Home | History | Annotate | Line # | Download | only in kern
kern_descrip.c revision 1.251.10.2
      1 /*	$NetBSD: kern_descrip.c,v 1.251.10.2 2024/08/07 10:04:47 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_descrip.c	8.8 (Berkeley) 2/14/95
     66  */
     67 
     68 /*
     69  * File descriptor management.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_descrip.c,v 1.251.10.2 2024/08/07 10:04:47 martin Exp $");
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/filedesc.h>
     78 #include <sys/kernel.h>
     79 #include <sys/proc.h>
     80 #include <sys/file.h>
     81 #include <sys/socket.h>
     82 #include <sys/socketvar.h>
     83 #include <sys/stat.h>
     84 #include <sys/ioctl.h>
     85 #include <sys/fcntl.h>
     86 #include <sys/pool.h>
     87 #include <sys/unistd.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/conf.h>
     90 #include <sys/event.h>
     91 #include <sys/kauth.h>
     92 #include <sys/atomic.h>
     93 #include <sys/syscallargs.h>
     94 #include <sys/cpu.h>
     95 #include <sys/kmem.h>
     96 #include <sys/vnode.h>
     97 #include <sys/sysctl.h>
     98 #include <sys/ktrace.h>
     99 
    100 /*
    101  * A list (head) of open files, counter, and lock protecting them.
    102  */
    103 struct filelist		filehead	__cacheline_aligned;
    104 static u_int		nfiles		__cacheline_aligned;
    105 kmutex_t		filelist_lock	__cacheline_aligned;
    106 
    107 static pool_cache_t	filedesc_cache	__read_mostly;
    108 static pool_cache_t	file_cache	__read_mostly;
    109 static pool_cache_t	fdfile_cache	__read_mostly;
    110 
    111 static int	file_ctor(void *, void *, int);
    112 static void	file_dtor(void *, void *);
    113 static int	fdfile_ctor(void *, void *, int);
    114 static void	fdfile_dtor(void *, void *);
    115 static int	filedesc_ctor(void *, void *, int);
    116 static void	filedesc_dtor(void *, void *);
    117 static int	filedescopen(dev_t, int, int, lwp_t *);
    118 
    119 static int sysctl_kern_file(SYSCTLFN_PROTO);
    120 static int sysctl_kern_file2(SYSCTLFN_PROTO);
    121 static void fill_file(struct file *, const struct file *);
    122 static void fill_file2(struct kinfo_file *, const file_t *, const fdfile_t *,
    123 		      int, pid_t);
    124 
    125 const struct cdevsw filedesc_cdevsw = {
    126 	.d_open = filedescopen,
    127 	.d_close = noclose,
    128 	.d_read = noread,
    129 	.d_write = nowrite,
    130 	.d_ioctl = noioctl,
    131 	.d_stop = nostop,
    132 	.d_tty = notty,
    133 	.d_poll = nopoll,
    134 	.d_mmap = nommap,
    135 	.d_kqfilter = nokqfilter,
    136 	.d_discard = nodiscard,
    137 	.d_flag = D_OTHER | D_MPSAFE
    138 };
    139 
    140 /* For ease of reading. */
    141 __strong_alias(fd_putvnode,fd_putfile)
    142 __strong_alias(fd_putsock,fd_putfile)
    143 
    144 /*
    145  * Initialize the descriptor system.
    146  */
    147 void
    148 fd_sys_init(void)
    149 {
    150 	static struct sysctllog *clog;
    151 
    152 	mutex_init(&filelist_lock, MUTEX_DEFAULT, IPL_NONE);
    153 
    154 	LIST_INIT(&filehead);
    155 
    156 	file_cache = pool_cache_init(sizeof(file_t), coherency_unit, 0,
    157 	    0, "file", NULL, IPL_NONE, file_ctor, file_dtor, NULL);
    158 	KASSERT(file_cache != NULL);
    159 
    160 	fdfile_cache = pool_cache_init(sizeof(fdfile_t), coherency_unit, 0,
    161 	    PR_LARGECACHE, "fdfile", NULL, IPL_NONE, fdfile_ctor, fdfile_dtor,
    162 	    NULL);
    163 	KASSERT(fdfile_cache != NULL);
    164 
    165 	filedesc_cache = pool_cache_init(sizeof(filedesc_t), coherency_unit,
    166 	    0, 0, "filedesc", NULL, IPL_NONE, filedesc_ctor, filedesc_dtor,
    167 	    NULL);
    168 	KASSERT(filedesc_cache != NULL);
    169 
    170 	sysctl_createv(&clog, 0, NULL, NULL,
    171 		       CTLFLAG_PERMANENT,
    172 		       CTLTYPE_STRUCT, "file",
    173 		       SYSCTL_DESCR("System open file table"),
    174 		       sysctl_kern_file, 0, NULL, 0,
    175 		       CTL_KERN, KERN_FILE, CTL_EOL);
    176 	sysctl_createv(&clog, 0, NULL, NULL,
    177 		       CTLFLAG_PERMANENT,
    178 		       CTLTYPE_STRUCT, "file2",
    179 		       SYSCTL_DESCR("System open file table"),
    180 		       sysctl_kern_file2, 0, NULL, 0,
    181 		       CTL_KERN, KERN_FILE2, CTL_EOL);
    182 }
    183 
    184 static bool
    185 fd_isused(filedesc_t *fdp, unsigned fd)
    186 {
    187 	u_int off = fd >> NDENTRYSHIFT;
    188 
    189 	KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
    190 
    191 	return (fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0;
    192 }
    193 
    194 /*
    195  * Verify that the bitmaps match the descriptor table.
    196  */
    197 static inline void
    198 fd_checkmaps(filedesc_t *fdp)
    199 {
    200 #ifdef DEBUG
    201 	fdtab_t *dt;
    202 	u_int fd;
    203 
    204 	KASSERT(fdp->fd_refcnt <= 1 || mutex_owned(&fdp->fd_lock));
    205 
    206 	dt = fdp->fd_dt;
    207 	if (fdp->fd_refcnt == -1) {
    208 		/*
    209 		 * fd_free tears down the table without maintaining its bitmap.
    210 		 */
    211 		return;
    212 	}
    213 	for (fd = 0; fd < dt->dt_nfiles; fd++) {
    214 		if (fd < NDFDFILE) {
    215 			KASSERT(dt->dt_ff[fd] ==
    216 			    (fdfile_t *)fdp->fd_dfdfile[fd]);
    217 		}
    218 		if (dt->dt_ff[fd] == NULL) {
    219 			KASSERT(!fd_isused(fdp, fd));
    220 		} else if (dt->dt_ff[fd]->ff_file != NULL) {
    221 			KASSERT(fd_isused(fdp, fd));
    222 		}
    223 	}
    224 #endif
    225 }
    226 
    227 static int
    228 fd_next_zero(filedesc_t *fdp, uint32_t *bitmap, int want, u_int bits)
    229 {
    230 	int i, off, maxoff;
    231 	uint32_t sub;
    232 
    233 	KASSERT(mutex_owned(&fdp->fd_lock));
    234 
    235 	fd_checkmaps(fdp);
    236 
    237 	if (want > bits)
    238 		return -1;
    239 
    240 	off = want >> NDENTRYSHIFT;
    241 	i = want & NDENTRYMASK;
    242 	if (i) {
    243 		sub = bitmap[off] | ((u_int)~0 >> (NDENTRIES - i));
    244 		if (sub != ~0)
    245 			goto found;
    246 		off++;
    247 	}
    248 
    249 	maxoff = NDLOSLOTS(bits);
    250 	while (off < maxoff) {
    251 		if ((sub = bitmap[off]) != ~0)
    252 			goto found;
    253 		off++;
    254 	}
    255 
    256 	return -1;
    257 
    258  found:
    259 	return (off << NDENTRYSHIFT) + ffs(~sub) - 1;
    260 }
    261 
    262 static int
    263 fd_last_set(filedesc_t *fd, int last)
    264 {
    265 	int off, i;
    266 	fdfile_t **ff = fd->fd_dt->dt_ff;
    267 	uint32_t *bitmap = fd->fd_lomap;
    268 
    269 	KASSERT(mutex_owned(&fd->fd_lock));
    270 
    271 	fd_checkmaps(fd);
    272 
    273 	off = (last - 1) >> NDENTRYSHIFT;
    274 
    275 	while (off >= 0 && !bitmap[off])
    276 		off--;
    277 
    278 	if (off < 0)
    279 		return -1;
    280 
    281 	i = ((off + 1) << NDENTRYSHIFT) - 1;
    282 	if (i >= last)
    283 		i = last - 1;
    284 
    285 	/* XXX should use bitmap */
    286 	while (i > 0 && (ff[i] == NULL || !ff[i]->ff_allocated))
    287 		i--;
    288 
    289 	return i;
    290 }
    291 
    292 static inline void
    293 fd_used(filedesc_t *fdp, unsigned fd)
    294 {
    295 	u_int off = fd >> NDENTRYSHIFT;
    296 	fdfile_t *ff;
    297 
    298 	ff = fdp->fd_dt->dt_ff[fd];
    299 
    300 	KASSERT(mutex_owned(&fdp->fd_lock));
    301 	KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) == 0);
    302 	KASSERT(ff != NULL);
    303 	KASSERT(ff->ff_file == NULL);
    304 	KASSERT(!ff->ff_allocated);
    305 
    306 	ff->ff_allocated = true;
    307 	fdp->fd_lomap[off] |= 1U << (fd & NDENTRYMASK);
    308 	if (__predict_false(fdp->fd_lomap[off] == ~0)) {
    309 		KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
    310 		    (1U << (off & NDENTRYMASK))) == 0);
    311 		fdp->fd_himap[off >> NDENTRYSHIFT] |= 1U << (off & NDENTRYMASK);
    312 	}
    313 
    314 	if ((int)fd > fdp->fd_lastfile) {
    315 		fdp->fd_lastfile = fd;
    316 	}
    317 
    318 	fd_checkmaps(fdp);
    319 }
    320 
    321 static inline void
    322 fd_unused(filedesc_t *fdp, unsigned fd)
    323 {
    324 	u_int off = fd >> NDENTRYSHIFT;
    325 	fdfile_t *ff;
    326 
    327 	ff = fdp->fd_dt->dt_ff[fd];
    328 
    329 	KASSERT(mutex_owned(&fdp->fd_lock));
    330 	KASSERT(ff != NULL);
    331 	KASSERT(ff->ff_file == NULL);
    332 	KASSERT(ff->ff_allocated);
    333 
    334 	if (fd < fdp->fd_freefile) {
    335 		fdp->fd_freefile = fd;
    336 	}
    337 
    338 	if (fdp->fd_lomap[off] == ~0) {
    339 		KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
    340 		    (1U << (off & NDENTRYMASK))) != 0);
    341 		fdp->fd_himap[off >> NDENTRYSHIFT] &=
    342 		    ~(1U << (off & NDENTRYMASK));
    343 	}
    344 	KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0);
    345 	fdp->fd_lomap[off] &= ~(1U << (fd & NDENTRYMASK));
    346 	ff->ff_allocated = false;
    347 
    348 	KASSERT(fd <= fdp->fd_lastfile);
    349 	if (fd == fdp->fd_lastfile) {
    350 		fdp->fd_lastfile = fd_last_set(fdp, fd);
    351 	}
    352 	fd_checkmaps(fdp);
    353 }
    354 
    355 /*
    356  * Look up the file structure corresponding to a file descriptor
    357  * and return the file, holding a reference on the descriptor.
