kern_descrip.c revision 1.256 1 /* $NetBSD: kern_descrip.c,v 1.256 2023/04/22 13:52:46 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_descrip.c 8.8 (Berkeley) 2/14/95
66 */
67
68 /*
69 * File descriptor management.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_descrip.c,v 1.256 2023/04/22 13:52:46 riastradh Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/file.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/stat.h>
84 #include <sys/ioctl.h>
85 #include <sys/fcntl.h>
86 #include <sys/pool.h>
87 #include <sys/unistd.h>
88 #include <sys/resourcevar.h>
89 #include <sys/conf.h>
90 #include <sys/event.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/syscallargs.h>
94 #include <sys/cpu.h>
95 #include <sys/kmem.h>
96 #include <sys/vnode.h>
97 #include <sys/sysctl.h>
98 #include <sys/ktrace.h>
99
100 /*
101 * A list (head) of open files, counter, and lock protecting them.
102 */
103 struct filelist filehead __cacheline_aligned;
104 static u_int nfiles __cacheline_aligned;
105 kmutex_t filelist_lock __cacheline_aligned;
106
107 static pool_cache_t filedesc_cache __read_mostly;
108 static pool_cache_t file_cache __read_mostly;
109 static pool_cache_t fdfile_cache __read_mostly;
110
111 static int file_ctor(void *, void *, int);
112 static void file_dtor(void *, void *);
113 static int fdfile_ctor(void *, void *, int);
114 static void fdfile_dtor(void *, void *);
115 static int filedesc_ctor(void *, void *, int);
116 static void filedesc_dtor(void *, void *);
117 static int filedescopen(dev_t, int, int, lwp_t *);
118
119 static int sysctl_kern_file(SYSCTLFN_PROTO);
120 static int sysctl_kern_file2(SYSCTLFN_PROTO);
121 static void fill_file(struct file *, const struct file *);
122 static void fill_file2(struct kinfo_file *, const file_t *, const fdfile_t *,
123 int, pid_t);
124
125 const struct cdevsw filedesc_cdevsw = {
126 .d_open = filedescopen,
127 .d_close = noclose,
128 .d_read = noread,
129 .d_write = nowrite,
130 .d_ioctl = noioctl,
131 .d_stop = nostop,
132 .d_tty = notty,
133 .d_poll = nopoll,
134 .d_mmap = nommap,
135 .d_kqfilter = nokqfilter,
136 .d_discard = nodiscard,
137 .d_flag = D_OTHER | D_MPSAFE
138 };
139
140 /* For ease of reading. */
141 __strong_alias(fd_putvnode,fd_putfile)
142 __strong_alias(fd_putsock,fd_putfile)
143
144 /*
145 * Initialize the descriptor system.
146 */
147 void
148 fd_sys_init(void)
149 {
150 static struct sysctllog *clog;
151
152 mutex_init(&filelist_lock, MUTEX_DEFAULT, IPL_NONE);
153
154 LIST_INIT(&filehead);
155
156 file_cache = pool_cache_init(sizeof(file_t), coherency_unit, 0,
157 0, "file", NULL, IPL_NONE, file_ctor, file_dtor, NULL);
158 KASSERT(file_cache != NULL);
159
160 fdfile_cache = pool_cache_init(sizeof(fdfile_t), coherency_unit, 0,
161 PR_LARGECACHE, "fdfile", NULL, IPL_NONE, fdfile_ctor, fdfile_dtor,
162 NULL);
163 KASSERT(fdfile_cache != NULL);
164
165 filedesc_cache = pool_cache_init(sizeof(filedesc_t), coherency_unit,
166 0, 0, "filedesc", NULL, IPL_NONE, filedesc_ctor, filedesc_dtor,
167 NULL);
168 KASSERT(filedesc_cache != NULL);
169
170 sysctl_createv(&clog, 0, NULL, NULL,
171 CTLFLAG_PERMANENT,
172 CTLTYPE_STRUCT, "file",
173 SYSCTL_DESCR("System open file table"),
174 sysctl_kern_file, 0, NULL, 0,
175 CTL_KERN, KERN_FILE, CTL_EOL);
176 sysctl_createv(&clog, 0, NULL, NULL,
177 CTLFLAG_PERMANENT,
178 CTLTYPE_STRUCT, "file2",
179 SYSCTL_DESCR("System open file table"),
180 sysctl_kern_file2, 0, NULL, 0,
181 CTL_KERN, KERN_FILE2, CTL_EOL);
182 }
183
184 static bool
185 fd_isused(filedesc_t *fdp, unsigned fd)
186 {
187 u_int off = fd >> NDENTRYSHIFT;
188
189 KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
190
191 return (fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0;
192 }
193
194 /*
195 * Verify that the bitmaps match the descriptor table.
196 */
197 static inline void
198 fd_checkmaps(filedesc_t *fdp)
199 {
200 #ifdef DEBUG
201 fdtab_t *dt;
202 u_int fd;
203
204 KASSERT(fdp->fd_refcnt <= 1 || mutex_owned(&fdp->fd_lock));
205
206 dt = fdp->fd_dt;
207 if (fdp->fd_refcnt == -1) {
208 /*
209 * fd_free tears down the table without maintaining its bitmap.
210 */
211 return;
212 }
213 for (fd = 0; fd < dt->dt_nfiles; fd++) {
214 if (fd < NDFDFILE) {
215 KASSERT(dt->dt_ff[fd] ==
216 (fdfile_t *)fdp->fd_dfdfile[fd]);
217 }
218 if (dt->dt_ff[fd] == NULL) {
219 KASSERT(!fd_isused(fdp, fd));
220 } else if (dt->dt_ff[fd]->ff_file != NULL) {
221 KASSERT(fd_isused(fdp, fd));
222 }
223 }
224 #endif
225 }
226
227 static int
228 fd_next_zero(filedesc_t *fdp, uint32_t *bitmap, int want, u_int bits)
229 {
230 int i, off, maxoff;
231 uint32_t sub;
232
233 KASSERT(mutex_owned(&fdp->fd_lock));
234
235 fd_checkmaps(fdp);
236
237 if (want > bits)
238 return -1;
239
240 off = want >> NDENTRYSHIFT;
241 i = want & NDENTRYMASK;
242 if (i) {
243 sub = bitmap[off] | ((u_int)~0 >> (NDENTRIES - i));
244 if (sub != ~0)
245 goto found;
246 off++;
247 }
248
249 maxoff = NDLOSLOTS(bits);
250 while (off < maxoff) {
251 if ((sub = bitmap[off]) != ~0)
252 goto found;
253 off++;
254 }
255
256 return -1;
257
258 found:
259 return (off << NDENTRYSHIFT) + ffs(~sub) - 1;
260 }
261
262 static int
263 fd_last_set(filedesc_t *fd, int last)
264 {
265 int off, i;
266 fdfile_t **ff = fd->fd_dt->dt_ff;
267 uint32_t *bitmap = fd->fd_lomap;
268
269 KASSERT(mutex_owned(&fd->fd_lock));
270
271 fd_checkmaps(fd);
272
273 off = (last - 1) >> NDENTRYSHIFT;
274
275 while (off >= 0 && !bitmap[off])
276 off--;
277
278 if (off < 0)
279 return -1;
280
281 i = ((off + 1) << NDENTRYSHIFT) - 1;
282 if (i >= last)
283 i = last - 1;
284
285 /* XXX should use bitmap */
286 while (i > 0 && (ff[i] == NULL || !ff[i]->ff_allocated))
287 i--;
288
289 return i;
290 }
291
292 static inline void
293 fd_used(filedesc_t *fdp, unsigned fd)
294 {
295 u_int off = fd >> NDENTRYSHIFT;
296 fdfile_t *ff;
297
298 ff = fdp->fd_dt->dt_ff[fd];
299
300 KASSERT(mutex_owned(&fdp->fd_lock));
301 KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) == 0);
302 KASSERT(ff != NULL);
303 KASSERT(ff->ff_file == NULL);
304 KASSERT(!ff->ff_allocated);
305
306 ff->ff_allocated = true;
307 fdp->fd_lomap[off] |= 1U << (fd & NDENTRYMASK);
308 if (__predict_false(fdp->fd_lomap[off] == ~0)) {
309 KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
310 (1U << (off & NDENTRYMASK))) == 0);
311 fdp->fd_himap[off >> NDENTRYSHIFT] |= 1U << (off & NDENTRYMASK);
312 }
313
314 if ((int)fd > fdp->fd_lastfile) {
315 fdp->fd_lastfile = fd;
316 }
317
318 fd_checkmaps(fdp);
319 }
320
321 static inline void
322 fd_unused(filedesc_t *fdp, unsigned fd)
323 {
324 u_int off = fd >> NDENTRYSHIFT;
325 fdfile_t *ff;
326
327 ff = fdp->fd_dt->dt_ff[fd];
328
329 KASSERT(mutex_owned(&fdp->fd_lock));
330 KASSERT(ff != NULL);
331 KASSERT(ff->ff_file == NULL);
332 KASSERT(ff->ff_allocated);
333
334 if (fd < fdp->fd_freefile) {
335 fdp->fd_freefile = fd;
336 }
337
338 if (fdp->fd_lomap[off] == ~0) {
339 KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
340 (1U << (off & NDENTRYMASK))) != 0);
341 fdp->fd_himap[off >> NDENTRYSHIFT] &=
342 ~(1U << (off & NDENTRYMASK));
343 }
344 KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0);
345 fdp->fd_lomap[off] &= ~(1U << (fd & NDENTRYMASK));
346 ff->ff_allocated = false;
347
348 KASSERT(fd <= fdp->fd_lastfile);
349 if (fd == fdp->fd_lastfile) {
350 fdp->fd_lastfile = fd_last_set(fdp, fd);
351 }
352 fd_checkmaps(fdp);
353 }
354
355 /*
356 * Look up the file structure corresponding to a file descriptor
357 * and return the file, holding a reference on the descriptor.
