kern_descrip.c revision 1.262.6.1 1 /* $NetBSD: kern_descrip.c,v 1.262.6.1 2025/08/02 05:57:41 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009, 2023 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_descrip.c 8.8 (Berkeley) 2/14/95
66 */
67
68 /*
69 * File descriptor management.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_descrip.c,v 1.262.6.1 2025/08/02 05:57:41 perseant Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/file.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/stat.h>
84 #include <sys/ioctl.h>
85 #include <sys/fcntl.h>
86 #include <sys/pool.h>
87 #include <sys/unistd.h>
88 #include <sys/resourcevar.h>
89 #include <sys/conf.h>
90 #include <sys/event.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/syscallargs.h>
94 #include <sys/cpu.h>
95 #include <sys/kmem.h>
96 #include <sys/vnode.h>
97 #include <sys/sysctl.h>
98 #include <sys/ktrace.h>
99
100 /*
101 * A list (head) of open files, counter, and lock protecting them.
102 */
103 struct filelist filehead __cacheline_aligned;
104 static u_int nfiles __cacheline_aligned;
105 kmutex_t filelist_lock __cacheline_aligned;
106
107 static pool_cache_t filedesc_cache __read_mostly;
108 static pool_cache_t file_cache __read_mostly;
109
110 static int file_ctor(void *, void *, int);
111 static void file_dtor(void *, void *);
112 static void fdfile_ctor(fdfile_t *);
113 static void fdfile_dtor(fdfile_t *);
114 static int filedesc_ctor(void *, void *, int);
115 static void filedesc_dtor(void *, void *);
116 static int filedescopen(dev_t, int, int, lwp_t *);
117
118 static int sysctl_kern_file(SYSCTLFN_PROTO);
119 static int sysctl_kern_file2(SYSCTLFN_PROTO);
120 static void fill_file(struct file *, const struct file *);
121 static void fill_file2(struct kinfo_file *, const file_t *, const fdfile_t *,
122 int, pid_t);
123
124 const struct cdevsw filedesc_cdevsw = {
125 .d_open = filedescopen,
126 .d_close = noclose,
127 .d_read = noread,
128 .d_write = nowrite,
129 .d_ioctl = noioctl,
130 .d_stop = nostop,
131 .d_tty = notty,
132 .d_poll = nopoll,
133 .d_mmap = nommap,
134 .d_kqfilter = nokqfilter,
135 .d_discard = nodiscard,
136 .d_flag = D_OTHER | D_MPSAFE
137 };
138
139 /* For ease of reading. */
140 __strong_alias(fd_putvnode,fd_putfile)
141 __strong_alias(fd_putsock,fd_putfile)
142
143 /*
144 * Initialize the descriptor system.
145 */
146 void
147 fd_sys_init(void)
148 {
149 static struct sysctllog *clog;
150
151 mutex_init(&filelist_lock, MUTEX_DEFAULT, IPL_NONE);
152
153 LIST_INIT(&filehead);
154
155 file_cache = pool_cache_init(sizeof(file_t), coherency_unit, 0,
156 0, "file", NULL, IPL_NONE, file_ctor, file_dtor, NULL);
157 KASSERT(file_cache != NULL);
158
159 filedesc_cache = pool_cache_init(sizeof(filedesc_t), coherency_unit,
160 0, 0, "filedesc", NULL, IPL_NONE, filedesc_ctor, filedesc_dtor,
161 NULL);
162 KASSERT(filedesc_cache != NULL);
163
164 sysctl_createv(&clog, 0, NULL, NULL,
165 CTLFLAG_PERMANENT,
166 CTLTYPE_STRUCT, "file",
167 SYSCTL_DESCR("System open file table"),
168 sysctl_kern_file, 0, NULL, 0,
169 CTL_KERN, KERN_FILE, CTL_EOL);
170 sysctl_createv(&clog, 0, NULL, NULL,
171 CTLFLAG_PERMANENT,
172 CTLTYPE_STRUCT, "file2",
173 SYSCTL_DESCR("System open file table"),
174 sysctl_kern_file2, 0, NULL, 0,
175 CTL_KERN, KERN_FILE2, CTL_EOL);
176 }
177
178 static bool
179 fd_isused(filedesc_t *fdp, unsigned fd)
180 {
181 u_int off = fd >> NDENTRYSHIFT;
182
183 KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
184
185 return (fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0;
186 }
187
188 /*
189 * Verify that the bitmaps match the descriptor table.
190 */
191 static inline void
192 fd_checkmaps(filedesc_t *fdp)
193 {
194 #ifdef DEBUG
195 fdtab_t *dt;
196 u_int fd;
197
198 KASSERT(fdp->fd_refcnt <= 1 || mutex_owned(&fdp->fd_lock));
199
200 dt = fdp->fd_dt;
201 if (fdp->fd_refcnt == -1) {
202 /*
203 * fd_free tears down the table without maintaining its bitmap.
204 */
205 return;
206 }
207 for (fd = 0; fd < dt->dt_nfiles; fd++) {
208 if (fd < NDFDFILE) {
209 KASSERT(dt->dt_ff[fd] ==
210 (fdfile_t *)fdp->fd_dfdfile[fd]);
211 }
212 if (dt->dt_ff[fd] == NULL) {
213 KASSERT(!fd_isused(fdp, fd));
214 } else if (dt->dt_ff[fd]->ff_file != NULL) {
215 KASSERT(fd_isused(fdp, fd));
216 }
217 }
218 #endif
219 }
220
221 static int
222 fd_next_zero(filedesc_t *fdp, uint32_t *bitmap, int want, u_int bits)
223 {
224 int i, off, maxoff;
225 uint32_t sub;
226
227 KASSERT(mutex_owned(&fdp->fd_lock));
228
229 fd_checkmaps(fdp);
230
231 if (want > bits)
232 return -1;
233
234 off = want >> NDENTRYSHIFT;
235 i = want & NDENTRYMASK;
236 if (i) {
237 sub = bitmap[off] | ((u_int)~0 >> (NDENTRIES - i));
238 if (sub != ~0)
239 goto found;
240 off++;
241 }
242
243 maxoff = NDLOSLOTS(bits);
244 while (off < maxoff) {
245 if ((sub = bitmap[off]) != ~0)
246 goto found;
247 off++;
248 }
249
250 return -1;
251
252 found:
253 return (off << NDENTRYSHIFT) + ffs(~sub) - 1;
254 }
255
256 static int
257 fd_last_set(filedesc_t *fd, int last)
258 {
259 int off, i;
260 fdfile_t **ff = fd->fd_dt->dt_ff;
261 uint32_t *bitmap = fd->fd_lomap;
262
263 KASSERT(mutex_owned(&fd->fd_lock));
264
265 fd_checkmaps(fd);
266
267 off = (last - 1) >> NDENTRYSHIFT;
268
269 while (off >= 0 && !bitmap[off])
270 off--;
271
272 if (off < 0)
273 return -1;
274
275 i = ((off + 1) << NDENTRYSHIFT) - 1;
276 if (i >= last)
277 i = last - 1;
278
279 /* XXX should use bitmap */
280 while (i > 0 && (ff[i] == NULL || !ff[i]->ff_allocated))
281 i--;
282
283 return i;
284 }
285
286 static inline void
287 fd_used(filedesc_t *fdp, unsigned fd)
288 {
289 u_int off = fd >> NDENTRYSHIFT;
290 fdfile_t *ff;
291
292 ff = fdp->fd_dt->dt_ff[fd];
293
294 KASSERT(mutex_owned(&fdp->fd_lock));
295 KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) == 0);
296 KASSERT(ff != NULL);
297 KASSERT(ff->ff_file == NULL);
298 KASSERT(!ff->ff_allocated);
299
300 ff->ff_allocated = true;
301 fdp->fd_lomap[off] |= 1U << (fd & NDENTRYMASK);
302 if (__predict_false(fdp->fd_lomap[off] == ~0)) {
303 KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
304 (1U << (off & NDENTRYMASK))) == 0);
305 fdp->fd_himap[off >> NDENTRYSHIFT] |= 1U << (off & NDENTRYMASK);
306 }
307
308 if ((int)fd > fdp->fd_lastfile) {
309 fdp->fd_lastfile = fd;
310 }
311
312 fd_checkmaps(fdp);
313 }
314
315 static inline void
316 fd_unused(filedesc_t *fdp, unsigned fd)
317 {
318 u_int off = fd >> NDENTRYSHIFT;
319 fdfile_t *ff;
320
321 ff = fdp->fd_dt->dt_ff[fd];
322
323 KASSERT(mutex_owned(&fdp->fd_lock));
324 KASSERT(ff != NULL);
325 KASSERT(ff->ff_file == NULL);
326 KASSERT(ff->ff_allocated);
327
328 if (fd < fdp->fd_freefile) {
329 fdp->fd_freefile = fd;
330 }
331
332 if (fdp->fd_lomap[off] == ~0) {
333 KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
334 (1U << (off & NDENTRYMASK))) != 0);
335 fdp->fd_himap[off >> NDENTRYSHIFT] &=
336 ~(1U << (off & NDENTRYMASK));
337 }
338 KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0);
339 fdp->fd_lomap[off] &= ~(1U << (fd & NDENTRYMASK));
340 ff->ff_allocated = false;
341
342 KASSERT(fd <= fdp->fd_lastfile);
343 if (fd == fdp->fd_lastfile) {
344 fdp->fd_lastfile = fd_last_set(fdp, fd);
345 }
346 fd_checkmaps(fdp);
347 }
348
349 /*
350 * Look up the file structure corresponding to a file descriptor
351 * and return the file, holding a reference on the descriptor.
352 */
353 file_t *
354 fd_getfile(unsigned fd)
355 {
356 filedesc_t *fdp;
357 fdfile_t *ff;
358 file_t *fp;
359 fdtab_t *dt;
360
361 /*
362 * Look up the fdfile structure representing this descriptor.
363 * We are doing this unlocked. See fd_tryexpand().
364 */
365 fdp = curlwp->l_fd;
366 dt = atomic_load_consume(&fdp->fd_dt);
367 if (__predict_false(fd >= dt->dt_nfiles)) {
368 return NULL;
369 }
370 ff = dt->dt_ff[fd];
371 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
372 if (__predict_false(ff == NULL)) {
373 return NULL;
374 }
375
376 /* Now get a reference to the descriptor. */
377 if (fdp->fd_refcnt == 1) {
378 /*
379 * Single threaded: don't need to worry about concurrent
380 * access (other than earlier calls to kqueue, which may
381 * hold a reference to the descriptor).
