kern_descrip.c revision 1.263 1 /* $NetBSD: kern_descrip.c,v 1.263 2024/07/14 05:10:40 kre Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009, 2023 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_descrip.c 8.8 (Berkeley) 2/14/95
66 */
67
68 /*
69 * File descriptor management.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_descrip.c,v 1.263 2024/07/14 05:10:40 kre Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/file.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/stat.h>
84 #include <sys/ioctl.h>
85 #include <sys/fcntl.h>
86 #include <sys/pool.h>
87 #include <sys/unistd.h>
88 #include <sys/resourcevar.h>
89 #include <sys/conf.h>
90 #include <sys/event.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/syscallargs.h>
94 #include <sys/cpu.h>
95 #include <sys/kmem.h>
96 #include <sys/vnode.h>
97 #include <sys/sysctl.h>
98 #include <sys/ktrace.h>
99
100 /*
101 * A list (head) of open files, counter, and lock protecting them.
102 */
103 struct filelist filehead __cacheline_aligned;
104 static u_int nfiles __cacheline_aligned;
105 kmutex_t filelist_lock __cacheline_aligned;
106
107 static pool_cache_t filedesc_cache __read_mostly;
108 static pool_cache_t file_cache __read_mostly;
109
110 static int file_ctor(void *, void *, int);
111 static void file_dtor(void *, void *);
112 static void fdfile_ctor(fdfile_t *);
113 static void fdfile_dtor(fdfile_t *);
114 static int filedesc_ctor(void *, void *, int);
115 static void filedesc_dtor(void *, void *);
116 static int filedescopen(dev_t, int, int, lwp_t *);
117
118 static int sysctl_kern_file(SYSCTLFN_PROTO);
119 static int sysctl_kern_file2(SYSCTLFN_PROTO);
120 static void fill_file(struct file *, const struct file *);
121 static void fill_file2(struct kinfo_file *, const file_t *, const fdfile_t *,
122 int, pid_t);
123
124 const struct cdevsw filedesc_cdevsw = {
125 .d_open = filedescopen,
126 .d_close = noclose,
127 .d_read = noread,
128 .d_write = nowrite,
129 .d_ioctl = noioctl,
130 .d_stop = nostop,
131 .d_tty = notty,
132 .d_poll = nopoll,
133 .d_mmap = nommap,
134 .d_kqfilter = nokqfilter,
135 .d_discard = nodiscard,
136 .d_flag = D_OTHER | D_MPSAFE
137 };
138
139 /* For ease of reading. */
140 __strong_alias(fd_putvnode,fd_putfile)
141 __strong_alias(fd_putsock,fd_putfile)
142
143 /*
144 * Initialize the descriptor system.
145 */
146 void
147 fd_sys_init(void)
148 {
149 static struct sysctllog *clog;
150
151 mutex_init(&filelist_lock, MUTEX_DEFAULT, IPL_NONE);
152
153 LIST_INIT(&filehead);
154
155 file_cache = pool_cache_init(sizeof(file_t), coherency_unit, 0,
156 0, "file", NULL, IPL_NONE, file_ctor, file_dtor, NULL);
157 KASSERT(file_cache != NULL);
158
159 filedesc_cache = pool_cache_init(sizeof(filedesc_t), coherency_unit,
160 0, 0, "filedesc", NULL, IPL_NONE, filedesc_ctor, filedesc_dtor,
161 NULL);
162 KASSERT(filedesc_cache != NULL);
163
164 sysctl_createv(&clog, 0, NULL, NULL,
165 CTLFLAG_PERMANENT,
166 CTLTYPE_STRUCT, "file",
167 SYSCTL_DESCR("System open file table"),
168 sysctl_kern_file, 0, NULL, 0,
169 CTL_KERN, KERN_FILE, CTL_EOL);
170 sysctl_createv(&clog, 0, NULL, NULL,
171 CTLFLAG_PERMANENT,
172 CTLTYPE_STRUCT, "file2",
173 SYSCTL_DESCR("System open file table"),
174 sysctl_kern_file2, 0, NULL, 0,
175 CTL_KERN, KERN_FILE2, CTL_EOL);
176 }
177
178 static bool
179 fd_isused(filedesc_t *fdp, unsigned fd)
180 {
181 u_int off = fd >> NDENTRYSHIFT;
182
183 KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
184
185 return (fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0;
186 }
187
188 /*
189 * Verify that the bitmaps match the descriptor table.
190 */
191 static inline void
192 fd_checkmaps(filedesc_t *fdp)
193 {
194 #ifdef DEBUG
195 fdtab_t *dt;
196 u_int fd;
197
198 KASSERT(fdp->fd_refcnt <= 1 || mutex_owned(&fdp->fd_lock));
199
200 dt = fdp->fd_dt;
201 if (fdp->fd_refcnt == -1) {
202 /*
203 * fd_free tears down the table without maintaining its bitmap.
204 */
205 return;
206 }
207 for (fd = 0; fd < dt->dt_nfiles; fd++) {
208 if (fd < NDFDFILE) {
209 KASSERT(dt->dt_ff[fd] ==
210 (fdfile_t *)fdp->fd_dfdfile[fd]);
211 }
212 if (dt->dt_ff[fd] == NULL) {
213 KASSERT(!fd_isused(fdp, fd));
214 } else if (dt->dt_ff[fd]->ff_file != NULL) {
215 KASSERT(fd_isused(fdp, fd));
216 }
217 }
218 #endif
219 }
220
221 static int
222 fd_next_zero(filedesc_t *fdp, uint32_t *bitmap, int want, u_int bits)
223 {
224 int i, off, maxoff;
225 uint32_t sub;
226
227 KASSERT(mutex_owned(&fdp->fd_lock));
228
229 fd_checkmaps(fdp);
230
231 if (want > bits)
232 return -1;
233
234 off = want >> NDENTRYSHIFT;
235 i = want & NDENTRYMASK;
236 if (i) {
237 sub = bitmap[off] | ((u_int)~0 >> (NDENTRIES - i));
238 if (sub != ~0)
239 goto found;
240 off++;
241 }
242
243 maxoff = NDLOSLOTS(bits);
244 while (off < maxoff) {
245 if ((sub = bitmap[off]) != ~0)
246 goto found;
247 off++;
248 }
249
250 return -1;
251
252 found:
253 return (off << NDENTRYSHIFT) + ffs(~sub) - 1;
254 }
255
256 static int
257 fd_last_set(filedesc_t *fd, int last)
258 {
259 int off, i;
260 fdfile_t **ff = fd->fd_dt->dt_ff;
261 uint32_t *bitmap = fd->fd_lomap;
262
263 KASSERT(mutex_owned(&fd->fd_lock));
264
265 fd_checkmaps(fd);
266
267 off = (last - 1) >> NDENTRYSHIFT;
268
269 while (off >= 0 && !bitmap[off])
270 off--;
271
272 if (off < 0)
273 return -1;
274
275 i = ((off + 1) << NDENTRYSHIFT) - 1;
276 if (i >= last)
277 i = last - 1;
278
279 /* XXX should use bitmap */
280 while (i > 0 && (ff[i] == NULL || !ff[i]->ff_allocated))
281 i--;
282
283 return i;
284 }
285
286 static inline void
287 fd_used(filedesc_t *fdp, unsigned fd)
288 {
289 u_int off = fd >> NDENTRYSHIFT;
290 fdfile_t *ff;
291
292 ff = fdp->fd_dt->dt_ff[fd];
293
294 KASSERT(mutex_owned(&fdp->fd_lock));
295 KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) == 0);
296 KASSERT(ff != NULL);
297 KASSERT(ff->ff_file == NULL);
298 KASSERT(!ff->ff_allocated);
299
300 ff->ff_allocated = true;
301 fdp->fd_lomap[off] |= 1U << (fd & NDENTRYMASK);
302 if (__predict_false(fdp->fd_lomap[off] == ~0)) {
303 KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
304 (1U << (off & NDENTRYMASK))) == 0);
305 fdp->fd_himap[off >> NDENTRYSHIFT] |= 1U << (off & NDENTRYMASK);
306 }
307
308 if ((int)fd > fdp->fd_lastfile) {
309 fdp->fd_lastfile = fd;
310 }
311
312 fd_checkmaps(fdp);
313 }
314
315 static inline void
316 fd_unused(filedesc_t *fdp, unsigned fd)
317 {
318 u_int off = fd >> NDENTRYSHIFT;
319 fdfile_t *ff;
320
321 ff = fdp->fd_dt->dt_ff[fd];
322
323 KASSERT(mutex_owned(&fdp->fd_lock));
324 KASSERT(ff != NULL);
325 KASSERT(ff->ff_file == NULL);
326 KASSERT(ff->ff_allocated);
327
328 if (fd < fdp->fd_freefile) {
329 fdp->fd_freefile = fd;
330 }
331
332 if (fdp->fd_lomap[off] == ~0) {
333 KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
334 (1U << (off & NDENTRYMASK))) != 0);
335 fdp->fd_himap[off >> NDENTRYSHIFT] &=
336 ~(1U << (off & NDENTRYMASK));
337 }
338 KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0);
339 fdp->fd_lomap[off] &= ~(1U << (fd & NDENTRYMASK));
340 ff->ff_allocated = false;
341
342 KASSERT(fd <= fdp->fd_lastfile);
343 if (fd == fdp->fd_lastfile) {
344 fdp->fd_lastfile = fd_last_set(fdp, fd);
345 }
346 fd_checkmaps(fdp);
347 }
348
349 /*
350 * Look up the file structure corresponding to a file descriptor
351 * and return the file, holding a reference on the descriptor.
352 */
353 file_t *
354 fd_getfile(unsigned fd)
355 {
356 filedesc_t *fdp;
357 fdfile_t *ff;
358 file_t *fp;
359 fdtab_t *dt;
360
361 /*
362 * Look up the fdfile structure representing this descriptor.
363 * We are doing this unlocked. See fd_tryexpand().
