kern_descrip.c revision 1.259 1 /* $NetBSD: kern_descrip.c,v 1.259 2023/09/10 14:45:52 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009, 2023 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_descrip.c 8.8 (Berkeley) 2/14/95
66 */
67
68 /*
69 * File descriptor management.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_descrip.c,v 1.259 2023/09/10 14:45:52 ad Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/file.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/stat.h>
84 #include <sys/ioctl.h>
85 #include <sys/fcntl.h>
86 #include <sys/pool.h>
87 #include <sys/unistd.h>
88 #include <sys/resourcevar.h>
89 #include <sys/conf.h>
90 #include <sys/event.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/syscallargs.h>
94 #include <sys/cpu.h>
95 #include <sys/kmem.h>
96 #include <sys/vnode.h>
97 #include <sys/sysctl.h>
98 #include <sys/ktrace.h>
99
100 /*
101 * A list (head) of open files, counter, and lock protecting them.
102 */
103 struct filelist filehead __cacheline_aligned;
104 static u_int nfiles __cacheline_aligned;
105 kmutex_t filelist_lock __cacheline_aligned;
106
107 static pool_cache_t filedesc_cache __read_mostly;
108 static pool_cache_t file_cache __read_mostly;
109
110 static int file_ctor(void *, void *, int);
111 static void file_dtor(void *, void *);
112 static void fdfile_ctor(fdfile_t *);
113 static void fdfile_dtor(fdfile_t *);
114 static int filedesc_ctor(void *, void *, int);
115 static void filedesc_dtor(void *, void *);
116 static int filedescopen(dev_t, int, int, lwp_t *);
117
118 static int sysctl_kern_file(SYSCTLFN_PROTO);
119 static int sysctl_kern_file2(SYSCTLFN_PROTO);
120 static void fill_file(struct file *, const struct file *);
121 static void fill_file2(struct kinfo_file *, const file_t *, const fdfile_t *,
122 int, pid_t);
123
124 const struct cdevsw filedesc_cdevsw = {
125 .d_open = filedescopen,
126 .d_close = noclose,
127 .d_read = noread,
128 .d_write = nowrite,
129 .d_ioctl = noioctl,
130 .d_stop = nostop,
131 .d_tty = notty,
132 .d_poll = nopoll,
133 .d_mmap = nommap,
134 .d_kqfilter = nokqfilter,
135 .d_discard = nodiscard,
136 .d_flag = D_OTHER | D_MPSAFE
137 };
138
139 /* For ease of reading. */
140 __strong_alias(fd_putvnode,fd_putfile)
141 __strong_alias(fd_putsock,fd_putfile)
142
143 /*
144 * Initialize the descriptor system.
145 */
146 void
147 fd_sys_init(void)
148 {
149 static struct sysctllog *clog;
150
151 mutex_init(&filelist_lock, MUTEX_DEFAULT, IPL_NONE);
152
153 LIST_INIT(&filehead);
154
155 file_cache = pool_cache_init(sizeof(file_t), coherency_unit, 0,
156 0, "file", NULL, IPL_NONE, file_ctor, file_dtor, NULL);
157 KASSERT(file_cache != NULL);
158
159 filedesc_cache = pool_cache_init(sizeof(filedesc_t), coherency_unit,
160 0, 0, "filedesc", NULL, IPL_NONE, filedesc_ctor, filedesc_dtor,
161 NULL);
162 KASSERT(filedesc_cache != NULL);
163
164 sysctl_createv(&clog, 0, NULL, NULL,
165 CTLFLAG_PERMANENT,
166 CTLTYPE_STRUCT, "file",
167 SYSCTL_DESCR("System open file table"),
168 sysctl_kern_file, 0, NULL, 0,
169 CTL_KERN, KERN_FILE, CTL_EOL);
170 sysctl_createv(&clog, 0, NULL, NULL,
171 CTLFLAG_PERMANENT,
172 CTLTYPE_STRUCT, "file2",
173 SYSCTL_DESCR("System open file table"),
174 sysctl_kern_file2, 0, NULL, 0,
175 CTL_KERN, KERN_FILE2, CTL_EOL);
176 }
177
178 static bool
179 fd_isused(filedesc_t *fdp, unsigned fd)
180 {
181 u_int off = fd >> NDENTRYSHIFT;
182
183 KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
184
185 return (fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0;
186 }
187
188 /*
189 * Verify that the bitmaps match the descriptor table.
190 */
191 static inline void
192 fd_checkmaps(filedesc_t *fdp)
193 {
194 #ifdef DEBUG
195 fdtab_t *dt;
196 u_int fd;
197
198 KASSERT(fdp->fd_refcnt <= 1 || mutex_owned(&fdp->fd_lock));
199
200 dt = fdp->fd_dt;
201 if (fdp->fd_refcnt == -1) {
202 /*
203 * fd_free tears down the table without maintaining its bitmap.
204 */
205 return;
206 }
207 for (fd = 0; fd < dt->dt_nfiles; fd++) {
208 if (fd < NDFDFILE) {
209 KASSERT(dt->dt_ff[fd] ==
210 (fdfile_t *)fdp->fd_dfdfile[fd]);
211 }
212 if (dt->dt_ff[fd] == NULL) {
213 KASSERT(!fd_isused(fdp, fd));
214 } else if (dt->dt_ff[fd]->ff_file != NULL) {
215 KASSERT(fd_isused(fdp, fd));
216 }
217 }
218 #endif
219 }
220
221 static int
222 fd_next_zero(filedesc_t *fdp, uint32_t *bitmap, int want, u_int bits)
223 {
224 int i, off, maxoff;
225 uint32_t sub;
226
227 KASSERT(mutex_owned(&fdp->fd_lock));
228
229 fd_checkmaps(fdp);
230
231 if (want > bits)
232 return -1;
233
234 off = want >> NDENTRYSHIFT;
235 i = want & NDENTRYMASK;
236 if (i) {
237 sub = bitmap[off] | ((u_int)~0 >> (NDENTRIES - i));
238 if (sub != ~0)
239 goto found;
240 off++;
241 }
242
243 maxoff = NDLOSLOTS(bits);
244 while (off < maxoff) {
245 if ((sub = bitmap[off]) != ~0)
246 goto found;
247 off++;
248 }
249
250 return -1;
251
252 found:
253 return (off << NDENTRYSHIFT) + ffs(~sub) - 1;
254 }
255
256 static int
257 fd_last_set(filedesc_t *fd, int last)
258 {
259 int off, i;
260 fdfile_t **ff = fd->fd_dt->dt_ff;
261 uint32_t *bitmap = fd->fd_lomap;
262
263 KASSERT(mutex_owned(&fd->fd_lock));
264
265 fd_checkmaps(fd);
266
267 off = (last - 1) >> NDENTRYSHIFT;
268
269 while (off >= 0 && !bitmap[off])
270 off--;
271
272 if (off < 0)
273 return -1;
274
275 i = ((off + 1) << NDENTRYSHIFT) - 1;
276 if (i >= last)
277 i = last - 1;
278
279 /* XXX should use bitmap */
280 while (i > 0 && (ff[i] == NULL || !ff[i]->ff_allocated))
281 i--;
282
283 return i;
284 }
285
286 static inline void
287 fd_used(filedesc_t *fdp, unsigned fd)
288 {
289 u_int off = fd >> NDENTRYSHIFT;
290 fdfile_t *ff;
291
292 ff = fdp->fd_dt->dt_ff[fd];
293
294 KASSERT(mutex_owned(&fdp->fd_lock));
295 KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) == 0);
296 KASSERT(ff != NULL);
297 KASSERT(ff->ff_file == NULL);
298 KASSERT(!ff->ff_allocated);
299
300 ff->ff_allocated = true;
301 fdp->fd_lomap[off] |= 1U << (fd & NDENTRYMASK);
302 if (__predict_false(fdp->fd_lomap[off] == ~0)) {
303 KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
304 (1U << (off & NDENTRYMASK))) == 0);
305 fdp->fd_himap[off >> NDENTRYSHIFT] |= 1U << (off & NDENTRYMASK);
306 }
307
308 if ((int)fd > fdp->fd_lastfile) {
309 fdp->fd_lastfile = fd;
310 }
311
312 fd_checkmaps(fdp);
313 }
314
315 static inline void
316 fd_unused(filedesc_t *fdp, unsigned fd)
317 {
318 u_int off = fd >> NDENTRYSHIFT;
319 fdfile_t *ff;
320
321 ff = fdp->fd_dt->dt_ff[fd];
322
323 KASSERT(mutex_owned(&fdp->fd_lock));
324 KASSERT(ff != NULL);
325 KASSERT(ff->ff_file == NULL);
326 KASSERT(ff->ff_allocated);
327
328 if (fd < fdp->fd_freefile) {
329 fdp->fd_freefile = fd;
330 }
331
332 if (fdp->fd_lomap[off] == ~0) {
333 KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
334 (1U << (off & NDENTRYMASK))) != 0);
335 fdp->fd_himap[off >> NDENTRYSHIFT] &=
336 ~(1U << (off & NDENTRYMASK));
337 }
338 KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0);
339 fdp->fd_lomap[off] &= ~(1U << (fd & NDENTRYMASK));
340 ff->ff_allocated = false;
341
342 KASSERT(fd <= fdp->fd_lastfile);
343 if (fd == fdp->fd_lastfile) {
344 fdp->fd_lastfile = fd_last_set(fdp, fd);
345 }
346 fd_checkmaps(fdp);
347 }
348
349 /*
350 * Look up the file structure corresponding to a file descriptor
351 * and return the file, holding a reference on the descriptor.
352 */
353 file_t *
354 fd_getfile(unsigned fd)
355 {
356 filedesc_t *fdp;
357 fdfile_t *ff;
358 file_t *fp;
359 fdtab_t *dt;
360
361 /*
362 * Look up the fdfile structure representing this descriptor.
363 * We are doing this unlocked. See fd_tryexpand().
