
   1277 	}
   1278 
   1279 #ifdef DIAGNOSTIC
   1280 	KASSERT(fdp->fd_lastfile == -1);
   1281 	KASSERT(fdp->fd_lastkqfile == -1);
   1282 	KASSERT(fdp->fd_knhash == NULL);
   1283 	KASSERT(fdp->fd_freefile == 0);
   1284 	KASSERT(fdp->fd_exclose == false);
   1285 	KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
   1286 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1287 	for (fd = 0; fd < NDFDFILE; fd++) {
   1288 		KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] ==
   1289 		    (fdfile_t *)fdp->fd_dfdfile[fd]);
   1290 	}
   1291 	for (fd = NDFDFILE; fd < NDFILE; fd++) {
   1292 		KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] == NULL);
   1293 	}
   1294 	KASSERT(fdp->fd_himap == fdp->fd_dhimap);
   1295 	KASSERT(fdp->fd_lomap == fdp->fd_dlomap);
   1296 #endif	/* DIAGNOSTIC */
   1297 
   1298 	fdp->fd_refcnt = 1;
   1299 	fd_checkmaps(fdp);
   1300 
   1301 	return fdp;
   1302 }
   1303 
   1304 /*
   1305  * Initialize a file descriptor table.
   1306  */
   1307 static int
   1308 filedesc_ctor(void *arg, void *obj, int flag)
   1309 {
   1310 	filedesc_t *fdp = obj;
   1311 	fdfile_t **ffp;
   1312 	int i;
   1313 
   1314 	memset(fdp, 0, sizeof(*fdp));
   1315 	mutex_init(&fdp->fd_lock, MUTEX_DEFAULT, IPL_NONE);
   1316 	fdp->fd_lastfile = -1;
   1317 	fdp->fd_lastkqfile = -1;
   1318 	fdp->fd_dt = &fdp->fd_dtbuiltin;
   1319 	fdp->fd_dtbuiltin.dt_nfiles = NDFILE;
   1320 	fdp->fd_himap = fdp->fd_dhimap;
   1321 	fdp->fd_lomap = fdp->fd_dlomap;
   1322 
   1323 	CTASSERT(sizeof(fdp->fd_dfdfile[0]) >= sizeof(fdfile_t));
   1324 	for (i = 0, ffp = fdp->fd_dt->dt_ff; i < NDFDFILE; i++, ffp++) {
   1325 		*ffp = (fdfile_t *)fdp->fd_dfdfile[i];
   1326 		(void)fdfile_ctor(NULL, fdp->fd_dfdfile[i], PR_WAITOK);
   1327 	}
   1328 
   1329 	return 0;
   1330 }
   1331 
   1332 static void
   1333 filedesc_dtor(void *arg, void *obj)
   1334 {
   1335 	filedesc_t *fdp = obj;
   1336 	int i;
   1337 
   1338 	for (i = 0; i < NDFDFILE; i++) {
   1339 		fdfile_dtor(NULL, fdp->fd_dfdfile[i]);
   1340 	}
   1341 
   1342 	mutex_destroy(&fdp->fd_lock);
   1343 }
   1344 
   1345 /*
   1346  * Make p share curproc's filedesc structure.
   1347  */
   1348 void
   1349 fd_share(struct proc *p)
   1350 {
   1351 	filedesc_t *fdp;
   1352 
   1353 	fdp = curlwp->l_fd;
   1354 	p->p_fd = fdp;
   1355 	atomic_inc_uint(&fdp->fd_refcnt);
   1356 }
   1357 
   1358 /*
   1359  * Acquire a hold on a filedesc structure.
   1360  */
   1361 void
   1362 fd_hold(lwp_t *l)
   1363 {
   1364 	filedesc_t *fdp = l->l_fd;
   1365 
   1366 	atomic_inc_uint(&fdp->fd_refcnt);
   1367 }
   1368 
   1369 /*
   1370  * Copy a filedesc structure.