364 */
365 fdp = curlwp->l_fd;
366 dt = atomic_load_consume(&fdp->fd_dt);
367 if (__predict_false(fd >= dt->dt_nfiles)) {
368 return NULL;
369 }
370 ff = dt->dt_ff[fd];
371 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
372 if (__predict_false(ff == NULL)) {
373 return NULL;
374 }
375
376 /* Now get a reference to the descriptor. */
377 if (fdp->fd_refcnt == 1) {
378 /*
379 * Single threaded: don't need to worry about concurrent
380 * access (other than earlier calls to kqueue, which may
381 * hold a reference to the descriptor).
382 */
383 ff->ff_refcnt++;
384 } else {
385 /*
386 * Multi threaded: issue a memory barrier to ensure that we
387 * acquire the file pointer _after_ adding a reference. If
388 * no memory barrier, we could fetch a stale pointer.
389 *
390 * In particular, we must coordinate the following four
391 * memory operations:
392 *
393 * A. fd_close store ff->ff_file = NULL
394 * B. fd_close refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
395 * C. fd_getfile atomic_inc_uint(&ff->ff_refcnt)
396 * D. fd_getfile load fp = ff->ff_file
397 *
398 * If the order is D;A;B;C:
399 *
400 * 1. D: fp = ff->ff_file
401 * 2. A: ff->ff_file = NULL
402 * 3. B: refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
403 * 4. C: atomic_inc_uint(&ff->ff_refcnt)
404 *
405 * then fd_close determines that there are no more
406 * references and decides to free fp immediately, at
407 * the same that fd_getfile ends up with an fp that's
408 * about to be freed. *boom*
409 *
410 * By making B a release operation in fd_close, and by
411 * making C an acquire operation in fd_getfile, since
412 * they are atomic operations on the same object, which
413 * has a total modification order, we guarantee either:
414 *
415 * - B happens before C. Then since A is
416 * sequenced before B in fd_close, and C is
417 * sequenced before D in fd_getfile, we
418 * guarantee A happens before D, so fd_getfile
419 * reads a null fp and safely fails.
420 *
421 * - C happens before B. Then fd_getfile may read
422 * null or nonnull, but either way, fd_close
423 * will safely wait for references to drain.
424 */
425 atomic_inc_uint(&ff->ff_refcnt);
426 membar_acquire();
427 }
428
429 /*
430 * If the file is not open or is being closed then put the
431 * reference back.
432 */
433 fp = atomic_load_consume(&ff->ff_file);
434 if (__predict_true(fp != NULL)) {
435 return fp;
436 }
437 fd_putfile(fd);
438 return NULL;
439 }
440
441 /*
442 * Release a reference to a file descriptor acquired with fd_getfile().
443 */
444 void
445 fd_putfile(unsigned fd)
446 {
447 filedesc_t *fdp;
448 fdfile_t *ff;
449 u_int u, v;
450
451 fdp = curlwp->l_fd;
452 KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
453 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
454
455 KASSERT(ff != NULL);
456 KASSERT((ff->ff_refcnt & FR_MASK) > 0);
457 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
458
459 if (fdp->fd_refcnt == 1) {
460 /*
461 * Single threaded: don't need to worry about concurrent
462 * access (other than earlier calls to kqueue, which may
463 * hold a reference to the descriptor).
464 */
465 if (__predict_false((ff->ff_refcnt & FR_CLOSING) != 0)) {
466 fd_close(fd);
467 return;
468 }
469 ff->ff_refcnt--;
470 return;
471 }
472
473 /*
474 * Ensure that any use of the file is complete and globally
475 * visible before dropping the final reference. If no membar,
476 * the current CPU could still access memory associated with
477 * the file after it has been freed or recycled by another
478 * CPU.
479 */
480 membar_release();
481
482 /*
483 * Be optimistic and start out with the assumption that no other
484 * threads are trying to close the descriptor. If the CAS fails,
485 * we lost a race and/or it's being closed.
486 */
487 for (u = ff->ff_refcnt & FR_MASK;; u = v) {
488 v = atomic_cas_uint(&ff->ff_refcnt, u, u - 1);
489 if (__predict_true(u == v)) {
490 return;
491 }
492 if (__predict_false((v & FR_CLOSING) != 0)) {
493 break;
494 }
495 }
496
497 /* Another thread is waiting to close the file: join it. */
498 (void)fd_close(fd);
499 }
500
501 /*
502 * Convenience wrapper around fd_getfile() that returns reference
503 * to a vnode.
504 */
505 int
506 fd_getvnode(unsigned fd, file_t **fpp)
507 {
508 vnode_t *vp;
509 file_t *fp;
510
511 fp = fd_getfile(fd);
512 if (__predict_false(fp == NULL)) {
513 return EBADF;
514 }
515 if (__predict_false(fp->f_type != DTYPE_VNODE)) {
516 fd_putfile(fd);
517 return EINVAL;
518 }
519 vp = fp->f_vnode;
520 if (__predict_false(vp->v_type == VBAD)) {
521 /* XXX Is this case really necessary? */
522 fd_putfile(fd);
523 return EBADF;
524 }
525 *fpp = fp;
526 return 0;
527 }
528
529 /*
530 * Convenience wrapper around fd_getfile() that returns reference
531 * to a socket.
532 */
533 int
534 fd_getsock1(unsigned fd, struct socket **sop, file_t **fp)
535 {
536 *fp = fd_getfile(fd);
537 if (__predict_false(*fp == NULL)) {
538 return EBADF;
539 }
540 if (__predict_false((*fp)->f_type != DTYPE_SOCKET)) {
541 fd_putfile(fd);
542 return ENOTSOCK;
543 }
544 *sop = (*fp)->f_socket;
545 return 0;
546 }
547
548 int
549 fd_getsock(unsigned fd, struct socket **sop)
550 {
551 file_t *fp;
552 return fd_getsock1(fd, sop, &fp);
553 }
554
555 /*
556 * Look up the file structure corresponding to a file descriptor
557 * and return it with a reference held on the file, not the
558 * descriptor.
559 *
560 * This is heavyweight and only used when accessing descriptors
561 * from a foreign process. The caller must ensure that `p' does
562 * not exit or fork across this call.
563 *
564 * To release the file (not descriptor) reference, use closef().
565 */
566 file_t *
567 fd_getfile2(proc_t *p, unsigned fd)
568 {
569 filedesc_t *fdp;
570 fdfile_t *ff;
571 file_t *fp;
572 fdtab_t *dt;
573
574 fdp = p->p_fd;
575 mutex_enter(&fdp->fd_lock);
576 dt = fdp->fd_dt;
577 if (fd >= dt->dt_nfiles) {
578 mutex_exit(&fdp->fd_lock);
579 return NULL;
580 }
581 if ((ff = dt->dt_ff[fd]) == NULL) {
582 mutex_exit(&fdp->fd_lock);
583 return NULL;
584 }
585 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
586 mutex_exit(&fdp->fd_lock);
587 return NULL;
588 }
589 mutex_enter(&fp->f_lock);
590 fp->f_count++;
591 mutex_exit(&fp->f_lock);
592 mutex_exit(&fdp->fd_lock);
593
594 return fp;
595 }
596
597 /*
598 * Internal form of close. Must be called with a reference to the
599 * descriptor, and will drop the reference. When all descriptor
600 * references are dropped, releases the descriptor slot and a single
601 * reference to the file structure.
602 */
603 int
604 fd_close(unsigned fd)
605 {
606 struct flock lf;
607 filedesc_t *fdp;
608 fdfile_t *ff;
609 file_t *fp;
610 proc_t *p;
611 lwp_t *l;
612 u_int refcnt;
613
614 l = curlwp;
615 p = l->l_proc;
616 fdp = l->l_fd;
617 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
618
619 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
620
621 mutex_enter(&fdp->fd_lock);
622 KASSERT((ff->ff_refcnt & FR_MASK) > 0);
623 fp = atomic_load_consume(&ff->ff_file);
624 if (__predict_false(fp == NULL)) {
625 /*
626 * Another user of the file is already closing, and is
627 * waiting for other users of the file to drain. Release
628 * our reference, and wake up the closer.
629 */
630 membar_release();
631 atomic_dec_uint(&ff->ff_refcnt);
632 cv_broadcast(&ff->ff_closing);
633 mutex_exit(&fdp->fd_lock);
634
635 /*
636 * An application error, so pretend that the descriptor
637 * was already closed. We can't safely wait for it to
638 * be closed without potentially deadlocking.
639 */
640 return (EBADF);
641 }
642 KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
643
644 /*
645 * There may be multiple users of this file within the process.
646 * Notify existing and new users that the file is closing. This
647 * will prevent them from adding additional uses to this file
648 * while we are closing it.
649 */
650 atomic_store_relaxed(&ff->ff_file, NULL);
651 ff->ff_exclose = false;
652
653 /*
654 * We expect the caller to hold a descriptor reference - drop it.
655 * The reference count may increase beyond zero at this point due
656 * to an erroneous descriptor reference by an application, but
657 * fd_getfile() will notice that the file is being closed and drop
658 * the reference again.
659 */
660 if (fdp->fd_refcnt == 1) {
661 /* Single threaded. */
662 refcnt = --(ff->ff_refcnt);
663 } else {
664 /* Multi threaded. */
665 membar_release();
666 refcnt = atomic_dec_uint_nv(&ff->ff_refcnt);
667 membar_acquire();
668 }
669 if (__predict_false(refcnt != 0)) {
670 /*
671 * Wait for other references to drain. This is typically
672 * an application error - the descriptor is being closed
673 * while still in use.
674 * (Or just a threaded application trying to unblock its
675 * thread that sleeps in (say) accept()).
676 */
677 atomic_or_uint(&ff->ff_refcnt, FR_CLOSING);
678
679 /*
680 * Remove any knotes attached to the file. A knote
681 * attached to the descriptor can hold references on it.
682 */
683 mutex_exit(&fdp->fd_lock);
684 if (!SLIST_EMPTY(&ff->ff_knlist)) {
685 knote_fdclose(fd);
686 }
687
688 /*
689 * Since the file system code doesn't know which fd
690 * each request came from (think dup()), we have to
691 * ask it to return ERESTART for any long-term blocks.