364 */
365 fdp = curlwp->l_fd;
366 dt = atomic_load_consume(&fdp->fd_dt);
367 if (__predict_false(fd >= dt->dt_nfiles)) {
368 return NULL;
369 }
370 ff = dt->dt_ff[fd];
371 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
372 if (__predict_false(ff == NULL)) {
373 return NULL;
374 }
375
376 /* Now get a reference to the descriptor. */
377 if (fdp->fd_refcnt == 1) {
378 /*
379 * Single threaded: don't need to worry about concurrent
380 * access (other than earlier calls to kqueue, which may
381 * hold a reference to the descriptor).
382 */
383 ff->ff_refcnt++;
384 } else {
385 /*
386 * Multi threaded: issue a memory barrier to ensure that we
387 * acquire the file pointer _after_ adding a reference. If
388 * no memory barrier, we could fetch a stale pointer.
389 *
390 * In particular, we must coordinate the following four
391 * memory operations:
392 *
393 * A. fd_close store ff->ff_file = NULL
394 * B. fd_close refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
395 * C. fd_getfile atomic_inc_uint(&ff->ff_refcnt)
396 * D. fd_getfile load fp = ff->ff_file
397 *
398 * If the order is D;A;B;C:
399 *
400 * 1. D: fp = ff->ff_file
401 * 2. A: ff->ff_file = NULL
402 * 3. B: refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
403 * 4. C: atomic_inc_uint(&ff->ff_refcnt)
404 *
405 * then fd_close determines that there are no more
406 * references and decides to free fp immediately, at
407 * the same that fd_getfile ends up with an fp that's
408 * about to be freed. *boom*
409 *
410 * By making B a release operation in fd_close, and by
411 * making C an acquire operation in fd_getfile, since
412 * they are atomic operations on the same object, which
413 * has a total modification order, we guarantee either:
414 *
415 * - B happens before C. Then since A is
416 * sequenced before B in fd_close, and C is
417 * sequenced before D in fd_getfile, we
418 * guarantee A happens before D, so fd_getfile
419 * reads a null fp and safely fails.
420 *
421 * - C happens before B. Then fd_getfile may read
422 * null or nonnull, but either way, fd_close
423 * will safely wait for references to drain.
424 */
425 atomic_inc_uint(&ff->ff_refcnt);
426 membar_acquire();
427 }
428
429 /*
430 * If the file is not open or is being closed then put the
431 * reference back.
432 */
433 fp = atomic_load_consume(&ff->ff_file);
434 if (__predict_true(fp != NULL)) {
435 return fp;
436 }
437 fd_putfile(fd);
438 return NULL;
439 }
440
441 /*
442 * Release a reference to a file descriptor acquired with fd_getfile().
443 */
444 void
445 fd_putfile(unsigned fd)
446 {
447 filedesc_t *fdp;
448 fdfile_t *ff;
449 u_int u, v;
450
451 fdp = curlwp->l_fd;
452 KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
453 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
454
455 KASSERT(ff != NULL);
456 KASSERT((ff->ff_refcnt & FR_MASK) > 0);
457 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
458
459 if (fdp->fd_refcnt == 1) {
460 /*
461 * Single threaded: don't need to worry about concurrent
462 * access (other than earlier calls to kqueue, which may
463 * hold a reference to the descriptor).
464 */
465 if (__predict_false((ff->ff_refcnt & FR_CLOSING) != 0)) {
466 fd_close(fd);
467 return;
468 }
469 ff->ff_refcnt--;
470 return;
471 }
472
473 /*
474 * Ensure that any use of the file is complete and globally
475 * visible before dropping the final reference. If no membar,
476 * the current CPU could still access memory associated with
477 * the file after it has been freed or recycled by another
478 * CPU.
479 */
480 membar_release();
481
482 /*
483 * Be optimistic and start out with the assumption that no other
484 * threads are trying to close the descriptor. If the CAS fails,
485 * we lost a race and/or it's being closed.
486 */
487 for (u = ff->ff_refcnt & FR_MASK;; u = v) {
488 v = atomic_cas_uint(&ff->ff_refcnt, u, u - 1);
489 if (__predict_true(u == v)) {
490 return;
491 }
492 if (__predict_false((v & FR_CLOSING) != 0)) {
493 break;
494 }
495 }
496
497 /* Another thread is waiting to close the file: join it. */
498 (void)fd_close(fd);
499 }
500
501 /*
502 * Convenience wrapper around fd_getfile() that returns reference
503 * to a vnode.
504 */
505 int
506 fd_getvnode(unsigned fd, file_t **fpp)
507 {
508 vnode_t *vp;
509 file_t *fp;
510
511 fp = fd_getfile(fd);
512 if (__predict_false(fp == NULL)) {
513 return EBADF;
514 }
515 if (__predict_false(fp->f_type != DTYPE_VNODE)) {
516 fd_putfile(fd);
517 return EINVAL;
518 }
519 vp = fp->f_vnode;
520 if (__predict_false(vp->v_type == VBAD)) {
521 /* XXX Is this case really necessary? */
522 fd_putfile(fd);
523 return EBADF;
524 }
525 *fpp = fp;
526 return 0;
527 }
528
529 /*
530 * Convenience wrapper around fd_getfile() that returns reference
531 * to a socket.
532 */
533 int
534 fd_getsock1(unsigned fd, struct socket **sop, file_t **fp)
535 {
536 *fp = fd_getfile(fd);
537 if (__predict_false(*fp == NULL)) {
538 return EBADF;
539 }
540 if (__predict_false((*fp)->f_type != DTYPE_SOCKET)) {
541 fd_putfile(fd);
542 return ENOTSOCK;
543 }
544 *sop = (*fp)->f_socket;
545 return 0;
546 }
547
548 int
549 fd_getsock(unsigned fd, struct socket **sop)
550 {
551 file_t *fp;
552 return fd_getsock1(fd, sop, &fp);
553 }
554
555 /*
556 * Look up the file structure corresponding to a file descriptor
557 * and return it with a reference held on the file, not the
558 * descriptor.
559 *
560 * This is heavyweight and only used when accessing descriptors
561 * from a foreign process. The caller must ensure that `p' does
562 * not exit or fork across this call.
563 *
564 * To release the file (not descriptor) reference, use closef().
565 */
566 file_t *
567 fd_getfile2(proc_t *p, unsigned fd)
568 {
569 filedesc_t *fdp;
570 fdfile_t *ff;
571 file_t *fp;
572 fdtab_t *dt;
573
574 fdp = p->p_fd;
575 mutex_enter(&fdp->fd_lock);
576 dt = fdp->fd_dt;
577 if (fd >= dt->dt_nfiles) {
578 mutex_exit(&fdp->fd_lock);
579 return NULL;
580 }
581 if ((ff = dt->dt_ff[fd]) == NULL) {
582 mutex_exit(&fdp->fd_lock);
583 return NULL;
584 }
585 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
586 mutex_exit(&fdp->fd_lock);
587 return NULL;
588 }
589 mutex_enter(&fp->f_lock);
590 fp->f_count++;
591 mutex_exit(&fp->f_lock);
592 mutex_exit(&fdp->fd_lock);
593
594 return fp;
595 }
596
597 /*
598 * Internal form of close. Must be called with a reference to the
599 * descriptor, and will drop the reference. When all descriptor
600 * references are dropped, releases the descriptor slot and a single
601 * reference to the file structure.
602 */
603 int
604 fd_close(unsigned fd)
605 {
606 struct flock lf;
607 filedesc_t *fdp;
608 fdfile_t *ff;
609 file_t *fp;
610 proc_t *p;
611 lwp_t *l;
612 u_int refcnt;
613
614 l = curlwp;
615 p = l->l_proc;
616 fdp = l->l_fd;
617 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
618
619 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
620
621 mutex_enter(&fdp->fd_lock);
622 KASSERT((ff->ff_refcnt & FR_MASK) > 0);
623 fp = atomic_load_consume(&ff->ff_file);
624 if (__predict_false(fp == NULL)) {
625 /*
626 * Another user of the file is already closing, and is
627 * waiting for other users of the file to drain. Release
628 * our reference, and wake up the closer.
629 */
630 membar_release();
631 atomic_dec_uint(&ff->ff_refcnt);
632 cv_broadcast(&ff->ff_closing);
633 mutex_exit(&fdp->fd_lock);
634
635 /*
636 * An application error, so pretend that the descriptor
637 * was already closed. We can't safely wait for it to
638 * be closed without potentially deadlocking.
639 */
640 return (EBADF);
641 }
642 KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
643
644 /*
645 * There may be multiple users of this file within the process.
646 * Notify existing and new users that the file is closing. This
647 * will prevent them from adding additional uses to this file
648 * while we are closing it.
649 */
650 atomic_store_relaxed(&ff->ff_file, NULL);
651 ff->ff_exclose = false;
652
653 /*
654 * We expect the caller to hold a descriptor reference - drop it.
655 * The reference count may increase beyond zero at this point due
656 * to an erroneous descriptor reference by an application, but
657 * fd_getfile() will notice that the file is being closed and drop
658 * the reference again.
659 */
660 if (fdp->fd_refcnt == 1) {
661 /* Single threaded. */
662 refcnt = --(ff->ff_refcnt);
663 } else {
664 /* Multi threaded. */
665 membar_release();
666 refcnt = atomic_dec_uint_nv(&ff->ff_refcnt);
667 membar_acquire();
668 }
669 if (__predict_false(refcnt != 0)) {
670 /*
671 * Wait for other references to drain. This is typically
672 * an application error - the descriptor is being closed
673 * while still in use.
674 * (Or just a threaded application trying to unblock its
675 * thread that sleeps in (say) accept()).
676 */
677 atomic_or_uint(&ff->ff_refcnt, FR_CLOSING);
678
679 /*
680 * Remove any knotes attached to the file. A knote
681 * attached to the descriptor can hold references on it.
682 */
683 mutex_exit(&fdp->fd_lock);
684 if (!SLIST_EMPTY(&ff->ff_knlist)) {
685 knote_fdclose(fd);
686 }
687
688 /*
689 * Since the file system code doesn't know which fd
690 * each request came from (think dup()), we have to
691 * ask it to return ERESTART for any long-term blocks.
