Home | History | Annotate | Line # | Download | only in kern
kern_descrip.c revision 1.263
      1 /*	$NetBSD: kern_descrip.c,v 1.263 2024/07/14 05:10:40 kre Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009, 2023 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_descrip.c	8.8 (Berkeley) 2/14/95
     66  */
     67 
     68 /*
     69  * File descriptor management.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: kern_descrip.c,v 1.263 2024/07/14 05:10:40 kre Exp $");
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/filedesc.h>
     78 #include <sys/kernel.h>
     79 #include <sys/proc.h>
     80 #include <sys/file.h>
     81 #include <sys/socket.h>
     82 #include <sys/socketvar.h>
     83 #include <sys/stat.h>
     84 #include <sys/ioctl.h>
     85 #include <sys/fcntl.h>
     86 #include <sys/pool.h>
     87 #include <sys/unistd.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/conf.h>
     90 #include <sys/event.h>
     91 #include <sys/kauth.h>
     92 #include <sys/atomic.h>
     93 #include <sys/syscallargs.h>
     94 #include <sys/cpu.h>
     95 #include <sys/kmem.h>
     96 #include <sys/vnode.h>
     97 #include <sys/sysctl.h>
     98 #include <sys/ktrace.h>
     99 
    100 /*
    101  * A list (head) of open files, counter, and lock protecting them.
    102  */
    103 struct filelist		filehead	__cacheline_aligned;
    104 static u_int		nfiles		__cacheline_aligned;
    105 kmutex_t		filelist_lock	__cacheline_aligned;
    106 
    107 static pool_cache_t	filedesc_cache	__read_mostly;
    108 static pool_cache_t	file_cache	__read_mostly;
    109 
    110 static int	file_ctor(void *, void *, int);
    111 static void	file_dtor(void *, void *);
    112 static void	fdfile_ctor(fdfile_t *);
    113 static void	fdfile_dtor(fdfile_t *);
    114 static int	filedesc_ctor(void *, void *, int);
    115 static void	filedesc_dtor(void *, void *);
    116 static int	filedescopen(dev_t, int, int, lwp_t *);
    117 
    118 static int sysctl_kern_file(SYSCTLFN_PROTO);
    119 static int sysctl_kern_file2(SYSCTLFN_PROTO);
    120 static void fill_file(struct file *, const struct file *);
    121 static void fill_file2(struct kinfo_file *, const file_t *, const fdfile_t *,
    122 		      int, pid_t);
    123 
    124 const struct cdevsw filedesc_cdevsw = {
    125 	.d_open = filedescopen,
    126 	.d_close = noclose,
    127 	.d_read = noread,
    128 	.d_write = nowrite,
    129 	.d_ioctl = noioctl,
    130 	.d_stop = nostop,
    131 	.d_tty = notty,
    132 	.d_poll = nopoll,
    133 	.d_mmap = nommap,
    134 	.d_kqfilter = nokqfilter,
    135 	.d_discard = nodiscard,
    136 	.d_flag = D_OTHER | D_MPSAFE
    137 };
    138 
    139 /* For ease of reading. */
    140 __strong_alias(fd_putvnode,fd_putfile)
    141 __strong_alias(fd_putsock,fd_putfile)
    142 
    143 /*
    144  * Initialize the descriptor system.
    145  */
    146 void
    147 fd_sys_init(void)
    148 {
    149 	static struct sysctllog *clog;
    150 
    151 	mutex_init(&filelist_lock, MUTEX_DEFAULT, IPL_NONE);
    152 
    153 	LIST_INIT(&filehead);
    154 
    155 	file_cache = pool_cache_init(sizeof(file_t), coherency_unit, 0,
    156 	    0, "file", NULL, IPL_NONE, file_ctor, file_dtor, NULL);
    157 	KASSERT(file_cache != NULL);
    158 
    159 	filedesc_cache = pool_cache_init(sizeof(filedesc_t), coherency_unit,
    160 	    0, 0, "filedesc", NULL, IPL_NONE, filedesc_ctor, filedesc_dtor,
    161 	    NULL);
    162 	KASSERT(filedesc_cache != NULL);
    163 
    164 	sysctl_createv(&clog, 0, NULL, NULL,
    165 		       CTLFLAG_PERMANENT,
    166 		       CTLTYPE_STRUCT, "file",
    167 		       SYSCTL_DESCR("System open file table"),
    168 		       sysctl_kern_file, 0, NULL, 0,
    169 		       CTL_KERN, KERN_FILE, CTL_EOL);
    170 	sysctl_createv(&clog, 0, NULL, NULL,
    171 		       CTLFLAG_PERMANENT,
    172 		       CTLTYPE_STRUCT, "file2",
    173 		       SYSCTL_DESCR("System open file table"),
    174 		       sysctl_kern_file2, 0, NULL, 0,
    175 		       CTL_KERN, KERN_FILE2, CTL_EOL);
    176 }
    177 
    178 static bool
    179 fd_isused(filedesc_t *fdp, unsigned fd)
    180 {
    181 	u_int off = fd >> NDENTRYSHIFT;
    182 
    183 	KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
    184 
    185 	return (fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0;
    186 }
    187 
    188 /*
    189  * Verify that the bitmaps match the descriptor table.
    190  */
    191 static inline void
    192 fd_checkmaps(filedesc_t *fdp)
    193 {
    194 #ifdef DEBUG
    195 	fdtab_t *dt;
    196 	u_int fd;
    197 
    198 	KASSERT(fdp->fd_refcnt <= 1 || mutex_owned(&fdp->fd_lock));
    199 
    200 	dt = fdp->fd_dt;
    201 	if (fdp->fd_refcnt == -1) {
    202 		/*
    203 		 * fd_free tears down the table without maintaining its bitmap.
    204 		 */
    205 		return;
    206 	}
    207 	for (fd = 0; fd < dt->dt_nfiles; fd++) {
    208 		if (fd < NDFDFILE) {
    209 			KASSERT(dt->dt_ff[fd] ==
    210 			    (fdfile_t *)fdp->fd_dfdfile[fd]);
    211 		}
    212 		if (dt->dt_ff[fd] == NULL) {
    213 			KASSERT(!fd_isused(fdp, fd));
    214 		} else if (dt->dt_ff[fd]->ff_file != NULL) {
    215 			KASSERT(fd_isused(fdp, fd));
    216 		}
    217 	}
    218 #endif
    219 }
    220 
    221 static int
    222 fd_next_zero(filedesc_t *fdp, uint32_t *bitmap, int want, u_int bits)
    223 {
    224 	int i, off, maxoff;
    225 	uint32_t sub;
    226 
    227 	KASSERT(mutex_owned(&fdp->fd_lock));
    228 
    229 	fd_checkmaps(fdp);
    230 
    231 	if (want > bits)
    232 		return -1;
    233 
    234 	off = want >> NDENTRYSHIFT;
    235 	i = want & NDENTRYMASK;
    236 	if (i) {
    237 		sub = bitmap[off] | ((u_int)~0 >> (NDENTRIES - i));
    238 		if (sub != ~0)
    239 			goto found;
    240 		off++;
    241 	}
    242 
    243 	maxoff = NDLOSLOTS(bits);
    244 	while (off < maxoff) {
    245 		if ((sub = bitmap[off]) != ~0)
    246 			goto found;
    247 		off++;
    248 	}
    249 
    250 	return -1;
    251 
    252  found:
    253 	return (off << NDENTRYSHIFT) + ffs(~sub) - 1;
    254 }
    255 
    256 static int
    257 fd_last_set(filedesc_t *fd, int last)
    258 {
    259 	int off, i;
    260 	fdfile_t **ff = fd->fd_dt->dt_ff;
    261 	uint32_t *bitmap = fd->fd_lomap;
    262 
    263 	KASSERT(mutex_owned(&fd->fd_lock));
    264 
    265 	fd_checkmaps(fd);
    266 
    267 	off = (last - 1) >> NDENTRYSHIFT;
    268 
    269 	while (off >= 0 && !bitmap[off])
    270 		off--;
    271 
    272 	if (off < 0)
    273 		return -1;
    274 
    275 	i = ((off + 1) << NDENTRYSHIFT) - 1;
    276 	if (i >= last)
    277 		i = last - 1;
    278 
    279 	/* XXX should use bitmap */
    280 	while (i > 0 && (ff[i] == NULL || !ff[i]->ff_allocated))
    281 		i--;
    282 
    283 	return i;
    284 }
    285 
    286 static inline void
    287 fd_used(filedesc_t *fdp, unsigned fd)
    288 {
    289 	u_int off = fd >> NDENTRYSHIFT;
    290 	fdfile_t *ff;
    291 
    292 	ff = fdp->fd_dt->dt_ff[fd];
    293 
    294 	KASSERT(mutex_owned(&fdp->fd_lock));
    295 	KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) == 0);
    296 	KASSERT(ff != NULL);
    297 	KASSERT(ff->ff_file == NULL);
    298 	KASSERT(!ff->ff_allocated);
    299 
    300 	ff->ff_allocated = true;
    301 	fdp->fd_lomap[off] |= 1U << (fd & NDENTRYMASK);
    302 	if (__predict_false(fdp->fd_lomap[off] == ~0)) {
    303 		KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
    304 		    (1U << (off & NDENTRYMASK))) == 0);
    305 		fdp->fd_himap[off >> NDENTRYSHIFT] |= 1U << (off & NDENTRYMASK);
    306 	}
    307 
    308 	if ((int)fd > fdp->fd_lastfile) {
    309 		fdp->fd_lastfile = fd;
    310 	}
    311 
    312 	fd_checkmaps(fdp);
    313 }
    314 
    315 static inline void
    316 fd_unused(filedesc_t *fdp, unsigned fd)
    317 {
    318 	u_int off = fd >> NDENTRYSHIFT;
    319 	fdfile_t *ff;
    320 
    321 	ff = fdp->fd_dt->dt_ff[fd];
    322 
    323 	KASSERT(mutex_owned(&fdp->fd_lock));
    324 	KASSERT(ff != NULL);
    325 	KASSERT(ff->ff_file == NULL);
    326 	KASSERT(ff->ff_allocated);
    327 
    328 	if (fd < fdp->fd_freefile) {
    329 		fdp->fd_freefile = fd;
    330 	}
    331 
    332 	if (fdp->fd_lomap[off] == ~0) {
    333 		KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
    334 		    (1U << (off & NDENTRYMASK))) != 0);
    335 		fdp->fd_himap[off >> NDENTRYSHIFT] &=
    336 		    ~(1U << (off & NDENTRYMASK));
    337 	}
    338 	KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0);
    339 	fdp->fd_lomap[off] &= ~(1U << (fd & NDENTRYMASK));
    340 	ff->ff_allocated = false;
    341 
    342 	KASSERT(fd <= fdp->fd_lastfile);
    343 	if (fd == fdp->fd_lastfile) {
    344 		fdp->fd_lastfile = fd_last_set(fdp, fd);
    345 	}
    346 	fd_checkmaps(fdp);
    347 }
    348 
    349 /*
    350  * Look up the file structure corresponding to a file descriptor
    351  * and return the file, holding a reference on the descriptor.
    352  */
    353 file_t *
    354 fd_getfile(unsigned fd)
    355 {
    356 	filedesc_t *fdp;
    357 	fdfile_t *ff;
    358 	file_t *fp;
    359 	fdtab_t *dt;
    360 
    361 	/*
    362 	 * Look up the fdfile structure representing this descriptor.
