kern_descrip.c revision 1.232 1 /* $NetBSD: kern_descrip.c,v 1.232 2018/07/03 12:17:54 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_descrip.c 8.8 (Berkeley) 2/14/95
66 */
67
68 /*
69 * File descriptor management.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_descrip.c,v 1.232 2018/07/03 12:17:54 kamil Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/file.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/stat.h>
84 #include <sys/ioctl.h>
85 #include <sys/fcntl.h>
86 #include <sys/pool.h>
87 #include <sys/unistd.h>
88 #include <sys/resourcevar.h>
89 #include <sys/conf.h>
90 #include <sys/event.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/syscallargs.h>
94 #include <sys/cpu.h>
95 #include <sys/kmem.h>
96 #include <sys/vnode.h>
97 #include <sys/sysctl.h>
98 #include <sys/ktrace.h>
99
100 /*
101 * A list (head) of open files, counter, and lock protecting them.
102 */
103 struct filelist filehead __cacheline_aligned;
104 static u_int nfiles __cacheline_aligned;
105 kmutex_t filelist_lock __cacheline_aligned;
106
107 static pool_cache_t filedesc_cache __read_mostly;
108 static pool_cache_t file_cache __read_mostly;
109 static pool_cache_t fdfile_cache __read_mostly;
110
111 static int file_ctor(void *, void *, int);
112 static void file_dtor(void *, void *);
113 static int fdfile_ctor(void *, void *, int);
114 static void fdfile_dtor(void *, void *);
115 static int filedesc_ctor(void *, void *, int);
116 static void filedesc_dtor(void *, void *);
117 static int filedescopen(dev_t, int, int, lwp_t *);
118
119 static int sysctl_kern_file(SYSCTLFN_PROTO);
120 static int sysctl_kern_file2(SYSCTLFN_PROTO);
121 static void fill_file(struct kinfo_file *, const file_t *, const fdfile_t *,
122 int, pid_t);
123
124 const struct cdevsw filedesc_cdevsw = {
125 .d_open = filedescopen,
126 .d_close = noclose,
127 .d_read = noread,
128 .d_write = nowrite,
129 .d_ioctl = noioctl,
130 .d_stop = nostop,
131 .d_tty = notty,
132 .d_poll = nopoll,
133 .d_mmap = nommap,
134 .d_kqfilter = nokqfilter,
135 .d_discard = nodiscard,
136 .d_flag = D_OTHER | D_MPSAFE
137 };
138
139 /* For ease of reading. */
140 __strong_alias(fd_putvnode,fd_putfile)
141 __strong_alias(fd_putsock,fd_putfile)
142
143 /*
144 * Initialize the descriptor system.
145 */
146 void
147 fd_sys_init(void)
148 {
149 static struct sysctllog *clog;
150
151 mutex_init(&filelist_lock, MUTEX_DEFAULT, IPL_NONE);
152
153 file_cache = pool_cache_init(sizeof(file_t), coherency_unit, 0,
154 0, "file", NULL, IPL_NONE, file_ctor, file_dtor, NULL);
155 KASSERT(file_cache != NULL);
156
157 fdfile_cache = pool_cache_init(sizeof(fdfile_t), coherency_unit, 0,
158 PR_LARGECACHE, "fdfile", NULL, IPL_NONE, fdfile_ctor, fdfile_dtor,
159 NULL);
160 KASSERT(fdfile_cache != NULL);
161
162 filedesc_cache = pool_cache_init(sizeof(filedesc_t), coherency_unit,
163 0, 0, "filedesc", NULL, IPL_NONE, filedesc_ctor, filedesc_dtor,
164 NULL);
165 KASSERT(filedesc_cache != NULL);
166
167 sysctl_createv(&clog, 0, NULL, NULL,
168 CTLFLAG_PERMANENT,
169 CTLTYPE_STRUCT, "file",
170 SYSCTL_DESCR("System open file table"),
171 sysctl_kern_file, 0, NULL, 0,
172 CTL_KERN, KERN_FILE, CTL_EOL);
173 sysctl_createv(&clog, 0, NULL, NULL,
174 CTLFLAG_PERMANENT,
175 CTLTYPE_STRUCT, "file2",
176 SYSCTL_DESCR("System open file table"),
177 sysctl_kern_file2, 0, NULL, 0,
178 CTL_KERN, KERN_FILE2, CTL_EOL);
179 }
180
181 static bool
182 fd_isused(filedesc_t *fdp, unsigned fd)
183 {
184 u_int off = fd >> NDENTRYSHIFT;
185
186 KASSERT(fd < fdp->fd_dt->dt_nfiles);
187
188 return (fdp->fd_lomap[off] & (1 << (fd & NDENTRYMASK))) != 0;
189 }
190
191 /*
192 * Verify that the bitmaps match the descriptor table.
193 */
194 static inline void
195 fd_checkmaps(filedesc_t *fdp)
196 {
197 #ifdef DEBUG
198 fdtab_t *dt;
199 u_int fd;
200
201 dt = fdp->fd_dt;
202 if (fdp->fd_refcnt == -1) {
203 /*
204 * fd_free tears down the table without maintaining its bitmap.
205 */
206 return;
207 }
208 for (fd = 0; fd < dt->dt_nfiles; fd++) {
209 if (fd < NDFDFILE) {
210 KASSERT(dt->dt_ff[fd] ==
211 (fdfile_t *)fdp->fd_dfdfile[fd]);
212 }
213 if (dt->dt_ff[fd] == NULL) {
214 KASSERT(!fd_isused(fdp, fd));
215 } else if (dt->dt_ff[fd]->ff_file != NULL) {
216 KASSERT(fd_isused(fdp, fd));
217 }
218 }
219 #endif
220 }
221
222 static int
223 fd_next_zero(filedesc_t *fdp, uint32_t *bitmap, int want, u_int bits)
224 {
225 int i, off, maxoff;
226 uint32_t sub;
227
228 KASSERT(mutex_owned(&fdp->fd_lock));
229
230 fd_checkmaps(fdp);
231
232 if (want > bits)
233 return -1;
234
235 off = want >> NDENTRYSHIFT;
236 i = want & NDENTRYMASK;
237 if (i) {
238 sub = bitmap[off] | ((u_int)~0 >> (NDENTRIES - i));
239 if (sub != ~0)
240 goto found;
241 off++;
242 }
243
244 maxoff = NDLOSLOTS(bits);
245 while (off < maxoff) {
246 if ((sub = bitmap[off]) != ~0)
247 goto found;
248 off++;
249 }
250
251 return -1;
252
253 found:
254 return (off << NDENTRYSHIFT) + ffs(~sub) - 1;
255 }
256
257 static int
258 fd_last_set(filedesc_t *fd, int last)
259 {
260 int off, i;
261 fdfile_t **ff = fd->fd_dt->dt_ff;
262 uint32_t *bitmap = fd->fd_lomap;
263
264 KASSERT(mutex_owned(&fd->fd_lock));
265
266 fd_checkmaps(fd);
267
268 off = (last - 1) >> NDENTRYSHIFT;
269
270 while (off >= 0 && !bitmap[off])
271 off--;
272
273 if (off < 0)
274 return -1;
275
276 i = ((off + 1) << NDENTRYSHIFT) - 1;
277 if (i >= last)
278 i = last - 1;
279
280 /* XXX should use bitmap */
281 while (i > 0 && (ff[i] == NULL || !ff[i]->ff_allocated))
282 i--;
283
284 return i;
285 }
286
287 static inline void
288 fd_used(filedesc_t *fdp, unsigned fd)
289 {
290 u_int off = fd >> NDENTRYSHIFT;
291 fdfile_t *ff;
292
293 ff = fdp->fd_dt->dt_ff[fd];
294
295 KASSERT(mutex_owned(&fdp->fd_lock));
296 KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) == 0);
297 KASSERT(ff != NULL);
298 KASSERT(ff->ff_file == NULL);
299 KASSERT(!ff->ff_allocated);
300
301 ff->ff_allocated = true;
302 fdp->fd_lomap[off] |= 1U << (fd & NDENTRYMASK);
303 if (__predict_false(fdp->fd_lomap[off] == ~0)) {
304 KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
305 (1U << (off & NDENTRYMASK))) == 0);
306 fdp->fd_himap[off >> NDENTRYSHIFT] |= 1U << (off & NDENTRYMASK);
307 }
308
309 if ((int)fd > fdp->fd_lastfile) {
310 fdp->fd_lastfile = fd;
311 }
312
313 fd_checkmaps(fdp);
314 }
315
316 static inline void
317 fd_unused(filedesc_t *fdp, unsigned fd)
318 {
319 u_int off = fd >> NDENTRYSHIFT;
320 fdfile_t *ff;
321
322 ff = fdp->fd_dt->dt_ff[fd];
323
324 /*
325 * Don't assert the lock is held here, as we may be copying
326 * the table during exec() and it is not needed there.
327 * procfs and sysctl are locked out by proc::p_reflock.