382 */
383 ff->ff_refcnt++;
384 } else {
385 /*
386 * Multi threaded: issue a memory barrier to ensure that we
387 * acquire the file pointer _after_ adding a reference. If
388 * no memory barrier, we could fetch a stale pointer.
389 *
390 * In particular, we must coordinate the following four
391 * memory operations:
392 *
393 * A. fd_close store ff->ff_file = NULL
394 * B. fd_close refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
395 * C. fd_getfile atomic_inc_uint(&ff->ff_refcnt)
396 * D. fd_getfile load fp = ff->ff_file
397 *
398 * If the order is D;A;B;C:
399 *
400 * 1. D: fp = ff->ff_file
401 * 2. A: ff->ff_file = NULL
402 * 3. B: refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
403 * 4. C: atomic_inc_uint(&ff->ff_refcnt)
404 *
405 * then fd_close determines that there are no more
406 * references and decides to free fp immediately, at
407 * the same that fd_getfile ends up with an fp that's
408 * about to be freed. *boom*
409 *
410 * By making B a release operation in fd_close, and by
411 * making C an acquire operation in fd_getfile, since
412 * they are atomic operations on the same object, which
413 * has a total modification order, we guarantee either:
414 *
415 * - B happens before C. Then since A is
416 * sequenced before B in fd_close, and C is
417 * sequenced before D in fd_getfile, we
418 * guarantee A happens before D, so fd_getfile
419 * reads a null fp and safely fails.
420 *
421 * - C happens before B. Then fd_getfile may read
422 * null or nonnull, but either way, fd_close
423 * will safely wait for references to drain.
424 */
425 atomic_inc_uint(&ff->ff_refcnt);
426 membar_acquire();
427 }
428
429 /*
430 * If the file is not open or is being closed then put the
431 * reference back.
432 */
433 fp = atomic_load_consume(&ff->ff_file);
434 if (__predict_true(fp != NULL)) {
435 return fp;
436 }
437 fd_putfile(fd);
438 return NULL;
439 }
440
441 /*
442 * Release a reference to a file descriptor acquired with fd_getfile().
443 */
444 void
445 fd_putfile(unsigned fd)
446 {
447 filedesc_t *fdp;
448 fdfile_t *ff;
449 u_int u, v;
450
451 fdp = curlwp->l_fd;
452 KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
453 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
454
455 KASSERT(ff != NULL);
456 KASSERT((ff->ff_refcnt & FR_MASK) > 0);
457 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
458
459 if (fdp->fd_refcnt == 1) {
460 /*
461 * Single threaded: don't need to worry about concurrent
462 * access (other than earlier calls to kqueue, which may
463 * hold a reference to the descriptor).
464 */
465 if (__predict_false((ff->ff_refcnt & FR_CLOSING) != 0)) {
466 fd_close(fd);
467 return;
468 }
469 ff->ff_refcnt--;
470 return;
471 }
472
473 /*
474 * Ensure that any use of the file is complete and globally
475 * visible before dropping the final reference. If no membar,
476 * the current CPU could still access memory associated with
477 * the file after it has been freed or recycled by another
478 * CPU.
479 */
480 membar_release();
481
482 /*
483 * Be optimistic and start out with the assumption that no other
484 * threads are trying to close the descriptor. If the CAS fails,
485 * we lost a race and/or it's being closed.
486 */
487 for (u = ff->ff_refcnt & FR_MASK;; u = v) {
488 v = atomic_cas_uint(&ff->ff_refcnt, u, u - 1);
489 if (__predict_true(u == v)) {
490 return;
491 }
492 if (__predict_false((v & FR_CLOSING) != 0)) {
493 break;
494 }
495 }
496
497 /* Another thread is waiting to close the file: join it. */
498 (void)fd_close(fd);
499 }
500
501 /*
502 * Convenience wrapper around fd_getfile() that returns reference
503 * to a vnode.
504 */
505 int
506 fd_getvnode(unsigned fd, file_t **fpp)
507 {
508 vnode_t *vp;
509 file_t *fp;
510
511 fp = fd_getfile(fd);
512 if (__predict_false(fp == NULL)) {
513 return EBADF;
514 }
515 if (__predict_false(fp->f_type != DTYPE_VNODE)) {
516 fd_putfile(fd);
517 return EINVAL;
518 }
519 vp = fp->f_vnode;
520 if (__predict_false(vp->v_type == VBAD)) {
521 /* XXX Is this case really necessary? */
522 fd_putfile(fd);
523 return EBADF;
524 }
525 *fpp = fp;
526 return 0;
527 }
528
529 /*
530 * Convenience wrapper around fd_getfile() that returns reference
531 * to a socket.
532 */
533 int
534 fd_getsock1(unsigned fd, struct socket **sop, file_t **fp)
535 {
536 *fp = fd_getfile(fd);
537 if (__predict_false(*fp == NULL)) {
538 return EBADF;
539 }
540 if (__predict_false((*fp)->f_type != DTYPE_SOCKET)) {
541 fd_putfile(fd);
542 return ENOTSOCK;
543 }
544 *sop = (*fp)->f_socket;
545 return 0;
546 }
547
548 int
549 fd_getsock(unsigned fd, struct socket **sop)
550 {
551 file_t *fp;
552 return fd_getsock1(fd, sop, &fp);
553 }
554
555 /*
556 * Look up the file structure corresponding to a file descriptor
557 * and return it with a reference held on the file, not the
558 * descriptor.
559 *
560 * This is heavyweight and only used when accessing descriptors
561 * from a foreign process. The caller must ensure that `p' does
562 * not exit or fork across this call.
563 *
564 * To release the file (not descriptor) reference, use closef().
565 */
566 file_t *
567 fd_getfile2(proc_t *p, unsigned fd)
568 {
569 filedesc_t *fdp;
570 fdfile_t *ff;
571 file_t *fp;
572 fdtab_t *dt;
573
574 fdp = p->p_fd;
575 mutex_enter(&fdp->fd_lock);
576 dt = fdp->fd_dt;
577 if (fd >= dt->dt_nfiles) {
578 mutex_exit(&fdp->fd_lock);
579 return NULL;
580 }
581 if ((ff = dt->dt_ff[fd]) == NULL) {
582 mutex_exit(&fdp->fd_lock);
583 return NULL;
584 }
585 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
586 mutex_exit(&fdp->fd_lock);
587 return NULL;
588 }
589 mutex_enter(&fp->f_lock);
590 fp->f_count++;
591 mutex_exit(&fp->f_lock);
592 mutex_exit(&fdp->fd_lock);
593
594 return fp;
595 }
596
597 /*
598 * Internal form of close. Must be called with a reference to the
599 * descriptor, and will drop the reference. When all descriptor
600 * references are dropped, releases the descriptor slot and a single
601 * reference to the file structure.
602 */
603 int
604 fd_close(unsigned fd)
605 {
606 struct flock lf;
607 filedesc_t *fdp;
608 fdfile_t *ff;
609 file_t *fp;
610 proc_t *p;
611 lwp_t *l;
612 u_int refcnt;
613
614 l = curlwp;
615 p = l->l_proc;
616 fdp = l->l_fd;
617 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
618
619 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
620
621 mutex_enter(&fdp->fd_lock);
622 KASSERT((ff->ff_refcnt & FR_MASK) > 0);
623 fp = atomic_load_consume(&ff->ff_file);
624 if (__predict_false(fp == NULL)) {
625 /*
626 * Another user of the file is already closing, and is
627 * waiting for other users of the file to drain. Release
628 * our reference, and wake up the closer.
629 */
630 membar_release();
631 atomic_dec_uint(&ff->ff_refcnt);
632 cv_broadcast(&ff->ff_closing);
633 mutex_exit(&fdp->fd_lock);
634
635 /*
636 * An application error, so pretend that the descriptor
637 * was already closed. We can't safely wait for it to
638 * be closed without potentially deadlocking.
639 */
640 return (EBADF);
641 }
642 KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
643
644 /*
645 * There may be multiple users of this file within the process.
646 * Notify existing and new users that the file is closing. This
647 * will prevent them from adding additional uses to this file
648 * while we are closing it.
649 */
650 atomic_store_relaxed(&ff->ff_file, NULL);
651 ff->ff_exclose = false;
652 ff->ff_foclose = false;
653
654 /*
655 * We expect the caller to hold a descriptor reference - drop it.
656 * The reference count may increase beyond zero at this point due
657 * to an erroneous descriptor reference by an application, but
658 * fd_getfile() will notice that the file is being closed and drop
659 * the reference again.
660 */
661 if (fdp->fd_refcnt == 1) {
662 /* Single threaded. */
663 refcnt = --(ff->ff_refcnt);
664 } else {
665 /* Multi threaded. */
666 membar_release();
667 refcnt = atomic_dec_uint_nv(&ff->ff_refcnt);
668 membar_acquire();
669 }
670 if (__predict_false(refcnt != 0)) {
671 /*
672 * Wait for other references to drain. This is typically
673 * an application error - the descriptor is being closed
674 * while still in use.
675 * (Or just a threaded application trying to unblock its
676 * thread that sleeps in (say) accept()).
677 */
678 atomic_or_uint(&ff->ff_refcnt, FR_CLOSING);
679
680 /*
681 * Remove any knotes attached to the file. A knote
682 * attached to the descriptor can hold references on it.
683 */
684 mutex_exit(&fdp->fd_lock);
685 if (!SLIST_EMPTY(&ff->ff_knlist)) {
686 knote_fdclose(fd);
687 }
688
689 /*
690 * Since the file system code doesn't know which fd
691 * each request came from (think dup()), we have to
692 * ask it to return ERESTART for any long-term blocks.
693 * The re-entry through read/write/etc will detect the
694 * closed fd and return EBAFD.
695 * Blocked partial writes may return a short length.
696 */
697 (*fp->f_ops->fo_restart)(fp);
698 mutex_enter(&fdp->fd_lock);
699
700 /*
701 * We need to see the count drop to zero at least once,
702 * in order to ensure that all pre-existing references
703 * have been drained. New references past this point are
704 * of no interest.