    363 	 * We are doing this unlocked.  See fd_tryexpand().
    364 	 */
    365 	fdp = curlwp->l_fd;
    366 	dt = atomic_load_consume(&fdp->fd_dt);
    367 	if (__predict_false(fd >= dt->dt_nfiles)) {
    368 		return NULL;
    369 	}
    370 	ff = dt->dt_ff[fd];
    371 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    372 	if (__predict_false(ff == NULL)) {
    373 		return NULL;
    374 	}
    375 
    376 	/* Now get a reference to the descriptor. */
    377 	if (fdp->fd_refcnt == 1) {
    378 		/*
    379 		 * Single threaded: don't need to worry about concurrent
    380 		 * access (other than earlier calls to kqueue, which may
    381 		 * hold a reference to the descriptor).
    382 		 */
    383 		ff->ff_refcnt++;
    384 	} else {
    385 		/*
    386 		 * Multi threaded: issue a memory barrier to ensure that we
    387 		 * acquire the file pointer _after_ adding a reference.  If
    388 		 * no memory barrier, we could fetch a stale pointer.
    389 		 *
    390 		 * In particular, we must coordinate the following four
    391 		 * memory operations:
    392 		 *
    393 		 *	A. fd_close store ff->ff_file = NULL
    394 		 *	B. fd_close refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
    395 		 *	C. fd_getfile atomic_inc_uint(&ff->ff_refcnt)
    396 		 *	D. fd_getfile load fp = ff->ff_file
    397 		 *
    398 		 * If the order is D;A;B;C:
    399 		 *
    400 		 *	1. D: fp = ff->ff_file
    401 		 *	2. A: ff->ff_file = NULL
    402 		 *	3. B: refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
    403 		 *	4. C: atomic_inc_uint(&ff->ff_refcnt)
    404 		 *
    405 		 * then fd_close determines that there are no more
    406 		 * references and decides to free fp immediately, at
    407 		 * the same that fd_getfile ends up with an fp that's
    408 		 * about to be freed.  *boom*
    409 		 *
    410 		 * By making B a release operation in fd_close, and by
    411 		 * making C an acquire operation in fd_getfile, since
    412 		 * they are atomic operations on the same object, which
    413 		 * has a total modification order, we guarantee either:
    414 		 *
    415 		 *	- B happens before C.  Then since A is
    416 		 *	  sequenced before B in fd_close, and C is
    417 		 *	  sequenced before D in fd_getfile, we
    418 		 *	  guarantee A happens before D, so fd_getfile
    419 		 *	  reads a null fp and safely fails.
    420 		 *
    421 		 *	- C happens before B.  Then fd_getfile may read
    422 		 *	  null or nonnull, but either way, fd_close
    423 		 *	  will safely wait for references to drain.
    424 		 */
    425 		atomic_inc_uint(&ff->ff_refcnt);
    426 		membar_acquire();
    427 	}
    428 
    429 	/*
    430 	 * If the file is not open or is being closed then put the
    431 	 * reference back.
    432 	 */
    433 	fp = atomic_load_consume(&ff->ff_file);
    434 	if (__predict_true(fp != NULL)) {
    435 		return fp;
    436 	}
    437 	fd_putfile(fd);
    438 	return NULL;
    439 }
    440 
    441 /*
    442  * Release a reference to a file descriptor acquired with fd_getfile().
    443  */
    444 void
    445 fd_putfile(unsigned fd)
    446 {
    447 	filedesc_t *fdp;
    448 	fdfile_t *ff;
    449 	u_int u, v;
    450 
    451 	fdp = curlwp->l_fd;
    452 	KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
    453 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
    454 
    455 	KASSERT(ff != NULL);
    456 	KASSERT((ff->ff_refcnt & FR_MASK) > 0);
    457 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    458 
    459 	if (fdp->fd_refcnt == 1) {
    460 		/*
    461 		 * Single threaded: don't need to worry about concurrent
    462 		 * access (other than earlier calls to kqueue, which may
    463 		 * hold a reference to the descriptor).
    464 		 */
    465 		if (__predict_false((ff->ff_refcnt & FR_CLOSING) != 0)) {
    466 			fd_close(fd);
    467 			return;
    468 		}
    469 		ff->ff_refcnt--;
    470 		return;
    471 	}
    472 
    473 	/*
    474 	 * Ensure that any use of the file is complete and globally
    475 	 * visible before dropping the final reference.  If no membar,
    476 	 * the current CPU could still access memory associated with
    477 	 * the file after it has been freed or recycled by another
    478 	 * CPU.
    479 	 */
    480 	membar_release();
    481 
    482 	/*
    483 	 * Be optimistic and start out with the assumption that no other
    484 	 * threads are trying to close the descriptor.  If the CAS fails,
    485 	 * we lost a race and/or it's being closed.
    486 	 */
    487 	for (u = ff->ff_refcnt & FR_MASK;; u = v) {
    488 		v = atomic_cas_uint(&ff->ff_refcnt, u, u - 1);
    489 		if (__predict_true(u == v)) {
    490 			return;
    491 		}
    492 		if (__predict_false((v & FR_CLOSING) != 0)) {
    493 			break;
    494 		}
    495 	}
    496 
    497 	/* Another thread is waiting to close the file: join it. */
    498 	(void)fd_close(fd);
    499 }
    500 
    501 /*
    502  * Convenience wrapper around fd_getfile() that returns reference
    503  * to a vnode.
    504  */
    505 int
    506 fd_getvnode(unsigned fd, file_t **fpp)
    507 {
    508 	vnode_t *vp;
    509 	file_t *fp;
    510 
    511 	fp = fd_getfile(fd);
    512 	if (__predict_false(fp == NULL)) {
    513 		return EBADF;
    514 	}
    515 	if (__predict_false(fp->f_type != DTYPE_VNODE)) {
    516 		fd_putfile(fd);
    517 		return EINVAL;
    518 	}
    519 	vp = fp->f_vnode;
    520 	if (__predict_false(vp->v_type == VBAD)) {
    521 		/* XXX Is this case really necessary? */
    522 		fd_putfile(fd);
    523 		return EBADF;
    524 	}
    525 	*fpp = fp;
    526 	return 0;
    527 }
    528 
    529 /*
    530  * Convenience wrapper around fd_getfile() that returns reference
    531  * to a socket.
    532  */
    533 int
    534 fd_getsock1(unsigned fd, struct socket **sop, file_t **fp)
    535 {
    536 	*fp = fd_getfile(fd);
    537 	if (__predict_false(*fp == NULL)) {
    538 		return EBADF;
    539 	}
    540 	if (__predict_false((*fp)->f_type != DTYPE_SOCKET)) {
    541 		fd_putfile(fd);
    542 		return ENOTSOCK;
    543 	}
    544 	*sop = (*fp)->f_socket;
    545 	return 0;
    546 }
    547 
    548 int
    549 fd_getsock(unsigned fd, struct socket **sop)
    550 {
    551 	file_t *fp;
    552 	return fd_getsock1(fd, sop, &fp);
    553 }
    554 
    555 /*
    556  * Look up the file structure corresponding to a file descriptor
    557  * and return it with a reference held on the file, not the
    558  * descriptor.
    559  *
    560  * This is heavyweight and only used when accessing descriptors
    561  * from a foreign process.  The caller must ensure that `p' does
    562  * not exit or fork across this call.
    563  *
    564  * To release the file (not descriptor) reference, use closef().
    565  */
    566 file_t *
    567 fd_getfile2(proc_t *p, unsigned fd)
    568 {
    569 	filedesc_t *fdp;
    570 	fdfile_t *ff;
    571 	file_t *fp;
    572 	fdtab_t *dt;
    573 
    574 	fdp = p->p_fd;
    575 	mutex_enter(&fdp->fd_lock);
    576 	dt = fdp->fd_dt;
    577 	if (fd >= dt->dt_nfiles) {
    578 		mutex_exit(&fdp->fd_lock);
    579 		return NULL;
    580 	}
    581 	if ((ff = dt->dt_ff[fd]) == NULL) {
    582 		mutex_exit(&fdp->fd_lock);
    583 		return NULL;
    584 	}
    585 	if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
    586 		mutex_exit(&fdp->fd_lock);
    587 		return NULL;
    588 	}
    589 	mutex_enter(&fp->f_lock);
    590 	fp->f_count++;
    591 	mutex_exit(&fp->f_lock);
    592 	mutex_exit(&fdp->fd_lock);
    593 
    594 	return fp;
    595 }
    596 
    597 /*
    598  * Internal form of close.  Must be called with a reference to the
    599  * descriptor, and will drop the reference.  When all descriptor
    600  * references are dropped, releases the descriptor slot and a single
    601  * reference to the file structure.
    602  */
    603 int
    604 fd_close(unsigned fd)
    605 {
    606 	struct flock lf;
    607 	filedesc_t *fdp;
    608 	fdfile_t *ff;
    609 	file_t *fp;
    610 	proc_t *p;
    611 	lwp_t *l;
    612 	u_int refcnt;
    613 
    614 	l = curlwp;
    615 	p = l->l_proc;
    616 	fdp = l->l_fd;
    617 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
    618 
    619 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
    620 
    621 	mutex_enter(&fdp->fd_lock);
    622 	KASSERT((ff->ff_refcnt & FR_MASK) > 0);
    623 	fp = atomic_load_consume(&ff->ff_file);
    624 	if (__predict_false(fp == NULL)) {
    625 		/*
    626 		 * Another user of the file is already closing, and is
    627 		 * waiting for other users of the file to drain.  Release
    628 		 * our reference, and wake up the closer.
    629 		 */
    630 		membar_release();
    631 		atomic_dec_uint(&ff->ff_refcnt);
    632 		cv_broadcast(&ff->ff_closing);
    633 		mutex_exit(&fdp->fd_lock);
    634 
    635 		/*
    636 		 * An application error, so pretend that the descriptor
    637 		 * was already closed.  We can't safely wait for it to
    638 		 * be closed without potentially deadlocking.
    639 		 */
    640 		return (EBADF);
    641 	}
    642 	KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
    643 
    644 	/*
    645 	 * There may be multiple users of this file within the process.
    646 	 * Notify existing and new users that the file is closing.  This
    647 	 * will prevent them from adding additional uses to this file
    648 	 * while we are closing it.
    649 	 */
    650 	atomic_store_relaxed(&ff->ff_file, NULL);
    651 	ff->ff_exclose = false;
    652 
    653 	/*
    654 	 * We expect the caller to hold a descriptor reference - drop it.
    655 	 * The reference count may increase beyond zero at this point due
    656 	 * to an erroneous descriptor reference by an application, but
    657 	 * fd_getfile() will notice that the file is being closed and drop
    658 	 * the reference again.
    659 	 */
    660 	if (fdp->fd_refcnt == 1) {
    661 		/* Single threaded. */
    662 		refcnt = --(ff->ff_refcnt);
    663 	} else {
    664 		/* Multi threaded. */
    665 		membar_release();
    666 		refcnt = atomic_dec_uint_nv(&ff->ff_refcnt);
    667 		membar_acquire();
    668 	}
    669 	if (__predict_false(refcnt != 0)) {
    670 		/*
    671 		 * Wait for other references to drain.  This is typically
    672 		 * an application error - the descriptor is being closed
    673 		 * while still in use.
    674 		 * (Or just a threaded application trying to unblock its
    675 		 * thread that sleeps in (say) accept()).
