Home | History | Annotate | Line # | Download | only in kern
kern_descrip.c revision 1.260
      1 /*	$NetBSD: kern_descrip.c,v 1.260 2023/09/12 16:17:21 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_descrip.c	8.8 (Berkeley) 2/14/95
     66  */
     67 
     68 /*
     69  * File descriptor management.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_descrip.c,v 1.260 2023/09/12 16:17:21 ad Exp $");
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/filedesc.h>
     78 #include <sys/kernel.h>
     79 #include <sys/proc.h>
     80 #include <sys/file.h>
     81 #include <sys/socket.h>
     82 #include <sys/socketvar.h>
     83 #include <sys/stat.h>
     84 #include <sys/ioctl.h>
     85 #include <sys/fcntl.h>
     86 #include <sys/pool.h>
     87 #include <sys/unistd.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/conf.h>
     90 #include <sys/event.h>
     91 #include <sys/kauth.h>
     92 #include <sys/atomic.h>
     93 #include <sys/syscallargs.h>
     94 #include <sys/cpu.h>
     95 #include <sys/kmem.h>
     96 #include <sys/vnode.h>
     97 #include <sys/sysctl.h>
     98 #include <sys/ktrace.h>
     99 
    100 /*
    101  * A list (head) of open files, counter, and lock protecting them.
    102  */
    103 struct filelist		filehead	__cacheline_aligned;
    104 static u_int		nfiles		__cacheline_aligned;
    105 kmutex_t		filelist_lock	__cacheline_aligned;
    106 
    107 static pool_cache_t	filedesc_cache	__read_mostly;
    108 static pool_cache_t	file_cache	__read_mostly;
    109 static pool_cache_t	fdfile_cache	__read_mostly;
    110 
    111 static int	file_ctor(void *, void *, int);
    112 static void	file_dtor(void *, void *);
    113 static int	fdfile_ctor(void *, void *, int);
    114 static void	fdfile_dtor(void *, void *);
    115 static int	filedesc_ctor(void *, void *, int);
    116 static void	filedesc_dtor(void *, void *);
    117 static int	filedescopen(dev_t, int, int, lwp_t *);
    118 
    119 static int sysctl_kern_file(SYSCTLFN_PROTO);
    120 static int sysctl_kern_file2(SYSCTLFN_PROTO);
    121 static void fill_file(struct file *, const struct file *);
    122 static void fill_file2(struct kinfo_file *, const file_t *, const fdfile_t *,
    123 		      int, pid_t);
    124 
    125 const struct cdevsw filedesc_cdevsw = {
    126 	.d_open = filedescopen,
    127 	.d_close = noclose,
    128 	.d_read = noread,
    129 	.d_write = nowrite,
    130 	.d_ioctl = noioctl,
    131 	.d_stop = nostop,
    132 	.d_tty = notty,
    133 	.d_poll = nopoll,
    134 	.d_mmap = nommap,
    135 	.d_kqfilter = nokqfilter,
    136 	.d_discard = nodiscard,
    137 	.d_flag = D_OTHER | D_MPSAFE
    138 };
    139 
    140 /* For ease of reading. */
    141 __strong_alias(fd_putvnode,fd_putfile)
    142 __strong_alias(fd_putsock,fd_putfile)
    143 
    144 /*
    145  * Initialize the descriptor system.
    146  */
    147 void
    148 fd_sys_init(void)
    149 {
    150 	static struct sysctllog *clog;
    151 
    152 	mutex_init(&filelist_lock, MUTEX_DEFAULT, IPL_NONE);
    153 
    154 	LIST_INIT(&filehead);
    155 
    156 	file_cache = pool_cache_init(sizeof(file_t), coherency_unit, 0,
    157 	    0, "file", NULL, IPL_NONE, file_ctor, file_dtor, NULL);
    158 	KASSERT(file_cache != NULL);
    159 
    160 	fdfile_cache = pool_cache_init(sizeof(fdfile_t), coherency_unit, 0,
    161 	    PR_LARGECACHE, "fdfile", NULL, IPL_NONE, fdfile_ctor, fdfile_dtor,
    162 	    NULL);
    163 	KASSERT(fdfile_cache != NULL);
    164 
    165 	filedesc_cache = pool_cache_init(sizeof(filedesc_t), coherency_unit,
    166 	    0, 0, "filedesc", NULL, IPL_NONE, filedesc_ctor, filedesc_dtor,
    167 	    NULL);
    168 	KASSERT(filedesc_cache != NULL);
    169 
    170 	sysctl_createv(&clog, 0, NULL, NULL,
    171 		       CTLFLAG_PERMANENT,
    172 		       CTLTYPE_STRUCT, "file",
    173 		       SYSCTL_DESCR("System open file table"),
    174 		       sysctl_kern_file, 0, NULL, 0,
    175 		       CTL_KERN, KERN_FILE, CTL_EOL);
    176 	sysctl_createv(&clog, 0, NULL, NULL,
    177 		       CTLFLAG_PERMANENT,
    178 		       CTLTYPE_STRUCT, "file2",
    179 		       SYSCTL_DESCR("System open file table"),
    180 		       sysctl_kern_file2, 0, NULL, 0,
    181 		       CTL_KERN, KERN_FILE2, CTL_EOL);
    182 }
    183 
    184 static bool
    185 fd_isused(filedesc_t *fdp, unsigned fd)
    186 {
    187 	u_int off = fd >> NDENTRYSHIFT;
    188 
    189 	KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
    190 
    191 	return (fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0;
    192 }
    193 
    194 /*
    195  * Verify that the bitmaps match the descriptor table.
    196  */
    197 static inline void
    198 fd_checkmaps(filedesc_t *fdp)
    199 {
    200 #ifdef DEBUG
    201 	fdtab_t *dt;
    202 	u_int fd;
    203 
    204 	KASSERT(fdp->fd_refcnt <= 1 || mutex_owned(&fdp->fd_lock));
    205 
    206 	dt = fdp->fd_dt;
    207 	if (fdp->fd_refcnt == -1) {
    208 		/*
    209 		 * fd_free tears down the table without maintaining its bitmap.
    210 		 */
    211 		return;
    212 	}
    213 	for (fd = 0; fd < dt->dt_nfiles; fd++) {
    214 		if (fd < NDFDFILE) {
    215 			KASSERT(dt->dt_ff[fd] ==
    216 			    (fdfile_t *)fdp->fd_dfdfile[fd]);
    217 		}
    218 		if (dt->dt_ff[fd] == NULL) {
    219 			KASSERT(!fd_isused(fdp, fd));
    220 		} else if (dt->dt_ff[fd]->ff_file != NULL) {
    221 			KASSERT(fd_isused(fdp, fd));
    222 		}
    223 	}
    224 #endif
    225 }
    226 
    227 static int
    228 fd_next_zero(filedesc_t *fdp, uint32_t *bitmap, int want, u_int bits)
    229 {
    230 	int i, off, maxoff;
    231 	uint32_t sub;
    232 
    233 	KASSERT(mutex_owned(&fdp->fd_lock));
    234 
    235 	fd_checkmaps(fdp);
    236 
    237 	if (want > bits)
    238 		return -1;
    239 
    240 	off = want >> NDENTRYSHIFT;
    241 	i = want & NDENTRYMASK;
    242 	if (i) {
    243 		sub = bitmap[off] | ((u_int)~0 >> (NDENTRIES - i));
    244 		if (sub != ~0)
    245 			goto found;
    246 		off++;
    247 	}
    248 
    249 	maxoff = NDLOSLOTS(bits);
    250 	while (off < maxoff) {
    251 		if ((sub = bitmap[off]) != ~0)
    252 			goto found;
    253 		off++;
    254 	}
    255 
    256 	return -1;
    257 
    258  found:
    259 	return (off << NDENTRYSHIFT) + ffs(~sub) - 1;
    260 }
    261 
    262 static int
    263 fd_last_set(filedesc_t *fd, int last)
    264 {
    265 	int off, i;
    266 	fdfile_t **ff = fd->fd_dt->dt_ff;
    267 	uint32_t *bitmap = fd->fd_lomap;
    268 
    269 	KASSERT(mutex_owned(&fd->fd_lock));
    270 
    271 	fd_checkmaps(fd);
    272 
    273 	off = (last - 1) >> NDENTRYSHIFT;
    274 
    275 	while (off >= 0 && !bitmap[off])
    276 		off--;
    277 
    278 	if (off < 0)
    279 		return -1;
    280 
    281 	i = ((off + 1) << NDENTRYSHIFT) - 1;
    282 	if (i >= last)
    283 		i = last - 1;
    284 
    285 	/* XXX should use bitmap */
    286 	while (i > 0 && (ff[i] == NULL || !ff[i]->ff_allocated))
    287 		i--;
    288 
    289 	return i;
    290 }
    291 
    292 static inline void
    293 fd_used(filedesc_t *fdp, unsigned fd)
    294 {
    295 	u_int off = fd >> NDENTRYSHIFT;
    296 	fdfile_t *ff;
    297 
    298 	ff = fdp->fd_dt->dt_ff[fd];
    299 
    300 	KASSERT(mutex_owned(&fdp->fd_lock));
    301 	KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) == 0);
    302 	KASSERT(ff != NULL);
    303 	KASSERT(ff->ff_file == NULL);
    304 	KASSERT(!ff->ff_allocated);
    305 
    306 	ff->ff_allocated = true;
    307 	fdp->fd_lomap[off] |= 1U << (fd & NDENTRYMASK);
    308 	if (__predict_false(fdp->fd_lomap[off] == ~0)) {
    309 		KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
    310 		    (1U << (off & NDENTRYMASK))) == 0);
    311 		fdp->fd_himap[off >> NDENTRYSHIFT] |= 1U << (off & NDENTRYMASK);
    312 	}
    313 
    314 	if ((int)fd > fdp->fd_lastfile) {
    315 		fdp->fd_lastfile = fd;
    316 	}
    317 
    318 	fd_checkmaps(fdp);
    319 }
    320 
    321 static inline void
    322 fd_unused(filedesc_t *fdp, unsigned fd)
    323 {
    324 	u_int off = fd >> NDENTRYSHIFT;
    325 	fdfile_t *ff;
    326 
    327 	ff = fdp->fd_dt->dt_ff[fd];
    328 
    329 	KASSERT(mutex_owned(&fdp->fd_lock));
    330 	KASSERT(ff != NULL);
    331 	KASSERT(ff->ff_file == NULL);
    332 	KASSERT(ff->ff_allocated);
    333 
    334 	if (fd < fdp->fd_freefile) {
    335 		fdp->fd_freefile = fd;
    336 	}
    337 
    338 	if (fdp->fd_lomap[off] == ~0) {
    339 		KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
    340 		    (1U << (off & NDENTRYMASK))) != 0);
    341 		fdp->fd_himap[off >> NDENTRYSHIFT] &=
    342 		    ~(1U << (off & NDENTRYMASK));
    343 	}
    344 	KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0);
    345 	fdp->fd_lomap[off] &= ~(1U << (fd & NDENTRYMASK));
    346 	ff->ff_allocated = false;
    347 
    348 	KASSERT(fd <= fdp->fd_lastfile);
    349 	if (fd == fdp->fd_lastfile) {
    350 		fdp->fd_lastfile = fd_last_set(fdp, fd);
    351 	}
    352 	fd_checkmaps(fdp);
    353 }
    354 
    355 /*
    356  * Look up the file structure corresponding to a file descriptor
    357  * and return the file, holding a reference on the descriptor.