705 * XXX (dsl) this may need to call fo_restart() after a
706 * timeout to guarantee that all the system calls exit.
707 */
708 while ((ff->ff_refcnt & FR_MASK) != 0) {
709 cv_wait(&ff->ff_closing, &fdp->fd_lock);
710 }
711 atomic_and_uint(&ff->ff_refcnt, ~FR_CLOSING);
712 } else {
713 /* If no references, there must be no knotes. */
714 KASSERT(SLIST_EMPTY(&ff->ff_knlist));
715 }
716
717 /*
718 * POSIX record locking dictates that any close releases ALL
719 * locks owned by this process. This is handled by setting
720 * a flag in the unlock to free ONLY locks obeying POSIX
721 * semantics, and not to free BSD-style file locks.
722 * If the descriptor was in a message, POSIX-style locks
723 * aren't passed with the descriptor.
724 */
725 if (__predict_false((p->p_flag & PK_ADVLOCK) != 0) &&
726 fp->f_ops->fo_advlock != NULL) {
727 lf.l_whence = SEEK_SET;
728 lf.l_start = 0;
729 lf.l_len = 0;
730 lf.l_type = F_UNLCK;
731 mutex_exit(&fdp->fd_lock);
732 (void)(*fp->f_ops->fo_advlock)(fp, p, F_UNLCK, &lf, F_POSIX);
733 mutex_enter(&fdp->fd_lock);
734 }
735
736 /* Free descriptor slot. */
737 fd_unused(fdp, fd);
738 mutex_exit(&fdp->fd_lock);
739
740 /* Now drop reference to the file itself. */
741 return closef(fp);
742 }
743
744 /*
745 * Duplicate a file descriptor.
746 */
747 int
748 fd_dup(file_t *fp, int minfd, int *newp, bool exclose, bool foclose)
749 {
750 proc_t *p = curproc;
751 int error;
752
753 while ((error = fd_alloc(p, minfd, newp)) != 0) {
754 if (error != ENOSPC) {
755 return error;
756 }
757 fd_tryexpand(p);
758 }
759
760 fd_set_exclose(curlwp, *newp, exclose);
761 fd_set_foclose(curlwp, *newp, foclose);
762 fd_affix(p, fp, *newp);
763 return 0;
764 }
765
766 /*
767 * dup2 operation.
768 */
769 int
770 fd_dup2(file_t *fp, unsigned newfd, int flags)
771 {
772 filedesc_t *fdp = curlwp->l_fd;
773 fdfile_t *ff;
774 fdtab_t *dt;
775
776 if (flags & ~(O_CLOEXEC|O_CLOFORK|O_NONBLOCK|O_NOSIGPIPE))
777 return EINVAL;
778 /*
779 * Ensure there are enough slots in the descriptor table,
780 * and allocate an fdfile_t up front in case we need it.
781 */
782 while (newfd >= atomic_load_consume(&fdp->fd_dt)->dt_nfiles) {
783 fd_tryexpand(curproc);
784 }
785 ff = kmem_alloc(sizeof(*ff), KM_SLEEP);
786 fdfile_ctor(ff);
787
788 /*
789 * If there is already a file open, close it. If the file is
790 * half open, wait for it to be constructed before closing it.
791 * XXX Potential for deadlock here?
792 */
793 mutex_enter(&fdp->fd_lock);
794 while (fd_isused(fdp, newfd)) {
795 mutex_exit(&fdp->fd_lock);
796 if (fd_getfile(newfd) != NULL) {
797 (void)fd_close(newfd);
798 } else {
799 /*
800 * Crummy, but unlikely to happen.
801 * Can occur if we interrupt another
802 * thread while it is opening a file.
803 */
804 kpause("dup2", false, 1, NULL);
805 }
806 mutex_enter(&fdp->fd_lock);
807 }
808 dt = fdp->fd_dt;
809 if (dt->dt_ff[newfd] == NULL) {
810 KASSERT(newfd >= NDFDFILE);
811 dt->dt_ff[newfd] = ff;
812 ff = NULL;
813 }
814 fd_used(fdp, newfd);
815 mutex_exit(&fdp->fd_lock);
816
817 fd_set_exclose(curlwp, newfd, (flags & O_CLOEXEC) != 0);
818 fd_set_foclose(curlwp, newfd, (flags & O_CLOFORK) != 0);
819 fp->f_flag |= flags & (FNONBLOCK|FNOSIGPIPE);
820 /* Slot is now allocated. Insert copy of the file. */
821 fd_affix(curproc, fp, newfd);
822 if (ff != NULL) {
823 cv_destroy(&ff->ff_closing);
824 kmem_free(ff, sizeof(*ff));
825 }
826 return 0;
827 }
828
829 /*
830 * Drop reference to a file structure.
831 */
832 int
833 closef(file_t *fp)
834 {
835 struct flock lf;
836 int error;
837
838 /*
839 * Drop reference. If referenced elsewhere it's still open
840 * and we have nothing more to do.
841 */
842 mutex_enter(&fp->f_lock);
843 KASSERT(fp->f_count > 0);
844 if (--fp->f_count > 0) {
845 mutex_exit(&fp->f_lock);
846 return 0;
847 }
848 KASSERT(fp->f_count == 0);
849 mutex_exit(&fp->f_lock);
850
851 /* We held the last reference - release locks, close and free. */
852 if (fp->f_ops->fo_advlock == NULL) {
853 KASSERT((fp->f_flag & FHASLOCK) == 0);
854 } else if (fp->f_flag & FHASLOCK) {
855 lf.l_whence = SEEK_SET;
856 lf.l_start = 0;
857 lf.l_len = 0;
858 lf.l_type = F_UNLCK;
859 (void)(*fp->f_ops->fo_advlock)(fp, fp, F_UNLCK, &lf, F_FLOCK);
860 }
861 if (fp->f_ops != NULL) {
862 error = (*fp->f_ops->fo_close)(fp);
863
864 /*
865 * .fo_close is final, so real errors are frowned on
866 * (but allowed and passed on to close(2)), and
867 * ERESTART is absolutely forbidden because the file
868 * descriptor is gone and there is no chance to retry.
869 */
870 KASSERTMSG(error != ERESTART,
871 "file %p f_ops %p fo_close %p returned ERESTART",
872 fp, fp->f_ops, fp->f_ops->fo_close);
873 } else {
874 error = 0;
875 }
876 KASSERT(fp->f_count == 0);
877 KASSERT(fp->f_cred != NULL);
878 pool_cache_put(file_cache, fp);
879
880 return error;
881 }
882
883 /*
884 * Allocate a file descriptor for the process.
885 *
886 * Future idea for experimentation: replace all of this with radixtree.
887 */
888 int
889 fd_alloc(proc_t *p, int want, int *result)
890 {
891 filedesc_t *fdp = p->p_fd;
892 int i, lim, last, error, hi;
893 u_int off;
894 fdtab_t *dt;
895
896 KASSERT(p == curproc || p == &proc0);
897
898 /*
899 * Search for a free descriptor starting at the higher
900 * of want or fd_freefile.
901 */
902 mutex_enter(&fdp->fd_lock);
903 fd_checkmaps(fdp);
904 dt = fdp->fd_dt;
905 KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
906 lim = uimin((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
907 last = uimin(dt->dt_nfiles, lim);
908
909 for (;;) {
910 if ((i = want) < fdp->fd_freefile)
911 i = fdp->fd_freefile;
912 off = i >> NDENTRYSHIFT;
913 hi = fd_next_zero(fdp, fdp->fd_himap, off,
914 (last + NDENTRIES - 1) >> NDENTRYSHIFT);
915 if (hi == -1)
916 break;
917 i = fd_next_zero(fdp, &fdp->fd_lomap[hi],
918 hi > off ? 0 : i & NDENTRYMASK, NDENTRIES);
919 if (i == -1) {
920 /*
921 * Free file descriptor in this block was
922 * below want, try again with higher want.
923 */
924 want = (hi + 1) << NDENTRYSHIFT;
925 continue;
926 }
927 i += (hi << NDENTRYSHIFT);
928 if (i >= last) {
929 break;
930 }
931 if (dt->dt_ff[i] == NULL) {
932 KASSERT(i >= NDFDFILE);
933 dt->dt_ff[i] = kmem_alloc(sizeof(fdfile_t), KM_SLEEP);
934 fdfile_ctor(dt->dt_ff[i]);
935 }
936 KASSERT(dt->dt_ff[i]->ff_file == NULL);
937 fd_used(fdp, i);
938 if (want <= fdp->fd_freefile) {
939 fdp->fd_freefile = i;
940 }
941 *result = i;
942 KASSERT(i >= NDFDFILE ||
943 dt->dt_ff[i] == (fdfile_t *)fdp->fd_dfdfile[i]);
944 fd_checkmaps(fdp);
945 mutex_exit(&fdp->fd_lock);
946 return 0;
947 }
948
949 /* No space in current array. Let the caller expand and retry. */
950 error = (dt->dt_nfiles >= lim) ? EMFILE : ENOSPC;
951 mutex_exit(&fdp->fd_lock);
952 return error;
953 }
954
955 /*
956 * Allocate memory for a descriptor table.
957 */
958 static fdtab_t *
959 fd_dtab_alloc(int n)
960 {
961 fdtab_t *dt;
962 size_t sz;
963
964 KASSERT(n > NDFILE);
965
966 sz = sizeof(*dt) + (n - NDFILE) * sizeof(dt->dt_ff[0]);
967 dt = kmem_alloc(sz, KM_SLEEP);
968 #ifdef DIAGNOSTIC
969 memset(dt, 0xff, sz);
970 #endif
971 dt->dt_nfiles = n;
972 dt->dt_link = NULL;
973 return dt;
974 }
975
976 /*
977 * Free a descriptor table, and all tables linked for deferred free.
978 */
979 static void
980 fd_dtab_free(fdtab_t *dt)
981 {
982 fdtab_t *next;
983 size_t sz;
984
985 do {
986 next = dt->dt_link;
987 KASSERT(dt->dt_nfiles > NDFILE);
988 sz = sizeof(*dt) +
989 (dt->dt_nfiles - NDFILE) * sizeof(dt->dt_ff[0]);
990 #ifdef DIAGNOSTIC
991 memset(dt, 0xff, sz);
992 #endif
993 kmem_free(dt, sz);
994 dt = next;
995 } while (dt != NULL);
996 }
997
998 /*
999 * Allocate descriptor bitmap.
