kern_descrip.c revision 1.264 1 /* $NetBSD: kern_descrip.c,v 1.264 2024/11/10 00:11:43 kre Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009, 2023 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_descrip.c 8.8 (Berkeley) 2/14/95
66 */
67
68 /*
69 * File descriptor management.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: kern_descrip.c,v 1.264 2024/11/10 00:11:43 kre Exp $");
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/file.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/stat.h>
84 #include <sys/ioctl.h>
85 #include <sys/fcntl.h>
86 #include <sys/pool.h>
87 #include <sys/unistd.h>
88 #include <sys/resourcevar.h>
89 #include <sys/conf.h>
90 #include <sys/event.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/syscallargs.h>
94 #include <sys/cpu.h>
95 #include <sys/kmem.h>
96 #include <sys/vnode.h>
97 #include <sys/sysctl.h>
98 #include <sys/ktrace.h>
99
100 /*
101 * A list (head) of open files, counter, and lock protecting them.
102 */
103 struct filelist filehead __cacheline_aligned;
104 static u_int nfiles __cacheline_aligned;
105 kmutex_t filelist_lock __cacheline_aligned;
106
107 static pool_cache_t filedesc_cache __read_mostly;
108 static pool_cache_t file_cache __read_mostly;
109
110 static int file_ctor(void *, void *, int);
111 static void file_dtor(void *, void *);
112 static void fdfile_ctor(fdfile_t *);
113 static void fdfile_dtor(fdfile_t *);
114 static int filedesc_ctor(void *, void *, int);
115 static void filedesc_dtor(void *, void *);
116 static int filedescopen(dev_t, int, int, lwp_t *);
117
118 static int sysctl_kern_file(SYSCTLFN_PROTO);
119 static int sysctl_kern_file2(SYSCTLFN_PROTO);
120 static void fill_file(struct file *, const struct file *);
121 static void fill_file2(struct kinfo_file *, const file_t *, const fdfile_t *,
122 int, pid_t);
123
124 const struct cdevsw filedesc_cdevsw = {
125 .d_open = filedescopen,
126 .d_close = noclose,
127 .d_read = noread,
128 .d_write = nowrite,
129 .d_ioctl = noioctl,
130 .d_stop = nostop,
131 .d_tty = notty,
132 .d_poll = nopoll,
133 .d_mmap = nommap,
134 .d_kqfilter = nokqfilter,
135 .d_discard = nodiscard,
136 .d_flag = D_OTHER | D_MPSAFE
137 };
138
139 /* For ease of reading. */
140 __strong_alias(fd_putvnode,fd_putfile)
141 __strong_alias(fd_putsock,fd_putfile)
142
143 /*
144 * Initialize the descriptor system.
145 */
146 void
147 fd_sys_init(void)
148 {
149 static struct sysctllog *clog;
150
151 mutex_init(&filelist_lock, MUTEX_DEFAULT, IPL_NONE);
152
153 LIST_INIT(&filehead);
154
155 file_cache = pool_cache_init(sizeof(file_t), coherency_unit, 0,
156 0, "file", NULL, IPL_NONE, file_ctor, file_dtor, NULL);
157 KASSERT(file_cache != NULL);
158
159 filedesc_cache = pool_cache_init(sizeof(filedesc_t), coherency_unit,
160 0, 0, "filedesc", NULL, IPL_NONE, filedesc_ctor, filedesc_dtor,
161 NULL);
162 KASSERT(filedesc_cache != NULL);
163
164 sysctl_createv(&clog, 0, NULL, NULL,
165 CTLFLAG_PERMANENT,
166 CTLTYPE_STRUCT, "file",
167 SYSCTL_DESCR("System open file table"),
168 sysctl_kern_file, 0, NULL, 0,
169 CTL_KERN, KERN_FILE, CTL_EOL);
170 sysctl_createv(&clog, 0, NULL, NULL,
171 CTLFLAG_PERMANENT,
172 CTLTYPE_STRUCT, "file2",
173 SYSCTL_DESCR("System open file table"),
174 sysctl_kern_file2, 0, NULL, 0,
175 CTL_KERN, KERN_FILE2, CTL_EOL);
176 }
177
178 static bool
179 fd_isused(filedesc_t *fdp, unsigned fd)
180 {
181 u_int off = fd >> NDENTRYSHIFT;
182
183 KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
184
185 return (fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0;
186 }
187
188 /*
189 * Verify that the bitmaps match the descriptor table.
190 */
191 static inline void
192 fd_checkmaps(filedesc_t *fdp)
193 {
194 #ifdef DEBUG
195 fdtab_t *dt;
196 u_int fd;
197
198 KASSERT(fdp->fd_refcnt <= 1 || mutex_owned(&fdp->fd_lock));
199
200 dt = fdp->fd_dt;
201 if (fdp->fd_refcnt == -1) {
202 /*
203 * fd_free tears down the table without maintaining its bitmap.
204 */
205 return;
206 }
207 for (fd = 0; fd < dt->dt_nfiles; fd++) {
208 if (fd < NDFDFILE) {
209 KASSERT(dt->dt_ff[fd] ==
210 (fdfile_t *)fdp->fd_dfdfile[fd]);
211 }
212 if (dt->dt_ff[fd] == NULL) {
213 KASSERT(!fd_isused(fdp, fd));
214 } else if (dt->dt_ff[fd]->ff_file != NULL) {
215 KASSERT(fd_isused(fdp, fd));
216 }
217 }
218 #endif
219 }
220
221 static int
222 fd_next_zero(filedesc_t *fdp, uint32_t *bitmap, int want, u_int bits)
223 {
224 int i, off, maxoff;
225 uint32_t sub;
226
227 KASSERT(mutex_owned(&fdp->fd_lock));
228
229 fd_checkmaps(fdp);
230
231 if (want > bits)
232 return -1;
233
234 off = want >> NDENTRYSHIFT;
235 i = want & NDENTRYMASK;
236 if (i) {
237 sub = bitmap[off] | ((u_int)~0 >> (NDENTRIES - i));
238 if (sub != ~0)
239 goto found;
240 off++;
241 }
242
243 maxoff = NDLOSLOTS(bits);
244 while (off < maxoff) {
245 if ((sub = bitmap[off]) != ~0)
246 goto found;
247 off++;
248 }
249
250 return -1;
251
252 found:
253 return (off << NDENTRYSHIFT) + ffs(~sub) - 1;
254 }
255
256 static int
257 fd_last_set(filedesc_t *fd, int last)
258 {
259 int off, i;
260 fdfile_t **ff = fd->fd_dt->dt_ff;
261 uint32_t *bitmap = fd->fd_lomap;
262
263 KASSERT(mutex_owned(&fd->fd_lock));
264
265 fd_checkmaps(fd);
266
267 off = (last - 1) >> NDENTRYSHIFT;
268
269 while (off >= 0 && !bitmap[off])
270 off--;
271
272 if (off < 0)
273 return -1;
274
275 i = ((off + 1) << NDENTRYSHIFT) - 1;
276 if (i >= last)
277 i = last - 1;
278
279 /* XXX should use bitmap */
280 while (i > 0 && (ff[i] == NULL || !ff[i]->ff_allocated))
281 i--;
282
283 return i;
284 }
285
286 static inline void
287 fd_used(filedesc_t *fdp, unsigned fd)
288 {
289 u_int off = fd >> NDENTRYSHIFT;
290 fdfile_t *ff;
291
292 ff = fdp->fd_dt->dt_ff[fd];
293
294 KASSERT(mutex_owned(&fdp->fd_lock));
295 KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) == 0);
296 KASSERT(ff != NULL);
297 KASSERT(ff->ff_file == NULL);
298 KASSERT(!ff->ff_allocated);
299
300 ff->ff_allocated = true;
301 fdp->fd_lomap[off] |= 1U << (fd & NDENTRYMASK);
302 if (__predict_false(fdp->fd_lomap[off] == ~0)) {
303 KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
304 (1U << (off & NDENTRYMASK))) == 0);
305 fdp->fd_himap[off >> NDENTRYSHIFT] |= 1U << (off & NDENTRYMASK);
306 }
307
308 if ((int)fd > fdp->fd_lastfile) {
309 fdp->fd_lastfile = fd;
310 }
311
312 fd_checkmaps(fdp);
313 }
314
315 static inline void
316 fd_unused(filedesc_t *fdp, unsigned fd)
317 {
318 u_int off = fd >> NDENTRYSHIFT;
319 fdfile_t *ff;
320
321 ff = fdp->fd_dt->dt_ff[fd];
322
323 KASSERT(mutex_owned(&fdp->fd_lock));
324 KASSERT(ff != NULL);
325 KASSERT(ff->ff_file == NULL);
326 KASSERT(ff->ff_allocated);
327
328 if (fd < fdp->fd_freefile) {
329 fdp->fd_freefile = fd;
330 }
331
332 if (fdp->fd_lomap[off] == ~0) {
333 KASSERT((fdp->fd_himap[off >> NDENTRYSHIFT] &
334 (1U << (off & NDENTRYMASK))) != 0);
335 fdp->fd_himap[off >> NDENTRYSHIFT] &=
336 ~(1U << (off & NDENTRYMASK));
337 }
338 KASSERT((fdp->fd_lomap[off] & (1U << (fd & NDENTRYMASK))) != 0);
339 fdp->fd_lomap[off] &= ~(1U << (fd & NDENTRYMASK));
340 ff->ff_allocated = false;
341
342 KASSERT(fd <= fdp->fd_lastfile);
343 if (fd == fdp->fd_lastfile) {
344 fdp->fd_lastfile = fd_last_set(fdp, fd);
345 }
346 fd_checkmaps(fdp);
347 }
348
349 /*
350 * Look up the file structure corresponding to a file descriptor
351 * and return the file, holding a reference on the descriptor.
352 */
353 file_t *
354 fd_getfile(unsigned fd)
355 {
356 filedesc_t *fdp;
357 fdfile_t *ff;
358 file_t *fp;
359 fdtab_t *dt;
360
361 /*
362 * Look up the fdfile structure representing this descriptor.