   1371  */
   1372 filedesc_t *
   1373 fd_copy(void)
   1374 {
   1375 	filedesc_t *newfdp, *fdp;
   1376 	fdfile_t *ff, **ffp, **nffp, *ff2;
   1377 	int i, j, numfiles, lastfile, newlast;
   1378 	file_t *fp;
   1379 	fdtab_t *newdt;
   1380 
   1381 	fdp = curproc->p_fd;
   1382 	newfdp = pool_cache_get(filedesc_cache, PR_WAITOK);
   1383 	newfdp->fd_refcnt = 1;
   1384 
   1385 #ifdef DIAGNOSTIC
   1386 	KASSERT(newfdp->fd_lastfile == -1);
   1387 	KASSERT(newfdp->fd_lastkqfile == -1);
   1388 	KASSERT(newfdp->fd_knhash == NULL);
   1389 	KASSERT(newfdp->fd_freefile == 0);
   1390 	KASSERT(newfdp->fd_exclose == false);
   1391 	KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
   1392 	KASSERT(newfdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1393 	for (i = 0; i < NDFDFILE; i++) {
   1394 		KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] ==
   1395 		    (fdfile_t *)&newfdp->fd_dfdfile[i]);
   1396 	}
   1397 	for (i = NDFDFILE; i < NDFILE; i++) {
   1398 		KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] == NULL);
   1399 	}
   1400 #endif	/* DIAGNOSTIC */
   1401 
   1402 	mutex_enter(&fdp->fd_lock);
   1403 	fd_checkmaps(fdp);
   1404 	numfiles = fdp->fd_dt->dt_nfiles;
   1405 	lastfile = fdp->fd_lastfile;
   1406 
   1407 	/*
   1408 	 * If the number of open files fits in the internal arrays
   1409 	 * of the open file structure, use them, otherwise allocate
   1410 	 * additional memory for the number of descriptors currently
   1411 	 * in use.
   1412 	 */
   1413 	if (lastfile < NDFILE) {
   1414 		i = NDFILE;
   1415 		newdt = newfdp->fd_dt;
   1416 		KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
   1417 	} else {
   1418 		/*
   1419 		 * Compute the smallest multiple of NDEXTENT needed
   1420 		 * for the file descriptors currently in use,
   1421 		 * allowing the table to shrink.
   1422 		 */
   1423 		i = numfiles;
   1424 		while (i >= 2 * NDEXTENT && i > lastfile * 2) {
   1425 			i /= 2;
   1426 		}
   1427 		KASSERT(i > NDFILE);
   1428 		newdt = fd_dtab_alloc(i);
   1429 		newfdp->fd_dt = newdt;
   1430 		memcpy(newdt->dt_ff, newfdp->fd_dtbuiltin.dt_ff,
   1431 		    NDFDFILE * sizeof(fdfile_t **));
   1432 		memset(newdt->dt_ff + NDFDFILE, 0,
   1433 		    (i - NDFDFILE) * sizeof(fdfile_t **));
   1434 	}
   1435 	if (NDHISLOTS(i) <= NDHISLOTS(NDFILE)) {
   1436 		newfdp->fd_himap = newfdp->fd_dhimap;
   1437 		newfdp->fd_lomap = newfdp->fd_dlomap;
   1438 	} else {
   1439 		fd_map_alloc(i, &newfdp->fd_lomap, &newfdp->fd_himap);
   1440 		KASSERT(i >= NDENTRIES * NDENTRIES);
   1441 		memset(newfdp->fd_himap, 0, NDHISLOTS(i)*sizeof(uint32_t));
   1442 		memset(newfdp->fd_lomap, 0, NDLOSLOTS(i)*sizeof(uint32_t));
   1443 	}
   1444 	newfdp->fd_freefile = fdp->fd_freefile;
   1445 	newfdp->fd_exclose = fdp->fd_exclose;
   1446 
   1447 	ffp = fdp->fd_dt->dt_ff;
   1448 	nffp = newdt->dt_ff;
   1449 	newlast = -1;
   1450 	for (i = 0; i <= (int)lastfile; i++, ffp++, nffp++) {
   1451 		KASSERT(i >= NDFDFILE ||
   1452 		    *nffp == (fdfile_t *)newfdp->fd_dfdfile[i]);
   1453 		ff = *ffp;
   1454 		if (ff == NULL || (fp = ff->ff_file) == NULL) {
   1455 			/* Descriptor unused, or descriptor half open. */
   1456 			KASSERT(!fd_isused(newfdp, i));
   1457 			continue;
   1458 		}
   1459 		if (__predict_false(fp->f_type == DTYPE_KQUEUE)) {
   1460 			/* kqueue descriptors cannot be copied. */
   1461                        if (i < newfdp->fd_freefile)
   1462                                newfdp->fd_freefile = i;
   1463 			continue;
   1464 		}
   1465 		/* It's active: add a reference to the file. */
   1466 		mutex_enter(&fp->f_lock);
   1467 		fp->f_count++;
   1468 		mutex_exit(&fp->f_lock);
   1469 
   1470 		/* Allocate an fdfile_t to represent it. */
   1471 		if (i >= NDFDFILE) {
   1472 			ff2 = pool_cache_get(fdfile_cache, PR_WAITOK);
   1473 			*nffp = ff2;
   1474 		} else {
   1475 			ff2 = newdt->dt_ff[i];
   1476 		}
   1477 		ff2->ff_file = fp;
   1478 		ff2->ff_exclose = ff->ff_exclose;
   1479 		ff2->ff_allocated = true;
   1480 
   1481 		/* Fix up bitmaps. */
   1482 		j = i >> NDENTRYSHIFT;
   1483 		KASSERT((newfdp->fd_lomap[j] & (1 << (i & NDENTRYMASK))) == 0);
   1484 		newfdp->fd_lomap[j] |= 1 << (i & NDENTRYMASK);
   1485 		if (__predict_false(newfdp->fd_lomap[j] == ~0)) {
   1486 			KASSERT((newfdp->fd_himap[j >> NDENTRYSHIFT] &
   1487 			    (1 << (j & NDENTRYMASK))) == 0);
   1488 			newfdp->fd_himap[j >> NDENTRYSHIFT] |=
   1489 			    1 << (j & NDENTRYMASK);
   1490 		}
   1491 		newlast = i;
   1492 	}
   1493 	KASSERT(newdt->dt_ff[0] == (fdfile_t *)newfdp->fd_dfdfile[0]);
   1494 	newfdp->fd_lastfile = newlast;
   1495 	fd_checkmaps(newfdp);
   1496 	mutex_exit(&fdp->fd_lock);
   1497 
   1498 	return (newfdp);
   1499 }
   1500 
   1501 /*
   1502  * Release a filedesc structure.