    358  */
    359 file_t *
    360 fd_getfile(unsigned fd)
    361 {
    362 	filedesc_t *fdp;
    363 	fdfile_t *ff;
    364 	file_t *fp;
    365 	fdtab_t *dt;
    366 
    367 	/*
    368 	 * Look up the fdfile structure representing this descriptor.
    369 	 * We are doing this unlocked.  See fd_tryexpand().
    370 	 */
    371 	fdp = curlwp->l_fd;
    372 	dt = atomic_load_consume(&fdp->fd_dt);
    373 	if (__predict_false(fd >= dt->dt_nfiles)) {
    374 		return NULL;
    375 	}
    376 	ff = dt->dt_ff[fd];
    377 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    378 	if (__predict_false(ff == NULL)) {
    379 		return NULL;
    380 	}
    381 
    382 	/* Now get a reference to the descriptor. */
    383 	if (fdp->fd_refcnt == 1) {
    384 		/*
    385 		 * Single threaded: don't need to worry about concurrent
    386 		 * access (other than earlier calls to kqueue, which may
    387 		 * hold a reference to the descriptor).
    388 		 */
    389 		ff->ff_refcnt++;
    390 	} else {
    391 		/*
    392 		 * Multi threaded: issue a memory barrier to ensure that we
    393 		 * acquire the file pointer _after_ adding a reference.  If
    394 		 * no memory barrier, we could fetch a stale pointer.
    395 		 *
    396 		 * In particular, we must coordinate the following four
    397 		 * memory operations:
    398 		 *
    399 		 *	A. fd_close store ff->ff_file = NULL
    400 		 *	B. fd_close refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
    401 		 *	C. fd_getfile atomic_inc_uint(&ff->ff_refcnt)
    402 		 *	D. fd_getfile load fp = ff->ff_file
    403 		 *
    404 		 * If the order is D;A;B;C:
    405 		 *
    406 		 *	1. D: fp = ff->ff_file
    407 		 *	2. A: ff->ff_file = NULL
    408 		 *	3. B: refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
    409 		 *	4. C: atomic_inc_uint(&ff->ff_refcnt)
    410 		 *
    411 		 * then fd_close determines that there are no more
    412 		 * references and decides to free fp immediately, at
    413 		 * the same that fd_getfile ends up with an fp that's
    414 		 * about to be freed.  *boom*
    415 		 *
    416 		 * By making B a release operation in fd_close, and by
    417 		 * making C an acquire operation in fd_getfile, since
    418 		 * they are atomic operations on the same object, which
    419 		 * has a total modification order, we guarantee either:
    420 		 *
    421 		 *	- B happens before C.  Then since A is
    422 		 *	  sequenced before B in fd_close, and C is
    423 		 *	  sequenced before D in fd_getfile, we
    424 		 *	  guarantee A happens before D, so fd_getfile
    425 		 *	  reads a null fp and safely fails.
    426 		 *
    427 		 *	- C happens before B.  Then fd_getfile may read
    428 		 *	  null or nonnull, but either way, fd_close
    429 		 *	  will safely wait for references to drain.
    430 		 */
    431 		atomic_inc_uint(&ff->ff_refcnt);
    432 		membar_acquire();
    433 	}
    434 
    435 	/*
    436 	 * If the file is not open or is being closed then put the
    437 	 * reference back.
    438 	 */
    439 	fp = atomic_load_consume(&ff->ff_file);
    440 	if (__predict_true(fp != NULL)) {
    441 		return fp;
    442 	}
    443 	fd_putfile(fd);
    444 	return NULL;
    445 }
    446 
    447 /*
    448  * Release a reference to a file descriptor acquired with fd_getfile().
    449  */
    450 void
    451 fd_putfile(unsigned fd)
    452 {
    453 	filedesc_t *fdp;
    454 	fdfile_t *ff;
    455 	u_int u, v;
    456 
    457 	fdp = curlwp->l_fd;
    458 	KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
    459 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
    460 
    461 	KASSERT(ff != NULL);
    462 	KASSERT((ff->ff_refcnt & FR_MASK) > 0);
    463 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    464 
    465 	if (fdp->fd_refcnt == 1) {
    466 		/*
    467 		 * Single threaded: don't need to worry about concurrent
    468 		 * access (other than earlier calls to kqueue, which may
    469 		 * hold a reference to the descriptor).
    470 		 */
    471 		if (__predict_false((ff->ff_refcnt & FR_CLOSING) != 0)) {
    472 			fd_close(fd);
    473 			return;
    474 		}
    475 		ff->ff_refcnt--;
    476 		return;
    477 	}
    478 
    479 	/*
    480 	 * Ensure that any use of the file is complete and globally
    481 	 * visible before dropping the final reference.  If no membar,
    482 	 * the current CPU could still access memory associated with
    483 	 * the file after it has been freed or recycled by another
    484 	 * CPU.
    485 	 */
    486 	membar_release();
    487 
    488 	/*
    489 	 * Be optimistic and start out with the assumption that no other
    490 	 * threads are trying to close the descriptor.  If the CAS fails,
    491 	 * we lost a race and/or it's being closed.
    492 	 */
    493 	for (u = ff->ff_refcnt & FR_MASK;; u = v) {
    494 		v = atomic_cas_uint(&ff->ff_refcnt, u, u - 1);
    495 		if (__predict_true(u == v)) {
    496 			return;
    497 		}
    498 		if (__predict_false((v & FR_CLOSING) != 0)) {
    499 			break;
    500 		}
    501 	}
    502 
    503 	/* Another thread is waiting to close the file: join it. */
    504 	(void)fd_close(fd);
    505 }
    506 
    507 /*
    508  * Convenience wrapper around fd_getfile() that returns reference
    509  * to a vnode.
    510  */
    511 int
    512 fd_getvnode(unsigned fd, file_t **fpp)
    513 {
    514 	vnode_t *vp;
    515 	file_t *fp;
    516 
    517 	fp = fd_getfile(fd);
    518 	if (__predict_false(fp == NULL)) {
    519 		return EBADF;
    520 	}
    521 	if (__predict_false(fp->f_type != DTYPE_VNODE)) {
    522 		fd_putfile(fd);
    523 		return EINVAL;
    524 	}
    525 	vp = fp->f_vnode;
    526 	if (__predict_false(vp->v_type == VBAD)) {
    527 		/* XXX Is this case really necessary? */
    528 		fd_putfile(fd);
    529 		return EBADF;
    530 	}
    531 	*fpp = fp;
    532 	return 0;
    533 }
    534 
    535 /*
    536  * Convenience wrapper around fd_getfile() that returns reference
    537  * to a socket.
    538  */
    539 int
    540 fd_getsock1(unsigned fd, struct socket **sop, file_t **fp)
    541 {
    542 	*fp = fd_getfile(fd);
    543 	if (__predict_false(*fp == NULL)) {
    544 		return EBADF;
    545 	}
    546 	if (__predict_false((*fp)->f_type != DTYPE_SOCKET)) {
    547 		fd_putfile(fd);
    548 		return ENOTSOCK;
    549 	}
    550 	*sop = (*fp)->f_socket;
    551 	return 0;
    552 }
    553 
    554 int
    555 fd_getsock(unsigned fd, struct socket **sop)
    556 {
    557 	file_t *fp;
    558 	return fd_getsock1(fd, sop, &fp);
    559 }
    560 
    561 /*
    562  * Look up the file structure corresponding to a file descriptor
    563  * and return it with a reference held on the file, not the
    564  * descriptor.
    565  *
    566  * This is heavyweight and only used when accessing descriptors
    567  * from a foreign process.  The caller must ensure that `p' does
    568  * not exit or fork across this call.
    569  *
    570  * To release the file (not descriptor) reference, use closef().
    571  */
    572 file_t *
    573 fd_getfile2(proc_t *p, unsigned fd)
    574 {
    575 	filedesc_t *fdp;
    576 	fdfile_t *ff;
    577 	file_t *fp;
    578 	fdtab_t *dt;
    579 
    580 	fdp = p->p_fd;
    581 	mutex_enter(&fdp->fd_lock);
    582 	dt = fdp->fd_dt;
    583 	if (fd >= dt->dt_nfiles) {
    584 		mutex_exit(&fdp->fd_lock);
    585 		return NULL;
    586 	}
    587 	if ((ff = dt->dt_ff[fd]) == NULL) {
    588 		mutex_exit(&fdp->fd_lock);
    589 		return NULL;
    590 	}
    591 	if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
    592 		mutex_exit(&fdp->fd_lock);
    593 		return NULL;
    594 	}
    595 	mutex_enter(&fp->f_lock);
    596 	fp->f_count++;
    597 	mutex_exit(&fp->f_lock);
    598 	mutex_exit(&fdp->fd_lock);
    599 
    600 	return fp;
    601 }
    602 
    603 /*
    604  * Internal form of close.  Must be called with a reference to the
    605  * descriptor, and will drop the reference.  When all descriptor
    606  * references are dropped, releases the descriptor slot and a single
    607  * reference to the file structure.
    608  */
    609 int
    610 fd_close(unsigned fd)
    611 {
    612 	struct flock lf;
    613 	filedesc_t *fdp;
    614 	fdfile_t *ff;
    615 	file_t *fp;
    616 	proc_t *p;
    617 	lwp_t *l;
    618 	u_int refcnt;
    619 
    620 	l = curlwp;
    621 	p = l->l_proc;
    622 	fdp = l->l_fd;
    623 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
    624 
    625 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    626 
    627 	mutex_enter(&fdp->fd_lock);
    628 	KASSERT((ff->ff_refcnt & FR_MASK) > 0);
    629 	fp = atomic_load_consume(&ff->ff_file);
    630 	if (__predict_false(fp == NULL)) {
    631 		/*
    632 		 * Another user of the file is already closing, and is
    633 		 * waiting for other users of the file to drain.  Release
    634 		 * our reference, and wake up the closer.
    635 		 */
    636 		membar_release();
    637 		atomic_dec_uint(&ff->ff_refcnt);
    638 		cv_broadcast(&ff->ff_closing);
    639 		mutex_exit(&fdp->fd_lock);
    640 
    641 		/*
    642 		 * An application error, so pretend that the descriptor
    643 		 * was already closed.  We can't safely wait for it to
    644 		 * be closed without potentially deadlocking.
    645 		 */
    646 		return (EBADF);
    647 	}
    648 	KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
    649 
    650 	/*
    651 	 * There may be multiple users of this file within the process.
    652 	 * Notify existing and new users that the file is closing.  This
    653 	 * will prevent them from adding additional uses to this file
    654 	 * while we are closing it.
    655 	 */
    656 	atomic_store_relaxed(&ff->ff_file, NULL);
    657 	ff->ff_exclose = false;
    658 
    659 	/*
    660 	 * We expect the caller to hold a descriptor reference - drop it.
    661 	 * The reference count may increase beyond zero at this point due
    662 	 * to an erroneous descriptor reference by an application, but
    663 	 * fd_getfile() will notice that the file is being closed and drop
    664 	 * the reference again.
    665 	 */
    666 	if (fdp->fd_refcnt == 1) {
    667 		/* Single threaded. */
    668 		refcnt = --(ff->ff_refcnt);
    669 	} else {
    670 		/* Multi threaded. */
    671 		membar_release();
    672 		refcnt = atomic_dec_uint_nv(&ff->ff_refcnt);
    673 		membar_acquire();
    674 	}
    675 	if (__predict_false(refcnt != 0)) {
    676 		/*
    677 		 * Wait for other references to drain.  This is typically
    678 		 * an application error - the descriptor is being closed
    679 		 * while still in use.