363 * We are doing this unlocked. See fd_tryexpand().
364 */
365 fdp = curlwp->l_fd;
366 dt = atomic_load_consume(&fdp->fd_dt);
367 if (__predict_false(fd >= dt->dt_nfiles)) {
368 return NULL;
369 }
370 ff = dt->dt_ff[fd];
371 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
372 if (__predict_false(ff == NULL)) {
373 return NULL;
374 }
375
376 /* Now get a reference to the descriptor. */
377 if (fdp->fd_refcnt == 1) {
378 /*
379 * Single threaded: don't need to worry about concurrent
380 * access (other than earlier calls to kqueue, which may
381 * hold a reference to the descriptor).
382 */
383 ff->ff_refcnt++;
384 } else {
385 /*
386 * Multi threaded: issue a memory barrier to ensure that we
387 * acquire the file pointer _after_ adding a reference. If
388 * no memory barrier, we could fetch a stale pointer.
389 *
390 * In particular, we must coordinate the following four
391 * memory operations:
392 *
393 * A. fd_close store ff->ff_file = NULL
394 * B. fd_close refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
395 * C. fd_getfile atomic_inc_uint(&ff->ff_refcnt)
396 * D. fd_getfile load fp = ff->ff_file
397 *
398 * If the order is D;A;B;C:
399 *
400 * 1. D: fp = ff->ff_file
401 * 2. A: ff->ff_file = NULL
402 * 3. B: refcnt = atomic_dec_uint_nv(&ff->ff_refcnt)
403 * 4. C: atomic_inc_uint(&ff->ff_refcnt)
404 *
405 * then fd_close determines that there are no more
406 * references and decides to free fp immediately, at
407 * the same that fd_getfile ends up with an fp that's
408 * about to be freed. *boom*
409 *
410 * By making B a release operation in fd_close, and by
411 * making C an acquire operation in fd_getfile, since
412 * they are atomic operations on the same object, which
413 * has a total modification order, we guarantee either:
414 *
415 * - B happens before C. Then since A is
416 * sequenced before B in fd_close, and C is
417 * sequenced before D in fd_getfile, we
418 * guarantee A happens before D, so fd_getfile
419 * reads a null fp and safely fails.
420 *
421 * - C happens before B. Then fd_getfile may read
422 * null or nonnull, but either way, fd_close
423 * will safely wait for references to drain.
424 */
425 atomic_inc_uint(&ff->ff_refcnt);
426 membar_acquire();
427 }
428
429 /*
430 * If the file is not open or is being closed then put the
431 * reference back.
432 */
433 fp = atomic_load_consume(&ff->ff_file);
434 if (__predict_true(fp != NULL)) {
435 return fp;
436 }
437 fd_putfile(fd);
438 return NULL;
439 }
440
441 /*
442 * Release a reference to a file descriptor acquired with fd_getfile().
443 */
444 void
445 fd_putfile(unsigned fd)
446 {
447 filedesc_t *fdp;
448 fdfile_t *ff;
449 u_int u, v;
450
451 fdp = curlwp->l_fd;
452 KASSERT(fd < atomic_load_consume(&fdp->fd_dt)->dt_nfiles);
453 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
454
455 KASSERT(ff != NULL);
456 KASSERT((ff->ff_refcnt & FR_MASK) > 0);
457 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
458
459 if (fdp->fd_refcnt == 1) {
460 /*
461 * Single threaded: don't need to worry about concurrent
462 * access (other than earlier calls to kqueue, which may
463 * hold a reference to the descriptor).
464 */
465 if (__predict_false((ff->ff_refcnt & FR_CLOSING) != 0)) {
466 fd_close(fd);
467 return;
468 }
469 ff->ff_refcnt--;
470 return;
471 }
472
473 /*
474 * Ensure that any use of the file is complete and globally
475 * visible before dropping the final reference. If no membar,
476 * the current CPU could still access memory associated with
477 * the file after it has been freed or recycled by another
478 * CPU.
479 */
480 membar_release();
481
482 /*
483 * Be optimistic and start out with the assumption that no other
484 * threads are trying to close the descriptor. If the CAS fails,
485 * we lost a race and/or it's being closed.
486 */
487 for (u = ff->ff_refcnt & FR_MASK;; u = v) {
488 v = atomic_cas_uint(&ff->ff_refcnt, u, u - 1);
489 if (__predict_true(u == v)) {
490 return;
491 }
492 if (__predict_false((v & FR_CLOSING) != 0)) {
493 break;
494 }
495 }
496
497 /* Another thread is waiting to close the file: join it. */
498 (void)fd_close(fd);
499 }
500
501 /*
502 * Convenience wrapper around fd_getfile() that returns reference
503 * to a vnode.
504 */
505 int
506 fd_getvnode(unsigned fd, file_t **fpp)
507 {
508 vnode_t *vp;
509 file_t *fp;
510
511 fp = fd_getfile(fd);
512 if (__predict_false(fp == NULL)) {
513 return EBADF;
514 }
515 if (__predict_false(fp->f_type != DTYPE_VNODE)) {
516 fd_putfile(fd);
517 return EINVAL;
518 }
519 vp = fp->f_vnode;
520 if (__predict_false(vp->v_type == VBAD)) {
521 /* XXX Is this case really necessary? */
522 fd_putfile(fd);
523 return EBADF;
524 }
525 *fpp = fp;
526 return 0;
527 }
528
529 /*
530 * Convenience wrapper around fd_getfile() that returns reference
531 * to a socket.
532 */
533 int
534 fd_getsock1(unsigned fd, struct socket **sop, file_t **fp)
535 {
536 *fp = fd_getfile(fd);
537 if (__predict_false(*fp == NULL)) {
538 return EBADF;
539 }
540 if (__predict_false((*fp)->f_type != DTYPE_SOCKET)) {
541 fd_putfile(fd);
542 return ENOTSOCK;
543 }
544 *sop = (*fp)->f_socket;
545 return 0;
546 }
547
548 int
549 fd_getsock(unsigned fd, struct socket **sop)
550 {
551 file_t *fp;
552 return fd_getsock1(fd, sop, &fp);
553 }
554
555 /*
556 * Look up the file structure corresponding to a file descriptor
557 * and return it with a reference held on the file, not the
558 * descriptor.
559 *
560 * This is heavyweight and only used when accessing descriptors
561 * from a foreign process. The caller must ensure that `p' does
562 * not exit or fork across this call.
563 *
564 * To release the file (not descriptor) reference, use closef().
565 */
566 file_t *
567 fd_getfile2(proc_t *p, unsigned fd)
568 {
569 filedesc_t *fdp;
570 fdfile_t *ff;
571 file_t *fp;
572 fdtab_t *dt;
573
574 fdp = p->p_fd;
575 mutex_enter(&fdp->fd_lock);
576 dt = fdp->fd_dt;
577 if (fd >= dt->dt_nfiles) {
578 mutex_exit(&fdp->fd_lock);
579 return NULL;
580 }
581 if ((ff = dt->dt_ff[fd]) == NULL) {
582 mutex_exit(&fdp->fd_lock);
583 return NULL;
584 }
585 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
586 mutex_exit(&fdp->fd_lock);
587 return NULL;
588 }
589 mutex_enter(&fp->f_lock);
590 fp->f_count++;
591 mutex_exit(&fp->f_lock);
592 mutex_exit(&fdp->fd_lock);
593
594 return fp;
595 }
596
597 /*
598 * Internal form of close. Must be called with a reference to the
599 * descriptor, and will drop the reference. When all descriptor
600 * references are dropped, releases the descriptor slot and a single
601 * reference to the file structure.
602 */
603 int
604 fd_close(unsigned fd)
605 {
606 struct flock lf;
607 filedesc_t *fdp;
608 fdfile_t *ff;
609 file_t *fp;
610 proc_t *p;
611 lwp_t *l;
612 u_int refcnt;
613
614 l = curlwp;
615 p = l->l_proc;
616 fdp = l->l_fd;
617 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
618
619 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
620
621 mutex_enter(&fdp->fd_lock);
622 KASSERT((ff->ff_refcnt & FR_MASK) > 0);
623 fp = atomic_load_consume(&ff->ff_file);
624 if (__predict_false(fp == NULL)) {
625 /*
626 * Another user of the file is already closing, and is
627 * waiting for other users of the file to drain. Release
628 * our reference, and wake up the closer.
629 */
630 membar_release();
631 atomic_dec_uint(&ff->ff_refcnt);
632 cv_broadcast(&ff->ff_closing);
633 mutex_exit(&fdp->fd_lock);
634
635 /*
636 * An application error, so pretend that the descriptor
637 * was already closed. We can't safely wait for it to
638 * be closed without potentially deadlocking.
639 */
640 return (EBADF);
641 }
642 KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
643
644 /*
645 * There may be multiple users of this file within the process.
646 * Notify existing and new users that the file is closing. This
647 * will prevent them from adding additional uses to this file
648 * while we are closing it.
649 */
650 atomic_store_relaxed(&ff->ff_file, NULL);
651 ff->ff_exclose = false;
652
653 /*
654 * We expect the caller to hold a descriptor reference - drop it.
655 * The reference count may increase beyond zero at this point due
656 * to an erroneous descriptor reference by an application, but
657 * fd_getfile() will notice that the file is being closed and drop
658 * the reference again.
659 */
660 if (fdp->fd_refcnt == 1) {
661 /* Single threaded. */
662 refcnt = --(ff->ff_refcnt);
663 } else {
664 /* Multi threaded. */
665 membar_release();
666 refcnt = atomic_dec_uint_nv(&ff->ff_refcnt);
667 membar_acquire();
668 }
669 if (__predict_false(refcnt != 0)) {
670 /*
671 * Wait for other references to drain. This is typically
672 * an application error - the descriptor is being closed
673 * while still in use.
674 * (Or just a threaded application trying to unblock its
675 * thread that sleeps in (say) accept()).
676 */
677 atomic_or_uint(&ff->ff_refcnt, FR_CLOSING);
678
679 /*
680 * Remove any knotes attached to the file. A knote
681 * attached to the descriptor can hold references on it.