328 *
329 * KASSERT(mutex_owned(&fdp->fd_lock));
330 */
331 KASSERT(ff != NULL);
332 KASSERT(ff->ff_file == NULL);
333 KASSERT(ff->ff_allocated);
334
335 if (fd < fdp->fd_freefile) {
336 fdp->fd_freefile = fd;
337 }
338
339 if (fdp->fd_lomap[off] == ~0) {
340 KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
341 (1 << (off & NDENTRYMASK))) != 0);
342 fdp->fd_himap[off >> NDENTRYSHIFT] &=
343 ~(1 << (off & NDENTRYMASK));
344 }
345 KASSERT((fdp->fd_lomap[off] & (1 << (fd & NDENTRYMASK))) != 0);
346 fdp->fd_lomap[off] &= ~(1 << (fd & NDENTRYMASK));
347 ff->ff_allocated = false;
348
349 KASSERT(fd <= fdp->fd_lastfile);
350 if (fd == fdp->fd_lastfile) {
351 fdp->fd_lastfile = fd_last_set(fdp, fd);
352 }
353 fd_checkmaps(fdp);
354 }
355
356 /*
357 * Look up the file structure corresponding to a file descriptor
358 * and return the file, holding a reference on the descriptor.
359 */
360 file_t *
361 fd_getfile(unsigned fd)
362 {
363 filedesc_t *fdp;
364 fdfile_t *ff;
365 file_t *fp;
366 fdtab_t *dt;
367
368 /*
369 * Look up the fdfile structure representing this descriptor.
370 * We are doing this unlocked. See fd_tryexpand().
371 */
372 fdp = curlwp->l_fd;
373 dt = fdp->fd_dt;
374 if (__predict_false(fd >= dt->dt_nfiles)) {
375 return NULL;
376 }
377 ff = dt->dt_ff[fd];
378 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
379 if (__predict_false(ff == NULL)) {
380 return NULL;
381 }
382
383 /* Now get a reference to the descriptor. */
384 if (fdp->fd_refcnt == 1) {
385 /*
386 * Single threaded: don't need to worry about concurrent
387 * access (other than earlier calls to kqueue, which may
388 * hold a reference to the descriptor).
389 */
390 ff->ff_refcnt++;
391 } else {
392 /*
393 * Multi threaded: issue a memory barrier to ensure that we
394 * acquire the file pointer _after_ adding a reference. If
395 * no memory barrier, we could fetch a stale pointer.
396 */
397 atomic_inc_uint(&ff->ff_refcnt);
398 #ifndef __HAVE_ATOMIC_AS_MEMBAR
399 membar_enter();
400 #endif
401 }
402
403 /*
404 * If the file is not open or is being closed then put the
405 * reference back.
406 */
407 fp = ff->ff_file;
408 if (__predict_true(fp != NULL)) {
409 return fp;
410 }
411 fd_putfile(fd);
412 return NULL;
413 }
414
415 /*
416 * Release a reference to a file descriptor acquired with fd_getfile().
417 */
418 void
419 fd_putfile(unsigned fd)
420 {
421 filedesc_t *fdp;
422 fdfile_t *ff;
423 u_int u, v;
424
425 fdp = curlwp->l_fd;
426 ff = fdp->fd_dt->dt_ff[fd];
427
428 KASSERT(fd < fdp->fd_dt->dt_nfiles);
429 KASSERT(ff != NULL);
430 KASSERT((ff->ff_refcnt & FR_MASK) > 0);
431 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
432
433 if (fdp->fd_refcnt == 1) {
434 /*
435 * Single threaded: don't need to worry about concurrent
436 * access (other than earlier calls to kqueue, which may
437 * hold a reference to the descriptor).
438 */
439 if (__predict_false((ff->ff_refcnt & FR_CLOSING) != 0)) {
440 fd_close(fd);
441 return;
442 }
443 ff->ff_refcnt--;
444 return;
445 }
446
447 /*
448 * Ensure that any use of the file is complete and globally
449 * visible before dropping the final reference. If no membar,
450 * the current CPU could still access memory associated with
451 * the file after it has been freed or recycled by another
452 * CPU.
453 */
454 #ifndef __HAVE_ATOMIC_AS_MEMBAR
455 membar_exit();
456 #endif
457
458 /*
459 * Be optimistic and start out with the assumption that no other
460 * threads are trying to close the descriptor. If the CAS fails,
461 * we lost a race and/or it's being closed.
462 */
463 for (u = ff->ff_refcnt & FR_MASK;; u = v) {
464 v = atomic_cas_uint(&ff->ff_refcnt, u, u - 1);
465 if (__predict_true(u == v)) {
466 return;
467 }
468 if (__predict_false((v & FR_CLOSING) != 0)) {
469 break;
470 }
471 }
472
473 /* Another thread is waiting to close the file: join it. */
474 (void)fd_close(fd);
475 }
476
477 /*
478 * Convenience wrapper around fd_getfile() that returns reference
479 * to a vnode.
480 */
481 int
482 fd_getvnode(unsigned fd, file_t **fpp)
483 {
484 vnode_t *vp;
485 file_t *fp;
486
487 fp = fd_getfile(fd);
488 if (__predict_false(fp == NULL)) {
489 return EBADF;
490 }
491 if (__predict_false(fp->f_type != DTYPE_VNODE)) {
492 fd_putfile(fd);
493 return EINVAL;
494 }
495 vp = fp->f_vnode;
496 if (__predict_false(vp->v_type == VBAD)) {
497 /* XXX Is this case really necessary? */
498 fd_putfile(fd);
499 return EBADF;
500 }
501 *fpp = fp;
502 return 0;
503 }
504
505 /*
506 * Convenience wrapper around fd_getfile() that returns reference
507 * to a socket.
508 */
509 int
510 fd_getsock1(unsigned fd, struct socket **sop, file_t **fp)
511 {
512 *fp = fd_getfile(fd);
513 if (__predict_false(*fp == NULL)) {
514 return EBADF;
515 }
516 if (__predict_false((*fp)->f_type != DTYPE_SOCKET)) {
517 fd_putfile(fd);
518 return ENOTSOCK;
519 }
520 *sop = (*fp)->f_socket;
521 return 0;
522 }
523
524 int
525 fd_getsock(unsigned fd, struct socket **sop)
526 {
527 file_t *fp;
528 return fd_getsock1(fd, sop, &fp);
529 }
530
531 /*
532 * Look up the file structure corresponding to a file descriptor
533 * and return it with a reference held on the file, not the
534 * descriptor.
535 *
536 * This is heavyweight and only used when accessing descriptors
537 * from a foreign process. The caller must ensure that `p' does
538 * not exit or fork across this call.
539 *
540 * To release the file (not descriptor) reference, use closef().
541 */
542 file_t *
543 fd_getfile2(proc_t *p, unsigned fd)
544 {
545 filedesc_t *fdp;
546 fdfile_t *ff;
547 file_t *fp;
548 fdtab_t *dt;
549
550 fdp = p->p_fd;
551 mutex_enter(&fdp->fd_lock);
552 dt = fdp->fd_dt;
553 if (fd >= dt->dt_nfiles) {
554 mutex_exit(&fdp->fd_lock);
555 return NULL;
556 }
557 if ((ff = dt->dt_ff[fd]) == NULL) {
558 mutex_exit(&fdp->fd_lock);
559 return NULL;
560 }
561 if ((fp = ff->ff_file) == NULL) {
562 mutex_exit(&fdp->fd_lock);
563 return NULL;
564 }
565 mutex_enter(&fp->f_lock);
566 fp->f_count++;
567 mutex_exit(&fp->f_lock);
568 mutex_exit(&fdp->fd_lock);
569
570 return fp;
571 }
572
573 /*
574 * Internal form of close. Must be called with a reference to the
575 * descriptor, and will drop the reference. When all descriptor
576 * references are dropped, releases the descriptor slot and a single
577 * reference to the file structure.
578 */
579 int
580 fd_close(unsigned fd)
581 {
582 struct flock lf;
583 filedesc_t *fdp;
584 fdfile_t *ff;
585 file_t *fp;
586 proc_t *p;
587 lwp_t *l;
588 u_int refcnt;
589
590 l = curlwp;
591 p = l->l_proc;
592 fdp = l->l_fd;
593 ff = fdp->fd_dt->dt_ff[fd];
594
595 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
596
597 mutex_enter(&fdp->fd_lock);
598 KASSERT((ff->ff_refcnt & FR_MASK) > 0);
599 if (__predict_false(ff->ff_file == NULL)) {
600 /*
601 * Another user of the file is already closing, and is
602 * waiting for other users of the file to drain. Release
603 * our reference, and wake up the closer.
604 */
605 atomic_dec_uint(&ff->ff_refcnt);
606 cv_broadcast(&ff->ff_closing);
607 mutex_exit(&fdp->fd_lock);
608
609 /*
610 * An application error, so pretend that the descriptor
611 * was already closed. We can't safely wait for it to
612 * be closed without potentially deadlocking.
613 */
614 return (EBADF);
615 }
616 KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
617
618 /*
619 * There may be multiple users of this file within the process.
620 * Notify existing and new users that the file is closing. This
621 * will prevent them from adding additional uses to this file
622 * while we are closing it.
623 */
624 fp = ff->ff_file;
625 ff->ff_file = NULL;
626 ff->ff_exclose = false;
627
628 /*
629 * We expect the caller to hold a descriptor reference - drop it.
630 * The reference count may increase beyond zero at this point due
631 * to an erroneous descriptor reference by an application, but
632 * fd_getfile() will notice that the file is being closed and drop
633 * the reference again.
634 */
635 if (fdp->fd_refcnt == 1) {
636 /* Single threaded. */
637 refcnt = --(ff->ff_refcnt);
638 } else {
639 /* Multi threaded. */
640 #ifndef __HAVE_ATOMIC_AS_MEMBAR
641 membar_producer();
642 #endif
643 refcnt = atomic_dec_uint_nv(&ff->ff_refcnt);
644 }
645 if (__predict_false(refcnt != 0)) {
646 /*
647 * Wait for other references to drain. This is typically
648 * an application error - the descriptor is being closed
649 * while still in use.