692 * The re-entry through read/write/etc will detect the
693 * closed fd and return EBAFD.
694 * Blocked partial writes may return a short length.
695 */
696 (*fp->f_ops->fo_restart)(fp);
697 mutex_enter(&fdp->fd_lock);
698
699 /*
700 * We need to see the count drop to zero at least once,
701 * in order to ensure that all pre-existing references
702 * have been drained. New references past this point are
703 * of no interest.
704 * XXX (dsl) this may need to call fo_restart() after a
705 * timeout to guarantee that all the system calls exit.
706 */
707 while ((ff->ff_refcnt & FR_MASK) != 0) {
708 cv_wait(&ff->ff_closing, &fdp->fd_lock);
709 }
710 atomic_and_uint(&ff->ff_refcnt, ~FR_CLOSING);
711 } else {
712 /* If no references, there must be no knotes. */
713 KASSERT(SLIST_EMPTY(&ff->ff_knlist));
714 }
715
716 /*
717 * POSIX record locking dictates that any close releases ALL
718 * locks owned by this process. This is handled by setting
719 * a flag in the unlock to free ONLY locks obeying POSIX
720 * semantics, and not to free BSD-style file locks.
721 * If the descriptor was in a message, POSIX-style locks
722 * aren't passed with the descriptor.
723 */
724 if (__predict_false((p->p_flag & PK_ADVLOCK) != 0) &&
725 fp->f_ops->fo_advlock != NULL) {
726 lf.l_whence = SEEK_SET;
727 lf.l_start = 0;
728 lf.l_len = 0;
729 lf.l_type = F_UNLCK;
730 mutex_exit(&fdp->fd_lock);
731 (void)(*fp->f_ops->fo_advlock)(fp, p, F_UNLCK, &lf, F_POSIX);
732 mutex_enter(&fdp->fd_lock);
733 }
734
735 /* Free descriptor slot. */
736 fd_unused(fdp, fd);
737 mutex_exit(&fdp->fd_lock);
738
739 /* Now drop reference to the file itself. */
740 return closef(fp);
741 }
742
743 /*
744 * Duplicate a file descriptor.
745 */
746 int
747 fd_dup(file_t *fp, int minfd, int *newp, bool exclose)
748 {
749 proc_t *p = curproc;
750 fdtab_t *dt;
751 int error;
752
753 while ((error = fd_alloc(p, minfd, newp)) != 0) {
754 if (error != ENOSPC) {
755 return error;
756 }
757 fd_tryexpand(p);
758 }
759
760 dt = atomic_load_consume(&curlwp->l_fd->fd_dt);
761 dt->dt_ff[*newp]->ff_exclose = exclose;
762 fd_affix(p, fp, *newp);
763 return 0;
764 }
765
766 /*
767 * dup2 operation.
768 */
769 int
770 fd_dup2(file_t *fp, unsigned newfd, int flags)
771 {
772 filedesc_t *fdp = curlwp->l_fd;
773 fdfile_t *ff;
774 fdtab_t *dt;
775
776 if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
777 return EINVAL;
778 /*
779 * Ensure there are enough slots in the descriptor table,
780 * and allocate an fdfile_t up front in case we need it.
781 */
782 while (newfd >= atomic_load_consume(&fdp->fd_dt)->dt_nfiles) {
783 fd_tryexpand(curproc);
784 }
785 ff = kmem_alloc(sizeof(*ff), KM_SLEEP);
786 fdfile_ctor(ff);
787
788 /*
789 * If there is already a file open, close it. If the file is
790 * half open, wait for it to be constructed before closing it.
791 * XXX Potential for deadlock here?
792 */
793 mutex_enter(&fdp->fd_lock);
794 while (fd_isused(fdp, newfd)) {
795 mutex_exit(&fdp->fd_lock);
796 if (fd_getfile(newfd) != NULL) {
797 (void)fd_close(newfd);
798 } else {
799 /*
800 * Crummy, but unlikely to happen.
801 * Can occur if we interrupt another
802 * thread while it is opening a file.
803 */
804 kpause("dup2", false, 1, NULL);
805 }
806 mutex_enter(&fdp->fd_lock);
807 }
808 dt = fdp->fd_dt;
809 if (dt->dt_ff[newfd] == NULL) {
810 KASSERT(newfd >= NDFDFILE);
811 dt->dt_ff[newfd] = ff;
812 ff = NULL;
813 }
814 fd_used(fdp, newfd);
815 mutex_exit(&fdp->fd_lock);
816
817 dt->dt_ff[newfd]->ff_exclose = (flags & O_CLOEXEC) != 0;
818 fp->f_flag |= flags & (FNONBLOCK|FNOSIGPIPE);
819 /* Slot is now allocated. Insert copy of the file. */
820 fd_affix(curproc, fp, newfd);
821 if (ff != NULL) {
822 cv_destroy(&ff->ff_closing);
823 kmem_free(ff, sizeof(*ff));
824 }
825 return 0;
826 }
827
828 /*
829 * Drop reference to a file structure.
830 */
831 int
832 closef(file_t *fp)
833 {
834 struct flock lf;
835 int error;
836
837 /*
838 * Drop reference. If referenced elsewhere it's still open
839 * and we have nothing more to do.
840 */
841 mutex_enter(&fp->f_lock);
842 KASSERT(fp->f_count > 0);
843 if (--fp->f_count > 0) {
844 mutex_exit(&fp->f_lock);
845 return 0;
846 }
847 KASSERT(fp->f_count == 0);
848 mutex_exit(&fp->f_lock);
849
850 /* We held the last reference - release locks, close and free. */
851 if (fp->f_ops->fo_advlock == NULL) {
852 KASSERT((fp->f_flag & FHASLOCK) == 0);
853 } else if (fp->f_flag & FHASLOCK) {
854 lf.l_whence = SEEK_SET;
855 lf.l_start = 0;
856 lf.l_len = 0;
857 lf.l_type = F_UNLCK;
858 (void)(*fp->f_ops->fo_advlock)(fp, fp, F_UNLCK, &lf, F_FLOCK);
859 }
860 if (fp->f_ops != NULL) {
861 error = (*fp->f_ops->fo_close)(fp);
862 } else {
863 error = 0;
864 }
865 KASSERT(fp->f_count == 0);
866 KASSERT(fp->f_cred != NULL);
867 pool_cache_put(file_cache, fp);
868
869 return error;
870 }
871
872 /*
873 * Allocate a file descriptor for the process.
874 *
875 * Future idea for experimentation: replace all of this with radixtree.
876 */
877 int
878 fd_alloc(proc_t *p, int want, int *result)
879 {
880 filedesc_t *fdp = p->p_fd;
881 int i, lim, last, error, hi;
882 u_int off;
883 fdtab_t *dt;
884
885 KASSERT(p == curproc || p == &proc0);
886
887 /*
888 * Search for a free descriptor starting at the higher
889 * of want or fd_freefile.
890 */
891 mutex_enter(&fdp->fd_lock);
892 fd_checkmaps(fdp);
893 dt = fdp->fd_dt;
894 KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
895 lim = uimin((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
896 last = uimin(dt->dt_nfiles, lim);
897
898 for (;;) {
899 if ((i = want) < fdp->fd_freefile)
900 i = fdp->fd_freefile;
901 off = i >> NDENTRYSHIFT;
902 hi = fd_next_zero(fdp, fdp->fd_himap, off,
903 (last + NDENTRIES - 1) >> NDENTRYSHIFT);
904 if (hi == -1)
905 break;
906 i = fd_next_zero(fdp, &fdp->fd_lomap[hi],
907 hi > off ? 0 : i & NDENTRYMASK, NDENTRIES);
908 if (i == -1) {
909 /*
910 * Free file descriptor in this block was
911 * below want, try again with higher want.
912 */
913 want = (hi + 1) << NDENTRYSHIFT;
914 continue;
915 }
916 i += (hi << NDENTRYSHIFT);
917 if (i >= last) {
918 break;
919 }
920 if (dt->dt_ff[i] == NULL) {
921 KASSERT(i >= NDFDFILE);
922 dt->dt_ff[i] = kmem_alloc(sizeof(fdfile_t), KM_SLEEP);
923 fdfile_ctor(dt->dt_ff[i]);
924 }
925 KASSERT(dt->dt_ff[i]->ff_file == NULL);
926 fd_used(fdp, i);
927 if (want <= fdp->fd_freefile) {
928 fdp->fd_freefile = i;
929 }
930 *result = i;
931 KASSERT(i >= NDFDFILE ||
932 dt->dt_ff[i] == (fdfile_t *)fdp->fd_dfdfile[i]);
933 fd_checkmaps(fdp);
934 mutex_exit(&fdp->fd_lock);
935 return 0;
936 }
937
938 /* No space in current array. Let the caller expand and retry. */
939 error = (dt->dt_nfiles >= lim) ? EMFILE : ENOSPC;
940 mutex_exit(&fdp->fd_lock);
941 return error;
942 }
943
944 /*
945 * Allocate memory for a descriptor table.
946 */
947 static fdtab_t *
948 fd_dtab_alloc(int n)
949 {
950 fdtab_t *dt;
951 size_t sz;
952
953 KASSERT(n > NDFILE);
954
955 sz = sizeof(*dt) + (n - NDFILE) * sizeof(dt->dt_ff[0]);
956 dt = kmem_alloc(sz, KM_SLEEP);
957 #ifdef DIAGNOSTIC
958 memset(dt, 0xff, sz);
959 #endif
960 dt->dt_nfiles = n;
961 dt->dt_link = NULL;
962 return dt;
963 }
964
965 /*
966 * Free a descriptor table, and all tables linked for deferred free.