358 */
359 file_t *
360 fd_getfile(unsigned fd)
361 {
362 filedesc_t *fdp;
363 fdfile_t *ff;
364 file_t *fp;
365 fdtab_t *dt;
366
367 /*
368 * Look up the fdfile structure representing this descriptor.
369 * We are doing this unlocked. See fd_tryexpand().
370 */
371 fdp = curlwp->l_fd;
372 dt = atomic_load_consume(&fdp->fd_dt);
373 if (__predict_false(fd >= dt->dt_nfiles)) {
374 return NULL;
375 }
376 ff = dt->dt_ff[fd];
377 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
378 if (__predict_false(ff == NULL)) {
379 return NULL;
380 }
381
382 /* Now get a reference to the descriptor. */
383 if (fdp->fd_refcnt == 1) {
384 /*
385 * Single threaded: don't need to worry about concurrent
386 * access (other than earlier calls to kqueue, which may
387 * hold a reference to the descriptor).
388 */
389 ff->ff_refcnt++;
390 } else {
391 /*
392 * Multi threaded: issue a memory barrier to ensure that we
393 * acquire the file pointer _after_ adding a reference. If
394 * no memory barrier, we could fetch a stale pointer.
395 *
396 * In particular, we must coordinate the following four
397 * memory operations:
398 *
399 * A. fd_close store ff->ff_file = NULL
400 * B. fd_close refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
401 * C. fd_getfile atomic_inc_uint(&ff->ff_refcnt)
402 * D. fd_getfile load fp = ff->ff_file
403 *
404 * If the order is D;A;B;C:
405 *
406 * 1. D: fp = ff->ff_file
407 * 2. A: ff->ff_file = NULL
408 * 3. B: refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
409 * 4. C: atomic_inc_uint(&ff->ff_refcnt)
410 *
411 * then fd_close determines that there are no more
412 * references and decides to free fp immediately, at
413 * the same that fd_getfile ends up with an fp that's
414 * about to be freed. *boom*
415 *
416 * By making B a release operation in fd_close, and by
417 * making C an acquire operation in fd_getfile, since
418 * they are atomic operations on the same object, which
419 * has a total modification order, we guarantee either:
420 *
421 * - B happens before C. Then since A is
422 * sequenced before B in fd_close, and C is
423 * sequenced before D in fd_getfile, we
424 * guarantee A happens before D, so fd_getfile
425 * reads a null fp and safely fails.
426 *
427 * - C happens before B. Then fd_getfile may read
428 * null or nonnull, but either way, fd_close
429 * will safely wait for references to drain.
430 */
431 atomic_inc_uint(&ff->ff_refcnt);
432 membar_acquire();
433 }
434
435 /*
436 * If the file is not open or is being closed then put the
437 * reference back.
438 */
439 fp = atomic_load_consume(&ff->ff_file);
440 if (__predict_true(fp != NULL)) {
441 return fp;
442 }
443 fd_putfile(fd);
444 return NULL;
445 }
446
447 /*
448 * Release a reference to a file descriptor acquired with fd_getfile().
449 */
450 void
451 fd_putfile(unsigned fd)
452 {
453 filedesc_t *fdp;
454 fdfile_t *ff;
455 u_int u, v;
456
457 fdp = curlwp->l_fd;
458 KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
459 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
460
461 KASSERT(ff != NULL);
462 KASSERT((ff->ff_refcnt & FR_MASK) > 0);
463 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
464
465 if (fdp->fd_refcnt == 1) {
466 /*
467 * Single threaded: don't need to worry about concurrent
468 * access (other than earlier calls to kqueue, which may
469 * hold a reference to the descriptor).
470 */
471 if (__predict_false((ff->ff_refcnt & FR_CLOSING) != 0)) {
472 fd_close(fd);
473 return;
474 }
475 ff->ff_refcnt--;
476 return;
477 }
478
479 /*
480 * Ensure that any use of the file is complete and globally
481 * visible before dropping the final reference. If no membar,
482 * the current CPU could still access memory associated with
483 * the file after it has been freed or recycled by another
484 * CPU.
485 */
486 membar_release();
487
488 /*
489 * Be optimistic and start out with the assumption that no other
490 * threads are trying to close the descriptor. If the CAS fails,
491 * we lost a race and/or it's being closed.
492 */
493 for (u = ff->ff_refcnt & FR_MASK;; u = v) {
494 v = atomic_cas_uint(&ff->ff_refcnt, u, u - 1);
495 if (__predict_true(u == v)) {
496 return;
497 }
498 if (__predict_false((v & FR_CLOSING) != 0)) {
499 break;
500 }
501 }
502
503 /* Another thread is waiting to close the file: join it. */
504 (void)fd_close(fd);
505 }
506
507 /*
508 * Convenience wrapper around fd_getfile() that returns reference
509 * to a vnode.
510 */
511 int
512 fd_getvnode(unsigned fd, file_t **fpp)
513 {
514 vnode_t *vp;
515 file_t *fp;
516
517 fp = fd_getfile(fd);
518 if (__predict_false(fp == NULL)) {
519 return EBADF;
520 }
521 if (__predict_false(fp->f_type != DTYPE_VNODE)) {
522 fd_putfile(fd);
523 return EINVAL;
524 }
525 vp = fp->f_vnode;
526 if (__predict_false(vp->v_type == VBAD)) {
527 /* XXX Is this case really necessary? */
528 fd_putfile(fd);
529 return EBADF;
530 }
531 *fpp = fp;
532 return 0;
533 }
534
535 /*
536 * Convenience wrapper around fd_getfile() that returns reference
537 * to a socket.
538 */
539 int
540 fd_getsock1(unsigned fd, struct socket **sop, file_t **fp)
541 {
542 *fp = fd_getfile(fd);
543 if (__predict_false(*fp == NULL)) {
544 return EBADF;
545 }
546 if (__predict_false((*fp)->f_type != DTYPE_SOCKET)) {
547 fd_putfile(fd);
548 return ENOTSOCK;
549 }
550 *sop = (*fp)->f_socket;
551 return 0;
552 }
553
554 int
555 fd_getsock(unsigned fd, struct socket **sop)
556 {
557 file_t *fp;
558 return fd_getsock1(fd, sop, &fp);
559 }
560
561 /*
562 * Look up the file structure corresponding to a file descriptor
563 * and return it with a reference held on the file, not the
564 * descriptor.
565 *
566 * This is heavyweight and only used when accessing descriptors
567 * from a foreign process. The caller must ensure that `p' does
568 * not exit or fork across this call.
569 *
570 * To release the file (not descriptor) reference, use closef().
571 */
572 file_t *
573 fd_getfile2(proc_t *p, unsigned fd)
574 {
575 filedesc_t *fdp;
576 fdfile_t *ff;
577 file_t *fp;
578 fdtab_t *dt;
579
580 fdp = p->p_fd;
581 mutex_enter(&fdp->fd_lock);
582 dt = fdp->fd_dt;
583 if (fd >= dt->dt_nfiles) {
584 mutex_exit(&fdp->fd_lock);
585 return NULL;
586 }
587 if ((ff = dt->dt_ff[fd]) == NULL) {
588 mutex_exit(&fdp->fd_lock);
589 return NULL;
590 }
591 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
592 mutex_exit(&fdp->fd_lock);
593 return NULL;
594 }
595 mutex_enter(&fp->f_lock);
596 fp->f_count++;
597 mutex_exit(&fp->f_lock);
598 mutex_exit(&fdp->fd_lock);
599
600 return fp;
601 }
602
603 /*
604 * Internal form of close. Must be called with a reference to the
605 * descriptor, and will drop the reference. When all descriptor
606 * references are dropped, releases the descriptor slot and a single
607 * reference to the file structure.
608 */
609 int
610 fd_close(unsigned fd)
611 {
612 struct flock lf;
613 filedesc_t *fdp;
614 fdfile_t *ff;
615 file_t *fp;
616 proc_t *p;
617 lwp_t *l;
618 u_int refcnt;
619
620 l = curlwp;
621 p = l->l_proc;
622 fdp = l->l_fd;
623 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
624
625 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
626
627 mutex_enter(&fdp->fd_lock);
628 KASSERT((ff->ff_refcnt & FR_MASK) > 0);
629 fp = atomic_load_consume(&ff->ff_file);
630 if (__predict_false(fp == NULL)) {
631 /*
632 * Another user of the file is already closing, and is
633 * waiting for other users of the file to drain. Release
634 * our reference, and wake up the closer.
635 */
636 membar_release();
637 atomic_dec_uint(&ff->ff_refcnt);
638 cv_broadcast(&ff->ff_closing);
639 mutex_exit(&fdp->fd_lock);
640
641 /*
642 * An application error, so pretend that the descriptor
643 * was already closed. We can't safely wait for it to
644 * be closed without potentially deadlocking.
645 */
646 return (EBADF);
647 }
648 KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
649
650 /*
651 * There may be multiple users of this file within the process.
652 * Notify existing and new users that the file is closing. This
653 * will prevent them from adding additional uses to this file
654 * while we are closing it.
655 */
656 atomic_store_relaxed(&ff->ff_file, NULL);
657 ff->ff_exclose = false;
658
659 /*
660 * We expect the caller to hold a descriptor reference - drop it.
661 * The reference count may increase beyond zero at this point due
662 * to an erroneous descriptor reference by an application, but
663 * fd_getfile() will notice that the file is being closed and drop
664 * the reference again.
665 */
666 if (fdp->fd_refcnt == 1) {
667 /* Single threaded. */
668 refcnt = --(ff->ff_refcnt);
669 } else {
670 /* Multi threaded. */
671 membar_release();
672 refcnt = atomic_dec_uint_nv(&ff->ff_refcnt);
673 membar_acquire();
674 }
675 if (__predict_false(refcnt != 0)) {
676 /*
677 * Wait for other references to drain. This is typically
678 * an application error - the descriptor is being closed
679 * while still in use.
680 * (Or just a threaded application trying to unblock its
681 * thread that sleeps in (say) accept()).