692 * The re-entry through read/write/etc will detect the
693 * closed fd and return EBAFD.
694 * Blocked partial writes may return a short length.
695 */
696 (*fp->f_ops->fo_restart)(fp);
697 mutex_enter(&fdp->fd_lock);
698
699 /*
700 * We need to see the count drop to zero at least once,
701 * in order to ensure that all pre-existing references
702 * have been drained. New references past this point are
703 * of no interest.
704 * XXX (dsl) this may need to call fo_restart() after a
705 * timeout to guarantee that all the system calls exit.
706 */
707 while ((ff->ff_refcnt & FR_MASK) != 0) {
708 cv_wait(&ff->ff_closing, &fdp->fd_lock);
709 }
710 atomic_and_uint(&ff->ff_refcnt, ~FR_CLOSING);
711 } else {
712 /* If no references, there must be no knotes. */
713 KASSERT(SLIST_EMPTY(&ff->ff_knlist));
714 }
715
716 /*
717 * POSIX record locking dictates that any close releases ALL
718 * locks owned by this process. This is handled by setting
719 * a flag in the unlock to free ONLY locks obeying POSIX
720 * semantics, and not to free BSD-style file locks.
721 * If the descriptor was in a message, POSIX-style locks
722 * aren't passed with the descriptor.
723 */
724 if (__predict_false((p->p_flag & PK_ADVLOCK) != 0) &&
725 fp->f_ops->fo_advlock != NULL) {
726 lf.l_whence = SEEK_SET;
727 lf.l_start = 0;
728 lf.l_len = 0;
729 lf.l_type = F_UNLCK;
730 mutex_exit(&fdp->fd_lock);
731 (void)(*fp->f_ops->fo_advlock)(fp, p, F_UNLCK, &lf, F_POSIX);
732 mutex_enter(&fdp->fd_lock);
733 }
734
735 /* Free descriptor slot. */
736 fd_unused(fdp, fd);
737 mutex_exit(&fdp->fd_lock);
738
739 /* Now drop reference to the file itself. */
740 return closef(fp);
741 }
742
743 /*
744 * Duplicate a file descriptor.
745 */
746 int
747 fd_dup(file_t *fp, int minfd, int *newp, bool exclose)
748 {
749 proc_t *p = curproc;
750 fdtab_t *dt;
751 int error;
752
753 while ((error = fd_alloc(p, minfd, newp)) != 0) {
754 if (error != ENOSPC) {
755 return error;
756 }
757 fd_tryexpand(p);
758 }
759
760 dt = atomic_load_consume(&curlwp->l_fd->fd_dt);
761 dt->dt_ff[*newp]->ff_exclose = exclose;
762 fd_affix(p, fp, *newp);
763 return 0;
764 }
765
766 /*
767 * dup2 operation.
768 */
769 int
770 fd_dup2(file_t *fp, unsigned newfd, int flags)
771 {
772 filedesc_t *fdp = curlwp->l_fd;
773 fdfile_t *ff;
774 fdtab_t *dt;
775
776 if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
777 return EINVAL;
778 /*
779 * Ensure there are enough slots in the descriptor table,
780 * and allocate an fdfile_t up front in case we need it.
781 */
782 while (newfd >= atomic_load_consume(&fdp->fd_dt)->dt_nfiles) {
783 fd_tryexpand(curproc);
784 }
785 ff = kmem_alloc(sizeof(*ff), KM_SLEEP);
786 fdfile_ctor(ff);
787
788 /*
789 * If there is already a file open, close it. If the file is
790 * half open, wait for it to be constructed before closing it.
791 * XXX Potential for deadlock here?
792 */
793 mutex_enter(&fdp->fd_lock);
794 while (fd_isused(fdp, newfd)) {
795 mutex_exit(&fdp->fd_lock);
796 if (fd_getfile(newfd) != NULL) {
797 (void)fd_close(newfd);
798 } else {
799 /*
800 * Crummy, but unlikely to happen.
801 * Can occur if we interrupt another
802 * thread while it is opening a file.
803 */
804 kpause("dup2", false, 1, NULL);
805 }
806 mutex_enter(&fdp->fd_lock);
807 }
808 dt = fdp->fd_dt;
809 if (dt->dt_ff[newfd] == NULL) {
810 KASSERT(newfd >= NDFDFILE);
811 dt->dt_ff[newfd] = ff;
812 ff = NULL;
813 }
814 fd_used(fdp, newfd);
815 mutex_exit(&fdp->fd_lock);
816
817 dt->dt_ff[newfd]->ff_exclose = (flags & O_CLOEXEC) != 0;
818 fp->f_flag |= flags & (FNONBLOCK|FNOSIGPIPE);
819 /* Slot is now allocated. Insert copy of the file. */
820 fd_affix(curproc, fp, newfd);
821 if (ff != NULL) {
822 cv_destroy(&ff->ff_closing);
823 kmem_free(ff, sizeof(*ff));
824 }
825 return 0;
826 }
827
828 /*
829 * Drop reference to a file structure.
830 */
831 int
832 closef(file_t *fp)
833 {
834 struct flock lf;
835 int error;
836
837 /*
838 * Drop reference. If referenced elsewhere it's still open
839 * and we have nothing more to do.
840 */
841 mutex_enter(&fp->f_lock);
842 KASSERT(fp->f_count > 0);
843 if (--fp->f_count > 0) {
844 mutex_exit(&fp->f_lock);
845 return 0;
846 }
847 KASSERT(fp->f_count == 0);
848 mutex_exit(&fp->f_lock);
849
850 /* We held the last reference - release locks, close and free. */
851 if (fp->f_ops->fo_advlock == NULL) {
852 KASSERT((fp->f_flag & FHASLOCK) == 0);
853 } else if (fp->f_flag & FHASLOCK) {
854 lf.l_whence = SEEK_SET;
855 lf.l_start = 0;
856 lf.l_len = 0;
857 lf.l_type = F_UNLCK;
858 (void)(*fp->f_ops->fo_advlock)(fp, fp, F_UNLCK, &lf, F_FLOCK);
859 }
860 if (fp->f_ops != NULL) {
861 error = (*fp->f_ops->fo_close)(fp);
862 } else {
863 error = 0;
864 }
865 KASSERT(fp->f_count == 0);
866 KASSERT(fp->f_cred != NULL);
867 pool_cache_put(file_cache, fp);
868
869 return error;
870 }
871
872 /*
873 * Allocate a file descriptor for the process.
874 *
875 * Future idea for experimentation: replace all of this with radixtree.
876 */
877 int
878 fd_alloc(proc_t *p, int want, int *result)
879 {
880 filedesc_t *fdp = p->p_fd;
881 int i, lim, last, error, hi;
882 u_int off;
883 fdtab_t *dt;
884
885 KASSERT(p == curproc || p == &proc0);
886
887 /*
888 * Search for a free descriptor starting at the higher
889 * of want or fd_freefile.
890 */
891 mutex_enter(&fdp->fd_lock);
892 fd_checkmaps(fdp);
893 dt = fdp->fd_dt;
894 KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
895 lim = uimin((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
896 last = uimin(dt->dt_nfiles, lim);
897
898 for (;;) {
899 if ((i = want) < fdp->fd_freefile)
900 i = fdp->fd_freefile;
901 off = i >> NDENTRYSHIFT;
902 hi = fd_next_zero(fdp, fdp->fd_himap, off,
903 (last + NDENTRIES - 1) >> NDENTRYSHIFT);
904 if (hi == -1)
905 break;
906 i = fd_next_zero(fdp, &fdp->fd_lomap[hi],
907 hi > off ? 0 : i & NDENTRYMASK, NDENTRIES);
908 if (i == -1) {
909 /*
910 * Free file descriptor in this block was
911 * below want, try again with higher want.
912 */
913 want = (hi + 1) << NDENTRYSHIFT;
914 continue;
915 }
916 i += (hi << NDENTRYSHIFT);
917 if (i >= last) {
918 break;
919 }
920 if (dt->dt_ff[i] == NULL) {
921 KASSERT(i >= NDFDFILE);
922 dt->dt_ff[i] = kmem_alloc(sizeof(fdfile_t), KM_SLEEP);
923 fdfile_ctor(dt->dt_ff[i]);
924 }
925 KASSERT(dt->dt_ff[i]->ff_file == NULL);
926 fd_used(fdp, i);
927 if (want <= fdp->fd_freefile) {
928 fdp->fd_freefile = i;
929 }
930 *result = i;
931 KASSERT(i >= NDFDFILE ||
932 dt->dt_ff[i] == (fdfile_t *)fdp->fd_dfdfile[i]);
933 fd_checkmaps(fdp);
934 mutex_exit(&fdp->fd_lock);
935 return 0;
936 }
937
938 /* No space in current array. Let the caller expand and retry. */
939 error = (dt->dt_nfiles >= lim) ? EMFILE : ENOSPC;
940 mutex_exit(&fdp->fd_lock);
941 return error;
942 }
943
944 /*
945 * Allocate memory for a descriptor table.
946 */
947 static fdtab_t *
948 fd_dtab_alloc(int n)
949 {
950 fdtab_t *dt;
951 size_t sz;
952
953 KASSERT(n > NDFILE);
954
955 sz = sizeof(*dt) + (n - NDFILE) * sizeof(dt->dt_ff[0]);
956 dt = kmem_alloc(sz, KM_SLEEP);
957 #ifdef DIAGNOSTIC
958 memset(dt, 0xff, sz);
959 #endif
960 dt->dt_nfiles = n;
961 dt->dt_link = NULL;
962 return dt;
963 }
964
965 /*
966 * Free a descriptor table, and all tables linked for deferred free.