   1503  */
   1504 void
   1505 fd_free(void)
   1506 {
   1507 	fdfile_t *ff;
   1508 	file_t *fp;
   1509 	int fd, nf;
   1510 	fdtab_t *dt;
   1511 	lwp_t * const l = curlwp;
   1512 	filedesc_t * const fdp = l->l_fd;
   1513 	const bool noadvlock = (l->l_proc->p_flag & PK_ADVLOCK) == 0;
   1514 
   1515 	KASSERT(fdp->fd_dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
   1516 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1517 	KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
   1518 
   1519 #ifndef __HAVE_ATOMIC_AS_MEMBAR
   1520 	membar_exit();
   1521 #endif
   1522 	if (atomic_dec_uint_nv(&fdp->fd_refcnt) > 0)
   1523 		return;
   1524 
   1525 	/*
   1526 	 * Close any files that the process holds open.
   1527 	 */
   1528 	dt = fdp->fd_dt;
   1529 	fd_checkmaps(fdp);
   1530 #ifdef DEBUG
   1531 	fdp->fd_refcnt = -1; /* see fd_checkmaps */
   1532 #endif
   1533 	for (fd = 0, nf = dt->dt_nfiles; fd < nf; fd++) {
   1534 		ff = dt->dt_ff[fd];
   1535 		KASSERT(fd >= NDFDFILE ||
   1536 		    ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1537 		if (ff == NULL)
   1538 			continue;
   1539 		if ((fp = ff->ff_file) != NULL) {
   1540 			/*
   1541 			 * Must use fd_close() here if there is
   1542 			 * a reference from kqueue or we might have posix
   1543 			 * advisory locks.
   1544 			 */
   1545 			if (__predict_true(ff->ff_refcnt == 0) &&
   1546 			    (noadvlock || fp->f_type != DTYPE_VNODE)) {
   1547 				ff->ff_file = NULL;
   1548 				ff->ff_exclose = false;
   1549 				ff->ff_allocated = false;
   1550 				closef(fp);
   1551 			} else {
   1552 				ff->ff_refcnt++;
   1553 				fd_close(fd);
   1554 			}
   1555 		}
   1556 		KASSERT(ff->ff_refcnt == 0);
   1557 		KASSERT(ff->ff_file == NULL);
   1558 		KASSERT(!ff->ff_exclose);
   1559 		KASSERT(!ff->ff_allocated);
   1560 		if (fd >= NDFDFILE) {
   1561 			pool_cache_put(fdfile_cache, ff);
   1562 			dt->dt_ff[fd] = NULL;
   1563 		}
   1564 	}
   1565 
   1566 	/*
   1567 	 * Clean out the descriptor table for the next user and return
   1568 	 * to the cache.
   1569 	 */
   1570 	if (__predict_false(dt != &fdp->fd_dtbuiltin)) {
   1571 		fd_dtab_free(fdp->fd_dt);
   1572 		/* Otherwise, done above. */
   1573 		memset(&fdp->fd_dtbuiltin.dt_ff[NDFDFILE], 0,
   1574 		    (NDFILE - NDFDFILE) * sizeof(fdp->fd_dtbuiltin.dt_ff[0]));
   1575 		fdp->fd_dt = &fdp->fd_dtbuiltin;
   1576 	}
   1577 	if (__predict_false(NDHISLOTS(nf) > NDHISLOTS(NDFILE))) {
   1578 		KASSERT(fdp->fd_himap != fdp->fd_dhimap);
   1579 		KASSERT(fdp->fd_lomap != fdp->fd_dlomap);
   1580 		fd_map_free(nf, fdp->fd_lomap, fdp->fd_himap);
   1581 	}
   1582 	if (__predict_false(fdp->fd_knhash != NULL)) {
   1583 		hashdone(fdp->fd_knhash, HASH_LIST, fdp->fd_knhashmask);
   1584 		fdp->fd_knhash = NULL;
   1585 		fdp->fd_knhashmask = 0;
   1586 	} else {
   1587 		KASSERT(fdp->fd_knhashmask == 0);
   1588 	}
   1589 	fdp->fd_dt = &fdp->fd_dtbuiltin;
   1590 	fdp->fd_lastkqfile = -1;
   1591 	fdp->fd_lastfile = -1;
   1592 	fdp->fd_freefile = 0;
   1593 	fdp->fd_exclose = false;
   1594 	memset(&fdp->fd_startzero, 0, sizeof(*fdp) -
   1595 	    offsetof(filedesc_t, fd_startzero));
   1596 	fdp->fd_himap = fdp->fd_dhimap;
   1597 	fdp->fd_lomap = fdp->fd_dlomap;
   1598 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1599 	KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
   1600 	KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
   1601 #ifdef DEBUG
   1602 	fdp->fd_refcnt = 0; /* see fd_checkmaps */
   1603 #endif
   1604 	fd_checkmaps(fdp);
   1605 	pool_cache_put(filedesc_cache, fdp);
   1606 }
   1607 
   1608 /*
   1609  * File Descriptor pseudo-device driver (/dev/fd/).