967 */
968 static void
969 fd_dtab_free(fdtab_t *dt)
970 {
971 fdtab_t *next;
972 size_t sz;
973
974 do {
975 next = dt->dt_link;
976 KASSERT(dt->dt_nfiles > NDFILE);
977 sz = sizeof(*dt) +
978 (dt->dt_nfiles - NDFILE) * sizeof(dt->dt_ff[0]);
979 #ifdef DIAGNOSTIC
980 memset(dt, 0xff, sz);
981 #endif
982 kmem_free(dt, sz);
983 dt = next;
984 } while (dt != NULL);
985 }
986
987 /*
988 * Allocate descriptor bitmap.
989 */
990 static void
991 fd_map_alloc(int n, uint32_t **lo, uint32_t **hi)
992 {
993 uint8_t *ptr;
994 size_t szlo, szhi;
995
996 KASSERT(n > NDENTRIES);
997
998 szlo = NDLOSLOTS(n) * sizeof(uint32_t);
999 szhi = NDHISLOTS(n) * sizeof(uint32_t);
1000 ptr = kmem_alloc(szlo + szhi, KM_SLEEP);
1001 *lo = (uint32_t *)ptr;
1002 *hi = (uint32_t *)(ptr + szlo);
1003 }
1004
1005 /*
1006 * Free descriptor bitmap.
1007 */
1008 static void
1009 fd_map_free(int n, uint32_t *lo, uint32_t *hi)
1010 {
1011 size_t szlo, szhi;
1012
1013 KASSERT(n > NDENTRIES);
1014
1015 szlo = NDLOSLOTS(n) * sizeof(uint32_t);
1016 szhi = NDHISLOTS(n) * sizeof(uint32_t);
1017 KASSERT(hi == (uint32_t *)((uint8_t *)lo + szlo));
1018 kmem_free(lo, szlo + szhi);
1019 }
1020
1021 /*
1022 * Expand a process' descriptor table.
1023 */
1024 void
1025 fd_tryexpand(proc_t *p)
1026 {
1027 filedesc_t *fdp;
1028 int i, numfiles, oldnfiles;
1029 fdtab_t *newdt, *dt;
1030 uint32_t *newhimap, *newlomap;
1031
1032 KASSERT(p == curproc || p == &proc0);
1033
1034 fdp = p->p_fd;
1035 newhimap = NULL;
1036 newlomap = NULL;
1037 oldnfiles = atomic_load_consume(&fdp->fd_dt)->dt_nfiles;
1038
1039 if (oldnfiles < NDEXTENT)
1040 numfiles = NDEXTENT;
1041 else
1042 numfiles = 2 * oldnfiles;
1043
1044 newdt = fd_dtab_alloc(numfiles);
1045 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1046 fd_map_alloc(numfiles, &newlomap, &newhimap);
1047 }
1048
1049 mutex_enter(&fdp->fd_lock);
1050 dt = fdp->fd_dt;
1051 KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1052 if (dt->dt_nfiles != oldnfiles) {
1053 /* fdp changed; caller must retry */
1054 mutex_exit(&fdp->fd_lock);
1055 fd_dtab_free(newdt);
1056 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1057 fd_map_free(numfiles, newlomap, newhimap);
1058 }
1059 return;
1060 }
1061
1062 /* Copy the existing descriptor table and zero the new portion. */
1063 i = sizeof(fdfile_t *) * oldnfiles;
1064 memcpy(newdt->dt_ff, dt->dt_ff, i);
1065 memset((uint8_t *)newdt->dt_ff + i, 0,
1066 numfiles * sizeof(fdfile_t *) - i);
1067
1068 /*
1069 * Link old descriptor array into list to be discarded. We defer
1070 * freeing until the last reference to the descriptor table goes
1071 * away (usually process exit). This allows us to do lockless
1072 * lookups in fd_getfile().
1073 */
1074 if (oldnfiles > NDFILE) {
1075 if (fdp->fd_refcnt > 1) {
1076 newdt->dt_link = dt;
1077 } else {
1078 fd_dtab_free(dt);
1079 }
1080 }
1081
1082 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1083 i = NDHISLOTS(oldnfiles) * sizeof(uint32_t);
1084 memcpy(newhimap, fdp->fd_himap, i);
1085 memset((uint8_t *)newhimap + i, 0,
1086 NDHISLOTS(numfiles) * sizeof(uint32_t) - i);
1087
1088 i = NDLOSLOTS(oldnfiles) * sizeof(uint32_t);
1089 memcpy(newlomap, fdp->fd_lomap, i);
1090 memset((uint8_t *)newlomap + i, 0,
1091 NDLOSLOTS(numfiles) * sizeof(uint32_t) - i);
1092
1093 if (NDHISLOTS(oldnfiles) > NDHISLOTS(NDFILE)) {
1094 fd_map_free(oldnfiles, fdp->fd_lomap, fdp->fd_himap);
1095 }
1096 fdp->fd_himap = newhimap;
1097 fdp->fd_lomap = newlomap;
1098 }
1099
1100 /*
1101 * All other modifications must become globally visible before
1102 * the change to fd_dt. See fd_getfile().
1103 */
1104 atomic_store_release(&fdp->fd_dt, newdt);
1105 KASSERT(newdt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1106 fd_checkmaps(fdp);
1107 mutex_exit(&fdp->fd_lock);
1108 }
1109
1110 /*
1111 * Create a new open file structure and allocate a file descriptor
1112 * for the current process.
1113 */
1114 int
1115 fd_allocfile(file_t **resultfp, int *resultfd)
1116 {
1117 proc_t *p = curproc;
1118 kauth_cred_t cred;
1119 file_t *fp;
1120 int error;
1121
1122 while ((error = fd_alloc(p, 0, resultfd)) != 0) {
1123 if (error != ENOSPC) {
1124 return error;
1125 }
1126 fd_tryexpand(p);
1127 }
1128
1129 fp = pool_cache_get(file_cache, PR_WAITOK);
1130 if (fp == NULL) {
1131 fd_abort(p, NULL, *resultfd);
1132 return ENFILE;
1133 }
1134 KASSERT(fp->f_count == 0);
1135 KASSERT(fp->f_msgcount == 0);
1136 KASSERT(fp->f_unpcount == 0);
1137
1138 /* Replace cached credentials if not what we need. */
1139 cred = curlwp->l_cred;
1140 if (__predict_false(cred != fp->f_cred)) {
1141 kauth_cred_free(fp->f_cred);
1142 kauth_cred_hold(cred);
1143 fp->f_cred = cred;
1144 }
1145
1146 /*
1147 * Don't allow recycled files to be scanned.
1148 * See uipc_usrreq.c.
1149 */
1150 if (__predict_false((fp->f_flag & FSCAN) != 0)) {
1151 mutex_enter(&fp->f_lock);
1152 atomic_and_uint(&fp->f_flag, ~FSCAN);
1153 mutex_exit(&fp->f_lock);
1154 }
1155
1156 fp->f_advice = 0;
1157 fp->f_offset = 0;
1158 *resultfp = fp;
1159
1160 return 0;
1161 }
1162
1163 /*
1164 * Successful creation of a new descriptor: make visible to the process.
1165 */
1166 void
1167 fd_affix(proc_t *p, file_t *fp, unsigned fd)
1168 {
1169 fdfile_t *ff;
1170 filedesc_t *fdp;
1171 fdtab_t *dt;
1172
1173 KASSERT(p == curproc || p == &proc0);
1174
1175 /* Add a reference to the file structure. */
1176 mutex_enter(&fp->f_lock);
1177 fp->f_count++;
1178 mutex_exit(&fp->f_lock);
1179
1180 /*
1181 * Insert the new file into the descriptor slot.
1182 */
1183 fdp = p->p_fd;
1184 dt = atomic_load_consume(&fdp->fd_dt);
1185 ff = dt->dt_ff[fd];
1186
1187 KASSERT(ff != NULL);
1188 KASSERT(ff->ff_file == NULL);
1189 KASSERT(ff->ff_allocated);
1190 KASSERT(fd_isused(fdp, fd));
1191 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1192
1193 /* No need to lock in order to make file initially visible. */
1194 atomic_store_release(&ff->ff_file, fp);
1195 }
1196
1197 /*
1198 * Abort creation of a new descriptor: free descriptor slot and file.
1199 */
1200 void
1201 fd_abort(proc_t *p, file_t *fp, unsigned fd)
1202 {
1203 filedesc_t *fdp;
1204 fdfile_t *ff;
1205
1206 KASSERT(p == curproc || p == &proc0);
1207
1208 fdp = p->p_fd;
1209 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1210 ff->ff_exclose = false;
1211
1212 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1213
1214 mutex_enter(&fdp->fd_lock);
1215 KASSERT(fd_isused(fdp, fd));
1216 fd_unused(fdp, fd);
1217 mutex_exit(&fdp->fd_lock);
1218
1219 if (fp != NULL) {
1220 KASSERT(fp->f_count == 0);
1221 KASSERT(fp->f_cred != NULL);
1222 pool_cache_put(file_cache, fp);
1223 }
1224 }
1225
1226 static int
1227 file_ctor(void *arg, void *obj, int flags)
1228 {
1229 /*
1230 * It's easy to exhaust the open file limit on a system with many
1231 * CPUs due to caching. Allow a bit of leeway to reduce the element
1232 * of surprise.