967 */
968 static void
969 fd_dtab_free(fdtab_t *dt)
970 {
971 fdtab_t *next;
972 size_t sz;
973
974 do {
975 next = dt->dt_link;
976 KASSERT(dt->dt_nfiles > NDFILE);
977 sz = sizeof(*dt) +
978 (dt->dt_nfiles - NDFILE) * sizeof(dt->dt_ff[0]);
979 #ifdef DIAGNOSTIC
980 memset(dt, 0xff, sz);
981 #endif
982 kmem_free(dt, sz);
983 dt = next;
984 } while (dt != NULL);
985 }
986
987 /*
988 * Allocate descriptor bitmap.
989 */
990 static void
991 fd_map_alloc(int n, uint32_t **lo, uint32_t **hi)
992 {
993 uint8_t *ptr;
994 size_t szlo, szhi;
995
996 KASSERT(n > NDENTRIES);
997
998 szlo = NDLOSLOTS(n) * sizeof(uint32_t);
999 szhi = NDHISLOTS(n) * sizeof(uint32_t);
1000 ptr = kmem_alloc(szlo + szhi, KM_SLEEP);
1001 *lo = (uint32_t *)ptr;
1002 *hi = (uint32_t *)(ptr + szlo);
1003 }
1004
1005 /*
1006 * Free descriptor bitmap.
1007 */
1008 static void
1009 fd_map_free(int n, uint32_t *lo, uint32_t *hi)
1010 {
1011 size_t szlo, szhi;
1012
1013 KASSERT(n > NDENTRIES);
1014
1015 szlo = NDLOSLOTS(n) * sizeof(uint32_t);
1016 szhi = NDHISLOTS(n) * sizeof(uint32_t);
1017 KASSERT(hi == (uint32_t *)((uint8_t *)lo + szlo));
1018 kmem_free(lo, szlo + szhi);
1019 }
1020
1021 /*
1022 * Expand a process' descriptor table.
1023 */
1024 void
1025 fd_tryexpand(proc_t *p)
1026 {
1027 filedesc_t *fdp;
1028 int i, numfiles, oldnfiles;
1029 fdtab_t *newdt, *dt;
1030 uint32_t *newhimap, *newlomap;
1031
1032 KASSERT(p == curproc || p == &proc0);
1033
1034 fdp = p->p_fd;
1035 newhimap = NULL;
1036 newlomap = NULL;
1037 oldnfiles = atomic_load_consume(&fdp->fd_dt)->dt_nfiles;
1038
1039 if (oldnfiles < NDEXTENT)
1040 numfiles = NDEXTENT;
1041 else
1042 numfiles = 2 * oldnfiles;
1043
1044 newdt = fd_dtab_alloc(numfiles);
1045 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1046 fd_map_alloc(numfiles, &newlomap, &newhimap);
1047 }
1048
1049 mutex_enter(&fdp->fd_lock);
1050 dt = fdp->fd_dt;
1051 KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1052 if (dt->dt_nfiles != oldnfiles) {
1053 /* fdp changed; caller must retry */
1054 mutex_exit(&fdp->fd_lock);
1055 fd_dtab_free(newdt);
1056 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1057 fd_map_free(numfiles, newlomap, newhimap);
1058 }
1059 return;
1060 }
1061
1062 /* Copy the existing descriptor table and zero the new portion. */
1063 i = sizeof(fdfile_t *) * oldnfiles;
1064 memcpy(newdt->dt_ff, dt->dt_ff, i);
1065 memset((uint8_t *)newdt->dt_ff + i, 0,
1066 numfiles * sizeof(fdfile_t *) - i);
1067
1068 /*
1069 * Link old descriptor array into list to be discarded. We defer
1070 * freeing until the last reference to the descriptor table goes
1071 * away (usually process exit). This allows us to do lockless
1072 * lookups in fd_getfile().
1073 */
1074 if (oldnfiles > NDFILE) {
1075 if (fdp->fd_refcnt > 1) {
1076 newdt->dt_link = dt;
1077 } else {
1078 fd_dtab_free(dt);
1079 }
1080 }
1081
1082 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1083 i = NDHISLOTS(oldnfiles) * sizeof(uint32_t);
1084 memcpy(newhimap, fdp->fd_himap, i);
1085 memset((uint8_t *)newhimap + i, 0,
1086 NDHISLOTS(numfiles) * sizeof(uint32_t) - i);
1087
1088 i = NDLOSLOTS(oldnfiles) * sizeof(uint32_t);
1089 memcpy(newlomap, fdp->fd_lomap, i);
1090 memset((uint8_t *)newlomap + i, 0,
1091 NDLOSLOTS(numfiles) * sizeof(uint32_t) - i);
1092
1093 if (NDHISLOTS(oldnfiles) > NDHISLOTS(NDFILE)) {
1094 fd_map_free(oldnfiles, fdp->fd_lomap, fdp->fd_himap);
1095 }
1096 fdp->fd_himap = newhimap;
1097 fdp->fd_lomap = newlomap;
1098 }
1099
1100 /*
1101 * All other modifications must become globally visible before
1102 * the change to fd_dt. See fd_getfile().
1103 */
1104 atomic_store_release(&fdp->fd_dt, newdt);
1105 KASSERT(newdt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1106 fd_checkmaps(fdp);
1107 mutex_exit(&fdp->fd_lock);
1108 }
1109
1110 /*
1111 * Create a new open file structure and allocate a file descriptor
1112 * for the current process.
1113 */
1114 int
1115 fd_allocfile(file_t **resultfp, int *resultfd)
1116 {
1117 proc_t *p = curproc;
1118 kauth_cred_t cred;
1119 file_t *fp;
1120 int error;
1121
1122 while ((error = fd_alloc(p, 0, resultfd)) != 0) {
1123 if (error != ENOSPC) {
1124 return error;
1125 }
1126 fd_tryexpand(p);
1127 }
1128
1129 fp = pool_cache_get(file_cache, PR_WAITOK);
1130 if (fp == NULL) {
1131 fd_abort(p, NULL, *resultfd);
1132 return ENFILE;
1133 }
1134 KASSERT(fp->f_count == 0);
1135 KASSERT(fp->f_msgcount == 0);
1136 KASSERT(fp->f_unpcount == 0);
1137
1138 /* Replace cached credentials if not what we need. */
1139 cred = curlwp->l_cred;
1140 if (__predict_false(cred != fp->f_cred)) {
1141 kauth_cred_free(fp->f_cred);
1142 fp->f_cred = kauth_cred_hold(cred);
1143 }
1144
1145 /*
1146 * Don't allow recycled files to be scanned.
1147 * See uipc_usrreq.c.
1148 */
1149 if (__predict_false((fp->f_flag & FSCAN) != 0)) {
1150 mutex_enter(&fp->f_lock);
1151 atomic_and_uint(&fp->f_flag, ~FSCAN);
1152 mutex_exit(&fp->f_lock);
1153 }
1154
1155 fp->f_advice = 0;
1156 fp->f_offset = 0;
1157 *resultfp = fp;
1158
1159 return 0;
1160 }
1161
1162 /*
1163 * Successful creation of a new descriptor: make visible to the process.
1164 */
1165 void
1166 fd_affix(proc_t *p, file_t *fp, unsigned fd)
1167 {
1168 fdfile_t *ff;
1169 filedesc_t *fdp;
1170 fdtab_t *dt;
1171
1172 KASSERT(p == curproc || p == &proc0);
1173
1174 /* Add a reference to the file structure. */
1175 mutex_enter(&fp->f_lock);
1176 fp->f_count++;
1177 mutex_exit(&fp->f_lock);
1178
1179 /*
1180 * Insert the new file into the descriptor slot.
1181 */
1182 fdp = p->p_fd;
1183 dt = atomic_load_consume(&fdp->fd_dt);
1184 ff = dt->dt_ff[fd];
1185
1186 KASSERT(ff != NULL);
1187 KASSERT(ff->ff_file == NULL);
1188 KASSERT(ff->ff_allocated);
1189 KASSERT(fd_isused(fdp, fd));
1190 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1191
1192 /* No need to lock in order to make file initially visible. */
1193 atomic_store_release(&ff->ff_file, fp);
1194 }
1195
1196 /*
1197 * Abort creation of a new descriptor: free descriptor slot and file.
1198 */
1199 void
1200 fd_abort(proc_t *p, file_t *fp, unsigned fd)
1201 {
1202 filedesc_t *fdp;
1203 fdfile_t *ff;
1204
1205 KASSERT(p == curproc || p == &proc0);
1206
1207 fdp = p->p_fd;
1208 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1209 ff->ff_exclose = false;
1210
1211 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1212
1213 mutex_enter(&fdp->fd_lock);
1214 KASSERT(fd_isused(fdp, fd));
1215 fd_unused(fdp, fd);
1216 mutex_exit(&fdp->fd_lock);
1217
1218 if (fp != NULL) {
1219 KASSERT(fp->f_count == 0);
1220 KASSERT(fp->f_cred != NULL);
1221 pool_cache_put(file_cache, fp);
1222 }
1223 }
1224
1225 static int
1226 file_ctor(void *arg, void *obj, int flags)
1227 {
1228 /*
1229 * It's easy to exhaust the open file limit on a system with many
1230 * CPUs due to caching. Allow a bit of leeway to reduce the element
1231 * of surprise.