650 * (Or just a threaded application trying to unblock its
651 * thread that sleeps in (say) accept()).
652 */
653 atomic_or_uint(&ff->ff_refcnt, FR_CLOSING);
654
655 /*
656 * Remove any knotes attached to the file. A knote
657 * attached to the descriptor can hold references on it.
658 */
659 mutex_exit(&fdp->fd_lock);
660 if (!SLIST_EMPTY(&ff->ff_knlist)) {
661 knote_fdclose(fd);
662 }
663
664 /*
665 * Since the file system code doesn't know which fd
666 * each request came from (think dup()), we have to
667 * ask it to return ERESTART for any long-term blocks.
668 * The re-entry through read/write/etc will detect the
669 * closed fd and return EBAFD.
670 * Blocked partial writes may return a short length.
671 */
672 (*fp->f_ops->fo_restart)(fp);
673 mutex_enter(&fdp->fd_lock);
674
675 /*
676 * We need to see the count drop to zero at least once,
677 * in order to ensure that all pre-existing references
678 * have been drained. New references past this point are
679 * of no interest.
680 * XXX (dsl) this may need to call fo_restart() after a
681 * timeout to guarantee that all the system calls exit.
682 */
683 while ((ff->ff_refcnt & FR_MASK) != 0) {
684 cv_wait(&ff->ff_closing, &fdp->fd_lock);
685 }
686 atomic_and_uint(&ff->ff_refcnt, ~FR_CLOSING);
687 } else {
688 /* If no references, there must be no knotes. */
689 KASSERT(SLIST_EMPTY(&ff->ff_knlist));
690 }
691
692 /*
693 * POSIX record locking dictates that any close releases ALL
694 * locks owned by this process. This is handled by setting
695 * a flag in the unlock to free ONLY locks obeying POSIX
696 * semantics, and not to free BSD-style file locks.
697 * If the descriptor was in a message, POSIX-style locks
698 * aren't passed with the descriptor.
699 */
700 if (__predict_false((p->p_flag & PK_ADVLOCK) != 0 &&
701 fp->f_type == DTYPE_VNODE)) {
702 lf.l_whence = SEEK_SET;
703 lf.l_start = 0;
704 lf.l_len = 0;
705 lf.l_type = F_UNLCK;
706 mutex_exit(&fdp->fd_lock);
707 (void)VOP_ADVLOCK(fp->f_vnode, p, F_UNLCK, &lf, F_POSIX);
708 mutex_enter(&fdp->fd_lock);
709 }
710
711 /* Free descriptor slot. */
712 fd_unused(fdp, fd);
713 mutex_exit(&fdp->fd_lock);
714
715 /* Now drop reference to the file itself. */
716 return closef(fp);
717 }
718
719 /*
720 * Duplicate a file descriptor.
721 */
722 int
723 fd_dup(file_t *fp, int minfd, int *newp, bool exclose)
724 {
725 proc_t *p = curproc;
726 int error;
727
728 while ((error = fd_alloc(p, minfd, newp)) != 0) {
729 if (error != ENOSPC) {
730 return error;
731 }
732 fd_tryexpand(p);
733 }
734
735 curlwp->l_fd->fd_dt->dt_ff[*newp]->ff_exclose = exclose;
736 fd_affix(p, fp, *newp);
737 return 0;
738 }
739
740 /*
741 * dup2 operation.
742 */
743 int
744 fd_dup2(file_t *fp, unsigned newfd, int flags)
745 {
746 filedesc_t *fdp = curlwp->l_fd;
747 fdfile_t *ff;
748 fdtab_t *dt;
749
750 if (flags & ~(O_CLOEXEC|O_NONBLOCK))
751 return EINVAL;
752 /*
753 * Ensure there are enough slots in the descriptor table,
754 * and allocate an fdfile_t up front in case we need it.
755 */
756 while (newfd >= fdp->fd_dt->dt_nfiles) {
757 fd_tryexpand(curproc);
758 }
759 ff = pool_cache_get(fdfile_cache, PR_WAITOK);
760
761 /*
762 * If there is already a file open, close it. If the file is
763 * half open, wait for it to be constructed before closing it.
764 * XXX Potential for deadlock here?
765 */
766 mutex_enter(&fdp->fd_lock);
767 while (fd_isused(fdp, newfd)) {
768 mutex_exit(&fdp->fd_lock);
769 if (fd_getfile(newfd) != NULL) {
770 (void)fd_close(newfd);
771 } else {
772 /*
773 * Crummy, but unlikely to happen.
774 * Can occur if we interrupt another
775 * thread while it is opening a file.
776 */
777 kpause("dup2", false, 1, NULL);
778 }
779 mutex_enter(&fdp->fd_lock);
780 }
781 dt = fdp->fd_dt;
782 if (dt->dt_ff[newfd] == NULL) {
783 KASSERT(newfd >= NDFDFILE);
784 dt->dt_ff[newfd] = ff;
785 ff = NULL;
786 }
787 fd_used(fdp, newfd);
788 mutex_exit(&fdp->fd_lock);
789
790 dt->dt_ff[newfd]->ff_exclose = (flags & O_CLOEXEC) != 0;
791 fp->f_flag |= flags & FNONBLOCK;
792 /* Slot is now allocated. Insert copy of the file. */
793 fd_affix(curproc, fp, newfd);
794 if (ff != NULL) {
795 pool_cache_put(fdfile_cache, ff);
796 }
797 return 0;
798 }
799
800 /*
801 * Drop reference to a file structure.
802 */
803 int
804 closef(file_t *fp)
805 {
806 struct flock lf;
807 int error;
808
809 /*
810 * Drop reference. If referenced elsewhere it's still open
811 * and we have nothing more to do.
812 */
813 mutex_enter(&fp->f_lock);
814 KASSERT(fp->f_count > 0);
815 if (--fp->f_count > 0) {
816 mutex_exit(&fp->f_lock);
817 return 0;
818 }
819 KASSERT(fp->f_count == 0);
820 mutex_exit(&fp->f_lock);
821
822 /* We held the last reference - release locks, close and free. */
823 if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE) {
824 lf.l_whence = SEEK_SET;
825 lf.l_start = 0;
826 lf.l_len = 0;
827 lf.l_type = F_UNLCK;
828 (void)VOP_ADVLOCK(fp->f_vnode, fp, F_UNLCK, &lf, F_FLOCK);
829 }
830 if (fp->f_ops != NULL) {
831 error = (*fp->f_ops->fo_close)(fp);
832 } else {
833 error = 0;
834 }
835 KASSERT(fp->f_count == 0);
836 KASSERT(fp->f_cred != NULL);
837 pool_cache_put(file_cache, fp);
838
839 return error;
840 }
841
842 /*
843 * Allocate a file descriptor for the process.
844 */
845 int
846 fd_alloc(proc_t *p, int want, int *result)
847 {
848 filedesc_t *fdp = p->p_fd;
849 int i, lim, last, error, hi;
850 u_int off;
851 fdtab_t *dt;
852
853 KASSERT(p == curproc || p == &proc0);
854
855 /*
856 * Search for a free descriptor starting at the higher
857 * of want or fd_freefile.
858 */
859 mutex_enter(&fdp->fd_lock);
860 fd_checkmaps(fdp);
861 dt = fdp->fd_dt;
862 KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
863 lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
864 last = min(dt->dt_nfiles, lim);
865 for (;;) {
866 if ((i = want) < fdp->fd_freefile)
867 i = fdp->fd_freefile;
868 off = i >> NDENTRYSHIFT;
869 hi = fd_next_zero(fdp, fdp->fd_himap, off,
870 (last + NDENTRIES - 1) >> NDENTRYSHIFT);
871 if (hi == -1)
872 break;
873 i = fd_next_zero(fdp, &fdp->fd_lomap[hi],
874 hi > off ? 0 : i & NDENTRYMASK, NDENTRIES);
875 if (i == -1) {
876 /*
877 * Free file descriptor in this block was
878 * below want, try again with higher want.
879 */
880 want = (hi + 1) << NDENTRYSHIFT;
881 continue;
882 }
883 i += (hi << NDENTRYSHIFT);
884 if (i >= last) {
885 break;
886 }
887 if (dt->dt_ff[i] == NULL) {
888 KASSERT(i >= NDFDFILE);
889 dt->dt_ff[i] = pool_cache_get(fdfile_cache, PR_WAITOK);
890 }
891 KASSERT(dt->dt_ff[i]->ff_file == NULL);
892 fd_used(fdp, i);
893 if (want <= fdp->fd_freefile) {
894 fdp->fd_freefile = i;
895 }
896 *result = i;
897 KASSERT(i >= NDFDFILE ||
898 dt->dt_ff[i] == (fdfile_t *)fdp->fd_dfdfile[i]);
899 fd_checkmaps(fdp);
900 mutex_exit(&fdp->fd_lock);
901 return 0;
902 }
903
904 /* No space in current array. Let the caller expand and retry. */
905 error = (dt->dt_nfiles >= lim) ? EMFILE : ENOSPC;
906 mutex_exit(&fdp->fd_lock);
907 return error;
908 }
909
910 /*
911 * Allocate memory for a descriptor table.