1233 */
1234 u_int slop = PCG_NOBJECTS_NORMAL * (ncpu - 1);
1235 file_t *fp = obj;
1236
1237 memset(fp, 0, sizeof(*fp));
1238
1239 mutex_enter(&filelist_lock);
1240 if (__predict_false(nfiles >= slop + maxfiles)) {
1241 mutex_exit(&filelist_lock);
1242 tablefull("file", "increase kern.maxfiles or MAXFILES");
1243 return ENFILE;
1244 }
1245 nfiles++;
1246 LIST_INSERT_HEAD(&filehead, fp, f_list);
1247 mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
1248 fp->f_cred = curlwp->l_cred;
1249 kauth_cred_hold(fp->f_cred);
1250 mutex_exit(&filelist_lock);
1251
1252 return 0;
1253 }
1254
1255 static void
1256 file_dtor(void *arg, void *obj)
1257 {
1258 file_t *fp = obj;
1259
1260 mutex_enter(&filelist_lock);
1261 nfiles--;
1262 LIST_REMOVE(fp, f_list);
1263 mutex_exit(&filelist_lock);
1264
1265 KASSERT(fp->f_count == 0);
1266 kauth_cred_free(fp->f_cred);
1267 mutex_destroy(&fp->f_lock);
1268 }
1269
1270 static void
1271 fdfile_ctor(fdfile_t *ff)
1272 {
1273
1274 memset(ff, 0, sizeof(*ff));
1275 cv_init(&ff->ff_closing, "fdclose");
1276 }
1277
1278 static void
1279 fdfile_dtor(fdfile_t *ff)
1280 {
1281
1282 cv_destroy(&ff->ff_closing);
1283 }
1284
1285 file_t *
1286 fgetdummy(void)
1287 {
1288 file_t *fp;
1289
1290 fp = kmem_zalloc(sizeof(*fp), KM_SLEEP);
1291 mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
1292 return fp;
1293 }
1294
1295 void
1296 fputdummy(file_t *fp)
1297 {
1298
1299 mutex_destroy(&fp->f_lock);
1300 kmem_free(fp, sizeof(*fp));
1301 }
1302
1303 /*
1304 * Create an initial filedesc structure.
1305 */
1306 filedesc_t *
1307 fd_init(filedesc_t *fdp)
1308 {
1309 #ifdef DIAGNOSTIC
1310 unsigned fd;
1311 #endif
1312
1313 if (__predict_true(fdp == NULL)) {
1314 fdp = pool_cache_get(filedesc_cache, PR_WAITOK);
1315 } else {
1316 KASSERT(fdp == &filedesc0);
1317 filedesc_ctor(NULL, fdp, PR_WAITOK);
1318 }
1319
1320 #ifdef DIAGNOSTIC
1321 KASSERT(fdp->fd_lastfile == -1);
1322 KASSERT(fdp->fd_lastkqfile == -1);
1323 KASSERT(fdp->fd_knhash == NULL);
1324 KASSERT(fdp->fd_freefile == 0);
1325 KASSERT(fdp->fd_exclose == false);
1326 KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
1327 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1328 for (fd = 0; fd < NDFDFILE; fd++) {
1329 KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] ==
1330 (fdfile_t *)fdp->fd_dfdfile[fd]);
1331 }
1332 for (fd = NDFDFILE; fd < NDFILE; fd++) {
1333 KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] == NULL);
1334 }
1335 KASSERT(fdp->fd_himap == fdp->fd_dhimap);
1336 KASSERT(fdp->fd_lomap == fdp->fd_dlomap);
1337 #endif /* DIAGNOSTIC */
1338
1339 fdp->fd_refcnt = 1;
1340 fd_checkmaps(fdp);
1341
1342 return fdp;
1343 }
1344
1345 /*
1346 * Initialize a file descriptor table.
1347 */
1348 static int
1349 filedesc_ctor(void *arg, void *obj, int flag)
1350 {
1351 filedesc_t *fdp = obj;
1352 fdfile_t **ffp;
1353 int i;
1354
1355 memset(fdp, 0, sizeof(*fdp));
1356 mutex_init(&fdp->fd_lock, MUTEX_DEFAULT, IPL_NONE);
1357 fdp->fd_lastfile = -1;
1358 fdp->fd_lastkqfile = -1;
1359 fdp->fd_dt = &fdp->fd_dtbuiltin;
1360 fdp->fd_dtbuiltin.dt_nfiles = NDFILE;
1361 fdp->fd_himap = fdp->fd_dhimap;
1362 fdp->fd_lomap = fdp->fd_dlomap;
1363
1364 CTASSERT(sizeof(fdp->fd_dfdfile[0]) >= sizeof(fdfile_t));
1365 for (i = 0, ffp = fdp->fd_dt->dt_ff; i < NDFDFILE; i++, ffp++) {
1366 fdfile_ctor(*ffp = (fdfile_t *)fdp->fd_dfdfile[i]);
1367 }
1368
1369 return 0;
1370 }
1371
1372 static void
1373 filedesc_dtor(void *arg, void *obj)
1374 {
1375 filedesc_t *fdp = obj;
1376 int i;
1377
1378 for (i = 0; i < NDFDFILE; i++) {
1379 fdfile_dtor((fdfile_t *)fdp->fd_dfdfile[i]);
1380 }
1381
1382 mutex_destroy(&fdp->fd_lock);
1383 }
1384
1385 /*
1386 * Make p share curproc's filedesc structure.
1387 */
1388 void
1389 fd_share(struct proc *p)
1390 {
1391 filedesc_t *fdp;
1392
1393 fdp = curlwp->l_fd;
1394 p->p_fd = fdp;
1395 atomic_inc_uint(&fdp->fd_refcnt);
1396 }
1397
1398 /*
1399 * Acquire a hold on a filedesc structure.
1400 */
1401 void
1402 fd_hold(lwp_t *l)
1403 {
1404 filedesc_t *fdp = l->l_fd;
1405
1406 atomic_inc_uint(&fdp->fd_refcnt);
1407 }
1408
1409 /*
1410 * Copy a filedesc structure.
1411 */
1412 filedesc_t *
1413 fd_copy(void)
1414 {
1415 filedesc_t *newfdp, *fdp;
1416 fdfile_t *ff, **ffp, **nffp, *ff2;
1417 int i, j, numfiles, lastfile, newlast;
1418 file_t *fp;
1419 fdtab_t *newdt;
1420
1421 fdp = curproc->p_fd;
1422 newfdp = pool_cache_get(filedesc_cache, PR_WAITOK);
1423 newfdp->fd_refcnt = 1;
1424
1425 #ifdef DIAGNOSTIC
1426 KASSERT(newfdp->fd_lastfile == -1);
1427 KASSERT(newfdp->fd_lastkqfile == -1);
1428 KASSERT(newfdp->fd_knhash == NULL);
1429 KASSERT(newfdp->fd_freefile == 0);
1430 KASSERT(newfdp->fd_exclose == false);
1431 KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
1432 KASSERT(newfdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1433 for (i = 0; i < NDFDFILE; i++) {
1434 KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] ==
1435 (fdfile_t *)&newfdp->fd_dfdfile[i]);
1436 }
1437 for (i = NDFDFILE; i < NDFILE; i++) {
1438 KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] == NULL);
1439 }
1440 #endif /* DIAGNOSTIC */
1441
1442 mutex_enter(&fdp->fd_lock);
1443 fd_checkmaps(fdp);
1444 numfiles = fdp->fd_dt->dt_nfiles;
1445 lastfile = fdp->fd_lastfile;
1446
1447 /*
1448 * If the number of open files fits in the internal arrays
1449 * of the open file structure, use them, otherwise allocate
1450 * additional memory for the number of descriptors currently
1451 * in use.
1452 */
1453 if (lastfile < NDFILE) {
1454 i = NDFILE;
1455 newdt = newfdp->fd_dt;
1456 KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
1457 } else {
1458 /*
1459 * Compute the smallest multiple of NDEXTENT needed
1460 * for the file descriptors currently in use,
1461 * allowing the table to shrink.
1462 */
1463 i = numfiles;
1464 while (i >= 2 * NDEXTENT && i > lastfile * 2) {
1465 i /= 2;
1466 }
1467 KASSERT(i > NDFILE);
1468 newdt = fd_dtab_alloc(i);
1469 newfdp->fd_dt = newdt;
1470 memcpy(newdt->dt_ff, newfdp->fd_dtbuiltin.dt_ff,
1471 NDFDFILE * sizeof(fdfile_t **));
1472 memset(newdt->dt_ff + NDFDFILE, 0,
1473 (i - NDFDFILE) * sizeof(fdfile_t **));
1474 }
1475 if (NDHISLOTS(i) <= NDHISLOTS(NDFILE)) {
1476 newfdp->fd_himap = newfdp->fd_dhimap;
1477 newfdp->fd_lomap = newfdp->fd_dlomap;
1478 } else {
1479 fd_map_alloc(i, &newfdp->fd_lomap, &newfdp->fd_himap);
1480 KASSERT(i >= NDENTRIES * NDENTRIES);
1481 memset(newfdp->fd_himap, 0, NDHISLOTS(i)*sizeof(uint32_t));
1482 memset(newfdp->fd_lomap, 0, NDLOSLOTS(i)*sizeof(uint32_t));
1483 }
1484 newfdp->fd_freefile = fdp->fd_freefile;
1485 newfdp->fd_exclose = fdp->fd_exclose;
1486
1487 ffp = fdp->fd_dt->dt_ff;
1488 nffp = newdt->dt_ff;
1489 newlast = -1;
1490 for (i = 0; i <= lastfile; i++, ffp++, nffp++) {
1491 KASSERT(i >= NDFDFILE ||
1492 *nffp == (fdfile_t *)newfdp->fd_dfdfile[i]);
1493 ff = *ffp;
1494 if (ff == NULL ||
1495 (fp = atomic_load_consume(&ff->ff_file)) == NULL) {
1496 /* Descriptor unused, or descriptor half open. */
1497 KASSERT(!fd_isused(newfdp, i));
1498 continue;
1499 }
1500 if (__predict_false(fp->f_type == DTYPE_KQUEUE)) {
1501 /* kqueue descriptors cannot be copied. */
1502 if (i < newfdp->fd_freefile) {
1503 newfdp->fd_freefile = i;
1504 }
1505 continue;
1506 }
1507 /* It's active: add a reference to the file. */
1508 mutex_enter(&fp->f_lock);
1509 fp->f_count++;
1510 mutex_exit(&fp->f_lock);
1511
1512 /* Allocate an fdfile_t to represent it. */
1513 if (i >= NDFDFILE) {
1514 ff2 = kmem_alloc(sizeof(*ff2), KM_SLEEP);
1515 fdfile_ctor(ff2);
1516 *nffp = ff2;
1517 } else {
1518 ff2 = newdt->dt_ff[i];
1519 }
1520 ff2->ff_file = fp;
1521 ff2->ff_exclose = ff->ff_exclose;
1522 ff2->ff_allocated = true;
1523
1524 /* Fix up bitmaps. */
1525 j = i >> NDENTRYSHIFT;
1526 KASSERT((newfdp->fd_lomap[j] & (1U << (i & NDENTRYMASK))) == 0);
1527 newfdp->fd_lomap[j] |= 1U << (i & NDENTRYMASK);
1528 if (__predict_false(newfdp->fd_lomap[j] == ~0)) {
1529 KASSERT((newfdp->fd_himap[j >> NDENTRYSHIFT] &
1530 (1U << (j & NDENTRYMASK))) == 0);
1531 newfdp->fd_himap[j >> NDENTRYSHIFT] |=
1532 1U << (j & NDENTRYMASK);
1533 }
1534 newlast = i;
1535 }
1536 KASSERT(newdt->dt_ff[0] == (fdfile_t *)newfdp->fd_dfdfile[0]);
1537 newfdp->fd_lastfile = newlast;
1538 fd_checkmaps(newfdp);
1539 mutex_exit(&fdp->fd_lock);
1540
1541 return newfdp;
1542 }
1543
1544 /*
1545 * Release a filedesc structure.