    676 		 */
    677 		atomic_or_uint(&ff->ff_refcnt, FR_CLOSING);
    678 
    679 		/*
    680 		 * Remove any knotes attached to the file.  A knote
    681 		 * attached to the descriptor can hold references on it.
    682 		 */
    683 		mutex_exit(&fdp->fd_lock);
    684 		if (!SLIST_EMPTY(&ff->ff_knlist)) {
    685 			knote_fdclose(fd);
    686 		}
    687 
    688 		/*
    689 		 * Since the file system code doesn't know which fd
    690 		 * each request came from (think dup()), we have to
    691 		 * ask it to return ERESTART for any long-term blocks.
    692 		 * The re-entry through read/write/etc will detect the
    693 		 * closed fd and return EBAFD.
    694 		 * Blocked partial writes may return a short length.
    695 		 */
    696 		(*fp->f_ops->fo_restart)(fp);
    697 		mutex_enter(&fdp->fd_lock);
    698 
    699 		/*
    700 		 * We need to see the count drop to zero at least once,
    701 		 * in order to ensure that all pre-existing references
    702 		 * have been drained.  New references past this point are
    703 		 * of no interest.
    704 		 * XXX (dsl) this may need to call fo_restart() after a
    705 		 * timeout to guarantee that all the system calls exit.
    706 		 */
    707 		while ((ff->ff_refcnt & FR_MASK) != 0) {
    708 			cv_wait(&ff->ff_closing, &fdp->fd_lock);
    709 		}
    710 		atomic_and_uint(&ff->ff_refcnt, ~FR_CLOSING);
    711 	} else {
    712 		/* If no references, there must be no knotes. */
    713 		KASSERT(SLIST_EMPTY(&ff->ff_knlist));
    714 	}
    715 
    716 	/*
    717 	 * POSIX record locking dictates that any close releases ALL
    718 	 * locks owned by this process.  This is handled by setting
    719 	 * a flag in the unlock to free ONLY locks obeying POSIX
    720 	 * semantics, and not to free BSD-style file locks.
    721 	 * If the descriptor was in a message, POSIX-style locks
    722 	 * aren't passed with the descriptor.
    723 	 */
    724 	if (__predict_false((p->p_flag & PK_ADVLOCK) != 0) &&
    725 	    fp->f_ops->fo_advlock != NULL) {
    726 		lf.l_whence = SEEK_SET;
    727 		lf.l_start = 0;
    728 		lf.l_len = 0;
    729 		lf.l_type = F_UNLCK;
    730 		mutex_exit(&fdp->fd_lock);
    731 		(void)(*fp->f_ops->fo_advlock)(fp, p, F_UNLCK, &lf, F_POSIX);
    732 		mutex_enter(&fdp->fd_lock);
    733 	}
    734 
    735 	/* Free descriptor slot. */
    736 	fd_unused(fdp, fd);
    737 	mutex_exit(&fdp->fd_lock);
    738 
    739 	/* Now drop reference to the file itself. */
    740 	return closef(fp);
    741 }
    742 
    743 /*
    744  * Duplicate a file descriptor.
    745  */
    746 int
    747 fd_dup(file_t *fp, int minfd, int *newp, bool exclose)
    748 {
    749 	proc_t *p = curproc;
    750 	fdtab_t *dt;
    751 	int error;
    752 
    753 	while ((error = fd_alloc(p, minfd, newp)) != 0) {
    754 		if (error != ENOSPC) {
    755 			return error;
    756 		}
    757 		fd_tryexpand(p);
    758 	}
    759 
    760 	dt = atomic_load_consume(&curlwp->l_fd->fd_dt);
    761 	dt->dt_ff[*newp]->ff_exclose = exclose;
    762 	fd_affix(p, fp, *newp);
    763 	return 0;
    764 }
    765 
    766 /*
    767  * dup2 operation.
    768  */
    769 int
    770 fd_dup2(file_t *fp, unsigned newfd, int flags)
    771 {
    772 	filedesc_t *fdp = curlwp->l_fd;
    773 	fdfile_t *ff;
    774 	fdtab_t *dt;
    775 
    776 	if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
    777 		return EINVAL;
    778 	/*
    779 	 * Ensure there are enough slots in the descriptor table,
    780 	 * and allocate an fdfile_t up front in case we need it.
    781 	 */
    782 	while (newfd >= atomic_load_consume(&fdp->fd_dt)->dt_nfiles) {
    783 		fd_tryexpand(curproc);
    784 	}
    785 	ff = kmem_alloc(sizeof(*ff), KM_SLEEP);
    786 	fdfile_ctor(ff);
    787 
    788 	/*
    789 	 * If there is already a file open, close it.  If the file is
    790 	 * half open, wait for it to be constructed before closing it.
    791 	 * XXX Potential for deadlock here?
    792 	 */
    793 	mutex_enter(&fdp->fd_lock);
    794 	while (fd_isused(fdp, newfd)) {
    795 		mutex_exit(&fdp->fd_lock);
    796 		if (fd_getfile(newfd) != NULL) {
    797 			(void)fd_close(newfd);
    798 		} else {
    799 			/*
    800 			 * Crummy, but unlikely to happen.
    801 			 * Can occur if we interrupt another
    802 			 * thread while it is opening a file.
    803 			 */
    804 			kpause("dup2", false, 1, NULL);
    805 		}
    806 		mutex_enter(&fdp->fd_lock);
    807 	}
    808 	dt = fdp->fd_dt;
    809 	if (dt->dt_ff[newfd] == NULL) {
    810 		KASSERT(newfd >= NDFDFILE);
    811 		dt->dt_ff[newfd] = ff;
    812 		ff = NULL;
    813 	}
    814 	fd_used(fdp, newfd);
    815 	mutex_exit(&fdp->fd_lock);
    816 
    817 	dt->dt_ff[newfd]->ff_exclose = (flags & O_CLOEXEC) != 0;
    818 	fp->f_flag |= flags & (FNONBLOCK|FNOSIGPIPE);
    819 	/* Slot is now allocated.  Insert copy of the file. */
    820 	fd_affix(curproc, fp, newfd);
    821 	if (ff != NULL) {
    822 		cv_destroy(&ff->ff_closing);
    823 		kmem_free(ff, sizeof(*ff));
    824 	}
    825 	return 0;
    826 }
    827 
    828 /*
    829  * Drop reference to a file structure.
    830  */
    831 int
    832 closef(file_t *fp)
    833 {
    834 	struct flock lf;
    835 	int error;
    836 
    837 	/*
    838 	 * Drop reference.  If referenced elsewhere it's still open
    839 	 * and we have nothing more to do.
    840 	 */
    841 	mutex_enter(&fp->f_lock);
    842 	KASSERT(fp->f_count > 0);
    843 	if (--fp->f_count > 0) {
    844 		mutex_exit(&fp->f_lock);
    845 		return 0;
    846 	}
    847 	KASSERT(fp->f_count == 0);
    848 	mutex_exit(&fp->f_lock);
    849 
    850 	/* We held the last reference - release locks, close and free. */
    851 	if (fp->f_ops->fo_advlock == NULL) {
    852 		KASSERT((fp->f_flag & FHASLOCK) == 0);
    853 	} else if (fp->f_flag & FHASLOCK) {
    854 		lf.l_whence = SEEK_SET;
    855 		lf.l_start = 0;
    856 		lf.l_len = 0;
    857 		lf.l_type = F_UNLCK;
    858 		(void)(*fp->f_ops->fo_advlock)(fp, fp, F_UNLCK, &lf, F_FLOCK);
    859 	}
    860 	if (fp->f_ops != NULL) {
    861 		error = (*fp->f_ops->fo_close)(fp);
    862 	} else {
    863 		error = 0;
    864 	}
    865 	KASSERT(fp->f_count == 0);
    866 	KASSERT(fp->f_cred != NULL);
    867 	pool_cache_put(file_cache, fp);
    868 
    869 	return error;
    870 }
    871 
    872 /*
    873  * Allocate a file descriptor for the process.
    874  *
    875  * Future idea for experimentation: replace all of this with radixtree.
    876  */
    877 int
    878 fd_alloc(proc_t *p, int want, int *result)
    879 {
    880 	filedesc_t *fdp = p->p_fd;
    881 	int i, lim, last, error, hi;
    882 	u_int off;
    883 	fdtab_t *dt;
    884 
    885 	KASSERT(p == curproc || p == &proc0);
    886 
    887 	/*
    888 	 * Search for a free descriptor starting at the higher
    889 	 * of want or fd_freefile.
    890 	 */
    891 	mutex_enter(&fdp->fd_lock);
    892 	fd_checkmaps(fdp);
    893 	dt = fdp->fd_dt;
    894 	KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
    895 	lim = uimin((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
    896 	last = uimin(dt->dt_nfiles, lim);
    897 
    898 	for (;;) {
    899 		if ((i = want) < fdp->fd_freefile)
    900 			i = fdp->fd_freefile;
    901 		off = i >> NDENTRYSHIFT;
    902 		hi = fd_next_zero(fdp, fdp->fd_himap, off,
    903 		    (last + NDENTRIES - 1) >> NDENTRYSHIFT);
    904 		if (hi == -1)
    905 			break;
    906 		i = fd_next_zero(fdp, &fdp->fd_lomap[hi],
    907 		    hi > off ? 0 : i & NDENTRYMASK, NDENTRIES);
    908 		if (i == -1) {
    909 			/*
    910 			 * Free file descriptor in this block was
    911 			 * below want, try again with higher want.
    912 			 */
    913 			want = (hi + 1) << NDENTRYSHIFT;
    914 			continue;
    915 		}
    916 		i += (hi << NDENTRYSHIFT);
    917 		if (i >= last) {
    918 			break;
    919 		}
    920 		if (dt->dt_ff[i] == NULL) {
    921 			KASSERT(i >= NDFDFILE);
    922 			dt->dt_ff[i] = kmem_alloc(sizeof(fdfile_t), KM_SLEEP);
    923 			fdfile_ctor(dt->dt_ff[i]);
    924 		}
    925 		KASSERT(dt->dt_ff[i]->ff_file == NULL);
    926 		fd_used(fdp, i);
    927 		if (want <= fdp->fd_freefile) {
    928 			fdp->fd_freefile = i;
    929 		}
    930 		*result = i;
    931 		KASSERT(i >= NDFDFILE ||
    932 		    dt->dt_ff[i] == (fdfile_t *)fdp->fd_dfdfile[i]);
    933 		fd_checkmaps(fdp);
    934 		mutex_exit(&fdp->fd_lock);
    935 		return 0;
    936 	}
    937 
    938 	/* No space in current array.  Let the caller expand and retry. */
    939 	error = (dt->dt_nfiles >= lim) ? EMFILE : ENOSPC;
    940 	mutex_exit(&fdp->fd_lock);
    941 	return error;
    942 }
    943 
    944 /*
    945  * Allocate memory for a descriptor table.
    946  */
    947 static fdtab_t *
    948 fd_dtab_alloc(int n)
    949 {
    950 	fdtab_t *dt;
    951 	size_t sz;
    952 
    953 	KASSERT(n > NDFILE);
    954 
    955 	sz = sizeof(*dt) + (n - NDFILE) * sizeof(dt->dt_ff[0]);
    956 	dt = kmem_alloc(sz, KM_SLEEP);
    957 #ifdef DIAGNOSTIC
    958 	memset(dt, 0xff, sz);
    959 #endif
    960 	dt->dt_nfiles = n;
    961 	dt->dt_link = NULL;
    962 	return dt;
    963 }
    964 
    965 /*
    966  * Free a descriptor table, and all tables linked for deferred free.