912 */
913 static fdtab_t *
914 fd_dtab_alloc(int n)
915 {
916 fdtab_t *dt;
917 size_t sz;
918
919 KASSERT(n > NDFILE);
920
921 sz = sizeof(*dt) + (n - NDFILE) * sizeof(dt->dt_ff[0]);
922 dt = kmem_alloc(sz, KM_SLEEP);
923 #ifdef DIAGNOSTIC
924 memset(dt, 0xff, sz);
925 #endif
926 dt->dt_nfiles = n;
927 dt->dt_link = NULL;
928 return dt;
929 }
930
931 /*
932 * Free a descriptor table, and all tables linked for deferred free.
933 */
934 static void
935 fd_dtab_free(fdtab_t *dt)
936 {
937 fdtab_t *next;
938 size_t sz;
939
940 do {
941 next = dt->dt_link;
942 KASSERT(dt->dt_nfiles > NDFILE);
943 sz = sizeof(*dt) +
944 (dt->dt_nfiles - NDFILE) * sizeof(dt->dt_ff[0]);
945 #ifdef DIAGNOSTIC
946 memset(dt, 0xff, sz);
947 #endif
948 kmem_free(dt, sz);
949 dt = next;
950 } while (dt != NULL);
951 }
952
953 /*
954 * Allocate descriptor bitmap.
955 */
956 static void
957 fd_map_alloc(int n, uint32_t **lo, uint32_t **hi)
958 {
959 uint8_t *ptr;
960 size_t szlo, szhi;
961
962 KASSERT(n > NDENTRIES);
963
964 szlo = NDLOSLOTS(n) * sizeof(uint32_t);
965 szhi = NDHISLOTS(n) * sizeof(uint32_t);
966 ptr = kmem_alloc(szlo + szhi, KM_SLEEP);
967 *lo = (uint32_t *)ptr;
968 *hi = (uint32_t *)(ptr + szlo);
969 }
970
971 /*
972 * Free descriptor bitmap.
973 */
974 static void
975 fd_map_free(int n, uint32_t *lo, uint32_t *hi)
976 {
977 size_t szlo, szhi;
978
979 KASSERT(n > NDENTRIES);
980
981 szlo = NDLOSLOTS(n) * sizeof(uint32_t);
982 szhi = NDHISLOTS(n) * sizeof(uint32_t);
983 KASSERT(hi == (uint32_t *)((uint8_t *)lo + szlo));
984 kmem_free(lo, szlo + szhi);
985 }
986
987 /*
988 * Expand a process' descriptor table.
989 */
990 void
991 fd_tryexpand(proc_t *p)
992 {
993 filedesc_t *fdp;
994 int i, numfiles, oldnfiles;
995 fdtab_t *newdt, *dt;
996 uint32_t *newhimap, *newlomap;
997
998 KASSERT(p == curproc || p == &proc0);
999
1000 fdp = p->p_fd;
1001 newhimap = NULL;
1002 newlomap = NULL;
1003 oldnfiles = fdp->fd_dt->dt_nfiles;
1004
1005 if (oldnfiles < NDEXTENT)
1006 numfiles = NDEXTENT;
1007 else
1008 numfiles = 2 * oldnfiles;
1009
1010 newdt = fd_dtab_alloc(numfiles);
1011 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1012 fd_map_alloc(numfiles, &newlomap, &newhimap);
1013 }
1014
1015 mutex_enter(&fdp->fd_lock);
1016 dt = fdp->fd_dt;
1017 KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1018 if (dt->dt_nfiles != oldnfiles) {
1019 /* fdp changed; caller must retry */
1020 mutex_exit(&fdp->fd_lock);
1021 fd_dtab_free(newdt);
1022 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1023 fd_map_free(numfiles, newlomap, newhimap);
1024 }
1025 return;
1026 }
1027
1028 /* Copy the existing descriptor table and zero the new portion. */
1029 i = sizeof(fdfile_t *) * oldnfiles;
1030 memcpy(newdt->dt_ff, dt->dt_ff, i);
1031 memset((uint8_t *)newdt->dt_ff + i, 0,
1032 numfiles * sizeof(fdfile_t *) - i);
1033
1034 /*
1035 * Link old descriptor array into list to be discarded. We defer
1036 * freeing until the last reference to the descriptor table goes
1037 * away (usually process exit). This allows us to do lockless
1038 * lookups in fd_getfile().
1039 */
1040 if (oldnfiles > NDFILE) {
1041 if (fdp->fd_refcnt > 1) {
1042 newdt->dt_link = dt;
1043 } else {
1044 fd_dtab_free(dt);
1045 }
1046 }
1047
1048 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1049 i = NDHISLOTS(oldnfiles) * sizeof(uint32_t);
1050 memcpy(newhimap, fdp->fd_himap, i);
1051 memset((uint8_t *)newhimap + i, 0,
1052 NDHISLOTS(numfiles) * sizeof(uint32_t) - i);
1053
1054 i = NDLOSLOTS(oldnfiles) * sizeof(uint32_t);
1055 memcpy(newlomap, fdp->fd_lomap, i);
1056 memset((uint8_t *)newlomap + i, 0,
1057 NDLOSLOTS(numfiles) * sizeof(uint32_t) - i);
1058
1059 if (NDHISLOTS(oldnfiles) > NDHISLOTS(NDFILE)) {
1060 fd_map_free(oldnfiles, fdp->fd_lomap, fdp->fd_himap);
1061 }
1062 fdp->fd_himap = newhimap;
1063 fdp->fd_lomap = newlomap;
1064 }
1065
1066 /*
1067 * All other modifications must become globally visible before
1068 * the change to fd_dt. See fd_getfile().
1069 */
1070 membar_producer();
1071 fdp->fd_dt = newdt;
1072 KASSERT(newdt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1073 fd_checkmaps(fdp);
1074 mutex_exit(&fdp->fd_lock);
1075 }
1076
1077 /*
1078 * Create a new open file structure and allocate a file descriptor
1079 * for the current process.
1080 */
1081 int
1082 fd_allocfile(file_t **resultfp, int *resultfd)
1083 {
1084 proc_t *p = curproc;
1085 kauth_cred_t cred;
1086 file_t *fp;
1087 int error;
1088
1089 while ((error = fd_alloc(p, 0, resultfd)) != 0) {
1090 if (error != ENOSPC) {
1091 return error;
1092 }
1093 fd_tryexpand(p);
1094 }
1095
1096 fp = pool_cache_get(file_cache, PR_WAITOK);
1097 if (fp == NULL) {
1098 fd_abort(p, NULL, *resultfd);
1099 return ENFILE;
1100 }
1101 KASSERT(fp->f_count == 0);
1102 KASSERT(fp->f_msgcount == 0);
1103 KASSERT(fp->f_unpcount == 0);
1104
1105 /* Replace cached credentials if not what we need. */
1106 cred = curlwp->l_cred;
1107 if (__predict_false(cred != fp->f_cred)) {
1108 kauth_cred_free(fp->f_cred);
1109 kauth_cred_hold(cred);
1110 fp->f_cred = cred;
1111 }
1112
1113 /*
1114 * Don't allow recycled files to be scanned.
1115 * See uipc_usrreq.c.
1116 */
1117 if (__predict_false((fp->f_flag & FSCAN) != 0)) {
1118 mutex_enter(&fp->f_lock);
1119 atomic_and_uint(&fp->f_flag, ~FSCAN);
1120 mutex_exit(&fp->f_lock);
1121 }
1122
1123 fp->f_advice = 0;
1124 fp->f_offset = 0;
1125 *resultfp = fp;
1126
1127 return 0;
1128 }
1129
1130 /*
1131 * Successful creation of a new descriptor: make visible to the process.
1132 */
1133 void
1134 fd_affix(proc_t *p, file_t *fp, unsigned fd)
1135 {
1136 fdfile_t *ff;
1137 filedesc_t *fdp;
1138
1139 KASSERT(p == curproc || p == &proc0);
1140
1141 /* Add a reference to the file structure. */
1142 mutex_enter(&fp->f_lock);
1143 fp->f_count++;
1144 mutex_exit(&fp->f_lock);
1145
1146 /*
1147 * Insert the new file into the descriptor slot.
1148 *
1149 * The memory barriers provided by lock activity in this routine
1150 * ensure that any updates to the file structure become globally
1151 * visible before the file becomes visible to other LWPs in the
1152 * current process.
1153 */
1154 fdp = p->p_fd;
1155 ff = fdp->fd_dt->dt_ff[fd];
1156
1157 KASSERT(ff != NULL);
1158 KASSERT(ff->ff_file == NULL);
1159 KASSERT(ff->ff_allocated);
1160 KASSERT(fd_isused(fdp, fd));
1161 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1162
1163 /* No need to lock in order to make file initially visible. */
1164 ff->ff_file = fp;
1165 }
1166
1167 /*
1168 * Abort creation of a new descriptor: free descriptor slot and file.