    358  */
    359 file_t *
    360 fd_getfile(unsigned fd)
    361 {
    362 	filedesc_t *fdp;
    363 	fdfile_t *ff;
    364 	file_t *fp;
    365 	fdtab_t *dt;
    366 
    367 	/*
    368 	 * Look up the fdfile structure representing this descriptor.
    369 	 * We are doing this unlocked.  See fd_tryexpand().
    370 	 */
    371 	fdp = curlwp->l_fd;
    372 	dt = atomic_load_consume(&fdp->fd_dt);
    373 	if (__predict_false(fd >= dt->dt_nfiles)) {
    374 		return NULL;
    375 	}
    376 	ff = dt->dt_ff[fd];
    377 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    378 	if (__predict_false(ff == NULL)) {
    379 		return NULL;
    380 	}
    381 
    382 	/* Now get a reference to the descriptor. */
    383 	if (fdp->fd_refcnt == 1) {
    384 		/*
    385 		 * Single threaded: don't need to worry about concurrent
    386 		 * access (other than earlier calls to kqueue, which may
    387 		 * hold a reference to the descriptor).
    388 		 */
    389 		ff->ff_refcnt++;
    390 	} else {
    391 		/*
    392 		 * Multi threaded: issue a memory barrier to ensure that we
    393 		 * acquire the file pointer _after_ adding a reference.  If
    394 		 * no memory barrier, we could fetch a stale pointer.
    395 		 *
    396 		 * In particular, we must coordinate the following four
    397 		 * memory operations:
    398 		 *
    399 		 *	A. fd_close store ff->ff_file = NULL
    400 		 *	B. fd_close refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
    401 		 *	C. fd_getfile atomic_inc_uint(&ff->ff_refcnt)
    402 		 *	D. fd_getfile load fp = ff->ff_file
    403 		 *
    404 		 * If the order is D;A;B;C:
    405 		 *
    406 		 *	1. D: fp = ff->ff_file
    407 		 *	2. A: ff->ff_file = NULL
    408 		 *	3. B: refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
    409 		 *	4. C: atomic_inc_uint(&ff->ff_refcnt)
    410 		 *
    411 		 * then fd_close determines that there are no more
    412 		 * references and decides to free fp immediately, at
    413 		 * the same that fd_getfile ends up with an fp that's
    414 		 * about to be freed.  *boom*
    415 		 *
    416 		 * By making B a release operation in fd_close, and by
    417 		 * making C an acquire operation in fd_getfile, since
    418 		 * they are atomic operations on the same object, which
    419 		 * has a total modification order, we guarantee either:
    420 		 *
    421 		 *	- B happens before C.  Then since A is
    422 		 *	  sequenced before B in fd_close, and C is
    423 		 *	  sequenced before D in fd_getfile, we
    424 		 *	  guarantee A happens before D, so fd_getfile
    425 		 *	  reads a null fp and safely fails.
    426 		 *
    427 		 *	- C happens before B.  Then fd_getfile may read
    428 		 *	  null or nonnull, but either way, fd_close
    429 		 *	  will safely wait for references to drain.
    430 		 */
    431 		atomic_inc_uint(&ff->ff_refcnt);
    432 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    433 		membar_acquire();
    434 #endif
    435 	}
    436 
    437 	/*
    438 	 * If the file is not open or is being closed then put the
    439 	 * reference back.
    440 	 */
    441 	fp = atomic_load_consume(&ff->ff_file);
    442 	if (__predict_true(fp != NULL)) {
    443 		return fp;
    444 	}
    445 	fd_putfile(fd);
    446 	return NULL;
    447 }
    448 
    449 /*
    450  * Release a reference to a file descriptor acquired with fd_getfile().
    451  */
    452 void
    453 fd_putfile(unsigned fd)
    454 {
    455 	filedesc_t *fdp;
    456 	fdfile_t *ff;
    457 	u_int u, v;
    458 
    459 	fdp = curlwp->l_fd;
    460 	KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
    461 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
    462 
    463 	KASSERT(ff != NULL);
    464 	KASSERT((ff->ff_refcnt & FR_MASK) > 0);
    465 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    466 
    467 	if (fdp->fd_refcnt == 1) {
    468 		/*
    469 		 * Single threaded: don't need to worry about concurrent
    470 		 * access (other than earlier calls to kqueue, which may
    471 		 * hold a reference to the descriptor).
    472 		 */
    473 		if (__predict_false((ff->ff_refcnt & FR_CLOSING) != 0)) {
    474 			fd_close(fd);
    475 			return;
    476 		}
    477 		ff->ff_refcnt--;
    478 		return;
    479 	}
    480 
    481 	/*
    482 	 * Ensure that any use of the file is complete and globally
    483 	 * visible before dropping the final reference.  If no membar,
    484 	 * the current CPU could still access memory associated with
    485 	 * the file after it has been freed or recycled by another
    486 	 * CPU.
    487 	 */
    488 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    489 	membar_release();
    490 #endif
    491 
    492 	/*
    493 	 * Be optimistic and start out with the assumption that no other
    494 	 * threads are trying to close the descriptor.  If the CAS fails,
    495 	 * we lost a race and/or it's being closed.
    496 	 */
    497 	for (u = ff->ff_refcnt & FR_MASK;; u = v) {
    498 		v = atomic_cas_uint(&ff->ff_refcnt, u, u - 1);
    499 		if (__predict_true(u == v)) {
    500 			return;
    501 		}
    502 		if (__predict_false((v & FR_CLOSING) != 0)) {
    503 			break;
    504 		}
    505 	}
    506 
    507 	/* Another thread is waiting to close the file: join it. */
    508 	(void)fd_close(fd);
    509 }
    510 
    511 /*
    512  * Convenience wrapper around fd_getfile() that returns reference
    513  * to a vnode.
    514  */
    515 int
    516 fd_getvnode(unsigned fd, file_t **fpp)
    517 {
    518 	vnode_t *vp;
    519 	file_t *fp;
    520 
    521 	fp = fd_getfile(fd);
    522 	if (__predict_false(fp == NULL)) {
    523 		return EBADF;
    524 	}
    525 	if (__predict_false(fp->f_type != DTYPE_VNODE)) {
    526 		fd_putfile(fd);
    527 		return EINVAL;
    528 	}
    529 	vp = fp->f_vnode;
    530 	if (__predict_false(vp->v_type == VBAD)) {
    531 		/* XXX Is this case really necessary? */
    532 		fd_putfile(fd);
    533 		return EBADF;
    534 	}
    535 	*fpp = fp;
    536 	return 0;
    537 }
    538 
    539 /*
    540  * Convenience wrapper around fd_getfile() that returns reference
    541  * to a socket.
    542  */
    543 int
    544 fd_getsock1(unsigned fd, struct socket **sop, file_t **fp)
    545 {
    546 	*fp = fd_getfile(fd);
    547 	if (__predict_false(*fp == NULL)) {
    548 		return EBADF;
    549 	}
    550 	if (__predict_false((*fp)->f_type != DTYPE_SOCKET)) {
    551 		fd_putfile(fd);
    552 		return ENOTSOCK;
    553 	}
    554 	*sop = (*fp)->f_socket;
    555 	return 0;
    556 }
    557 
    558 int
    559 fd_getsock(unsigned fd, struct socket **sop)
    560 {
    561 	file_t *fp;
    562 	return fd_getsock1(fd, sop, &fp);
    563 }
    564 
    565 /*
    566  * Look up the file structure corresponding to a file descriptor
    567  * and return it with a reference held on the file, not the
    568  * descriptor.
    569  *
    570  * This is heavyweight and only used when accessing descriptors
    571  * from a foreign process.  The caller must ensure that `p' does
    572  * not exit or fork across this call.
    573  *
    574  * To release the file (not descriptor) reference, use closef().
    575  */
    576 file_t *
    577 fd_getfile2(proc_t *p, unsigned fd)
    578 {
    579 	filedesc_t *fdp;
    580 	fdfile_t *ff;
    581 	file_t *fp;
    582 	fdtab_t *dt;
    583 
    584 	fdp = p->p_fd;
    585 	mutex_enter(&fdp->fd_lock);
    586 	dt = fdp->fd_dt;
    587 	if (fd >= dt->dt_nfiles) {
    588 		mutex_exit(&fdp->fd_lock);
    589 		return NULL;
    590 	}
    591 	if ((ff = dt->dt_ff[fd]) == NULL) {
    592 		mutex_exit(&fdp->fd_lock);
    593 		return NULL;
    594 	}
    595 	if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
    596 		mutex_exit(&fdp->fd_lock);
    597 		return NULL;
    598 	}
    599 	mutex_enter(&fp->f_lock);
    600 	fp->f_count++;
    601 	mutex_exit(&fp->f_lock);
    602 	mutex_exit(&fdp->fd_lock);
    603 
    604 	return fp;
    605 }
    606 
    607 /*
    608  * Internal form of close.  Must be called with a reference to the
    609  * descriptor, and will drop the reference.  When all descriptor
    610  * references are dropped, releases the descriptor slot and a single
    611  * reference to the file structure.
    612  */
    613 int
    614 fd_close(unsigned fd)
    615 {
    616 	struct flock lf;
    617 	filedesc_t *fdp;
    618 	fdfile_t *ff;
    619 	file_t *fp;
    620 	proc_t *p;
    621 	lwp_t *l;
    622 	u_int refcnt;
    623 
    624 	l = curlwp;
    625 	p = l->l_proc;
    626 	fdp = l->l_fd;
    627 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
    628 
    629 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    630 
    631 	mutex_enter(&fdp->fd_lock);
    632 	KASSERT((ff->ff_refcnt & FR_MASK) > 0);
    633 	fp = atomic_load_consume(&ff->ff_file);
    634 	if (__predict_false(fp == NULL)) {
    635 		/*
    636 		 * Another user of the file is already closing, and is
    637 		 * waiting for other users of the file to drain.  Release
    638 		 * our reference, and wake up the closer.
    639 		 */
    640 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    641 		membar_release();
    642 #endif
    643 		atomic_dec_uint(&ff->ff_refcnt);
    644 		cv_broadcast(&ff->ff_closing);
    645 		mutex_exit(&fdp->fd_lock);
    646 
    647 		/*
    648 		 * An application error, so pretend that the descriptor
    649 		 * was already closed.  We can't safely wait for it to
    650 		 * be closed without potentially deadlocking.
    651 		 */
    652 		return (EBADF);
    653 	}
    654 	KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
    655 
    656 	/*
    657 	 * There may be multiple users of this file within the process.
    658 	 * Notify existing and new users that the file is closing.  This
    659 	 * will prevent them from adding additional uses to this file
    660 	 * while we are closing it.
    661 	 */
    662 	atomic_store_relaxed(&ff->ff_file, NULL);
    663 	ff->ff_exclose = false;
    664 
    665 	/*
    666 	 * We expect the caller to hold a descriptor reference - drop it.
    667 	 * The reference count may increase beyond zero at this point due
    668 	 * to an erroneous descriptor reference by an application, but
    669 	 * fd_getfile() will notice that the file is being closed and drop
    670 	 * the reference again.