1000 */
1001 static void
1002 fd_map_alloc(int n, uint32_t **lo, uint32_t **hi)
1003 {
1004 uint8_t *ptr;
1005 size_t szlo, szhi;
1006
1007 KASSERT(n > NDENTRIES);
1008
1009 szlo = NDLOSLOTS(n) * sizeof(uint32_t);
1010 szhi = NDHISLOTS(n) * sizeof(uint32_t);
1011 ptr = kmem_alloc(szlo + szhi, KM_SLEEP);
1012 *lo = (uint32_t *)ptr;
1013 *hi = (uint32_t *)(ptr + szlo);
1014 }
1015
1016 /*
1017 * Free descriptor bitmap.
1018 */
1019 static void
1020 fd_map_free(int n, uint32_t *lo, uint32_t *hi)
1021 {
1022 size_t szlo, szhi;
1023
1024 KASSERT(n > NDENTRIES);
1025
1026 szlo = NDLOSLOTS(n) * sizeof(uint32_t);
1027 szhi = NDHISLOTS(n) * sizeof(uint32_t);
1028 KASSERT(hi == (uint32_t *)((uint8_t *)lo + szlo));
1029 kmem_free(lo, szlo + szhi);
1030 }
1031
1032 /*
1033 * Expand a process' descriptor table.
1034 */
1035 void
1036 fd_tryexpand(proc_t *p)
1037 {
1038 filedesc_t *fdp;
1039 int i, numfiles, oldnfiles;
1040 fdtab_t *newdt, *dt;
1041 uint32_t *newhimap, *newlomap;
1042
1043 KASSERT(p == curproc || p == &proc0);
1044
1045 fdp = p->p_fd;
1046 newhimap = NULL;
1047 newlomap = NULL;
1048 oldnfiles = atomic_load_consume(&fdp->fd_dt)->dt_nfiles;
1049
1050 if (oldnfiles < NDEXTENT)
1051 numfiles = NDEXTENT;
1052 else
1053 numfiles = 2 * oldnfiles;
1054
1055 newdt = fd_dtab_alloc(numfiles);
1056 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1057 fd_map_alloc(numfiles, &newlomap, &newhimap);
1058 }
1059
1060 mutex_enter(&fdp->fd_lock);
1061 dt = fdp->fd_dt;
1062 KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1063 if (dt->dt_nfiles != oldnfiles) {
1064 /* fdp changed; caller must retry */
1065 mutex_exit(&fdp->fd_lock);
1066 fd_dtab_free(newdt);
1067 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1068 fd_map_free(numfiles, newlomap, newhimap);
1069 }
1070 return;
1071 }
1072
1073 /* Copy the existing descriptor table and zero the new portion. */
1074 i = sizeof(fdfile_t *) * oldnfiles;
1075 memcpy(newdt->dt_ff, dt->dt_ff, i);
1076 memset((uint8_t *)newdt->dt_ff + i, 0,
1077 numfiles * sizeof(fdfile_t *) - i);
1078
1079 /*
1080 * Link old descriptor array into list to be discarded. We defer
1081 * freeing until the last reference to the descriptor table goes
1082 * away (usually process exit). This allows us to do lockless
1083 * lookups in fd_getfile().
1084 */
1085 if (oldnfiles > NDFILE) {
1086 if (fdp->fd_refcnt > 1) {
1087 newdt->dt_link = dt;
1088 } else {
1089 fd_dtab_free(dt);
1090 }
1091 }
1092
1093 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1094 i = NDHISLOTS(oldnfiles) * sizeof(uint32_t);
1095 memcpy(newhimap, fdp->fd_himap, i);
1096 memset((uint8_t *)newhimap + i, 0,
1097 NDHISLOTS(numfiles) * sizeof(uint32_t) - i);
1098
1099 i = NDLOSLOTS(oldnfiles) * sizeof(uint32_t);
1100 memcpy(newlomap, fdp->fd_lomap, i);
1101 memset((uint8_t *)newlomap + i, 0,
1102 NDLOSLOTS(numfiles) * sizeof(uint32_t) - i);
1103
1104 if (NDHISLOTS(oldnfiles) > NDHISLOTS(NDFILE)) {
1105 fd_map_free(oldnfiles, fdp->fd_lomap, fdp->fd_himap);
1106 }
1107 fdp->fd_himap = newhimap;
1108 fdp->fd_lomap = newlomap;
1109 }
1110
1111 /*
1112 * All other modifications must become globally visible before
1113 * the change to fd_dt. See fd_getfile().
1114 */
1115 atomic_store_release(&fdp->fd_dt, newdt);
1116 KASSERT(newdt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1117 fd_checkmaps(fdp);
1118 mutex_exit(&fdp->fd_lock);
1119 }
1120
1121 /*
1122 * Create a new open file structure and allocate a file descriptor
1123 * for the current process.
1124 */
1125 int
1126 fd_allocfile(file_t **resultfp, int *resultfd)
1127 {
1128 proc_t *p = curproc;
1129 kauth_cred_t cred;
1130 file_t *fp;
1131 int error;
1132
1133 while ((error = fd_alloc(p, 0, resultfd)) != 0) {
1134 if (error != ENOSPC) {
1135 return error;
1136 }
1137 fd_tryexpand(p);
1138 }
1139
1140 fp = pool_cache_get(file_cache, PR_WAITOK);
1141 if (fp == NULL) {
1142 fd_abort(p, NULL, *resultfd);
1143 return ENFILE;
1144 }
1145 KASSERT(fp->f_count == 0);
1146 KASSERT(fp->f_msgcount == 0);
1147 KASSERT(fp->f_unpcount == 0);
1148
1149 /* Replace cached credentials if not what we need. */
1150 cred = curlwp->l_cred;
1151 if (__predict_false(cred != fp->f_cred)) {
1152 kauth_cred_free(fp->f_cred);
1153 fp->f_cred = kauth_cred_hold(cred);
1154 }
1155
1156 /*
1157 * Don't allow recycled files to be scanned.
1158 * See uipc_usrreq.c.
1159 */
1160 if (__predict_false((fp->f_flag & FSCAN) != 0)) {
1161 mutex_enter(&fp->f_lock);
1162 atomic_and_uint(&fp->f_flag, ~FSCAN);
1163 mutex_exit(&fp->f_lock);
1164 }
1165
1166 fp->f_advice = 0;
1167 fp->f_offset = 0;
1168 *resultfp = fp;
1169
1170 return 0;
1171 }
1172
1173 /*
1174 * Successful creation of a new descriptor: make visible to the process.
1175 */
1176 void
1177 fd_affix(proc_t *p, file_t *fp, unsigned fd)
1178 {
1179 fdfile_t *ff;
1180 filedesc_t *fdp;
1181 fdtab_t *dt;
1182
1183 KASSERT(p == curproc || p == &proc0);
1184
1185 /* Add a reference to the file structure. */
1186 mutex_enter(&fp->f_lock);
1187 fp->f_count++;
1188 mutex_exit(&fp->f_lock);
1189
1190 /*
1191 * Insert the new file into the descriptor slot.
1192 */
1193 fdp = p->p_fd;
1194 dt = atomic_load_consume(&fdp->fd_dt);
1195 ff = dt->dt_ff[fd];
1196
1197 KASSERT(ff != NULL);
1198 KASSERT(ff->ff_file == NULL);
1199 KASSERT(ff->ff_allocated);
1200 KASSERT(fd_isused(fdp, fd));
1201 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1202
1203 /* No need to lock in order to make file initially visible. */
1204 atomic_store_release(&ff->ff_file, fp);
1205 }
1206
1207 /*
1208 * Abort creation of a new descriptor: free descriptor slot and file.
1209 */
1210 void
1211 fd_abort(proc_t *p, file_t *fp, unsigned fd)
1212 {
1213 filedesc_t *fdp;
1214 fdfile_t *ff;
1215
1216 KASSERT(p == curproc || p == &proc0);
1217
1218 fdp = p->p_fd;
1219 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1220 ff->ff_exclose = false;
1221 ff->ff_foclose = false;
1222
1223 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1224
1225 mutex_enter(&fdp->fd_lock);
1226 KASSERT(fd_isused(fdp, fd));
1227 fd_unused(fdp, fd);
1228 mutex_exit(&fdp->fd_lock);
1229
1230 if (fp != NULL) {
1231 KASSERT(fp->f_count == 0);
1232 KASSERT(fp->f_cred != NULL);
1233 pool_cache_put(file_cache, fp);
1234 }
1235 }
1236
1237 static int
1238 file_ctor(void *arg, void *obj, int flags)
1239 {
1240 /*
1241 * It's easy to exhaust the open file limit on a system with many
1242 * CPUs due to caching. Allow a bit of leeway to reduce the element
1243 * of surprise.
1244 */
1245 u_int slop = PCG_NOBJECTS_NORMAL * (ncpu - 1);
1246 file_t *fp = obj;
1247
1248 memset(fp, 0, sizeof(*fp));
1249
1250 mutex_enter(&filelist_lock);
1251 if (__predict_false(nfiles >= slop + maxfiles)) {
1252 mutex_exit(&filelist_lock);
1253 tablefull("file", "increase kern.maxfiles or MAXFILES");
1254 return ENFILE;
1255 }
1256 nfiles++;
1257 LIST_INSERT_HEAD(&filehead, fp, f_list);
1258 mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
1259 fp->f_cred = kauth_cred_hold(curlwp->l_cred);
1260 mutex_exit(&filelist_lock);
1261
1262 return 0;
1263 }
1264
1265 static void
1266 file_dtor(void *arg, void *obj)
1267 {
1268 file_t *fp = obj;
1269
1270 mutex_enter(&filelist_lock);
1271 nfiles--;
1272 LIST_REMOVE(fp, f_list);
1273 mutex_exit(&filelist_lock);
1274
1275 KASSERT(fp->f_count == 0);
1276 kauth_cred_free(fp->f_cred);
1277 mutex_destroy(&fp->f_lock);
1278 }
1279
1280 static void
1281 fdfile_ctor(fdfile_t *ff)
1282 {
1283
1284 memset(ff, 0, sizeof(*ff));
1285 cv_init(&ff->ff_closing, "fdclose");
1286 }
1287
1288 static void
1289 fdfile_dtor(fdfile_t *ff)
1290 {
1291
1292 cv_destroy(&ff->ff_closing);
1293 }
1294
1295 file_t *
1296 fgetdummy(void)
1297 {
1298 file_t *fp;
1299
1300 fp = kmem_zalloc(sizeof(*fp), KM_SLEEP);
1301 mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
1302 return fp;
1303 }
1304
1305 void
1306 fputdummy(file_t *fp)
1307 {
1308
1309 mutex_destroy(&fp->f_lock);
1310 kmem_free(fp, sizeof(*fp));
1311 }
1312
1313 /*
1314 * Create an initial filedesc structure.