    967  */
    968 static void
    969 fd_dtab_free(fdtab_t *dt)
    970 {
    971 	fdtab_t *next;
    972 	size_t sz;
    973 
    974 	do {
    975 		next = dt->dt_link;
    976 		KASSERT(dt->dt_nfiles > NDFILE);
    977 		sz = sizeof(*dt) +
    978 		    (dt->dt_nfiles - NDFILE) * sizeof(dt->dt_ff[0]);
    979 #ifdef DIAGNOSTIC
    980 		memset(dt, 0xff, sz);
    981 #endif
    982 		kmem_free(dt, sz);
    983 		dt = next;
    984 	} while (dt != NULL);
    985 }
    986 
    987 /*
    988  * Allocate descriptor bitmap.
    989  */
    990 static void
    991 fd_map_alloc(int n, uint32_t **lo, uint32_t **hi)
    992 {
    993 	uint8_t *ptr;
    994 	size_t szlo, szhi;
    995 
    996 	KASSERT(n > NDENTRIES);
    997 
    998 	szlo = NDLOSLOTS(n) * sizeof(uint32_t);
    999 	szhi = NDHISLOTS(n) * sizeof(uint32_t);
   1000 	ptr = kmem_alloc(szlo + szhi, KM_SLEEP);
   1001 	*lo = (uint32_t *)ptr;
   1002 	*hi = (uint32_t *)(ptr + szlo);
   1003 }
   1004 
   1005 /*
   1006  * Free descriptor bitmap.
   1007  */
   1008 static void
   1009 fd_map_free(int n, uint32_t *lo, uint32_t *hi)
   1010 {
   1011 	size_t szlo, szhi;
   1012 
   1013 	KASSERT(n > NDENTRIES);
   1014 
   1015 	szlo = NDLOSLOTS(n) * sizeof(uint32_t);
   1016 	szhi = NDHISLOTS(n) * sizeof(uint32_t);
   1017 	KASSERT(hi == (uint32_t *)((uint8_t *)lo + szlo));
   1018 	kmem_free(lo, szlo + szhi);
   1019 }
   1020 
   1021 /*
   1022  * Expand a process' descriptor table.
   1023  */
   1024 void
   1025 fd_tryexpand(proc_t *p)
   1026 {
   1027 	filedesc_t *fdp;
   1028 	int i, numfiles, oldnfiles;
   1029 	fdtab_t *newdt, *dt;
   1030 	uint32_t *newhimap, *newlomap;
   1031 
   1032 	KASSERT(p == curproc || p == &proc0);
   1033 
   1034 	fdp = p->p_fd;
   1035 	newhimap = NULL;
   1036 	newlomap = NULL;
   1037 	oldnfiles = atomic_load_consume(&fdp->fd_dt)->dt_nfiles;
   1038 
   1039 	if (oldnfiles < NDEXTENT)
   1040 		numfiles = NDEXTENT;
   1041 	else
   1042 		numfiles = 2 * oldnfiles;
   1043 
   1044 	newdt = fd_dtab_alloc(numfiles);
   1045 	if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1046 		fd_map_alloc(numfiles, &newlomap, &newhimap);
   1047 	}
   1048 
   1049 	mutex_enter(&fdp->fd_lock);
   1050 	dt = fdp->fd_dt;
   1051 	KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
   1052 	if (dt->dt_nfiles != oldnfiles) {
   1053 		/* fdp changed; caller must retry */
   1054 		mutex_exit(&fdp->fd_lock);
   1055 		fd_dtab_free(newdt);
   1056 		if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1057 			fd_map_free(numfiles, newlomap, newhimap);
   1058 		}
   1059 		return;
   1060 	}
   1061 
   1062 	/* Copy the existing descriptor table and zero the new portion. */
   1063 	i = sizeof(fdfile_t *) * oldnfiles;
   1064 	memcpy(newdt->dt_ff, dt->dt_ff, i);
   1065 	memset((uint8_t *)newdt->dt_ff + i, 0,
   1066 	    numfiles * sizeof(fdfile_t *) - i);
   1067 
   1068 	/*
   1069 	 * Link old descriptor array into list to be discarded.  We defer
   1070 	 * freeing until the last reference to the descriptor table goes
   1071 	 * away (usually process exit).  This allows us to do lockless
   1072 	 * lookups in fd_getfile().
   1073 	 */
   1074 	if (oldnfiles > NDFILE) {
   1075 		if (fdp->fd_refcnt > 1) {
   1076 			newdt->dt_link = dt;
   1077 		} else {
   1078 			fd_dtab_free(dt);
   1079 		}
   1080 	}
   1081 
   1082 	if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
   1083 		i = NDHISLOTS(oldnfiles) * sizeof(uint32_t);
   1084 		memcpy(newhimap, fdp->fd_himap, i);
   1085 		memset((uint8_t *)newhimap + i, 0,
   1086 		    NDHISLOTS(numfiles) * sizeof(uint32_t) - i);
   1087 
   1088 		i = NDLOSLOTS(oldnfiles) * sizeof(uint32_t);
   1089 		memcpy(newlomap, fdp->fd_lomap, i);
   1090 		memset((uint8_t *)newlomap + i, 0,
   1091 		    NDLOSLOTS(numfiles) * sizeof(uint32_t) - i);
   1092 
   1093 		if (NDHISLOTS(oldnfiles) > NDHISLOTS(NDFILE)) {
   1094 			fd_map_free(oldnfiles, fdp->fd_lomap, fdp->fd_himap);
   1095 		}
   1096 		fdp->fd_himap = newhimap;
   1097 		fdp->fd_lomap = newlomap;
   1098 	}
   1099 
   1100 	/*
   1101 	 * All other modifications must become globally visible before
   1102 	 * the change to fd_dt.  See fd_getfile().
   1103 	 */
   1104 	atomic_store_release(&fdp->fd_dt, newdt);
   1105 	KASSERT(newdt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
   1106 	fd_checkmaps(fdp);
   1107 	mutex_exit(&fdp->fd_lock);
   1108 }
   1109 
   1110 /*
   1111  * Create a new open file structure and allocate a file descriptor
   1112  * for the current process.
   1113  */
   1114 int
   1115 fd_allocfile(file_t **resultfp, int *resultfd)
   1116 {
   1117 	proc_t *p = curproc;
   1118 	kauth_cred_t cred;
   1119 	file_t *fp;
   1120 	int error;
   1121 
   1122 	while ((error = fd_alloc(p, 0, resultfd)) != 0) {
   1123 		if (error != ENOSPC) {
   1124 			return error;
   1125 		}
   1126 		fd_tryexpand(p);
   1127 	}
   1128 
   1129 	fp = pool_cache_get(file_cache, PR_WAITOK);
   1130 	if (fp == NULL) {
   1131 		fd_abort(p, NULL, *resultfd);
   1132 		return ENFILE;
   1133 	}
   1134 	KASSERT(fp->f_count == 0);
   1135 	KASSERT(fp->f_msgcount == 0);
   1136 	KASSERT(fp->f_unpcount == 0);
   1137 
   1138 	/* Replace cached credentials if not what we need. */
   1139 	cred = curlwp->l_cred;
   1140 	if (__predict_false(cred != fp->f_cred)) {
   1141 		kauth_cred_free(fp->f_cred);
   1142 		fp->f_cred = kauth_cred_hold(cred);
   1143 	}
   1144 
   1145 	/*
   1146 	 * Don't allow recycled files to be scanned.
   1147 	 * See uipc_usrreq.c.
   1148 	 */
   1149 	if (__predict_false((fp->f_flag & FSCAN) != 0)) {
   1150 		mutex_enter(&fp->f_lock);
   1151 		atomic_and_uint(&fp->f_flag, ~FSCAN);
   1152 		mutex_exit(&fp->f_lock);
   1153 	}
   1154 
   1155 	fp->f_advice = 0;
   1156 	fp->f_offset = 0;
   1157 	*resultfp = fp;
   1158 
   1159 	return 0;
   1160 }
   1161 
   1162 /*
   1163  * Successful creation of a new descriptor: make visible to the process.
   1164  */
   1165 void
   1166 fd_affix(proc_t *p, file_t *fp, unsigned fd)
   1167 {
   1168 	fdfile_t *ff;
   1169 	filedesc_t *fdp;
   1170 	fdtab_t *dt;
   1171 
   1172 	KASSERT(p == curproc || p == &proc0);
   1173 
   1174 	/* Add a reference to the file structure. */
   1175 	mutex_enter(&fp->f_lock);
   1176 	fp->f_count++;
   1177 	mutex_exit(&fp->f_lock);
   1178 
   1179 	/*
   1180 	 * Insert the new file into the descriptor slot.
   1181 	 */
   1182 	fdp = p->p_fd;
   1183 	dt = atomic_load_consume(&fdp->fd_dt);
   1184 	ff = dt->dt_ff[fd];
   1185 
   1186 	KASSERT(ff != NULL);
   1187 	KASSERT(ff->ff_file == NULL);
   1188 	KASSERT(ff->ff_allocated);
   1189 	KASSERT(fd_isused(fdp, fd));
   1190 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1191 
   1192 	/* No need to lock in order to make file initially visible. */
   1193 	atomic_store_release(&ff->ff_file, fp);
   1194 }
   1195 
   1196 /*
   1197  * Abort creation of a new descriptor: free descriptor slot and file.
   1198  */
   1199 void
   1200 fd_abort(proc_t *p, file_t *fp, unsigned fd)
   1201 {
   1202 	filedesc_t *fdp;
   1203 	fdfile_t *ff;
   1204 
   1205 	KASSERT(p == curproc || p == &proc0);
   1206 
   1207 	fdp = p->p_fd;
   1208 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
   1209 	ff->ff_exclose = false;
   1210 
   1211 	KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1212 
   1213 	mutex_enter(&fdp->fd_lock);
   1214 	KASSERT(fd_isused(fdp, fd));
   1215 	fd_unused(fdp, fd);
   1216 	mutex_exit(&fdp->fd_lock);
   1217 
   1218 	if (fp != NULL) {
   1219 		KASSERT(fp->f_count == 0);
   1220 		KASSERT(fp->f_cred != NULL);
   1221 		pool_cache_put(file_cache, fp);
   1222 	}
   1223 }
   1224 
   1225 static int
   1226 file_ctor(void *arg, void *obj, int flags)
   1227 {
   1228 	/*
   1229 	 * It's easy to exhaust the open file limit on a system with many
   1230 	 * CPUs due to caching.  Allow a bit of leeway to reduce the element
   1231 	 * of surprise.