   1610  *
   1611  * Opening minor device N dup()s the file (if any) connected to file
   1612  * descriptor N belonging to the calling process.  Note that this driver
   1613  * consists of only the ``open()'' routine, because all subsequent
   1614  * references to this file will be direct to the other driver.
   1615  */
   1616 static int
   1617 filedescopen(dev_t dev, int mode, int type, lwp_t *l)
   1618 {
   1619 
   1620 	/*
   1621 	 * XXX Kludge: set dupfd to contain the value of the
   1622 	 * the file descriptor being sought for duplication. The error
   1623 	 * return ensures that the vnode for this device will be released
   1624 	 * by vn_open. Open will detect this special error and take the
   1625 	 * actions in fd_dupopen below. Other callers of vn_open or VOP_OPEN
   1626 	 * will simply report the error.
   1627 	 */
   1628 	l->l_dupfd = minor(dev);	/* XXX */
   1629 	return EDUPFD;
   1630 }
   1631 
   1632 /*
   1633  * Duplicate the specified descriptor to a free descriptor.
   1634  */
   1635 int
   1636 fd_dupopen(int old, int *new, int mode, int error)
   1637 {
   1638 	filedesc_t *fdp;
   1639 	fdfile_t *ff;
   1640 	file_t *fp;
   1641 	fdtab_t *dt;
   1642 
   1643 	if ((fp = fd_getfile(old)) == NULL) {
   1644 		return EBADF;
   1645 	}
   1646 	fdp = curlwp->l_fd;
   1647 	dt = fdp->fd_dt;
   1648 	ff = dt->dt_ff[old];
   1649 
   1650 	/*
   1651 	 * There are two cases of interest here.
   1652 	 *
   1653 	 * For EDUPFD simply dup (old) to file descriptor
   1654 	 * (new) and return.
   1655 	 *
   1656 	 * For EMOVEFD steal away the file structure from (old) and
   1657 	 * store it in (new).  (old) is effectively closed by
   1658 	 * this operation.
   1659 	 *
   1660 	 * Any other error code is just returned.
   1661 	 */
   1662 	switch (error) {
   1663 	case EDUPFD:
   1664 		/*
   1665 		 * Check that the mode the file is being opened for is a
   1666 		 * subset of the mode of the existing descriptor.
   1667 		 */
   1668 		if (((mode & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
   1669 			error = EACCES;
   1670 			break;
   1671 		}
   1672 
   1673 		/* Copy it. */
   1674 		error = fd_dup(fp, 0, new, ff->ff_exclose);
   1675 		break;
   1676 
   1677 	case EMOVEFD:
   1678 		/* Copy it. */
   1679 		error = fd_dup(fp, 0, new, ff->ff_exclose);
   1680 		if (error != 0) {
   1681 			break;
   1682 		}
   1683 
   1684 		/* Steal away the file pointer from 'old'. */
   1685 		(void)fd_close(old);
   1686 		return 0;
   1687 	}
   1688 
   1689 	fd_putfile(old);
   1690 	return error;
   1691 }
   1692 
   1693 /*
   1694  * Sets descriptor owner. If the owner is a process, 'pgid'
   1695  * is set to positive value, process ID. If the owner is process group,
   1696  * 'pgid' is set to -pg_id.