1232 */
1233 u_int slop = PCG_NOBJECTS_NORMAL * (ncpu - 1);
1234 file_t *fp = obj;
1235
1236 memset(fp, 0, sizeof(*fp));
1237
1238 mutex_enter(&filelist_lock);
1239 if (__predict_false(nfiles >= slop + maxfiles)) {
1240 mutex_exit(&filelist_lock);
1241 tablefull("file", "increase kern.maxfiles or MAXFILES");
1242 return ENFILE;
1243 }
1244 nfiles++;
1245 LIST_INSERT_HEAD(&filehead, fp, f_list);
1246 mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
1247 fp->f_cred = kauth_cred_hold(curlwp->l_cred);
1248 mutex_exit(&filelist_lock);
1249
1250 return 0;
1251 }
1252
1253 static void
1254 file_dtor(void *arg, void *obj)
1255 {
1256 file_t *fp = obj;
1257
1258 mutex_enter(&filelist_lock);
1259 nfiles--;
1260 LIST_REMOVE(fp, f_list);
1261 mutex_exit(&filelist_lock);
1262
1263 KASSERT(fp->f_count == 0);
1264 kauth_cred_free(fp->f_cred);
1265 mutex_destroy(&fp->f_lock);
1266 }
1267
1268 static void
1269 fdfile_ctor(fdfile_t *ff)
1270 {
1271
1272 memset(ff, 0, sizeof(*ff));
1273 cv_init(&ff->ff_closing, "fdclose");
1274 }
1275
1276 static void
1277 fdfile_dtor(fdfile_t *ff)
1278 {
1279
1280 cv_destroy(&ff->ff_closing);
1281 }
1282
1283 file_t *
1284 fgetdummy(void)
1285 {
1286 file_t *fp;
1287
1288 fp = kmem_zalloc(sizeof(*fp), KM_SLEEP);
1289 mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
1290 return fp;
1291 }
1292
1293 void
1294 fputdummy(file_t *fp)
1295 {
1296
1297 mutex_destroy(&fp->f_lock);
1298 kmem_free(fp, sizeof(*fp));
1299 }
1300
1301 /*
1302 * Create an initial filedesc structure.
1303 */
1304 filedesc_t *
1305 fd_init(filedesc_t *fdp)
1306 {
1307 #ifdef DIAGNOSTIC
1308 unsigned fd;
1309 #endif
1310
1311 if (__predict_true(fdp == NULL)) {
1312 fdp = pool_cache_get(filedesc_cache, PR_WAITOK);
1313 } else {
1314 KASSERT(fdp == &filedesc0);
1315 filedesc_ctor(NULL, fdp, PR_WAITOK);
1316 }
1317
1318 #ifdef DIAGNOSTIC
1319 KASSERT(fdp->fd_lastfile == -1);
1320 KASSERT(fdp->fd_lastkqfile == -1);
1321 KASSERT(fdp->fd_knhash == NULL);
1322 KASSERT(fdp->fd_freefile == 0);
1323 KASSERT(fdp->fd_exclose == false);
1324 KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
1325 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1326 for (fd = 0; fd < NDFDFILE; fd++) {
1327 KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] ==
1328 (fdfile_t *)fdp->fd_dfdfile[fd]);
1329 }
1330 for (fd = NDFDFILE; fd < NDFILE; fd++) {
1331 KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] == NULL);
1332 }
1333 KASSERT(fdp->fd_himap == fdp->fd_dhimap);
1334 KASSERT(fdp->fd_lomap == fdp->fd_dlomap);
1335 #endif /* DIAGNOSTIC */
1336
1337 fdp->fd_refcnt = 1;
1338 fd_checkmaps(fdp);
1339
1340 return fdp;
1341 }
1342
1343 /*
1344 * Initialize a file descriptor table.
1345 */
1346 static int
1347 filedesc_ctor(void *arg, void *obj, int flag)
1348 {
1349 filedesc_t *fdp = obj;
1350 fdfile_t **ffp;
1351 int i;
1352
1353 memset(fdp, 0, sizeof(*fdp));
1354 mutex_init(&fdp->fd_lock, MUTEX_DEFAULT, IPL_NONE);
1355 fdp->fd_lastfile = -1;
1356 fdp->fd_lastkqfile = -1;
1357 fdp->fd_dt = &fdp->fd_dtbuiltin;
1358 fdp->fd_dtbuiltin.dt_nfiles = NDFILE;
1359 fdp->fd_himap = fdp->fd_dhimap;
1360 fdp->fd_lomap = fdp->fd_dlomap;
1361
1362 CTASSERT(sizeof(fdp->fd_dfdfile[0]) >= sizeof(fdfile_t));
1363 for (i = 0, ffp = fdp->fd_dt->dt_ff; i < NDFDFILE; i++, ffp++) {
1364 fdfile_ctor(*ffp = (fdfile_t *)fdp->fd_dfdfile[i]);
1365 }
1366
1367 return 0;
1368 }
1369
1370 static void
1371 filedesc_dtor(void *arg, void *obj)
1372 {
1373 filedesc_t *fdp = obj;
1374 int i;
1375
1376 for (i = 0; i < NDFDFILE; i++) {
1377 fdfile_dtor((fdfile_t *)fdp->fd_dfdfile[i]);
1378 }
1379
1380 mutex_destroy(&fdp->fd_lock);
1381 }
1382
1383 /*
1384 * Make p share curproc's filedesc structure.
1385 */
1386 void
1387 fd_share(struct proc *p)
1388 {
1389 filedesc_t *fdp;
1390
1391 fdp = curlwp->l_fd;
1392 p->p_fd = fdp;
1393 atomic_inc_uint(&fdp->fd_refcnt);
1394 }
1395
1396 /*
1397 * Acquire a hold on a filedesc structure.
1398 */
1399 void
1400 fd_hold(lwp_t *l)
1401 {
1402 filedesc_t *fdp = l->l_fd;
1403
1404 atomic_inc_uint(&fdp->fd_refcnt);
1405 }
1406
1407 /*
1408 * Copy a filedesc structure.
1409 */
1410 filedesc_t *
1411 fd_copy(void)
1412 {
1413 filedesc_t *newfdp, *fdp;
1414 fdfile_t *ff, **ffp, **nffp, *ff2;
1415 int i, j, numfiles, lastfile, newlast;
1416 file_t *fp;
1417 fdtab_t *newdt;
1418
1419 fdp = curproc->p_fd;
1420 newfdp = pool_cache_get(filedesc_cache, PR_WAITOK);
1421 newfdp->fd_refcnt = 1;
1422
1423 #ifdef DIAGNOSTIC
1424 KASSERT(newfdp->fd_lastfile == -1);
1425 KASSERT(newfdp->fd_lastkqfile == -1);
1426 KASSERT(newfdp->fd_knhash == NULL);
1427 KASSERT(newfdp->fd_freefile == 0);
1428 KASSERT(newfdp->fd_exclose == false);
1429 KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
1430 KASSERT(newfdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1431 for (i = 0; i < NDFDFILE; i++) {
1432 KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] ==
1433 (fdfile_t *)&newfdp->fd_dfdfile[i]);
1434 }
1435 for (i = NDFDFILE; i < NDFILE; i++) {
1436 KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] == NULL);
1437 }
1438 #endif /* DIAGNOSTIC */
1439
1440 mutex_enter(&fdp->fd_lock);
1441 fd_checkmaps(fdp);
1442 numfiles = fdp->fd_dt->dt_nfiles;
1443 lastfile = fdp->fd_lastfile;
1444
1445 /*
1446 * If the number of open files fits in the internal arrays
1447 * of the open file structure, use them, otherwise allocate
1448 * additional memory for the number of descriptors currently
1449 * in use.
1450 */
1451 if (lastfile < NDFILE) {
1452 i = NDFILE;
1453 newdt = newfdp->fd_dt;
1454 KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
1455 } else {
1456 /*
1457 * Compute the smallest multiple of NDEXTENT needed
1458 * for the file descriptors currently in use,
1459 * allowing the table to shrink.
1460 */
1461 i = numfiles;
1462 while (i >= 2 * NDEXTENT && i > lastfile * 2) {
1463 i /= 2;
1464 }
1465 KASSERT(i > NDFILE);
1466 newdt = fd_dtab_alloc(i);
1467 newfdp->fd_dt = newdt;
1468 memcpy(newdt->dt_ff, newfdp->fd_dtbuiltin.dt_ff,
1469 NDFDFILE * sizeof(fdfile_t **));
1470 memset(newdt->dt_ff + NDFDFILE, 0,
1471 (i - NDFDFILE) * sizeof(fdfile_t **));
1472 }
1473 if (NDHISLOTS(i) <= NDHISLOTS(NDFILE)) {
1474 newfdp->fd_himap = newfdp->fd_dhimap;
1475 newfdp->fd_lomap = newfdp->fd_dlomap;
1476 } else {
1477 fd_map_alloc(i, &newfdp->fd_lomap, &newfdp->fd_himap);
1478 KASSERT(i >= NDENTRIES * NDENTRIES);
1479 memset(newfdp->fd_himap, 0, NDHISLOTS(i)*sizeof(uint32_t));
1480 memset(newfdp->fd_lomap, 0, NDLOSLOTS(i)*sizeof(uint32_t));
1481 }
1482 newfdp->fd_freefile = fdp->fd_freefile;
1483 newfdp->fd_exclose = fdp->fd_exclose;
1484
1485 ffp = fdp->fd_dt->dt_ff;
1486 nffp = newdt->dt_ff;
1487 newlast = -1;
1488 for (i = 0; i <= lastfile; i++, ffp++, nffp++) {
1489 KASSERT(i >= NDFDFILE ||
1490 *nffp == (fdfile_t *)newfdp->fd_dfdfile[i]);
1491 ff = *ffp;
1492 if (ff == NULL ||
1493 (fp = atomic_load_consume(&ff->ff_file)) == NULL) {
1494 /* Descriptor unused, or descriptor half open. */
1495 KASSERT(!fd_isused(newfdp, i));
1496 continue;
1497 }
1498 if (__predict_false(fp->f_type == DTYPE_KQUEUE)) {
1499 /* kqueue descriptors cannot be copied. */
1500 if (i < newfdp->fd_freefile) {
1501 newfdp->fd_freefile = i;
1502 }
1503 continue;
1504 }
1505 /* It's active: add a reference to the file. */
1506 mutex_enter(&fp->f_lock);
1507 fp->f_count++;
1508 mutex_exit(&fp->f_lock);
1509
1510 /* Allocate an fdfile_t to represent it. */
1511 if (i >= NDFDFILE) {
1512 ff2 = kmem_alloc(sizeof(*ff2), KM_SLEEP);
1513 fdfile_ctor(ff2);
1514 *nffp = ff2;
1515 } else {
1516 ff2 = newdt->dt_ff[i];
1517 }
1518 ff2->ff_file = fp;
1519 ff2->ff_exclose = ff->ff_exclose;
1520 ff2->ff_allocated = true;
1521
1522 /* Fix up bitmaps. */
1523 j = i >> NDENTRYSHIFT;
1524 KASSERT((newfdp->fd_lomap[j] & (1U << (i & NDENTRYMASK))) == 0);
1525 newfdp->fd_lomap[j] |= 1U << (i & NDENTRYMASK);
1526 if (__predict_false(newfdp->fd_lomap[j] == ~0)) {
1527 KASSERT((newfdp->fd_himap[j >> NDENTRYSHIFT] &
1528 (1U << (j & NDENTRYMASK))) == 0);
1529 newfdp->fd_himap[j >> NDENTRYSHIFT] |=
1530 1U << (j & NDENTRYMASK);
1531 }
1532 newlast = i;
1533 }
1534 KASSERT(newdt->dt_ff[0] == (fdfile_t *)newfdp->fd_dfdfile[0]);
1535 newfdp->fd_lastfile = newlast;
1536 fd_checkmaps(newfdp);
1537 mutex_exit(&fdp->fd_lock);
1538
1539 return newfdp;
1540 }
1541
1542 /*
1543 * Release a filedesc structure.