1169 */
1170 void
1171 fd_abort(proc_t *p, file_t *fp, unsigned fd)
1172 {
1173 filedesc_t *fdp;
1174 fdfile_t *ff;
1175
1176 KASSERT(p == curproc || p == &proc0);
1177
1178 fdp = p->p_fd;
1179 ff = fdp->fd_dt->dt_ff[fd];
1180 ff->ff_exclose = false;
1181
1182 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1183
1184 mutex_enter(&fdp->fd_lock);
1185 KASSERT(fd_isused(fdp, fd));
1186 fd_unused(fdp, fd);
1187 mutex_exit(&fdp->fd_lock);
1188
1189 if (fp != NULL) {
1190 KASSERT(fp->f_count == 0);
1191 KASSERT(fp->f_cred != NULL);
1192 pool_cache_put(file_cache, fp);
1193 }
1194 }
1195
1196 static int
1197 file_ctor(void *arg, void *obj, int flags)
1198 {
1199 file_t *fp = obj;
1200
1201 memset(fp, 0, sizeof(*fp));
1202
1203 mutex_enter(&filelist_lock);
1204 if (__predict_false(nfiles >= maxfiles)) {
1205 mutex_exit(&filelist_lock);
1206 tablefull("file", "increase kern.maxfiles or MAXFILES");
1207 return ENFILE;
1208 }
1209 nfiles++;
1210 LIST_INSERT_HEAD(&filehead, fp, f_list);
1211 mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
1212 fp->f_cred = curlwp->l_cred;
1213 kauth_cred_hold(fp->f_cred);
1214 mutex_exit(&filelist_lock);
1215
1216 return 0;
1217 }
1218
1219 static void
1220 file_dtor(void *arg, void *obj)
1221 {
1222 file_t *fp = obj;
1223
1224 mutex_enter(&filelist_lock);
1225 nfiles--;
1226 LIST_REMOVE(fp, f_list);
1227 mutex_exit(&filelist_lock);
1228
1229 kauth_cred_free(fp->f_cred);
1230 mutex_destroy(&fp->f_lock);
1231 }
1232
1233 static int
1234 fdfile_ctor(void *arg, void *obj, int flags)
1235 {
1236 fdfile_t *ff = obj;
1237
1238 memset(ff, 0, sizeof(*ff));
1239 cv_init(&ff->ff_closing, "fdclose");
1240
1241 return 0;
1242 }
1243
1244 static void
1245 fdfile_dtor(void *arg, void *obj)
1246 {
1247 fdfile_t *ff = obj;
1248
1249 cv_destroy(&ff->ff_closing);
1250 }
1251
1252 file_t *
1253 fgetdummy(void)
1254 {
1255 file_t *fp;
1256
1257 fp = kmem_zalloc(sizeof(*fp), KM_SLEEP);
1258 mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
1259 return fp;
1260 }
1261
1262 void
1263 fputdummy(file_t *fp)
1264 {
1265
1266 mutex_destroy(&fp->f_lock);
1267 kmem_free(fp, sizeof(*fp));
1268 }
1269
1270 /*
1271 * Create an initial filedesc structure.
1272 */
1273 filedesc_t *
1274 fd_init(filedesc_t *fdp)
1275 {
1276 #ifdef DIAGNOSTIC
1277 unsigned fd;
1278 #endif
1279
1280 if (__predict_true(fdp == NULL)) {
1281 fdp = pool_cache_get(filedesc_cache, PR_WAITOK);
1282 } else {
1283 KASSERT(fdp == &filedesc0);
1284 filedesc_ctor(NULL, fdp, PR_WAITOK);
1285 }
1286
1287 #ifdef DIAGNOSTIC
1288 KASSERT(fdp->fd_lastfile == -1);
1289 KASSERT(fdp->fd_lastkqfile == -1);
1290 KASSERT(fdp->fd_knhash == NULL);
1291 KASSERT(fdp->fd_freefile == 0);
1292 KASSERT(fdp->fd_exclose == false);
1293 KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
1294 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1295 for (fd = 0; fd < NDFDFILE; fd++) {
1296 KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] ==
1297 (fdfile_t *)fdp->fd_dfdfile[fd]);
1298 }
1299 for (fd = NDFDFILE; fd < NDFILE; fd++) {
1300 KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] == NULL);
1301 }
1302 KASSERT(fdp->fd_himap == fdp->fd_dhimap);
1303 KASSERT(fdp->fd_lomap == fdp->fd_dlomap);
1304 #endif /* DIAGNOSTIC */
1305
1306 fdp->fd_refcnt = 1;
1307 fd_checkmaps(fdp);
1308
1309 return fdp;
1310 }
1311
1312 /*
1313 * Initialize a file descriptor table.
1314 */
1315 static int
1316 filedesc_ctor(void *arg, void *obj, int flag)
1317 {
1318 filedesc_t *fdp = obj;
1319 fdfile_t **ffp;
1320 int i;
1321
1322 memset(fdp, 0, sizeof(*fdp));
1323 mutex_init(&fdp->fd_lock, MUTEX_DEFAULT, IPL_NONE);
1324 fdp->fd_lastfile = -1;
1325 fdp->fd_lastkqfile = -1;
1326 fdp->fd_dt = &fdp->fd_dtbuiltin;
1327 fdp->fd_dtbuiltin.dt_nfiles = NDFILE;
1328 fdp->fd_himap = fdp->fd_dhimap;
1329 fdp->fd_lomap = fdp->fd_dlomap;
1330
1331 CTASSERT(sizeof(fdp->fd_dfdfile[0]) >= sizeof(fdfile_t));
1332 for (i = 0, ffp = fdp->fd_dt->dt_ff; i < NDFDFILE; i++, ffp++) {
1333 *ffp = (fdfile_t *)fdp->fd_dfdfile[i];
1334 (void)fdfile_ctor(NULL, fdp->fd_dfdfile[i], PR_WAITOK);
1335 }
1336
1337 return 0;
1338 }
1339
1340 static void
1341 filedesc_dtor(void *arg, void *obj)
1342 {
1343 filedesc_t *fdp = obj;
1344 int i;
1345
1346 for (i = 0; i < NDFDFILE; i++) {
1347 fdfile_dtor(NULL, fdp->fd_dfdfile[i]);
1348 }
1349
1350 mutex_destroy(&fdp->fd_lock);
1351 }
1352
1353 /*
1354 * Make p share curproc's filedesc structure.
1355 */
1356 void
1357 fd_share(struct proc *p)
1358 {
1359 filedesc_t *fdp;
1360
1361 fdp = curlwp->l_fd;
1362 p->p_fd = fdp;
1363 atomic_inc_uint(&fdp->fd_refcnt);
1364 }
1365
1366 /*
1367 * Acquire a hold on a filedesc structure.
1368 */
1369 void
1370 fd_hold(lwp_t *l)
1371 {
1372 filedesc_t *fdp = l->l_fd;
1373
1374 atomic_inc_uint(&fdp->fd_refcnt);
1375 }
1376
1377 /*
1378 * Copy a filedesc structure.
1379 */
1380 filedesc_t *
1381 fd_copy(void)
1382 {
1383 filedesc_t *newfdp, *fdp;
1384 fdfile_t *ff, **ffp, **nffp, *ff2;
1385 int i, j, numfiles, lastfile, newlast;
1386 file_t *fp;
1387 fdtab_t *newdt;
1388
1389 fdp = curproc->p_fd;
1390 newfdp = pool_cache_get(filedesc_cache, PR_WAITOK);
1391 newfdp->fd_refcnt = 1;
1392
1393 #ifdef DIAGNOSTIC
1394 KASSERT(newfdp->fd_lastfile == -1);
1395 KASSERT(newfdp->fd_lastkqfile == -1);
1396 KASSERT(newfdp->fd_knhash == NULL);
1397 KASSERT(newfdp->fd_freefile == 0);
1398 KASSERT(newfdp->fd_exclose == false);
1399 KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
1400 KASSERT(newfdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1401 for (i = 0; i < NDFDFILE; i++) {
1402 KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] ==
1403 (fdfile_t *)&newfdp->fd_dfdfile[i]);
1404 }
1405 for (i = NDFDFILE; i < NDFILE; i++) {
1406 KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] == NULL);
1407 }
1408 #endif /* DIAGNOSTIC */
1409
1410 mutex_enter(&fdp->fd_lock);
1411 fd_checkmaps(fdp);
1412 numfiles = fdp->fd_dt->dt_nfiles;
1413 lastfile = fdp->fd_lastfile;
1414
1415 /*
1416 * If the number of open files fits in the internal arrays
1417 * of the open file structure, use them, otherwise allocate
1418 * additional memory for the number of descriptors currently
1419 * in use.
1420 */
1421 if (lastfile < NDFILE) {
1422 i = NDFILE;
1423 newdt = newfdp->fd_dt;
1424 KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
1425 } else {
1426 /*
1427 * Compute the smallest multiple of NDEXTENT needed
1428 * for the file descriptors currently in use,
1429 * allowing the table to shrink.