682 */
683 atomic_or_uint(&ff->ff_refcnt, FR_CLOSING);
684
685 /*
686 * Remove any knotes attached to the file. A knote
687 * attached to the descriptor can hold references on it.
688 */
689 mutex_exit(&fdp->fd_lock);
690 if (!SLIST_EMPTY(&ff->ff_knlist)) {
691 knote_fdclose(fd);
692 }
693
694 /*
695 * Since the file system code doesn't know which fd
696 * each request came from (think dup()), we have to
697 * ask it to return ERESTART for any long-term blocks.
698 * The re-entry through read/write/etc will detect the
699 * closed fd and return EBAFD.
700 * Blocked partial writes may return a short length.
701 */
702 (*fp->f_ops->fo_restart)(fp);
703 mutex_enter(&fdp->fd_lock);
704
705 /*
706 * We need to see the count drop to zero at least once,
707 * in order to ensure that all pre-existing references
708 * have been drained. New references past this point are
709 * of no interest.
710 * XXX (dsl) this may need to call fo_restart() after a
711 * timeout to guarantee that all the system calls exit.
712 */
713 while ((ff->ff_refcnt & FR_MASK) != 0) {
714 cv_wait(&ff->ff_closing, &fdp->fd_lock);
715 }
716 atomic_and_uint(&ff->ff_refcnt, ~FR_CLOSING);
717 } else {
718 /* If no references, there must be no knotes. */
719 KASSERT(SLIST_EMPTY(&ff->ff_knlist));
720 }
721
722 /*
723 * POSIX record locking dictates that any close releases ALL
724 * locks owned by this process. This is handled by setting
725 * a flag in the unlock to free ONLY locks obeying POSIX
726 * semantics, and not to free BSD-style file locks.
727 * If the descriptor was in a message, POSIX-style locks
728 * aren't passed with the descriptor.
729 */
730 if (__predict_false((p->p_flag & PK_ADVLOCK) != 0) &&
731 fp->f_ops->fo_advlock != NULL) {
732 lf.l_whence = SEEK_SET;
733 lf.l_start = 0;
734 lf.l_len = 0;
735 lf.l_type = F_UNLCK;
736 mutex_exit(&fdp->fd_lock);
737 (void)(*fp->f_ops->fo_advlock)(fp, p, F_UNLCK, &lf, F_POSIX);
738 mutex_enter(&fdp->fd_lock);
739 }
740
741 /* Free descriptor slot. */
742 fd_unused(fdp, fd);
743 mutex_exit(&fdp->fd_lock);
744
745 /* Now drop reference to the file itself. */
746 return closef(fp);
747 }
748
749 /*
750 * Duplicate a file descriptor.
751 */
752 int
753 fd_dup(file_t *fp, int minfd, int *newp, bool exclose)
754 {
755 proc_t *p = curproc;
756 fdtab_t *dt;
757 int error;
758
759 while ((error = fd_alloc(p, minfd, newp)) != 0) {
760 if (error != ENOSPC) {
761 return error;
762 }
763 fd_tryexpand(p);
764 }
765
766 dt = atomic_load_consume(&curlwp->l_fd->fd_dt);
767 dt->dt_ff[*newp]->ff_exclose = exclose;
768 fd_affix(p, fp, *newp);
769 return 0;
770 }
771
772 /*
773 * dup2 operation.
774 */
775 int
776 fd_dup2(file_t *fp, unsigned newfd, int flags)
777 {
778 filedesc_t *fdp = curlwp->l_fd;
779 fdfile_t *ff;
780 fdtab_t *dt;
781
782 if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
783 return EINVAL;
784 /*
785 * Ensure there are enough slots in the descriptor table,
786 * and allocate an fdfile_t up front in case we need it.
787 */
788 while (newfd >= atomic_load_consume(&fdp->fd_dt)->dt_nfiles) {
789 fd_tryexpand(curproc);
790 }
791 ff = pool_cache_get(fdfile_cache, PR_WAITOK);
792
793 /*
794 * If there is already a file open, close it. If the file is
795 * half open, wait for it to be constructed before closing it.
796 * XXX Potential for deadlock here?
797 */
798 mutex_enter(&fdp->fd_lock);
799 while (fd_isused(fdp, newfd)) {
800 mutex_exit(&fdp->fd_lock);
801 if (fd_getfile(newfd) != NULL) {
802 (void)fd_close(newfd);
803 } else {
804 /*
805 * Crummy, but unlikely to happen.
806 * Can occur if we interrupt another
807 * thread while it is opening a file.
808 */
809 kpause("dup2", false, 1, NULL);
810 }
811 mutex_enter(&fdp->fd_lock);
812 }
813 dt = fdp->fd_dt;
814 if (dt->dt_ff[newfd] == NULL) {
815 KASSERT(newfd >= NDFDFILE);
816 dt->dt_ff[newfd] = ff;
817 ff = NULL;
818 }
819 fd_used(fdp, newfd);
820 mutex_exit(&fdp->fd_lock);
821
822 dt->dt_ff[newfd]->ff_exclose = (flags & O_CLOEXEC) != 0;
823 fp->f_flag |= flags & (FNONBLOCK|FNOSIGPIPE);
824 /* Slot is now allocated. Insert copy of the file. */
825 fd_affix(curproc, fp, newfd);
826 if (ff != NULL) {
827 pool_cache_put(fdfile_cache, ff);
828 }
829 return 0;
830 }
831
832 /*
833 * Drop reference to a file structure.
834 */
835 int
836 closef(file_t *fp)
837 {
838 struct flock lf;
839 int error;
840
841 /*
842 * Drop reference. If referenced elsewhere it's still open
843 * and we have nothing more to do.
844 */
845 mutex_enter(&fp->f_lock);
846 KASSERT(fp->f_count > 0);
847 if (--fp->f_count > 0) {
848 mutex_exit(&fp->f_lock);
849 return 0;
850 }
851 KASSERT(fp->f_count == 0);
852 mutex_exit(&fp->f_lock);
853
854 /* We held the last reference - release locks, close and free. */
855 if ((fp->f_flag & FHASLOCK) && fp->f_ops->fo_advlock != NULL) {
856 lf.l_whence = SEEK_SET;
857 lf.l_start = 0;
858 lf.l_len = 0;
859 lf.l_type = F_UNLCK;
860 (void)(*fp->f_ops->fo_advlock)(fp, fp, F_UNLCK, &lf, F_FLOCK);
861 }
862 if (fp->f_ops != NULL) {
863 error = (*fp->f_ops->fo_close)(fp);
864 } else {
865 error = 0;
866 }
867 KASSERT(fp->f_count == 0);
868 KASSERT(fp->f_cred != NULL);
869 pool_cache_put(file_cache, fp);
870
871 return error;
872 }
873
874 /*
875 * Allocate a file descriptor for the process.
876 */
877 int
878 fd_alloc(proc_t *p, int want, int *result)
879 {
880 filedesc_t *fdp = p->p_fd;
881 int i, lim, last, error, hi;
882 u_int off;
883 fdtab_t *dt;
884
885 KASSERT(p == curproc || p == &proc0);
886
887 /*
888 * Search for a free descriptor starting at the higher
889 * of want or fd_freefile.
890 */
891 mutex_enter(&fdp->fd_lock);
892 fd_checkmaps(fdp);
893 dt = fdp->fd_dt;
894 KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
895 lim = uimin((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
896 last = uimin(dt->dt_nfiles, lim);
897 for (;;) {
898 if ((i = want) < fdp->fd_freefile)
899 i = fdp->fd_freefile;
900 off = i >> NDENTRYSHIFT;
901 hi = fd_next_zero(fdp, fdp->fd_himap, off,
902 (last + NDENTRIES - 1) >> NDENTRYSHIFT);
903 if (hi == -1)
904 break;
905 i = fd_next_zero(fdp, &fdp->fd_lomap[hi],
906 hi > off ? 0 : i & NDENTRYMASK, NDENTRIES);
907 if (i == -1) {
908 /*
909 * Free file descriptor in this block was
910 * below want, try again with higher want.
911 */
912 want = (hi + 1) << NDENTRYSHIFT;
913 continue;
914 }
915 i += (hi << NDENTRYSHIFT);
916 if (i >= last) {
917 break;
918 }
919 if (dt->dt_ff[i] == NULL) {
920 KASSERT(i >= NDFDFILE);
921 dt->dt_ff[i] = pool_cache_get(fdfile_cache, PR_WAITOK);
922 }
923 KASSERT(dt->dt_ff[i]->ff_file == NULL);
924 fd_used(fdp, i);
925 if (want <= fdp->fd_freefile) {
926 fdp->fd_freefile = i;
927 }
928 *result = i;
929 KASSERT(i >= NDFDFILE ||
930 dt->dt_ff[i] == (fdfile_t *)fdp->fd_dfdfile[i]);
931 fd_checkmaps(fdp);
932 mutex_exit(&fdp->fd_lock);
933 return 0;
934 }
935
936 /* No space in current array. Let the caller expand and retry. */
937 error = (dt->dt_nfiles >= lim) ? EMFILE : ENOSPC;
938 mutex_exit(&fdp->fd_lock);
939 return error;
940 }
941
942 /*
943 * Allocate memory for a descriptor table.
944 */
945 static fdtab_t *
946 fd_dtab_alloc(int n)
947 {
948 fdtab_t *dt;
949 size_t sz;
950
951 KASSERT(n > NDFILE);
952
953 sz = sizeof(*dt) + (n - NDFILE) * sizeof(dt->dt_ff[0]);
954 dt = kmem_alloc(sz, KM_SLEEP);
955 #ifdef DIAGNOSTIC
956 memset(dt, 0xff, sz);
957 #endif
958 dt->dt_nfiles = n;
959 dt->dt_link = NULL;
960 return dt;
961 }
962
963 /*
964 * Free a descriptor table, and all tables linked for deferred free.