    671 	 */
    672 	if (fdp->fd_refcnt == 1) {
    673 		/* Single threaded. */
    674 		refcnt = --(ff->ff_refcnt);
    675 	} else {
    676 		/* Multi threaded. */
    677 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    678 		membar_release();
    679 #endif
    680 		refcnt = atomic_dec_uint_nv(&ff->ff_refcnt);
    681 #ifndef __HAVE_ATOMIC_AS_MEMBAR
    682 		membar_acquire();
    683 #endif
    684 	}
    685 	if (__predict_false(refcnt != 0)) {
    686 		/*
    687 		 * Wait for other references to drain.  This is typically
    688 		 * an application error - the descriptor is being closed
    689 		 * while still in use.
    690 		 * (Or just a threaded application trying to unblock its
    691 		 * thread that sleeps in (say) accept()).
    692 		 */
    693 		atomic_or_uint(&ff->ff_refcnt, FR_CLOSING);
    694 
    695 		/*
    696 		 * Remove any knotes attached to the file.  A knote
    697 		 * attached to the descriptor can hold references on it.
    698 		 */
    699 		mutex_exit(&fdp->fd_lock);
    700 		if (!SLIST_EMPTY(&ff->ff_knlist)) {
    701 			knote_fdclose(fd);
    702 		}
    703 
    704 		/*
    705 		 * Since the file system code doesn't know which fd
    706 		 * each request came from (think dup()), we have to
    707 		 * ask it to return ERESTART for any long-term blocks.
    708 		 * The re-entry through read/write/etc will detect the
    709 		 * closed fd and return EBAFD.
    710 		 * Blocked partial writes may return a short length.
    711 		 */
    712 		(*fp->f_ops->fo_restart)(fp);
    713 		mutex_enter(&fdp->fd_lock);
    714 
    715 		/*
    716 		 * We need to see the count drop to zero at least once,
    717 		 * in order to ensure that all pre-existing references
    718 		 * have been drained.  New references past this point are
    719 		 * of no interest.
    720 		 * XXX (dsl) this may need to call fo_restart() after a
    721 		 * timeout to guarantee that all the system calls exit.
    722 		 */
    723 		while ((ff->ff_refcnt & FR_MASK) != 0) {
    724 			cv_wait(&ff->ff_closing, &fdp->fd_lock);
    725 		}
    726 		atomic_and_uint(&ff->ff_refcnt, ~FR_CLOSING);
    727 	} else {
    728 		/* If no references, there must be no knotes. */
    729 		KASSERT(SLIST_EMPTY(&ff->ff_knlist));
    730 	}
    731 
    732 	/*
    733 	 * POSIX record locking dictates that any close releases ALL
    734 	 * locks owned by this process.  This is handled by setting
    735 	 * a flag in the unlock to free ONLY locks obeying POSIX
    736 	 * semantics, and not to free BSD-style file locks.
    737 	 * If the descriptor was in a message, POSIX-style locks
    738 	 * aren't passed with the descriptor.
    739 	 */
    740 	if (__predict_false((p->p_flag & PK_ADVLOCK) != 0 &&
    741 	    fp->f_type == DTYPE_VNODE)) {
    742 		lf.l_whence = SEEK_SET;
    743 		lf.l_start = 0;
    744 		lf.l_len = 0;
    745 		lf.l_type = F_UNLCK;
    746 		mutex_exit(&fdp->fd_lock);
    747 		(void)VOP_ADVLOCK(fp->f_vnode, p, F_UNLCK, &lf, F_POSIX);
    748 		mutex_enter(&fdp->fd_lock);
    749 	}
    750 
    751 	/* Free descriptor slot. */
    752 	fd_unused(fdp, fd);
    753 	mutex_exit(&fdp->fd_lock);
    754 
    755 	/* Now drop reference to the file itself. */
    756 	return closef(fp);
    757 }
    758 
    759 /*
    760  * Duplicate a file descriptor.
    761  */
    762 int
    763 fd_dup(file_t *fp, int minfd, int *newp, bool exclose)
    764 {
    765 	proc_t *p = curproc;
    766 	fdtab_t *dt;
    767 	int error;
    768 
    769 	while ((error = fd_alloc(p, minfd, newp)) != 0) {
    770 		if (error != ENOSPC) {
    771 			return error;
    772 		}
    773 		fd_tryexpand(p);
    774 	}
    775 
    776 	dt = atomic_load_consume(&curlwp->l_fd->fd_dt);
    777 	dt->dt_ff[*newp]->ff_exclose = exclose;
    778 	fd_affix(p, fp, *newp);
    779 	return 0;
    780 }
    781 
    782 /*
    783  * dup2 operation.
    784  */
    785 int
    786 fd_dup2(file_t *fp, unsigned newfd, int flags)
    787 {
    788 	filedesc_t *fdp = curlwp->l_fd;
    789 	fdfile_t *ff;
    790 	fdtab_t *dt;
    791 
    792 	if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
    793 		return EINVAL;
    794 	/*
    795 	 * Ensure there are enough slots in the descriptor table,
    796 	 * and allocate an fdfile_t up front in case we need it.
    797 	 */
    798 	while (newfd >= atomic_load_consume(&fdp->fd_dt)->dt_nfiles) {
    799 		fd_tryexpand(curproc);
    800 	}
    801 	ff = pool_cache_get(fdfile_cache, PR_WAITOK);
    802 
    803 	/*
    804 	 * If there is already a file open, close it.  If the file is
    805 	 * half open, wait for it to be constructed before closing it.
    806 	 * XXX Potential for deadlock here?
    807 	 */
    808 	mutex_enter(&fdp->fd_lock);
    809 	while (fd_isused(fdp, newfd)) {
    810 		mutex_exit(&fdp->fd_lock);
    811 		if (fd_getfile(newfd) != NULL) {
    812 			(void)fd_close(newfd);
    813 		} else {
    814 			/*
    815 			 * Crummy, but unlikely to happen.
    816 			 * Can occur if we interrupt another
    817 			 * thread while it is opening a file.
    818 			 */
    819 			kpause("dup2", false, 1, NULL);
    820 		}
    821 		mutex_enter(&fdp->fd_lock);
    822 	}
    823 	dt = fdp->fd_dt;
    824 	if (dt->dt_ff[newfd] == NULL) {
    825 		KASSERT(newfd >= NDFDFILE);
    826 		dt->dt_ff[newfd] = ff;
    827 		ff = NULL;
    828 	}
    829 	fd_used(fdp, newfd);
    830 	mutex_exit(&fdp->fd_lock);
    831 
    832 	dt->dt_ff[newfd]->ff_exclose = (flags & O_CLOEXEC) != 0;
    833 	fp->f_flag |= flags & (FNONBLOCK|FNOSIGPIPE);
    834 	/* Slot is now allocated.  Insert copy of the file. */
    835 	fd_affix(curproc, fp, newfd);
    836 	if (ff != NULL) {
    837 		pool_cache_put(fdfile_cache, ff);
    838 	}
    839 	return 0;
    840 }
    841 
    842 /*
    843  * Drop reference to a file structure.
    844  */
    845 int
    846 closef(file_t *fp)
    847 {
    848 	struct flock lf;
    849 	int error;
    850 
    851 	/*
    852 	 * Drop reference.  If referenced elsewhere it's still open
    853 	 * and we have nothing more to do.
    854 	 */
    855 	mutex_enter(&fp->f_lock);
    856 	KASSERT(fp->f_count > 0);
    857 	if (--fp->f_count > 0) {
    858 		mutex_exit(&fp->f_lock);
    859 		return 0;
    860 	}
    861 	KASSERT(fp->f_count == 0);
    862 	mutex_exit(&fp->f_lock);
    863 
    864 	/* We held the last reference - release locks, close and free. */
    865 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE) {
    866 		lf.l_whence = SEEK_SET;
    867 		lf.l_start = 0;
    868 		lf.l_len = 0;
    869 		lf.l_type = F_UNLCK;
    870 		(void)VOP_ADVLOCK(fp->f_vnode, fp, F_UNLCK, &lf, F_FLOCK);
    871 	}
    872 	if (fp->f_ops != NULL) {
    873 		error = (*fp->f_ops->fo_close)(fp);
    874 	} else {
    875 		error = 0;
    876 	}
    877 	KASSERT(fp->f_count == 0);
    878 	KASSERT(fp->f_cred != NULL);
    879 	pool_cache_put(file_cache, fp);
    880 
    881 	return error;
    882 }
    883 
    884 /*
    885  * Allocate a file descriptor for the process.
    886  */
    887 int
    888 fd_alloc(proc_t *p, int want, int *result)
    889 {
    890 	filedesc_t *fdp = p->p_fd;
    891 	int i, lim, last, error, hi;
    892 	u_int off;
    893 	fdtab_t *dt;
    894 
    895 	KASSERT(p == curproc || p == &proc0);
    896 
    897 	/*
    898 	 * Search for a free descriptor starting at the higher
    899 	 * of want or fd_freefile.
    900 	 */
    901 	mutex_enter(&fdp->fd_lock);
    902 	fd_checkmaps(fdp);
    903 	dt = fdp->fd_dt;
    904 	KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
    905 	lim = uimin((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
    906 	last = uimin(dt->dt_nfiles, lim);
    907 	for (;;) {
    908 		if ((i = want) < fdp->fd_freefile)
    909 			i = fdp->fd_freefile;
    910 		off = i >> NDENTRYSHIFT;
    911 		hi = fd_next_zero(fdp, fdp->fd_himap, off,
    912 		    (last + NDENTRIES - 1) >> NDENTRYSHIFT);
    913 		if (hi == -1)
    914 			break;
    915 		i = fd_next_zero(fdp, &fdp->fd_lomap[hi],
    916 		    hi > off ? 0 : i & NDENTRYMASK, NDENTRIES);
    917 		if (i == -1) {
    918 			/*
    919 			 * Free file descriptor in this block was
    920 			 * below want, try again with higher want.
    921 			 */
    922 			want = (hi + 1) << NDENTRYSHIFT;
    923 			continue;
    924 		}
    925 		i += (hi << NDENTRYSHIFT);
    926 		if (i >= last) {
    927 			break;
    928 		}
    929 		if (dt->dt_ff[i] == NULL) {
    930 			KASSERT(i >= NDFDFILE);
    931 			dt->dt_ff[i] = pool_cache_get(fdfile_cache, PR_WAITOK);
    932 		}
    933 		KASSERT(dt->dt_ff[i]->ff_file == NULL);
    934 		fd_used(fdp, i);
    935 		if (want <= fdp->fd_freefile) {
    936 			fdp->fd_freefile = i;
    937 		}
    938 		*result = i;
    939 		KASSERT(i >= NDFDFILE ||
    940 		    dt->dt_ff[i] == (fdfile_t *)fdp->fd_dfdfile[i]);
    941 		fd_checkmaps(fdp);
    942 		mutex_exit(&fdp->fd_lock);
    943 		return 0;
    944 	}
    945 
    946 	/* No space in current array.  Let the caller expand and retry. */
    947 	error = (dt->dt_nfiles >= lim) ? EMFILE : ENOSPC;
    948 	mutex_exit(&fdp->fd_lock);
    949 	return error;
    950 }
    951 
    952 /*
    953  * Allocate memory for a descriptor table.
    954  */
    955 static fdtab_t *
    956 fd_dtab_alloc(int n)
    957 {
    958 	fdtab_t *dt;
    959 	size_t sz;
    960 
    961 	KASSERT(n > NDFILE);
    962 
    963 	sz = sizeof(*dt) + (n - NDFILE) * sizeof(dt->dt_ff[0]);
    964 	dt = kmem_alloc(sz, KM_SLEEP);
    965 #ifdef DIAGNOSTIC
    966 	memset(dt, 0xff, sz);
    967 #endif
    968 	dt->dt_nfiles = n;
    969 	dt->dt_link = NULL;
    970 	return dt;
    971 }
    972 
    973 /*
    974  * Free a descriptor table, and all tables linked for deferred free.