1315 */
1316 filedesc_t *
1317 fd_init(filedesc_t *fdp)
1318 {
1319 #ifdef DIAGNOSTIC
1320 unsigned fd;
1321 #endif
1322
1323 if (__predict_true(fdp == NULL)) {
1324 fdp = pool_cache_get(filedesc_cache, PR_WAITOK);
1325 } else {
1326 KASSERT(fdp == &filedesc0);
1327 filedesc_ctor(NULL, fdp, PR_WAITOK);
1328 }
1329
1330 #ifdef DIAGNOSTIC
1331 KASSERT(fdp->fd_lastfile == -1);
1332 KASSERT(fdp->fd_lastkqfile == -1);
1333 KASSERT(fdp->fd_knhash == NULL);
1334 KASSERT(fdp->fd_freefile == 0);
1335 KASSERT(fdp->fd_exclose == false);
1336 KASSERT(fdp->fd_foclose == false);
1337 KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
1338 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1339 for (fd = 0; fd < NDFDFILE; fd++) {
1340 KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] ==
1341 (fdfile_t *)fdp->fd_dfdfile[fd]);
1342 }
1343 for (fd = NDFDFILE; fd < NDFILE; fd++) {
1344 KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] == NULL);
1345 }
1346 KASSERT(fdp->fd_himap == fdp->fd_dhimap);
1347 KASSERT(fdp->fd_lomap == fdp->fd_dlomap);
1348 #endif /* DIAGNOSTIC */
1349
1350 fdp->fd_refcnt = 1;
1351 fd_checkmaps(fdp);
1352
1353 return fdp;
1354 }
1355
1356 /*
1357 * Initialize a file descriptor table.
1358 */
1359 static int
1360 filedesc_ctor(void *arg, void *obj, int flag)
1361 {
1362 filedesc_t *fdp = obj;
1363 fdfile_t **ffp;
1364 int i;
1365
1366 memset(fdp, 0, sizeof(*fdp));
1367 mutex_init(&fdp->fd_lock, MUTEX_DEFAULT, IPL_NONE);
1368 fdp->fd_lastfile = -1;
1369 fdp->fd_lastkqfile = -1;
1370 fdp->fd_dt = &fdp->fd_dtbuiltin;
1371 fdp->fd_dtbuiltin.dt_nfiles = NDFILE;
1372 fdp->fd_himap = fdp->fd_dhimap;
1373 fdp->fd_lomap = fdp->fd_dlomap;
1374
1375 CTASSERT(sizeof(fdp->fd_dfdfile[0]) >= sizeof(fdfile_t));
1376 for (i = 0, ffp = fdp->fd_dt->dt_ff; i < NDFDFILE; i++, ffp++) {
1377 fdfile_ctor(*ffp = (fdfile_t *)fdp->fd_dfdfile[i]);
1378 }
1379
1380 return 0;
1381 }
1382
1383 static void
1384 filedesc_dtor(void *arg, void *obj)
1385 {
1386 filedesc_t *fdp = obj;
1387 int i;
1388
1389 for (i = 0; i < NDFDFILE; i++) {
1390 fdfile_dtor((fdfile_t *)fdp->fd_dfdfile[i]);
1391 }
1392
1393 mutex_destroy(&fdp->fd_lock);
1394 }
1395
1396 /*
1397 * Make p share curproc's filedesc structure.
1398 */
1399 void
1400 fd_share(struct proc *p)
1401 {
1402 filedesc_t *fdp;
1403
1404 fdp = curlwp->l_fd;
1405 p->p_fd = fdp;
1406 atomic_inc_uint(&fdp->fd_refcnt);
1407 }
1408
1409 /*
1410 * Acquire a hold on a filedesc structure.
1411 */
1412 void
1413 fd_hold(lwp_t *l)
1414 {
1415 filedesc_t *fdp = l->l_fd;
1416
1417 atomic_inc_uint(&fdp->fd_refcnt);
1418 }
1419
1420 /*
1421 * Copy a filedesc structure.
1422 */
1423 filedesc_t *
1424 fd_copy(void)
1425 {
1426 filedesc_t *newfdp, *fdp;
1427 fdfile_t *ff, **ffp, **nffp, *ff2;
1428 int i, j, numfiles, lastfile, newlast;
1429 file_t *fp;
1430 fdtab_t *newdt;
1431
1432 fdp = curproc->p_fd;
1433 newfdp = pool_cache_get(filedesc_cache, PR_WAITOK);
1434 newfdp->fd_refcnt = 1;
1435
1436 #ifdef DIAGNOSTIC
1437 KASSERT(newfdp->fd_lastfile == -1);
1438 KASSERT(newfdp->fd_lastkqfile == -1);
1439 KASSERT(newfdp->fd_knhash == NULL);
1440 KASSERT(newfdp->fd_freefile == 0);
1441 KASSERT(newfdp->fd_exclose == false);
1442 KASSERT(newfdp->fd_foclose == false);
1443 KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
1444 KASSERT(newfdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1445 for (i = 0; i < NDFDFILE; i++) {
1446 KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] ==
1447 (fdfile_t *)&newfdp->fd_dfdfile[i]);
1448 }
1449 for (i = NDFDFILE; i < NDFILE; i++) {
1450 KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] == NULL);
1451 }
1452 #endif /* DIAGNOSTIC */
1453
1454 mutex_enter(&fdp->fd_lock);
1455 fd_checkmaps(fdp);
1456 numfiles = fdp->fd_dt->dt_nfiles;
1457 lastfile = fdp->fd_lastfile;
1458
1459 /*
1460 * If the number of open files fits in the internal arrays
1461 * of the open file structure, use them, otherwise allocate
1462 * additional memory for the number of descriptors currently
1463 * in use.
1464 */
1465 if (lastfile < NDFILE) {
1466 i = NDFILE;
1467 newdt = newfdp->fd_dt;
1468 KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
1469 } else {
1470 /*
1471 * Compute the smallest multiple of NDEXTENT needed
1472 * for the file descriptors currently in use,
1473 * allowing the table to shrink.
1474 */
1475 i = numfiles;
1476 while (i >= 2 * NDEXTENT && i > lastfile * 2) {
1477 i /= 2;
1478 }
1479 KASSERT(i > NDFILE);
1480 newdt = fd_dtab_alloc(i);
1481 newfdp->fd_dt = newdt;
1482 memcpy(newdt->dt_ff, newfdp->fd_dtbuiltin.dt_ff,
1483 NDFDFILE * sizeof(fdfile_t **));
1484 memset(newdt->dt_ff + NDFDFILE, 0,
1485 (i - NDFDFILE) * sizeof(fdfile_t **));
1486 }
1487 if (NDHISLOTS(i) <= NDHISLOTS(NDFILE)) {
1488 newfdp->fd_himap = newfdp->fd_dhimap;
1489 newfdp->fd_lomap = newfdp->fd_dlomap;
1490 } else {
1491 fd_map_alloc(i, &newfdp->fd_lomap, &newfdp->fd_himap);
1492 KASSERT(i >= NDENTRIES * NDENTRIES);
1493 memset(newfdp->fd_himap, 0, NDHISLOTS(i)*sizeof(uint32_t));
1494 memset(newfdp->fd_lomap, 0, NDLOSLOTS(i)*sizeof(uint32_t));
1495 }
1496 newfdp->fd_freefile = fdp->fd_freefile;
1497 newfdp->fd_exclose = fdp->fd_exclose;
1498 newfdp->fd_foclose = false; /* no close-on-fork will be copied */
1499
1500 ffp = fdp->fd_dt->dt_ff;
1501 nffp = newdt->dt_ff;
1502 newlast = -1;
1503 for (i = 0; i <= lastfile; i++, ffp++, nffp++) {
1504 KASSERT(i >= NDFDFILE ||
1505 *nffp == (fdfile_t *)newfdp->fd_dfdfile[i]);
1506 ff = *ffp;
1507 if (ff == NULL ||
1508 (fp = atomic_load_consume(&ff->ff_file)) == NULL) {
1509 /* Descriptor unused, or descriptor half open. */
1510 KASSERT(!fd_isused(newfdp, i));
1511 continue;
1512 }
1513 if (__predict_false(ff->ff_foclose ||
1514 fp->f_type == DTYPE_KQUEUE)) {
1515 /* kqueue descriptors cannot be copied. */
1516 /* close-on-fork descriptors aren't either */
1517 if (i < newfdp->fd_freefile) {
1518 newfdp->fd_freefile = i;
1519 }
1520 continue;
1521 }
1522 /* It's active: add a reference to the file. */
1523 mutex_enter(&fp->f_lock);
1524 fp->f_count++;
1525 mutex_exit(&fp->f_lock);
1526
1527 /* Allocate an fdfile_t to represent it. */
1528 if (i >= NDFDFILE) {
1529 ff2 = kmem_alloc(sizeof(*ff2), KM_SLEEP);
1530 fdfile_ctor(ff2);
1531 *nffp = ff2;
1532 } else {
1533 ff2 = newdt->dt_ff[i];
1534 }
1535 ff2->ff_file = fp;
1536 ff2->ff_exclose = ff->ff_exclose;
1537 ff2->ff_foclose = false;
1538 ff2->ff_allocated = true;
1539
1540 /* Fix up bitmaps. */
1541 j = i >> NDENTRYSHIFT;
1542 KASSERT((newfdp->fd_lomap[j] & (1U << (i & NDENTRYMASK))) == 0);
1543 newfdp->fd_lomap[j] |= 1U << (i & NDENTRYMASK);
1544 if (__predict_false(newfdp->fd_lomap[j] == ~0)) {
1545 KASSERT((newfdp->fd_himap[j >> NDENTRYSHIFT] &
1546 (1U << (j & NDENTRYMASK))) == 0);
1547 newfdp->fd_himap[j >> NDENTRYSHIFT] |=
1548 1U << (j & NDENTRYMASK);
1549 }
1550 newlast = i;
1551 }
1552 KASSERT(newdt->dt_ff[0] == (fdfile_t *)newfdp->fd_dfdfile[0]);
1553 newfdp->fd_lastfile = newlast;
1554 fd_checkmaps(newfdp);
1555 mutex_exit(&fdp->fd_lock);
1556
1557 return newfdp;
1558 }
1559
1560 /*
1561 * Release a filedesc structure.