965 */
966 static void
967 fd_dtab_free(fdtab_t *dt)
968 {
969 fdtab_t *next;
970 size_t sz;
971
972 do {
973 next = dt->dt_link;
974 KASSERT(dt->dt_nfiles > NDFILE);
975 sz = sizeof(*dt) +
976 (dt->dt_nfiles - NDFILE) * sizeof(dt->dt_ff[0]);
977 #ifdef DIAGNOSTIC
978 memset(dt, 0xff, sz);
979 #endif
980 kmem_free(dt, sz);
981 dt = next;
982 } while (dt != NULL);
983 }
984
985 /*
986 * Allocate descriptor bitmap.
987 */
988 static void
989 fd_map_alloc(int n, uint32_t **lo, uint32_t **hi)
990 {
991 uint8_t *ptr;
992 size_t szlo, szhi;
993
994 KASSERT(n > NDENTRIES);
995
996 szlo = NDLOSLOTS(n) * sizeof(uint32_t);
997 szhi = NDHISLOTS(n) * sizeof(uint32_t);
998 ptr = kmem_alloc(szlo + szhi, KM_SLEEP);
999 *lo = (uint32_t *)ptr;
1000 *hi = (uint32_t *)(ptr + szlo);
1001 }
1002
1003 /*
1004 * Free descriptor bitmap.
1005 */
1006 static void
1007 fd_map_free(int n, uint32_t *lo, uint32_t *hi)
1008 {
1009 size_t szlo, szhi;
1010
1011 KASSERT(n > NDENTRIES);
1012
1013 szlo = NDLOSLOTS(n) * sizeof(uint32_t);
1014 szhi = NDHISLOTS(n) * sizeof(uint32_t);
1015 KASSERT(hi == (uint32_t *)((uint8_t *)lo + szlo));
1016 kmem_free(lo, szlo + szhi);
1017 }
1018
1019 /*
1020 * Expand a process' descriptor table.
1021 */
1022 void
1023 fd_tryexpand(proc_t *p)
1024 {
1025 filedesc_t *fdp;
1026 int i, numfiles, oldnfiles;
1027 fdtab_t *newdt, *dt;
1028 uint32_t *newhimap, *newlomap;
1029
1030 KASSERT(p == curproc || p == &proc0);
1031
1032 fdp = p->p_fd;
1033 newhimap = NULL;
1034 newlomap = NULL;
1035 oldnfiles = atomic_load_consume(&fdp->fd_dt)->dt_nfiles;
1036
1037 if (oldnfiles < NDEXTENT)
1038 numfiles = NDEXTENT;
1039 else
1040 numfiles = 2 * oldnfiles;
1041
1042 newdt = fd_dtab_alloc(numfiles);
1043 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1044 fd_map_alloc(numfiles, &newlomap, &newhimap);
1045 }
1046
1047 mutex_enter(&fdp->fd_lock);
1048 dt = fdp->fd_dt;
1049 KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1050 if (dt->dt_nfiles != oldnfiles) {
1051 /* fdp changed; caller must retry */
1052 mutex_exit(&fdp->fd_lock);
1053 fd_dtab_free(newdt);
1054 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1055 fd_map_free(numfiles, newlomap, newhimap);
1056 }
1057 return;
1058 }
1059
1060 /* Copy the existing descriptor table and zero the new portion. */
1061 i = sizeof(fdfile_t *) * oldnfiles;
1062 memcpy(newdt->dt_ff, dt->dt_ff, i);
1063 memset((uint8_t *)newdt->dt_ff + i, 0,
1064 numfiles * sizeof(fdfile_t *) - i);
1065
1066 /*
1067 * Link old descriptor array into list to be discarded. We defer
1068 * freeing until the last reference to the descriptor table goes
1069 * away (usually process exit). This allows us to do lockless
1070 * lookups in fd_getfile().
1071 */
1072 if (oldnfiles > NDFILE) {
1073 if (fdp->fd_refcnt > 1) {
1074 newdt->dt_link = dt;
1075 } else {
1076 fd_dtab_free(dt);
1077 }
1078 }
1079
1080 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1081 i = NDHISLOTS(oldnfiles) * sizeof(uint32_t);
1082 memcpy(newhimap, fdp->fd_himap, i);
1083 memset((uint8_t *)newhimap + i, 0,
1084 NDHISLOTS(numfiles) * sizeof(uint32_t) - i);
1085
1086 i = NDLOSLOTS(oldnfiles) * sizeof(uint32_t);
1087 memcpy(newlomap, fdp->fd_lomap, i);
1088 memset((uint8_t *)newlomap + i, 0,
1089 NDLOSLOTS(numfiles) * sizeof(uint32_t) - i);
1090
1091 if (NDHISLOTS(oldnfiles) > NDHISLOTS(NDFILE)) {
1092 fd_map_free(oldnfiles, fdp->fd_lomap, fdp->fd_himap);
1093 }
1094 fdp->fd_himap = newhimap;
1095 fdp->fd_lomap = newlomap;
1096 }
1097
1098 /*
1099 * All other modifications must become globally visible before
1100 * the change to fd_dt. See fd_getfile().
1101 */
1102 atomic_store_release(&fdp->fd_dt, newdt);
1103 KASSERT(newdt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1104 fd_checkmaps(fdp);
1105 mutex_exit(&fdp->fd_lock);
1106 }
1107
1108 /*
1109 * Create a new open file structure and allocate a file descriptor
1110 * for the current process.
1111 */
1112 int
1113 fd_allocfile(file_t **resultfp, int *resultfd)
1114 {
1115 proc_t *p = curproc;
1116 kauth_cred_t cred;
1117 file_t *fp;
1118 int error;
1119
1120 while ((error = fd_alloc(p, 0, resultfd)) != 0) {
1121 if (error != ENOSPC) {
1122 return error;
1123 }
1124 fd_tryexpand(p);
1125 }
1126
1127 fp = pool_cache_get(file_cache, PR_WAITOK);
1128 if (fp == NULL) {
1129 fd_abort(p, NULL, *resultfd);
1130 return ENFILE;
1131 }
1132 KASSERT(fp->f_count == 0);
1133 KASSERT(fp->f_msgcount == 0);
1134 KASSERT(fp->f_unpcount == 0);
1135
1136 /* Replace cached credentials if not what we need. */
1137 cred = curlwp->l_cred;
1138 if (__predict_false(cred != fp->f_cred)) {
1139 kauth_cred_free(fp->f_cred);
1140 kauth_cred_hold(cred);
1141 fp->f_cred = cred;
1142 }
1143
1144 /*
1145 * Don't allow recycled files to be scanned.
1146 * See uipc_usrreq.c.
1147 */
1148 if (__predict_false((fp->f_flag & FSCAN) != 0)) {
1149 mutex_enter(&fp->f_lock);
1150 atomic_and_uint(&fp->f_flag, ~FSCAN);
1151 mutex_exit(&fp->f_lock);
1152 }
1153
1154 fp->f_advice = 0;
1155 fp->f_offset = 0;
1156 *resultfp = fp;
1157
1158 return 0;
1159 }
1160
1161 /*
1162 * Successful creation of a new descriptor: make visible to the process.
1163 */
1164 void
1165 fd_affix(proc_t *p, file_t *fp, unsigned fd)
1166 {
1167 fdfile_t *ff;
1168 filedesc_t *fdp;
1169 fdtab_t *dt;
1170
1171 KASSERT(p == curproc || p == &proc0);
1172
1173 /* Add a reference to the file structure. */
1174 mutex_enter(&fp->f_lock);
1175 fp->f_count++;
1176 mutex_exit(&fp->f_lock);
1177
1178 /*
1179 * Insert the new file into the descriptor slot.
1180 */
1181 fdp = p->p_fd;
1182 dt = atomic_load_consume(&fdp->fd_dt);
1183 ff = dt->dt_ff[fd];
1184
1185 KASSERT(ff != NULL);
1186 KASSERT(ff->ff_file == NULL);
1187 KASSERT(ff->ff_allocated);
1188 KASSERT(fd_isused(fdp, fd));
1189 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1190
1191 /* No need to lock in order to make file initially visible. */
1192 atomic_store_release(&ff->ff_file, fp);
1193 }
1194
1195 /*
1196 * Abort creation of a new descriptor: free descriptor slot and file.
1197 */
1198 void
1199 fd_abort(proc_t *p, file_t *fp, unsigned fd)
1200 {
1201 filedesc_t *fdp;
1202 fdfile_t *ff;
1203
1204 KASSERT(p == curproc || p == &proc0);
1205
1206 fdp = p->p_fd;
1207 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1208 ff->ff_exclose = false;
1209
1210 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1211
1212 mutex_enter(&fdp->fd_lock);
1213 KASSERT(fd_isused(fdp, fd));
1214 fd_unused(fdp, fd);
1215 mutex_exit(&fdp->fd_lock);
1216
1217 if (fp != NULL) {
1218 KASSERT(fp->f_count == 0);
1219 KASSERT(fp->f_cred != NULL);
1220 pool_cache_put(file_cache, fp);
1221 }
1222 }
1223
1224 static int
1225 file_ctor(void *arg, void *obj, int flags)
1226 {
1227 file_t *fp = obj;
1228
1229 memset(fp, 0, sizeof(*fp));
1230
1231 mutex_enter(&filelist_lock);
1232 if (__predict_false(nfiles >= maxfiles)) {
1233 mutex_exit(&filelist_lock);
1234 tablefull("file", "increase kern.maxfiles or MAXFILES");
1235 return ENFILE;
1236 }
1237 nfiles++;
1238 LIST_INSERT_HEAD(&filehead, fp, f_list);
1239 mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
1240 fp->f_cred = curlwp->l_cred;
1241 kauth_cred_hold(fp->f_cred);
1242 mutex_exit(&filelist_lock);
1243
1244 return 0;
1245 }
1246
1247 static void
1248 file_dtor(void *arg, void *obj)
1249 {
1250 file_t *fp = obj;
1251
1252 mutex_enter(&filelist_lock);
1253 nfiles--;
1254 LIST_REMOVE(fp, f_list);
1255 mutex_exit(&filelist_lock);
1256
1257 KASSERT(fp->f_count == 0);
1258 kauth_cred_free(fp->f_cred);
1259 mutex_destroy(&fp->f_lock);
1260 }
1261
1262 static int
1263 fdfile_ctor(void *arg, void *obj, int flags)
1264 {
1265 fdfile_t *ff = obj;
1266
1267 memset(ff, 0, sizeof(*ff));
1268 cv_init(&ff->ff_closing, "fdclose");
1269
1270 return 0;
1271 }
1272
1273 static void
1274 fdfile_dtor(void *arg, void *obj)
1275 {
1276 fdfile_t *ff = obj;
1277
1278 cv_destroy(&ff->ff_closing);
1279 }
1280
1281 file_t *
1282 fgetdummy(void)
1283 {
1284 file_t *fp;
1285
1286 fp = kmem_zalloc(sizeof(*fp), KM_SLEEP);
1287 mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
1288 return fp;
1289 }
1290
1291 void
1292 fputdummy(file_t *fp)
1293 {
1294
1295 mutex_destroy(&fp->f_lock);
1296 kmem_free(fp, sizeof(*fp));
1297 }
1298
1299 /*
1300 * Create an initial filedesc structure.