    680 		 * (Or just a threaded application trying to unblock its
    681 		 * thread that sleeps in (say) accept()).
    682 		 */
    683 		atomic_or_uint(&ff->ff_refcnt, FR_CLOSING);
    684 
    685 		/*
    686 		 * Remove any knotes attached to the file.  A knote
    687 		 * attached to the descriptor can hold references on it.
    688 		 */
    689 		mutex_exit(&fdp->fd_lock);
    690 		if (!SLIST_EMPTY(&ff->ff_knlist)) {
    691 			knote_fdclose(fd);
    692 		}
    693 
    694 		/*
    695 		 * Since the file system code doesn't know which fd
    696 		 * each request came from (think dup()), we have to
    697 		 * ask it to return ERESTART for any long-term blocks.
    698 		 * The re-entry through read/write/etc will detect the
    699 		 * closed fd and return EBAFD.
    700 		 * Blocked partial writes may return a short length.
    701 		 */
    702 		(*fp->f_ops->fo_restart)(fp);
    703 		mutex_enter(&fdp->fd_lock);
    704 
    705 		/*
    706 		 * We need to see the count drop to zero at least once,
    707 		 * in order to ensure that all pre-existing references
    708 		 * have been drained.  New references past this point are
    709 		 * of no interest.
    710 		 * XXX (dsl) this may need to call fo_restart() after a
    711 		 * timeout to guarantee that all the system calls exit.
    712 		 */
    713 		while ((ff->ff_refcnt & FR_MASK) != 0) {
    714 			cv_wait(&ff->ff_closing, &fdp->fd_lock);
    715 		}
    716 		atomic_and_uint(&ff->ff_refcnt, ~FR_CLOSING);
    717 	} else {
    718 		/* If no references, there must be no knotes. */
    719 		KASSERT(SLIST_EMPTY(&ff->ff_knlist));
    720 	}
    721 
    722 	/*
    723 	 * POSIX record locking dictates that any close releases ALL
    724 	 * locks owned by this process.  This is handled by setting
    725 	 * a flag in the unlock to free ONLY locks obeying POSIX
    726 	 * semantics, and not to free BSD-style file locks.
    727 	 * If the descriptor was in a message, POSIX-style locks
    728 	 * aren't passed with the descriptor.
    729 	 */
    730 	if (__predict_false((p->p_flag & PK_ADVLOCK) != 0) &&
    731 	    fp->f_ops->fo_advlock != NULL) {
    732 		lf.l_whence = SEEK_SET;
    733 		lf.l_start = 0;
    734 		lf.l_len = 0;
    735 		lf.l_type = F_UNLCK;
    736 		mutex_exit(&fdp->fd_lock);
    737 		(void)(*fp->f_ops->fo_advlock)(fp, p, F_UNLCK, &lf, F_POSIX);
    738 		mutex_enter(&fdp->fd_lock);
    739 	}
    740 
    741 	/* Free descriptor slot. */
    742 	fd_unused(fdp, fd);
    743 	mutex_exit(&fdp->fd_lock);
    744 
    745 	/* Now drop reference to the file itself. */
    746 	return closef(fp);
    747 }
    748 
    749 /*
    750  * Duplicate a file descriptor.
    751  */
    752 int
    753 fd_dup(file_t *fp, int minfd, int *newp, bool exclose)
    754 {
    755 	proc_t *p = curproc;
    756 	fdtab_t *dt;
    757 	int error;
    758 
    759 	while ((error = fd_alloc(p, minfd, newp)) != 0) {
    760 		if (error != ENOSPC) {
    761 			return error;
    762 		}
    763 		fd_tryexpand(p);
    764 	}
    765 
    766 	dt = atomic_load_consume(&curlwp->l_fd->fd_dt);
    767 	dt->dt_ff[*newp]->ff_exclose = exclose;
    768 	fd_affix(p, fp, *newp);
    769 	return 0;
    770 }
    771 
    772 /*
    773  * dup2 operation.
    774  */
    775 int
    776 fd_dup2(file_t *fp, unsigned newfd, int flags)
    777 {
    778 	filedesc_t *fdp = curlwp->l_fd;
    779 	fdfile_t *ff;
    780 	fdtab_t *dt;
    781 
    782 	if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
    783 		return EINVAL;
    784 	/*
    785 	 * Ensure there are enough slots in the descriptor table,
    786 	 * and allocate an fdfile_t up front in case we need it.
    787 	 */
    788 	while (newfd >= atomic_load_consume(&fdp->fd_dt)->dt_nfiles) {
    789 		fd_tryexpand(curproc);
    790 	}
    791 	ff = pool_cache_get(fdfile_cache, PR_WAITOK);
    792 
    793 	/*
    794 	 * If there is already a file open, close it.  If the file is
    795 	 * half open, wait for it to be constructed before closing it.
    796 	 * XXX Potential for deadlock here?
    797 	 */
    798 	mutex_enter(&fdp->fd_lock);
    799 	while (fd_isused(fdp, newfd)) {
    800 		mutex_exit(&fdp->fd_lock);
    801 		if (fd_getfile(newfd) != NULL) {
    802 			(void)fd_close(newfd);
    803 		} else {
    804 			/*
    805 			 * Crummy, but unlikely to happen.
    806 			 * Can occur if we interrupt another
    807 			 * thread while it is opening a file.
    808 			 */
    809 			kpause("dup2", false, 1, NULL);
    810 		}
    811 		mutex_enter(&fdp->fd_lock);
    812 	}
    813 	dt = fdp->fd_dt;
    814 	if (dt->dt_ff[newfd] == NULL) {
    815 		KASSERT(newfd >= NDFDFILE);
    816 		dt->dt_ff[newfd] = ff;
    817 		ff = NULL;
    818 	}
    819 	fd_used(fdp, newfd);
    820 	mutex_exit(&fdp->fd_lock);
    821 
    822 	dt->dt_ff[newfd]->ff_exclose = (flags & O_CLOEXEC) != 0;
    823 	fp->f_flag |= flags & (FNONBLOCK|FNOSIGPIPE);
    824 	/* Slot is now allocated.  Insert copy of the file. */
    825 	fd_affix(curproc, fp, newfd);
    826 	if (ff != NULL) {
    827 		pool_cache_put(fdfile_cache, ff);
    828 	}
    829 	return 0;
    830 }
    831 
    832 /*
    833  * Drop reference to a file structure.
    834  */
    835 int
    836 closef(file_t *fp)
    837 {
    838 	struct flock lf;
    839 	int error;
    840 
    841 	/*
    842 	 * Drop reference.  If referenced elsewhere it's still open
    843 	 * and we have nothing more to do.
    844 	 */
    845 	mutex_enter(&fp->f_lock);
    846 	KASSERT(fp->f_count > 0);
    847 	if (--fp->f_count > 0) {
    848 		mutex_exit(&fp->f_lock);
    849 		return 0;
    850 	}
    851 	KASSERT(fp->f_count == 0);
    852 	mutex_exit(&fp->f_lock);
    853 
    854 	/* We held the last reference - release locks, close and free. */
    855 	if (fp->f_ops->fo_advlock == NULL) {
    856 		KASSERT((fp->f_flag & FHASLOCK) == 0);
    857 	} else if (fp->f_flag & FHASLOCK) {
    858 		lf.l_whence = SEEK_SET;
    859 		lf.l_start = 0;
    860 		lf.l_len = 0;
    861 		lf.l_type = F_UNLCK;
    862 		(void)(*fp->f_ops->fo_advlock)(fp, fp, F_UNLCK, &lf, F_FLOCK);
    863 	}
    864 	if (fp->f_ops != NULL) {
    865 		error = (*fp->f_ops->fo_close)(fp);
    866 	} else {
    867 		error = 0;
    868 	}
    869 	KASSERT(fp->f_count == 0);
    870 	KASSERT(fp->f_cred != NULL);
    871 	pool_cache_put(file_cache, fp);
    872 
    873 	return error;
    874 }
    875 
    876 /*
    877  * Allocate a file descriptor for the process.
    878  */
    879 int
    880 fd_alloc(proc_t *p, int want, int *result)
    881 {
    882 	filedesc_t *fdp = p->p_fd;
    883 	int i, lim, last, error, hi;
    884 	u_int off;
    885 	fdtab_t *dt;
    886 
    887 	KASSERT(p == curproc || p == &proc0);
    888 
    889 	/*
    890 	 * Search for a free descriptor starting at the higher
    891 	 * of want or fd_freefile.
    892 	 */
    893 	mutex_enter(&fdp->fd_lock);
    894 	fd_checkmaps(fdp);
    895 	dt = fdp->fd_dt;
    896 	KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
    897 	lim = uimin((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
    898 	last = uimin(dt->dt_nfiles, lim);
    899 	for (;;) {
    900 		if ((i = want) < fdp->fd_freefile)
    901 			i = fdp->fd_freefile;
    902 		off = i >> NDENTRYSHIFT;
    903 		hi = fd_next_zero(fdp, fdp->fd_himap, off,
    904 		    (last + NDENTRIES - 1) >> NDENTRYSHIFT);
    905 		if (hi == -1)
    906 			break;
    907 		i = fd_next_zero(fdp, &fdp->fd_lomap[hi],
    908 		    hi > off ? 0 : i & NDENTRYMASK, NDENTRIES);
    909 		if (i == -1) {
    910 			/*
    911 			 * Free file descriptor in this block was
    912 			 * below want, try again with higher want.
    913 			 */
    914 			want = (hi + 1) << NDENTRYSHIFT;
    915 			continue;
    916 		}
    917 		i += (hi << NDENTRYSHIFT);
    918 		if (i >= last) {
    919 			break;
    920 		}
    921 		if (dt->dt_ff[i] == NULL) {
    922 			KASSERT(i >= NDFDFILE);
    923 			dt->dt_ff[i] = pool_cache_get(fdfile_cache, PR_WAITOK);
    924 		}
    925 		KASSERT(dt->dt_ff[i]->ff_file == NULL);
    926 		fd_used(fdp, i);
    927 		if (want <= fdp->fd_freefile) {
    928 			fdp->fd_freefile = i;
    929 		}
    930 		*result = i;
    931 		KASSERT(i >= NDFDFILE ||
    932 		    dt->dt_ff[i] == (fdfile_t *)fdp->fd_dfdfile[i]);
    933 		fd_checkmaps(fdp);
    934 		mutex_exit(&fdp->fd_lock);
    935 		return 0;
    936 	}
    937 
    938 	/* No space in current array.  Let the caller expand and retry. */
    939 	error = (dt->dt_nfiles >= lim) ? EMFILE : ENOSPC;
    940 	mutex_exit(&fdp->fd_lock);
    941 	return error;
    942 }
    943 
    944 /*
    945  * Allocate memory for a descriptor table.
    946  */
    947 static fdtab_t *
    948 fd_dtab_alloc(int n)
    949 {
    950 	fdtab_t *dt;
    951 	size_t sz;
    952 
    953 	KASSERT(n > NDFILE);
    954 
    955 	sz = sizeof(*dt) + (n - NDFILE) * sizeof(dt->dt_ff[0]);
    956 	dt = kmem_alloc(sz, KM_SLEEP);
    957 #ifdef DIAGNOSTIC
    958 	memset(dt, 0xff, sz);
    959 #endif
    960 	dt->dt_nfiles = n;
    961 	dt->dt_link = NULL;
    962 	return dt;
    963 }
    964 
    965 /*
    966  * Free a descriptor table, and all tables linked for deferred free.