1562 */
1563 void
1564 fd_free(void)
1565 {
1566 fdfile_t *ff;
1567 file_t *fp;
1568 int fd, nf;
1569 fdtab_t *dt;
1570 lwp_t * const l = curlwp;
1571 filedesc_t * const fdp = l->l_fd;
1572 const bool noadvlock = (l->l_proc->p_flag & PK_ADVLOCK) == 0;
1573
1574 KASSERT(atomic_load_consume(&fdp->fd_dt)->dt_ff[0] ==
1575 (fdfile_t *)fdp->fd_dfdfile[0]);
1576 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1577 KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
1578
1579 membar_release();
1580 if (atomic_dec_uint_nv(&fdp->fd_refcnt) > 0)
1581 return;
1582 membar_acquire();
1583
1584 /*
1585 * Close any files that the process holds open.
1586 */
1587 dt = fdp->fd_dt;
1588 fd_checkmaps(fdp);
1589 #ifdef DEBUG
1590 fdp->fd_refcnt = -1; /* see fd_checkmaps */
1591 #endif
1592 for (fd = 0, nf = dt->dt_nfiles; fd < nf; fd++) {
1593 ff = dt->dt_ff[fd];
1594 KASSERT(fd >= NDFDFILE ||
1595 ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1596 if (ff == NULL)
1597 continue;
1598 if ((fp = atomic_load_consume(&ff->ff_file)) != NULL) {
1599 /*
1600 * Must use fd_close() here if there is
1601 * a reference from kqueue or we might have posix
1602 * advisory locks.
1603 */
1604 if (__predict_true(ff->ff_refcnt == 0) &&
1605 (noadvlock || fp->f_type != DTYPE_VNODE)) {
1606 ff->ff_file = NULL;
1607 ff->ff_exclose = false;
1608 ff->ff_foclose = false;
1609 ff->ff_allocated = false;
1610 closef(fp);
1611 } else {
1612 ff->ff_refcnt++;
1613 fd_close(fd);
1614 }
1615 }
1616 KASSERT(ff->ff_refcnt == 0);
1617 KASSERT(ff->ff_file == NULL);
1618 KASSERT(!ff->ff_exclose);
1619 KASSERT(!ff->ff_foclose);
1620 KASSERT(!ff->ff_allocated);
1621 if (fd >= NDFDFILE) {
1622 cv_destroy(&ff->ff_closing);
1623 kmem_free(ff, sizeof(*ff));
1624 dt->dt_ff[fd] = NULL;
1625 }
1626 }
1627
1628 /*
1629 * Clean out the descriptor table for the next user and return
1630 * to the cache.
1631 */
1632 if (__predict_false(dt != &fdp->fd_dtbuiltin)) {
1633 fd_dtab_free(fdp->fd_dt);
1634 /* Otherwise, done above. */
1635 memset(&fdp->fd_dtbuiltin.dt_ff[NDFDFILE], 0,
1636 (NDFILE - NDFDFILE) * sizeof(fdp->fd_dtbuiltin.dt_ff[0]));
1637 fdp->fd_dt = &fdp->fd_dtbuiltin;
1638 }
1639 if (__predict_false(NDHISLOTS(nf) > NDHISLOTS(NDFILE))) {
1640 KASSERT(fdp->fd_himap != fdp->fd_dhimap);
1641 KASSERT(fdp->fd_lomap != fdp->fd_dlomap);
1642 fd_map_free(nf, fdp->fd_lomap, fdp->fd_himap);
1643 }
1644 if (__predict_false(fdp->fd_knhash != NULL)) {
1645 hashdone(fdp->fd_knhash, HASH_LIST, fdp->fd_knhashmask);
1646 fdp->fd_knhash = NULL;
1647 fdp->fd_knhashmask = 0;
1648 } else {
1649 KASSERT(fdp->fd_knhashmask == 0);
1650 }
1651 fdp->fd_dt = &fdp->fd_dtbuiltin;
1652 fdp->fd_lastkqfile = -1;
1653 fdp->fd_lastfile = -1;
1654 fdp->fd_freefile = 0;
1655 fdp->fd_exclose = false;
1656 fdp->fd_foclose = false;
1657 memset(&fdp->fd_startzero, 0, sizeof(*fdp) -
1658 offsetof(filedesc_t, fd_startzero));
1659 fdp->fd_himap = fdp->fd_dhimap;
1660 fdp->fd_lomap = fdp->fd_dlomap;
1661 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1662 KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
1663 KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
1664 #ifdef DEBUG
1665 fdp->fd_refcnt = 0; /* see fd_checkmaps */
1666 #endif
1667 fd_checkmaps(fdp);
1668 pool_cache_put(filedesc_cache, fdp);
1669 }
1670
1671 /*
1672 * File Descriptor pseudo-device driver (/dev/fd/).
1673 *
1674 * Opening minor device N dup()s the file (if any) connected to file
1675 * descriptor N belonging to the calling process. Note that this driver
1676 * consists of only the ``open()'' routine, because all subsequent
1677 * references to this file will be direct to the other driver.
1678 */
1679 static int
1680 filedescopen(dev_t dev, int mode, int type, lwp_t *l)
1681 {
1682
1683 /*
1684 * XXX Kludge: set dupfd to contain the value of the
1685 * the file descriptor being sought for duplication. The error
1686 * return ensures that the vnode for this device will be released
1687 * by vn_open. Open will detect this special error and take the
1688 * actions in fd_dupopen below. Other callers of vn_open or VOP_OPEN
1689 * will simply report the error.
1690 */
1691 l->l_dupfd = minor(dev); /* XXX */
1692 return EDUPFD;
1693 }
1694
1695 /*
1696 * Duplicate the specified descriptor to a free descriptor.
1697 *
1698 * old is the original fd.
1699 * moveit is true if we should move rather than duplicate.
1700 * flags are the open flags (converted from O_* to F*).
1701 * newp returns the new fd on success.
1702 *
1703 * These two cases are produced by the EDUPFD and EMOVEFD magic
1704 * errnos, but in the interest of removing that regrettable interface,
1705 * vn_open has been changed to intercept them. Now vn_open returns
1706 * either a vnode or a filehandle, and the filehandle is accompanied
1707 * by a boolean that says whether we should dup (moveit == false) or
1708 * move (moveit == true) the fd.
1709 *
1710 * The dup case is used by /dev/stderr, /proc/self/fd, and such. The
1711 * move case is used by cloner devices that allocate a fd of their
1712 * own (a layering violation that should go away eventually) that
1713 * then needs to be put in the place open() expects it.
1714 */
1715 int
1716 fd_dupopen(int old, bool moveit, int flags, int *newp)
1717 {
1718 filedesc_t *fdp;
1719 fdfile_t *ff;
1720 file_t *fp;
1721 fdtab_t *dt;
1722 int error;
1723
1724 if ((fp = fd_getfile(old)) == NULL) {
1725 return EBADF;
1726 }
1727 fdp = curlwp->l_fd;
1728 dt = atomic_load_consume(&fdp->fd_dt);
1729 ff = dt->dt_ff[old];
1730
1731 /*
1732 * There are two cases of interest here.
1733 *
1734 * 1. moveit == false (used to be the EDUPFD magic errno):
1735 * simply dup (old) to file descriptor (new) and return.
1736 *
1737 * 2. moveit == true (used to be the EMOVEFD magic errno):
1738 * steal away the file structure from (old) and store it in
1739 * (new). (old) is effectively closed by this operation.
1740 */
1741 if (moveit == false) {
1742 /*
1743 * Check that the mode the file is being opened for is a
1744 * subset of the mode of the existing descriptor.
1745 */
1746 if (((flags & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
1747 error = EACCES;
1748 goto out;
1749 }
1750
1751 /* Copy it. */
1752 error = fd_dup(fp, 0, newp, ff->ff_exclose, ff->ff_foclose);
1753 } else {
1754 /* Copy it. */
1755 error = fd_dup(fp, 0, newp, ff->ff_exclose, ff->ff_foclose);
1756 if (error != 0) {
1757 goto out;
1758 }
1759
1760 /* Steal away the file pointer from 'old'. */
1761 (void)fd_close(old);
1762 return 0;
1763 }
1764
1765 out:
1766 fd_putfile(old);
1767 return error;
1768 }
1769
1770 /*
1771 * Close open files on exec.
1772 */
1773 void
1774 fd_closeexec(void)
1775 {
1776 proc_t *p;
1777 filedesc_t *fdp;
1778 fdfile_t *ff;
1779 lwp_t *l;
1780 fdtab_t *dt;
1781 int fd;
1782
1783 l = curlwp;
1784 p = l->l_proc;
1785 fdp = p->p_fd;
1786
1787 if (fdp->fd_refcnt > 1) {
1788 /*
1789 * Always unshare fd table on any exec
1790 */
1791 fdp = fd_copy();
1792 fd_free();
1793 p->p_fd = fdp;
1794 l->l_fd = fdp;
1795 }
1796
1797 /*
1798 * If there are no "close-on" fd's nothing more to do
1799 */
1800 if (!(fdp->fd_exclose || fdp->fd_foclose))
1801 return;
1802
1803 fdp->fd_exclose = false; /* there will be none when done */
1804 fdp->fd_foclose = false;
1805
1806 dt = atomic_load_consume(&fdp->fd_dt);
1807
1808 for (fd = 0; fd <= fdp->fd_lastfile; fd++) {
1809 if ((ff = dt->dt_ff[fd]) == NULL) {
1810 KASSERT(fd >= NDFDFILE);
1811 continue;
1812 }
1813 KASSERT(fd >= NDFDFILE ||
1814 ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1815 if (ff->ff_file == NULL)
1816 continue;
1817 if (ff->ff_exclose) {
1818 /*
1819 * We need a reference to close the file.