1301 */
1302 filedesc_t *
1303 fd_init(filedesc_t *fdp)
1304 {
1305 #ifdef DIAGNOSTIC
1306 unsigned fd;
1307 #endif
1308
1309 if (__predict_true(fdp == NULL)) {
1310 fdp = pool_cache_get(filedesc_cache, PR_WAITOK);
1311 } else {
1312 KASSERT(fdp == &filedesc0);
1313 filedesc_ctor(NULL, fdp, PR_WAITOK);
1314 }
1315
1316 #ifdef DIAGNOSTIC
1317 KASSERT(fdp->fd_lastfile == -1);
1318 KASSERT(fdp->fd_lastkqfile == -1);
1319 KASSERT(fdp->fd_knhash == NULL);
1320 KASSERT(fdp->fd_freefile == 0);
1321 KASSERT(fdp->fd_exclose == false);
1322 KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
1323 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1324 for (fd = 0; fd < NDFDFILE; fd++) {
1325 KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] ==
1326 (fdfile_t *)fdp->fd_dfdfile[fd]);
1327 }
1328 for (fd = NDFDFILE; fd < NDFILE; fd++) {
1329 KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] == NULL);
1330 }
1331 KASSERT(fdp->fd_himap == fdp->fd_dhimap);
1332 KASSERT(fdp->fd_lomap == fdp->fd_dlomap);
1333 #endif /* DIAGNOSTIC */
1334
1335 fdp->fd_refcnt = 1;
1336 fd_checkmaps(fdp);
1337
1338 return fdp;
1339 }
1340
1341 /*
1342 * Initialize a file descriptor table.
1343 */
1344 static int
1345 filedesc_ctor(void *arg, void *obj, int flag)
1346 {
1347 filedesc_t *fdp = obj;
1348 fdfile_t **ffp;
1349 int i;
1350
1351 memset(fdp, 0, sizeof(*fdp));
1352 mutex_init(&fdp->fd_lock, MUTEX_DEFAULT, IPL_NONE);
1353 fdp->fd_lastfile = -1;
1354 fdp->fd_lastkqfile = -1;
1355 fdp->fd_dt = &fdp->fd_dtbuiltin;
1356 fdp->fd_dtbuiltin.dt_nfiles = NDFILE;
1357 fdp->fd_himap = fdp->fd_dhimap;
1358 fdp->fd_lomap = fdp->fd_dlomap;
1359
1360 CTASSERT(sizeof(fdp->fd_dfdfile[0]) >= sizeof(fdfile_t));
1361 for (i = 0, ffp = fdp->fd_dt->dt_ff; i < NDFDFILE; i++, ffp++) {
1362 *ffp = (fdfile_t *)fdp->fd_dfdfile[i];
1363 (void)fdfile_ctor(NULL, fdp->fd_dfdfile[i], PR_WAITOK);
1364 }
1365
1366 return 0;
1367 }
1368
1369 static void
1370 filedesc_dtor(void *arg, void *obj)
1371 {
1372 filedesc_t *fdp = obj;
1373 int i;
1374
1375 for (i = 0; i < NDFDFILE; i++) {
1376 fdfile_dtor(NULL, fdp->fd_dfdfile[i]);
1377 }
1378
1379 mutex_destroy(&fdp->fd_lock);
1380 }
1381
1382 /*
1383 * Make p share curproc's filedesc structure.
1384 */
1385 void
1386 fd_share(struct proc *p)
1387 {
1388 filedesc_t *fdp;
1389
1390 fdp = curlwp->l_fd;
1391 p->p_fd = fdp;
1392 atomic_inc_uint(&fdp->fd_refcnt);
1393 }
1394
1395 /*
1396 * Acquire a hold on a filedesc structure.
1397 */
1398 void
1399 fd_hold(lwp_t *l)
1400 {
1401 filedesc_t *fdp = l->l_fd;
1402
1403 atomic_inc_uint(&fdp->fd_refcnt);
1404 }
1405
1406 /*
1407 * Copy a filedesc structure.
1408 */
1409 filedesc_t *
1410 fd_copy(void)
1411 {
1412 filedesc_t *newfdp, *fdp;
1413 fdfile_t *ff, **ffp, **nffp, *ff2;
1414 int i, j, numfiles, lastfile, newlast;
1415 file_t *fp;
1416 fdtab_t *newdt;
1417
1418 fdp = curproc->p_fd;
1419 newfdp = pool_cache_get(filedesc_cache, PR_WAITOK);
1420 newfdp->fd_refcnt = 1;
1421
1422 #ifdef DIAGNOSTIC
1423 KASSERT(newfdp->fd_lastfile == -1);
1424 KASSERT(newfdp->fd_lastkqfile == -1);
1425 KASSERT(newfdp->fd_knhash == NULL);
1426 KASSERT(newfdp->fd_freefile == 0);
1427 KASSERT(newfdp->fd_exclose == false);
1428 KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
1429 KASSERT(newfdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1430 for (i = 0; i < NDFDFILE; i++) {
1431 KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] ==
1432 (fdfile_t *)&newfdp->fd_dfdfile[i]);
1433 }
1434 for (i = NDFDFILE; i < NDFILE; i++) {
1435 KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] == NULL);
1436 }
1437 #endif /* DIAGNOSTIC */
1438
1439 mutex_enter(&fdp->fd_lock);
1440 fd_checkmaps(fdp);
1441 numfiles = fdp->fd_dt->dt_nfiles;
1442 lastfile = fdp->fd_lastfile;
1443
1444 /*
1445 * If the number of open files fits in the internal arrays
1446 * of the open file structure, use them, otherwise allocate
1447 * additional memory for the number of descriptors currently
1448 * in use.
1449 */
1450 if (lastfile < NDFILE) {
1451 i = NDFILE;
1452 newdt = newfdp->fd_dt;
1453 KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
1454 } else {
1455 /*
1456 * Compute the smallest multiple of NDEXTENT needed
1457 * for the file descriptors currently in use,
1458 * allowing the table to shrink.
1459 */
1460 i = numfiles;
1461 while (i >= 2 * NDEXTENT && i > lastfile * 2) {
1462 i /= 2;
1463 }
1464 KASSERT(i > NDFILE);
1465 newdt = fd_dtab_alloc(i);
1466 newfdp->fd_dt = newdt;
1467 memcpy(newdt->dt_ff, newfdp->fd_dtbuiltin.dt_ff,
1468 NDFDFILE * sizeof(fdfile_t **));
1469 memset(newdt->dt_ff + NDFDFILE, 0,
1470 (i - NDFDFILE) * sizeof(fdfile_t **));
1471 }
1472 if (NDHISLOTS(i) <= NDHISLOTS(NDFILE)) {
1473 newfdp->fd_himap = newfdp->fd_dhimap;
1474 newfdp->fd_lomap = newfdp->fd_dlomap;
1475 } else {
1476 fd_map_alloc(i, &newfdp->fd_lomap, &newfdp->fd_himap);
1477 KASSERT(i >= NDENTRIES * NDENTRIES);
1478 memset(newfdp->fd_himap, 0, NDHISLOTS(i)*sizeof(uint32_t));
1479 memset(newfdp->fd_lomap, 0, NDLOSLOTS(i)*sizeof(uint32_t));
1480 }
1481 newfdp->fd_freefile = fdp->fd_freefile;
1482 newfdp->fd_exclose = fdp->fd_exclose;
1483
1484 ffp = fdp->fd_dt->dt_ff;
1485 nffp = newdt->dt_ff;
1486 newlast = -1;
1487 for (i = 0; i <= lastfile; i++, ffp++, nffp++) {
1488 KASSERT(i >= NDFDFILE ||
1489 *nffp == (fdfile_t *)newfdp->fd_dfdfile[i]);
1490 ff = *ffp;
1491 if (ff == NULL ||
1492 (fp = atomic_load_consume(&ff->ff_file)) == NULL) {
1493 /* Descriptor unused, or descriptor half open. */
1494 KASSERT(!fd_isused(newfdp, i));
1495 continue;
1496 }
1497 if (__predict_false(fp->f_type == DTYPE_KQUEUE)) {
1498 /* kqueue descriptors cannot be copied. */
1499 if (i < newfdp->fd_freefile) {
1500 newfdp->fd_freefile = i;
1501 }
1502 continue;
1503 }
1504 /* It's active: add a reference to the file. */
1505 mutex_enter(&fp->f_lock);
1506 fp->f_count++;
1507 mutex_exit(&fp->f_lock);
1508
1509 /* Allocate an fdfile_t to represent it. */
1510 if (i >= NDFDFILE) {
1511 ff2 = pool_cache_get(fdfile_cache, PR_WAITOK);
1512 *nffp = ff2;
1513 } else {
1514 ff2 = newdt->dt_ff[i];
1515 }
1516 ff2->ff_file = fp;
1517 ff2->ff_exclose = ff->ff_exclose;
1518 ff2->ff_allocated = true;
1519
1520 /* Fix up bitmaps. */
1521 j = i >> NDENTRYSHIFT;
1522 KASSERT((newfdp->fd_lomap[j] & (1U << (i & NDENTRYMASK))) == 0);
1523 newfdp->fd_lomap[j] |= 1U << (i & NDENTRYMASK);
1524 if (__predict_false(newfdp->fd_lomap[j] == ~0)) {
1525 KASSERT((newfdp->fd_himap[j >> NDENTRYSHIFT] &
1526 (1U << (j & NDENTRYMASK))) == 0);
1527 newfdp->fd_himap[j >> NDENTRYSHIFT] |=
1528 1U << (j & NDENTRYMASK);
1529 }
1530 newlast = i;
1531 }
1532 KASSERT(newdt->dt_ff[0] == (fdfile_t *)newfdp->fd_dfdfile[0]);
1533 newfdp->fd_lastfile = newlast;
1534 fd_checkmaps(newfdp);
1535 mutex_exit(&fdp->fd_lock);
1536
1537 return newfdp;
1538 }
1539
1540 /*
1541 * Release a filedesc structure.