    967  */
    968 static void
    969 fd_dtab_free(fdtab_t *dt)
    970 {
    971 	fdtab_t *next;
    972 	size_t sz;
    973 
    974 	do {
    975 		next = dt->dt_link;
    976 		KASSERT(dt->dt_nfiles > NDFILE);
    977 		sz = sizeof(*dt) +
    978 		    (dt->dt_nfiles - NDFILE) * sizeof(dt->dt_ff[0]);
    979 #ifdef DIAGNOSTIC
    980 		memset(dt, 0xff, sz);
    981 #endif
    982 		kmem_free(dt, sz);
    983 		dt = next;
    984 	} while (dt != NULL);
    985 }
    986 
    987 /*
    988  * Allocate descriptor bitmap.
    989  */
    990 static void
    991 fd_map_alloc(int n, uint32_t **lo, uint32_t **hi)
    992 {
    993 	uint8_t *ptr;
    994 	size_t szlo, szhi;
    995 
    996 	KASSERT(n > NDENTRIES);
    997 
    998 	szlo = NDLOSLOTS(n) * sizeof(uint32_t);
    999 	szhi = NDHISLOTS(n) * sizeof(uint32_t);
   1000 	ptr = kmem_alloc(szlo + szhi, KM_SLEEP);
   1001 	*lo = (uint32_t *)ptr;
   1002 	*hi = (uint32_t *)(ptr + szlo);
   1003 }
   1004 
   1005 /*
   1006  * Free descriptor bitmap.
   1007  */
   1008 static void
   1009 fd_map_free(int n, uint32_t *lo, uint32_t *hi)
   1010 {
   1011 	size_t szlo, szhi;
   1012 
   1013 	KASSERT(n > NDENTRIES);
   1014 
   1015 	szlo = NDLOSLOTS(n) * sizeof(uint32_t);
   1016 	szhi = NDHISLOTS(n) * sizeof(uint32_t);
   1017 	KASSERT(hi == (uint32_t *)((uint8_t *)lo + szlo));
   1018 	kmem_free(lo, szlo + szhi);
   1019 }
   1020 
   1021 /*
   1022  * Expand a process' descriptor table.
   1023  */
   1024 void
   1025 fd_tryexpand(proc_t *p)
   1026 {
   1027 	filedesc_t *fdp;
   1028 	int i, numfiles, oldnfiles;
   1029 	fdtab_t *newdt, *dt;
   1030 	uint32_t *newhimap, *newlomap;
   1031 
   1032 	KASSERT(p == curproc || p == &proc0);
   1033 
   1034 	fdp = p->p_fd;
   1035 	newhimap = NULL;
   1036 	newlomap = NULL;
   1037 	oldnfiles = atomic_load_consume(&fdp->fd_dt)->dt_nfiles;
   1038 
   1039 	if (oldnfiles < NDEXTENT)
   1040 		numfiles = NDEXTENT;
   1041 	else
   1042 		numfiles = 2 * oldnfiles;
   1043 
   1044 	newdt = fd_dtab_alloc(numfiles);
   1045 	if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1046 		fd_map_alloc(numfiles, &newlomap, &newhimap);
   1047 	}
   1048 
   1049 	mutex_enter(&fdp->fd_lock);
   1050 	dt = fdp->fd_dt;
   1051 	KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
   1052 	if (dt->dt_nfiles != oldnfiles) {
   1053 		/* fdp changed; caller must retry */
   1054 		mutex_exit(&fdp->fd_lock);
   1055 		fd_dtab_free(newdt);
   1056 		if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1057 			fd_map_free(numfiles, newlomap, newhimap);
   1058 		}
   1059 		return;
   1060 	}
   1061 
   1062 	/* Copy the existing descriptor table and zero the new portion. */
   1063 	i = sizeof(fdfile_t *) * oldnfiles;
   1064 	memcpy(newdt->dt_ff, dt->dt_ff, i);
   1065 	memset((uint8_t *)newdt->dt_ff + i, 0,
   1066 	    numfiles * sizeof(fdfile_t *) - i);
   1067 
   1068 	/*
   1069 	 * Link old descriptor array into list to be discarded.  We defer
   1070 	 * freeing until the last reference to the descriptor table goes
   1071 	 * away (usually process exit).  This allows us to do lockless
   1072 	 * lookups in fd_getfile().
   1073 	 */
   1074 	if (oldnfiles > NDFILE) {
   1075 		if (fdp->fd_refcnt > 1) {
   1076 			newdt->dt_link = dt;
   1077 		} else {
   1078 			fd_dtab_free(dt);
   1079 		}
   1080 	}
   1081 
   1082 	if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1083 		i = NDHISLOTS(oldnfiles) * sizeof(uint32_t);
   1084 		memcpy(newhimap, fdp->fd_himap, i);
   1085 		memset((uint8_t *)newhimap + i, 0,
   1086 		    NDHISLOTS(numfiles) * sizeof(uint32_t) - i);
   1087 
   1088 		i = NDLOSLOTS(oldnfiles) * sizeof(uint32_t);
   1089 		memcpy(newlomap, fdp->fd_lomap, i);
   1090 		memset((uint8_t *)newlomap + i, 0,
   1091 		    NDLOSLOTS(numfiles) * sizeof(uint32_t) - i);
   1092 
   1093 		if (NDHISLOTS(oldnfiles) > NDHISLOTS(NDFILE)) {
   1094 			fd_map_free(oldnfiles, fdp->fd_lomap, fdp->fd_himap);
   1095 		}
   1096 		fdp->fd_himap = newhimap;
   1097 		fdp->fd_lomap = newlomap;
   1098 	}
   1099 
   1100 	/*
   1101 	 * All other modifications must become globally visible before
   1102 	 * the change to fd_dt.  See fd_getfile().
   1103 	 */
   1104 	atomic_store_release(&fdp->fd_dt, newdt);
   1105 	KASSERT(newdt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
   1106 	fd_checkmaps(fdp);
   1107 	mutex_exit(&fdp->fd_lock);
   1108 }
   1109 
   1110 /*
   1111  * Create a new open file structure and allocate a file descriptor
   1112  * for the current process.
   1113  */
   1114 int
   1115 fd_allocfile(file_t **resultfp, int *resultfd)
   1116 {
   1117 	proc_t *p = curproc;
   1118 	kauth_cred_t cred;
   1119 	file_t *fp;
   1120 	int error;
   1121 
   1122 	while ((error = fd_alloc(p, 0, resultfd)) != 0) {
   1123 		if (error != ENOSPC) {
   1124 			return error;
   1125 		}
   1126 		fd_tryexpand(p);
   1127 	}
   1128 
   1129 	fp = pool_cache_get(file_cache, PR_WAITOK);
   1130 	if (fp == NULL) {
   1131 		fd_abort(p, NULL, *resultfd);
   1132 		return ENFILE;
   1133 	}
   1134 	KASSERT(fp->f_count == 0);
   1135 	KASSERT(fp->f_msgcount == 0);
   1136 	KASSERT(fp->f_unpcount == 0);
   1137 
   1138 	/* Replace cached credentials if not what we need. */
   1139 	cred = curlwp->l_cred;
   1140 	if (__predict_false(cred != fp->f_cred)) {
   1141 		kauth_cred_free(fp->f_cred);
   1142 		kauth_cred_hold(cred);
   1143 		fp->f_cred = cred;
   1144 	}
   1145 
   1146 	/*
   1147 	 * Don't allow recycled files to be scanned.
   1148 	 * See uipc_usrreq.c.
   1149 	 */
   1150 	if (__predict_false((fp->f_flag & FSCAN) != 0)) {
   1151 		mutex_enter(&fp->f_lock);
   1152 		atomic_and_uint(&fp->f_flag, ~FSCAN);
   1153 		mutex_exit(&fp->f_lock);
   1154 	}
   1155 
   1156 	fp->f_advice = 0;
   1157 	fp->f_offset = 0;
   1158 	*resultfp = fp;
   1159 
   1160 	return 0;
   1161 }
   1162 
   1163 /*
   1164  * Successful creation of a new descriptor: make visible to the process.
   1165  */
   1166 void
   1167 fd_affix(proc_t *p, file_t *fp, unsigned fd)
   1168 {
   1169 	fdfile_t *ff;
   1170 	filedesc_t *fdp;
   1171 	fdtab_t *dt;
   1172 
   1173 	KASSERT(p == curproc || p == &proc0);
   1174 
   1175 	/* Add a reference to the file structure. */
   1176 	mutex_enter(&fp->f_lock);
   1177 	fp->f_count++;
   1178 	mutex_exit(&fp->f_lock);
   1179 
   1180 	/*
   1181 	 * Insert the new file into the descriptor slot.
   1182 	 */
   1183 	fdp = p->p_fd;
   1184 	dt = atomic_load_consume(&fdp->fd_dt);
   1185 	ff = dt->dt_ff[fd];
   1186 
   1187 	KASSERT(ff != NULL);
   1188 	KASSERT(ff->ff_file == NULL);
   1189 	KASSERT(ff->ff_allocated);
   1190 	KASSERT(fd_isused(fdp, fd));
   1191 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1192 
   1193 	/* No need to lock in order to make file initially visible. */
   1194 	atomic_store_release(&ff->ff_file, fp);
   1195 }
   1196 
   1197 /*
   1198  * Abort creation of a new descriptor: free descriptor slot and file.
   1199  */
   1200 void
   1201 fd_abort(proc_t *p, file_t *fp, unsigned fd)
   1202 {
   1203 	filedesc_t *fdp;
   1204 	fdfile_t *ff;
   1205 
   1206 	KASSERT(p == curproc || p == &proc0);
   1207 
   1208 	fdp = p->p_fd;
   1209 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
   1210 	ff->ff_exclose = false;
   1211 
   1212 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1213 
   1214 	mutex_enter(&fdp->fd_lock);
   1215 	KASSERT(fd_isused(fdp, fd));
   1216 	fd_unused(fdp, fd);
   1217 	mutex_exit(&fdp->fd_lock);
   1218 
   1219 	if (fp != NULL) {
   1220 		KASSERT(fp->f_count == 0);
   1221 		KASSERT(fp->f_cred != NULL);
   1222 		pool_cache_put(file_cache, fp);
   1223 	}
   1224 }
   1225 
   1226 static int
   1227 file_ctor(void *arg, void *obj, int flags)
   1228 {
   1229 	/*
   1230 	 * It's easy to exhaust the open file limit on a system with many
   1231 	 * CPUs due to caching.  Allow a bit of leeway to reduce the element
   1232 	 * of surprise.