682 */
683 mutex_exit(&fdp->fd_lock);
684 if (!SLIST_EMPTY(&ff->ff_knlist)) {
685 knote_fdclose(fd);
686 }
687
688 /*
689 * Since the file system code doesn't know which fd
690 * each request came from (think dup()), we have to
691 * ask it to return ERESTART for any long-term blocks.
692 * The re-entry through read/write/etc will detect the
693 * closed fd and return EBAFD.
694 * Blocked partial writes may return a short length.
695 */
696 (*fp->f_ops->fo_restart)(fp);
697 mutex_enter(&fdp->fd_lock);
698
699 /*
700 * We need to see the count drop to zero at least once,
701 * in order to ensure that all pre-existing references
702 * have been drained. New references past this point are
703 * of no interest.
704 * XXX (dsl) this may need to call fo_restart() after a
705 * timeout to guarantee that all the system calls exit.
706 */
707 while ((ff->ff_refcnt & FR_MASK) != 0) {
708 cv_wait(&ff->ff_closing, &fdp->fd_lock);
709 }
710 atomic_and_uint(&ff->ff_refcnt, ~FR_CLOSING);
711 } else {
712 /* If no references, there must be no knotes. */
713 KASSERT(SLIST_EMPTY(&ff->ff_knlist));
714 }
715
716 /*
717 * POSIX record locking dictates that any close releases ALL
718 * locks owned by this process. This is handled by setting
719 * a flag in the unlock to free ONLY locks obeying POSIX
720 * semantics, and not to free BSD-style file locks.
721 * If the descriptor was in a message, POSIX-style locks
722 * aren't passed with the descriptor.
723 */
724 if (__predict_false((p->p_flag & PK_ADVLOCK) != 0) &&
725 fp->f_ops->fo_advlock != NULL) {
726 lf.l_whence = SEEK_SET;
727 lf.l_start = 0;
728 lf.l_len = 0;
729 lf.l_type = F_UNLCK;
730 mutex_exit(&fdp->fd_lock);
731 (void)(*fp->f_ops->fo_advlock)(fp, p, F_UNLCK, &lf, F_POSIX);
732 mutex_enter(&fdp->fd_lock);
733 }
734
735 /* Free descriptor slot. */
736 fd_unused(fdp, fd);
737 mutex_exit(&fdp->fd_lock);
738
739 /* Now drop reference to the file itself. */
740 return closef(fp);
741 }
742
743 /*
744 * Duplicate a file descriptor.
745 */
746 int
747 fd_dup(file_t *fp, int minfd, int *newp, bool exclose)
748 {
749 proc_t *p = curproc;
750 int error;
751
752 while ((error = fd_alloc(p, minfd, newp)) != 0) {
753 if (error != ENOSPC) {
754 return error;
755 }
756 fd_tryexpand(p);
757 }
758
759 fd_set_exclose(curlwp, *newp, exclose);
760 fd_affix(p, fp, *newp);
761 return 0;
762 }
763
764 /*
765 * dup2 operation.
766 */
767 int
768 fd_dup2(file_t *fp, unsigned newfd, int flags)
769 {
770 filedesc_t *fdp = curlwp->l_fd;
771 fdfile_t *ff;
772 fdtab_t *dt;
773
774 if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
775 return EINVAL;
776 /*
777 * Ensure there are enough slots in the descriptor table,
778 * and allocate an fdfile_t up front in case we need it.
779 */
780 while (newfd >= atomic_load_consume(&fdp->fd_dt)->dt_nfiles) {
781 fd_tryexpand(curproc);
782 }
783 ff = kmem_alloc(sizeof(*ff), KM_SLEEP);
784 fdfile_ctor(ff);
785
786 /*
787 * If there is already a file open, close it. If the file is
788 * half open, wait for it to be constructed before closing it.
789 * XXX Potential for deadlock here?
790 */
791 mutex_enter(&fdp->fd_lock);
792 while (fd_isused(fdp, newfd)) {
793 mutex_exit(&fdp->fd_lock);
794 if (fd_getfile(newfd) != NULL) {
795 (void)fd_close(newfd);
796 } else {
797 /*
798 * Crummy, but unlikely to happen.
799 * Can occur if we interrupt another
800 * thread while it is opening a file.
801 */
802 kpause("dup2", false, 1, NULL);
803 }
804 mutex_enter(&fdp->fd_lock);
805 }
806 dt = fdp->fd_dt;
807 if (dt->dt_ff[newfd] == NULL) {
808 KASSERT(newfd >= NDFDFILE);
809 dt->dt_ff[newfd] = ff;
810 ff = NULL;
811 }
812 fd_used(fdp, newfd);
813 mutex_exit(&fdp->fd_lock);
814
815 fd_set_exclose(curlwp, newfd, (flags & O_CLOEXEC) != 0);
816 fp->f_flag |= flags & (FNONBLOCK|FNOSIGPIPE);
817 /* Slot is now allocated. Insert copy of the file. */
818 fd_affix(curproc, fp, newfd);
819 if (ff != NULL) {
820 cv_destroy(&ff->ff_closing);
821 kmem_free(ff, sizeof(*ff));
822 }
823 return 0;
824 }
825
826 /*
827 * Drop reference to a file structure.
828 */
829 int
830 closef(file_t *fp)
831 {
832 struct flock lf;
833 int error;
834
835 /*
836 * Drop reference. If referenced elsewhere it's still open
837 * and we have nothing more to do.
838 */
839 mutex_enter(&fp->f_lock);
840 KASSERT(fp->f_count > 0);
841 if (--fp->f_count > 0) {
842 mutex_exit(&fp->f_lock);
843 return 0;
844 }
845 KASSERT(fp->f_count == 0);
846 mutex_exit(&fp->f_lock);
847
848 /* We held the last reference - release locks, close and free. */
849 if (fp->f_ops->fo_advlock == NULL) {
850 KASSERT((fp->f_flag & FHASLOCK) == 0);
851 } else if (fp->f_flag & FHASLOCK) {
852 lf.l_whence = SEEK_SET;
853 lf.l_start = 0;
854 lf.l_len = 0;
855 lf.l_type = F_UNLCK;
856 (void)(*fp->f_ops->fo_advlock)(fp, fp, F_UNLCK, &lf, F_FLOCK);
857 }
858 if (fp->f_ops != NULL) {
859 error = (*fp->f_ops->fo_close)(fp);
860 } else {
861 error = 0;
862 }
863 KASSERT(fp->f_count == 0);
864 KASSERT(fp->f_cred != NULL);
865 pool_cache_put(file_cache, fp);
866
867 return error;
868 }
869
870 /*
871 * Allocate a file descriptor for the process.
872 *
873 * Future idea for experimentation: replace all of this with radixtree.
874 */
875 int
876 fd_alloc(proc_t *p, int want, int *result)
877 {
878 filedesc_t *fdp = p->p_fd;
879 int i, lim, last, error, hi;
880 u_int off;
881 fdtab_t *dt;
882
883 KASSERT(p == curproc || p == &proc0);
884
885 /*
886 * Search for a free descriptor starting at the higher
887 * of want or fd_freefile.
888 */
889 mutex_enter(&fdp->fd_lock);
890 fd_checkmaps(fdp);
891 dt = fdp->fd_dt;
892 KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
893 lim = uimin((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
894 last = uimin(dt->dt_nfiles, lim);
895
896 for (;;) {
897 if ((i = want) < fdp->fd_freefile)
898 i = fdp->fd_freefile;
899 off = i >> NDENTRYSHIFT;
900 hi = fd_next_zero(fdp, fdp->fd_himap, off,
901 (last + NDENTRIES - 1) >> NDENTRYSHIFT);
902 if (hi == -1)
903 break;
904 i = fd_next_zero(fdp, &fdp->fd_lomap[hi],
905 hi > off ? 0 : i & NDENTRYMASK, NDENTRIES);
906 if (i == -1) {
907 /*
908 * Free file descriptor in this block was
909 * below want, try again with higher want.
910 */
911 want = (hi + 1) << NDENTRYSHIFT;
912 continue;
913 }
914 i += (hi << NDENTRYSHIFT);
915 if (i >= last) {
916 break;
917 }
918 if (dt->dt_ff[i] == NULL) {
919 KASSERT(i >= NDFDFILE);
920 dt->dt_ff[i] = kmem_alloc(sizeof(fdfile_t), KM_SLEEP);
921 fdfile_ctor(dt->dt_ff[i]);
922 }
923 KASSERT(dt->dt_ff[i]->ff_file == NULL);
924 fd_used(fdp, i);
925 if (want <= fdp->fd_freefile) {
926 fdp->fd_freefile = i;
927 }
928 *result = i;
929 KASSERT(i >= NDFDFILE ||
930 dt->dt_ff[i] == (fdfile_t *)fdp->fd_dfdfile[i]);
931 fd_checkmaps(fdp);
932 mutex_exit(&fdp->fd_lock);
933 return 0;
934 }
935
936 /* No space in current array. Let the caller expand and retry. */
937 error = (dt->dt_nfiles >= lim) ? EMFILE : ENOSPC;
938 mutex_exit(&fdp->fd_lock);
939 return error;
940 }
941
942 /*
943 * Allocate memory for a descriptor table.
944 */
945 static fdtab_t *
946 fd_dtab_alloc(int n)
947 {
948 fdtab_t *dt;
949 size_t sz;
950
951 KASSERT(n > NDFILE);
952
953 sz = sizeof(*dt) + (n - NDFILE) * sizeof(dt->dt_ff[0]);
954 dt = kmem_alloc(sz, KM_SLEEP);
955 #ifdef DIAGNOSTIC
956 memset(dt, 0xff, sz);
957 #endif
958 dt->dt_nfiles = n;
959 dt->dt_link = NULL;
960 return dt;
961 }
962
963 /*
964 * Free a descriptor table, and all tables linked for deferred free.