    975  */
    976 static void
    977 fd_dtab_free(fdtab_t *dt)
    978 {
    979 	fdtab_t *next;
    980 	size_t sz;
    981 
    982 	do {
    983 		next = dt->dt_link;
    984 		KASSERT(dt->dt_nfiles > NDFILE);
    985 		sz = sizeof(*dt) +
    986 		    (dt->dt_nfiles - NDFILE) * sizeof(dt->dt_ff[0]);
    987 #ifdef DIAGNOSTIC
    988 		memset(dt, 0xff, sz);
    989 #endif
    990 		kmem_free(dt, sz);
    991 		dt = next;
    992 	} while (dt != NULL);
    993 }
    994 
    995 /*
    996  * Allocate descriptor bitmap.
    997  */
    998 static void
    999 fd_map_alloc(int n, uint32_t **lo, uint32_t **hi)
   1000 {
   1001 	uint8_t *ptr;
   1002 	size_t szlo, szhi;
   1003 
   1004 	KASSERT(n > NDENTRIES);
   1005 
   1006 	szlo = NDLOSLOTS(n) * sizeof(uint32_t);
   1007 	szhi = NDHISLOTS(n) * sizeof(uint32_t);
   1008 	ptr = kmem_alloc(szlo + szhi, KM_SLEEP);
   1009 	*lo = (uint32_t *)ptr;
   1010 	*hi = (uint32_t *)(ptr + szlo);
   1011 }
   1012 
   1013 /*
   1014  * Free descriptor bitmap.
   1015  */
   1016 static void
   1017 fd_map_free(int n, uint32_t *lo, uint32_t *hi)
   1018 {
   1019 	size_t szlo, szhi;
   1020 
   1021 	KASSERT(n > NDENTRIES);
   1022 
   1023 	szlo = NDLOSLOTS(n) * sizeof(uint32_t);
   1024 	szhi = NDHISLOTS(n) * sizeof(uint32_t);
   1025 	KASSERT(hi == (uint32_t *)((uint8_t *)lo + szlo));
   1026 	kmem_free(lo, szlo + szhi);
   1027 }
   1028 
   1029 /*
   1030  * Expand a process' descriptor table.
   1031  */
   1032 void
   1033 fd_tryexpand(proc_t *p)
   1034 {
   1035 	filedesc_t *fdp;
   1036 	int i, numfiles, oldnfiles;
   1037 	fdtab_t *newdt, *dt;
   1038 	uint32_t *newhimap, *newlomap;
   1039 
   1040 	KASSERT(p == curproc || p == &proc0);
   1041 
   1042 	fdp = p->p_fd;
   1043 	newhimap = NULL;
   1044 	newlomap = NULL;
   1045 	oldnfiles = atomic_load_consume(&fdp->fd_dt)->dt_nfiles;
   1046 
   1047 	if (oldnfiles < NDEXTENT)
   1048 		numfiles = NDEXTENT;
   1049 	else
   1050 		numfiles = 2 * oldnfiles;
   1051 
   1052 	newdt = fd_dtab_alloc(numfiles);
   1053 	if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1054 		fd_map_alloc(numfiles, &newlomap, &newhimap);
   1055 	}
   1056 
   1057 	mutex_enter(&fdp->fd_lock);
   1058 	dt = fdp->fd_dt;
   1059 	KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
   1060 	if (dt->dt_nfiles != oldnfiles) {
   1061 		/* fdp changed; caller must retry */
   1062 		mutex_exit(&fdp->fd_lock);
   1063 		fd_dtab_free(newdt);
   1064 		if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1065 			fd_map_free(numfiles, newlomap, newhimap);
   1066 		}
   1067 		return;
   1068 	}
   1069 
   1070 	/* Copy the existing descriptor table and zero the new portion. */
   1071 	i = sizeof(fdfile_t *) * oldnfiles;
   1072 	memcpy(newdt->dt_ff, dt->dt_ff, i);
   1073 	memset((uint8_t *)newdt->dt_ff + i, 0,
   1074 	    numfiles * sizeof(fdfile_t *) - i);
   1075 
   1076 	/*
   1077 	 * Link old descriptor array into list to be discarded.  We defer
   1078 	 * freeing until the last reference to the descriptor table goes
   1079 	 * away (usually process exit).  This allows us to do lockless
   1080 	 * lookups in fd_getfile().
   1081 	 */
   1082 	if (oldnfiles > NDFILE) {
   1083 		if (fdp->fd_refcnt > 1) {
   1084 			newdt->dt_link = dt;
   1085 		} else {
   1086 			fd_dtab_free(dt);
   1087 		}
   1088 	}
   1089 
   1090 	if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1091 		i = NDHISLOTS(oldnfiles) * sizeof(uint32_t);
   1092 		memcpy(newhimap, fdp->fd_himap, i);
   1093 		memset((uint8_t *)newhimap + i, 0,
   1094 		    NDHISLOTS(numfiles) * sizeof(uint32_t) - i);
   1095 
   1096 		i = NDLOSLOTS(oldnfiles) * sizeof(uint32_t);
   1097 		memcpy(newlomap, fdp->fd_lomap, i);
   1098 		memset((uint8_t *)newlomap + i, 0,
   1099 		    NDLOSLOTS(numfiles) * sizeof(uint32_t) - i);
   1100 
   1101 		if (NDHISLOTS(oldnfiles) > NDHISLOTS(NDFILE)) {
   1102 			fd_map_free(oldnfiles, fdp->fd_lomap, fdp->fd_himap);
   1103 		}
   1104 		fdp->fd_himap = newhimap;
   1105 		fdp->fd_lomap = newlomap;
   1106 	}
   1107 
   1108 	/*
   1109 	 * All other modifications must become globally visible before
   1110 	 * the change to fd_dt.  See fd_getfile().
   1111 	 */
   1112 	atomic_store_release(&fdp->fd_dt, newdt);
   1113 	KASSERT(newdt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
   1114 	fd_checkmaps(fdp);
   1115 	mutex_exit(&fdp->fd_lock);
   1116 }
   1117 
   1118 /*
   1119  * Create a new open file structure and allocate a file descriptor
   1120  * for the current process.
   1121  */
   1122 int
   1123 fd_allocfile(file_t **resultfp, int *resultfd)
   1124 {
   1125 	proc_t *p = curproc;
   1126 	kauth_cred_t cred;
   1127 	file_t *fp;
   1128 	int error;
   1129 
   1130 	while ((error = fd_alloc(p, 0, resultfd)) != 0) {
   1131 		if (error != ENOSPC) {
   1132 			return error;
   1133 		}
   1134 		fd_tryexpand(p);
   1135 	}
   1136 
   1137 	fp = pool_cache_get(file_cache, PR_WAITOK);
   1138 	if (fp == NULL) {
   1139 		fd_abort(p, NULL, *resultfd);
   1140 		return ENFILE;
   1141 	}
   1142 	KASSERT(fp->f_count == 0);
   1143 	KASSERT(fp->f_msgcount == 0);
   1144 	KASSERT(fp->f_unpcount == 0);
   1145 
   1146 	/* Replace cached credentials if not what we need. */
   1147 	cred = curlwp->l_cred;
   1148 	if (__predict_false(cred != fp->f_cred)) {
   1149 		kauth_cred_free(fp->f_cred);
   1150 		kauth_cred_hold(cred);
   1151 		fp->f_cred = cred;
   1152 	}
   1153 
   1154 	/*
   1155 	 * Don't allow recycled files to be scanned.
   1156 	 * See uipc_usrreq.c.
   1157 	 */
   1158 	if (__predict_false((fp->f_flag & FSCAN) != 0)) {
   1159 		mutex_enter(&fp->f_lock);
   1160 		atomic_and_uint(&fp->f_flag, ~FSCAN);
   1161 		mutex_exit(&fp->f_lock);
   1162 	}
   1163 
   1164 	fp->f_advice = 0;
   1165 	fp->f_offset = 0;
   1166 	*resultfp = fp;
   1167 
   1168 	return 0;
   1169 }
   1170 
   1171 /*
   1172  * Successful creation of a new descriptor: make visible to the process.
   1173  */
   1174 void
   1175 fd_affix(proc_t *p, file_t *fp, unsigned fd)
   1176 {
   1177 	fdfile_t *ff;
   1178 	filedesc_t *fdp;
   1179 	fdtab_t *dt;
   1180 
   1181 	KASSERT(p == curproc || p == &proc0);
   1182 
   1183 	/* Add a reference to the file structure. */
   1184 	mutex_enter(&fp->f_lock);
   1185 	fp->f_count++;
   1186 	mutex_exit(&fp->f_lock);
   1187 
   1188 	/*
   1189 	 * Insert the new file into the descriptor slot.
   1190 	 */
   1191 	fdp = p->p_fd;
   1192 	dt = atomic_load_consume(&fdp->fd_dt);
   1193 	ff = dt->dt_ff[fd];
   1194 
   1195 	KASSERT(ff != NULL);
   1196 	KASSERT(ff->ff_file == NULL);
   1197 	KASSERT(ff->ff_allocated);
   1198 	KASSERT(fd_isused(fdp, fd));
   1199 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1200 
   1201 	/* No need to lock in order to make file initially visible. */
   1202 	atomic_store_release(&ff->ff_file, fp);
   1203 }
   1204 
   1205 /*
   1206  * Abort creation of a new descriptor: free descriptor slot and file.
   1207  */
   1208 void
   1209 fd_abort(proc_t *p, file_t *fp, unsigned fd)
   1210 {
   1211 	filedesc_t *fdp;
   1212 	fdfile_t *ff;
   1213 
   1214 	KASSERT(p == curproc || p == &proc0);
   1215 
   1216 	fdp = p->p_fd;
   1217 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
   1218 	ff->ff_exclose = false;
   1219 
   1220 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1221 
   1222 	mutex_enter(&fdp->fd_lock);
   1223 	KASSERT(fd_isused(fdp, fd));
   1224 	fd_unused(fdp, fd);
   1225 	mutex_exit(&fdp->fd_lock);
   1226 
   1227 	if (fp != NULL) {
   1228 		KASSERT(fp->f_count == 0);
   1229 		KASSERT(fp->f_cred != NULL);
   1230 		pool_cache_put(file_cache, fp);
   1231 	}
   1232 }
   1233 
   1234 static int
   1235 file_ctor(void *arg, void *obj, int flags)
   1236 {
   1237 	file_t *fp = obj;
   1238 
   1239 	memset(fp, 0, sizeof(*fp));
   1240 
   1241 	mutex_enter(&filelist_lock);
   1242 	if (__predict_false(nfiles >= maxfiles)) {
   1243 		mutex_exit(&filelist_lock);
   1244 		tablefull("file", "increase kern.maxfiles or MAXFILES");
   1245 		return ENFILE;
   1246 	}
   1247 	nfiles++;
   1248 	LIST_INSERT_HEAD(&filehead, fp, f_list);
   1249 	mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
   1250 	fp->f_cred = curlwp->l_cred;
   1251 	kauth_cred_hold(fp->f_cred);
   1252 	mutex_exit(&filelist_lock);
   1253 
   1254 	return 0;
   1255 }
   1256 
   1257 static void
   1258 file_dtor(void *arg, void *obj)
   1259 {
   1260 	file_t *fp = obj;
   1261 
   1262 	mutex_enter(&filelist_lock);
   1263 	nfiles--;
   1264 	LIST_REMOVE(fp, f_list);
   1265 	mutex_exit(&filelist_lock);
   1266 
   1267 	KASSERT(fp->f_count == 0);
   1268 	kauth_cred_free(fp->f_cred);
   1269 	mutex_destroy(&fp->f_lock);
   1270 }
   1271 
   1272 static int
   1273 fdfile_ctor(void *arg, void *obj, int flags)
   1274 {
   1275 	fdfile_t *ff = obj;
   1276 
   1277 	memset(ff, 0, sizeof(*ff));
   1278 	cv_init(&ff->ff_closing, "fdclose");
   1279 
   1280 	return 0;
   1281 }
   1282 
   1283 static void
   1284 fdfile_dtor(void *arg, void *obj)
   1285 {
   1286 	fdfile_t *ff = obj;
   1287 
   1288 	cv_destroy(&ff->ff_closing);
   1289 }
   1290 
   1291 file_t *
   1292 fgetdummy(void)
   1293 {
   1294 	file_t *fp;
   1295 
   1296 	fp = kmem_zalloc(sizeof(*fp), KM_SLEEP);
   1297 	mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
   1298 	return fp;
   1299 }
   1300 
   1301 void
   1302 fputdummy(file_t *fp)
   1303 {
   1304 
   1305 	mutex_destroy(&fp->f_lock);
   1306 	kmem_free(fp, sizeof(*fp));
   1307 }
   1308 
   1309 /*
   1310  * Create an initial filedesc structure.