   1233 	 */
   1234 	u_int slop = PCG_NOBJECTS_NORMAL * (ncpu - 1);
   1235 	file_t *fp = obj;
   1236 
   1237 	memset(fp, 0, sizeof(*fp));
   1238 
   1239 	mutex_enter(&filelist_lock);
   1240 	if (__predict_false(nfiles >= slop + maxfiles)) {
   1241 		mutex_exit(&filelist_lock);
   1242 		tablefull("file", "increase kern.maxfiles or MAXFILES");
   1243 		return ENFILE;
   1244 	}
   1245 	nfiles++;
   1246 	LIST_INSERT_HEAD(&filehead, fp, f_list);
   1247 	mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
   1248 	fp->f_cred = curlwp->l_cred;
   1249 	kauth_cred_hold(fp->f_cred);
   1250 	mutex_exit(&filelist_lock);
   1251 
   1252 	return 0;
   1253 }
   1254 
   1255 static void
   1256 file_dtor(void *arg, void *obj)
   1257 {
   1258 	file_t *fp = obj;
   1259 
   1260 	mutex_enter(&filelist_lock);
   1261 	nfiles--;
   1262 	LIST_REMOVE(fp, f_list);
   1263 	mutex_exit(&filelist_lock);
   1264 
   1265 	KASSERT(fp->f_count == 0);
   1266 	kauth_cred_free(fp->f_cred);
   1267 	mutex_destroy(&fp->f_lock);
   1268 }
   1269 
   1270 static int
   1271 fdfile_ctor(void *arg, void *obj, int flags)
   1272 {
   1273 	fdfile_t *ff = obj;
   1274 
   1275 	memset(ff, 0, sizeof(*ff));
   1276 	cv_init(&ff->ff_closing, "fdclose");
   1277 
   1278 	return 0;
   1279 }
   1280 
   1281 static void
   1282 fdfile_dtor(void *arg, void *obj)
   1283 {
   1284 	fdfile_t *ff = obj;
   1285 
   1286 	cv_destroy(&ff->ff_closing);
   1287 }
   1288 
   1289 file_t *
   1290 fgetdummy(void)
   1291 {
   1292 	file_t *fp;
   1293 
   1294 	fp = kmem_zalloc(sizeof(*fp), KM_SLEEP);
   1295 	mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
   1296 	return fp;
   1297 }
   1298 
   1299 void
   1300 fputdummy(file_t *fp)
   1301 {
   1302 
   1303 	mutex_destroy(&fp->f_lock);
   1304 	kmem_free(fp, sizeof(*fp));
   1305 }
   1306 
   1307 /*
   1308  * Create an initial filedesc structure.
   1309  */
   1310 filedesc_t *
   1311 fd_init(filedesc_t *fdp)
   1312 {
   1313 #ifdef DIAGNOSTIC
   1314 	unsigned fd;
   1315 #endif
   1316 
   1317 	if (__predict_true(fdp == NULL)) {
   1318 		fdp = pool_cache_get(filedesc_cache, PR_WAITOK);
   1319 	} else {
   1320 		KASSERT(fdp == &filedesc0);
   1321 		filedesc_ctor(NULL, fdp, PR_WAITOK);
   1322 	}
   1323 
   1324 #ifdef DIAGNOSTIC
   1325 	KASSERT(fdp->fd_lastfile == -1);
   1326 	KASSERT(fdp->fd_lastkqfile == -1);
   1327 	KASSERT(fdp->fd_knhash == NULL);
   1328 	KASSERT(fdp->fd_freefile == 0);
   1329 	KASSERT(fdp->fd_exclose == false);
   1330 	KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
   1331 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1332 	for (fd = 0; fd < NDFDFILE; fd++) {
   1333 		KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] ==
   1334 		    (fdfile_t *)fdp->fd_dfdfile[fd]);
   1335 	}
   1336 	for (fd = NDFDFILE; fd < NDFILE; fd++) {
   1337 		KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] == NULL);
   1338 	}
   1339 	KASSERT(fdp->fd_himap == fdp->fd_dhimap);
   1340 	KASSERT(fdp->fd_lomap == fdp->fd_dlomap);
   1341 #endif	/* DIAGNOSTIC */
   1342 
   1343 	fdp->fd_refcnt = 1;
   1344 	fd_checkmaps(fdp);
   1345 
   1346 	return fdp;
   1347 }
   1348 
   1349 /*
   1350  * Initialize a file descriptor table.
   1351  */
   1352 static int
   1353 filedesc_ctor(void *arg, void *obj, int flag)
   1354 {
   1355 	filedesc_t *fdp = obj;
   1356 	fdfile_t **ffp;
   1357 	int i;
   1358 
   1359 	memset(fdp, 0, sizeof(*fdp));
   1360 	mutex_init(&fdp->fd_lock, MUTEX_DEFAULT, IPL_NONE);
   1361 	fdp->fd_lastfile = -1;
   1362 	fdp->fd_lastkqfile = -1;
   1363 	fdp->fd_dt = &fdp->fd_dtbuiltin;
   1364 	fdp->fd_dtbuiltin.dt_nfiles = NDFILE;
   1365 	fdp->fd_himap = fdp->fd_dhimap;
   1366 	fdp->fd_lomap = fdp->fd_dlomap;
   1367 
   1368 	CTASSERT(sizeof(fdp->fd_dfdfile[0]) >= sizeof(fdfile_t));
   1369 	for (i = 0, ffp = fdp->fd_dt->dt_ff; i < NDFDFILE; i++, ffp++) {
   1370 		*ffp = (fdfile_t *)fdp->fd_dfdfile[i];
   1371 		(void)fdfile_ctor(NULL, fdp->fd_dfdfile[i], PR_WAITOK);
   1372 	}
   1373 
   1374 	return 0;
   1375 }
   1376 
   1377 static void
   1378 filedesc_dtor(void *arg, void *obj)
   1379 {
   1380 	filedesc_t *fdp = obj;
   1381 	int i;
   1382 
   1383 	for (i = 0; i < NDFDFILE; i++) {
   1384 		fdfile_dtor(NULL, fdp->fd_dfdfile[i]);
   1385 	}
   1386 
   1387 	mutex_destroy(&fdp->fd_lock);
   1388 }
   1389 
   1390 /*
   1391  * Make p share curproc's filedesc structure.
   1392  */
   1393 void
   1394 fd_share(struct proc *p)
   1395 {
   1396 	filedesc_t *fdp;
   1397 
   1398 	fdp = curlwp->l_fd;
   1399 	p->p_fd = fdp;
   1400 	atomic_inc_uint(&fdp->fd_refcnt);
   1401 }
   1402 
   1403 /*
   1404  * Acquire a hold on a filedesc structure.
   1405  */
   1406 void
   1407 fd_hold(lwp_t *l)
   1408 {
   1409 	filedesc_t *fdp = l->l_fd;
   1410 
   1411 	atomic_inc_uint(&fdp->fd_refcnt);
   1412 }
   1413 
   1414 /*
   1415  * Copy a filedesc structure.
   1416  */
   1417 filedesc_t *
   1418 fd_copy(void)
   1419 {
   1420 	filedesc_t *newfdp, *fdp;
   1421 	fdfile_t *ff, **ffp, **nffp, *ff2;
   1422 	int i, j, numfiles, lastfile, newlast;
   1423 	file_t *fp;
   1424 	fdtab_t *newdt;
   1425 
   1426 	fdp = curproc->p_fd;
   1427 	newfdp = pool_cache_get(filedesc_cache, PR_WAITOK);
   1428 	newfdp->fd_refcnt = 1;
   1429 
   1430 #ifdef DIAGNOSTIC
   1431 	KASSERT(newfdp->fd_lastfile == -1);
   1432 	KASSERT(newfdp->fd_lastkqfile == -1);
   1433 	KASSERT(newfdp->fd_knhash == NULL);
   1434 	KASSERT(newfdp->fd_freefile == 0);
   1435 	KASSERT(newfdp->fd_exclose == false);
   1436 	KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
   1437 	KASSERT(newfdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1438 	for (i = 0; i < NDFDFILE; i++) {
   1439 		KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] ==
   1440 		    (fdfile_t *)&newfdp->fd_dfdfile[i]);
   1441 	}
   1442 	for (i = NDFDFILE; i < NDFILE; i++) {
   1443 		KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] == NULL);
   1444 	}
   1445 #endif	/* DIAGNOSTIC */
   1446 
   1447 	mutex_enter(&fdp->fd_lock);
   1448 	fd_checkmaps(fdp);
   1449 	numfiles = fdp->fd_dt->dt_nfiles;
   1450 	lastfile = fdp->fd_lastfile;
   1451 
   1452 	/*
   1453 	 * If the number of open files fits in the internal arrays
   1454 	 * of the open file structure, use them, otherwise allocate
   1455 	 * additional memory for the number of descriptors currently
   1456 	 * in use.
   1457 	 */
   1458 	if (lastfile < NDFILE) {
   1459 		i = NDFILE;
   1460 		newdt = newfdp->fd_dt;
   1461 		KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
   1462 	} else {
   1463 		/*
   1464 		 * Compute the smallest multiple of NDEXTENT needed
   1465 		 * for the file descriptors currently in use,
   1466 		 * allowing the table to shrink.
   1467 		 */
   1468 		i = numfiles;
   1469 		while (i >= 2 * NDEXTENT && i > lastfile * 2) {
   1470 			i /= 2;
   1471 		}
   1472 		KASSERT(i > NDFILE);
   1473 		newdt = fd_dtab_alloc(i);
   1474 		newfdp->fd_dt = newdt;
   1475 		memcpy(newdt->dt_ff, newfdp->fd_dtbuiltin.dt_ff,
   1476 		    NDFDFILE * sizeof(fdfile_t **));
   1477 		memset(newdt->dt_ff + NDFDFILE, 0,
   1478 		    (i - NDFDFILE) * sizeof(fdfile_t **));
   1479 	}
   1480 	if (NDHISLOTS(i) <= NDHISLOTS(NDFILE)) {
   1481 		newfdp->fd_himap = newfdp->fd_dhimap;
   1482 		newfdp->fd_lomap = newfdp->fd_dlomap;
   1483 	} else {
   1484 		fd_map_alloc(i, &newfdp->fd_lomap, &newfdp->fd_himap);
   1485 		KASSERT(i >= NDENTRIES * NDENTRIES);
   1486 		memset(newfdp->fd_himap, 0, NDHISLOTS(i)*sizeof(uint32_t));
   1487 		memset(newfdp->fd_lomap, 0, NDLOSLOTS(i)*sizeof(uint32_t));
   1488 	}
   1489 	newfdp->fd_freefile = fdp->fd_freefile;
   1490 	newfdp->fd_exclose = fdp->fd_exclose;
   1491 
   1492 	ffp = fdp->fd_dt->dt_ff;
   1493 	nffp = newdt->dt_ff;
   1494 	newlast = -1;
   1495 	for (i = 0; i <= lastfile; i++, ffp++, nffp++) {
   1496 		KASSERT(i >= NDFDFILE ||
   1497 		    *nffp == (fdfile_t *)newfdp->fd_dfdfile[i]);
   1498 		ff = *ffp;
   1499 		if (ff == NULL ||
   1500 		    (fp = atomic_load_consume(&ff->ff_file)) == NULL) {
   1501 			/* Descriptor unused, or descriptor half open. */
   1502 			KASSERT(!fd_isused(newfdp, i));
   1503 			continue;
   1504 		}
   1505 		if (__predict_false(fp->f_type == DTYPE_KQUEUE)) {
   1506 			/* kqueue descriptors cannot be copied. */
   1507 			if (i < newfdp->fd_freefile) {
   1508 				newfdp->fd_freefile = i;
   1509 			}
   1510 			continue;
   1511 		}
   1512 		/* It's active: add a reference to the file. */
   1513 		mutex_enter(&fp->f_lock);
   1514 		fp->f_count++;
   1515 		mutex_exit(&fp->f_lock);
   1516 
   1517 		/* Allocate an fdfile_t to represent it. */
   1518 		if (i >= NDFDFILE) {
   1519 			ff2 = pool_cache_get(fdfile_cache, PR_WAITOK);
   1520 			*nffp = ff2;
   1521 		} else {
   1522 			ff2 = newdt->dt_ff[i];
   1523 		}
   1524 		ff2->ff_file = fp;
   1525 		ff2->ff_exclose = ff->ff_exclose;
   1526 		ff2->ff_allocated = true;
   1527 
   1528 		/* Fix up bitmaps. */
   1529 		j = i >> NDENTRYSHIFT;
   1530 		KASSERT((newfdp->fd_lomap[j] & (1U << (i & NDENTRYMASK))) == 0);
   1531 		newfdp->fd_lomap[j] |= 1U << (i & NDENTRYMASK);
   1532 		if (__predict_false(newfdp->fd_lomap[j] == ~0)) {
   1533 			KASSERT((newfdp->fd_himap[j >> NDENTRYSHIFT] &
   1534 			    (1U << (j & NDENTRYMASK))) == 0);
   1535 			newfdp->fd_himap[j >> NDENTRYSHIFT] |=
   1536 			    1U << (j & NDENTRYMASK);
   1537 		}
   1538 		newlast = i;
   1539 	}
   1540 	KASSERT(newdt->dt_ff[0] == (fdfile_t *)newfdp->fd_dfdfile[0]);
   1541 	newfdp->fd_lastfile = newlast;
   1542 	fd_checkmaps(newfdp);
   1543 	mutex_exit(&fdp->fd_lock);
   1544 
   1545 	return newfdp;
   1546 }
   1547 
   1548 /*
   1549  * Release a filedesc structure.