965 */
966 static void
967 fd_dtab_free(fdtab_t *dt)
968 {
969 fdtab_t *next;
970 size_t sz;
971
972 do {
973 next = dt->dt_link;
974 KASSERT(dt->dt_nfiles > NDFILE);
975 sz = sizeof(*dt) +
976 (dt->dt_nfiles - NDFILE) * sizeof(dt->dt_ff[0]);
977 #ifdef DIAGNOSTIC
978 memset(dt, 0xff, sz);
979 #endif
980 kmem_free(dt, sz);
981 dt = next;
982 } while (dt != NULL);
983 }
984
985 /*
986 * Allocate descriptor bitmap.
987 */
988 static void
989 fd_map_alloc(int n, uint32_t **lo, uint32_t **hi)
990 {
991 uint8_t *ptr;
992 size_t szlo, szhi;
993
994 KASSERT(n > NDENTRIES);
995
996 szlo = NDLOSLOTS(n) * sizeof(uint32_t);
997 szhi = NDHISLOTS(n) * sizeof(uint32_t);
998 ptr = kmem_alloc(szlo + szhi, KM_SLEEP);
999 *lo = (uint32_t *)ptr;
1000 *hi = (uint32_t *)(ptr + szlo);
1001 }
1002
1003 /*
1004 * Free descriptor bitmap.
1005 */
1006 static void
1007 fd_map_free(int n, uint32_t *lo, uint32_t *hi)
1008 {
1009 size_t szlo, szhi;
1010
1011 KASSERT(n > NDENTRIES);
1012
1013 szlo = NDLOSLOTS(n) * sizeof(uint32_t);
1014 szhi = NDHISLOTS(n) * sizeof(uint32_t);
1015 KASSERT(hi == (uint32_t *)((uint8_t *)lo + szlo));
1016 kmem_free(lo, szlo + szhi);
1017 }
1018
1019 /*
1020 * Expand a process' descriptor table.
1021 */
1022 void
1023 fd_tryexpand(proc_t *p)
1024 {
1025 filedesc_t *fdp;
1026 int i, numfiles, oldnfiles;
1027 fdtab_t *newdt, *dt;
1028 uint32_t *newhimap, *newlomap;
1029
1030 KASSERT(p == curproc || p == &proc0);
1031
1032 fdp = p->p_fd;
1033 newhimap = NULL;
1034 newlomap = NULL;
1035 oldnfiles = atomic_load_consume(&fdp->fd_dt)->dt_nfiles;
1036
1037 if (oldnfiles < NDEXTENT)
1038 numfiles = NDEXTENT;
1039 else
1040 numfiles = 2 * oldnfiles;
1041
1042 newdt = fd_dtab_alloc(numfiles);
1043 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1044 fd_map_alloc(numfiles, &newlomap, &newhimap);
1045 }
1046
1047 mutex_enter(&fdp->fd_lock);
1048 dt = fdp->fd_dt;
1049 KASSERT(dt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1050 if (dt->dt_nfiles != oldnfiles) {
1051 /* fdp changed; caller must retry */
1052 mutex_exit(&fdp->fd_lock);
1053 fd_dtab_free(newdt);
1054 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1055 fd_map_free(numfiles, newlomap, newhimap);
1056 }
1057 return;
1058 }
1059
1060 /* Copy the existing descriptor table and zero the new portion. */
1061 i = sizeof(fdfile_t *) * oldnfiles;
1062 memcpy(newdt->dt_ff, dt->dt_ff, i);
1063 memset((uint8_t *)newdt->dt_ff + i, 0,
1064 numfiles * sizeof(fdfile_t *) - i);
1065
1066 /*
1067 * Link old descriptor array into list to be discarded. We defer
1068 * freeing until the last reference to the descriptor table goes
1069 * away (usually process exit). This allows us to do lockless
1070 * lookups in fd_getfile().
1071 */
1072 if (oldnfiles > NDFILE) {
1073 if (fdp->fd_refcnt > 1) {
1074 newdt->dt_link = dt;
1075 } else {
1076 fd_dtab_free(dt);
1077 }
1078 }
1079
1080 if (NDHISLOTS(numfiles) > NDHISLOTS(oldnfiles)) {
1081 i = NDHISLOTS(oldnfiles) * sizeof(uint32_t);
1082 memcpy(newhimap, fdp->fd_himap, i);
1083 memset((uint8_t *)newhimap + i, 0,
1084 NDHISLOTS(numfiles) * sizeof(uint32_t) - i);
1085
1086 i = NDLOSLOTS(oldnfiles) * sizeof(uint32_t);
1087 memcpy(newlomap, fdp->fd_lomap, i);
1088 memset((uint8_t *)newlomap + i, 0,
1089 NDLOSLOTS(numfiles) * sizeof(uint32_t) - i);
1090
1091 if (NDHISLOTS(oldnfiles) > NDHISLOTS(NDFILE)) {
1092 fd_map_free(oldnfiles, fdp->fd_lomap, fdp->fd_himap);
1093 }
1094 fdp->fd_himap = newhimap;
1095 fdp->fd_lomap = newlomap;
1096 }
1097
1098 /*
1099 * All other modifications must become globally visible before
1100 * the change to fd_dt. See fd_getfile().
1101 */
1102 atomic_store_release(&fdp->fd_dt, newdt);
1103 KASSERT(newdt->dt_ff[0] == (fdfile_t *)fdp->fd_dfdfile[0]);
1104 fd_checkmaps(fdp);
1105 mutex_exit(&fdp->fd_lock);
1106 }
1107
1108 /*
1109 * Create a new open file structure and allocate a file descriptor
1110 * for the current process.
1111 */
1112 int
1113 fd_allocfile(file_t **resultfp, int *resultfd)
1114 {
1115 proc_t *p = curproc;
1116 kauth_cred_t cred;
1117 file_t *fp;
1118 int error;
1119
1120 while ((error = fd_alloc(p, 0, resultfd)) != 0) {
1121 if (error != ENOSPC) {
1122 return error;
1123 }
1124 fd_tryexpand(p);
1125 }
1126
1127 fp = pool_cache_get(file_cache, PR_WAITOK);
1128 if (fp == NULL) {
1129 fd_abort(p, NULL, *resultfd);
1130 return ENFILE;
1131 }
1132 KASSERT(fp->f_count == 0);
1133 KASSERT(fp->f_msgcount == 0);
1134 KASSERT(fp->f_unpcount == 0);
1135
1136 /* Replace cached credentials if not what we need. */
1137 cred = curlwp->l_cred;
1138 if (__predict_false(cred != fp->f_cred)) {
1139 kauth_cred_free(fp->f_cred);
1140 fp->f_cred = kauth_cred_hold(cred);
1141 }
1142
1143 /*
1144 * Don't allow recycled files to be scanned.
1145 * See uipc_usrreq.c.
1146 */
1147 if (__predict_false((fp->f_flag & FSCAN) != 0)) {
1148 mutex_enter(&fp->f_lock);
1149 atomic_and_uint(&fp->f_flag, ~FSCAN);
1150 mutex_exit(&fp->f_lock);
1151 }
1152
1153 fp->f_advice = 0;
1154 fp->f_offset = 0;
1155 *resultfp = fp;
1156
1157 return 0;
1158 }
1159
1160 /*
1161 * Successful creation of a new descriptor: make visible to the process.
1162 */
1163 void
1164 fd_affix(proc_t *p, file_t *fp, unsigned fd)
1165 {
1166 fdfile_t *ff;
1167 filedesc_t *fdp;
1168 fdtab_t *dt;
1169
1170 KASSERT(p == curproc || p == &proc0);
1171
1172 /* Add a reference to the file structure. */
1173 mutex_enter(&fp->f_lock);
1174 fp->f_count++;
1175 mutex_exit(&fp->f_lock);
1176
1177 /*
1178 * Insert the new file into the descriptor slot.
1179 */
1180 fdp = p->p_fd;
1181 dt = atomic_load_consume(&fdp->fd_dt);
1182 ff = dt->dt_ff[fd];
1183
1184 KASSERT(ff != NULL);
1185 KASSERT(ff->ff_file == NULL);
1186 KASSERT(ff->ff_allocated);
1187 KASSERT(fd_isused(fdp, fd));
1188 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1189
1190 /* No need to lock in order to make file initially visible. */
1191 atomic_store_release(&ff->ff_file, fp);
1192 }
1193
1194 /*
1195 * Abort creation of a new descriptor: free descriptor slot and file.
1196 */
1197 void
1198 fd_abort(proc_t *p, file_t *fp, unsigned fd)
1199 {
1200 filedesc_t *fdp;
1201 fdfile_t *ff;
1202
1203 KASSERT(p == curproc || p == &proc0);
1204
1205 fdp = p->p_fd;
1206 ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1207 ff->ff_exclose = false;
1208
1209 KASSERT(fd >= NDFDFILE || ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1210
1211 mutex_enter(&fdp->fd_lock);
1212 KASSERT(fd_isused(fdp, fd));
1213 fd_unused(fdp, fd);
1214 mutex_exit(&fdp->fd_lock);
1215
1216 if (fp != NULL) {
1217 KASSERT(fp->f_count == 0);
1218 KASSERT(fp->f_cred != NULL);
1219 pool_cache_put(file_cache, fp);
1220 }
1221 }
1222
1223 static int
1224 file_ctor(void *arg, void *obj, int flags)
1225 {
1226 /*
1227 * It's easy to exhaust the open file limit on a system with many
1228 * CPUs due to caching. Allow a bit of leeway to reduce the element
1229 * of surprise.