1542 */
1543 void
1544 fd_free(void)
1545 {
1546 fdfile_t *ff;
1547 file_t *fp;
1548 int fd, nf;
1549 fdtab_t *dt;
1550 lwp_t * const l = curlwp;
1551 filedesc_t * const fdp = l->l_fd;
1552 const bool noadvlock = (l->l_proc->p_flag & PK_ADVLOCK) == 0;
1553
1554 KASSERT(atomic_load_consume(&fdp->fd_dt)->dt_ff[0] ==
1555 (fdfile_t *)fdp->fd_dfdfile[0]);
1556 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1557 KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
1558
1559 membar_release();
1560 if (atomic_dec_uint_nv(&fdp->fd_refcnt) > 0)
1561 return;
1562 membar_acquire();
1563
1564 /*
1565 * Close any files that the process holds open.
1566 */
1567 dt = fdp->fd_dt;
1568 fd_checkmaps(fdp);
1569 #ifdef DEBUG
1570 fdp->fd_refcnt = -1; /* see fd_checkmaps */
1571 #endif
1572 for (fd = 0, nf = dt->dt_nfiles; fd < nf; fd++) {
1573 ff = dt->dt_ff[fd];
1574 KASSERT(fd >= NDFDFILE ||
1575 ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1576 if (ff == NULL)
1577 continue;
1578 if ((fp = atomic_load_consume(&ff->ff_file)) != NULL) {
1579 /*
1580 * Must use fd_close() here if there is
1581 * a reference from kqueue or we might have posix
1582 * advisory locks.
1583 */
1584 if (__predict_true(ff->ff_refcnt == 0) &&
1585 (noadvlock || fp->f_type != DTYPE_VNODE)) {
1586 ff->ff_file = NULL;
1587 ff->ff_exclose = false;
1588 ff->ff_allocated = false;
1589 closef(fp);
1590 } else {
1591 ff->ff_refcnt++;
1592 fd_close(fd);
1593 }
1594 }
1595 KASSERT(ff->ff_refcnt == 0);
1596 KASSERT(ff->ff_file == NULL);
1597 KASSERT(!ff->ff_exclose);
1598 KASSERT(!ff->ff_allocated);
1599 if (fd >= NDFDFILE) {
1600 pool_cache_put(fdfile_cache, ff);
1601 dt->dt_ff[fd] = NULL;
1602 }
1603 }
1604
1605 /*
1606 * Clean out the descriptor table for the next user and return
1607 * to the cache.
1608 */
1609 if (__predict_false(dt != &fdp->fd_dtbuiltin)) {
1610 fd_dtab_free(fdp->fd_dt);
1611 /* Otherwise, done above. */
1612 memset(&fdp->fd_dtbuiltin.dt_ff[NDFDFILE], 0,
1613 (NDFILE - NDFDFILE) * sizeof(fdp->fd_dtbuiltin.dt_ff[0]));
1614 fdp->fd_dt = &fdp->fd_dtbuiltin;
1615 }
1616 if (__predict_false(NDHISLOTS(nf) > NDHISLOTS(NDFILE))) {
1617 KASSERT(fdp->fd_himap != fdp->fd_dhimap);
1618 KASSERT(fdp->fd_lomap != fdp->fd_dlomap);
1619 fd_map_free(nf, fdp->fd_lomap, fdp->fd_himap);
1620 }
1621 if (__predict_false(fdp->fd_knhash != NULL)) {
1622 hashdone(fdp->fd_knhash, HASH_LIST, fdp->fd_knhashmask);
1623 fdp->fd_knhash = NULL;
1624 fdp->fd_knhashmask = 0;
1625 } else {
1626 KASSERT(fdp->fd_knhashmask == 0);
1627 }
1628 fdp->fd_dt = &fdp->fd_dtbuiltin;
1629 fdp->fd_lastkqfile = -1;
1630 fdp->fd_lastfile = -1;
1631 fdp->fd_freefile = 0;
1632 fdp->fd_exclose = false;
1633 memset(&fdp->fd_startzero, 0, sizeof(*fdp) -
1634 offsetof(filedesc_t, fd_startzero));
1635 fdp->fd_himap = fdp->fd_dhimap;
1636 fdp->fd_lomap = fdp->fd_dlomap;
1637 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1638 KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
1639 KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
1640 #ifdef DEBUG
1641 fdp->fd_refcnt = 0; /* see fd_checkmaps */
1642 #endif
1643 fd_checkmaps(fdp);
1644 pool_cache_put(filedesc_cache, fdp);
1645 }
1646
1647 /*
1648 * File Descriptor pseudo-device driver (/dev/fd/).
1649 *
1650 * Opening minor device N dup()s the file (if any) connected to file
1651 * descriptor N belonging to the calling process. Note that this driver
1652 * consists of only the ``open()'' routine, because all subsequent
1653 * references to this file will be direct to the other driver.
1654 */
1655 static int
1656 filedescopen(dev_t dev, int mode, int type, lwp_t *l)
1657 {
1658
1659 /*
1660 * XXX Kludge: set dupfd to contain the value of the
1661 * the file descriptor being sought for duplication. The error
1662 * return ensures that the vnode for this device will be released
1663 * by vn_open. Open will detect this special error and take the
1664 * actions in fd_dupopen below. Other callers of vn_open or VOP_OPEN
1665 * will simply report the error.
1666 */
1667 l->l_dupfd = minor(dev); /* XXX */
1668 return EDUPFD;
1669 }
1670
1671 /*
1672 * Duplicate the specified descriptor to a free descriptor.
1673 *
1674 * old is the original fd.
1675 * moveit is true if we should move rather than duplicate.
1676 * flags are the open flags (converted from O_* to F*).
1677 * newp returns the new fd on success.
1678 *
1679 * These two cases are produced by the EDUPFD and EMOVEFD magic
1680 * errnos, but in the interest of removing that regrettable interface,
1681 * vn_open has been changed to intercept them. Now vn_open returns
1682 * either a vnode or a filehandle, and the filehandle is accompanied
1683 * by a boolean that says whether we should dup (moveit == false) or
1684 * move (moveit == true) the fd.
1685 *
1686 * The dup case is used by /dev/stderr, /proc/self/fd, and such. The
1687 * move case is used by cloner devices that allocate a fd of their
1688 * own (a layering violation that should go away eventually) that
1689 * then needs to be put in the place open() expects it.
1690 */
1691 int
1692 fd_dupopen(int old, bool moveit, int flags, int *newp)
1693 {
1694 filedesc_t *fdp;
1695 fdfile_t *ff;
1696 file_t *fp;
1697 fdtab_t *dt;
1698 int error;
1699
1700 if ((fp = fd_getfile(old)) == NULL) {
1701 return EBADF;
1702 }
1703 fdp = curlwp->l_fd;
1704 dt = atomic_load_consume(&fdp->fd_dt);
1705 ff = dt->dt_ff[old];
1706
1707 /*
1708 * There are two cases of interest here.
1709 *
1710 * 1. moveit == false (used to be the EDUPFD magic errno):
1711 * simply dup (old) to file descriptor (new) and return.
1712 *
1713 * 2. moveit == true (used to be the EMOVEFD magic errno):
1714 * steal away the file structure from (old) and store it in
1715 * (new). (old) is effectively closed by this operation.
1716 */
1717 if (moveit == false) {
1718 /*
1719 * Check that the mode the file is being opened for is a
1720 * subset of the mode of the existing descriptor.
1721 */
1722 if (((flags & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
1723 error = EACCES;
1724 goto out;
1725 }
1726
1727 /* Copy it. */
1728 error = fd_dup(fp, 0, newp, ff->ff_exclose);
1729 } else {
1730 /* Copy it. */
1731 error = fd_dup(fp, 0, newp, ff->ff_exclose);
1732 if (error != 0) {
1733 goto out;
1734 }
1735
1736 /* Steal away the file pointer from 'old'. */
1737 (void)fd_close(old);
1738 return 0;
1739 }
1740
1741 out:
1742 fd_putfile(old);
1743 return error;
1744 }
1745
1746 /*
1747 * Close open files on exec.
1748 */
1749 void
1750 fd_closeexec(void)
1751 {
1752 proc_t *p;
1753 filedesc_t *fdp;
1754 fdfile_t *ff;
1755 lwp_t *l;
1756 fdtab_t *dt;
1757 int fd;
1758
1759 l = curlwp;
1760 p = l->l_proc;
1761 fdp = p->p_fd;
1762
1763 if (fdp->fd_refcnt > 1) {
1764 fdp = fd_copy();
1765 fd_free();
1766 p->p_fd = fdp;
1767 l->l_fd = fdp;
1768 }
1769 if (!fdp->fd_exclose) {
1770 return;
1771 }
1772 fdp->fd_exclose = false;
1773 dt = atomic_load_consume(&fdp->fd_dt);
1774
1775 for (fd = 0; fd <= fdp->fd_lastfile; fd++) {
1776 if ((ff = dt->dt_ff[fd]) == NULL) {
1777 KASSERT(fd >= NDFDFILE);
1778 continue;
1779 }
1780 KASSERT(fd >= NDFDFILE ||
1781 ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1782 if (ff->ff_file == NULL)
1783 continue;
1784 if (ff->ff_exclose) {
1785 /*
1786 * We need a reference to close the file.