   1697  */
   1698 int
   1699 fsetown(pid_t *pgid, u_long cmd, const void *data)
   1700 {
   1701 	pid_t id = *(const pid_t *)data;
   1702 	int error;
   1703 
   1704 	switch (cmd) {
   1705 	case TIOCSPGRP:
   1706 		if (id < 0)
   1707 			return EINVAL;
   1708 		id = -id;
   1709 		break;
   1710 	default:
   1711 		break;
   1712 	}
   1713 	if (id > 0) {
   1714 		mutex_enter(proc_lock);
   1715 		error = proc_find(id) ? 0 : ESRCH;
   1716 		mutex_exit(proc_lock);
   1717 	} else if (id < 0) {
   1718 		error = pgid_in_session(curproc, -id);
   1719 	} else {
   1720 		error = 0;
   1721 	}
   1722 	if (!error) {
   1723 		*pgid = id;
   1724 	}
   1725 	return error;
   1726 }
   1727 
   1728 /*
   1729  * Return descriptor owner information. If the value is positive,
   1730  * it's process ID. If it's negative, it's process group ID and
   1731  * needs the sign removed before use.
   1732  */
   1733 int
   1734 fgetown(pid_t pgid, u_long cmd, void *data)
   1735 {
   1736 
   1737 	switch (cmd) {
   1738 	case TIOCGPGRP:
   1739 		*(int *)data = -pgid;
   1740 		break;
   1741 	default:
   1742 		*(int *)data = pgid;
   1743 		break;
   1744 	}
   1745 	return (0);
   1746 }
   1747 
   1748 /*
   1749  * Send signal to descriptor owner, either process or process group.
   1750  */
   1751 void
   1752 fownsignal(pid_t pgid, int signo, int code, int band, void *fdescdata)
   1753 {
   1754 	ksiginfo_t ksi;
   1755 
   1756 	KASSERT(!cpu_intr_p());
   1757 
   1758 	if (pgid == 0) {
   1759 		return;
   1760 	}
   1761 
   1762 	KSI_INIT(&ksi);
   1763 	ksi.ksi_signo = signo;
   1764 	ksi.ksi_code = code;
   1765 	ksi.ksi_band = band;
   1766 
   1767 	mutex_enter(proc_lock);
   1768 	if (pgid > 0) {
   1769 		struct proc *p1;
   1770 
   1771 		p1 = proc_find(pgid);
   1772 		if (p1 != NULL) {
   1773 			kpsignal(p1, &ksi, fdescdata);
   1774 		}
   1775 	} else {
   1776 		struct pgrp *pgrp;
   1777 
   1778 		KASSERT(pgid < 0);
   1779 		pgrp = pgrp_find(-pgid);
   1780 		if (pgrp != NULL) {
   1781 			kpgsignal(pgrp, &ksi, fdescdata, 0);
   1782 		}
   1783 	}
   1784 	mutex_exit(proc_lock);
   1785 }
   1786 
   1787 int
   1788 fd_clone(file_t *fp, unsigned fd, int flag, const struct fileops *fops,
   1789 	 void *data)
   1790 {
   1791 
   1792 	fp->f_flag = flag;
   1793 	fp->f_type = DTYPE_MISC;
   1794 	fp->f_ops = fops;
   1795 	fp->f_data = data;
   1796 	curlwp->l_dupfd = fd;
   1797 	fd_affix(curproc, fp, fd);
   1798 
   1799 	return EMOVEFD;
   1800 }
   1801 
   1802 int
   1803 fnullop_fcntl(file_t *fp, u_int cmd, void *data)
   1804 {
   1805 
   1806 	if (cmd == F_SETFL)
   1807 		return 0;
   1808 
   1809 	return EOPNOTSUPP;
   1810 }
   1811 
   1812 int
   1813 fnullop_poll(file_t *fp, int which)
   1814 {
   1815 
   1816 	return 0;
   1817 }
   1818 
   1819 int
   1820 fnullop_kqfilter(file_t *fp, struct knote *kn)
   1821 {
   1822 
   1823 	return 0;
   1824 }
   1825 
   1826 void
   1827 fnullop_restart(file_t *fp)
   1828 {
   1829 
   1830 }
   1831 
   1832 int
   1833 fbadop_read(file_t *fp, off_t *offset, struct uio *uio,
   1834 	    kauth_cred_t cred, int flags)
   1835 {
   1836 
   1837 	return EOPNOTSUPP;
   1838 }
   1839 
   1840 int
   1841 fbadop_write(file_t *fp, off_t *offset, struct uio *uio,
   1842 	     kauth_cred_t cred, int flags)
   1843 {
   1844 
   1845 	return EOPNOTSUPP;
   1846 }
   1847 
   1848 int
   1849 fbadop_ioctl(file_t *fp, u_long com, void *data)
   1850 {
   1851 
   1852 	return EOPNOTSUPP;
   1853 }
   1854 
   1855 int
   1856 fbadop_stat(file_t *fp, struct stat *sb)
   1857 {
   1858 
   1859 	return EOPNOTSUPP;
   1860 }
   1861 
   1862 int
   1863 fbadop_close(file_t *fp)
   1864 {
   1865 
   1866 	return EOPNOTSUPP;
   1867 }
   1868 
   1869 /*
   1870  * sysctl routines pertaining to file descriptors
   1871  */
   1872 
   1873 /* Initialized in sysctl_init() for now... */
   1874 extern kmutex_t sysctl_file_marker_lock;
   1875 static u_int sysctl_file_marker = 1;
   1876 
   1877 /*
   1878  * Expects to be called with proc_lock and sysctl_file_marker_lock locked.