1230 */
1231 u_int slop = PCG_NOBJECTS_NORMAL * (ncpu - 1);
1232 file_t *fp = obj;
1233
1234 memset(fp, 0, sizeof(*fp));
1235
1236 mutex_enter(&filelist_lock);
1237 if (__predict_false(nfiles >= slop + maxfiles)) {
1238 mutex_exit(&filelist_lock);
1239 tablefull("file", "increase kern.maxfiles or MAXFILES");
1240 return ENFILE;
1241 }
1242 nfiles++;
1243 LIST_INSERT_HEAD(&filehead, fp, f_list);
1244 mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
1245 fp->f_cred = kauth_cred_hold(curlwp->l_cred);
1246 mutex_exit(&filelist_lock);
1247
1248 return 0;
1249 }
1250
1251 static void
1252 file_dtor(void *arg, void *obj)
1253 {
1254 file_t *fp = obj;
1255
1256 mutex_enter(&filelist_lock);
1257 nfiles--;
1258 LIST_REMOVE(fp, f_list);
1259 mutex_exit(&filelist_lock);
1260
1261 KASSERT(fp->f_count == 0);
1262 kauth_cred_free(fp->f_cred);
1263 mutex_destroy(&fp->f_lock);
1264 }
1265
1266 static void
1267 fdfile_ctor(fdfile_t *ff)
1268 {
1269
1270 memset(ff, 0, sizeof(*ff));
1271 cv_init(&ff->ff_closing, "fdclose");
1272 }
1273
1274 static void
1275 fdfile_dtor(fdfile_t *ff)
1276 {
1277
1278 cv_destroy(&ff->ff_closing);
1279 }
1280
1281 file_t *
1282 fgetdummy(void)
1283 {
1284 file_t *fp;
1285
1286 fp = kmem_zalloc(sizeof(*fp), KM_SLEEP);
1287 mutex_init(&fp->f_lock, MUTEX_DEFAULT, IPL_NONE);
1288 return fp;
1289 }
1290
1291 void
1292 fputdummy(file_t *fp)
1293 {
1294
1295 mutex_destroy(&fp->f_lock);
1296 kmem_free(fp, sizeof(*fp));
1297 }
1298
1299 /*
1300 * Create an initial filedesc structure.
1301 */
1302 filedesc_t *
1303 fd_init(filedesc_t *fdp)
1304 {
1305 #ifdef DIAGNOSTIC
1306 unsigned fd;
1307 #endif
1308
1309 if (__predict_true(fdp == NULL)) {
1310 fdp = pool_cache_get(filedesc_cache, PR_WAITOK);
1311 } else {
1312 KASSERT(fdp == &filedesc0);
1313 filedesc_ctor(NULL, fdp, PR_WAITOK);
1314 }
1315
1316 #ifdef DIAGNOSTIC
1317 KASSERT(fdp->fd_lastfile == -1);
1318 KASSERT(fdp->fd_lastkqfile == -1);
1319 KASSERT(fdp->fd_knhash == NULL);
1320 KASSERT(fdp->fd_freefile == 0);
1321 KASSERT(fdp->fd_exclose == false);
1322 KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
1323 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1324 for (fd = 0; fd < NDFDFILE; fd++) {
1325 KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] ==
1326 (fdfile_t *)fdp->fd_dfdfile[fd]);
1327 }
1328 for (fd = NDFDFILE; fd < NDFILE; fd++) {
1329 KASSERT(fdp->fd_dtbuiltin.dt_ff[fd] == NULL);
1330 }
1331 KASSERT(fdp->fd_himap == fdp->fd_dhimap);
1332 KASSERT(fdp->fd_lomap == fdp->fd_dlomap);
1333 #endif /* DIAGNOSTIC */
1334
1335 fdp->fd_refcnt = 1;
1336 fd_checkmaps(fdp);
1337
1338 return fdp;
1339 }
1340
1341 /*
1342 * Initialize a file descriptor table.
1343 */
1344 static int
1345 filedesc_ctor(void *arg, void *obj, int flag)
1346 {
1347 filedesc_t *fdp = obj;
1348 fdfile_t **ffp;
1349 int i;
1350
1351 memset(fdp, 0, sizeof(*fdp));
1352 mutex_init(&fdp->fd_lock, MUTEX_DEFAULT, IPL_NONE);
1353 fdp->fd_lastfile = -1;
1354 fdp->fd_lastkqfile = -1;
1355 fdp->fd_dt = &fdp->fd_dtbuiltin;
1356 fdp->fd_dtbuiltin.dt_nfiles = NDFILE;
1357 fdp->fd_himap = fdp->fd_dhimap;
1358 fdp->fd_lomap = fdp->fd_dlomap;
1359
1360 CTASSERT(sizeof(fdp->fd_dfdfile[0]) >= sizeof(fdfile_t));
1361 for (i = 0, ffp = fdp->fd_dt->dt_ff; i < NDFDFILE; i++, ffp++) {
1362 fdfile_ctor(*ffp = (fdfile_t *)fdp->fd_dfdfile[i]);
1363 }
1364
1365 return 0;
1366 }
1367
1368 static void
1369 filedesc_dtor(void *arg, void *obj)
1370 {
1371 filedesc_t *fdp = obj;
1372 int i;
1373
1374 for (i = 0; i < NDFDFILE; i++) {
1375 fdfile_dtor((fdfile_t *)fdp->fd_dfdfile[i]);
1376 }
1377
1378 mutex_destroy(&fdp->fd_lock);
1379 }
1380
1381 /*
1382 * Make p share curproc's filedesc structure.
1383 */
1384 void
1385 fd_share(struct proc *p)
1386 {
1387 filedesc_t *fdp;
1388
1389 fdp = curlwp->l_fd;
1390 p->p_fd = fdp;
1391 atomic_inc_uint(&fdp->fd_refcnt);
1392 }
1393
1394 /*
1395 * Acquire a hold on a filedesc structure.
1396 */
1397 void
1398 fd_hold(lwp_t *l)
1399 {
1400 filedesc_t *fdp = l->l_fd;
1401
1402 atomic_inc_uint(&fdp->fd_refcnt);
1403 }
1404
1405 /*
1406 * Copy a filedesc structure.
1407 */
1408 filedesc_t *
1409 fd_copy(void)
1410 {
1411 filedesc_t *newfdp, *fdp;
1412 fdfile_t *ff, **ffp, **nffp, *ff2;
1413 int i, j, numfiles, lastfile, newlast;
1414 file_t *fp;
1415 fdtab_t *newdt;
1416
1417 fdp = curproc->p_fd;
1418 newfdp = pool_cache_get(filedesc_cache, PR_WAITOK);
1419 newfdp->fd_refcnt = 1;
1420
1421 #ifdef DIAGNOSTIC
1422 KASSERT(newfdp->fd_lastfile == -1);
1423 KASSERT(newfdp->fd_lastkqfile == -1);
1424 KASSERT(newfdp->fd_knhash == NULL);
1425 KASSERT(newfdp->fd_freefile == 0);
1426 KASSERT(newfdp->fd_exclose == false);
1427 KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
1428 KASSERT(newfdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1429 for (i = 0; i < NDFDFILE; i++) {
1430 KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] ==
1431 (fdfile_t *)&newfdp->fd_dfdfile[i]);
1432 }
1433 for (i = NDFDFILE; i < NDFILE; i++) {
1434 KASSERT(newfdp->fd_dtbuiltin.dt_ff[i] == NULL);
1435 }
1436 #endif /* DIAGNOSTIC */
1437
1438 mutex_enter(&fdp->fd_lock);
1439 fd_checkmaps(fdp);
1440 numfiles = fdp->fd_dt->dt_nfiles;
1441 lastfile = fdp->fd_lastfile;
1442
1443 /*
1444 * If the number of open files fits in the internal arrays
1445 * of the open file structure, use them, otherwise allocate
1446 * additional memory for the number of descriptors currently
1447 * in use.
1448 */
1449 if (lastfile < NDFILE) {
1450 i = NDFILE;
1451 newdt = newfdp->fd_dt;
1452 KASSERT(newfdp->fd_dt == &newfdp->fd_dtbuiltin);
1453 } else {
1454 /*
1455 * Compute the smallest multiple of NDEXTENT needed
1456 * for the file descriptors currently in use,
1457 * allowing the table to shrink.
1458 */
1459 i = numfiles;
1460 while (i >= 2 * NDEXTENT && i > lastfile * 2) {
1461 i /= 2;
1462 }
1463 KASSERT(i > NDFILE);
1464 newdt = fd_dtab_alloc(i);
1465 newfdp->fd_dt = newdt;
1466 memcpy(newdt->dt_ff, newfdp->fd_dtbuiltin.dt_ff,
1467 NDFDFILE * sizeof(fdfile_t **));
1468 memset(newdt->dt_ff + NDFDFILE, 0,
1469 (i - NDFDFILE) * sizeof(fdfile_t **));
1470 }
1471 if (NDHISLOTS(i) <= NDHISLOTS(NDFILE)) {
1472 newfdp->fd_himap = newfdp->fd_dhimap;
1473 newfdp->fd_lomap = newfdp->fd_dlomap;
1474 } else {
1475 fd_map_alloc(i, &newfdp->fd_lomap, &newfdp->fd_himap);
1476 KASSERT(i >= NDENTRIES * NDENTRIES);
1477 memset(newfdp->fd_himap, 0, NDHISLOTS(i)*sizeof(uint32_t));
1478 memset(newfdp->fd_lomap, 0, NDLOSLOTS(i)*sizeof(uint32_t));
1479 }
1480 newfdp->fd_freefile = fdp->fd_freefile;
1481 newfdp->fd_exclose = fdp->fd_exclose;
1482
1483 ffp = fdp->fd_dt->dt_ff;
1484 nffp = newdt->dt_ff;
1485 newlast = -1;
1486 for (i = 0; i <= lastfile; i++, ffp++, nffp++) {
1487 KASSERT(i >= NDFDFILE ||
1488 *nffp == (fdfile_t *)newfdp->fd_dfdfile[i]);
1489 ff = *ffp;
1490 if (ff == NULL ||
1491 (fp = atomic_load_consume(&ff->ff_file)) == NULL) {
1492 /* Descriptor unused, or descriptor half open. */
1493 KASSERT(!fd_isused(newfdp, i));
1494 continue;
1495 }
1496 if (__predict_false(fp->f_type == DTYPE_KQUEUE)) {
1497 /* kqueue descriptors cannot be copied. */
1498 if (i < newfdp->fd_freefile) {
1499 newfdp->fd_freefile = i;
1500 }
1501 continue;
1502 }
1503 /* It's active: add a reference to the file. */
1504 mutex_enter(&fp->f_lock);
1505 fp->f_count++;
1506 mutex_exit(&fp->f_lock);
1507
1508 /* Allocate an fdfile_t to represent it. */
1509 if (i >= NDFDFILE) {
1510 ff2 = kmem_alloc(sizeof(*ff2), KM_SLEEP);
1511 fdfile_ctor(ff2);
1512 *nffp = ff2;
1513 } else {
1514 ff2 = newdt->dt_ff[i];
1515 }
1516 ff2->ff_file = fp;
1517 ff2->ff_exclose = ff->ff_exclose;
1518 ff2->ff_allocated = true;
1519
1520 /* Fix up bitmaps. */
1521 j = i >> NDENTRYSHIFT;
1522 KASSERT((newfdp->fd_lomap[j] & (1U << (i & NDENTRYMASK))) == 0);
1523 newfdp->fd_lomap[j] |= 1U << (i & NDENTRYMASK);
1524 if (__predict_false(newfdp->fd_lomap[j] == ~0)) {
1525 KASSERT((newfdp->fd_himap[j >> NDENTRYSHIFT] &
1526 (1U << (j & NDENTRYMASK))) == 0);
1527 newfdp->fd_himap[j >> NDENTRYSHIFT] |=
1528 1U << (j & NDENTRYMASK);
1529 }
1530 newlast = i;
1531 }
1532 KASSERT(newdt->dt_ff[0] == (fdfile_t *)newfdp->fd_dfdfile[0]);
1533 newfdp->fd_lastfile = newlast;
1534 fd_checkmaps(newfdp);
1535 mutex_exit(&fdp->fd_lock);
1536
1537 return newfdp;
1538 }
1539
1540 /*
1541 * Release a filedesc structure.