1787 * No other threads can see the fdfile_t at
1788 * this point, so don't bother locking.
1789 */
1790 KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
1791 ff->ff_refcnt++;
1792 fd_close(fd);
1793 }
1794 }
1795 }
1796
1797 /*
1798 * Sets descriptor owner. If the owner is a process, 'pgid'
1799 * is set to positive value, process ID. If the owner is process group,
1800 * 'pgid' is set to -pg_id.
1801 */
1802 int
1803 fsetown(pid_t *pgid, u_long cmd, const void *data)
1804 {
1805 pid_t id = *(const pid_t *)data;
1806 int error;
1807
1808 if (id == INT_MIN)
1809 return EINVAL;
1810
1811 switch (cmd) {
1812 case TIOCSPGRP:
1813 if (id < 0)
1814 return EINVAL;
1815 id = -id;
1816 break;
1817 default:
1818 break;
1819 }
1820 if (id > 0) {
1821 mutex_enter(&proc_lock);
1822 error = proc_find(id) ? 0 : ESRCH;
1823 mutex_exit(&proc_lock);
1824 } else if (id < 0) {
1825 error = pgid_in_session(curproc, -id);
1826 } else {
1827 error = 0;
1828 }
1829 if (!error) {
1830 *pgid = id;
1831 }
1832 return error;
1833 }
1834
1835 void
1836 fd_set_exclose(struct lwp *l, int fd, bool exclose)
1837 {
1838 filedesc_t *fdp = l->l_fd;
1839 fdfile_t *ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1840
1841 ff->ff_exclose = exclose;
1842 if (exclose)
1843 fdp->fd_exclose = true;
1844 }
1845
1846 /*
1847 * Return descriptor owner information. If the value is positive,
1848 * it's process ID. If it's negative, it's process group ID and
1849 * needs the sign removed before use.
1850 */
1851 int
1852 fgetown(pid_t pgid, u_long cmd, void *data)
1853 {
1854
1855 switch (cmd) {
1856 case TIOCGPGRP:
1857 *(int *)data = -pgid;
1858 break;
1859 default:
1860 *(int *)data = pgid;
1861 break;
1862 }
1863 return 0;
1864 }
1865
1866 /*
1867 * Send signal to descriptor owner, either process or process group.
1868 */
1869 void
1870 fownsignal(pid_t pgid, int signo, int code, int band, void *fdescdata)
1871 {
1872 ksiginfo_t ksi;
1873
1874 KASSERT(!cpu_intr_p());
1875
1876 if (pgid == 0) {
1877 return;
1878 }
1879
1880 KSI_INIT(&ksi);
1881 ksi.ksi_signo = signo;
1882 ksi.ksi_code = code;
1883 ksi.ksi_band = band;
1884
1885 mutex_enter(&proc_lock);
1886 if (pgid > 0) {
1887 struct proc *p1;
1888
1889 p1 = proc_find(pgid);
1890 if (p1 != NULL) {
1891 kpsignal(p1, &ksi, fdescdata);
1892 }
1893 } else {
1894 struct pgrp *pgrp;
1895
1896 KASSERT(pgid < 0);
1897 pgrp = pgrp_find(-pgid);
1898 if (pgrp != NULL) {
1899 kpgsignal(pgrp, &ksi, fdescdata, 0);
1900 }
1901 }
1902 mutex_exit(&proc_lock);
1903 }
1904
1905 int
1906 fd_clone(file_t *fp, unsigned fd, int flag, const struct fileops *fops,
1907 void *data)
1908 {
1909 fdfile_t *ff;
1910 filedesc_t *fdp;
1911
1912 fp->f_flag = flag & FMASK;
1913 fdp = curproc->p_fd;
1914 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1915 KASSERT(ff != NULL);
1916 ff->ff_exclose = (flag & O_CLOEXEC) != 0;
1917 fp->f_type = DTYPE_MISC;
1918 fp->f_ops = fops;
1919 fp->f_data = data;
1920 curlwp->l_dupfd = fd;
1921 fd_affix(curproc, fp, fd);
1922
1923 return EMOVEFD;
1924 }
1925
1926 int
1927 fnullop_fcntl(file_t *fp, u_int cmd, void *data)
1928 {
1929
1930 if (cmd == F_SETFL)
1931 return 0;
1932
1933 return EOPNOTSUPP;
1934 }
1935
1936 int
1937 fnullop_poll(file_t *fp, int which)
1938 {
1939
1940 return 0;
1941 }
1942
1943 int
1944 fnullop_kqfilter(file_t *fp, struct knote *kn)
1945 {
1946
1947 return EOPNOTSUPP;
1948 }
1949
1950 void
1951 fnullop_restart(file_t *fp)
1952 {
1953
1954 }
1955
1956 int
1957 fbadop_read(file_t *fp, off_t *offset, struct uio *uio,
1958 kauth_cred_t cred, int flags)
1959 {
1960
1961 return EOPNOTSUPP;
1962 }
1963
1964 int
1965 fbadop_write(file_t *fp, off_t *offset, struct uio *uio,
1966 kauth_cred_t cred, int flags)
1967 {
1968
1969 return EOPNOTSUPP;
1970 }
1971
1972 int
1973 fbadop_ioctl(file_t *fp, u_long com, void *data)
1974 {
1975
1976 return EOPNOTSUPP;
1977 }
1978
1979 int
1980 fbadop_stat(file_t *fp, struct stat *sb)
1981 {
1982
1983 return EOPNOTSUPP;
1984 }
1985
1986 int
1987 fbadop_close(file_t *fp)
1988 {
1989
1990 return EOPNOTSUPP;
1991 }
1992
1993 /*
1994 * sysctl routines pertaining to file descriptors
1995 */
1996
1997 /* Initialized in sysctl_init() for now... */
1998 extern kmutex_t sysctl_file_marker_lock;
1999 static u_int sysctl_file_marker = 1;
2000
2001 /*
2002 * Expects to be called with proc_lock and sysctl_file_marker_lock locked.
2003 */
2004 static void
2005 sysctl_file_marker_reset(void)
2006 {
2007 struct proc *p;
2008
2009 PROCLIST_FOREACH(p, &allproc) {
2010 struct filedesc *fd = p->p_fd;
2011 fdtab_t *dt;
2012 u_int i;
2013
2014 mutex_enter(&fd->fd_lock);
2015 dt = fd->fd_dt;
2016 for (i = 0; i < dt->dt_nfiles; i++) {
2017 struct file *fp;
2018 fdfile_t *ff;
2019
2020 if ((ff = dt->dt_ff[i]) == NULL) {
2021 continue;
2022 }
2023 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
2024 continue;
2025 }
2026 fp->f_marker = 0;
2027 }
2028 mutex_exit(&fd->fd_lock);
2029 }
2030 }
2031
2032 /*
2033 * sysctl helper routine for kern.file pseudo-subtree.
2034 */
2035 static int
2036 sysctl_kern_file(SYSCTLFN_ARGS)
2037 {
2038 const bool allowaddr = get_expose_address(curproc);
2039 struct filelist flist;
2040 int error;
2041 size_t buflen;
2042 struct file *fp, fbuf;
2043 char *start, *where;
2044 struct proc *p;
2045
2046 start = where = oldp;
2047 buflen = *oldlenp;
2048
2049 if (where == NULL) {
2050 /*
2051 * overestimate by 10 files
2052 */
2053 *oldlenp = sizeof(filehead) + (nfiles + 10) *
2054 sizeof(struct file);
2055 return 0;
2056 }
2057
2058 /*
2059 * first sysctl_copyout filehead
2060 */
2061 if (buflen < sizeof(filehead)) {
2062 *oldlenp = 0;
2063 return 0;
2064 }
2065 sysctl_unlock();
2066 if (allowaddr) {
2067 memcpy(&flist, &filehead, sizeof(flist));
2068 } else {
2069 memset(&flist, 0, sizeof(flist));
2070 }
2071 error = sysctl_copyout(l, &flist, where, sizeof(flist));
2072 if (error) {
2073 sysctl_relock();
2074 return error;
2075 }
2076 buflen -= sizeof(flist);
2077 where += sizeof(flist);
2078
2079 /*
2080 * followed by an array of file structures
2081 */
2082 mutex_enter(&sysctl_file_marker_lock);
2083 mutex_enter(&proc_lock);
2084 PROCLIST_FOREACH(p, &allproc) {
2085 struct filedesc *fd;
2086 fdtab_t *dt;
2087 u_int i;
2088
2089 if (p->p_stat == SIDL) {
2090 /* skip embryonic processes */
2091 continue;
2092 }
2093 mutex_enter(p->p_lock);
2094 error = kauth_authorize_process(l->l_cred,
2095 KAUTH_PROCESS_CANSEE, p,
2096 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2097 NULL, NULL);
2098 mutex_exit(p->p_lock);
2099 if (error != 0) {
2100 /*
2101 * Don't leak kauth retval if we're silently
2102 * skipping this entry.
2103 */
2104 error = 0;
2105 continue;
2106 }
2107
2108 /*
2109 * Grab a hold on the process.