1544 */
1545 void
1546 fd_free(void)
1547 {
1548 fdfile_t *ff;
1549 file_t *fp;
1550 int fd, nf;
1551 fdtab_t *dt;
1552 lwp_t * const l = curlwp;
1553 filedesc_t * const fdp = l->l_fd;
1554 const bool noadvlock = (l->l_proc->p_flag & PK_ADVLOCK) == 0;
1555
1556 KASSERT(atomic_load_consume(&fdp->fd_dt)->dt_ff[0] ==
1557 (fdfile_t *)fdp->fd_dfdfile[0]);
1558 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1559 KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
1560
1561 membar_release();
1562 if (atomic_dec_uint_nv(&fdp->fd_refcnt) > 0)
1563 return;
1564 membar_acquire();
1565
1566 /*
1567 * Close any files that the process holds open.
1568 */
1569 dt = fdp->fd_dt;
1570 fd_checkmaps(fdp);
1571 #ifdef DEBUG
1572 fdp->fd_refcnt = -1; /* see fd_checkmaps */
1573 #endif
1574 for (fd = 0, nf = dt->dt_nfiles; fd < nf; fd++) {
1575 ff = dt->dt_ff[fd];
1576 KASSERT(fd >= NDFDFILE ||
1577 ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1578 if (ff == NULL)
1579 continue;
1580 if ((fp = atomic_load_consume(&ff->ff_file)) != NULL) {
1581 /*
1582 * Must use fd_close() here if there is
1583 * a reference from kqueue or we might have posix
1584 * advisory locks.
1585 */
1586 if (__predict_true(ff->ff_refcnt == 0) &&
1587 (noadvlock || fp->f_type != DTYPE_VNODE)) {
1588 ff->ff_file = NULL;
1589 ff->ff_exclose = false;
1590 ff->ff_allocated = false;
1591 closef(fp);
1592 } else {
1593 ff->ff_refcnt++;
1594 fd_close(fd);
1595 }
1596 }
1597 KASSERT(ff->ff_refcnt == 0);
1598 KASSERT(ff->ff_file == NULL);
1599 KASSERT(!ff->ff_exclose);
1600 KASSERT(!ff->ff_allocated);
1601 if (fd >= NDFDFILE) {
1602 cv_destroy(&ff->ff_closing);
1603 kmem_free(ff, sizeof(*ff));
1604 dt->dt_ff[fd] = NULL;
1605 }
1606 }
1607
1608 /*
1609 * Clean out the descriptor table for the next user and return
1610 * to the cache.
1611 */
1612 if (__predict_false(dt != &fdp->fd_dtbuiltin)) {
1613 fd_dtab_free(fdp->fd_dt);
1614 /* Otherwise, done above. */
1615 memset(&fdp->fd_dtbuiltin.dt_ff[NDFDFILE], 0,
1616 (NDFILE - NDFDFILE) * sizeof(fdp->fd_dtbuiltin.dt_ff[0]));
1617 fdp->fd_dt = &fdp->fd_dtbuiltin;
1618 }
1619 if (__predict_false(NDHISLOTS(nf) > NDHISLOTS(NDFILE))) {
1620 KASSERT(fdp->fd_himap != fdp->fd_dhimap);
1621 KASSERT(fdp->fd_lomap != fdp->fd_dlomap);
1622 fd_map_free(nf, fdp->fd_lomap, fdp->fd_himap);
1623 }
1624 if (__predict_false(fdp->fd_knhash != NULL)) {
1625 hashdone(fdp->fd_knhash, HASH_LIST, fdp->fd_knhashmask);
1626 fdp->fd_knhash = NULL;
1627 fdp->fd_knhashmask = 0;
1628 } else {
1629 KASSERT(fdp->fd_knhashmask == 0);
1630 }
1631 fdp->fd_dt = &fdp->fd_dtbuiltin;
1632 fdp->fd_lastkqfile = -1;
1633 fdp->fd_lastfile = -1;
1634 fdp->fd_freefile = 0;
1635 fdp->fd_exclose = false;
1636 memset(&fdp->fd_startzero, 0, sizeof(*fdp) -
1637 offsetof(filedesc_t, fd_startzero));
1638 fdp->fd_himap = fdp->fd_dhimap;
1639 fdp->fd_lomap = fdp->fd_dlomap;
1640 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1641 KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
1642 KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
1643 #ifdef DEBUG
1644 fdp->fd_refcnt = 0; /* see fd_checkmaps */
1645 #endif
1646 fd_checkmaps(fdp);
1647 pool_cache_put(filedesc_cache, fdp);
1648 }
1649
1650 /*
1651 * File Descriptor pseudo-device driver (/dev/fd/).
1652 *
1653 * Opening minor device N dup()s the file (if any) connected to file
1654 * descriptor N belonging to the calling process. Note that this driver
1655 * consists of only the ``open()'' routine, because all subsequent
1656 * references to this file will be direct to the other driver.
1657 */
1658 static int
1659 filedescopen(dev_t dev, int mode, int type, lwp_t *l)
1660 {
1661
1662 /*
1663 * XXX Kludge: set dupfd to contain the value of the
1664 * the file descriptor being sought for duplication. The error
1665 * return ensures that the vnode for this device will be released
1666 * by vn_open. Open will detect this special error and take the
1667 * actions in fd_dupopen below. Other callers of vn_open or VOP_OPEN
1668 * will simply report the error.
1669 */
1670 l->l_dupfd = minor(dev); /* XXX */
1671 return EDUPFD;
1672 }
1673
1674 /*
1675 * Duplicate the specified descriptor to a free descriptor.
1676 *
1677 * old is the original fd.
1678 * moveit is true if we should move rather than duplicate.
1679 * flags are the open flags (converted from O_* to F*).
1680 * newp returns the new fd on success.
1681 *
1682 * These two cases are produced by the EDUPFD and EMOVEFD magic
1683 * errnos, but in the interest of removing that regrettable interface,
1684 * vn_open has been changed to intercept them. Now vn_open returns
1685 * either a vnode or a filehandle, and the filehandle is accompanied
1686 * by a boolean that says whether we should dup (moveit == false) or
1687 * move (moveit == true) the fd.
1688 *
1689 * The dup case is used by /dev/stderr, /proc/self/fd, and such. The
1690 * move case is used by cloner devices that allocate a fd of their
1691 * own (a layering violation that should go away eventually) that
1692 * then needs to be put in the place open() expects it.
1693 */
1694 int
1695 fd_dupopen(int old, bool moveit, int flags, int *newp)
1696 {
1697 filedesc_t *fdp;
1698 fdfile_t *ff;
1699 file_t *fp;
1700 fdtab_t *dt;
1701 int error;
1702
1703 if ((fp = fd_getfile(old)) == NULL) {
1704 return EBADF;
1705 }
1706 fdp = curlwp->l_fd;
1707 dt = atomic_load_consume(&fdp->fd_dt);
1708 ff = dt->dt_ff[old];
1709
1710 /*
1711 * There are two cases of interest here.
1712 *
1713 * 1. moveit == false (used to be the EDUPFD magic errno):
1714 * simply dup (old) to file descriptor (new) and return.
1715 *
1716 * 2. moveit == true (used to be the EMOVEFD magic errno):
1717 * steal away the file structure from (old) and store it in
1718 * (new). (old) is effectively closed by this operation.
1719 */
1720 if (moveit == false) {
1721 /*
1722 * Check that the mode the file is being opened for is a
1723 * subset of the mode of the existing descriptor.
1724 */
1725 if (((flags & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
1726 error = EACCES;
1727 goto out;
1728 }
1729
1730 /* Copy it. */
1731 error = fd_dup(fp, 0, newp, ff->ff_exclose);
1732 } else {
1733 /* Copy it. */
1734 error = fd_dup(fp, 0, newp, ff->ff_exclose);
1735 if (error != 0) {
1736 goto out;
1737 }
1738
1739 /* Steal away the file pointer from 'old'. */
1740 (void)fd_close(old);
1741 return 0;
1742 }
1743
1744 out:
1745 fd_putfile(old);
1746 return error;
1747 }
1748
1749 /*
1750 * Close open files on exec.
1751 */
1752 void
1753 fd_closeexec(void)
1754 {
1755 proc_t *p;
1756 filedesc_t *fdp;
1757 fdfile_t *ff;
1758 lwp_t *l;
1759 fdtab_t *dt;
1760 int fd;
1761
1762 l = curlwp;
1763 p = l->l_proc;
1764 fdp = p->p_fd;
1765
1766 if (fdp->fd_refcnt > 1) {
1767 fdp = fd_copy();
1768 fd_free();
1769 p->p_fd = fdp;
1770 l->l_fd = fdp;
1771 }
1772 if (!fdp->fd_exclose) {
1773 return;
1774 }
1775 fdp->fd_exclose = false;
1776 dt = atomic_load_consume(&fdp->fd_dt);
1777
1778 for (fd = 0; fd <= fdp->fd_lastfile; fd++) {
1779 if ((ff = dt->dt_ff[fd]) == NULL) {
1780 KASSERT(fd >= NDFDFILE);
1781 continue;
1782 }
1783 KASSERT(fd >= NDFDFILE ||
1784 ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1785 if (ff->ff_file == NULL)
1786 continue;
1787 if (ff->ff_exclose) {
1788 /*
1789 * We need a reference to close the file.