   1232 	 */
   1233 	u_int slop = PCG_NOBJECTS_NORMAL * (ncpu - 1);
   1234 	file_t *fp = obj;
   1235 
   1236 	memset(fp, 0, sizeof(*fp));
   1237 
   1238 	mutex_enter(&filelist_lock);
   1239 	if (__predict_false(nfiles >= slop + maxfiles)) {
   1240 		mutex_exit(&filelist_lock);
   1241 		tablefull("file", "increase kern.maxfiles or MAXFILES");
   1242 		return ENFILE;
   1243 	}
   1244 	nfiles++;
   1245 	LIST_INSERT_HEAD(&filehead, fp, f_list);
   1246 	mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
   1247 	fp->f_cred = kauth_cred_hold(curlwp->l_cred);
   1248 	mutex_exit(&filelist_lock);
   1249 
   1250 	return 0;
   1251 }
   1252 
   1253 static void
   1254 file_dtor(void *arg, void *obj)
   1255 {
   1256 	file_t *fp = obj;
   1257 
   1258 	mutex_enter(&filelist_lock);
   1259 	nfiles--;
   1260 	LIST_REMOVE(fp, f_list);
   1261 	mutex_exit(&filelist_lock);
   1262 
   1263 	KASSERT(fp->f_count == 0);
   1264 	kauth_cred_free(fp->f_cred);
   1265 	mutex_destroy(&fp->f_lock);
   1266 }
   1267 
   1268 static void
   1269 fdfile_ctor(fdfile_t *ff)
   1270 {
   1271 
   1272 	memset(ff, 0, sizeof(*ff));
   1273 	cv_init(&ff->ff_closing, "fdclose");
   1274 }
   1275 
   1276 static void
   1277 fdfile_dtor(fdfile_t *ff)
   1278 {
   1279 
   1280 	cv_destroy(&ff->ff_closing);
   1281 }
   1282 
   1283 file_t *
   1284 fgetdummy(void)
   1285 {
   1286 	file_t *fp;
   1287 
   1288 	fp = kmem_zalloc(sizeof(*fp), KM_SLEEP);
   1289 	mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
   1290 	return fp;
   1291 }
   1292 
   1293 void
   1294 fputdummy(file_t *fp)
   1295 {
   1296 
   1297 	mutex_destroy(&fp->f_lock);
   1298 	kmem_free(fp, sizeof(*fp));
   1299 }
   1300 
   1301 /*
   1302  * Create an initial filedesc structure.
   1303  */
   1304 filedesc_t *
   1305 fd_init(filedesc_t *fdp)
   1306 {
   1307 #ifdef DIAGNOSTIC
   1308 	unsigned fd;
   1309 #endif
   1310 
   1311 	if (__predict_true(fdp == NULL)) {
   1312 		fdp = pool_cache_get(filedesc_cache, PR_WAITOK);
   1313 	} else {
   1314 		KASSERT(fdp == &filedesc0);
   1315 		filedesc_ctor(NULL, fdp, PR_WAITOK);
   1316 	}
   1317 
   1318 #ifdef DIAGNOSTIC
   1319 	KASSERT(fdp->fd_lastfile == -1);
   1320 	KASSERT(fdp->fd_lastkqfile == -1);
   1321 	KASSERT(fdp->fd_knhash == NULL);
   1322 	KASSERT(fdp->fd_freefile == 0);
   1323 	KASSERT(fdp->fd_exclose == false);
   1324 	KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
   1325 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1326 	for (fd = 0; fd < NDFDFILE; fd++) {
   1327 		KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] ==
   1328 		    (fdfile_t *)fdp->fd_dfdfile[fd]);
   1329 	}
   1330 	for (fd = NDFDFILE; fd < NDFILE; fd++) {
   1331 		KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] == NULL);
   1332 	}
   1333 	KASSERT(fdp->fd_himap == fdp->fd_dhimap);
   1334 	KASSERT(fdp->fd_lomap == fdp->fd_dlomap);
   1335 #endif	/* DIAGNOSTIC */
   1336 
   1337 	fdp->fd_refcnt = 1;
   1338 	fd_checkmaps(fdp);
   1339 
   1340 	return fdp;
   1341 }
   1342 
   1343 /*
   1344  * Initialize a file descriptor table.
   1345  */
   1346 static int
   1347 filedesc_ctor(void *arg, void *obj, int flag)
   1348 {
   1349 	filedesc_t *fdp = obj;
   1350 	fdfile_t **ffp;
   1351 	int i;
   1352 
   1353 	memset(fdp, 0, sizeof(*fdp));
   1354 	mutex_init(&fdp->fd_lock, MUTEX_DEFAULT, IPL_NONE);
   1355 	fdp->fd_lastfile = -1;
   1356 	fdp->fd_lastkqfile = -1;
   1357 	fdp->fd_dt = &fdp->fd_dtbuiltin;
   1358 	fdp->fd_dtbuiltin.dt_nfiles = NDFILE;
   1359 	fdp->fd_himap = fdp->fd_dhimap;
   1360 	fdp->fd_lomap = fdp->fd_dlomap;
   1361 
   1362 	CTASSERT(sizeof(fdp->fd_dfdfile[0]) >= sizeof(fdfile_t));
   1363 	for (i = 0, ffp = fdp->fd_dt->dt_ff; i < NDFDFILE; i++, ffp++) {
   1364 		fdfile_ctor(*ffp = (fdfile_t *)fdp->fd_dfdfile[i]);
   1365 	}
   1366 
   1367 	return 0;
   1368 }
   1369 
   1370 static void
   1371 filedesc_dtor(void *arg, void *obj)
   1372 {
   1373 	filedesc_t *fdp = obj;
   1374 	int i;
   1375 
   1376 	for (i = 0; i < NDFDFILE; i++) {
   1377 		fdfile_dtor((fdfile_t *)fdp->fd_dfdfile[i]);
   1378 	}
   1379 
   1380 	mutex_destroy(&fdp->fd_lock);
   1381 }
   1382 
   1383 /*
   1384  * Make p share curproc's filedesc structure.
   1385  */
   1386 void
   1387 fd_share(struct proc *p)
   1388 {
   1389 	filedesc_t *fdp;
   1390 
   1391 	fdp = curlwp->l_fd;
   1392 	p->p_fd = fdp;
   1393 	atomic_inc_uint(&fdp->fd_refcnt);
   1394 }
   1395 
   1396 /*
   1397  * Acquire a hold on a filedesc structure.
   1398  */
   1399 void
   1400 fd_hold(lwp_t *l)
   1401 {
   1402 	filedesc_t *fdp = l->l_fd;
   1403 
   1404 	atomic_inc_uint(&fdp->fd_refcnt);
   1405 }
   1406 
   1407 /*
   1408  * Copy a filedesc structure.
   1409  */
   1410 filedesc_t *
   1411 fd_copy(void)
   1412 {
   1413 	filedesc_t *newfdp, *fdp;
   1414 	fdfile_t *ff, **ffp, **nffp, *ff2;
   1415 	int i, j, numfiles, lastfile, newlast;
   1416 	file_t *fp;
   1417 	fdtab_t *newdt;
   1418 
   1419 	fdp = curproc->p_fd;
   1420 	newfdp = pool_cache_get(filedesc_cache, PR_WAITOK);
   1421 	newfdp->fd_refcnt = 1;
   1422 
   1423 #ifdef DIAGNOSTIC
   1424 	KASSERT(newfdp->fd_lastfile == -1);
   1425 	KASSERT(newfdp->fd_lastkqfile == -1);
   1426 	KASSERT(newfdp->fd_knhash == NULL);
   1427 	KASSERT(newfdp->fd_freefile == 0);
   1428 	KASSERT(newfdp->fd_exclose == false);
   1429 	KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
   1430 	KASSERT(newfdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1431 	for (i = 0; i < NDFDFILE; i++) {
   1432 		KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] ==
   1433 		    (fdfile_t *)&newfdp->fd_dfdfile[i]);
   1434 	}
   1435 	for (i = NDFDFILE; i < NDFILE; i++) {
   1436 		KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] == NULL);
   1437 	}
   1438 #endif	/* DIAGNOSTIC */
   1439 
   1440 	mutex_enter(&fdp->fd_lock);
   1441 	fd_checkmaps(fdp);
   1442 	numfiles = fdp->fd_dt->dt_nfiles;
   1443 	lastfile = fdp->fd_lastfile;
   1444 
   1445 	/*
   1446 	 * If the number of open files fits in the internal arrays
   1447 	 * of the open file structure, use them, otherwise allocate
   1448 	 * additional memory for the number of descriptors currently
   1449 	 * in use.
   1450 	 */
   1451 	if (lastfile < NDFILE) {
   1452 		i = NDFILE;
   1453 		newdt = newfdp->fd_dt;
   1454 		KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
   1455 	} else {
   1456 		/*
   1457 		 * Compute the smallest multiple of NDEXTENT needed
   1458 		 * for the file descriptors currently in use,
   1459 		 * allowing the table to shrink.
   1460 		 */
   1461 		i = numfiles;
   1462 		while (i >= 2 * NDEXTENT && i > lastfile * 2) {
   1463 			i /= 2;
   1464 		}
   1465 		KASSERT(i > NDFILE);
   1466 		newdt = fd_dtab_alloc(i);
   1467 		newfdp->fd_dt = newdt;
   1468 		memcpy(newdt->dt_ff, newfdp->fd_dtbuiltin.dt_ff,
   1469 		    NDFDFILE * sizeof(fdfile_t **));
   1470 		memset(newdt->dt_ff + NDFDFILE, 0,
   1471 		    (i - NDFDFILE) * sizeof(fdfile_t **));
   1472 	}
   1473 	if (NDHISLOTS(i) <= NDHISLOTS(NDFILE)) {
   1474 		newfdp->fd_himap = newfdp->fd_dhimap;
   1475 		newfdp->fd_lomap = newfdp->fd_dlomap;
   1476 	} else {
   1477 		fd_map_alloc(i, &newfdp->fd_lomap, &newfdp->fd_himap);
   1478 		KASSERT(i >= NDENTRIES * NDENTRIES);
   1479 		memset(newfdp->fd_himap, 0, NDHISLOTS(i)*sizeof(uint32_t));
   1480 		memset(newfdp->fd_lomap, 0, NDLOSLOTS(i)*sizeof(uint32_t));
   1481 	}
   1482 	newfdp->fd_freefile = fdp->fd_freefile;
   1483 	newfdp->fd_exclose = fdp->fd_exclose;
   1484 
   1485 	ffp = fdp->fd_dt->dt_ff;
   1486 	nffp = newdt->dt_ff;
   1487 	newlast = -1;
   1488 	for (i = 0; i <= lastfile; i++, ffp++, nffp++) {
   1489 		KASSERT(i >= NDFDFILE ||
   1490 		    *nffp == (fdfile_t *)newfdp->fd_dfdfile[i]);
   1491 		ff = *ffp;
   1492 		if (ff == NULL ||
   1493 		    (fp = atomic_load_consume(&ff->ff_file)) == NULL) {
   1494 			/* Descriptor unused, or descriptor half open. */
   1495 			KASSERT(!fd_isused(newfdp, i));
   1496 			continue;
   1497 		}
   1498 		if (__predict_false(fp->f_type == DTYPE_KQUEUE)) {
   1499 			/* kqueue descriptors cannot be copied. */
   1500 			if (i < newfdp->fd_freefile) {
   1501 				newfdp->fd_freefile = i;
   1502 			}
   1503 			continue;
   1504 		}
   1505 		/* It's active: add a reference to the file. */
   1506 		mutex_enter(&fp->f_lock);
   1507 		fp->f_count++;
   1508 		mutex_exit(&fp->f_lock);
   1509 
   1510 		/* Allocate an fdfile_t to represent it. */
   1511 		if (i >= NDFDFILE) {
   1512 			ff2 = kmem_alloc(sizeof(*ff2), KM_SLEEP);
   1513 			fdfile_ctor(ff2);
   1514 			*nffp = ff2;
   1515 		} else {
   1516 			ff2 = newdt->dt_ff[i];
   1517 		}
   1518 		ff2->ff_file = fp;
   1519 		ff2->ff_exclose = ff->ff_exclose;
   1520 		ff2->ff_allocated = true;
   1521 
   1522 		/* Fix up bitmaps. */
   1523 		j = i >> NDENTRYSHIFT;
   1524 		KASSERT((newfdp->fd_lomap[j] & (1U << (i & NDENTRYMASK))) == 0);
   1525 		newfdp->fd_lomap[j] |= 1U << (i & NDENTRYMASK);
   1526 		if (__predict_false(newfdp->fd_lomap[j] == ~0)) {
   1527 			KASSERT((newfdp->fd_himap[j >> NDENTRYSHIFT] &
   1528 			    (1U << (j & NDENTRYMASK))) == 0);
   1529 			newfdp->fd_himap[j >> NDENTRYSHIFT] |=
   1530 			    1U << (j & NDENTRYMASK);
   1531 		}
   1532 		newlast = i;
   1533 	}
   1534 	KASSERT(newdt->dt_ff[0] == (fdfile_t *)newfdp->fd_dfdfile[0]);
   1535 	newfdp->fd_lastfile = newlast;
   1536 	fd_checkmaps(newfdp);
   1537 	mutex_exit(&fdp->fd_lock);
   1538 
   1539 	return newfdp;
   1540 }
   1541 
   1542 /*
   1543  * Release a filedesc structure.