2110 */
2111 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2112 continue;
2113 }
2114 mutex_exit(&proc_lock);
2115
2116 fd = p->p_fd;
2117 mutex_enter(&fd->fd_lock);
2118 dt = fd->fd_dt;
2119 for (i = 0; i < dt->dt_nfiles; i++) {
2120 fdfile_t *ff;
2121
2122 if ((ff = dt->dt_ff[i]) == NULL) {
2123 continue;
2124 }
2125 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
2126 continue;
2127 }
2128
2129 mutex_enter(&fp->f_lock);
2130
2131 if ((fp->f_count == 0) ||
2132 (fp->f_marker == sysctl_file_marker)) {
2133 mutex_exit(&fp->f_lock);
2134 continue;
2135 }
2136
2137 /* Check that we have enough space. */
2138 if (buflen < sizeof(struct file)) {
2139 *oldlenp = where - start;
2140 mutex_exit(&fp->f_lock);
2141 error = ENOMEM;
2142 break;
2143 }
2144
2145 fill_file(&fbuf, fp);
2146 mutex_exit(&fp->f_lock);
2147 error = sysctl_copyout(l, &fbuf, where, sizeof(fbuf));
2148 if (error) {
2149 break;
2150 }
2151 buflen -= sizeof(struct file);
2152 where += sizeof(struct file);
2153
2154 fp->f_marker = sysctl_file_marker;
2155 }
2156 mutex_exit(&fd->fd_lock);
2157
2158 /*
2159 * Release reference to process.
2160 */
2161 mutex_enter(&proc_lock);
2162 rw_exit(&p->p_reflock);
2163
2164 if (error)
2165 break;
2166 }
2167
2168 sysctl_file_marker++;
2169 /* Reset all markers if wrapped. */
2170 if (sysctl_file_marker == 0) {
2171 sysctl_file_marker_reset();
2172 sysctl_file_marker++;
2173 }
2174
2175 mutex_exit(&proc_lock);
2176 mutex_exit(&sysctl_file_marker_lock);
2177
2178 *oldlenp = where - start;
2179 sysctl_relock();
2180 return error;
2181 }
2182
2183 /*
2184 * sysctl helper function for kern.file2
2185 */
2186 static int
2187 sysctl_kern_file2(SYSCTLFN_ARGS)
2188 {
2189 struct proc *p;
2190 struct file *fp;
2191 struct filedesc *fd;
2192 struct kinfo_file kf;
2193 char *dp;
2194 u_int i, op;
2195 size_t len, needed, elem_size, out_size;
2196 int error, arg, elem_count;
2197 fdfile_t *ff;
2198 fdtab_t *dt;
2199
2200 if (namelen == 1 && name[0] == CTL_QUERY)
2201 return sysctl_query(SYSCTLFN_CALL(rnode));
2202
2203 if (namelen != 4)
2204 return EINVAL;
2205
2206 error = 0;
2207 dp = oldp;
2208 len = (oldp != NULL) ? *oldlenp : 0;
2209 op = name[0];
2210 arg = name[1];
2211 elem_size = name[2];
2212 elem_count = name[3];
2213 out_size = MIN(sizeof(kf), elem_size);
2214 needed = 0;
2215
2216 if (elem_size < 1 || elem_count < 0)
2217 return EINVAL;
2218
2219 switch (op) {
2220 case KERN_FILE_BYFILE:
2221 case KERN_FILE_BYPID:
2222 /*
2223 * We're traversing the process list in both cases; the BYFILE
2224 * case does additional work of keeping track of files already
2225 * looked at.
2226 */
2227
2228 /* doesn't use arg so it must be zero */
2229 if ((op == KERN_FILE_BYFILE) && (arg != 0))
2230 return EINVAL;
2231
2232 if ((op == KERN_FILE_BYPID) && (arg < -1))
2233 /* -1 means all processes */
2234 return EINVAL;
2235
2236 sysctl_unlock();
2237 if (op == KERN_FILE_BYFILE)
2238 mutex_enter(&sysctl_file_marker_lock);
2239 mutex_enter(&proc_lock);
2240 PROCLIST_FOREACH(p, &allproc) {
2241 if (p->p_stat == SIDL) {
2242 /* skip embryonic processes */
2243 continue;
2244 }
2245 if (arg > 0 && p->p_pid != arg) {
2246 /* pick only the one we want */
2247 /* XXX want 0 to mean "kernel files" */
2248 continue;
2249 }
2250 mutex_enter(p->p_lock);
2251 error = kauth_authorize_process(l->l_cred,
2252 KAUTH_PROCESS_CANSEE, p,
2253 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2254 NULL, NULL);
2255 mutex_exit(p->p_lock);
2256 if (error != 0) {
2257 /*
2258 * Don't leak kauth retval if we're silently
2259 * skipping this entry.
2260 */
2261 error = 0;
2262 continue;
2263 }
2264
2265 /*
2266 * Grab a hold on the process.
2267 */
2268 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2269 continue;
2270 }
2271 mutex_exit(&proc_lock);
2272
2273 fd = p->p_fd;
2274 mutex_enter(&fd->fd_lock);
2275 dt = fd->fd_dt;
2276 for (i = 0; i < dt->dt_nfiles; i++) {
2277 if ((ff = dt->dt_ff[i]) == NULL) {
2278 continue;
2279 }
2280 if ((fp = atomic_load_consume(&ff->ff_file)) ==
2281 NULL) {
2282 continue;
2283 }
2284
2285 if ((op == KERN_FILE_BYFILE) &&
2286 (fp->f_marker == sysctl_file_marker)) {
2287 continue;
2288 }
2289 if (len >= elem_size && elem_count > 0) {
2290 mutex_enter(&fp->f_lock);
2291 fill_file2(&kf, fp, ff, i, p->p_pid);
2292 mutex_exit(&fp->f_lock);
2293 mutex_exit(&fd->fd_lock);
2294 error = sysctl_copyout(l,
2295 &kf, dp, out_size);
2296 mutex_enter(&fd->fd_lock);
2297 if (error)
2298 break;
2299 dp += elem_size;
2300 len -= elem_size;
2301 }
2302 if (op == KERN_FILE_BYFILE)
2303 fp->f_marker = sysctl_file_marker;
2304 needed += elem_size;
2305 if (elem_count > 0 && elem_count != INT_MAX)
2306 elem_count--;
2307 }
2308 mutex_exit(&fd->fd_lock);
2309
2310 /*
2311 * Release reference to process.
2312 */
2313 mutex_enter(&proc_lock);
2314 rw_exit(&p->p_reflock);
2315 }
2316 if (op == KERN_FILE_BYFILE) {
2317 sysctl_file_marker++;
2318
2319 /* Reset all markers if wrapped. */
2320 if (sysctl_file_marker == 0) {
2321 sysctl_file_marker_reset();
2322 sysctl_file_marker++;
2323 }
2324 }
2325 mutex_exit(&proc_lock);
2326 if (op == KERN_FILE_BYFILE)
2327 mutex_exit(&sysctl_file_marker_lock);
2328 sysctl_relock();
2329 break;
2330 default:
2331 return EINVAL;
2332 }
2333
2334 if (oldp == NULL)
2335 needed += KERN_FILESLOP * elem_size;
2336 *oldlenp = needed;
2337
2338 return error;
2339 }
2340
2341 static void
2342 fill_file(struct file *fp, const struct file *fpsrc)
2343 {
2344 const bool allowaddr = get_expose_address(curproc);
2345
2346 memset(fp, 0, sizeof(*fp));
2347
2348 fp->f_offset = fpsrc->f_offset;
2349 COND_SET_PTR(fp->f_cred, fpsrc->f_cred, allowaddr);
2350 COND_SET_CPTR(fp->f_ops, fpsrc->f_ops, allowaddr);
2351 COND_SET_STRUCT(fp->f_undata, fpsrc->f_undata, allowaddr);
2352 COND_SET_STRUCT(fp->f_list, fpsrc->f_list, allowaddr);
2353 fp->f_flag = fpsrc->f_flag;
2354 fp->f_marker = fpsrc->f_marker;
2355 fp->f_type = fpsrc->f_type;
2356 fp->f_advice = fpsrc->f_advice;
2357 fp->f_count = fpsrc->f_count;
2358 fp->f_msgcount = fpsrc->f_msgcount;
2359 fp->f_unpcount = fpsrc->f_unpcount;
2360 COND_SET_STRUCT(fp->f_unplist, fpsrc->f_unplist, allowaddr);
2361 }
2362
2363 static void
2364 fill_file2(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
2365 int i, pid_t pid)
2366 {
2367 const bool allowaddr = get_expose_address(curproc);
2368
2369 memset(kp, 0, sizeof(*kp));
2370
2371 COND_SET_VALUE(kp->ki_fileaddr, PTRTOUINT64(fp), allowaddr);
2372 kp->ki_flag = fp->f_flag;
2373 kp->ki_iflags = 0;
2374 kp->ki_ftype = fp->f_type;
2375 kp->ki_count = fp->f_count;
2376 kp->ki_msgcount = fp->f_msgcount;
2377 COND_SET_VALUE(kp->ki_fucred, PTRTOUINT64(fp->f_cred), allowaddr);
2378 kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
2379 kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
2380 COND_SET_VALUE(kp->ki_fops, PTRTOUINT64(fp->f_ops), allowaddr);
2381 kp->ki_foffset = fp->f_offset;
2382 COND_SET_VALUE(kp->ki_fdata, PTRTOUINT64(fp->f_data), allowaddr);
2383
2384 /* vnode information to glue this file to something */
2385 if (fp->f_type == DTYPE_VNODE) {
2386 struct vnode *vp = fp->f_vnode;
2387
2388 COND_SET_VALUE(kp->ki_vun, PTRTOUINT64(vp->v_un.vu_socket),
2389 allowaddr);
2390 kp->ki_vsize = vp->v_size;
2391 kp->ki_vtype = vp->v_type;
2392 kp->ki_vtag = vp->v_tag;
2393 COND_SET_VALUE(kp->ki_vdata, PTRTOUINT64(vp->v_data),
2394 allowaddr);
2395 }
2396
2397 /* process information when retrieved via KERN_FILE_BYPID */
2398 if (ff != NULL) {
2399 kp->ki_pid = pid;
2400 kp->ki_fd = i;
2401 kp->ki_ofileflags = ff->ff_exclose;
2402 kp->ki_usecount = ff->ff_refcnt;
2403 }
2404 }
2405