1542 */
1543 void
1544 fd_free(void)
1545 {
1546 fdfile_t *ff;
1547 file_t *fp;
1548 int fd, nf;
1549 fdtab_t *dt;
1550 lwp_t * const l = curlwp;
1551 filedesc_t * const fdp = l->l_fd;
1552 const bool noadvlock = (l->l_proc->p_flag & PK_ADVLOCK) == 0;
1553
1554 KASSERT(atomic_load_consume(&fdp->fd_dt)->dt_ff[0] ==
1555 (fdfile_t *)fdp->fd_dfdfile[0]);
1556 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1557 KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
1558
1559 membar_release();
1560 if (atomic_dec_uint_nv(&fdp->fd_refcnt) > 0)
1561 return;
1562 membar_acquire();
1563
1564 /*
1565 * Close any files that the process holds open.
1566 */
1567 dt = fdp->fd_dt;
1568 fd_checkmaps(fdp);
1569 #ifdef DEBUG
1570 fdp->fd_refcnt = -1; /* see fd_checkmaps */
1571 #endif
1572 for (fd = 0, nf = dt->dt_nfiles; fd < nf; fd++) {
1573 ff = dt->dt_ff[fd];
1574 KASSERT(fd >= NDFDFILE ||
1575 ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1576 if (ff == NULL)
1577 continue;
1578 if ((fp = atomic_load_consume(&ff->ff_file)) != NULL) {
1579 /*
1580 * Must use fd_close() here if there is
1581 * a reference from kqueue or we might have posix
1582 * advisory locks.
1583 */
1584 if (__predict_true(ff->ff_refcnt == 0) &&
1585 (noadvlock || fp->f_type != DTYPE_VNODE)) {
1586 ff->ff_file = NULL;
1587 ff->ff_exclose = false;
1588 ff->ff_allocated = false;
1589 closef(fp);
1590 } else {
1591 ff->ff_refcnt++;
1592 fd_close(fd);
1593 }
1594 }
1595 KASSERT(ff->ff_refcnt == 0);
1596 KASSERT(ff->ff_file == NULL);
1597 KASSERT(!ff->ff_exclose);
1598 KASSERT(!ff->ff_allocated);
1599 if (fd >= NDFDFILE) {
1600 cv_destroy(&ff->ff_closing);
1601 kmem_free(ff, sizeof(*ff));
1602 dt->dt_ff[fd] = NULL;
1603 }
1604 }
1605
1606 /*
1607 * Clean out the descriptor table for the next user and return
1608 * to the cache.
1609 */
1610 if (__predict_false(dt != &fdp->fd_dtbuiltin)) {
1611 fd_dtab_free(fdp->fd_dt);
1612 /* Otherwise, done above. */
1613 memset(&fdp->fd_dtbuiltin.dt_ff[NDFDFILE], 0,
1614 (NDFILE - NDFDFILE) * sizeof(fdp->fd_dtbuiltin.dt_ff[0]));
1615 fdp->fd_dt = &fdp->fd_dtbuiltin;
1616 }
1617 if (__predict_false(NDHISLOTS(nf) > NDHISLOTS(NDFILE))) {
1618 KASSERT(fdp->fd_himap != fdp->fd_dhimap);
1619 KASSERT(fdp->fd_lomap != fdp->fd_dlomap);
1620 fd_map_free(nf, fdp->fd_lomap, fdp->fd_himap);
1621 }
1622 if (__predict_false(fdp->fd_knhash != NULL)) {
1623 hashdone(fdp->fd_knhash, HASH_LIST, fdp->fd_knhashmask);
1624 fdp->fd_knhash = NULL;
1625 fdp->fd_knhashmask = 0;
1626 } else {
1627 KASSERT(fdp->fd_knhashmask == 0);
1628 }
1629 fdp->fd_dt = &fdp->fd_dtbuiltin;
1630 fdp->fd_lastkqfile = -1;
1631 fdp->fd_lastfile = -1;
1632 fdp->fd_freefile = 0;
1633 fdp->fd_exclose = false;
1634 memset(&fdp->fd_startzero, 0, sizeof(*fdp) -
1635 offsetof(filedesc_t, fd_startzero));
1636 fdp->fd_himap = fdp->fd_dhimap;
1637 fdp->fd_lomap = fdp->fd_dlomap;
1638 KASSERT(fdp->fd_dtbuiltin.dt_nfiles == NDFILE);
1639 KASSERT(fdp->fd_dtbuiltin.dt_link == NULL);
1640 KASSERT(fdp->fd_dt == &fdp->fd_dtbuiltin);
1641 #ifdef DEBUG
1642 fdp->fd_refcnt = 0; /* see fd_checkmaps */
1643 #endif
1644 fd_checkmaps(fdp);
1645 pool_cache_put(filedesc_cache, fdp);
1646 }
1647
1648 /*
1649 * File Descriptor pseudo-device driver (/dev/fd/).
1650 *
1651 * Opening minor device N dup()s the file (if any) connected to file
1652 * descriptor N belonging to the calling process. Note that this driver
1653 * consists of only the ``open()'' routine, because all subsequent
1654 * references to this file will be direct to the other driver.
1655 */
1656 static int
1657 filedescopen(dev_t dev, int mode, int type, lwp_t *l)
1658 {
1659
1660 /*
1661 * XXX Kludge: set dupfd to contain the value of the
1662 * the file descriptor being sought for duplication. The error
1663 * return ensures that the vnode for this device will be released
1664 * by vn_open. Open will detect this special error and take the
1665 * actions in fd_dupopen below. Other callers of vn_open or VOP_OPEN
1666 * will simply report the error.
1667 */
1668 l->l_dupfd = minor(dev); /* XXX */
1669 return EDUPFD;
1670 }
1671
1672 /*
1673 * Duplicate the specified descriptor to a free descriptor.
1674 *
1675 * old is the original fd.
1676 * moveit is true if we should move rather than duplicate.
1677 * flags are the open flags (converted from O_* to F*).
1678 * newp returns the new fd on success.
1679 *
1680 * These two cases are produced by the EDUPFD and EMOVEFD magic
1681 * errnos, but in the interest of removing that regrettable interface,
1682 * vn_open has been changed to intercept them. Now vn_open returns
1683 * either a vnode or a filehandle, and the filehandle is accompanied
1684 * by a boolean that says whether we should dup (moveit == false) or
1685 * move (moveit == true) the fd.
1686 *
1687 * The dup case is used by /dev/stderr, /proc/self/fd, and such. The
1688 * move case is used by cloner devices that allocate a fd of their
1689 * own (a layering violation that should go away eventually) that
1690 * then needs to be put in the place open() expects it.
1691 */
1692 int
1693 fd_dupopen(int old, bool moveit, int flags, int *newp)
1694 {
1695 filedesc_t *fdp;
1696 fdfile_t *ff;
1697 file_t *fp;
1698 fdtab_t *dt;
1699 int error;
1700
1701 if ((fp = fd_getfile(old)) == NULL) {
1702 return EBADF;
1703 }
1704 fdp = curlwp->l_fd;
1705 dt = atomic_load_consume(&fdp->fd_dt);
1706 ff = dt->dt_ff[old];
1707
1708 /*
1709 * There are two cases of interest here.
1710 *
1711 * 1. moveit == false (used to be the EDUPFD magic errno):
1712 * simply dup (old) to file descriptor (new) and return.
1713 *
1714 * 2. moveit == true (used to be the EMOVEFD magic errno):
1715 * steal away the file structure from (old) and store it in
1716 * (new). (old) is effectively closed by this operation.
1717 */
1718 if (moveit == false) {
1719 /*
1720 * Check that the mode the file is being opened for is a
1721 * subset of the mode of the existing descriptor.
1722 */
1723 if (((flags & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
1724 error = EACCES;
1725 goto out;
1726 }
1727
1728 /* Copy it. */
1729 error = fd_dup(fp, 0, newp, ff->ff_exclose);
1730 } else {
1731 /* Copy it. */
1732 error = fd_dup(fp, 0, newp, ff->ff_exclose);
1733 if (error != 0) {
1734 goto out;
1735 }
1736
1737 /* Steal away the file pointer from 'old'. */
1738 (void)fd_close(old);
1739 return 0;
1740 }
1741
1742 out:
1743 fd_putfile(old);
1744 return error;
1745 }
1746
1747 /*
1748 * Close open files on exec.