1790 * No other threads can see the fdfile_t at
1791 * this point, so don't bother locking.
1792 */
1793 KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
1794 ff->ff_refcnt++;
1795 fd_close(fd);
1796 }
1797 }
1798 }
1799
1800 /*
1801 * Sets descriptor owner. If the owner is a process, 'pgid'
1802 * is set to positive value, process ID. If the owner is process group,
1803 * 'pgid' is set to -pg_id.
1804 */
1805 int
1806 fsetown(pid_t *pgid, u_long cmd, const void *data)
1807 {
1808 pid_t id = *(const pid_t *)data;
1809 int error;
1810
1811 if (id <= INT_MIN)
1812 return EINVAL;
1813
1814 switch (cmd) {
1815 case TIOCSPGRP:
1816 if (id < 0)
1817 return EINVAL;
1818 id = -id;
1819 break;
1820 default:
1821 break;
1822 }
1823 if (id > 0) {
1824 mutex_enter(&proc_lock);
1825 error = proc_find(id) ? 0 : ESRCH;
1826 mutex_exit(&proc_lock);
1827 } else if (id < 0) {
1828 error = pgid_in_session(curproc, -id);
1829 } else {
1830 error = 0;
1831 }
1832 if (!error) {
1833 *pgid = id;
1834 }
1835 return error;
1836 }
1837
1838 void
1839 fd_set_exclose(struct lwp *l, int fd, bool exclose)
1840 {
1841 filedesc_t *fdp = l->l_fd;
1842 fdfile_t *ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1843
1844 ff->ff_exclose = exclose;
1845 if (exclose)
1846 fdp->fd_exclose = true;
1847 }
1848
1849 /*
1850 * Return descriptor owner information. If the value is positive,
1851 * it's process ID. If it's negative, it's process group ID and
1852 * needs the sign removed before use.
1853 */
1854 int
1855 fgetown(pid_t pgid, u_long cmd, void *data)
1856 {
1857
1858 switch (cmd) {
1859 case TIOCGPGRP:
1860 KASSERT(pgid > INT_MIN);
1861 *(int *)data = -pgid;
1862 break;
1863 default:
1864 *(int *)data = pgid;
1865 break;
1866 }
1867 return 0;
1868 }
1869
1870 /*
1871 * Send signal to descriptor owner, either process or process group.
1872 */
1873 void
1874 fownsignal(pid_t pgid, int signo, int code, int band, void *fdescdata)
1875 {
1876 ksiginfo_t ksi;
1877
1878 KASSERT(!cpu_intr_p());
1879
1880 if (pgid == 0) {
1881 return;
1882 }
1883
1884 KSI_INIT(&ksi);
1885 ksi.ksi_signo = signo;
1886 ksi.ksi_code = code;
1887 ksi.ksi_band = band;
1888
1889 mutex_enter(&proc_lock);
1890 if (pgid > 0) {
1891 struct proc *p1;
1892
1893 p1 = proc_find(pgid);
1894 if (p1 != NULL) {
1895 kpsignal(p1, &ksi, fdescdata);
1896 }
1897 } else {
1898 struct pgrp *pgrp;
1899
1900 KASSERT(pgid < 0 && pgid > INT_MIN);
1901 pgrp = pgrp_find(-pgid);
1902 if (pgrp != NULL) {
1903 kpgsignal(pgrp, &ksi, fdescdata, 0);
1904 }
1905 }
1906 mutex_exit(&proc_lock);
1907 }
1908
1909 int
1910 fd_clone(file_t *fp, unsigned fd, int flag, const struct fileops *fops,
1911 void *data)
1912 {
1913 fdfile_t *ff;
1914 filedesc_t *fdp;
1915
1916 fp->f_flag = flag & FMASK;
1917 fdp = curproc->p_fd;
1918 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1919 KASSERT(ff != NULL);
1920 ff->ff_exclose = (flag & O_CLOEXEC) != 0;
1921 fp->f_type = DTYPE_MISC;
1922 fp->f_ops = fops;
1923 fp->f_data = data;
1924 curlwp->l_dupfd = fd;
1925 fd_affix(curproc, fp, fd);
1926
1927 return EMOVEFD;
1928 }
1929
1930 int
1931 fnullop_fcntl(file_t *fp, u_int cmd, void *data)
1932 {
1933
1934 if (cmd == F_SETFL)
1935 return 0;
1936
1937 return EOPNOTSUPP;
1938 }
1939
1940 int
1941 fnullop_poll(file_t *fp, int which)
1942 {
1943
1944 return 0;
1945 }
1946
1947 int
1948 fnullop_kqfilter(file_t *fp, struct knote *kn)
1949 {
1950
1951 return EOPNOTSUPP;
1952 }
1953
1954 void
1955 fnullop_restart(file_t *fp)
1956 {
1957
1958 }
1959
1960 int
1961 fbadop_read(file_t *fp, off_t *offset, struct uio *uio,
1962 kauth_cred_t cred, int flags)
1963 {
1964
1965 return EOPNOTSUPP;
1966 }
1967
1968 int
1969 fbadop_write(file_t *fp, off_t *offset, struct uio *uio,
1970 kauth_cred_t cred, int flags)
1971 {
1972
1973 return EOPNOTSUPP;
1974 }
1975
1976 int
1977 fbadop_ioctl(file_t *fp, u_long com, void *data)
1978 {
1979
1980 return EOPNOTSUPP;
1981 }
1982
1983 int
1984 fbadop_stat(file_t *fp, struct stat *sb)
1985 {
1986
1987 return EOPNOTSUPP;
1988 }
1989
1990 int
1991 fbadop_close(file_t *fp)
1992 {
1993
1994 return EOPNOTSUPP;
1995 }
1996
1997 /*
1998 * sysctl routines pertaining to file descriptors
1999 */
2000
2001 /* Initialized in sysctl_init() for now... */
2002 extern kmutex_t sysctl_file_marker_lock;
2003 static u_int sysctl_file_marker = 1;
2004
2005 /*
2006 * Expects to be called with proc_lock and sysctl_file_marker_lock locked.
2007 */
2008 static void
2009 sysctl_file_marker_reset(void)
2010 {
2011 struct proc *p;
2012
2013 PROCLIST_FOREACH(p, &allproc) {
2014 struct filedesc *fd = p->p_fd;
2015 fdtab_t *dt;
2016 u_int i;
2017
2018 mutex_enter(&fd->fd_lock);
2019 dt = fd->fd_dt;
2020 for (i = 0; i < dt->dt_nfiles; i++) {
2021 struct file *fp;
2022 fdfile_t *ff;
2023
2024 if ((ff = dt->dt_ff[i]) == NULL) {
2025 continue;
2026 }
2027 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
2028 continue;
2029 }
2030 fp->f_marker = 0;
2031 }
2032 mutex_exit(&fd->fd_lock);
2033 }
2034 }
2035
2036 /*
2037 * sysctl helper routine for kern.file pseudo-subtree.
2038 */
2039 static int
2040 sysctl_kern_file(SYSCTLFN_ARGS)
2041 {
2042 const bool allowaddr = get_expose_address(curproc);
2043 struct filelist flist;
2044 int error;
2045 size_t buflen;
2046 struct file *fp, fbuf;
2047 char *start, *where;
2048 struct proc *p;
2049
2050 start = where = oldp;
2051 buflen = *oldlenp;
2052
2053 if (where == NULL) {
2054 /*
2055 * overestimate by 10 files
2056 */
2057 *oldlenp = sizeof(filehead) + (nfiles + 10) *
2058 sizeof(struct file);
2059 return 0;
2060 }
2061
2062 /*
2063 * first sysctl_copyout filehead
2064 */
2065 if (buflen < sizeof(filehead)) {
2066 *oldlenp = 0;
2067 return 0;
2068 }
2069 sysctl_unlock();
2070 if (allowaddr) {
2071 memcpy(&flist, &filehead, sizeof(flist));
2072 } else {
2073 memset(&flist, 0, sizeof(flist));
2074 }
2075 error = sysctl_copyout(l, &flist, where, sizeof(flist));
2076 if (error) {
2077 sysctl_relock();
2078 return error;
2079 }
2080 buflen -= sizeof(flist);
2081 where += sizeof(flist);
2082
2083 /*
2084 * followed by an array of file structures
2085 */
2086 mutex_enter(&sysctl_file_marker_lock);
2087 mutex_enter(&proc_lock);
2088 PROCLIST_FOREACH(p, &allproc) {
2089 struct filedesc *fd;
2090 fdtab_t *dt;
2091 u_int i;
2092
2093 if (p->p_stat == SIDL) {
2094 /* skip embryonic processes */
2095 continue;
2096 }
2097 mutex_enter(p->p_lock);
2098 error = kauth_authorize_process(l->l_cred,
2099 KAUTH_PROCESS_CANSEE, p,
2100 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2101 NULL, NULL);
2102 mutex_exit(p->p_lock);
2103 if (error != 0) {
2104 /*
2105 * Don't leak kauth retval if we're silently
2106 * skipping this entry.
2107 */
2108 error = 0;
2109 continue;
2110 }
2111
2112 /*
2113 * Grab a hold on the process.