1430 */
1431 i = numfiles;
1432 while (i >= 2 * NDEXTENT && i > lastfile * 2) {
1433 i /= 2;
1434 }
1435 KASSERT(i > NDFILE);
1436 newdt = fd_dtab_alloc(i);
1437 newfdp->fd_dt = newdt;
1438 memcpy(newdt->dt_ff, newfdp->fd_dtbuiltin.dt_ff,
1439 NDFDFILE * sizeof(fdfile_t **));
1440 memset(newdt->dt_ff + NDFDFILE, 0,
1441 (i - NDFDFILE) * sizeof(fdfile_t **));
1442 }
1443 if (NDHISLOTS(i) <= NDHISLOTS(NDFILE)) {
1444 newfdp->fd_himap = newfdp->fd_dhimap;
1445 newfdp->fd_lomap = newfdp->fd_dlomap;
1446 } else {
1447 fd_map_alloc(i, &newfdp->fd_lomap, &newfdp->fd_himap);
1448 KASSERT(i >= NDENTRIES * NDENTRIES);
1449 memset(newfdp->fd_himap, 0, NDHISLOTS(i)*sizeof(uint32_t));
1450 memset(newfdp->fd_lomap, 0, NDLOSLOTS(i)*sizeof(uint32_t));
1451 }
1452 newfdp->fd_freefile = fdp->fd_freefile;
1453 newfdp->fd_exclose = fdp->fd_exclose;
1454
1455 ffp = fdp->fd_dt->dt_ff;
1456 nffp = newdt->dt_ff;
1457 newlast = -1;
1458 for (i = 0; i <= lastfile; i++, ffp++, nffp++) {
1459 KASSERT(i >= NDFDFILE ||
1460 *nffp == (fdfile_t *)newfdp->fd_dfdfile[i]);
1461 ff = *ffp;
1462 if (ff == NULL || (fp = ff->ff_file) == NULL) {
1463 /* Descriptor unused, or descriptor half open. */
1464 KASSERT(!fd_isused(newfdp, i));
1465 continue;
1466 }
1467 if (__predict_false(fp->f_type == DTYPE_KQUEUE)) {
1468 /* kqueue descriptors cannot be copied. */
1469 if (i < newfdp->fd_freefile) {
1470 newfdp->fd_freefile = i;
1471 }
1472 continue;
1473 }
1474 /* It's active: add a reference to the file. */
1475 mutex_enter(&fp->f_lock);
1476 fp->f_count++;
1477 mutex_exit(&fp->f_lock);
1478
1479 /* Allocate an fdfile_t to represent it. */
1480 if (i >= NDFDFILE) {
1481 ff2 = pool_cache_get(fdfile_cache, PR_WAITOK);
1482 *nffp = ff2;
1483 } else {
1484 ff2 = newdt->dt_ff[i];
1485 }
1486 ff2->ff_file = fp;
1487 ff2->ff_exclose = ff->ff_exclose;
1488 ff2->ff_allocated = true;
1489
1490 /* Fix up bitmaps. */
1491 j = i >> NDENTRYSHIFT;
1492 KASSERT((newfdp->fd_lomap[j] & (1 << (i & NDENTRYMASK))) == 0);
1493 newfdp->fd_lomap[j] |= 1 << (i & NDENTRYMASK);
1494 if (__predict_false(newfdp->fd_lomap[j] == ~0)) {
1495 KASSERT((newfdp->fd_himap[j >> NDENTRYSHIFT] &
1496 (1 << (j & NDENTRYMASK))) == 0);
1497 newfdp->fd_himap[j >> NDENTRYSHIFT] |=
1498 1 << (j & NDENTRYMASK);
1499 }
1500 newlast = i;
1501 }
1502 KASSERT(newdt->dt_ff[0] == (fdfile_t *)newfdp->fd_dfdfile[0]);
1503 newfdp->fd_lastfile = newlast;
1504 fd_checkmaps(newfdp);
1505 mutex_exit(&fdp->fd_lock);
1506
1507 return newfdp;
1508 }
1509
1510 /*
1511 * Release a filedesc structure.
1512 */
1513 void
1514 fd_free(void)
1515 {
1516 fdfile_t *ff;
1517 file_t *fp;
1518 int fd, nf;
1519 fdtab_t *dt;
1520 lwp_t * const l = curlwp;
1521 filedesc_t * const fdp = l->l_fd;
1522 const bool noadvlock = (l->l_proc->p_flag & PK_ADVLOCK) == 0;
1523
1524 KASSERT(fdp->fd_dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1525 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1526 KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
1527
1528 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1529 membar_exit();
1530 #endif
1531 if (atomic_dec_uint_nv(&fdp->fd_refcnt) > 0)
1532 return;
1533
1534 /*
1535 * Close any files that the process holds open.
1536 */
1537 dt = fdp->fd_dt;
1538 fd_checkmaps(fdp);
1539 #ifdef DEBUG
1540 fdp->fd_refcnt = -1; /* see fd_checkmaps */
1541 #endif
1542 for (fd = 0, nf = dt->dt_nfiles; fd < nf; fd++) {
1543 ff = dt->dt_ff[fd];
1544 KASSERT(fd >= NDFDFILE ||
1545 ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1546 if (ff == NULL)
1547 continue;
1548 if ((fp = ff->ff_file) != NULL) {
1549 /*
1550 * Must use fd_close() here if there is
1551 * a reference from kqueue or we might have posix
1552 * advisory locks.
1553 */
1554 if (__predict_true(ff->ff_refcnt == 0) &&
1555 (noadvlock || fp->f_type != DTYPE_VNODE)) {
1556 ff->ff_file = NULL;
1557 ff->ff_exclose = false;
1558 ff->ff_allocated = false;
1559 closef(fp);
1560 } else {
1561 ff->ff_refcnt++;
1562 fd_close(fd);
1563 }
1564 }
1565 KASSERT(ff->ff_refcnt == 0);
1566 KASSERT(ff->ff_file == NULL);
1567 KASSERT(!ff->ff_exclose);
1568 KASSERT(!ff->ff_allocated);
1569 if (fd >= NDFDFILE) {
1570 pool_cache_put(fdfile_cache, ff);
1571 dt->dt_ff[fd] = NULL;
1572 }
1573 }
1574
1575 /*
1576 * Clean out the descriptor table for the next user and return
1577 * to the cache.
1578 */
1579 if (__predict_false(dt != &fdp->fd_dtbuiltin)) {
1580 fd_dtab_free(fdp->fd_dt);
1581 /* Otherwise, done above. */
1582 memset(&fdp->fd_dtbuiltin.dt_ff[NDFDFILE], 0,
1583 (NDFILE - NDFDFILE) * sizeof(fdp->fd_dtbuiltin.dt_ff[0]));
1584 fdp->fd_dt = &fdp->fd_dtbuiltin;
1585 }
1586 if (__predict_false(NDHISLOTS(nf) > NDHISLOTS(NDFILE))) {
1587 KASSERT(fdp->fd_himap != fdp->fd_dhimap);
1588 KASSERT(fdp->fd_lomap != fdp->fd_dlomap);
1589 fd_map_free(nf, fdp->fd_lomap, fdp->fd_himap);
1590 }
1591 if (__predict_false(fdp->fd_knhash != NULL)) {
1592 hashdone(fdp->fd_knhash, HASH_LIST, fdp->fd_knhashmask);
1593 fdp->fd_knhash = NULL;
1594 fdp->fd_knhashmask = 0;
1595 } else {
1596 KASSERT(fdp->fd_knhashmask == 0);
1597 }
1598 fdp->fd_dt = &fdp->fd_dtbuiltin;
1599 fdp->fd_lastkqfile = -1;
1600 fdp->fd_lastfile = -1;
1601 fdp->fd_freefile = 0;
1602 fdp->fd_exclose = false;
1603 memset(&fdp->fd_startzero, 0, sizeof(*fdp) -
1604 offsetof(filedesc_t, fd_startzero));
1605 fdp->fd_himap = fdp->fd_dhimap;
1606 fdp->fd_lomap = fdp->fd_dlomap;
1607 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1608 KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
1609 KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
1610 #ifdef DEBUG
1611 fdp->fd_refcnt = 0; /* see fd_checkmaps */
1612 #endif
1613 fd_checkmaps(fdp);
1614 pool_cache_put(filedesc_cache, fdp);
1615 }
1616
1617 /*
1618 * File Descriptor pseudo-device driver (/dev/fd/).
1619 *
1620 * Opening minor device N dup()s the file (if any) connected to file
1621 * descriptor N belonging to the calling process. Note that this driver
1622 * consists of only the ``open()'' routine, because all subsequent
1623 * references to this file will be direct to the other driver.
1624 */
1625 static int
1626 filedescopen(dev_t dev, int mode, int type, lwp_t *l)
1627 {
1628
1629 /*
1630 * XXX Kludge: set dupfd to contain the value of the
1631 * the file descriptor being sought for duplication. The error
1632 * return ensures that the vnode for this device will be released
1633 * by vn_open. Open will detect this special error and take the
1634 * actions in fd_dupopen below. Other callers of vn_open or VOP_OPEN
1635 * will simply report the error.
1636 */
1637 l->l_dupfd = minor(dev); /* XXX */
1638 return EDUPFD;
1639 }
1640
1641 /*
1642 * Duplicate the specified descriptor to a free descriptor.
1643 */
1644 int
1645 fd_dupopen(int old, int *newp, int mode, int error)
1646 {
1647 filedesc_t *fdp;
1648 fdfile_t *ff;
1649 file_t *fp;
1650 fdtab_t *dt;
1651
1652 if ((fp = fd_getfile(old)) == NULL) {
1653 return EBADF;
1654 }
1655 fdp = curlwp->l_fd;
1656 dt = fdp->fd_dt;
1657 ff = dt->dt_ff[old];
1658
1659 /*
1660 * There are two cases of interest here.
1661 *
1662 * For EDUPFD simply dup (old) to file descriptor
1663 * (new) and return.
1664 *
1665 * For EMOVEFD steal away the file structure from (old) and
1666 * store it in (new). (old) is effectively closed by
1667 * this operation.
1668 *
1669 * Any other error code is just returned.
1670 */
1671 switch (error) {
1672 case EDUPFD:
1673 /*
1674 * Check that the mode the file is being opened for is a
1675 * subset of the mode of the existing descriptor.
1676 */
1677 if (((mode & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
1678 error = EACCES;
1679 break;
1680 }
1681
1682 /* Copy it. */
1683 error = fd_dup(fp, 0, newp, ff->ff_exclose);
1684 break;
1685
1686 case EMOVEFD:
1687 /* Copy it. */
1688 error = fd_dup(fp, 0, newp, ff->ff_exclose);
1689 if (error != 0) {
1690 break;
1691 }
1692
1693 /* Steal away the file pointer from 'old'. */
1694 (void)fd_close(old);
1695 return 0;
1696 }
1697
1698 fd_putfile(old);
1699 return error;
1700 }
1701
1702 /*
1703 * Close open files on exec.