   1544  */
   1545 void
   1546 fd_free(void)
   1547 {
   1548 	fdfile_t *ff;
   1549 	file_t *fp;
   1550 	int fd, nf;
   1551 	fdtab_t *dt;
   1552 	lwp_t * const l = curlwp;
   1553 	filedesc_t * const fdp = l->l_fd;
   1554 	const bool noadvlock = (l->l_proc->p_flag & PK_ADVLOCK) == 0;
   1555 
   1556 	KASSERT(atomic_load_consume(&fdp->fd_dt)->dt_ff[0] ==
   1557 	    (fdfile_t *)fdp->fd_dfdfile[0]);
   1558 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1559 	KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
   1560 
   1561 	membar_release();
   1562 	if (atomic_dec_uint_nv(&fdp->fd_refcnt) > 0)
   1563 		return;
   1564 	membar_acquire();
   1565 
   1566 	/*
   1567 	 * Close any files that the process holds open.
   1568 	 */
   1569 	dt = fdp->fd_dt;
   1570 	fd_checkmaps(fdp);
   1571 #ifdef DEBUG
   1572 	fdp->fd_refcnt = -1; /* see fd_checkmaps */
   1573 #endif
   1574 	for (fd = 0, nf = dt->dt_nfiles; fd < nf; fd++) {
   1575 		ff = dt->dt_ff[fd];
   1576 		KASSERT(fd >= NDFDFILE ||
   1577 		    ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1578 		if (ff == NULL)
   1579 			continue;
   1580 		if ((fp = atomic_load_consume(&ff->ff_file)) != NULL) {
   1581 			/*
   1582 			 * Must use fd_close() here if there is
   1583 			 * a reference from kqueue or we might have posix
   1584 			 * advisory locks.
   1585 			 */
   1586 			if (__predict_true(ff->ff_refcnt == 0) &&
   1587 			    (noadvlock || fp->f_type != DTYPE_VNODE)) {
   1588 				ff->ff_file = NULL;
   1589 				ff->ff_exclose = false;
   1590 				ff->ff_allocated = false;
   1591 				closef(fp);
   1592 			} else {
   1593 				ff->ff_refcnt++;
   1594 				fd_close(fd);
   1595 			}
   1596 		}
   1597 		KASSERT(ff->ff_refcnt == 0);
   1598 		KASSERT(ff->ff_file == NULL);
   1599 		KASSERT(!ff->ff_exclose);
   1600 		KASSERT(!ff->ff_allocated);
   1601 		if (fd >= NDFDFILE) {
   1602 			cv_destroy(&ff->ff_closing);
   1603 			kmem_free(ff, sizeof(*ff));
   1604 			dt->dt_ff[fd] = NULL;
   1605 		}
   1606 	}
   1607 
   1608 	/*
   1609 	 * Clean out the descriptor table for the next user and return
   1610 	 * to the cache.
   1611 	 */
   1612 	if (__predict_false(dt != &fdp->fd_dtbuiltin)) {
   1613 		fd_dtab_free(fdp->fd_dt);
   1614 		/* Otherwise, done above. */
   1615 		memset(&fdp->fd_dtbuiltin.dt_ff[NDFDFILE], 0,
   1616 		    (NDFILE - NDFDFILE) * sizeof(fdp->fd_dtbuiltin.dt_ff[0]));
   1617 		fdp->fd_dt = &fdp->fd_dtbuiltin;
   1618 	}
   1619 	if (__predict_false(NDHISLOTS(nf) > NDHISLOTS(NDFILE))) {
   1620 		KASSERT(fdp->fd_himap != fdp->fd_dhimap);
   1621 		KASSERT(fdp->fd_lomap != fdp->fd_dlomap);
   1622 		fd_map_free(nf, fdp->fd_lomap, fdp->fd_himap);
   1623 	}
   1624 	if (__predict_false(fdp->fd_knhash != NULL)) {
   1625 		hashdone(fdp->fd_knhash, HASH_LIST, fdp->fd_knhashmask);
   1626 		fdp->fd_knhash = NULL;
   1627 		fdp->fd_knhashmask = 0;
   1628 	} else {
   1629 		KASSERT(fdp->fd_knhashmask == 0);
   1630 	}
   1631 	fdp->fd_dt = &fdp->fd_dtbuiltin;
   1632 	fdp->fd_lastkqfile = -1;
   1633 	fdp->fd_lastfile = -1;
   1634 	fdp->fd_freefile = 0;
   1635 	fdp->fd_exclose = false;
   1636 	memset(&fdp->fd_startzero, 0, sizeof(*fdp) -
   1637 	    offsetof(filedesc_t, fd_startzero));
   1638 	fdp->fd_himap = fdp->fd_dhimap;
   1639 	fdp->fd_lomap = fdp->fd_dlomap;
   1640 	KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
   1641 	KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
   1642 	KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
   1643 #ifdef DEBUG
   1644 	fdp->fd_refcnt = 0; /* see fd_checkmaps */
   1645 #endif
   1646 	fd_checkmaps(fdp);
   1647 	pool_cache_put(filedesc_cache, fdp);
   1648 }
   1649 
   1650 /*
   1651  * File Descriptor pseudo-device driver (/dev/fd/).
   1652  *
   1653  * Opening minor device N dup()s the file (if any) connected to file
   1654  * descriptor N belonging to the calling process.  Note that this driver
   1655  * consists of only the ``open()'' routine, because all subsequent
   1656  * references to this file will be direct to the other driver.
   1657  */
   1658 static int
   1659 filedescopen(dev_t dev, int mode, int type, lwp_t *l)
   1660 {
   1661 
   1662 	/*
   1663 	 * XXX Kludge: set dupfd to contain the value of the
   1664 	 * the file descriptor being sought for duplication. The error
   1665 	 * return ensures that the vnode for this device will be released
   1666 	 * by vn_open. Open will detect this special error and take the
   1667 	 * actions in fd_dupopen below. Other callers of vn_open or VOP_OPEN
   1668 	 * will simply report the error.
   1669 	 */
   1670 	l->l_dupfd = minor(dev);	/* XXX */
   1671 	return EDUPFD;
   1672 }
   1673 
   1674 /*
   1675  * Duplicate the specified descriptor to a free descriptor.
   1676  *
   1677  * old is the original fd.
   1678  * moveit is true if we should move rather than duplicate.
   1679  * flags are the open flags (converted from O_* to F*).
   1680  * newp returns the new fd on success.
   1681  *
   1682  * These two cases are produced by the EDUPFD and EMOVEFD magic
   1683  * errnos, but in the interest of removing that regrettable interface,
   1684  * vn_open has been changed to intercept them. Now vn_open returns
   1685  * either a vnode or a filehandle, and the filehandle is accompanied
   1686  * by a boolean that says whether we should dup (moveit == false) or
   1687  * move (moveit == true) the fd.
   1688  *
   1689  * The dup case is used by /dev/stderr, /proc/self/fd, and such. The
   1690  * move case is used by cloner devices that allocate a fd of their
   1691  * own (a layering violation that should go away eventually) that
   1692  * then needs to be put in the place open() expects it.
   1693  */
   1694 int
   1695 fd_dupopen(int old, bool moveit, int flags, int *newp)
   1696 {
   1697 	filedesc_t *fdp;
   1698 	fdfile_t *ff;
   1699 	file_t *fp;
   1700 	fdtab_t *dt;
   1701 	int error;
   1702 
   1703 	if ((fp = fd_getfile(old)) == NULL) {
   1704 		return EBADF;
   1705 	}
   1706 	fdp = curlwp->l_fd;
   1707 	dt = atomic_load_consume(&fdp->fd_dt);
   1708 	ff = dt->dt_ff[old];
   1709 
   1710 	/*
   1711 	 * There are two cases of interest here.
   1712 	 *
   1713 	 * 1. moveit == false (used to be the EDUPFD magic errno):
   1714 	 *    simply dup (old) to file descriptor (new) and return.
   1715 	 *
   1716 	 * 2. moveit == true (used to be the EMOVEFD magic errno):
   1717 	 *    steal away the file structure from (old) and store it in
   1718 	 *    (new).  (old) is effectively closed by this operation.
   1719 	 */
   1720 	if (moveit == false) {
   1721 		/*
   1722 		 * Check that the mode the file is being opened for is a
   1723 		 * subset of the mode of the existing descriptor.
   1724 		 */
   1725 		if (((flags & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
   1726 			error = EACCES;
   1727 			goto out;
   1728 		}
   1729 
   1730 		/* Copy it. */
   1731 		error = fd_dup(fp, 0, newp, ff->ff_exclose);
   1732 	} else {
   1733 		/* Copy it. */
   1734 		error = fd_dup(fp, 0, newp, ff->ff_exclose);
   1735 		if (error != 0) {
   1736 			goto out;
   1737 		}
   1738 
   1739 		/* Steal away the file pointer from 'old'. */
   1740 		(void)fd_close(old);
   1741 		return 0;
   1742 	}
   1743 
   1744 out:
   1745 	fd_putfile(old);
   1746 	return error;
   1747 }
   1748 
   1749 /*
   1750  * Close open files on exec.
   1751  */
   1752 void
   1753 fd_closeexec(void)
   1754 {
   1755 	proc_t *p;
   1756 	filedesc_t *fdp;
   1757 	fdfile_t *ff;
   1758 	lwp_t *l;
   1759 	fdtab_t *dt;
   1760 	int fd;
   1761 
   1762 	l = curlwp;
   1763 	p = l->l_proc;
   1764 	fdp = p->p_fd;
   1765 
   1766 	if (fdp->fd_refcnt > 1) {
   1767 		fdp = fd_copy();
   1768 		fd_free();
   1769 		p->p_fd = fdp;
   1770 		l->l_fd = fdp;
   1771 	}
   1772 	if (!fdp->fd_exclose) {
   1773 		return;
   1774 	}
   1775 	fdp->fd_exclose = false;
   1776 	dt = atomic_load_consume(&fdp->fd_dt);
   1777 
   1778 	for (fd = 0; fd <= fdp->fd_lastfile; fd++) {
   1779 		if ((ff = dt->dt_ff[fd]) == NULL) {
   1780 			KASSERT(fd >= NDFDFILE);
   1781 			continue;
   1782 		}
   1783 		KASSERT(fd >= NDFDFILE ||
   1784 		    ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
   1785 		if (ff->ff_file == NULL)
   1786 			continue;
   1787 		if (ff->ff_exclose) {
   1788 			/*
   1789 			 * We need a reference to close the file.