   1550  */
   1551 void
   1552 fd_free(void)
   1553 {
   1554 	fdfile_t *ff;
   1555 	file_t *fp;
   1556 	int fd, nf;
   1557 	fdtab_t *dt;
   1558 	lwp_t * const l = curlwp;
   1559 	filedesc_t * const fdp = l->l_fd;
   1560 	const bool noadvlock = (l->l_proc->p_flag & PK_ADVLOCK) == 0;
   1561 
   1562 	KASSERT(atomic_load_consume(&fdp->fd_dt)->dt_ff[0] ==
   1563 	    (fdfile_t *)fdp->fd_dfdfile[0]);
   1564 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1565 	KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
   1566 
   1567 	membar_release();
   1568 	if (atomic_dec_uint_nv(&fdp->fd_refcnt) > 0)
   1569 		return;
   1570 	membar_acquire();
   1571 
   1572 	/*
   1573 	 * Close any files that the process holds open.
   1574 	 */
   1575 	dt = fdp->fd_dt;
   1576 	fd_checkmaps(fdp);
   1577 #ifdef DEBUG
   1578 	fdp->fd_refcnt = -1; /* see fd_checkmaps */
   1579 #endif
   1580 	for (fd = 0, nf = dt->dt_nfiles; fd < nf; fd++) {
   1581 		ff = dt->dt_ff[fd];
   1582 		KASSERT(fd >= NDFDFILE ||
   1583 		    ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1584 		if (ff == NULL)
   1585 			continue;
   1586 		if ((fp = atomic_load_consume(&ff->ff_file)) != NULL) {
   1587 			/*
   1588 			 * Must use fd_close() here if there is
   1589 			 * a reference from kqueue or we might have posix
   1590 			 * advisory locks.
   1591 			 */
   1592 			if (__predict_true(ff->ff_refcnt == 0) &&
   1593 			    (noadvlock || fp->f_type != DTYPE_VNODE)) {
   1594 				ff->ff_file = NULL;
   1595 				ff->ff_exclose = false;
   1596 				ff->ff_allocated = false;
   1597 				closef(fp);
   1598 			} else {
   1599 				ff->ff_refcnt++;
   1600 				fd_close(fd);
   1601 			}
   1602 		}
   1603 		KASSERT(ff->ff_refcnt == 0);
   1604 		KASSERT(ff->ff_file == NULL);
   1605 		KASSERT(!ff->ff_exclose);
   1606 		KASSERT(!ff->ff_allocated);
   1607 		if (fd >= NDFDFILE) {
   1608 			pool_cache_put(fdfile_cache, ff);
   1609 			dt->dt_ff[fd] = NULL;
   1610 		}
   1611 	}
   1612 
   1613 	/*
   1614 	 * Clean out the descriptor table for the next user and return
   1615 	 * to the cache.
   1616 	 */
   1617 	if (__predict_false(dt != &fdp->fd_dtbuiltin)) {
   1618 		fd_dtab_free(fdp->fd_dt);
   1619 		/* Otherwise, done above. */
   1620 		memset(&fdp->fd_dtbuiltin.dt_ff[NDFDFILE], 0,
   1621 		    (NDFILE - NDFDFILE) * sizeof(fdp->fd_dtbuiltin.dt_ff[0]));
   1622 		fdp->fd_dt = &fdp->fd_dtbuiltin;
   1623 	}
   1624 	if (__predict_false(NDHISLOTS(nf) > NDHISLOTS(NDFILE))) {
   1625 		KASSERT(fdp->fd_himap != fdp->fd_dhimap);
   1626 		KASSERT(fdp->fd_lomap != fdp->fd_dlomap);
   1627 		fd_map_free(nf, fdp->fd_lomap, fdp->fd_himap);
   1628 	}
   1629 	if (__predict_false(fdp->fd_knhash != NULL)) {
   1630 		hashdone(fdp->fd_knhash, HASH_LIST, fdp->fd_knhashmask);
   1631 		fdp->fd_knhash = NULL;
   1632 		fdp->fd_knhashmask = 0;
   1633 	} else {
   1634 		KASSERT(fdp->fd_knhashmask == 0);
   1635 	}
   1636 	fdp->fd_dt = &fdp->fd_dtbuiltin;
   1637 	fdp->fd_lastkqfile = -1;
   1638 	fdp->fd_lastfile = -1;
   1639 	fdp->fd_freefile = 0;
   1640 	fdp->fd_exclose = false;
   1641 	memset(&fdp->fd_startzero, 0, sizeof(*fdp) -
   1642 	    offsetof(filedesc_t, fd_startzero));
   1643 	fdp->fd_himap = fdp->fd_dhimap;
   1644 	fdp->fd_lomap = fdp->fd_dlomap;
   1645 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1646 	KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
   1647 	KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
   1648 #ifdef DEBUG
   1649 	fdp->fd_refcnt = 0; /* see fd_checkmaps */
   1650 #endif
   1651 	fd_checkmaps(fdp);
   1652 	pool_cache_put(filedesc_cache, fdp);
   1653 }
   1654 
   1655 /*
   1656  * File Descriptor pseudo-device driver (/dev/fd/).
   1657  *
   1658  * Opening minor device N dup()s the file (if any) connected to file
   1659  * descriptor N belonging to the calling process.  Note that this driver
   1660  * consists of only the ``open()'' routine, because all subsequent
   1661  * references to this file will be direct to the other driver.
   1662  */
   1663 static int
   1664 filedescopen(dev_t dev, int mode, int type, lwp_t *l)
   1665 {
   1666 
   1667 	/*
   1668 	 * XXX Kludge: set dupfd to contain the value of the
   1669 	 * the file descriptor being sought for duplication. The error
   1670 	 * return ensures that the vnode for this device will be released
   1671 	 * by vn_open. Open will detect this special error and take the
   1672 	 * actions in fd_dupopen below. Other callers of vn_open or VOP_OPEN
   1673 	 * will simply report the error.
   1674 	 */
   1675 	l->l_dupfd = minor(dev);	/* XXX */
   1676 	return EDUPFD;
   1677 }
   1678 
   1679 /*
   1680  * Duplicate the specified descriptor to a free descriptor.
   1681  *
   1682  * old is the original fd.
   1683  * moveit is true if we should move rather than duplicate.
   1684  * flags are the open flags (converted from O_* to F*).
   1685  * newp returns the new fd on success.
   1686  *
   1687  * These two cases are produced by the EDUPFD and EMOVEFD magic
   1688  * errnos, but in the interest of removing that regrettable interface,
   1689  * vn_open has been changed to intercept them. Now vn_open returns
   1690  * either a vnode or a filehandle, and the filehandle is accompanied
   1691  * by a boolean that says whether we should dup (moveit == false) or
   1692  * move (moveit == true) the fd.
   1693  *
   1694  * The dup case is used by /dev/stderr, /proc/self/fd, and such. The
   1695  * move case is used by cloner devices that allocate a fd of their
   1696  * own (a layering violation that should go away eventually) that
   1697  * then needs to be put in the place open() expects it.
   1698  */
   1699 int
   1700 fd_dupopen(int old, bool moveit, int flags, int *newp)
   1701 {
   1702 	filedesc_t *fdp;
   1703 	fdfile_t *ff;
   1704 	file_t *fp;
   1705 	fdtab_t *dt;
   1706 	int error;
   1707 
   1708 	if ((fp = fd_getfile(old)) == NULL) {
   1709 		return EBADF;
   1710 	}
   1711 	fdp = curlwp->l_fd;
   1712 	dt = atomic_load_consume(&fdp->fd_dt);
   1713 	ff = dt->dt_ff[old];
   1714 
   1715 	/*
   1716 	 * There are two cases of interest here.
   1717 	 *
   1718 	 * 1. moveit == false (used to be the EDUPFD magic errno):
   1719 	 *    simply dup (old) to file descriptor (new) and return.
   1720 	 *
   1721 	 * 2. moveit == true (used to be the EMOVEFD magic errno):
   1722 	 *    steal away the file structure from (old) and store it in
   1723 	 *    (new).  (old) is effectively closed by this operation.
   1724 	 */
   1725 	if (moveit == false) {
   1726 		/*
   1727 		 * Check that the mode the file is being opened for is a
   1728 		 * subset of the mode of the existing descriptor.
   1729 		 */
   1730 		if (((flags & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
   1731 			error = EACCES;
   1732 			goto out;
   1733 		}
   1734 
   1735 		/* Copy it. */
   1736 		error = fd_dup(fp, 0, newp, ff->ff_exclose);
   1737 	} else {
   1738 		/* Copy it. */
   1739 		error = fd_dup(fp, 0, newp, ff->ff_exclose);
   1740 		if (error != 0) {
   1741 			goto out;
   1742 		}
   1743 
   1744 		/* Steal away the file pointer from 'old'. */
   1745 		(void)fd_close(old);
   1746 		return 0;
   1747 	}
   1748 
   1749 out:
   1750 	fd_putfile(old);
   1751 	return error;
   1752 }
   1753 
   1754 /*
   1755  * Close open files on exec.
   1756  */
   1757 void
   1758 fd_closeexec(void)
   1759 {
   1760 	proc_t *p;
   1761 	filedesc_t *fdp;
   1762 	fdfile_t *ff;
   1763 	lwp_t *l;
   1764 	fdtab_t *dt;
   1765 	int fd;
   1766 
   1767 	l = curlwp;
   1768 	p = l->l_proc;
   1769 	fdp = p->p_fd;
   1770 
   1771 	if (fdp->fd_refcnt > 1) {
   1772 		fdp = fd_copy();
   1773 		fd_free();
   1774 		p->p_fd = fdp;
   1775 		l->l_fd = fdp;
   1776 	}
   1777 	if (!fdp->fd_exclose) {
   1778 		return;
   1779 	}
   1780 	fdp->fd_exclose = false;
   1781 	dt = atomic_load_consume(&fdp->fd_dt);
   1782 
   1783 	for (fd = 0; fd <= fdp->fd_lastfile; fd++) {
   1784 		if ((ff = dt->dt_ff[fd]) == NULL) {
   1785 			KASSERT(fd >= NDFDFILE);
   1786 			continue;
   1787 		}
   1788 		KASSERT(fd >= NDFDFILE ||
   1789 		    ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1790 		if (ff->ff_file == NULL)
   1791 			continue;
   1792 		if (ff->ff_exclose) {
   1793 			/*
   1794 			 * We need a reference to close the file.