   1879  */
   1880 static void
   1881 sysctl_file_marker_reset(void)
   1882 {
   1883 	struct proc *p;
   1884 
   1885 	PROCLIST_FOREACH(p, &allproc) {
   1886 		struct filedesc *fd = p->p_fd;
   1887 		fdtab_t *dt;
   1888 		u_int i;
   1889 
   1890 		mutex_enter(&fd->fd_lock);
   1891 
   1892 		dt = fd->fd_dt;
   1893 		for (i = 0; i < dt->dt_nfiles; i++) {
   1894 			struct file *fp;
   1895 			fdfile_t *ff;
   1896 
   1897 			if ((ff = dt->dt_ff[i]) == NULL) {
   1898 				continue;
   1899 			}
   1900 
   1901 			if ((fp = ff->ff_file) == NULL) {
   1902 				continue;
   1903 			}
   1904 
   1905 			fp->f_marker = 0;
   1906 		}
   1907 
   1908 		mutex_exit(&fd->fd_lock);
   1909 	}
   1910 }
   1911 
   1912 /*
   1913  * sysctl helper routine for kern.file pseudo-subtree.
   1914  */
   1915 static int
   1916 sysctl_kern_file(SYSCTLFN_ARGS)
   1917 {
   1918 	int error;
   1919 	size_t buflen;
   1920 	struct file *fp, fbuf;
   1921 	char *start, *where;
   1922 	struct proc *p;
   1923 
   1924 	start = where = oldp;
   1925 	buflen = *oldlenp;
   1926 
   1927 	if (where == NULL) {
   1928 		/*
   1929 		 * overestimate by 10 files
   1930 		 */
   1931 		*oldlenp = sizeof(filehead) + (nfiles + 10) *
   1932 		    sizeof(struct file);
   1933 		return (0);
   1934 	}
   1935 
   1936 	/*
   1937 	 * first sysctl_copyout filehead
   1938 	 */
   1939 	if (buflen < sizeof(filehead)) {
   1940 		*oldlenp = 0;
   1941 		return (0);
   1942 	}
   1943 	sysctl_unlock();
   1944 	error = sysctl_copyout(l, &filehead, where, sizeof(filehead));
   1945 	if (error) {
   1946 	 	sysctl_relock();
   1947 		return error;
   1948 	}
   1949 	buflen -= sizeof(filehead);
   1950 	where += sizeof(filehead);
   1951 
   1952 	/*
   1953 	 * followed by an array of file structures
   1954 	 */
   1955 	mutex_enter(&sysctl_file_marker_lock);
   1956 	mutex_enter(proc_lock);
   1957 	PROCLIST_FOREACH(p, &allproc) {
   1958 		struct filedesc *fd;
   1959 		fdtab_t *dt;
   1960 		u_int i;
   1961 
   1962 		if (p->p_stat == SIDL) {
   1963 			/* skip embryonic processes */
   1964 			continue;
   1965 		}
   1966 		mutex_enter(p->p_lock);
   1967 		error = kauth_authorize_process(l->l_cred,
   1968 		    KAUTH_PROCESS_CANSEE, p,
   1969 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
   1970 		    NULL, NULL);
   1971 		mutex_exit(p->p_lock);
   1972 		if (error != 0) {
   1973 			/*
   1974 			 * Don't leak kauth retval if we're silently
   1975 			 * skipping this entry.
   1976 			 */
   1977 			error = 0;
   1978 			continue;
   1979 		}
   1980 
   1981 		/*
   1982 		 * Grab a hold on the process.
   1983 		 */
   1984 		if (!rw_tryenter(&p->p_reflock, RW_READER)) {
   1985 			continue;
   1986 		}
   1987 		mutex_exit(proc_lock);
   1988 
   1989 		fd = p->p_fd;
   1990 		mutex_enter(&fd->fd_lock);
   1991 		dt = fd->fd_dt;
   1992 		for (i = 0; i < dt->dt_nfiles; i++) {
   1993 			fdfile_t *ff;
   1994 
   1995 			if ((ff = dt->dt_ff[i]) == NULL) {
   1996 				continue;
   1997 			}
   1998 			if ((fp = ff->ff_file) == NULL) {
   1999 				continue;
   2000 			}
   2001 
   2002 			mutex_enter(&fp->f_lock);
   2003 
   2004 			if ((fp->f_count == 0) ||
   2005 			    (fp->f_marker == sysctl_file_marker)) {
   2006 				mutex_exit(&fp->f_lock);
   2007 				continue;
   2008 			}
   2009 
   2010 			/* Check that we have enough space. */
   2011 			if (buflen < sizeof(struct file)) {
   2012 				*oldlenp = where - start;
   2013 			    	mutex_exit(&fp->f_lock);
   2014 				error = ENOMEM;
   2015 				break;
   2016 			}
   2017 
   2018 			memcpy(&fbuf, fp, sizeof(fbuf));
   2019 			mutex_exit(&fp->f_lock);
   2020 			error = sysctl_copyout(l, &fbuf, where, sizeof(fbuf));
   2021 			if (error) {
   2022 				break;
   2023 			}
   2024 			buflen -= sizeof(struct file);
   2025 			where += sizeof(struct file);
   2026 
   2027 			fp->f_marker = sysctl_file_marker;
   2028 		}
   2029 		mutex_exit(&fd->fd_lock);
   2030 
   2031 		/*
   2032 		 * Release reference to process.