1546 */
1547 void
1548 fd_free(void)
1549 {
1550 fdfile_t *ff;
1551 file_t *fp;
1552 int fd, nf;
1553 fdtab_t *dt;
1554 lwp_t * const l = curlwp;
1555 filedesc_t * const fdp = l->l_fd;
1556 const bool noadvlock = (l->l_proc->p_flag & PK_ADVLOCK) == 0;
1557
1558 KASSERT(atomic_load_consume(&fdp->fd_dt)->dt_ff[0] ==
1559 (fdfile_t *)fdp->fd_dfdfile[0]);
1560 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1561 KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
1562
1563 membar_release();
1564 if (atomic_dec_uint_nv(&fdp->fd_refcnt) > 0)
1565 return;
1566 membar_acquire();
1567
1568 /*
1569 * Close any files that the process holds open.
1570 */
1571 dt = fdp->fd_dt;
1572 fd_checkmaps(fdp);
1573 #ifdef DEBUG
1574 fdp->fd_refcnt = -1; /* see fd_checkmaps */
1575 #endif
1576 for (fd = 0, nf = dt->dt_nfiles; fd < nf; fd++) {
1577 ff = dt->dt_ff[fd];
1578 KASSERT(fd >= NDFDFILE ||
1579 ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1580 if (ff == NULL)
1581 continue;
1582 if ((fp = atomic_load_consume(&ff->ff_file)) != NULL) {
1583 /*
1584 * Must use fd_close() here if there is
1585 * a reference from kqueue or we might have posix
1586 * advisory locks.
1587 */
1588 if (__predict_true(ff->ff_refcnt == 0) &&
1589 (noadvlock || fp->f_type != DTYPE_VNODE)) {
1590 ff->ff_file = NULL;
1591 ff->ff_exclose = false;
1592 ff->ff_allocated = false;
1593 closef(fp);
1594 } else {
1595 ff->ff_refcnt++;
1596 fd_close(fd);
1597 }
1598 }
1599 KASSERT(ff->ff_refcnt == 0);
1600 KASSERT(ff->ff_file == NULL);
1601 KASSERT(!ff->ff_exclose);
1602 KASSERT(!ff->ff_allocated);
1603 if (fd >= NDFDFILE) {
1604 cv_destroy(&ff->ff_closing);
1605 kmem_free(ff, sizeof(*ff));
1606 dt->dt_ff[fd] = NULL;
1607 }
1608 }
1609
1610 /*
1611 * Clean out the descriptor table for the next user and return
1612 * to the cache.
1613 */
1614 if (__predict_false(dt != &fdp->fd_dtbuiltin)) {
1615 fd_dtab_free(fdp->fd_dt);
1616 /* Otherwise, done above. */
1617 memset(&fdp->fd_dtbuiltin.dt_ff[NDFDFILE], 0,
1618 (NDFILE - NDFDFILE) * sizeof(fdp->fd_dtbuiltin.dt_ff[0]));
1619 fdp->fd_dt = &fdp->fd_dtbuiltin;
1620 }
1621 if (__predict_false(NDHISLOTS(nf) > NDHISLOTS(NDFILE))) {
1622 KASSERT(fdp->fd_himap != fdp->fd_dhimap);
1623 KASSERT(fdp->fd_lomap != fdp->fd_dlomap);
1624 fd_map_free(nf, fdp->fd_lomap, fdp->fd_himap);
1625 }
1626 if (__predict_false(fdp->fd_knhash != NULL)) {
1627 hashdone(fdp->fd_knhash, HASH_LIST, fdp->fd_knhashmask);
1628 fdp->fd_knhash = NULL;
1629 fdp->fd_knhashmask = 0;
1630 } else {
1631 KASSERT(fdp->fd_knhashmask == 0);
1632 }
1633 fdp->fd_dt = &fdp->fd_dtbuiltin;
1634 fdp->fd_lastkqfile = -1;
1635 fdp->fd_lastfile = -1;
1636 fdp->fd_freefile = 0;
1637 fdp->fd_exclose = false;
1638 memset(&fdp->fd_startzero, 0, sizeof(*fdp) -
1639 offsetof(filedesc_t, fd_startzero));
1640 fdp->fd_himap = fdp->fd_dhimap;
1641 fdp->fd_lomap = fdp->fd_dlomap;
1642 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1643 KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
1644 KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
1645 #ifdef DEBUG
1646 fdp->fd_refcnt = 0; /* see fd_checkmaps */
1647 #endif
1648 fd_checkmaps(fdp);
1649 pool_cache_put(filedesc_cache, fdp);
1650 }
1651
1652 /*
1653 * File Descriptor pseudo-device driver (/dev/fd/).
1654 *
1655 * Opening minor device N dup()s the file (if any) connected to file
1656 * descriptor N belonging to the calling process. Note that this driver
1657 * consists of only the ``open()'' routine, because all subsequent
1658 * references to this file will be direct to the other driver.
1659 */
1660 static int
1661 filedescopen(dev_t dev, int mode, int type, lwp_t *l)
1662 {
1663
1664 /*
1665 * XXX Kludge: set dupfd to contain the value of the
1666 * the file descriptor being sought for duplication. The error
1667 * return ensures that the vnode for this device will be released
1668 * by vn_open. Open will detect this special error and take the
1669 * actions in fd_dupopen below. Other callers of vn_open or VOP_OPEN
1670 * will simply report the error.
1671 */
1672 l->l_dupfd = minor(dev); /* XXX */
1673 return EDUPFD;
1674 }
1675
1676 /*
1677 * Duplicate the specified descriptor to a free descriptor.
1678 *
1679 * old is the original fd.
1680 * moveit is true if we should move rather than duplicate.
1681 * flags are the open flags (converted from O_* to F*).
1682 * newp returns the new fd on success.
1683 *
1684 * These two cases are produced by the EDUPFD and EMOVEFD magic
1685 * errnos, but in the interest of removing that regrettable interface,
1686 * vn_open has been changed to intercept them. Now vn_open returns
1687 * either a vnode or a filehandle, and the filehandle is accompanied
1688 * by a boolean that says whether we should dup (moveit == false) or
1689 * move (moveit == true) the fd.
1690 *
1691 * The dup case is used by /dev/stderr, /proc/self/fd, and such. The
1692 * move case is used by cloner devices that allocate a fd of their
1693 * own (a layering violation that should go away eventually) that
1694 * then needs to be put in the place open() expects it.
1695 */
1696 int
1697 fd_dupopen(int old, bool moveit, int flags, int *newp)
1698 {
1699 filedesc_t *fdp;
1700 fdfile_t *ff;
1701 file_t *fp;
1702 fdtab_t *dt;
1703 int error;
1704
1705 if ((fp = fd_getfile(old)) == NULL) {
1706 return EBADF;
1707 }
1708 fdp = curlwp->l_fd;
1709 dt = atomic_load_consume(&fdp->fd_dt);
1710 ff = dt->dt_ff[old];
1711
1712 /*
1713 * There are two cases of interest here.
1714 *
1715 * 1. moveit == false (used to be the EDUPFD magic errno):
1716 * simply dup (old) to file descriptor (new) and return.
1717 *
1718 * 2. moveit == true (used to be the EMOVEFD magic errno):
1719 * steal away the file structure from (old) and store it in
1720 * (new). (old) is effectively closed by this operation.
1721 */
1722 if (moveit == false) {
1723 /*
1724 * Check that the mode the file is being opened for is a
1725 * subset of the mode of the existing descriptor.
1726 */
1727 if (((flags & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
1728 error = EACCES;
1729 goto out;
1730 }
1731
1732 /* Copy it. */
1733 error = fd_dup(fp, 0, newp, ff->ff_exclose);
1734 } else {
1735 /* Copy it. */
1736 error = fd_dup(fp, 0, newp, ff->ff_exclose);
1737 if (error != 0) {
1738 goto out;
1739 }
1740
1741 /* Steal away the file pointer from 'old'. */
1742 (void)fd_close(old);
1743 return 0;
1744 }
1745
1746 out:
1747 fd_putfile(old);
1748 return error;
1749 }
1750
1751 /*
1752 * Close open files on exec.
1753 */
1754 void
1755 fd_closeexec(void)
1756 {
1757 proc_t *p;
1758 filedesc_t *fdp;
1759 fdfile_t *ff;
1760 lwp_t *l;
1761 fdtab_t *dt;
1762 int fd;
1763
1764 l = curlwp;
1765 p = l->l_proc;
1766 fdp = p->p_fd;
1767
1768 if (fdp->fd_refcnt > 1) {
1769 fdp = fd_copy();
1770 fd_free();
1771 p->p_fd = fdp;
1772 l->l_fd = fdp;
1773 }
1774 if (!fdp->fd_exclose) {
1775 return;
1776 }
1777 fdp->fd_exclose = false;
1778 dt = atomic_load_consume(&fdp->fd_dt);
1779
1780 for (fd = 0; fd <= fdp->fd_lastfile; fd++) {
1781 if ((ff = dt->dt_ff[fd]) == NULL) {
1782 KASSERT(fd >= NDFDFILE);
1783 continue;
1784 }
1785 KASSERT(fd >= NDFDFILE ||
1786 ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1787 if (ff->ff_file == NULL)
1788 continue;
1789 if (ff->ff_exclose) {
1790 /*
1791 * We need a reference to close the file.