1749 */
1750 void
1751 fd_closeexec(void)
1752 {
1753 proc_t *p;
1754 filedesc_t *fdp;
1755 fdfile_t *ff;
1756 lwp_t *l;
1757 fdtab_t *dt;
1758 int fd;
1759
1760 l = curlwp;
1761 p = l->l_proc;
1762 fdp = p->p_fd;
1763
1764 if (fdp->fd_refcnt > 1) {
1765 fdp = fd_copy();
1766 fd_free();
1767 p->p_fd = fdp;
1768 l->l_fd = fdp;
1769 }
1770 if (!fdp->fd_exclose) {
1771 return;
1772 }
1773 fdp->fd_exclose = false;
1774 dt = atomic_load_consume(&fdp->fd_dt);
1775
1776 for (fd = 0; fd <= fdp->fd_lastfile; fd++) {
1777 if ((ff = dt->dt_ff[fd]) == NULL) {
1778 KASSERT(fd >= NDFDFILE);
1779 continue;
1780 }
1781 KASSERT(fd >= NDFDFILE ||
1782 ff == (fdfile_t *)fdp->fd_dfdfile[fd]);
1783 if (ff->ff_file == NULL)
1784 continue;
1785 if (ff->ff_exclose) {
1786 /*
1787 * We need a reference to close the file.
1788 * No other threads can see the fdfile_t at
1789 * this point, so don't bother locking.
1790 */
1791 KASSERT((ff->ff_refcnt & FR_CLOSING) == 0);
1792 ff->ff_refcnt++;
1793 fd_close(fd);
1794 }
1795 }
1796 }
1797
1798 /*
1799 * Sets descriptor owner. If the owner is a process, 'pgid'
1800 * is set to positive value, process ID. If the owner is process group,
1801 * 'pgid' is set to -pg_id.
1802 */
1803 int
1804 fsetown(pid_t *pgid, u_long cmd, const void *data)
1805 {
1806 pid_t id = *(const pid_t *)data;
1807 int error;
1808
1809 if (id <= INT_MIN)
1810 return EINVAL;
1811
1812 switch (cmd) {
1813 case TIOCSPGRP:
1814 if (id < 0)
1815 return EINVAL;
1816 id = -id;
1817 break;
1818 default:
1819 break;
1820 }
1821 if (id > 0) {
1822 mutex_enter(&proc_lock);
1823 error = proc_find(id) ? 0 : ESRCH;
1824 mutex_exit(&proc_lock);
1825 } else if (id < 0) {
1826 error = pgid_in_session(curproc, -id);
1827 } else {
1828 error = 0;
1829 }
1830 if (!error) {
1831 *pgid = id;
1832 }
1833 return error;
1834 }
1835
1836 void
1837 fd_set_exclose(struct lwp *l, int fd, bool exclose)
1838 {
1839 filedesc_t *fdp = l->l_fd;
1840 fdfile_t *ff = atomic_load_consume(&fdp->fd_dt)->dt_ff[fd];
1841
1842 ff->ff_exclose = exclose;
1843 if (exclose)
1844 fdp->fd_exclose = true;
1845 }
1846
1847 /*
1848 * Return descriptor owner information. If the value is positive,
1849 * it's process ID. If it's negative, it's process group ID and
1850 * needs the sign removed before use.
1851 */
1852 int
1853 fgetown(pid_t pgid, u_long cmd, void *data)
1854 {
1855
1856 switch (cmd) {
1857 case TIOCGPGRP:
1858 KASSERT(pgid > INT_MIN);
1859 *(int *)data = -pgid;
1860 break;
1861 default:
1862 *(int *)data = pgid;
1863 break;
1864 }
1865 return 0;
1866 }
1867
1868 /*
1869 * Send signal to descriptor owner, either process or process group.
1870 */
1871 void
1872 fownsignal(pid_t pgid, int signo, int code, int band, void *fdescdata)
1873 {
1874 ksiginfo_t ksi;
1875
1876 KASSERT(!cpu_intr_p());
1877
1878 if (pgid == 0) {
1879 return;
1880 }
1881
1882 KSI_INIT(&ksi);
1883 ksi.ksi_signo = signo;
1884 ksi.ksi_code = code;
1885 ksi.ksi_band = band;
1886
1887 mutex_enter(&proc_lock);
1888 if (pgid > 0) {
1889 struct proc *p1;
1890
1891 p1 = proc_find(pgid);
1892 if (p1 != NULL) {
1893 kpsignal(p1, &ksi, fdescdata);
1894 }
1895 } else {
1896 struct pgrp *pgrp;
1897
1898 KASSERT(pgid < 0 && pgid > INT_MIN);
1899 pgrp = pgrp_find(-pgid);
1900 if (pgrp != NULL) {
1901 kpgsignal(pgrp, &ksi, fdescdata, 0);
1902 }
1903 }
1904 mutex_exit(&proc_lock);
1905 }
1906
1907 int
1908 fd_clone(file_t *fp, unsigned fd, int flag, const struct fileops *fops,
1909 void *data)
1910 {
1911
1912 fp->f_flag = flag & FMASK;
1913 fd_set_exclose(curlwp, fd, (flag & O_CLOEXEC) != 0);
1914 fp->f_type = DTYPE_MISC;
1915 fp->f_ops = fops;
1916 fp->f_data = data;
1917 curlwp->l_dupfd = fd;
1918 fd_affix(curproc, fp, fd);
1919
1920 return EMOVEFD;
1921 }
1922
1923 int
1924 fnullop_fcntl(file_t *fp, u_int cmd, void *data)
1925 {
1926
1927 if (cmd == F_SETFL)
1928 return 0;
1929
1930 return EOPNOTSUPP;
1931 }
1932
1933 int
1934 fnullop_poll(file_t *fp, int which)
1935 {
1936
1937 return 0;
1938 }
1939
1940 int
1941 fnullop_kqfilter(file_t *fp, struct knote *kn)
1942 {
1943
1944 return EOPNOTSUPP;
1945 }
1946
1947 void
1948 fnullop_restart(file_t *fp)
1949 {
1950
1951 }
1952
1953 int
1954 fbadop_read(file_t *fp, off_t *offset, struct uio *uio,
1955 kauth_cred_t cred, int flags)
1956 {
1957
1958 return EOPNOTSUPP;
1959 }
1960
1961 int
1962 fbadop_write(file_t *fp, off_t *offset, struct uio *uio,
1963 kauth_cred_t cred, int flags)
1964 {
1965
1966 return EOPNOTSUPP;
1967 }
1968
1969 int
1970 fbadop_ioctl(file_t *fp, u_long com, void *data)
1971 {
1972
1973 return EOPNOTSUPP;
1974 }
1975
1976 int
1977 fbadop_stat(file_t *fp, struct stat *sb)
1978 {
1979
1980 return EOPNOTSUPP;
1981 }
1982
1983 int
1984 fbadop_close(file_t *fp)
1985 {
1986
1987 return EOPNOTSUPP;
1988 }
1989
1990 /*
1991 * sysctl routines pertaining to file descriptors
1992 */
1993
1994 /* Initialized in sysctl_init() for now... */
1995 extern kmutex_t sysctl_file_marker_lock;
1996 static u_int sysctl_file_marker = 1;
1997
1998 /*
1999 * Expects to be called with proc_lock and sysctl_file_marker_lock locked.
2000 */
2001 static void
2002 sysctl_file_marker_reset(void)
2003 {
2004 struct proc *p;
2005
2006 PROCLIST_FOREACH(p, &allproc) {
2007 struct filedesc *fd = p->p_fd;
2008 fdtab_t *dt;
2009 u_int i;
2010
2011 mutex_enter(&fd->fd_lock);
2012 dt = fd->fd_dt;
2013 for (i = 0; i < dt->dt_nfiles; i++) {
2014 struct file *fp;
2015 fdfile_t *ff;
2016
2017 if ((ff = dt->dt_ff[i]) == NULL) {
2018 continue;
2019 }
2020 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
2021 continue;
2022 }
2023 fp->f_marker = 0;
2024 }
2025 mutex_exit(&fd->fd_lock);
2026 }
2027 }
2028
2029 /*
2030 * sysctl helper routine for kern.file pseudo-subtree.
2031 */
2032 static int
2033 sysctl_kern_file(SYSCTLFN_ARGS)
2034 {
2035 const bool allowaddr = get_expose_address(curproc);
2036 struct filelist flist;
2037 int error;
2038 size_t buflen;
2039 struct file *fp, fbuf;
2040 char *start, *where;
2041 struct proc *p;
2042
2043 start = where = oldp;
2044 buflen = *oldlenp;
2045
2046 if (where == NULL) {
2047 /*
2048 * overestimate by 10 files
2049 */
2050 *oldlenp = sizeof(filehead) + (nfiles + 10) *
2051 sizeof(struct file);
2052 return 0;
2053 }
2054
2055 /*
2056 * first sysctl_copyout filehead
2057 */
2058 if (buflen < sizeof(filehead)) {
2059 *oldlenp = 0;
2060 return 0;
2061 }
2062 sysctl_unlock();
2063 if (allowaddr) {
2064 memcpy(&flist, &filehead, sizeof(flist));
2065 } else {
2066 memset(&flist, 0, sizeof(flist));
2067 }
2068 error = sysctl_copyout(l, &flist, where, sizeof(flist));
2069 if (error) {
2070 sysctl_relock();
2071 return error;
2072 }
2073 buflen -= sizeof(flist);
2074 where += sizeof(flist);
2075
2076 /*
2077 * followed by an array of file structures
2078 */
2079 mutex_enter(&sysctl_file_marker_lock);
2080 mutex_enter(&proc_lock);
2081 PROCLIST_FOREACH(p, &allproc) {
2082 struct filedesc *fd;
2083 fdtab_t *dt;
2084 u_int i;
2085
2086 if (p->p_stat == SIDL) {
2087 /* skip embryonic processes */
2088 continue;
2089 }
2090 mutex_enter(p->p_lock);
2091 error = kauth_authorize_process(l->l_cred,
2092 KAUTH_PROCESS_CANSEE, p,
2093 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2094 NULL, NULL);
2095 mutex_exit(p->p_lock);
2096 if (error != 0) {
2097 /*
2098 * Don't leak kauth retval if we're silently
2099 * skipping this entry.