   2033 		 */
   2034 		mutex_enter(proc_lock);
   2035 		rw_exit(&p->p_reflock);
   2036 
   2037 		if (error)
   2038 			break;
   2039 	}
   2040 
   2041 	sysctl_file_marker++;
   2042 	/* Reset all markers if wrapped. */
   2043 	if (sysctl_file_marker == 0) {
   2044 		sysctl_file_marker_reset();
   2045 		sysctl_file_marker++;
   2046 	}
   2047 
   2048 	mutex_exit(proc_lock);
   2049 	mutex_exit(&sysctl_file_marker_lock);
   2050 
   2051 	*oldlenp = where - start;
   2052  	sysctl_relock();
   2053 	return (error);
   2054 }
   2055 
   2056 /*
   2057  * sysctl helper function for kern.file2
   2058  */
   2059 static int
   2060 sysctl_kern_file2(SYSCTLFN_ARGS)
   2061 {
   2062 	struct proc *p;
   2063 	struct file *fp;
   2064 	struct filedesc *fd;
   2065 	struct kinfo_file kf;
   2066 	char *dp;
   2067 	u_int i, op;
   2068 	size_t len, needed, elem_size, out_size;
   2069 	int error, arg, elem_count;
   2070 	fdfile_t *ff;
   2071 	fdtab_t *dt;
   2072 
   2073 	if (namelen == 1 && name[0] == CTL_QUERY)
   2074 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
   2075 
   2076 	if (namelen != 4)
   2077 		return (EINVAL);
   2078 
   2079 	error = 0;
   2080 	dp = oldp;
   2081 	len = (oldp != NULL) ? *oldlenp : 0;
   2082 	op = name[0];
   2083 	arg = name[1];
   2084 	elem_size = name[2];
   2085 	elem_count = name[3];
   2086 	out_size = MIN(sizeof(kf), elem_size);
   2087 	needed = 0;
   2088 
   2089 	if (elem_size < 1 || elem_count < 0)
   2090 		return (EINVAL);
   2091 
   2092 	switch (op) {
   2093 	case KERN_FILE_BYFILE:
   2094 	case KERN_FILE_BYPID:
   2095 		/*
   2096 		 * We're traversing the process list in both cases; the BYFILE
   2097 		 * case does additional work of keeping track of files already
   2098 		 * looked at.
   2099 		 */
   2100 
   2101 		/* doesn't use arg so it must be zero */
   2102 		if ((op == KERN_FILE_BYFILE) && (arg != 0))
   2103 			return EINVAL;
   2104 
   2105 		if ((op == KERN_FILE_BYPID) && (arg < -1))
   2106 			/* -1 means all processes */
   2107 			return (EINVAL);
   2108 
   2109 		sysctl_unlock();
   2110 		if (op == KERN_FILE_BYFILE)
   2111 			mutex_enter(&sysctl_file_marker_lock);
   2112 		mutex_enter(proc_lock);
   2113 		PROCLIST_FOREACH(p, &allproc) {
   2114 			if (p->p_stat == SIDL) {
   2115 				/* skip embryonic processes */
   2116 				continue;
   2117 			}
   2118 			if (arg > 0 && p->p_pid != arg) {
   2119 				/* pick only the one we want */
   2120 				/* XXX want 0 to mean "kernel files" */
   2121 				continue;
   2122 			}
   2123 			mutex_enter(p->p_lock);
   2124 			error = kauth_authorize_process(l->l_cred,
   2125 			    KAUTH_PROCESS_CANSEE, p,
   2126 			    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
   2127 			    NULL, NULL);
   2128 			mutex_exit(p->p_lock);
   2129 			if (error != 0) {
   2130 				/*
   2131 				 * Don't leak kauth retval if we're silently
   2132 				 * skipping this entry.
   2133 				 */
   2134 				error = 0;
   2135 				continue;
   2136 			}
   2137 
   2138 			/*
   2139 			 * Grab a hold on the process.