   1311  */
   1312 filedesc_t *
   1313 fd_init(filedesc_t *fdp)
   1314 {
   1315 #ifdef DIAGNOSTIC
   1316 	unsigned fd;
   1317 #endif
   1318 
   1319 	if (__predict_true(fdp == NULL)) {
   1320 		fdp = pool_cache_get(filedesc_cache, PR_WAITOK);
   1321 	} else {
   1322 		KASSERT(fdp == &filedesc0);
   1323 		filedesc_ctor(NULL, fdp, PR_WAITOK);
   1324 	}
   1325 
   1326 #ifdef DIAGNOSTIC
   1327 	KASSERT(fdp->fd_lastfile == -1);
   1328 	KASSERT(fdp->fd_lastkqfile == -1);
   1329 	KASSERT(fdp->fd_knhash == NULL);
   1330 	KASSERT(fdp->fd_freefile == 0);
   1331 	KASSERT(fdp->fd_exclose == false);
   1332 	KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
   1333 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1334 	for (fd = 0; fd < NDFDFILE; fd++) {
   1335 		KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] ==
   1336 		    (fdfile_t *)fdp->fd_dfdfile[fd]);
   1337 	}
   1338 	for (fd = NDFDFILE; fd < NDFILE; fd++) {
   1339 		KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] == NULL);
   1340 	}
   1341 	KASSERT(fdp->fd_himap == fdp->fd_dhimap);
   1342 	KASSERT(fdp->fd_lomap == fdp->fd_dlomap);
   1343 #endif	/* DIAGNOSTIC */
   1344 
   1345 	fdp->fd_refcnt = 1;
   1346 	fd_checkmaps(fdp);
   1347 
   1348 	return fdp;
   1349 }
   1350 
   1351 /*
   1352  * Initialize a file descriptor table.
   1353  */
   1354 static int
   1355 filedesc_ctor(void *arg, void *obj, int flag)
   1356 {
   1357 	filedesc_t *fdp = obj;
   1358 	fdfile_t **ffp;
   1359 	int i;
   1360 
   1361 	memset(fdp, 0, sizeof(*fdp));
   1362 	mutex_init(&fdp->fd_lock, MUTEX_DEFAULT, IPL_NONE);
   1363 	fdp->fd_lastfile = -1;
   1364 	fdp->fd_lastkqfile = -1;
   1365 	fdp->fd_dt = &fdp->fd_dtbuiltin;
   1366 	fdp->fd_dtbuiltin.dt_nfiles = NDFILE;
   1367 	fdp->fd_himap = fdp->fd_dhimap;
   1368 	fdp->fd_lomap = fdp->fd_dlomap;
   1369 
   1370 	CTASSERT(sizeof(fdp->fd_dfdfile[0]) >= sizeof(fdfile_t));
   1371 	for (i = 0, ffp = fdp->fd_dt->dt_ff; i < NDFDFILE; i++, ffp++) {
   1372 		*ffp = (fdfile_t *)fdp->fd_dfdfile[i];
   1373 		(void)fdfile_ctor(NULL, fdp->fd_dfdfile[i], PR_WAITOK);
   1374 	}
   1375 
   1376 	return 0;
   1377 }
   1378 
   1379 static void
   1380 filedesc_dtor(void *arg, void *obj)
   1381 {
   1382 	filedesc_t *fdp = obj;
   1383 	int i;
   1384 
   1385 	for (i = 0; i < NDFDFILE; i++) {
   1386 		fdfile_dtor(NULL, fdp->fd_dfdfile[i]);
   1387 	}
   1388 
   1389 	mutex_destroy(&fdp->fd_lock);
   1390 }
   1391 
   1392 /*
   1393  * Make p share curproc's filedesc structure.
   1394  */
   1395 void
   1396 fd_share(struct proc *p)
   1397 {
   1398 	filedesc_t *fdp;
   1399 
   1400 	fdp = curlwp->l_fd;
   1401 	p->p_fd = fdp;
   1402 	atomic_inc_uint(&fdp->fd_refcnt);
   1403 }
   1404 
   1405 /*
   1406  * Acquire a hold on a filedesc structure.
   1407  */
   1408 void
   1409 fd_hold(lwp_t *l)
   1410 {
   1411 	filedesc_t *fdp = l->l_fd;
   1412 
   1413 	atomic_inc_uint(&fdp->fd_refcnt);
   1414 }
   1415 
   1416 /*
   1417  * Copy a filedesc structure.
   1418  */
   1419 filedesc_t *
   1420 fd_copy(void)
   1421 {
   1422 	filedesc_t *newfdp, *fdp;
   1423 	fdfile_t *ff, **ffp, **nffp, *ff2;
   1424 	int i, j, numfiles, lastfile, newlast;
   1425 	file_t *fp;
   1426 	fdtab_t *newdt;
   1427 
   1428 	fdp = curproc->p_fd;
   1429 	newfdp = pool_cache_get(filedesc_cache, PR_WAITOK);
   1430 	newfdp->fd_refcnt = 1;
   1431 
   1432 #ifdef DIAGNOSTIC
   1433 	KASSERT(newfdp->fd_lastfile == -1);
   1434 	KASSERT(newfdp->fd_lastkqfile == -1);
   1435 	KASSERT(newfdp->fd_knhash == NULL);
   1436 	KASSERT(newfdp->fd_freefile == 0);
   1437 	KASSERT(newfdp->fd_exclose == false);
   1438 	KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
   1439 	KASSERT(newfdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1440 	for (i = 0; i < NDFDFILE; i++) {
   1441 		KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] ==
   1442 		    (fdfile_t *)&newfdp->fd_dfdfile[i]);
   1443 	}
   1444 	for (i = NDFDFILE; i < NDFILE; i++) {
   1445 		KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] == NULL);
   1446 	}
   1447 #endif	/* DIAGNOSTIC */
   1448 
   1449 	mutex_enter(&fdp->fd_lock);
   1450 	fd_checkmaps(fdp);
   1451 	numfiles = fdp->fd_dt->dt_nfiles;
   1452 	lastfile = fdp->fd_lastfile;
   1453 
   1454 	/*
   1455 	 * If the number of open files fits in the internal arrays
   1456 	 * of the open file structure, use them, otherwise allocate
   1457 	 * additional memory for the number of descriptors currently
   1458 	 * in use.
   1459 	 */
   1460 	if (lastfile < NDFILE) {
   1461 		i = NDFILE;
   1462 		newdt = newfdp->fd_dt;
   1463 		KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
   1464 	} else {
   1465 		/*
   1466 		 * Compute the smallest multiple of NDEXTENT needed
   1467 		 * for the file descriptors currently in use,
   1468 		 * allowing the table to shrink.
   1469 		 */
   1470 		i = numfiles;
   1471 		while (i >= 2 * NDEXTENT && i > lastfile * 2) {
   1472 			i /= 2;
   1473 		}
   1474 		KASSERT(i > NDFILE);
   1475 		newdt = fd_dtab_alloc(i);
   1476 		newfdp->fd_dt = newdt;
   1477 		memcpy(newdt->dt_ff, newfdp->fd_dtbuiltin.dt_ff,
   1478 		    NDFDFILE * sizeof(fdfile_t **));
   1479 		memset(newdt->dt_ff + NDFDFILE, 0,
   1480 		    (i - NDFDFILE) * sizeof(fdfile_t **));
   1481 	}
   1482 	if (NDHISLOTS(i) <= NDHISLOTS(NDFILE)) {
   1483 		newfdp->fd_himap = newfdp->fd_dhimap;
   1484 		newfdp->fd_lomap = newfdp->fd_dlomap;
   1485 	} else {
   1486 		fd_map_alloc(i, &newfdp->fd_lomap, &newfdp->fd_himap);
   1487 		KASSERT(i >= NDENTRIES * NDENTRIES);
   1488 		memset(newfdp->fd_himap, 0, NDHISLOTS(i)*sizeof(uint32_t));
   1489 		memset(newfdp->fd_lomap, 0, NDLOSLOTS(i)*sizeof(uint32_t));
   1490 	}
   1491 	newfdp->fd_freefile = fdp->fd_freefile;
   1492 	newfdp->fd_exclose = fdp->fd_exclose;
   1493 
   1494 	ffp = fdp->fd_dt->dt_ff;
   1495 	nffp = newdt->dt_ff;
   1496 	newlast = -1;
   1497 	for (i = 0; i <= lastfile; i++, ffp++, nffp++) {
   1498 		KASSERT(i >= NDFDFILE ||
   1499 		    *nffp == (fdfile_t *)newfdp->fd_dfdfile[i]);
   1500 		ff = *ffp;
   1501 		if (ff == NULL ||
   1502 		    (fp = atomic_load_consume(&ff->ff_file)) == NULL) {
   1503 			/* Descriptor unused, or descriptor half open. */
   1504 			KASSERT(!fd_isused(newfdp, i));
   1505 			continue;
   1506 		}
   1507 		if (__predict_false(fp->f_type == DTYPE_KQUEUE)) {
   1508 			/* kqueue descriptors cannot be copied. */
   1509 			if (i < newfdp->fd_freefile) {
   1510 				newfdp->fd_freefile = i;
   1511 			}
   1512 			continue;
   1513 		}
   1514 		/* It's active: add a reference to the file. */
   1515 		mutex_enter(&fp->f_lock);
   1516 		fp->f_count++;
   1517 		mutex_exit(&fp->f_lock);
   1518 
   1519 		/* Allocate an fdfile_t to represent it. */
   1520 		if (i >= NDFDFILE) {
   1521 			ff2 = pool_cache_get(fdfile_cache, PR_WAITOK);
   1522 			*nffp = ff2;
   1523 		} else {
   1524 			ff2 = newdt->dt_ff[i];
   1525 		}
   1526 		ff2->ff_file = fp;
   1527 		ff2->ff_exclose = ff->ff_exclose;
   1528 		ff2->ff_allocated = true;
   1529 
   1530 		/* Fix up bitmaps. */
   1531 		j = i >> NDENTRYSHIFT;
   1532 		KASSERT((newfdp->fd_lomap[j] & (1U << (i & NDENTRYMASK))) == 0);
   1533 		newfdp->fd_lomap[j] |= 1U << (i & NDENTRYMASK);
   1534 		if (__predict_false(newfdp->fd_lomap[j] == ~0)) {
   1535 			KASSERT((newfdp->fd_himap[j >> NDENTRYSHIFT] &
   1536 			    (1U << (j & NDENTRYMASK))) == 0);
   1537 			newfdp->fd_himap[j >> NDENTRYSHIFT] |=
   1538 			    1U << (j & NDENTRYMASK);
   1539 		}
   1540 		newlast = i;
   1541 	}
   1542 	KASSERT(newdt->dt_ff[0] == (fdfile_t *)newfdp->fd_dfdfile[0]);
   1543 	newfdp->fd_lastfile = newlast;
   1544 	fd_checkmaps(newfdp);
   1545 	mutex_exit(&fdp->fd_lock);
   1546 
   1547 	return newfdp;
   1548 }
   1549 
   1550 /*
   1551  * Release a filedesc structure.