1820 * No other threads can see the fdfile_t at
1821 * this point, so don't bother locking.
1822 */
1823 KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
1824 ff->ff_refcnt++;
1825 fd_close(fd);
1826 } else if (ff->ff_foclose) {
1827 /*
1828 * https://austingroupbugs.net/view.php?id=1851
1829 * (not yet approved, but probably will be: 202507)
1830 * FD_CLOFORK should not be preserved across exec
1831 */
1832 ff->ff_foclose = false;
1833 }
1834 }
1835 }
1836
1837
1838 /*
1839 * Sets descriptor owner. If the owner is a process, 'pgid'
1840 * is set to positive value, process ID. If the owner is process group,
1841 * 'pgid' is set to -pg_id.
1842 */
1843 int
1844 fsetown(pid_t *pgid, u_long cmd, const void *data)
1845 {
1846 pid_t id = *(const pid_t *)data;
1847 int error;
1848
1849 if (id <= INT_MIN)
1850 return EINVAL;
1851
1852 switch (cmd) {
1853 case TIOCSPGRP:
1854 if (id < 0)
1855 return EINVAL;
1856 id = -id;
1857 break;
1858 default:
1859 break;
1860 }
1861 if (id > 0) {
1862 mutex_enter(&proc_lock);
1863 error = proc_find(id) ? 0 : ESRCH;
1864 mutex_exit(&proc_lock);
1865 } else if (id < 0) {
1866 error = pgid_in_session(curproc, -id);
1867 } else {
1868 error = 0;
1869 }
1870 if (!error) {
1871 *pgid = id;
1872 }
1873 return error;
1874 }
1875
1876 void
1877 fd_set_exclose(struct lwp *l, int fd, bool exclose)
1878 {
1879 filedesc_t *fdp = l->l_fd;
1880 fdfile_t *ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1881
1882 ff->ff_exclose = exclose;
1883 if (exclose)
1884 fdp->fd_exclose = true;
1885 }
1886
1887 void
1888 fd_set_foclose(struct lwp *l, int fd, bool foclose)
1889 {
1890 filedesc_t *fdp = l->l_fd;
1891 fdfile_t *ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1892
1893 ff->ff_foclose = foclose;
1894 if (foclose)
1895 fdp->fd_foclose = true;
1896 }
1897
1898 /*
1899 * Return descriptor owner information. If the value is positive,
1900 * it's process ID. If it's negative, it's process group ID and
1901 * needs the sign removed before use.
1902 */
1903 int
1904 fgetown(pid_t pgid, u_long cmd, void *data)
1905 {
1906
1907 switch (cmd) {
1908 case TIOCGPGRP:
1909 KASSERT(pgid > INT_MIN);
1910 *(int *)data = -pgid;
1911 break;
1912 default:
1913 *(int *)data = pgid;
1914 break;
1915 }
1916 return 0;
1917 }
1918
1919 /*
1920 * Send signal to descriptor owner, either process or process group.
1921 */
1922 void
1923 fownsignal(pid_t pgid, int signo, int code, int band, void *fdescdata)
1924 {
1925 ksiginfo_t ksi;
1926
1927 KASSERT(!cpu_intr_p());
1928
1929 if (pgid == 0) {
1930 return;
1931 }
1932
1933 KSI_INIT(&ksi);
1934 ksi.ksi_signo = signo;
1935 ksi.ksi_code = code;
1936 ksi.ksi_band = band;
1937
1938 mutex_enter(&proc_lock);
1939 if (pgid > 0) {
1940 struct proc *p1;
1941
1942 p1 = proc_find(pgid);
1943 if (p1 != NULL) {
1944 kpsignal(p1, &ksi, fdescdata);
1945 }
1946 } else {
1947 struct pgrp *pgrp;
1948
1949 KASSERT(pgid < 0 && pgid > INT_MIN);
1950 pgrp = pgrp_find(-pgid);
1951 if (pgrp != NULL) {
1952 kpgsignal(pgrp, &ksi, fdescdata, 0);
1953 }
1954 }
1955 mutex_exit(&proc_lock);
1956 }
1957
1958 int
1959 fd_clone(file_t *fp, unsigned fd, int flag, const struct fileops *fops,
1960 void *data)
1961 {
1962
1963 fp->f_flag = flag & FMASK;
1964 fd_set_exclose(curlwp, fd, (flag & O_CLOEXEC) != 0);
1965 fd_set_foclose(curlwp, fd, (flag & O_CLOFORK) != 0);
1966 fp->f_type = DTYPE_MISC;
1967 fp->f_ops = fops;
1968 fp->f_data = data;
1969 curlwp->l_dupfd = fd;
1970 fd_affix(curproc, fp, fd);
1971
1972 return EMOVEFD;
1973 }
1974
1975 int
1976 fnullop_fcntl(file_t *fp, u_int cmd, void *data)
1977 {
1978
1979 if (cmd == F_SETFL)
1980 return 0;
1981
1982 return EOPNOTSUPP;
1983 }
1984
1985 int
1986 fnullop_poll(file_t *fp, int which)
1987 {
1988
1989 return 0;
1990 }
1991
1992 int
1993 fnullop_kqfilter(file_t *fp, struct knote *kn)
1994 {
1995
1996 return EOPNOTSUPP;
1997 }
1998
1999 void
2000 fnullop_restart(file_t *fp)
2001 {
2002
2003 }
2004
2005 int
2006 fbadop_read(file_t *fp, off_t *offset, struct uio *uio,
2007 kauth_cred_t cred, int flags)
2008 {
2009
2010 return EOPNOTSUPP;
2011 }
2012
2013 int
2014 fbadop_write(file_t *fp, off_t *offset, struct uio *uio,
2015 kauth_cred_t cred, int flags)
2016 {
2017
2018 return EOPNOTSUPP;
2019 }
2020
2021 int
2022 fbadop_ioctl(file_t *fp, u_long com, void *data)
2023 {
2024
2025 return EOPNOTSUPP;
2026 }
2027
2028 int
2029 fbadop_stat(file_t *fp, struct stat *sb)
2030 {
2031
2032 return EOPNOTSUPP;
2033 }
2034
2035 int
2036 fbadop_close(file_t *fp)
2037 {
2038
2039 return EOPNOTSUPP;
2040 }
2041
2042 /*
2043 * sysctl routines pertaining to file descriptors
2044 */
2045
2046 /* Initialized in sysctl_init() for now... */
2047 extern kmutex_t sysctl_file_marker_lock;
2048 static u_int sysctl_file_marker = 1;
2049
2050 /*
2051 * Expects to be called with proc_lock and sysctl_file_marker_lock locked.
2052 */
2053 static void
2054 sysctl_file_marker_reset(void)
2055 {
2056 struct proc *p;
2057
2058 PROCLIST_FOREACH(p, &allproc) {
2059 struct filedesc *fd = p->p_fd;
2060 fdtab_t *dt;
2061 u_int i;
2062
2063 mutex_enter(&fd->fd_lock);
2064 dt = fd->fd_dt;
2065 for (i = 0; i < dt->dt_nfiles; i++) {
2066 struct file *fp;
2067 fdfile_t *ff;
2068
2069 if ((ff = dt->dt_ff[i]) == NULL) {
2070 continue;
2071 }
2072 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
2073 continue;
2074 }
2075 fp->f_marker = 0;
2076 }
2077 mutex_exit(&fd->fd_lock);
2078 }
2079 }
2080
2081 /*
2082 * sysctl helper routine for kern.file pseudo-subtree.
2083 */
2084 static int
2085 sysctl_kern_file(SYSCTLFN_ARGS)
2086 {
2087 const bool allowaddr = get_expose_address(curproc);
2088 struct filelist flist;
2089 int error;
2090 size_t buflen;
2091 struct file *fp, fbuf;
2092 char *start, *where;
2093 struct proc *p;
2094
2095 start = where = oldp;
2096 buflen = *oldlenp;
2097
2098 if (where == NULL) {
2099 /*
2100 * overestimate by 10 files
2101 */
2102 *oldlenp = sizeof(filehead) + (nfiles + 10) *
2103 sizeof(struct file);
2104 return 0;
2105 }
2106
2107 /*
2108 * first sysctl_copyout filehead
2109 */
2110 if (buflen < sizeof(filehead)) {
2111 *oldlenp = 0;
2112 return 0;
2113 }
2114 sysctl_unlock();
2115 if (allowaddr) {
2116 memcpy(&flist, &filehead, sizeof(flist));
2117 } else {
2118 memset(&flist, 0, sizeof(flist));
2119 }
2120 error = sysctl_copyout(l, &flist, where, sizeof(flist));
2121 if (error) {
2122 sysctl_relock();
2123 return error;
2124 }
2125 buflen -= sizeof(flist);
2126 where += sizeof(flist);
2127
2128 /*
2129 * followed by an array of file structures
2130 */
2131 mutex_enter(&sysctl_file_marker_lock);
2132 mutex_enter(&proc_lock);
2133 PROCLIST_FOREACH(p, &allproc) {
2134 struct filedesc *fd;
2135 fdtab_t *dt;
2136 u_int i;
2137
2138 if (p->p_stat == SIDL) {
2139 /* skip embryonic processes */
2140 continue;
2141 }
2142 mutex_enter(p->p_lock);
2143 error = kauth_authorize_process(l->l_cred,
2144 KAUTH_PROCESS_CANSEE, p,
2145 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2146 NULL, NULL);
2147 mutex_exit(p->p_lock);
2148 if (error != 0) {
2149 /*
2150 * Don't leak kauth retval if we're silently
2151 * skipping this entry.
2152 */
2153 error = 0;
2154 continue;
2155 }
2156
2157 /*
2158 * Grab a hold on the process.