   1795 			 * No other threads can see the fdfile_t at
   1796 			 * this point, so don't bother locking.
   1797 			 */
   1798 			KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
   1799 			ff->ff_refcnt++;
   1800 			fd_close(fd);
   1801 		}
   1802 	}
   1803 }
   1804 
   1805 /*
   1806  * Sets descriptor owner. If the owner is a process, 'pgid'
   1807  * is set to positive value, process ID. If the owner is process group,
   1808  * 'pgid' is set to -pg_id.
   1809  */
   1810 int
   1811 fsetown(pid_t *pgid, u_long cmd, const void *data)
   1812 {
   1813 	pid_t id = *(const pid_t *)data;
   1814 	int error;
   1815 
   1816 	if (id == INT_MIN)
   1817 		return EINVAL;
   1818 
   1819 	switch (cmd) {
   1820 	case TIOCSPGRP:
   1821 		if (id < 0)
   1822 			return EINVAL;
   1823 		id = -id;
   1824 		break;
   1825 	default:
   1826 		break;
   1827 	}
   1828 	if (id > 0) {
   1829 		mutex_enter(&proc_lock);
   1830 		error = proc_find(id) ? 0 : ESRCH;
   1831 		mutex_exit(&proc_lock);
   1832 	} else if (id < 0) {
   1833 		error = pgid_in_session(curproc, -id);
   1834 	} else {
   1835 		error = 0;
   1836 	}
   1837 	if (!error) {
   1838 		*pgid = id;
   1839 	}
   1840 	return error;
   1841 }
   1842 
   1843 void
   1844 fd_set_exclose(struct lwp *l, int fd, bool exclose)
   1845 {
   1846 	filedesc_t *fdp = l->l_fd;
   1847 	fdfile_t *ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
   1848 
   1849 	ff->ff_exclose = exclose;
   1850 	if (exclose)
   1851 		fdp->fd_exclose = true;
   1852 }
   1853 
   1854 /*
   1855  * Return descriptor owner information. If the value is positive,
   1856  * it's process ID. If it's negative, it's process group ID and
   1857  * needs the sign removed before use.
   1858  */
   1859 int
   1860 fgetown(pid_t pgid, u_long cmd, void *data)
   1861 {
   1862 
   1863 	switch (cmd) {
   1864 	case TIOCGPGRP:
   1865 		*(int *)data = -pgid;
   1866 		break;
   1867 	default:
   1868 		*(int *)data = pgid;
   1869 		break;
   1870 	}
   1871 	return 0;
   1872 }
   1873 
   1874 /*
   1875  * Send signal to descriptor owner, either process or process group.
   1876  */
   1877 void
   1878 fownsignal(pid_t pgid, int signo, int code, int band, void *fdescdata)
   1879 {
   1880 	ksiginfo_t ksi;
   1881 
   1882 	KASSERT(!cpu_intr_p());
   1883 
   1884 	if (pgid == 0) {
   1885 		return;
   1886 	}
   1887 
   1888 	KSI_INIT(&ksi);
   1889 	ksi.ksi_signo = signo;
   1890 	ksi.ksi_code = code;
   1891 	ksi.ksi_band = band;
   1892 
   1893 	mutex_enter(&proc_lock);
   1894 	if (pgid > 0) {
   1895 		struct proc *p1;
   1896 
   1897 		p1 = proc_find(pgid);
   1898 		if (p1 != NULL) {
   1899 			kpsignal(p1, &ksi, fdescdata);
   1900 		}
   1901 	} else {
   1902 		struct pgrp *pgrp;
   1903 
   1904 		KASSERT(pgid < 0);
   1905 		pgrp = pgrp_find(-pgid);
   1906 		if (pgrp != NULL) {
   1907 			kpgsignal(pgrp, &ksi, fdescdata, 0);
   1908 		}
   1909 	}
   1910 	mutex_exit(&proc_lock);
   1911 }
   1912 
   1913 int
   1914 fd_clone(file_t *fp, unsigned fd, int flag, const struct fileops *fops,
   1915 	 void *data)
   1916 {
   1917 	fdfile_t *ff;
   1918 	filedesc_t *fdp;
   1919 
   1920 	fp->f_flag = flag & FMASK;
   1921 	fdp = curproc->p_fd;
   1922 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
   1923 	KASSERT(ff != NULL);
   1924 	ff->ff_exclose = (flag & O_CLOEXEC) != 0;
   1925 	fp->f_type = DTYPE_MISC;
   1926 	fp->f_ops = fops;
   1927 	fp->f_data = data;
   1928 	curlwp->l_dupfd = fd;
   1929 	fd_affix(curproc, fp, fd);
   1930 
   1931 	return EMOVEFD;
   1932 }
   1933 
   1934 int
   1935 fnullop_fcntl(file_t *fp, u_int cmd, void *data)
   1936 {
   1937 
   1938 	if (cmd == F_SETFL)
   1939 		return 0;
   1940 
   1941 	return EOPNOTSUPP;
   1942 }
   1943 
   1944 int
   1945 fnullop_poll(file_t *fp, int which)
   1946 {
   1947 
   1948 	return 0;
   1949 }
   1950 
   1951 int
   1952 fnullop_kqfilter(file_t *fp, struct knote *kn)
   1953 {
   1954 
   1955 	return EOPNOTSUPP;
   1956 }
   1957 
   1958 void
   1959 fnullop_restart(file_t *fp)
   1960 {
   1961 
   1962 }
   1963 
   1964 int
   1965 fbadop_read(file_t *fp, off_t *offset, struct uio *uio,
   1966 	    kauth_cred_t cred, int flags)
   1967 {
   1968 
   1969 	return EOPNOTSUPP;
   1970 }
   1971 
   1972 int
   1973 fbadop_write(file_t *fp, off_t *offset, struct uio *uio,
   1974 	     kauth_cred_t cred, int flags)
   1975 {
   1976 
   1977 	return EOPNOTSUPP;
   1978 }
   1979 
   1980 int
   1981 fbadop_ioctl(file_t *fp, u_long com, void *data)
   1982 {
   1983 
   1984 	return EOPNOTSUPP;
   1985 }
   1986 
   1987 int
   1988 fbadop_stat(file_t *fp, struct stat *sb)
   1989 {
   1990 
   1991 	return EOPNOTSUPP;
   1992 }
   1993 
   1994 int
   1995 fbadop_close(file_t *fp)
   1996 {
   1997 
   1998 	return EOPNOTSUPP;
   1999 }
   2000 
   2001 /*
   2002  * sysctl routines pertaining to file descriptors
   2003  */
   2004 
   2005 /* Initialized in sysctl_init() for now... */
   2006 extern kmutex_t sysctl_file_marker_lock;
   2007 static u_int sysctl_file_marker = 1;
   2008 
   2009 /*
   2010  * Expects to be called with proc_lock and sysctl_file_marker_lock locked.
   2011  */
   2012 static void
   2013 sysctl_file_marker_reset(void)
   2014 {
   2015 	struct proc *p;
   2016 
   2017 	PROCLIST_FOREACH(p, &allproc) {
   2018 		struct filedesc *fd = p->p_fd;
   2019 		fdtab_t *dt;
   2020 		u_int i;
   2021 
   2022 		mutex_enter(&fd->fd_lock);
   2023 		dt = fd->fd_dt;
   2024 		for (i = 0; i < dt->dt_nfiles; i++) {
   2025 			struct file *fp;
   2026 			fdfile_t *ff;
   2027 
   2028 			if ((ff = dt->dt_ff[i]) == NULL) {
   2029 				continue;
   2030 			}
   2031 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
   2032 				continue;
   2033 			}
   2034 			fp->f_marker = 0;
   2035 		}
   2036 		mutex_exit(&fd->fd_lock);
   2037 	}
   2038 }
   2039 
   2040 /*
   2041  * sysctl helper routine for kern.file pseudo-subtree.
   2042  */
   2043 static int
   2044 sysctl_kern_file(SYSCTLFN_ARGS)
   2045 {
   2046 	const bool allowaddr = get_expose_address(curproc);
   2047 	struct filelist flist;
   2048 	int error;
   2049 	size_t buflen;
   2050 	struct file *fp, fbuf;
   2051 	char *start, *where;
   2052 	struct proc *p;
   2053 
   2054 	start = where = oldp;
   2055 	buflen = *oldlenp;
   2056 
   2057 	if (where == NULL) {
   2058 		/*
   2059 		 * overestimate by 10 files
   2060 		 */
   2061 		*oldlenp = sizeof(filehead) + (nfiles + 10) *
   2062 		    sizeof(struct file);
   2063 		return 0;
   2064 	}
   2065 
   2066 	/*
   2067 	 * first sysctl_copyout filehead
   2068 	 */
   2069 	if (buflen < sizeof(filehead)) {
   2070 		*oldlenp = 0;
   2071 		return 0;
   2072 	}
   2073 	sysctl_unlock();
   2074 	if (allowaddr) {
   2075 		memcpy(&flist, &filehead, sizeof(flist));
   2076 	} else {
   2077 		memset(&flist, 0, sizeof(flist));
   2078 	}
   2079 	error = sysctl_copyout(l, &flist, where, sizeof(flist));
   2080 	if (error) {
   2081 		sysctl_relock();
   2082 		return error;
   2083 	}
   2084 	buflen -= sizeof(flist);
   2085 	where += sizeof(flist);
   2086 
   2087 	/*
   2088 	 * followed by an array of file structures
   2089 	 */
   2090 	mutex_enter(&sysctl_file_marker_lock);
   2091 	mutex_enter(&proc_lock);
   2092 	PROCLIST_FOREACH(p, &allproc) {
   2093 		struct filedesc *fd;
   2094 		fdtab_t *dt;
   2095 		u_int i;
   2096 
   2097 		if (p->p_stat == SIDL) {
   2098 			/* skip embryonic processes */
   2099 			continue;
   2100 		}
   2101 		mutex_enter(p->p_lock);
   2102 		error = kauth_authorize_process(l->l_cred,
   2103 		    KAUTH_PROCESS_CANSEE, p,
   2104 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
   2105 		    NULL, NULL);
   2106 		mutex_exit(p->p_lock);
   2107 		if (error != 0) {
   2108 			/*
   2109 			 * Don't leak kauth retval if we're silently
   2110 			 * skipping this entry.
   2111 			 */
   2112 			error = 0;
   2113 			continue;
   2114 		}
   2115 
   2116 		/*
   2117 		 * Grab a hold on the process.