   1552  */
   1553 void
   1554 fd_free(void)
   1555 {
   1556 	fdfile_t *ff;
   1557 	file_t *fp;
   1558 	int fd, nf;
   1559 	fdtab_t *dt;
   1560 	lwp_t * const l = curlwp;
   1561 	filedesc_t * const fdp = l->l_fd;
   1562 	const bool noadvlock = (l->l_proc->p_flag & PK_ADVLOCK) == 0;
   1563 
   1564 	KASSERT(atomic_load_consume(&fdp->fd_dt)->dt_ff[0] ==
   1565 	    (fdfile_t *)fdp->fd_dfdfile[0]);
   1566 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1567 	KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
   1568 
   1569 #ifndef __HAVE_ATOMIC_AS_MEMBAR
   1570 	membar_release();
   1571 #endif
   1572 	if (atomic_dec_uint_nv(&fdp->fd_refcnt) > 0)
   1573 		return;
   1574 #ifndef __HAVE_ATOMIC_AS_MEMBAR
   1575 	membar_acquire();
   1576 #endif
   1577 
   1578 	/*
   1579 	 * Close any files that the process holds open.
   1580 	 */
   1581 	dt = fdp->fd_dt;
   1582 	fd_checkmaps(fdp);
   1583 #ifdef DEBUG
   1584 	fdp->fd_refcnt = -1; /* see fd_checkmaps */
   1585 #endif
   1586 	for (fd = 0, nf = dt->dt_nfiles; fd < nf; fd++) {
   1587 		ff = dt->dt_ff[fd];
   1588 		KASSERT(fd >= NDFDFILE ||
   1589 		    ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1590 		if (ff == NULL)
   1591 			continue;
   1592 		if ((fp = atomic_load_consume(&ff->ff_file)) != NULL) {
   1593 			/*
   1594 			 * Must use fd_close() here if there is
   1595 			 * a reference from kqueue or we might have posix
   1596 			 * advisory locks.
   1597 			 */
   1598 			if (__predict_true(ff->ff_refcnt == 0) &&
   1599 			    (noadvlock || fp->f_type != DTYPE_VNODE)) {
   1600 				ff->ff_file = NULL;
   1601 				ff->ff_exclose = false;
   1602 				ff->ff_allocated = false;
   1603 				closef(fp);
   1604 			} else {
   1605 				ff->ff_refcnt++;
   1606 				fd_close(fd);
   1607 			}
   1608 		}
   1609 		KASSERT(ff->ff_refcnt == 0);
   1610 		KASSERT(ff->ff_file == NULL);
   1611 		KASSERT(!ff->ff_exclose);
   1612 		KASSERT(!ff->ff_allocated);
   1613 		if (fd >= NDFDFILE) {
   1614 			pool_cache_put(fdfile_cache, ff);
   1615 			dt->dt_ff[fd] = NULL;
   1616 		}
   1617 	}
   1618 
   1619 	/*
   1620 	 * Clean out the descriptor table for the next user and return
   1621 	 * to the cache.
   1622 	 */
   1623 	if (__predict_false(dt != &fdp->fd_dtbuiltin)) {
   1624 		fd_dtab_free(fdp->fd_dt);
   1625 		/* Otherwise, done above. */
   1626 		memset(&fdp->fd_dtbuiltin.dt_ff[NDFDFILE], 0,
   1627 		    (NDFILE - NDFDFILE) * sizeof(fdp->fd_dtbuiltin.dt_ff[0]));
   1628 		fdp->fd_dt = &fdp->fd_dtbuiltin;
   1629 	}
   1630 	if (__predict_false(NDHISLOTS(nf) > NDHISLOTS(NDFILE))) {
   1631 		KASSERT(fdp->fd_himap != fdp->fd_dhimap);
   1632 		KASSERT(fdp->fd_lomap != fdp->fd_dlomap);
   1633 		fd_map_free(nf, fdp->fd_lomap, fdp->fd_himap);
   1634 	}
   1635 	if (__predict_false(fdp->fd_knhash != NULL)) {
   1636 		hashdone(fdp->fd_knhash, HASH_LIST, fdp->fd_knhashmask);
   1637 		fdp->fd_knhash = NULL;
   1638 		fdp->fd_knhashmask = 0;
   1639 	} else {
   1640 		KASSERT(fdp->fd_knhashmask == 0);
   1641 	}
   1642 	fdp->fd_dt = &fdp->fd_dtbuiltin;
   1643 	fdp->fd_lastkqfile = -1;
   1644 	fdp->fd_lastfile = -1;
   1645 	fdp->fd_freefile = 0;
   1646 	fdp->fd_exclose = false;
   1647 	memset(&fdp->fd_startzero, 0, sizeof(*fdp) -
   1648 	    offsetof(filedesc_t, fd_startzero));
   1649 	fdp->fd_himap = fdp->fd_dhimap;
   1650 	fdp->fd_lomap = fdp->fd_dlomap;
   1651 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1652 	KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
   1653 	KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
   1654 #ifdef DEBUG
   1655 	fdp->fd_refcnt = 0; /* see fd_checkmaps */
   1656 #endif
   1657 	fd_checkmaps(fdp);
   1658 	pool_cache_put(filedesc_cache, fdp);
   1659 }
   1660 
   1661 /*
   1662  * File Descriptor pseudo-device driver (/dev/fd/).
   1663  *
   1664  * Opening minor device N dup()s the file (if any) connected to file
   1665  * descriptor N belonging to the calling process.  Note that this driver
   1666  * consists of only the ``open()'' routine, because all subsequent
   1667  * references to this file will be direct to the other driver.
   1668  */
   1669 static int
   1670 filedescopen(dev_t dev, int mode, int type, lwp_t *l)
   1671 {
   1672 
   1673 	/*
   1674 	 * XXX Kludge: set dupfd to contain the value of the
   1675 	 * the file descriptor being sought for duplication. The error
   1676 	 * return ensures that the vnode for this device will be released
   1677 	 * by vn_open. Open will detect this special error and take the
   1678 	 * actions in fd_dupopen below. Other callers of vn_open or VOP_OPEN
   1679 	 * will simply report the error.
   1680 	 */
   1681 	l->l_dupfd = minor(dev);	/* XXX */
   1682 	return EDUPFD;
   1683 }
   1684 
   1685 /*
   1686  * Duplicate the specified descriptor to a free descriptor.
   1687  *
   1688  * old is the original fd.
   1689  * moveit is true if we should move rather than duplicate.
   1690  * flags are the open flags (converted from O_* to F*).
   1691  * newp returns the new fd on success.
   1692  *
   1693  * These two cases are produced by the EDUPFD and EMOVEFD magic
   1694  * errnos, but in the interest of removing that regrettable interface,
   1695  * vn_open has been changed to intercept them. Now vn_open returns
   1696  * either a vnode or a filehandle, and the filehandle is accompanied
   1697  * by a boolean that says whether we should dup (moveit == false) or
   1698  * move (moveit == true) the fd.
   1699  *
   1700  * The dup case is used by /dev/stderr, /proc/self/fd, and such. The
   1701  * move case is used by cloner devices that allocate a fd of their
   1702  * own (a layering violation that should go away eventually) that
   1703  * then needs to be put in the place open() expects it.
   1704  */
   1705 int
   1706 fd_dupopen(int old, bool moveit, int flags, int *newp)
   1707 {
   1708 	filedesc_t *fdp;
   1709 	fdfile_t *ff;
   1710 	file_t *fp;
   1711 	fdtab_t *dt;
   1712 	int error;
   1713 
   1714 	if ((fp = fd_getfile(old)) == NULL) {
   1715 		return EBADF;
   1716 	}
   1717 	fdp = curlwp->l_fd;
   1718 	dt = atomic_load_consume(&fdp->fd_dt);
   1719 	ff = dt->dt_ff[old];
   1720 
   1721 	/*
   1722 	 * There are two cases of interest here.
   1723 	 *
   1724 	 * 1. moveit == false (used to be the EDUPFD magic errno):
   1725 	 *    simply dup (old) to file descriptor (new) and return.
   1726 	 *
   1727 	 * 2. moveit == true (used to be the EMOVEFD magic errno):
   1728 	 *    steal away the file structure from (old) and store it in
   1729 	 *    (new).  (old) is effectively closed by this operation.
   1730 	 */
   1731 	if (moveit == false) {
   1732 		/*
   1733 		 * Check that the mode the file is being opened for is a
   1734 		 * subset of the mode of the existing descriptor.
   1735 		 */
   1736 		if (((flags & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
   1737 			error = EACCES;
   1738 			goto out;
   1739 		}
   1740 
   1741 		/* Copy it. */
   1742 		error = fd_dup(fp, 0, newp, ff->ff_exclose);
   1743 	} else {
   1744 		/* Copy it. */
   1745 		error = fd_dup(fp, 0, newp, ff->ff_exclose);
   1746 		if (error != 0) {
   1747 			goto out;
   1748 		}
   1749 
   1750 		/* Steal away the file pointer from 'old'. */
   1751 		(void)fd_close(old);
   1752 		return 0;
   1753 	}
   1754 
   1755 out:
   1756 	fd_putfile(old);
   1757 	return error;
   1758 }
   1759 
   1760 /*
   1761  * Close open files on exec.
   1762  */
   1763 void
   1764 fd_closeexec(void)
   1765 {
   1766 	proc_t *p;
   1767 	filedesc_t *fdp;
   1768 	fdfile_t *ff;
   1769 	lwp_t *l;
   1770 	fdtab_t *dt;
   1771 	int fd;
   1772 
   1773 	l = curlwp;
   1774 	p = l->l_proc;
   1775 	fdp = p->p_fd;
   1776 
   1777 	if (fdp->fd_refcnt > 1) {
   1778 		fdp = fd_copy();
   1779 		fd_free();
   1780 		p->p_fd = fdp;
   1781 		l->l_fd = fdp;
   1782 	}
   1783 	if (!fdp->fd_exclose) {
   1784 		return;
   1785 	}
   1786 	fdp->fd_exclose = false;
   1787 	dt = atomic_load_consume(&fdp->fd_dt);
   1788 
   1789 	for (fd = 0; fd <= fdp->fd_lastfile; fd++) {
   1790 		if ((ff = dt->dt_ff[fd]) == NULL) {
   1791 			KASSERT(fd >= NDFDFILE);
   1792 			continue;
   1793 		}
   1794 		KASSERT(fd >= NDFDFILE ||
   1795 		    ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1796 		if (ff->ff_file == NULL)
   1797 			continue;
   1798 		if (ff->ff_exclose) {
   1799 			/*
   1800 			 * We need a reference to close the file.