2114 */
2115 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2116 continue;
2117 }
2118 mutex_exit(&proc_lock);
2119
2120 fd = p->p_fd;
2121 mutex_enter(&fd->fd_lock);
2122 dt = fd->fd_dt;
2123 for (i = 0; i < dt->dt_nfiles; i++) {
2124 fdfile_t *ff;
2125
2126 if ((ff = dt->dt_ff[i]) == NULL) {
2127 continue;
2128 }
2129 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
2130 continue;
2131 }
2132
2133 mutex_enter(&fp->f_lock);
2134
2135 if ((fp->f_count == 0) ||
2136 (fp->f_marker == sysctl_file_marker)) {
2137 mutex_exit(&fp->f_lock);
2138 continue;
2139 }
2140
2141 /* Check that we have enough space. */
2142 if (buflen < sizeof(struct file)) {
2143 *oldlenp = where - start;
2144 mutex_exit(&fp->f_lock);
2145 error = ENOMEM;
2146 break;
2147 }
2148
2149 fill_file(&fbuf, fp);
2150 mutex_exit(&fp->f_lock);
2151 error = sysctl_copyout(l, &fbuf, where, sizeof(fbuf));
2152 if (error) {
2153 break;
2154 }
2155 buflen -= sizeof(struct file);
2156 where += sizeof(struct file);
2157
2158 fp->f_marker = sysctl_file_marker;
2159 }
2160 mutex_exit(&fd->fd_lock);
2161
2162 /*
2163 * Release reference to process.
2164 */
2165 mutex_enter(&proc_lock);
2166 rw_exit(&p->p_reflock);
2167
2168 if (error)
2169 break;
2170 }
2171
2172 sysctl_file_marker++;
2173 /* Reset all markers if wrapped. */
2174 if (sysctl_file_marker == 0) {
2175 sysctl_file_marker_reset();
2176 sysctl_file_marker++;
2177 }
2178
2179 mutex_exit(&proc_lock);
2180 mutex_exit(&sysctl_file_marker_lock);
2181
2182 *oldlenp = where - start;
2183 sysctl_relock();
2184 return error;
2185 }
2186
2187 /*
2188 * sysctl helper function for kern.file2
2189 */
2190 static int
2191 sysctl_kern_file2(SYSCTLFN_ARGS)
2192 {
2193 struct proc *p;
2194 struct file *fp;
2195 struct filedesc *fd;
2196 struct kinfo_file kf;
2197 char *dp;
2198 u_int i, op;
2199 size_t len, needed, elem_size, out_size;
2200 int error, arg, elem_count;
2201 fdfile_t *ff;
2202 fdtab_t *dt;
2203
2204 if (namelen == 1 && name[0] == CTL_QUERY)
2205 return sysctl_query(SYSCTLFN_CALL(rnode));
2206
2207 if (namelen != 4)
2208 return EINVAL;
2209
2210 error = 0;
2211 dp = oldp;
2212 len = (oldp != NULL) ? *oldlenp : 0;
2213 op = name[0];
2214 arg = name[1];
2215 elem_size = name[2];
2216 elem_count = name[3];
2217 out_size = MIN(sizeof(kf), elem_size);
2218 needed = 0;
2219
2220 if (elem_size < 1 || elem_count < 0)
2221 return EINVAL;
2222
2223 switch (op) {
2224 case KERN_FILE_BYFILE:
2225 case KERN_FILE_BYPID:
2226 /*
2227 * We're traversing the process list in both cases; the BYFILE
2228 * case does additional work of keeping track of files already
2229 * looked at.
2230 */
2231
2232 /* doesn't use arg so it must be zero */
2233 if ((op == KERN_FILE_BYFILE) && (arg != 0))
2234 return EINVAL;
2235
2236 if ((op == KERN_FILE_BYPID) && (arg < -1))
2237 /* -1 means all processes */
2238 return EINVAL;
2239
2240 sysctl_unlock();
2241 if (op == KERN_FILE_BYFILE)
2242 mutex_enter(&sysctl_file_marker_lock);
2243 mutex_enter(&proc_lock);
2244 PROCLIST_FOREACH(p, &allproc) {
2245 if (p->p_stat == SIDL) {
2246 /* skip embryonic processes */
2247 continue;
2248 }
2249 if (arg > 0 && p->p_pid != arg) {
2250 /* pick only the one we want */
2251 /* XXX want 0 to mean "kernel files" */
2252 continue;
2253 }
2254 mutex_enter(p->p_lock);
2255 error = kauth_authorize_process(l->l_cred,
2256 KAUTH_PROCESS_CANSEE, p,
2257 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2258 NULL, NULL);
2259 mutex_exit(p->p_lock);
2260 if (error != 0) {
2261 /*
2262 * Don't leak kauth retval if we're silently
2263 * skipping this entry.
2264 */
2265 error = 0;
2266 continue;
2267 }
2268
2269 /*
2270 * Grab a hold on the process.
2271 */
2272 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2273 continue;
2274 }
2275 mutex_exit(&proc_lock);
2276
2277 fd = p->p_fd;
2278 mutex_enter(&fd->fd_lock);
2279 dt = fd->fd_dt;
2280 for (i = 0; i < dt->dt_nfiles; i++) {
2281 if ((ff = dt->dt_ff[i]) == NULL) {
2282 continue;
2283 }
2284 if ((fp = atomic_load_consume(&ff->ff_file)) ==
2285 NULL) {
2286 continue;
2287 }
2288
2289 if ((op == KERN_FILE_BYFILE) &&
2290 (fp->f_marker == sysctl_file_marker)) {
2291 continue;
2292 }
2293 if (len >= elem_size && elem_count > 0) {
2294 mutex_enter(&fp->f_lock);
2295 fill_file2(&kf, fp, ff, i, p->p_pid);
2296 mutex_exit(&fp->f_lock);
2297 mutex_exit(&fd->fd_lock);
2298 error = sysctl_copyout(l,
2299 &kf, dp, out_size);
2300 mutex_enter(&fd->fd_lock);
2301 if (error)
2302 break;
2303 dp += elem_size;
2304 len -= elem_size;
2305 }
2306 if (op == KERN_FILE_BYFILE)
2307 fp->f_marker = sysctl_file_marker;
2308 needed += elem_size;
2309 if (elem_count > 0 && elem_count != INT_MAX)
2310 elem_count--;
2311 }
2312 mutex_exit(&fd->fd_lock);
2313
2314 /*
2315 * Release reference to process.
2316 */
2317 mutex_enter(&proc_lock);
2318 rw_exit(&p->p_reflock);
2319 }
2320 if (op == KERN_FILE_BYFILE) {
2321 sysctl_file_marker++;
2322
2323 /* Reset all markers if wrapped. */
2324 if (sysctl_file_marker == 0) {
2325 sysctl_file_marker_reset();
2326 sysctl_file_marker++;
2327 }
2328 }
2329 mutex_exit(&proc_lock);
2330 if (op == KERN_FILE_BYFILE)
2331 mutex_exit(&sysctl_file_marker_lock);
2332 sysctl_relock();
2333 break;
2334 default:
2335 return EINVAL;
2336 }
2337
2338 if (oldp == NULL)
2339 needed += KERN_FILESLOP * elem_size;
2340 *oldlenp = needed;
2341
2342 return error;
2343 }
2344
2345 static void
2346 fill_file(struct file *fp, const struct file *fpsrc)
2347 {
2348 const bool allowaddr = get_expose_address(curproc);
2349
2350 memset(fp, 0, sizeof(*fp));
2351
2352 fp->f_offset = fpsrc->f_offset;
2353 COND_SET_PTR(fp->f_cred, fpsrc->f_cred, allowaddr);
2354 COND_SET_CPTR(fp->f_ops, fpsrc->f_ops, allowaddr);
2355 COND_SET_STRUCT(fp->f_undata, fpsrc->f_undata, allowaddr);
2356 COND_SET_STRUCT(fp->f_list, fpsrc->f_list, allowaddr);
2357 fp->f_flag = fpsrc->f_flag;
2358 fp->f_marker = fpsrc->f_marker;
2359 fp->f_type = fpsrc->f_type;
2360 fp->f_advice = fpsrc->f_advice;
2361 fp->f_count = fpsrc->f_count;
2362 fp->f_msgcount = fpsrc->f_msgcount;
2363 fp->f_unpcount = fpsrc->f_unpcount;
2364 COND_SET_STRUCT(fp->f_unplist, fpsrc->f_unplist, allowaddr);
2365 }
2366
2367 static void
2368 fill_file2(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
2369 int i, pid_t pid)
2370 {
2371 const bool allowaddr = get_expose_address(curproc);
2372
2373 memset(kp, 0, sizeof(*kp));
2374
2375 COND_SET_VALUE(kp->ki_fileaddr, PTRTOUINT64(fp), allowaddr);
2376 kp->ki_flag = fp->f_flag;
2377 kp->ki_iflags = 0;
2378 kp->ki_ftype = fp->f_type;
2379 kp->ki_count = fp->f_count;
2380 kp->ki_msgcount = fp->f_msgcount;
2381 COND_SET_VALUE(kp->ki_fucred, PTRTOUINT64(fp->f_cred), allowaddr);
2382 kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
2383 kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
2384 COND_SET_VALUE(kp->ki_fops, PTRTOUINT64(fp->f_ops), allowaddr);
2385 kp->ki_foffset = fp->f_offset;
2386 COND_SET_VALUE(kp->ki_fdata, PTRTOUINT64(fp->f_data), allowaddr);
2387
2388 /* vnode information to glue this file to something */
2389 if (fp->f_type == DTYPE_VNODE) {
2390 struct vnode *vp = fp->f_vnode;
2391
2392 COND_SET_VALUE(kp->ki_vun, PTRTOUINT64(vp->v_un.vu_socket),
2393 allowaddr);
2394 kp->ki_vsize = vp->v_size;
2395 kp->ki_vtype = vp->v_type;
2396 kp->ki_vtag = vp->v_tag;
2397 COND_SET_VALUE(kp->ki_vdata, PTRTOUINT64(vp->v_data),
2398 allowaddr);
2399 }
2400
2401 /* process information when retrieved via KERN_FILE_BYPID */
2402 if (ff != NULL) {
2403 kp->ki_pid = pid;
2404 kp->ki_fd = i;
2405 kp->ki_ofileflags = ff->ff_exclose;
2406 kp->ki_usecount = ff->ff_refcnt;
2407 }
2408 }
2409