   2118 		 */
   2119 		if (!rw_tryenter(&p->p_reflock, RW_READER)) {
   2120 			continue;
   2121 		}
   2122 		mutex_exit(&proc_lock);
   2123 
   2124 		fd = p->p_fd;
   2125 		mutex_enter(&fd->fd_lock);
   2126 		dt = fd->fd_dt;
   2127 		for (i = 0; i < dt->dt_nfiles; i++) {
   2128 			fdfile_t *ff;
   2129 
   2130 			if ((ff = dt->dt_ff[i]) == NULL) {
   2131 				continue;
   2132 			}
   2133 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
   2134 				continue;
   2135 			}
   2136 
   2137 			mutex_enter(&fp->f_lock);
   2138 
   2139 			if ((fp->f_count == 0) ||
   2140 			    (fp->f_marker == sysctl_file_marker)) {
   2141 				mutex_exit(&fp->f_lock);
   2142 				continue;
   2143 			}
   2144 
   2145 			/* Check that we have enough space. */
   2146 			if (buflen < sizeof(struct file)) {
   2147 				*oldlenp = where - start;
   2148 				mutex_exit(&fp->f_lock);
   2149 				error = ENOMEM;
   2150 				break;
   2151 			}
   2152 
   2153 			fill_file(&fbuf, fp);
   2154 			mutex_exit(&fp->f_lock);
   2155 			error = sysctl_copyout(l, &fbuf, where, sizeof(fbuf));
   2156 			if (error) {
   2157 				break;
   2158 			}
   2159 			buflen -= sizeof(struct file);
   2160 			where += sizeof(struct file);
   2161 
   2162 			fp->f_marker = sysctl_file_marker;
   2163 		}
   2164 		mutex_exit(&fd->fd_lock);
   2165 
   2166 		/*
   2167 		 * Release reference to process.
   2168 		 */
   2169 		mutex_enter(&proc_lock);
   2170 		rw_exit(&p->p_reflock);
   2171 
   2172 		if (error)
   2173 			break;
   2174 	}
   2175 
   2176 	sysctl_file_marker++;
   2177 	/* Reset all markers if wrapped. */
   2178 	if (sysctl_file_marker == 0) {
   2179 		sysctl_file_marker_reset();
   2180 		sysctl_file_marker++;
   2181 	}
   2182 
   2183 	mutex_exit(&proc_lock);
   2184 	mutex_exit(&sysctl_file_marker_lock);
   2185 
   2186 	*oldlenp = where - start;
   2187 	sysctl_relock();
   2188 	return error;
   2189 }
   2190 
   2191 /*
   2192  * sysctl helper function for kern.file2
   2193  */
   2194 static int
   2195 sysctl_kern_file2(SYSCTLFN_ARGS)
   2196 {
   2197 	struct proc *p;
   2198 	struct file *fp;
   2199 	struct filedesc *fd;
   2200 	struct kinfo_file kf;
   2201 	char *dp;
   2202 	u_int i, op;
   2203 	size_t len, needed, elem_size, out_size;
   2204 	int error, arg, elem_count;
   2205 	fdfile_t *ff;
   2206 	fdtab_t *dt;
   2207 
   2208 	if (namelen == 1 && name[0] == CTL_QUERY)
   2209 		return sysctl_query(SYSCTLFN_CALL(rnode));
   2210 
   2211 	if (namelen != 4)
   2212 		return EINVAL;
   2213 
   2214 	error = 0;
   2215 	dp = oldp;
   2216 	len = (oldp != NULL) ? *oldlenp : 0;
   2217 	op = name[0];
   2218 	arg = name[1];
   2219 	elem_size = name[2];
   2220 	elem_count = name[3];
   2221 	out_size = MIN(sizeof(kf), elem_size);
   2222 	needed = 0;
   2223 
   2224 	if (elem_size < 1 || elem_count < 0)
   2225 		return EINVAL;
   2226 
   2227 	switch (op) {
   2228 	case KERN_FILE_BYFILE:
   2229 	case KERN_FILE_BYPID:
   2230 		/*
   2231 		 * We're traversing the process list in both cases; the BYFILE
   2232 		 * case does additional work of keeping track of files already
   2233 		 * looked at.
   2234 		 */
   2235 
   2236 		/* doesn't use arg so it must be zero */
   2237 		if ((op == KERN_FILE_BYFILE) && (arg != 0))
   2238 			return EINVAL;
   2239 
   2240 		if ((op == KERN_FILE_BYPID) && (arg < -1))
   2241 			/* -1 means all processes */
   2242 			return EINVAL;
   2243 
   2244 		sysctl_unlock();
   2245 		if (op == KERN_FILE_BYFILE)
   2246 			mutex_enter(&sysctl_file_marker_lock);
   2247 		mutex_enter(&proc_lock);
   2248 		PROCLIST_FOREACH(p, &allproc) {
   2249 			if (p->p_stat == SIDL) {
   2250 				/* skip embryonic processes */
   2251 				continue;
   2252 			}
   2253 			if (arg > 0 && p->p_pid != arg) {
   2254 				/* pick only the one we want */
   2255 				/* XXX want 0 to mean "kernel files" */
   2256 				continue;
   2257 			}
   2258 			mutex_enter(p->p_lock);
   2259 			error = kauth_authorize_process(l->l_cred,
   2260 			    KAUTH_PROCESS_CANSEE, p,
   2261 			    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
   2262 			    NULL, NULL);
   2263 			mutex_exit(p->p_lock);
   2264 			if (error != 0) {
   2265 				/*
   2266 				 * Don't leak kauth retval if we're silently
   2267 				 * skipping this entry.
   2268 				 */
   2269 				error = 0;
   2270 				continue;
   2271 			}
   2272 
   2273 			/*
   2274 			 * Grab a hold on the process.
   2275 			 */
   2276 			if (!rw_tryenter(&p->p_reflock, RW_READER)) {
   2277 				continue;
   2278 			}
   2279 			mutex_exit(&proc_lock);
   2280 
   2281 			fd = p->p_fd;
   2282 			mutex_enter(&fd->fd_lock);
   2283 			dt = fd->fd_dt;
   2284 			for (i = 0; i < dt->dt_nfiles; i++) {
   2285 				if ((ff = dt->dt_ff[i]) == NULL) {
   2286 					continue;
   2287 				}
   2288 				if ((fp = atomic_load_consume(&ff->ff_file)) ==
   2289 				    NULL) {
   2290 					continue;
   2291 				}
   2292 
   2293 				if ((op == KERN_FILE_BYFILE) &&
   2294 				    (fp->f_marker == sysctl_file_marker)) {
   2295 					continue;
   2296 				}
   2297 				if (len >= elem_size && elem_count > 0) {
   2298 					mutex_enter(&fp->f_lock);
   2299 					fill_file2(&kf, fp, ff, i, p->p_pid);
   2300 					mutex_exit(&fp->f_lock);
   2301 					mutex_exit(&fd->fd_lock);
   2302 					error = sysctl_copyout(l,
   2303 					    &kf, dp, out_size);
   2304 					mutex_enter(&fd->fd_lock);
   2305 					if (error)
   2306 						break;
   2307 					dp += elem_size;
   2308 					len -= elem_size;
   2309 				}
   2310 				if (op == KERN_FILE_BYFILE)
   2311 					fp->f_marker = sysctl_file_marker;
   2312 				needed += elem_size;
   2313 				if (elem_count > 0 && elem_count != INT_MAX)
   2314 					elem_count--;
   2315 			}
   2316 			mutex_exit(&fd->fd_lock);
   2317 
   2318 			/*
   2319 			 * Release reference to process.
   2320 			 */
   2321 			mutex_enter(&proc_lock);
   2322 			rw_exit(&p->p_reflock);
   2323 		}
   2324 		if (op == KERN_FILE_BYFILE) {
   2325 			sysctl_file_marker++;
   2326 
   2327 			/* Reset all markers if wrapped. */
   2328 			if (sysctl_file_marker == 0) {
   2329 				sysctl_file_marker_reset();
   2330 				sysctl_file_marker++;
   2331 			}
   2332 		}
   2333 		mutex_exit(&proc_lock);
   2334 		if (op == KERN_FILE_BYFILE)
   2335 			mutex_exit(&sysctl_file_marker_lock);
   2336 		sysctl_relock();
   2337 		break;
   2338 	default:
   2339 		return EINVAL;
   2340 	}
   2341 
   2342 	if (oldp == NULL)
   2343 		needed += KERN_FILESLOP * elem_size;
   2344 	*oldlenp = needed;
   2345 
   2346 	return error;
   2347 }
   2348 
   2349 static void
   2350 fill_file(struct file *fp, const struct file *fpsrc)
   2351 {
   2352 	const bool allowaddr = get_expose_address(curproc);
   2353 
   2354 	memset(fp, 0, sizeof(*fp));
   2355 
   2356 	fp->f_offset = fpsrc->f_offset;
   2357 	COND_SET_PTR(fp->f_cred, fpsrc->f_cred, allowaddr);
   2358 	COND_SET_CPTR(fp->f_ops, fpsrc->f_ops, allowaddr);
   2359 	COND_SET_STRUCT(fp->f_undata, fpsrc->f_undata, allowaddr);
   2360 	COND_SET_STRUCT(fp->f_list, fpsrc->f_list, allowaddr);
   2361 	fp->f_flag = fpsrc->f_flag;
   2362 	fp->f_marker = fpsrc->f_marker;
   2363 	fp->f_type = fpsrc->f_type;
   2364 	fp->f_advice = fpsrc->f_advice;
   2365 	fp->f_count = fpsrc->f_count;
   2366 	fp->f_msgcount = fpsrc->f_msgcount;
   2367 	fp->f_unpcount = fpsrc->f_unpcount;
   2368 	COND_SET_STRUCT(fp->f_unplist, fpsrc->f_unplist, allowaddr);
   2369 }
   2370 
   2371 static void
   2372 fill_file2(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
   2373 	  int i, pid_t pid)
   2374 {
   2375 	const bool allowaddr = get_expose_address(curproc);
   2376 
   2377 	memset(kp, 0, sizeof(*kp));
   2378 
   2379 	COND_SET_VALUE(kp->ki_fileaddr, PTRTOUINT64(fp), allowaddr);
   2380 	kp->ki_flag =		fp->f_flag;
   2381 	kp->ki_iflags =		0;
   2382 	kp->ki_ftype =		fp->f_type;
   2383 	kp->ki_count =		fp->f_count;
   2384 	kp->ki_msgcount =	fp->f_msgcount;
   2385 	COND_SET_VALUE(kp->ki_fucred, PTRTOUINT64(fp->f_cred), allowaddr);
   2386 	kp->ki_fuid =		kauth_cred_geteuid(fp->f_cred);
   2387 	kp->ki_fgid =		kauth_cred_getegid(fp->f_cred);
   2388 	COND_SET_VALUE(kp->ki_fops, PTRTOUINT64(fp->f_ops), allowaddr);
   2389 	kp->ki_foffset =	fp->f_offset;
   2390 	COND_SET_VALUE(kp->ki_fdata, PTRTOUINT64(fp->f_data), allowaddr);
   2391 
   2392 	/* vnode information to glue this file to something */
   2393 	if (fp->f_type == DTYPE_VNODE) {
   2394 		struct vnode *vp = fp->f_vnode;
   2395 
   2396 		COND_SET_VALUE(kp->ki_vun, PTRTOUINT64(vp->v_un.vu_socket),
   2397 		    allowaddr);
   2398 		kp->ki_vsize =	vp->v_size;
   2399 		kp->ki_vtype =	vp->v_type;
   2400 		kp->ki_vtag =	vp->v_tag;
   2401 		COND_SET_VALUE(kp->ki_vdata, PTRTOUINT64(vp->v_data),
   2402 		    allowaddr);
   2403 	}
   2404 
   2405 	/* process information when retrieved via KERN_FILE_BYPID */
   2406 	if (ff != NULL) {
   2407 		kp->ki_pid =		pid;
   2408 		kp->ki_fd =		i;
   2409 		kp->ki_ofileflags =	ff->ff_exclose;
   2410 		kp->ki_usecount =	ff->ff_refcnt;
   2411 	}
   2412 }
   2413