   1790 			 * No other threads can see the fdfile_t at
   1791 			 * this point, so don't bother locking.
   1792 			 */
   1793 			KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
   1794 			ff->ff_refcnt++;
   1795 			fd_close(fd);
   1796 		}
   1797 	}
   1798 }
   1799 
   1800 /*
   1801  * Sets descriptor owner. If the owner is a process, 'pgid'
   1802  * is set to positive value, process ID. If the owner is process group,
   1803  * 'pgid' is set to -pg_id.
   1804  */
   1805 int
   1806 fsetown(pid_t *pgid, u_long cmd, const void *data)
   1807 {
   1808 	pid_t id = *(const pid_t *)data;
   1809 	int error;
   1810 
   1811 	if (id <= INT_MIN)
   1812 		return EINVAL;
   1813 
   1814 	switch (cmd) {
   1815 	case TIOCSPGRP:
   1816 		if (id < 0)
   1817 			return EINVAL;
   1818 		id = -id;
   1819 		break;
   1820 	default:
   1821 		break;
   1822 	}
   1823 	if (id > 0) {
   1824 		mutex_enter(&proc_lock);
   1825 		error = proc_find(id) ? 0 : ESRCH;
   1826 		mutex_exit(&proc_lock);
   1827 	} else if (id < 0) {
   1828 		error = pgid_in_session(curproc, -id);
   1829 	} else {
   1830 		error = 0;
   1831 	}
   1832 	if (!error) {
   1833 		*pgid = id;
   1834 	}
   1835 	return error;
   1836 }
   1837 
   1838 void
   1839 fd_set_exclose(struct lwp *l, int fd, bool exclose)
   1840 {
   1841 	filedesc_t *fdp = l->l_fd;
   1842 	fdfile_t *ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
   1843 
   1844 	ff->ff_exclose = exclose;
   1845 	if (exclose)
   1846 		fdp->fd_exclose = true;
   1847 }
   1848 
   1849 /*
   1850  * Return descriptor owner information. If the value is positive,
   1851  * it's process ID. If it's negative, it's process group ID and
   1852  * needs the sign removed before use.
   1853  */
   1854 int
   1855 fgetown(pid_t pgid, u_long cmd, void *data)
   1856 {
   1857 
   1858 	switch (cmd) {
   1859 	case TIOCGPGRP:
   1860 		KASSERT(pgid > INT_MIN);
   1861 		*(int *)data = -pgid;
   1862 		break;
   1863 	default:
   1864 		*(int *)data = pgid;
   1865 		break;
   1866 	}
   1867 	return 0;
   1868 }
   1869 
   1870 /*
   1871  * Send signal to descriptor owner, either process or process group.
   1872  */
   1873 void
   1874 fownsignal(pid_t pgid, int signo, int code, int band, void *fdescdata)
   1875 {
   1876 	ksiginfo_t ksi;
   1877 
   1878 	KASSERT(!cpu_intr_p());
   1879 
   1880 	if (pgid == 0) {
   1881 		return;
   1882 	}
   1883 
   1884 	KSI_INIT(&ksi);
   1885 	ksi.ksi_signo = signo;
   1886 	ksi.ksi_code = code;
   1887 	ksi.ksi_band = band;
   1888 
   1889 	mutex_enter(&proc_lock);
   1890 	if (pgid > 0) {
   1891 		struct proc *p1;
   1892 
   1893 		p1 = proc_find(pgid);
   1894 		if (p1 != NULL) {
   1895 			kpsignal(p1, &ksi, fdescdata);
   1896 		}
   1897 	} else {
   1898 		struct pgrp *pgrp;
   1899 
   1900 		KASSERT(pgid < 0 && pgid > INT_MIN);
   1901 		pgrp = pgrp_find(-pgid);
   1902 		if (pgrp != NULL) {
   1903 			kpgsignal(pgrp, &ksi, fdescdata, 0);
   1904 		}
   1905 	}
   1906 	mutex_exit(&proc_lock);
   1907 }
   1908 
   1909 int
   1910 fd_clone(file_t *fp, unsigned fd, int flag, const struct fileops *fops,
   1911 	 void *data)
   1912 {
   1913 	fdfile_t *ff;
   1914 	filedesc_t *fdp;
   1915 
   1916 	fp->f_flag = flag & FMASK;
   1917 	fdp = curproc->p_fd;
   1918 	ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
   1919 	KASSERT(ff != NULL);
   1920 	ff->ff_exclose = (flag & O_CLOEXEC) != 0;
   1921 	fp->f_type = DTYPE_MISC;
   1922 	fp->f_ops = fops;
   1923 	fp->f_data = data;
   1924 	curlwp->l_dupfd = fd;
   1925 	fd_affix(curproc, fp, fd);
   1926 
   1927 	return EMOVEFD;
   1928 }
   1929 
   1930 int
   1931 fnullop_fcntl(file_t *fp, u_int cmd, void *data)
   1932 {
   1933 
   1934 	if (cmd == F_SETFL)
   1935 		return 0;
   1936 
   1937 	return EOPNOTSUPP;
   1938 }
   1939 
   1940 int
   1941 fnullop_poll(file_t *fp, int which)
   1942 {
   1943 
   1944 	return 0;
   1945 }
   1946 
   1947 int
   1948 fnullop_kqfilter(file_t *fp, struct knote *kn)
   1949 {
   1950 
   1951 	return EOPNOTSUPP;
   1952 }
   1953 
   1954 void
   1955 fnullop_restart(file_t *fp)
   1956 {
   1957 
   1958 }
   1959 
   1960 int
   1961 fbadop_read(file_t *fp, off_t *offset, struct uio *uio,
   1962 	    kauth_cred_t cred, int flags)
   1963 {
   1964 
   1965 	return EOPNOTSUPP;
   1966 }
   1967 
   1968 int
   1969 fbadop_write(file_t *fp, off_t *offset, struct uio *uio,
   1970 	     kauth_cred_t cred, int flags)
   1971 {
   1972 
   1973 	return EOPNOTSUPP;
   1974 }
   1975 
   1976 int
   1977 fbadop_ioctl(file_t *fp, u_long com, void *data)
   1978 {
   1979 
   1980 	return EOPNOTSUPP;
   1981 }
   1982 
   1983 int
   1984 fbadop_stat(file_t *fp, struct stat *sb)
   1985 {
   1986 
   1987 	return EOPNOTSUPP;
   1988 }
   1989 
   1990 int
   1991 fbadop_close(file_t *fp)
   1992 {
   1993 
   1994 	return EOPNOTSUPP;
   1995 }
   1996 
   1997 /*
   1998  * sysctl routines pertaining to file descriptors
   1999  */
   2000 
   2001 /* Initialized in sysctl_init() for now... */
   2002 extern kmutex_t sysctl_file_marker_lock;
   2003 static u_int sysctl_file_marker = 1;
   2004 
   2005 /*
   2006  * Expects to be called with proc_lock and sysctl_file_marker_lock locked.
   2007  */
   2008 static void
   2009 sysctl_file_marker_reset(void)
   2010 {
   2011 	struct proc *p;
   2012 
   2013 	PROCLIST_FOREACH(p, &allproc) {
   2014 		struct filedesc *fd = p->p_fd;
   2015 		fdtab_t *dt;
   2016 		u_int i;
   2017 
   2018 		mutex_enter(&fd->fd_lock);
   2019 		dt = fd->fd_dt;
   2020 		for (i = 0; i < dt->dt_nfiles; i++) {
   2021 			struct file *fp;
   2022 			fdfile_t *ff;
   2023 
   2024 			if ((ff = dt->dt_ff[i]) == NULL) {
   2025 				continue;
   2026 			}
   2027 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
   2028 				continue;
   2029 			}
   2030 			fp->f_marker = 0;
   2031 		}
   2032 		mutex_exit(&fd->fd_lock);
   2033 	}
   2034 }
   2035 
   2036 /*
   2037  * sysctl helper routine for kern.file pseudo-subtree.
   2038  */
   2039 static int
   2040 sysctl_kern_file(SYSCTLFN_ARGS)
   2041 {
   2042 	const bool allowaddr = get_expose_address(curproc);
   2043 	struct filelist flist;
   2044 	int error;
   2045 	size_t buflen;
   2046 	struct file *fp, fbuf;
   2047 	char *start, *where;
   2048 	struct proc *p;
   2049 
   2050 	start = where = oldp;
   2051 	buflen = *oldlenp;
   2052 
   2053 	if (where == NULL) {
   2054 		/*
   2055 		 * overestimate by 10 files
   2056 		 */
   2057 		*oldlenp = sizeof(filehead) + (nfiles + 10) *
   2058 		    sizeof(struct file);
   2059 		return 0;
   2060 	}
   2061 
   2062 	/*
   2063 	 * first sysctl_copyout filehead
   2064 	 */
   2065 	if (buflen < sizeof(filehead)) {
   2066 		*oldlenp = 0;
   2067 		return 0;
   2068 	}
   2069 	sysctl_unlock();
   2070 	if (allowaddr) {
   2071 		memcpy(&flist, &filehead, sizeof(flist));
   2072 	} else {
   2073 		memset(&flist, 0, sizeof(flist));
   2074 	}
   2075 	error = sysctl_copyout(l, &flist, where, sizeof(flist));
   2076 	if (error) {
   2077 		sysctl_relock();
   2078 		return error;
   2079 	}
   2080 	buflen -= sizeof(flist);
   2081 	where += sizeof(flist);
   2082 
   2083 	/*
   2084 	 * followed by an array of file structures
   2085 	 */
   2086 	mutex_enter(&sysctl_file_marker_lock);
   2087 	mutex_enter(&proc_lock);
   2088 	PROCLIST_FOREACH(p, &allproc) {
   2089 		struct filedesc *fd;
   2090 		fdtab_t *dt;
   2091 		u_int i;
   2092 
   2093 		if (p->p_stat == SIDL) {
   2094 			/* skip embryonic processes */
   2095 			continue;
   2096 		}
   2097 		mutex_enter(p->p_lock);
   2098 		error = kauth_authorize_process(l->l_cred,
   2099 		    KAUTH_PROCESS_CANSEE, p,
   2100 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
   2101 		    NULL, NULL);
   2102 		mutex_exit(p->p_lock);
   2103 		if (error != 0) {
   2104 			/*
   2105 			 * Don't leak kauth retval if we're silently
   2106 			 * skipping this entry.
   2107 			 */
   2108 			error = 0;
   2109 			continue;
   2110 		}
   2111 
   2112 		/*
   2113 		 * Grab a hold on the process.