1792 * No other threads can see the fdfile_t at
1793 * this point, so don't bother locking.
1794 */
1795 KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
1796 ff->ff_refcnt++;
1797 fd_close(fd);
1798 }
1799 }
1800 }
1801
1802 /*
1803 * Sets descriptor owner. If the owner is a process, 'pgid'
1804 * is set to positive value, process ID. If the owner is process group,
1805 * 'pgid' is set to -pg_id.
1806 */
1807 int
1808 fsetown(pid_t *pgid, u_long cmd, const void *data)
1809 {
1810 pid_t id = *(const pid_t *)data;
1811 int error;
1812
1813 if (id == INT_MIN)
1814 return EINVAL;
1815
1816 switch (cmd) {
1817 case TIOCSPGRP:
1818 if (id < 0)
1819 return EINVAL;
1820 id = -id;
1821 break;
1822 default:
1823 break;
1824 }
1825 if (id > 0) {
1826 mutex_enter(&proc_lock);
1827 error = proc_find(id) ? 0 : ESRCH;
1828 mutex_exit(&proc_lock);
1829 } else if (id < 0) {
1830 error = pgid_in_session(curproc, -id);
1831 } else {
1832 error = 0;
1833 }
1834 if (!error) {
1835 *pgid = id;
1836 }
1837 return error;
1838 }
1839
1840 void
1841 fd_set_exclose(struct lwp *l, int fd, bool exclose)
1842 {
1843 filedesc_t *fdp = l->l_fd;
1844 fdfile_t *ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1845
1846 ff->ff_exclose = exclose;
1847 if (exclose)
1848 fdp->fd_exclose = true;
1849 }
1850
1851 /*
1852 * Return descriptor owner information. If the value is positive,
1853 * it's process ID. If it's negative, it's process group ID and
1854 * needs the sign removed before use.
1855 */
1856 int
1857 fgetown(pid_t pgid, u_long cmd, void *data)
1858 {
1859
1860 switch (cmd) {
1861 case TIOCGPGRP:
1862 *(int *)data = -pgid;
1863 break;
1864 default:
1865 *(int *)data = pgid;
1866 break;
1867 }
1868 return 0;
1869 }
1870
1871 /*
1872 * Send signal to descriptor owner, either process or process group.
1873 */
1874 void
1875 fownsignal(pid_t pgid, int signo, int code, int band, void *fdescdata)
1876 {
1877 ksiginfo_t ksi;
1878
1879 KASSERT(!cpu_intr_p());
1880
1881 if (pgid == 0) {
1882 return;
1883 }
1884
1885 KSI_INIT(&ksi);
1886 ksi.ksi_signo = signo;
1887 ksi.ksi_code = code;
1888 ksi.ksi_band = band;
1889
1890 mutex_enter(&proc_lock);
1891 if (pgid > 0) {
1892 struct proc *p1;
1893
1894 p1 = proc_find(pgid);
1895 if (p1 != NULL) {
1896 kpsignal(p1, &ksi, fdescdata);
1897 }
1898 } else {
1899 struct pgrp *pgrp;
1900
1901 KASSERT(pgid < 0);
1902 pgrp = pgrp_find(-pgid);
1903 if (pgrp != NULL) {
1904 kpgsignal(pgrp, &ksi, fdescdata, 0);
1905 }
1906 }
1907 mutex_exit(&proc_lock);
1908 }
1909
1910 int
1911 fd_clone(file_t *fp, unsigned fd, int flag, const struct fileops *fops,
1912 void *data)
1913 {
1914 fdfile_t *ff;
1915 filedesc_t *fdp;
1916
1917 fp->f_flag = flag & FMASK;
1918 fdp = curproc->p_fd;
1919 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1920 KASSERT(ff != NULL);
1921 ff->ff_exclose = (flag & O_CLOEXEC) != 0;
1922 fp->f_type = DTYPE_MISC;
1923 fp->f_ops = fops;
1924 fp->f_data = data;
1925 curlwp->l_dupfd = fd;
1926 fd_affix(curproc, fp, fd);
1927
1928 return EMOVEFD;
1929 }
1930
1931 int
1932 fnullop_fcntl(file_t *fp, u_int cmd, void *data)
1933 {
1934
1935 if (cmd == F_SETFL)
1936 return 0;
1937
1938 return EOPNOTSUPP;
1939 }
1940
1941 int
1942 fnullop_poll(file_t *fp, int which)
1943 {
1944
1945 return 0;
1946 }
1947
1948 int
1949 fnullop_kqfilter(file_t *fp, struct knote *kn)
1950 {
1951
1952 return EOPNOTSUPP;
1953 }
1954
1955 void
1956 fnullop_restart(file_t *fp)
1957 {
1958
1959 }
1960
1961 int
1962 fbadop_read(file_t *fp, off_t *offset, struct uio *uio,
1963 kauth_cred_t cred, int flags)
1964 {
1965
1966 return EOPNOTSUPP;
1967 }
1968
1969 int
1970 fbadop_write(file_t *fp, off_t *offset, struct uio *uio,
1971 kauth_cred_t cred, int flags)
1972 {
1973
1974 return EOPNOTSUPP;
1975 }
1976
1977 int
1978 fbadop_ioctl(file_t *fp, u_long com, void *data)
1979 {
1980
1981 return EOPNOTSUPP;
1982 }
1983
1984 int
1985 fbadop_stat(file_t *fp, struct stat *sb)
1986 {
1987
1988 return EOPNOTSUPP;
1989 }
1990
1991 int
1992 fbadop_close(file_t *fp)
1993 {
1994
1995 return EOPNOTSUPP;
1996 }
1997
1998 /*
1999 * sysctl routines pertaining to file descriptors
2000 */
2001
2002 /* Initialized in sysctl_init() for now... */
2003 extern kmutex_t sysctl_file_marker_lock;
2004 static u_int sysctl_file_marker = 1;
2005
2006 /*
2007 * Expects to be called with proc_lock and sysctl_file_marker_lock locked.
2008 */
2009 static void
2010 sysctl_file_marker_reset(void)
2011 {
2012 struct proc *p;
2013
2014 PROCLIST_FOREACH(p, &allproc) {
2015 struct filedesc *fd = p->p_fd;
2016 fdtab_t *dt;
2017 u_int i;
2018
2019 mutex_enter(&fd->fd_lock);
2020 dt = fd->fd_dt;
2021 for (i = 0; i < dt->dt_nfiles; i++) {
2022 struct file *fp;
2023 fdfile_t *ff;
2024
2025 if ((ff = dt->dt_ff[i]) == NULL) {
2026 continue;
2027 }
2028 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
2029 continue;
2030 }
2031 fp->f_marker = 0;
2032 }
2033 mutex_exit(&fd->fd_lock);
2034 }
2035 }
2036
2037 /*
2038 * sysctl helper routine for kern.file pseudo-subtree.
2039 */
2040 static int
2041 sysctl_kern_file(SYSCTLFN_ARGS)
2042 {
2043 const bool allowaddr = get_expose_address(curproc);
2044 struct filelist flist;
2045 int error;
2046 size_t buflen;
2047 struct file *fp, fbuf;
2048 char *start, *where;
2049 struct proc *p;
2050
2051 start = where = oldp;
2052 buflen = *oldlenp;
2053
2054 if (where == NULL) {
2055 /*
2056 * overestimate by 10 files
2057 */
2058 *oldlenp = sizeof(filehead) + (nfiles + 10) *
2059 sizeof(struct file);
2060 return 0;
2061 }
2062
2063 /*
2064 * first sysctl_copyout filehead
2065 */
2066 if (buflen < sizeof(filehead)) {
2067 *oldlenp = 0;
2068 return 0;
2069 }
2070 sysctl_unlock();
2071 if (allowaddr) {
2072 memcpy(&flist, &filehead, sizeof(flist));
2073 } else {
2074 memset(&flist, 0, sizeof(flist));
2075 }
2076 error = sysctl_copyout(l, &flist, where, sizeof(flist));
2077 if (error) {
2078 sysctl_relock();
2079 return error;
2080 }
2081 buflen -= sizeof(flist);
2082 where += sizeof(flist);
2083
2084 /*
2085 * followed by an array of file structures
2086 */
2087 mutex_enter(&sysctl_file_marker_lock);
2088 mutex_enter(&proc_lock);
2089 PROCLIST_FOREACH(p, &allproc) {
2090 struct filedesc *fd;
2091 fdtab_t *dt;
2092 u_int i;
2093
2094 if (p->p_stat == SIDL) {
2095 /* skip embryonic processes */
2096 continue;
2097 }
2098 mutex_enter(p->p_lock);
2099 error = kauth_authorize_process(l->l_cred,
2100 KAUTH_PROCESS_CANSEE, p,
2101 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2102 NULL, NULL);
2103 mutex_exit(p->p_lock);
2104 if (error != 0) {
2105 /*
2106 * Don't leak kauth retval if we're silently
2107 * skipping this entry.
2108 */
2109 error = 0;
2110 continue;
2111 }
2112
2113 /*
2114 * Grab a hold on the process.