1704 */
1705 void
1706 fd_closeexec(void)
1707 {
1708 proc_t *p;
1709 filedesc_t *fdp;
1710 fdfile_t *ff;
1711 lwp_t *l;
1712 fdtab_t *dt;
1713 int fd;
1714
1715 l = curlwp;
1716 p = l->l_proc;
1717 fdp = p->p_fd;
1718
1719 if (fdp->fd_refcnt > 1) {
1720 fdp = fd_copy();
1721 fd_free();
1722 p->p_fd = fdp;
1723 l->l_fd = fdp;
1724 }
1725 if (!fdp->fd_exclose) {
1726 return;
1727 }
1728 fdp->fd_exclose = false;
1729 dt = fdp->fd_dt;
1730
1731 for (fd = 0; fd <= fdp->fd_lastfile; fd++) {
1732 if ((ff = dt->dt_ff[fd]) == NULL) {
1733 KASSERT(fd >= NDFDFILE);
1734 continue;
1735 }
1736 KASSERT(fd >= NDFDFILE ||
1737 ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1738 if (ff->ff_file == NULL)
1739 continue;
1740 if (ff->ff_exclose) {
1741 /*
1742 * We need a reference to close the file.
1743 * No other threads can see the fdfile_t at
1744 * this point, so don't bother locking.
1745 */
1746 KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
1747 ff->ff_refcnt++;
1748 fd_close(fd);
1749 }
1750 }
1751 }
1752
1753 /*
1754 * Sets descriptor owner. If the owner is a process, 'pgid'
1755 * is set to positive value, process ID. If the owner is process group,
1756 * 'pgid' is set to -pg_id.
1757 */
1758 int
1759 fsetown(pid_t *pgid, u_long cmd, const void *data)
1760 {
1761 pid_t id = *(const pid_t *)data;
1762 int error;
1763
1764 switch (cmd) {
1765 case TIOCSPGRP:
1766 if (id < 0)
1767 return EINVAL;
1768 id = -id;
1769 break;
1770 default:
1771 break;
1772 }
1773 if (id > 0) {
1774 mutex_enter(proc_lock);
1775 error = proc_find(id) ? 0 : ESRCH;
1776 mutex_exit(proc_lock);
1777 } else if (id < 0) {
1778 error = pgid_in_session(curproc, -id);
1779 } else {
1780 error = 0;
1781 }
1782 if (!error) {
1783 *pgid = id;
1784 }
1785 return error;
1786 }
1787
1788 void
1789 fd_set_exclose(struct lwp *l, int fd, bool exclose)
1790 {
1791 filedesc_t *fdp = l->l_fd;
1792 fdfile_t *ff = fdp->fd_dt->dt_ff[fd];
1793
1794 ff->ff_exclose = exclose;
1795 if (exclose)
1796 fdp->fd_exclose = true;
1797 }
1798
1799 /*
1800 * Return descriptor owner information. If the value is positive,
1801 * it's process ID. If it's negative, it's process group ID and
1802 * needs the sign removed before use.
1803 */
1804 int
1805 fgetown(pid_t pgid, u_long cmd, void *data)
1806 {
1807
1808 switch (cmd) {
1809 case TIOCGPGRP:
1810 *(int *)data = -pgid;
1811 break;
1812 default:
1813 *(int *)data = pgid;
1814 break;
1815 }
1816 return 0;
1817 }
1818
1819 /*
1820 * Send signal to descriptor owner, either process or process group.
1821 */
1822 void
1823 fownsignal(pid_t pgid, int signo, int code, int band, void *fdescdata)
1824 {
1825 ksiginfo_t ksi;
1826
1827 KASSERT(!cpu_intr_p());
1828
1829 if (pgid == 0) {
1830 return;
1831 }
1832
1833 KSI_INIT(&ksi);
1834 ksi.ksi_signo = signo;
1835 ksi.ksi_code = code;
1836 ksi.ksi_band = band;
1837
1838 mutex_enter(proc_lock);
1839 if (pgid > 0) {
1840 struct proc *p1;
1841
1842 p1 = proc_find(pgid);
1843 if (p1 != NULL) {
1844 kpsignal(p1, &ksi, fdescdata);
1845 }
1846 } else {
1847 struct pgrp *pgrp;
1848
1849 KASSERT(pgid < 0);
1850 pgrp = pgrp_find(-pgid);
1851 if (pgrp != NULL) {
1852 kpgsignal(pgrp, &ksi, fdescdata, 0);
1853 }
1854 }
1855 mutex_exit(proc_lock);
1856 }
1857
1858 int
1859 fd_clone(file_t *fp, unsigned fd, int flag, const struct fileops *fops,
1860 void *data)
1861 {
1862 fdfile_t *ff;
1863 filedesc_t *fdp;
1864
1865 fp->f_flag = flag & FMASK;
1866 fdp = curproc->p_fd;
1867 ff = fdp->fd_dt->dt_ff[fd];
1868 KASSERT(ff != NULL);
1869 ff->ff_exclose = (flag & O_CLOEXEC) != 0;
1870 fp->f_type = DTYPE_MISC;
1871 fp->f_ops = fops;
1872 fp->f_data = data;
1873 curlwp->l_dupfd = fd;
1874 fd_affix(curproc, fp, fd);
1875
1876 return EMOVEFD;
1877 }
1878
1879 int
1880 fnullop_fcntl(file_t *fp, u_int cmd, void *data)
1881 {
1882
1883 if (cmd == F_SETFL)
1884 return 0;
1885
1886 return EOPNOTSUPP;
1887 }
1888
1889 int
1890 fnullop_poll(file_t *fp, int which)
1891 {
1892
1893 return 0;
1894 }
1895
1896 int
1897 fnullop_kqfilter(file_t *fp, struct knote *kn)
1898 {
1899
1900 return EOPNOTSUPP;
1901 }
1902
1903 void
1904 fnullop_restart(file_t *fp)
1905 {
1906
1907 }
1908
1909 int
1910 fbadop_read(file_t *fp, off_t *offset, struct uio *uio,
1911 kauth_cred_t cred, int flags)
1912 {
1913
1914 return EOPNOTSUPP;
1915 }
1916
1917 int
1918 fbadop_write(file_t *fp, off_t *offset, struct uio *uio,
1919 kauth_cred_t cred, int flags)
1920 {
1921
1922 return EOPNOTSUPP;
1923 }
1924
1925 int
1926 fbadop_ioctl(file_t *fp, u_long com, void *data)
1927 {
1928
1929 return EOPNOTSUPP;
1930 }
1931
1932 int
1933 fbadop_stat(file_t *fp, struct stat *sb)
1934 {
1935
1936 return EOPNOTSUPP;
1937 }
1938
1939 int
1940 fbadop_close(file_t *fp)
1941 {
1942
1943 return EOPNOTSUPP;
1944 }
1945
1946 /*
1947 * sysctl routines pertaining to file descriptors
1948 */
1949
1950 /* Initialized in sysctl_init() for now... */
1951 extern kmutex_t sysctl_file_marker_lock;
1952 static u_int sysctl_file_marker = 1;
1953
1954 /*
1955 * Expects to be called with proc_lock and sysctl_file_marker_lock locked.
1956 */
1957 static void
1958 sysctl_file_marker_reset(void)
1959 {
1960 struct proc *p;
1961
1962 PROCLIST_FOREACH(p, &allproc) {
1963 struct filedesc *fd = p->p_fd;
1964 fdtab_t *dt;
1965 u_int i;
1966
1967 mutex_enter(&fd->fd_lock);
1968 dt = fd->fd_dt;
1969 for (i = 0; i < dt->dt_nfiles; i++) {
1970 struct file *fp;
1971 fdfile_t *ff;
1972
1973 if ((ff = dt->dt_ff[i]) == NULL) {
1974 continue;
1975 }
1976 if ((fp = ff->ff_file) == NULL) {
1977 continue;
1978 }
1979 fp->f_marker = 0;
1980 }
1981 mutex_exit(&fd->fd_lock);
1982 }
1983 }
1984
1985 /*
1986 * sysctl helper routine for kern.file pseudo-subtree.
1987 */
1988 static int
1989 sysctl_kern_file(SYSCTLFN_ARGS)
1990 {
1991 int error;
1992 size_t buflen;
1993 struct file *fp, fbuf;
1994 char *start, *where;
1995 struct proc *p;
1996
1997 start = where = oldp;
1998 buflen = *oldlenp;
1999
2000 if (where == NULL) {
2001 /*
2002 * overestimate by 10 files
2003 */
2004 *oldlenp = sizeof(filehead) + (nfiles + 10) *
2005 sizeof(struct file);
2006 return 0;
2007 }
2008
2009 /*
2010 * first sysctl_copyout filehead
2011 */
2012 if (buflen < sizeof(filehead)) {
2013 *oldlenp = 0;
2014 return 0;
2015 }
2016 sysctl_unlock();
2017 error = sysctl_copyout(l, &filehead, where, sizeof(filehead));
2018 if (error) {
2019 sysctl_relock();
2020 return error;
2021 }
2022 buflen -= sizeof(filehead);
2023 where += sizeof(filehead);
2024
2025 /*
2026 * followed by an array of file structures
2027 */
2028 mutex_enter(&sysctl_file_marker_lock);
2029 mutex_enter(proc_lock);
2030 PROCLIST_FOREACH(p, &allproc) {
2031 struct filedesc *fd;
2032 fdtab_t *dt;
2033 u_int i;
2034
2035 if (p->p_stat == SIDL) {
2036 /* skip embryonic processes */
2037 continue;
2038 }
2039 mutex_enter(p->p_lock);
2040 error = kauth_authorize_process(l->l_cred,
2041 KAUTH_PROCESS_CANSEE, p,
2042 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2043 NULL, NULL);
2044 mutex_exit(p->p_lock);
2045 if (error != 0) {
2046 /*
2047 * Don't leak kauth retval if we're silently
2048 * skipping this entry.