   2114 		 */
   2115 		if (!rw_tryenter(&p->p_reflock, RW_READER)) {
   2116 			continue;
   2117 		}
   2118 		mutex_exit(&proc_lock);
   2119 
   2120 		fd = p->p_fd;
   2121 		mutex_enter(&fd->fd_lock);
   2122 		dt = fd->fd_dt;
   2123 		for (i = 0; i < dt->dt_nfiles; i++) {
   2124 			fdfile_t *ff;
   2125 
   2126 			if ((ff = dt->dt_ff[i]) == NULL) {
   2127 				continue;
   2128 			}
   2129 			if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
   2130 				continue;
   2131 			}
   2132 
   2133 			mutex_enter(&fp->f_lock);
   2134 
   2135 			if ((fp->f_count == 0) ||
   2136 			    (fp->f_marker == sysctl_file_marker)) {
   2137 				mutex_exit(&fp->f_lock);
   2138 				continue;
   2139 			}
   2140 
   2141 			/* Check that we have enough space. */
   2142 			if (buflen < sizeof(struct file)) {
   2143 				*oldlenp = where - start;
   2144 				mutex_exit(&fp->f_lock);
   2145 				error = ENOMEM;
   2146 				break;
   2147 			}
   2148 
   2149 			fill_file(&fbuf, fp);
   2150 			mutex_exit(&fp->f_lock);
   2151 			error = sysctl_copyout(l, &fbuf, where, sizeof(fbuf));
   2152 			if (error) {
   2153 				break;
   2154 			}
   2155 			buflen -= sizeof(struct file);
   2156 			where += sizeof(struct file);
   2157 
   2158 			fp->f_marker = sysctl_file_marker;
   2159 		}
   2160 		mutex_exit(&fd->fd_lock);
   2161 
   2162 		/*
   2163 		 * Release reference to process.
   2164 		 */
   2165 		mutex_enter(&proc_lock);
   2166 		rw_exit(&p->p_reflock);
   2167 
   2168 		if (error)
   2169 			break;
   2170 	}
   2171 
   2172 	sysctl_file_marker++;
   2173 	/* Reset all markers if wrapped. */
   2174 	if (sysctl_file_marker == 0) {
   2175 		sysctl_file_marker_reset();
   2176 		sysctl_file_marker++;
   2177 	}
   2178 
   2179 	mutex_exit(&proc_lock);
   2180 	mutex_exit(&sysctl_file_marker_lock);
   2181 
   2182 	*oldlenp = where - start;
   2183 	sysctl_relock();
   2184 	return error;
   2185 }
   2186 
   2187 /*
   2188  * sysctl helper function for kern.file2
   2189  */
   2190 static int
   2191 sysctl_kern_file2(SYSCTLFN_ARGS)
   2192 {
   2193 	struct proc *p;
   2194 	struct file *fp;
   2195 	struct filedesc *fd;
   2196 	struct kinfo_file kf;
   2197 	char *dp;
   2198 	u_int i, op;
   2199 	size_t len, needed, elem_size, out_size;
   2200 	int error, arg, elem_count;
   2201 	fdfile_t *ff;
   2202 	fdtab_t *dt;
   2203 
   2204 	if (namelen == 1 && name[0] == CTL_QUERY)
   2205 		return sysctl_query(SYSCTLFN_CALL(rnode));
   2206 
   2207 	if (namelen != 4)
   2208 		return EINVAL;
   2209 
   2210 	error = 0;
   2211 	dp = oldp;
   2212 	len = (oldp != NULL) ? *oldlenp : 0;
   2213 	op = name[0];
   2214 	arg = name[1];
   2215 	elem_size = name[2];
   2216 	elem_count = name[3];
   2217 	out_size = MIN(sizeof(kf), elem_size);
   2218 	needed = 0;
   2219 
   2220 	if (elem_size < 1 || elem_count < 0)
   2221 		return EINVAL;
   2222 
   2223 	switch (op) {
   2224 	case KERN_FILE_BYFILE:
   2225 	case KERN_FILE_BYPID:
   2226 		/*
   2227 		 * We're traversing the process list in both cases; the BYFILE
   2228 		 * case does additional work of keeping track of files already
   2229 		 * looked at.
   2230 		 */
   2231 
   2232 		/* doesn't use arg so it must be zero */
   2233 		if ((op == KERN_FILE_BYFILE) && (arg != 0))
   2234 			return EINVAL;
   2235 
   2236 		if ((op == KERN_FILE_BYPID) && (arg < -1))
   2237 			/* -1 means all processes */
   2238 			return EINVAL;
   2239 
   2240 		sysctl_unlock();
   2241 		if (op == KERN_FILE_BYFILE)
   2242 			mutex_enter(&sysctl_file_marker_lock);
   2243 		mutex_enter(&proc_lock);
   2244 		PROCLIST_FOREACH(p, &allproc) {
   2245 			if (p->p_stat == SIDL) {
   2246 				/* skip embryonic processes */
   2247 				continue;
   2248 			}
   2249 			if (arg > 0 && p->p_pid != arg) {
   2250 				/* pick only the one we want */
   2251 				/* XXX want 0 to mean "kernel files" */
   2252 				continue;
   2253 			}
   2254 			mutex_enter(p->p_lock);
   2255 			error = kauth_authorize_process(l->l_cred,
   2256 			    KAUTH_PROCESS_CANSEE, p,
   2257 			    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
   2258 			    NULL, NULL);
   2259 			mutex_exit(p->p_lock);
   2260 			if (error != 0) {
   2261 				/*
   2262 				 * Don't leak kauth retval if we're silently
   2263 				 * skipping this entry.
   2264 				 */
   2265 				error = 0;
   2266 				continue;
   2267 			}
   2268 
   2269 			/*
   2270 			 * Grab a hold on the process.
   2271 			 */
   2272 			if (!rw_tryenter(&p->p_reflock, RW_READER)) {
   2273 				continue;
   2274 			}
   2275 			mutex_exit(&proc_lock);
   2276 
   2277 			fd = p->p_fd;
   2278 			mutex_enter(&fd->fd_lock);
   2279 			dt = fd->fd_dt;
   2280 			for (i = 0; i < dt->dt_nfiles; i++) {
   2281 				if ((ff = dt->dt_ff[i]) == NULL) {
   2282 					continue;
   2283 				}
   2284 				if ((fp = atomic_load_consume(&ff->ff_file)) ==
   2285 				    NULL) {
   2286 					continue;
   2287 				}
   2288 
   2289 				if ((op == KERN_FILE_BYFILE) &&
   2290 				    (fp->f_marker == sysctl_file_marker)) {
   2291 					continue;
   2292 				}
   2293 				if (len >= elem_size && elem_count > 0) {
   2294 					mutex_enter(&fp->f_lock);
   2295 					fill_file2(&kf, fp, ff, i, p->p_pid);
   2296 					mutex_exit(&fp->f_lock);
   2297 					mutex_exit(&fd->fd_lock);
   2298 					error = sysctl_copyout(l,
   2299 					    &kf, dp, out_size);
   2300 					mutex_enter(&fd->fd_lock);
   2301 					if (error)
   2302 						break;
   2303 					dp += elem_size;
   2304 					len -= elem_size;
   2305 				}
   2306 				if (op == KERN_FILE_BYFILE)
   2307 					fp->f_marker = sysctl_file_marker;
   2308 				needed += elem_size;
   2309 				if (elem_count > 0 && elem_count != INT_MAX)
   2310 					elem_count--;
   2311 			}
   2312 			mutex_exit(&fd->fd_lock);
   2313 
   2314 			/*
   2315 			 * Release reference to process.
   2316 			 */
   2317 			mutex_enter(&proc_lock);
   2318 			rw_exit(&p->p_reflock);
   2319 		}
   2320 		if (op == KERN_FILE_BYFILE) {
   2321 			sysctl_file_marker++;
   2322 
   2323 			/* Reset all markers if wrapped. */
   2324 			if (sysctl_file_marker == 0) {
   2325 				sysctl_file_marker_reset();
   2326 				sysctl_file_marker++;
   2327 			}
   2328 		}
   2329 		mutex_exit(&proc_lock);
   2330 		if (op == KERN_FILE_BYFILE)
   2331 			mutex_exit(&sysctl_file_marker_lock);
   2332 		sysctl_relock();
   2333 		break;
   2334 	default:
   2335 		return EINVAL;
   2336 	}
   2337 
   2338 	if (oldp == NULL)
   2339 		needed += KERN_FILESLOP * elem_size;
   2340 	*oldlenp = needed;
   2341 
   2342 	return error;
   2343 }
   2344 
   2345 static void
   2346 fill_file(struct file *fp, const struct file *fpsrc)
   2347 {
   2348 	const bool allowaddr = get_expose_address(curproc);
   2349 
   2350 	memset(fp, 0, sizeof(*fp));
   2351 
   2352 	fp->f_offset = fpsrc->f_offset;
   2353 	COND_SET_PTR(fp->f_cred, fpsrc->f_cred, allowaddr);
   2354 	COND_SET_CPTR(fp->f_ops, fpsrc->f_ops, allowaddr);
   2355 	COND_SET_STRUCT(fp->f_undata, fpsrc->f_undata, allowaddr);
   2356 	COND_SET_STRUCT(fp->f_list, fpsrc->f_list, allowaddr);
   2357 	fp->f_flag = fpsrc->f_flag;
   2358 	fp->f_marker = fpsrc->f_marker;
   2359 	fp->f_type = fpsrc->f_type;
   2360 	fp->f_advice = fpsrc->f_advice;
   2361 	fp->f_count = fpsrc->f_count;
   2362 	fp->f_msgcount = fpsrc->f_msgcount;
   2363 	fp->f_unpcount = fpsrc->f_unpcount;
   2364 	COND_SET_STRUCT(fp->f_unplist, fpsrc->f_unplist, allowaddr);
   2365 }
   2366 
   2367 static void
   2368 fill_file2(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
   2369 	  int i, pid_t pid)
   2370 {
   2371 	const bool allowaddr = get_expose_address(curproc);
   2372 
   2373 	memset(kp, 0, sizeof(*kp));
   2374 
   2375 	COND_SET_VALUE(kp->ki_fileaddr, PTRTOUINT64(fp), allowaddr);
   2376 	kp->ki_flag =		fp->f_flag;
   2377 	kp->ki_iflags =		0;
   2378 	kp->ki_ftype =		fp->f_type;
   2379 	kp->ki_count =		fp->f_count;
   2380 	kp->ki_msgcount =	fp->f_msgcount;
   2381 	COND_SET_VALUE(kp->ki_fucred, PTRTOUINT64(fp->f_cred), allowaddr);
   2382 	kp->ki_fuid =		kauth_cred_geteuid(fp->f_cred);
   2383 	kp->ki_fgid =		kauth_cred_getegid(fp->f_cred);
   2384 	COND_SET_VALUE(kp->ki_fops, PTRTOUINT64(fp->f_ops), allowaddr);
   2385 	kp->ki_foffset =	fp->f_offset;
   2386 	COND_SET_VALUE(kp->ki_fdata, PTRTOUINT64(fp->f_data), allowaddr);
   2387 
   2388 	/* vnode information to glue this file to something */
   2389 	if (fp->f_type == DTYPE_VNODE) {
   2390 		struct vnode *vp = fp->f_vnode;
   2391 
   2392 		COND_SET_VALUE(kp->ki_vun, PTRTOUINT64(vp->v_un.vu_socket),
   2393 		    allowaddr);
   2394 		kp->ki_vsize =	vp->v_size;
   2395 		kp->ki_vtype =	vp->v_type;
   2396 		kp->ki_vtag =	vp->v_tag;
   2397 		COND_SET_VALUE(kp->ki_vdata, PTRTOUINT64(vp->v_data),
   2398 		    allowaddr);
   2399 	}
   2400 
   2401 	/* process information when retrieved via KERN_FILE_BYPID */
   2402 	if (ff != NULL) {
   2403 		kp->ki_pid =		pid;
   2404 		kp->ki_fd =		i;
   2405 		kp->ki_ofileflags =	ff->ff_exclose;
   2406 		kp->ki_usecount =	ff->ff_refcnt;
   2407 	}
   2408 }
   2409