   1801 			 * No other threads can see the fdfile_t at
   1802 			 * this point, so don't bother locking.
   1803 			 */
   1804 			KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
   1805 			ff->ff_refcnt++;
   1806 			fd_close(fd);
   1807 		}
   1808 	}
   1809 }
   1810 
   1811 /*
   1812  * Sets descriptor owner. If the owner is a process, 'pgid'
   1813  * is set to positive value, process ID. If the owner is process group,
   1814  * 'pgid' is set to -pg_id.
   1815  */
   1816 int
   1817 fsetown(pid_t *pgid, u_long cmd, const void *data)
   1818 {
   1819 	pid_t id = *(const pid_t *)data;
   1820 	int error;
   1821 
   1822 	if (id <= INT_MIN)
   1823 		return EINVAL;
   1824 
   1825 	switch (cmd) {
   1826 	case TIOCSPGRP:
   1827 		if (id < 0)
   1828 			return EINVAL;
   1829 		id = -id;
   1830 		break;
   1831 	default:
   1832 		break;
   1833 	}
   1834 	if (id > 0) {
   1835 		mutex_enter(&proc_lock);
   1836 		error = proc_find(id) ? 0 : ESRCH;
   1837 		mutex_exit(&proc_lock);
   1838 	} else if (id < 0) {
   1839 		error = pgid_in_session(curproc, -id);
   1840 	} else {
   1841 		error = 0;
   1842 	}
   1843 	if (!error) {
   1844 		*pgid = id;
   1845 	}
   1846 	return error;
   1847 }
   1848 
   1849 void
   1850 fd_set_exclose(struct lwp *l, int fd, bool exclose)
   1851 {
   1852 	filedesc_t *fdp = l->l_fd;
   1853 	fdfile_t *ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
   1854 
   1855 	ff->ff_exclose = exclose;
   1856 	if (exclose)
   1857 		fdp->fd_exclose = true;
   1858 }
   1859 
   1860 /*
   1861  * Return descriptor owner information. If the value is positive,
   1862  * it's process ID. If it's negative, it's process group ID and
   1863  * needs the sign removed before use.
   1864  */
   1865 int
   1866 fgetown(pid_t pgid, u_long cmd, void *data)
   1867 {
   1868 
   1869 	switch (cmd) {
   1870 	case TIOCGPGRP:
   1871 		KASSERT(pgid > INT_MIN);
   1872 		*(int *)data = -pgid;
   1873 		break;
   1874 	default:
   1875 		*(int *)data = pgid;
   1876 		break;
   1877 	}
   1878 	return 0;
   1879 }
   1880 
   1881 /*
   1882  * Send signal to descriptor owner, either process or process group.
   1883  */
   1884 void
   1885 fownsignal(pid_t pgid, int signo, int code, int band, void *fdescdata)
   1886 {
   1887 	ksiginfo_t ksi;
   1888 
   1889 	KASSERT(!cpu_intr_p());
   1890 
   1891 	if (pgid == 0) {
   1892 		return;
   1893 	}
   1894 
   1895 	KSI_INIT(&ksi);
   1896 	ksi.ksi_signo = signo;
   1897 	ksi.ksi_code = code;
   1898 	ksi.ksi_band = band;
   1899 
   1900 	mutex_enter(&proc_lock);
   1901 	if (pgid > 0) {
   1902 		struct proc *p1;
   1903 
   1904 		p1 = proc_find(pgid);
   1905 		if (p1 != NULL) {
   1906 			kpsignal(p1, &ksi, fdescdata);
   1907 		}
   1908 	} else {
   1909 		struct pgrp *pgrp;
   1910 
   1911 		KASSERT(pgid < 0 && pgid > INT_MIN);
   1912 		pgrp = pgrp_find(-pgid);
   1913 		if (pgrp != NULL) {
   1914 			kpgsignal(pgrp, &ksi, fdescdata, 0);
   1915 		}
   1916 	}
   1917 	mutex_exit(&proc_lock);
   1918 }
   1919 
   1920 int
   1921 fd_clone(file_t *fp, unsigned fd, int flag, const struct fileops *fops,
   1922 	 void *data)
   1923 {
   1924 	fdfile_t *ff;
   1925 	filedesc_t *fdp;
   1926 
   1927 	fp->f_flag = flag & FMASK;
   1928 	fdp = curproc->p_fd;
   1929 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
   1930 	KASSERT(ff != NULL);
   1931 	ff->ff_exclose = (flag & O_CLOEXEC) != 0;
   1932 	fp->f_type = DTYPE_MISC;
   1933 	fp->f_ops = fops;
   1934 	fp->f_data = data;
   1935 	curlwp->l_dupfd = fd;
   1936 	fd_affix(curproc, fp, fd);
   1937 
   1938 	return EMOVEFD;
   1939 }
   1940 
   1941 int
   1942 fnullop_fcntl(file_t *fp, u_int cmd, void *data)
   1943 {
   1944 
   1945 	if (cmd == F_SETFL)
   1946 		return 0;
   1947 
   1948 	return EOPNOTSUPP;
   1949 }
   1950 
   1951 int
   1952 fnullop_poll(file_t *fp, int which)
   1953 {
   1954 
   1955 	return 0;
   1956 }
   1957 
   1958 int
   1959 fnullop_kqfilter(file_t *fp, struct knote *kn)
   1960 {
   1961 
   1962 	return EOPNOTSUPP;
   1963 }
   1964 
   1965 void
   1966 fnullop_restart(file_t *fp)
   1967 {
   1968 
   1969 }
   1970 
   1971 int
   1972 fbadop_read(file_t *fp, off_t *offset, struct uio *uio,
   1973 	    kauth_cred_t cred, int flags)
   1974 {
   1975 
   1976 	return EOPNOTSUPP;
   1977 }
   1978 
   1979 int
   1980 fbadop_write(file_t *fp, off_t *offset, struct uio *uio,
   1981 	     kauth_cred_t cred, int flags)
   1982 {
   1983 
   1984 	return EOPNOTSUPP;
   1985 }
   1986 
   1987 int
   1988 fbadop_ioctl(file_t *fp, u_long com, void *data)
   1989 {
   1990 
   1991 	return EOPNOTSUPP;
   1992 }
   1993 
   1994 int
   1995 fbadop_stat(file_t *fp, struct stat *sb)
   1996 {
   1997 
   1998 	return EOPNOTSUPP;
   1999 }
   2000 
   2001 int
   2002 fbadop_close(file_t *fp)
   2003 {
   2004 
   2005 	return EOPNOTSUPP;
   2006 }
   2007 
   2008 /*
   2009  * sysctl routines pertaining to file descriptors
   2010  */
   2011 
   2012 /* Initialized in sysctl_init() for now... */
   2013 extern kmutex_t sysctl_file_marker_lock;
   2014 static u_int sysctl_file_marker = 1;
   2015 
   2016 /*
   2017  * Expects to be called with proc_lock and sysctl_file_marker_lock locked.
   2018  */
   2019 static void
   2020 sysctl_file_marker_reset(void)
   2021 {
   2022 	struct proc *p;
   2023 
   2024 	PROCLIST_FOREACH(p, &allproc) {
   2025 		struct filedesc *fd = p->p_fd;
   2026 		fdtab_t *dt;
   2027 		u_int i;
   2028 
   2029 		mutex_enter(&fd->fd_lock);
   2030 		dt = fd->fd_dt;
   2031 		for (i = 0; i < dt->dt_nfiles; i++) {
   2032 			struct file *fp;
   2033 			fdfile_t *ff;
   2034 
   2035 			if ((ff = dt->dt_ff[i]) == NULL) {
   2036 				continue;
   2037 			}
   2038 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
   2039 				continue;
   2040 			}
   2041 			fp->f_marker = 0;
   2042 		}
   2043 		mutex_exit(&fd->fd_lock);
   2044 	}
   2045 }
   2046 
   2047 /*
   2048  * sysctl helper routine for kern.file pseudo-subtree.
   2049  */
   2050 static int
   2051 sysctl_kern_file(SYSCTLFN_ARGS)
   2052 {
   2053 	const bool allowaddr = get_expose_address(curproc);
   2054 	struct filelist flist;
   2055 	int error;
   2056 	size_t buflen;
   2057 	struct file *fp, fbuf;
   2058 	char *start, *where;
   2059 	struct proc *p;
   2060 
   2061 	start = where = oldp;
   2062 	buflen = *oldlenp;
   2063 
   2064 	if (where == NULL) {
   2065 		/*
   2066 		 * overestimate by 10 files
   2067 		 */
   2068 		*oldlenp = sizeof(filehead) + (nfiles + 10) *
   2069 		    sizeof(struct file);
   2070 		return 0;
   2071 	}
   2072 
   2073 	/*
   2074 	 * first sysctl_copyout filehead
   2075 	 */
   2076 	if (buflen < sizeof(filehead)) {
   2077 		*oldlenp = 0;
   2078 		return 0;
   2079 	}
   2080 	sysctl_unlock();
   2081 	if (allowaddr) {
   2082 		memcpy(&flist, &filehead, sizeof(flist));
   2083 	} else {
   2084 		memset(&flist, 0, sizeof(flist));
   2085 	}
   2086 	error = sysctl_copyout(l, &flist, where, sizeof(flist));
   2087 	if (error) {
   2088 		sysctl_relock();
   2089 		return error;
   2090 	}
   2091 	buflen -= sizeof(flist);
   2092 	where += sizeof(flist);
   2093 
   2094 	/*
   2095 	 * followed by an array of file structures
   2096 	 */
   2097 	mutex_enter(&sysctl_file_marker_lock);
   2098 	mutex_enter(&proc_lock);
   2099 	PROCLIST_FOREACH(p, &allproc) {
   2100 		struct filedesc *fd;
   2101 		fdtab_t *dt;
   2102 		u_int i;
   2103 
   2104 		if (p->p_stat == SIDL) {
   2105 			/* skip embryonic processes */
   2106 			continue;
   2107 		}
   2108 		mutex_enter(p->p_lock);
   2109 		error = kauth_authorize_process(l->l_cred,
   2110 		    KAUTH_PROCESS_CANSEE, p,
   2111 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
   2112 		    NULL, NULL);
   2113 		mutex_exit(p->p_lock);
   2114 		if (error != 0) {
   2115 			/*
   2116 			 * Don't leak kauth retval if we're silently
   2117 			 * skipping this entry.
   2118 			 */
   2119 			error = 0;
   2120 			continue;
   2121 		}
   2122 
   2123 		/*
   2124 		 * Grab a hold on the process.