2115 */
2116 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2117 continue;
2118 }
2119 mutex_exit(&proc_lock);
2120
2121 fd = p->p_fd;
2122 mutex_enter(&fd->fd_lock);
2123 dt = fd->fd_dt;
2124 for (i = 0; i < dt->dt_nfiles; i++) {
2125 fdfile_t *ff;
2126
2127 if ((ff = dt->dt_ff[i]) == NULL) {
2128 continue;
2129 }
2130 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
2131 continue;
2132 }
2133
2134 mutex_enter(&fp->f_lock);
2135
2136 if ((fp->f_count == 0) ||
2137 (fp->f_marker == sysctl_file_marker)) {
2138 mutex_exit(&fp->f_lock);
2139 continue;
2140 }
2141
2142 /* Check that we have enough space. */
2143 if (buflen < sizeof(struct file)) {
2144 *oldlenp = where - start;
2145 mutex_exit(&fp->f_lock);
2146 error = ENOMEM;
2147 break;
2148 }
2149
2150 fill_file(&fbuf, fp);
2151 mutex_exit(&fp->f_lock);
2152 error = sysctl_copyout(l, &fbuf, where, sizeof(fbuf));
2153 if (error) {
2154 break;
2155 }
2156 buflen -= sizeof(struct file);
2157 where += sizeof(struct file);
2158
2159 fp->f_marker = sysctl_file_marker;
2160 }
2161 mutex_exit(&fd->fd_lock);
2162
2163 /*
2164 * Release reference to process.
2165 */
2166 mutex_enter(&proc_lock);
2167 rw_exit(&p->p_reflock);
2168
2169 if (error)
2170 break;
2171 }
2172
2173 sysctl_file_marker++;
2174 /* Reset all markers if wrapped. */
2175 if (sysctl_file_marker == 0) {
2176 sysctl_file_marker_reset();
2177 sysctl_file_marker++;
2178 }
2179
2180 mutex_exit(&proc_lock);
2181 mutex_exit(&sysctl_file_marker_lock);
2182
2183 *oldlenp = where - start;
2184 sysctl_relock();
2185 return error;
2186 }
2187
2188 /*
2189 * sysctl helper function for kern.file2
2190 */
2191 static int
2192 sysctl_kern_file2(SYSCTLFN_ARGS)
2193 {
2194 struct proc *p;
2195 struct file *fp;
2196 struct filedesc *fd;
2197 struct kinfo_file kf;
2198 char *dp;
2199 u_int i, op;
2200 size_t len, needed, elem_size, out_size;
2201 int error, arg, elem_count;
2202 fdfile_t *ff;
2203 fdtab_t *dt;
2204
2205 if (namelen == 1 && name[0] == CTL_QUERY)
2206 return sysctl_query(SYSCTLFN_CALL(rnode));
2207
2208 if (namelen != 4)
2209 return EINVAL;
2210
2211 error = 0;
2212 dp = oldp;
2213 len = (oldp != NULL) ? *oldlenp : 0;
2214 op = name[0];
2215 arg = name[1];
2216 elem_size = name[2];
2217 elem_count = name[3];
2218 out_size = MIN(sizeof(kf), elem_size);
2219 needed = 0;
2220
2221 if (elem_size < 1 || elem_count < 0)
2222 return EINVAL;
2223
2224 switch (op) {
2225 case KERN_FILE_BYFILE:
2226 case KERN_FILE_BYPID:
2227 /*
2228 * We're traversing the process list in both cases; the BYFILE
2229 * case does additional work of keeping track of files already
2230 * looked at.
2231 */
2232
2233 /* doesn't use arg so it must be zero */
2234 if ((op == KERN_FILE_BYFILE) && (arg != 0))
2235 return EINVAL;
2236
2237 if ((op == KERN_FILE_BYPID) && (arg < -1))
2238 /* -1 means all processes */
2239 return EINVAL;
2240
2241 sysctl_unlock();
2242 if (op == KERN_FILE_BYFILE)
2243 mutex_enter(&sysctl_file_marker_lock);
2244 mutex_enter(&proc_lock);
2245 PROCLIST_FOREACH(p, &allproc) {
2246 if (p->p_stat == SIDL) {
2247 /* skip embryonic processes */
2248 continue;
2249 }
2250 if (arg > 0 && p->p_pid != arg) {
2251 /* pick only the one we want */
2252 /* XXX want 0 to mean "kernel files" */
2253 continue;
2254 }
2255 mutex_enter(p->p_lock);
2256 error = kauth_authorize_process(l->l_cred,
2257 KAUTH_PROCESS_CANSEE, p,
2258 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2259 NULL, NULL);
2260 mutex_exit(p->p_lock);
2261 if (error != 0) {
2262 /*
2263 * Don't leak kauth retval if we're silently
2264 * skipping this entry.
2265 */
2266 error = 0;
2267 continue;
2268 }
2269
2270 /*
2271 * Grab a hold on the process.
2272 */
2273 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2274 continue;
2275 }
2276 mutex_exit(&proc_lock);
2277
2278 fd = p->p_fd;
2279 mutex_enter(&fd->fd_lock);
2280 dt = fd->fd_dt;
2281 for (i = 0; i < dt->dt_nfiles; i++) {
2282 if ((ff = dt->dt_ff[i]) == NULL) {
2283 continue;
2284 }
2285 if ((fp = atomic_load_consume(&ff->ff_file)) ==
2286 NULL) {
2287 continue;
2288 }
2289
2290 if ((op == KERN_FILE_BYFILE) &&
2291 (fp->f_marker == sysctl_file_marker)) {
2292 continue;
2293 }
2294 if (len >= elem_size && elem_count > 0) {
2295 mutex_enter(&fp->f_lock);
2296 fill_file2(&kf, fp, ff, i, p->p_pid);
2297 mutex_exit(&fp->f_lock);
2298 mutex_exit(&fd->fd_lock);
2299 error = sysctl_copyout(l,
2300 &kf, dp, out_size);
2301 mutex_enter(&fd->fd_lock);
2302 if (error)
2303 break;
2304 dp += elem_size;
2305 len -= elem_size;
2306 }
2307 if (op == KERN_FILE_BYFILE)
2308 fp->f_marker = sysctl_file_marker;
2309 needed += elem_size;
2310 if (elem_count > 0 && elem_count != INT_MAX)
2311 elem_count--;
2312 }
2313 mutex_exit(&fd->fd_lock);
2314
2315 /*
2316 * Release reference to process.
2317 */
2318 mutex_enter(&proc_lock);
2319 rw_exit(&p->p_reflock);
2320 }
2321 if (op == KERN_FILE_BYFILE) {
2322 sysctl_file_marker++;
2323
2324 /* Reset all markers if wrapped. */
2325 if (sysctl_file_marker == 0) {
2326 sysctl_file_marker_reset();
2327 sysctl_file_marker++;
2328 }
2329 }
2330 mutex_exit(&proc_lock);
2331 if (op == KERN_FILE_BYFILE)
2332 mutex_exit(&sysctl_file_marker_lock);
2333 sysctl_relock();
2334 break;
2335 default:
2336 return EINVAL;
2337 }
2338
2339 if (oldp == NULL)
2340 needed += KERN_FILESLOP * elem_size;
2341 *oldlenp = needed;
2342
2343 return error;
2344 }
2345
2346 static void
2347 fill_file(struct file *fp, const struct file *fpsrc)
2348 {
2349 const bool allowaddr = get_expose_address(curproc);
2350
2351 memset(fp, 0, sizeof(*fp));
2352
2353 fp->f_offset = fpsrc->f_offset;
2354 COND_SET_PTR(fp->f_cred, fpsrc->f_cred, allowaddr);
2355 COND_SET_CPTR(fp->f_ops, fpsrc->f_ops, allowaddr);
2356 COND_SET_STRUCT(fp->f_undata, fpsrc->f_undata, allowaddr);
2357 COND_SET_STRUCT(fp->f_list, fpsrc->f_list, allowaddr);
2358 fp->f_flag = fpsrc->f_flag;
2359 fp->f_marker = fpsrc->f_marker;
2360 fp->f_type = fpsrc->f_type;
2361 fp->f_advice = fpsrc->f_advice;
2362 fp->f_count = fpsrc->f_count;
2363 fp->f_msgcount = fpsrc->f_msgcount;
2364 fp->f_unpcount = fpsrc->f_unpcount;
2365 COND_SET_STRUCT(fp->f_unplist, fpsrc->f_unplist, allowaddr);
2366 }
2367
2368 static void
2369 fill_file2(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
2370 int i, pid_t pid)
2371 {
2372 const bool allowaddr = get_expose_address(curproc);
2373
2374 memset(kp, 0, sizeof(*kp));
2375
2376 COND_SET_VALUE(kp->ki_fileaddr, PTRTOUINT64(fp), allowaddr);
2377 kp->ki_flag = fp->f_flag;
2378 kp->ki_iflags = 0;
2379 kp->ki_ftype = fp->f_type;
2380 kp->ki_count = fp->f_count;
2381 kp->ki_msgcount = fp->f_msgcount;
2382 COND_SET_VALUE(kp->ki_fucred, PTRTOUINT64(fp->f_cred), allowaddr);
2383 kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
2384 kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
2385 COND_SET_VALUE(kp->ki_fops, PTRTOUINT64(fp->f_ops), allowaddr);
2386 kp->ki_foffset = fp->f_offset;
2387 COND_SET_VALUE(kp->ki_fdata, PTRTOUINT64(fp->f_data), allowaddr);
2388
2389 /* vnode information to glue this file to something */
2390 if (fp->f_type == DTYPE_VNODE) {
2391 struct vnode *vp = fp->f_vnode;
2392
2393 COND_SET_VALUE(kp->ki_vun, PTRTOUINT64(vp->v_un.vu_socket),
2394 allowaddr);
2395 kp->ki_vsize = vp->v_size;
2396 kp->ki_vtype = vp->v_type;
2397 kp->ki_vtag = vp->v_tag;
2398 COND_SET_VALUE(kp->ki_vdata, PTRTOUINT64(vp->v_data),
2399 allowaddr);
2400 }
2401
2402 /* process information when retrieved via KERN_FILE_BYPID */
2403 if (ff != NULL) {
2404 kp->ki_pid = pid;
2405 kp->ki_fd = i;
2406 kp->ki_ofileflags = ff->ff_exclose;
2407 kp->ki_usecount = ff->ff_refcnt;
2408 }
2409 }
2410