2049 */
2050 error = 0;
2051 continue;
2052 }
2053
2054 /*
2055 * Grab a hold on the process.
2056 */
2057 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2058 continue;
2059 }
2060 mutex_exit(proc_lock);
2061
2062 fd = p->p_fd;
2063 mutex_enter(&fd->fd_lock);
2064 dt = fd->fd_dt;
2065 for (i = 0; i < dt->dt_nfiles; i++) {
2066 fdfile_t *ff;
2067
2068 if ((ff = dt->dt_ff[i]) == NULL) {
2069 continue;
2070 }
2071 if ((fp = ff->ff_file) == NULL) {
2072 continue;
2073 }
2074
2075 mutex_enter(&fp->f_lock);
2076
2077 if ((fp->f_count == 0) ||
2078 (fp->f_marker == sysctl_file_marker)) {
2079 mutex_exit(&fp->f_lock);
2080 continue;
2081 }
2082
2083 /* Check that we have enough space. */
2084 if (buflen < sizeof(struct file)) {
2085 *oldlenp = where - start;
2086 mutex_exit(&fp->f_lock);
2087 error = ENOMEM;
2088 break;
2089 }
2090
2091 memcpy(&fbuf, fp, sizeof(fbuf));
2092 mutex_exit(&fp->f_lock);
2093 error = sysctl_copyout(l, &fbuf, where, sizeof(fbuf));
2094 if (error) {
2095 break;
2096 }
2097 buflen -= sizeof(struct file);
2098 where += sizeof(struct file);
2099
2100 fp->f_marker = sysctl_file_marker;
2101 }
2102 mutex_exit(&fd->fd_lock);
2103
2104 /*
2105 * Release reference to process.
2106 */
2107 mutex_enter(proc_lock);
2108 rw_exit(&p->p_reflock);
2109
2110 if (error)
2111 break;
2112 }
2113
2114 sysctl_file_marker++;
2115 /* Reset all markers if wrapped. */
2116 if (sysctl_file_marker == 0) {
2117 sysctl_file_marker_reset();
2118 sysctl_file_marker++;
2119 }
2120
2121 mutex_exit(proc_lock);
2122 mutex_exit(&sysctl_file_marker_lock);
2123
2124 *oldlenp = where - start;
2125 sysctl_relock();
2126 return error;
2127 }
2128
2129 /*
2130 * sysctl helper function for kern.file2
2131 */
2132 static int
2133 sysctl_kern_file2(SYSCTLFN_ARGS)
2134 {
2135 struct proc *p;
2136 struct file *fp;
2137 struct filedesc *fd;
2138 struct kinfo_file kf;
2139 char *dp;
2140 u_int i, op;
2141 size_t len, needed, elem_size, out_size;
2142 int error, arg, elem_count;
2143 fdfile_t *ff;
2144 fdtab_t *dt;
2145
2146 if (namelen == 1 && name[0] == CTL_QUERY)
2147 return sysctl_query(SYSCTLFN_CALL(rnode));
2148
2149 if (namelen != 4)
2150 return EINVAL;
2151
2152 error = 0;
2153 dp = oldp;
2154 len = (oldp != NULL) ? *oldlenp : 0;
2155 op = name[0];
2156 arg = name[1];
2157 elem_size = name[2];
2158 elem_count = name[3];
2159 out_size = MIN(sizeof(kf), elem_size);
2160 needed = 0;
2161
2162 if (elem_size < 1 || elem_count < 0)
2163 return EINVAL;
2164
2165 switch (op) {
2166 case KERN_FILE_BYFILE:
2167 case KERN_FILE_BYPID:
2168 /*
2169 * We're traversing the process list in both cases; the BYFILE
2170 * case does additional work of keeping track of files already
2171 * looked at.
2172 */
2173
2174 /* doesn't use arg so it must be zero */
2175 if ((op == KERN_FILE_BYFILE) && (arg != 0))
2176 return EINVAL;
2177
2178 if ((op == KERN_FILE_BYPID) && (arg < -1))
2179 /* -1 means all processes */
2180 return EINVAL;
2181
2182 sysctl_unlock();
2183 if (op == KERN_FILE_BYFILE)
2184 mutex_enter(&sysctl_file_marker_lock);
2185 mutex_enter(proc_lock);
2186 PROCLIST_FOREACH(p, &allproc) {
2187 if (p->p_stat == SIDL) {
2188 /* skip embryonic processes */
2189 continue;
2190 }
2191 if (arg > 0 && p->p_pid != arg) {
2192 /* pick only the one we want */
2193 /* XXX want 0 to mean "kernel files" */
2194 continue;
2195 }
2196 mutex_enter(p->p_lock);
2197 error = kauth_authorize_process(l->l_cred,
2198 KAUTH_PROCESS_CANSEE, p,
2199 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2200 NULL, NULL);
2201 mutex_exit(p->p_lock);
2202 if (error != 0) {
2203 /*
2204 * Don't leak kauth retval if we're silently
2205 * skipping this entry.
2206 */
2207 error = 0;
2208 continue;
2209 }
2210
2211 /*
2212 * Grab a hold on the process.
2213 */
2214 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2215 continue;
2216 }
2217 mutex_exit(proc_lock);
2218
2219 fd = p->p_fd;
2220 mutex_enter(&fd->fd_lock);
2221 dt = fd->fd_dt;
2222 for (i = 0; i < dt->dt_nfiles; i++) {
2223 if ((ff = dt->dt_ff[i]) == NULL) {
2224 continue;
2225 }
2226 if ((fp = ff->ff_file) == NULL) {
2227 continue;
2228 }
2229
2230 if ((op == KERN_FILE_BYFILE) &&
2231 (fp->f_marker == sysctl_file_marker)) {
2232 continue;
2233 }
2234 if (len >= elem_size && elem_count > 0) {
2235 mutex_enter(&fp->f_lock);
2236 fill_file(&kf, fp, ff, i, p->p_pid);
2237 mutex_exit(&fp->f_lock);
2238 mutex_exit(&fd->fd_lock);
2239 error = sysctl_copyout(l,
2240 &kf, dp, out_size);
2241 mutex_enter(&fd->fd_lock);
2242 if (error)
2243 break;
2244 dp += elem_size;
2245 len -= elem_size;
2246 }
2247 if (op == KERN_FILE_BYFILE)
2248 fp->f_marker = sysctl_file_marker;
2249 needed += elem_size;
2250 if (elem_count > 0 && elem_count != INT_MAX)
2251 elem_count--;
2252 }
2253 mutex_exit(&fd->fd_lock);
2254
2255 /*
2256 * Release reference to process.
2257 */
2258 mutex_enter(proc_lock);
2259 rw_exit(&p->p_reflock);
2260 }
2261 if (op == KERN_FILE_BYFILE) {
2262 sysctl_file_marker++;
2263
2264 /* Reset all markers if wrapped. */
2265 if (sysctl_file_marker == 0) {
2266 sysctl_file_marker_reset();
2267 sysctl_file_marker++;
2268 }
2269 }
2270 mutex_exit(proc_lock);
2271 if (op == KERN_FILE_BYFILE)
2272 mutex_exit(&sysctl_file_marker_lock);
2273 sysctl_relock();
2274 break;
2275 default:
2276 return EINVAL;
2277 }
2278
2279 if (oldp == NULL)
2280 needed += KERN_FILESLOP * elem_size;
2281 *oldlenp = needed;
2282
2283 return error;
2284 }
2285
2286 static void
2287 fill_file(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
2288 int i, pid_t pid)
2289 {
2290
2291 memset(kp, 0, sizeof(*kp));
2292
2293 kp->ki_fileaddr = PTRTOUINT64(fp);
2294 kp->ki_flag = fp->f_flag;
2295 kp->ki_iflags = 0;
2296 kp->ki_ftype = fp->f_type;
2297 kp->ki_count = fp->f_count;
2298 kp->ki_msgcount = fp->f_msgcount;
2299 kp->ki_fucred = PTRTOUINT64(fp->f_cred);
2300 kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
2301 kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
2302 kp->ki_fops = PTRTOUINT64(fp->f_ops);
2303 kp->ki_foffset = fp->f_offset;
2304 kp->ki_fdata = PTRTOUINT64(fp->f_data);
2305
2306 /* vnode information to glue this file to something */
2307 if (fp->f_type == DTYPE_VNODE) {
2308 struct vnode *vp = fp->f_vnode;
2309
2310 kp->ki_vun = PTRTOUINT64(vp->v_un.vu_socket);
2311 kp->ki_vsize = vp->v_size;
2312 kp->ki_vtype = vp->v_type;
2313 kp->ki_vtag = vp->v_tag;
2314 kp->ki_vdata = PTRTOUINT64(vp->v_data);
2315 }
2316
2317 /* process information when retrieved via KERN_FILE_BYPID */
2318 if (ff != NULL) {
2319 kp->ki_pid = pid;
2320 kp->ki_fd = i;
2321 kp->ki_ofileflags = ff->ff_exclose;
2322 kp->ki_usecount = ff->ff_refcnt;
2323 }
2324 }
2325