   2125 		 */
   2126 		if (!rw_tryenter(&p->p_reflock, RW_READER)) {
   2127 			continue;
   2128 		}
   2129 		mutex_exit(&proc_lock);
   2130 
   2131 		fd = p->p_fd;
   2132 		mutex_enter(&fd->fd_lock);
   2133 		dt = fd->fd_dt;
   2134 		for (i = 0; i < dt->dt_nfiles; i++) {
   2135 			fdfile_t *ff;
   2136 
   2137 			if ((ff = dt->dt_ff[i]) == NULL) {
   2138 				continue;
   2139 			}
   2140 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
   2141 				continue;
   2142 			}
   2143 
   2144 			mutex_enter(&fp->f_lock);
   2145 
   2146 			if ((fp->f_count == 0) ||
   2147 			    (fp->f_marker == sysctl_file_marker)) {
   2148 				mutex_exit(&fp->f_lock);
   2149 				continue;
   2150 			}
   2151 
   2152 			/* Check that we have enough space. */
   2153 			if (buflen < sizeof(struct file)) {
   2154 				*oldlenp = where - start;
   2155 				mutex_exit(&fp->f_lock);
   2156 				error = ENOMEM;
   2157 				break;
   2158 			}
   2159 
   2160 			fill_file(&fbuf, fp);
   2161 			mutex_exit(&fp->f_lock);
   2162 			error = sysctl_copyout(l, &fbuf, where, sizeof(fbuf));
   2163 			if (error) {
   2164 				break;
   2165 			}
   2166 			buflen -= sizeof(struct file);
   2167 			where += sizeof(struct file);
   2168 
   2169 			fp->f_marker = sysctl_file_marker;
   2170 		}
   2171 		mutex_exit(&fd->fd_lock);
   2172 
   2173 		/*
   2174 		 * Release reference to process.
   2175 		 */
   2176 		mutex_enter(&proc_lock);
   2177 		rw_exit(&p->p_reflock);
   2178 
   2179 		if (error)
   2180 			break;
   2181 	}
   2182 
   2183 	sysctl_file_marker++;
   2184 	/* Reset all markers if wrapped. */
   2185 	if (sysctl_file_marker == 0) {
   2186 		sysctl_file_marker_reset();
   2187 		sysctl_file_marker++;
   2188 	}
   2189 
   2190 	mutex_exit(&proc_lock);
   2191 	mutex_exit(&sysctl_file_marker_lock);
   2192 
   2193 	*oldlenp = where - start;
   2194 	sysctl_relock();
   2195 	return error;
   2196 }
   2197 
   2198 /*
   2199  * sysctl helper function for kern.file2
   2200  */
   2201 static int
   2202 sysctl_kern_file2(SYSCTLFN_ARGS)
   2203 {
   2204 	struct proc *p;
   2205 	struct file *fp;
   2206 	struct filedesc *fd;
   2207 	struct kinfo_file kf;
   2208 	char *dp;
   2209 	u_int i, op;
   2210 	size_t len, needed, elem_size, out_size;
   2211 	int error, arg, elem_count;
   2212 	fdfile_t *ff;
   2213 	fdtab_t *dt;
   2214 
   2215 	if (namelen == 1 && name[0] == CTL_QUERY)
   2216 		return sysctl_query(SYSCTLFN_CALL(rnode));
   2217 
   2218 	if (namelen != 4)
   2219 		return EINVAL;
   2220 
   2221 	error = 0;
   2222 	dp = oldp;
   2223 	len = (oldp != NULL) ? *oldlenp : 0;
   2224 	op = name[0];
   2225 	arg = name[1];
   2226 	elem_size = name[2];
   2227 	elem_count = name[3];
   2228 	out_size = MIN(sizeof(kf), elem_size);
   2229 	needed = 0;
   2230 
   2231 	if (elem_size < 1 || elem_count < 0)
   2232 		return EINVAL;
   2233 
   2234 	switch (op) {
   2235 	case KERN_FILE_BYFILE:
   2236 	case KERN_FILE_BYPID:
   2237 		/*
   2238 		 * We're traversing the process list in both cases; the BYFILE
   2239 		 * case does additional work of keeping track of files already
   2240 		 * looked at.
   2241 		 */
   2242 
   2243 		/* doesn't use arg so it must be zero */
   2244 		if ((op == KERN_FILE_BYFILE) && (arg != 0))
   2245 			return EINVAL;
   2246 
   2247 		if ((op == KERN_FILE_BYPID) && (arg < -1))
   2248 			/* -1 means all processes */
   2249 			return EINVAL;
   2250 
   2251 		sysctl_unlock();
   2252 		if (op == KERN_FILE_BYFILE)
   2253 			mutex_enter(&sysctl_file_marker_lock);
   2254 		mutex_enter(&proc_lock);
   2255 		PROCLIST_FOREACH(p, &allproc) {
   2256 			if (p->p_stat == SIDL) {
   2257 				/* skip embryonic processes */
   2258 				continue;
   2259 			}
   2260 			if (arg > 0 && p->p_pid != arg) {
   2261 				/* pick only the one we want */
   2262 				/* XXX want 0 to mean "kernel files" */
   2263 				continue;
   2264 			}
   2265 			mutex_enter(p->p_lock);
   2266 			error = kauth_authorize_process(l->l_cred,
   2267 			    KAUTH_PROCESS_CANSEE, p,
   2268 			    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
   2269 			    NULL, NULL);
   2270 			mutex_exit(p->p_lock);
   2271 			if (error != 0) {
   2272 				/*
   2273 				 * Don't leak kauth retval if we're silently
   2274 				 * skipping this entry.
   2275 				 */
   2276 				error = 0;
   2277 				continue;
   2278 			}
   2279 
   2280 			/*
   2281 			 * Grab a hold on the process.
   2282 			 */
   2283 			if (!rw_tryenter(&p->p_reflock, RW_READER)) {
   2284 				continue;
   2285 			}
   2286 			mutex_exit(&proc_lock);
   2287 
   2288 			fd = p->p_fd;
   2289 			mutex_enter(&fd->fd_lock);
   2290 			dt = fd->fd_dt;
   2291 			for (i = 0; i < dt->dt_nfiles; i++) {
   2292 				if ((ff = dt->dt_ff[i]) == NULL) {
   2293 					continue;
   2294 				}
   2295 				if ((fp = atomic_load_consume(&ff->ff_file)) ==
   2296 				    NULL) {
   2297 					continue;
   2298 				}
   2299 
   2300 				if ((op == KERN_FILE_BYFILE) &&
   2301 				    (fp->f_marker == sysctl_file_marker)) {
   2302 					continue;
   2303 				}
   2304 				if (len >= elem_size && elem_count > 0) {
   2305 					mutex_enter(&fp->f_lock);
   2306 					fill_file2(&kf, fp, ff, i, p->p_pid);
   2307 					mutex_exit(&fp->f_lock);
   2308 					mutex_exit(&fd->fd_lock);
   2309 					error = sysctl_copyout(l,
   2310 					    &kf, dp, out_size);
   2311 					mutex_enter(&fd->fd_lock);
   2312 					if (error)
   2313 						break;
   2314 					dp += elem_size;
   2315 					len -= elem_size;
   2316 				}
   2317 				if (op == KERN_FILE_BYFILE)
   2318 					fp->f_marker = sysctl_file_marker;
   2319 				needed += elem_size;
   2320 				if (elem_count > 0 && elem_count != INT_MAX)
   2321 					elem_count--;
   2322 			}
   2323 			mutex_exit(&fd->fd_lock);
   2324 
   2325 			/*
   2326 			 * Release reference to process.
   2327 			 */
   2328 			mutex_enter(&proc_lock);
   2329 			rw_exit(&p->p_reflock);
   2330 		}
   2331 		if (op == KERN_FILE_BYFILE) {
   2332 			sysctl_file_marker++;
   2333 
   2334 			/* Reset all markers if wrapped. */
   2335 			if (sysctl_file_marker == 0) {
   2336 				sysctl_file_marker_reset();
   2337 				sysctl_file_marker++;
   2338 			}
   2339 		}
   2340 		mutex_exit(&proc_lock);
   2341 		if (op == KERN_FILE_BYFILE)
   2342 			mutex_exit(&sysctl_file_marker_lock);
   2343 		sysctl_relock();
   2344 		break;
   2345 	default:
   2346 		return EINVAL;
   2347 	}
   2348 
   2349 	if (oldp == NULL)
   2350 		needed += KERN_FILESLOP * elem_size;
   2351 	*oldlenp = needed;
   2352 
   2353 	return error;
   2354 }
   2355 
   2356 static void
   2357 fill_file(struct file *fp, const struct file *fpsrc)
   2358 {
   2359 	const bool allowaddr = get_expose_address(curproc);
   2360 
   2361 	memset(fp, 0, sizeof(*fp));
   2362 
   2363 	fp->f_offset = fpsrc->f_offset;
   2364 	COND_SET_PTR(fp->f_cred, fpsrc->f_cred, allowaddr);
   2365 	COND_SET_CPTR(fp->f_ops, fpsrc->f_ops, allowaddr);
   2366 	COND_SET_STRUCT(fp->f_undata, fpsrc->f_undata, allowaddr);
   2367 	COND_SET_STRUCT(fp->f_list, fpsrc->f_list, allowaddr);
   2368 	fp->f_flag = fpsrc->f_flag;
   2369 	fp->f_marker = fpsrc->f_marker;
   2370 	fp->f_type = fpsrc->f_type;
   2371 	fp->f_advice = fpsrc->f_advice;
   2372 	fp->f_count = fpsrc->f_count;
   2373 	fp->f_msgcount = fpsrc->f_msgcount;
   2374 	fp->f_unpcount = fpsrc->f_unpcount;
   2375 	COND_SET_STRUCT(fp->f_unplist, fpsrc->f_unplist, allowaddr);
   2376 }
   2377 
   2378 static void
   2379 fill_file2(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
   2380 	  int i, pid_t pid)
   2381 {
   2382 	const bool allowaddr = get_expose_address(curproc);
   2383 
   2384 	memset(kp, 0, sizeof(*kp));
   2385 
   2386 	COND_SET_VALUE(kp->ki_fileaddr, PTRTOUINT64(fp), allowaddr);
   2387 	kp->ki_flag =		fp->f_flag;
   2388 	kp->ki_iflags =		0;
   2389 	kp->ki_ftype =		fp->f_type;
   2390 	kp->ki_count =		fp->f_count;
   2391 	kp->ki_msgcount =	fp->f_msgcount;
   2392 	COND_SET_VALUE(kp->ki_fucred, PTRTOUINT64(fp->f_cred), allowaddr);
   2393 	kp->ki_fuid =		kauth_cred_geteuid(fp->f_cred);
   2394 	kp->ki_fgid =		kauth_cred_getegid(fp->f_cred);
   2395 	COND_SET_VALUE(kp->ki_fops, PTRTOUINT64(fp->f_ops), allowaddr);
   2396 	kp->ki_foffset =	fp->f_offset;
   2397 	COND_SET_VALUE(kp->ki_fdata, PTRTOUINT64(fp->f_data), allowaddr);
   2398 
   2399 	/* vnode information to glue this file to something */
   2400 	if (fp->f_type == DTYPE_VNODE) {
   2401 		struct vnode *vp = fp->f_vnode;
   2402 
   2403 		COND_SET_VALUE(kp->ki_vun, PTRTOUINT64(vp->v_un.vu_socket),
   2404 		    allowaddr);
   2405 		kp->ki_vsize =	vp->v_size;
   2406 		kp->ki_vtype =	vp->v_type;
   2407 		kp->ki_vtag =	vp->v_tag;
   2408 		COND_SET_VALUE(kp->ki_vdata, PTRTOUINT64(vp->v_data),
   2409 		    allowaddr);
   2410 	}
   2411 
   2412 	/* process information when retrieved via KERN_FILE_BYPID */
   2413 	if (ff != NULL) {
   2414 		kp->ki_pid =		pid;
   2415 		kp->ki_fd =		i;
   2416 		kp->ki_ofileflags =	ff->ff_exclose;
   2417 		kp->ki_usecount =	ff->ff_refcnt;
   2418 	}
   2419 }
   2420