   2140 			 */
   2141 			if (!rw_tryenter(&p->p_reflock, RW_READER)) {
   2142 				continue;
   2143 			}
   2144 			mutex_exit(proc_lock);
   2145 
   2146 			fd = p->p_fd;
   2147 			mutex_enter(&fd->fd_lock);
   2148 			dt = fd->fd_dt;
   2149 			for (i = 0; i < dt->dt_nfiles; i++) {
   2150 				if ((ff = dt->dt_ff[i]) == NULL) {
   2151 					continue;
   2152 				}
   2153 				if ((fp = ff->ff_file) == NULL) {
   2154 					continue;
   2155 				}
   2156 
   2157 				if ((op == KERN_FILE_BYFILE) &&
   2158 				    (fp->f_marker == sysctl_file_marker)) {
   2159 					continue;
   2160 				}
   2161 				if (len >= elem_size && elem_count > 0) {
   2162 					mutex_enter(&fp->f_lock);
   2163 					fill_file(&kf, fp, ff, i, p->p_pid);
   2164 					mutex_exit(&fp->f_lock);
   2165 					mutex_exit(&fd->fd_lock);
   2166 					error = sysctl_copyout(l,
   2167 					    &kf, dp, out_size);
   2168 					mutex_enter(&fd->fd_lock);
   2169 					if (error)
   2170 						break;
   2171 					dp += elem_size;
   2172 					len -= elem_size;
   2173 				}
   2174 				if (op == KERN_FILE_BYFILE)
   2175 					fp->f_marker = sysctl_file_marker;
   2176 				needed += elem_size;
   2177 				if (elem_count > 0 && elem_count != INT_MAX)
   2178 					elem_count--;
   2179 			}
   2180 			mutex_exit(&fd->fd_lock);
   2181 
   2182 			/*
   2183 			 * Release reference to process.
   2184 			 */
   2185 			mutex_enter(proc_lock);
   2186 			rw_exit(&p->p_reflock);
   2187 		}
   2188 		if (op == KERN_FILE_BYFILE) {
   2189 			sysctl_file_marker++;
   2190 
   2191 			/* Reset all markers if wrapped. */
   2192 			if (sysctl_file_marker == 0) {
   2193 				sysctl_file_marker_reset();
   2194 				sysctl_file_marker++;
   2195 			}
   2196 		}
   2197 		mutex_exit(proc_lock);
   2198 		if (op == KERN_FILE_BYFILE)
   2199 			mutex_exit(&sysctl_file_marker_lock);
   2200 		sysctl_relock();
   2201 		break;
   2202 	default:
   2203 		return (EINVAL);
   2204 	}
   2205 
   2206 	if (oldp == NULL)
   2207 		needed += KERN_FILESLOP * elem_size;
   2208 	*oldlenp = needed;
   2209 
   2210 	return (error);
   2211 }
   2212 
   2213 static void
   2214 fill_file(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
   2215 	  int i, pid_t pid)
   2216 {
   2217 
   2218 	memset(kp, 0, sizeof(*kp));
   2219 
   2220 	kp->ki_fileaddr =	PTRTOUINT64(fp);
   2221 	kp->ki_flag =		fp->f_flag;
   2222 	kp->ki_iflags =		0;
   2223 	kp->ki_ftype =		fp->f_type;
   2224 	kp->ki_count =		fp->f_count;
   2225 	kp->ki_msgcount =	fp->f_msgcount;
   2226 	kp->ki_fucred =		PTRTOUINT64(fp->f_cred);
   2227 	kp->ki_fuid =		kauth_cred_geteuid(fp->f_cred);
   2228 	kp->ki_fgid =		kauth_cred_getegid(fp->f_cred);
   2229 	kp->ki_fops =		PTRTOUINT64(fp->f_ops);
   2230 	kp->ki_foffset =	fp->f_offset;
   2231 	kp->ki_fdata =		PTRTOUINT64(fp->f_data);
   2232 
   2233 	/* vnode information to glue this file to something */
   2234 	if (fp->f_type == DTYPE_VNODE) {
   2235 		struct vnode *vp = (struct vnode *)fp->f_data;
   2236 
   2237 		kp->ki_vun =	PTRTOUINT64(vp->v_un.vu_socket);
   2238 		kp->ki_vsize =	vp->v_size;
   2239 		kp->ki_vtype =	vp->v_type;
   2240 		kp->ki_vtag =	vp->v_tag;
   2241 		kp->ki_vdata =	PTRTOUINT64(vp->v_data);
   2242 	}
   2243 
   2244 	/* process information when retrieved via KERN_FILE_BYPID */
   2245 	if (ff != NULL) {
   2246 		kp->ki_pid =		pid;
   2247 		kp->ki_fd =		i;
   2248 		kp->ki_ofileflags =	ff->ff_exclose;
   2249 		kp->ki_usecount =	ff->ff_refcnt;
   2250 	}
   2251 }
   2252