2159 */
2160 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2161 continue;
2162 }
2163 mutex_exit(&proc_lock);
2164
2165 fd = p->p_fd;
2166 mutex_enter(&fd->fd_lock);
2167 dt = fd->fd_dt;
2168 for (i = 0; i < dt->dt_nfiles; i++) {
2169 fdfile_t *ff;
2170
2171 if ((ff = dt->dt_ff[i]) == NULL) {
2172 continue;
2173 }
2174 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
2175 continue;
2176 }
2177
2178 mutex_enter(&fp->f_lock);
2179
2180 if ((fp->f_count == 0) ||
2181 (fp->f_marker == sysctl_file_marker)) {
2182 mutex_exit(&fp->f_lock);
2183 continue;
2184 }
2185
2186 /* Check that we have enough space. */
2187 if (buflen < sizeof(struct file)) {
2188 *oldlenp = where - start;
2189 mutex_exit(&fp->f_lock);
2190 error = ENOMEM;
2191 break;
2192 }
2193
2194 fill_file(&fbuf, fp);
2195 mutex_exit(&fp->f_lock);
2196 error = sysctl_copyout(l, &fbuf, where, sizeof(fbuf));
2197 if (error) {
2198 break;
2199 }
2200 buflen -= sizeof(struct file);
2201 where += sizeof(struct file);
2202
2203 fp->f_marker = sysctl_file_marker;
2204 }
2205 mutex_exit(&fd->fd_lock);
2206
2207 /*
2208 * Release reference to process.
2209 */
2210 mutex_enter(&proc_lock);
2211 rw_exit(&p->p_reflock);
2212
2213 if (error)
2214 break;
2215 }
2216
2217 sysctl_file_marker++;
2218 /* Reset all markers if wrapped. */
2219 if (sysctl_file_marker == 0) {
2220 sysctl_file_marker_reset();
2221 sysctl_file_marker++;
2222 }
2223
2224 mutex_exit(&proc_lock);
2225 mutex_exit(&sysctl_file_marker_lock);
2226
2227 *oldlenp = where - start;
2228 sysctl_relock();
2229 return error;
2230 }
2231
2232 /*
2233 * sysctl helper function for kern.file2
2234 */
2235 static int
2236 sysctl_kern_file2(SYSCTLFN_ARGS)
2237 {
2238 struct proc *p;
2239 struct file *fp;
2240 struct filedesc *fd;
2241 struct kinfo_file kf;
2242 char *dp;
2243 u_int i, op;
2244 size_t len, needed, elem_size, out_size;
2245 int error, arg, elem_count;
2246 fdfile_t *ff;
2247 fdtab_t *dt;
2248
2249 if (namelen == 1 && name[0] == CTL_QUERY)
2250 return sysctl_query(SYSCTLFN_CALL(rnode));
2251
2252 if (namelen != 4)
2253 return EINVAL;
2254
2255 error = 0;
2256 dp = oldp;
2257 len = (oldp != NULL) ? *oldlenp : 0;
2258 op = name[0];
2259 arg = name[1];
2260 elem_size = name[2];
2261 elem_count = name[3];
2262 out_size = MIN(sizeof(kf), elem_size);
2263 needed = 0;
2264
2265 if (elem_size < 1 || elem_count < 0)
2266 return EINVAL;
2267
2268 switch (op) {
2269 case KERN_FILE_BYFILE:
2270 case KERN_FILE_BYPID:
2271 /*
2272 * We're traversing the process list in both cases; the BYFILE
2273 * case does additional work of keeping track of files already
2274 * looked at.
2275 */
2276
2277 /* doesn't use arg so it must be zero */
2278 if ((op == KERN_FILE_BYFILE) && (arg != 0))
2279 return EINVAL;
2280
2281 if ((op == KERN_FILE_BYPID) && (arg < -1))
2282 /* -1 means all processes */
2283 return EINVAL;
2284
2285 sysctl_unlock();
2286 if (op == KERN_FILE_BYFILE)
2287 mutex_enter(&sysctl_file_marker_lock);
2288 mutex_enter(&proc_lock);
2289 PROCLIST_FOREACH(p, &allproc) {
2290 if (p->p_stat == SIDL) {
2291 /* skip embryonic processes */
2292 continue;
2293 }
2294 if (arg > 0 && p->p_pid != arg) {
2295 /* pick only the one we want */
2296 /* XXX want 0 to mean "kernel files" */
2297 continue;
2298 }
2299 mutex_enter(p->p_lock);
2300 error = kauth_authorize_process(l->l_cred,
2301 KAUTH_PROCESS_CANSEE, p,
2302 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2303 NULL, NULL);
2304 mutex_exit(p->p_lock);
2305 if (error != 0) {
2306 /*
2307 * Don't leak kauth retval if we're silently
2308 * skipping this entry.
2309 */
2310 error = 0;
2311 continue;
2312 }
2313
2314 /*
2315 * Grab a hold on the process.
2316 */
2317 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2318 continue;
2319 }
2320 mutex_exit(&proc_lock);
2321
2322 fd = p->p_fd;
2323 mutex_enter(&fd->fd_lock);
2324 dt = fd->fd_dt;
2325 for (i = 0; i < dt->dt_nfiles; i++) {
2326 if ((ff = dt->dt_ff[i]) == NULL) {
2327 continue;
2328 }
2329 if ((fp = atomic_load_consume(&ff->ff_file)) ==
2330 NULL) {
2331 continue;
2332 }
2333
2334 if ((op == KERN_FILE_BYFILE) &&
2335 (fp->f_marker == sysctl_file_marker)) {
2336 continue;
2337 }
2338 if (len >= elem_size && elem_count > 0) {
2339 mutex_enter(&fp->f_lock);
2340 fill_file2(&kf, fp, ff, i, p->p_pid);
2341 mutex_exit(&fp->f_lock);
2342 mutex_exit(&fd->fd_lock);
2343 error = sysctl_copyout(l,
2344 &kf, dp, out_size);
2345 mutex_enter(&fd->fd_lock);
2346 if (error)
2347 break;
2348 dp += elem_size;
2349 len -= elem_size;
2350 }
2351 if (op == KERN_FILE_BYFILE)
2352 fp->f_marker = sysctl_file_marker;
2353 needed += elem_size;
2354 if (elem_count > 0 && elem_count != INT_MAX)
2355 elem_count--;
2356 }
2357 mutex_exit(&fd->fd_lock);
2358
2359 /*
2360 * Release reference to process.
2361 */
2362 mutex_enter(&proc_lock);
2363 rw_exit(&p->p_reflock);
2364 }
2365 if (op == KERN_FILE_BYFILE) {
2366 sysctl_file_marker++;
2367
2368 /* Reset all markers if wrapped. */
2369 if (sysctl_file_marker == 0) {
2370 sysctl_file_marker_reset();
2371 sysctl_file_marker++;
2372 }
2373 }
2374 mutex_exit(&proc_lock);
2375 if (op == KERN_FILE_BYFILE)
2376 mutex_exit(&sysctl_file_marker_lock);
2377 sysctl_relock();
2378 break;
2379 default:
2380 return EINVAL;
2381 }
2382
2383 if (oldp == NULL)
2384 needed += KERN_FILESLOP * elem_size;
2385 *oldlenp = needed;
2386
2387 return error;
2388 }
2389
2390 static void
2391 fill_file(struct file *fp, const struct file *fpsrc)
2392 {
2393 const bool allowaddr = get_expose_address(curproc);
2394
2395 memset(fp, 0, sizeof(*fp));
2396
2397 fp->f_offset = fpsrc->f_offset;
2398 COND_SET_PTR(fp->f_cred, fpsrc->f_cred, allowaddr);
2399 COND_SET_CPTR(fp->f_ops, fpsrc->f_ops, allowaddr);
2400 COND_SET_STRUCT(fp->f_undata, fpsrc->f_undata, allowaddr);
2401 COND_SET_STRUCT(fp->f_list, fpsrc->f_list, allowaddr);
2402 fp->f_flag = fpsrc->f_flag;
2403 fp->f_marker = fpsrc->f_marker;
2404 fp->f_type = fpsrc->f_type;
2405 fp->f_advice = fpsrc->f_advice;
2406 fp->f_count = fpsrc->f_count;
2407 fp->f_msgcount = fpsrc->f_msgcount;
2408 fp->f_unpcount = fpsrc->f_unpcount;
2409 COND_SET_STRUCT(fp->f_unplist, fpsrc->f_unplist, allowaddr);
2410 }
2411
2412 static void
2413 fill_file2(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
2414 int i, pid_t pid)
2415 {
2416 const bool allowaddr = get_expose_address(curproc);
2417
2418 memset(kp, 0, sizeof(*kp));
2419
2420 COND_SET_VALUE(kp->ki_fileaddr, PTRTOUINT64(fp), allowaddr);
2421 kp->ki_flag = fp->f_flag;
2422 kp->ki_iflags = 0;
2423 kp->ki_ftype = fp->f_type;
2424 kp->ki_count = fp->f_count;
2425 kp->ki_msgcount = fp->f_msgcount;
2426 COND_SET_VALUE(kp->ki_fucred, PTRTOUINT64(fp->f_cred), allowaddr);
2427 kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
2428 kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
2429 COND_SET_VALUE(kp->ki_fops, PTRTOUINT64(fp->f_ops), allowaddr);
2430 kp->ki_foffset = fp->f_offset;
2431 COND_SET_VALUE(kp->ki_fdata, PTRTOUINT64(fp->f_data), allowaddr);
2432
2433 /* vnode information to glue this file to something */
2434 if (fp->f_type == DTYPE_VNODE) {
2435 struct vnode *vp = fp->f_vnode;
2436
2437 COND_SET_VALUE(kp->ki_vun, PTRTOUINT64(vp->v_un.vu_socket),
2438 allowaddr);
2439 kp->ki_vsize = vp->v_size;
2440 kp->ki_vtype = vp->v_type;
2441 kp->ki_vtag = vp->v_tag;
2442 COND_SET_VALUE(kp->ki_vdata, PTRTOUINT64(vp->v_data),
2443 allowaddr);
2444 }
2445
2446 /* process information when retrieved via KERN_FILE_BYPID */
2447 if (ff != NULL) {
2448 kp->ki_pid = pid;
2449 kp->ki_fd = i;
2450 kp->ki_ofileflags = (ff->ff_exclose ? FD_CLOEXEC : 0) |
2451 (ff->ff_foclose ? FD_CLOFORK : 0);
2452 kp->ki_usecount = ff->ff_refcnt;
2453 }
2454 }
2455