2100 */
2101 error = 0;
2102 continue;
2103 }
2104
2105 /*
2106 * Grab a hold on the process.
2107 */
2108 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2109 continue;
2110 }
2111 mutex_exit(&proc_lock);
2112
2113 fd = p->p_fd;
2114 mutex_enter(&fd->fd_lock);
2115 dt = fd->fd_dt;
2116 for (i = 0; i < dt->dt_nfiles; i++) {
2117 fdfile_t *ff;
2118
2119 if ((ff = dt->dt_ff[i]) == NULL) {
2120 continue;
2121 }
2122 if ((fp = atomic_load_consume(&ff->ff_file)) == NULL) {
2123 continue;
2124 }
2125
2126 mutex_enter(&fp->f_lock);
2127
2128 if ((fp->f_count == 0) ||
2129 (fp->f_marker == sysctl_file_marker)) {
2130 mutex_exit(&fp->f_lock);
2131 continue;
2132 }
2133
2134 /* Check that we have enough space. */
2135 if (buflen < sizeof(struct file)) {
2136 *oldlenp = where - start;
2137 mutex_exit(&fp->f_lock);
2138 error = ENOMEM;
2139 break;
2140 }
2141
2142 fill_file(&fbuf, fp);
2143 mutex_exit(&fp->f_lock);
2144 error = sysctl_copyout(l, &fbuf, where, sizeof(fbuf));
2145 if (error) {
2146 break;
2147 }
2148 buflen -= sizeof(struct file);
2149 where += sizeof(struct file);
2150
2151 fp->f_marker = sysctl_file_marker;
2152 }
2153 mutex_exit(&fd->fd_lock);
2154
2155 /*
2156 * Release reference to process.
2157 */
2158 mutex_enter(&proc_lock);
2159 rw_exit(&p->p_reflock);
2160
2161 if (error)
2162 break;
2163 }
2164
2165 sysctl_file_marker++;
2166 /* Reset all markers if wrapped. */
2167 if (sysctl_file_marker == 0) {
2168 sysctl_file_marker_reset();
2169 sysctl_file_marker++;
2170 }
2171
2172 mutex_exit(&proc_lock);
2173 mutex_exit(&sysctl_file_marker_lock);
2174
2175 *oldlenp = where - start;
2176 sysctl_relock();
2177 return error;
2178 }
2179
2180 /*
2181 * sysctl helper function for kern.file2
2182 */
2183 static int
2184 sysctl_kern_file2(SYSCTLFN_ARGS)
2185 {
2186 struct proc *p;
2187 struct file *fp;
2188 struct filedesc *fd;
2189 struct kinfo_file kf;
2190 char *dp;
2191 u_int i, op;
2192 size_t len, needed, elem_size, out_size;
2193 int error, arg, elem_count;
2194 fdfile_t *ff;
2195 fdtab_t *dt;
2196
2197 if (namelen == 1 && name[0] == CTL_QUERY)
2198 return sysctl_query(SYSCTLFN_CALL(rnode));
2199
2200 if (namelen != 4)
2201 return EINVAL;
2202
2203 error = 0;
2204 dp = oldp;
2205 len = (oldp != NULL) ? *oldlenp : 0;
2206 op = name[0];
2207 arg = name[1];
2208 elem_size = name[2];
2209 elem_count = name[3];
2210 out_size = MIN(sizeof(kf), elem_size);
2211 needed = 0;
2212
2213 if (elem_size < 1 || elem_count < 0)
2214 return EINVAL;
2215
2216 switch (op) {
2217 case KERN_FILE_BYFILE:
2218 case KERN_FILE_BYPID:
2219 /*
2220 * We're traversing the process list in both cases; the BYFILE
2221 * case does additional work of keeping track of files already
2222 * looked at.
2223 */
2224
2225 /* doesn't use arg so it must be zero */
2226 if ((op == KERN_FILE_BYFILE) && (arg != 0))
2227 return EINVAL;
2228
2229 if ((op == KERN_FILE_BYPID) && (arg < -1))
2230 /* -1 means all processes */
2231 return EINVAL;
2232
2233 sysctl_unlock();
2234 if (op == KERN_FILE_BYFILE)
2235 mutex_enter(&sysctl_file_marker_lock);
2236 mutex_enter(&proc_lock);
2237 PROCLIST_FOREACH(p, &allproc) {
2238 if (p->p_stat == SIDL) {
2239 /* skip embryonic processes */
2240 continue;
2241 }
2242 if (arg > 0 && p->p_pid != arg) {
2243 /* pick only the one we want */
2244 /* XXX want 0 to mean "kernel files" */
2245 continue;
2246 }
2247 mutex_enter(p->p_lock);
2248 error = kauth_authorize_process(l->l_cred,
2249 KAUTH_PROCESS_CANSEE, p,
2250 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2251 NULL, NULL);
2252 mutex_exit(p->p_lock);
2253 if (error != 0) {
2254 /*
2255 * Don't leak kauth retval if we're silently
2256 * skipping this entry.
2257 */
2258 error = 0;
2259 continue;
2260 }
2261
2262 /*
2263 * Grab a hold on the process.
2264 */
2265 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2266 continue;
2267 }
2268 mutex_exit(&proc_lock);
2269
2270 fd = p->p_fd;
2271 mutex_enter(&fd->fd_lock);
2272 dt = fd->fd_dt;
2273 for (i = 0; i < dt->dt_nfiles; i++) {
2274 if ((ff = dt->dt_ff[i]) == NULL) {
2275 continue;
2276 }
2277 if ((fp = atomic_load_consume(&ff->ff_file)) ==
2278 NULL) {
2279 continue;
2280 }
2281
2282 if ((op == KERN_FILE_BYFILE) &&
2283 (fp->f_marker == sysctl_file_marker)) {
2284 continue;
2285 }
2286 if (len >= elem_size && elem_count > 0) {
2287 mutex_enter(&fp->f_lock);
2288 fill_file2(&kf, fp, ff, i, p->p_pid);
2289 mutex_exit(&fp->f_lock);
2290 mutex_exit(&fd->fd_lock);
2291 error = sysctl_copyout(l,
2292 &kf, dp, out_size);
2293 mutex_enter(&fd->fd_lock);
2294 if (error)
2295 break;
2296 dp += elem_size;
2297 len -= elem_size;
2298 }
2299 if (op == KERN_FILE_BYFILE)
2300 fp->f_marker = sysctl_file_marker;
2301 needed += elem_size;
2302 if (elem_count > 0 && elem_count != INT_MAX)
2303 elem_count--;
2304 }
2305 mutex_exit(&fd->fd_lock);
2306
2307 /*
2308 * Release reference to process.
2309 */
2310 mutex_enter(&proc_lock);
2311 rw_exit(&p->p_reflock);
2312 }
2313 if (op == KERN_FILE_BYFILE) {
2314 sysctl_file_marker++;
2315
2316 /* Reset all markers if wrapped. */
2317 if (sysctl_file_marker == 0) {
2318 sysctl_file_marker_reset();
2319 sysctl_file_marker++;
2320 }
2321 }
2322 mutex_exit(&proc_lock);
2323 if (op == KERN_FILE_BYFILE)
2324 mutex_exit(&sysctl_file_marker_lock);
2325 sysctl_relock();
2326 break;
2327 default:
2328 return EINVAL;
2329 }
2330
2331 if (oldp == NULL)
2332 needed += KERN_FILESLOP * elem_size;
2333 *oldlenp = needed;
2334
2335 return error;
2336 }
2337
2338 static void
2339 fill_file(struct file *fp, const struct file *fpsrc)
2340 {
2341 const bool allowaddr = get_expose_address(curproc);
2342
2343 memset(fp, 0, sizeof(*fp));
2344
2345 fp->f_offset = fpsrc->f_offset;
2346 COND_SET_PTR(fp->f_cred, fpsrc->f_cred, allowaddr);
2347 COND_SET_CPTR(fp->f_ops, fpsrc->f_ops, allowaddr);
2348 COND_SET_STRUCT(fp->f_undata, fpsrc->f_undata, allowaddr);
2349 COND_SET_STRUCT(fp->f_list, fpsrc->f_list, allowaddr);
2350 fp->f_flag = fpsrc->f_flag;
2351 fp->f_marker = fpsrc->f_marker;
2352 fp->f_type = fpsrc->f_type;
2353 fp->f_advice = fpsrc->f_advice;
2354 fp->f_count = fpsrc->f_count;
2355 fp->f_msgcount = fpsrc->f_msgcount;
2356 fp->f_unpcount = fpsrc->f_unpcount;
2357 COND_SET_STRUCT(fp->f_unplist, fpsrc->f_unplist, allowaddr);
2358 }
2359
2360 static void
2361 fill_file2(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
2362 int i, pid_t pid)
2363 {
2364 const bool allowaddr = get_expose_address(curproc);
2365
2366 memset(kp, 0, sizeof(*kp));
2367
2368 COND_SET_VALUE(kp->ki_fileaddr, PTRTOUINT64(fp), allowaddr);
2369 kp->ki_flag = fp->f_flag;
2370 kp->ki_iflags = 0;
2371 kp->ki_ftype = fp->f_type;
2372 kp->ki_count = fp->f_count;
2373 kp->ki_msgcount = fp->f_msgcount;
2374 COND_SET_VALUE(kp->ki_fucred, PTRTOUINT64(fp->f_cred), allowaddr);
2375 kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
2376 kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
2377 COND_SET_VALUE(kp->ki_fops, PTRTOUINT64(fp->f_ops), allowaddr);
2378 kp->ki_foffset = fp->f_offset;
2379 COND_SET_VALUE(kp->ki_fdata, PTRTOUINT64(fp->f_data), allowaddr);
2380
2381 /* vnode information to glue this file to something */
2382 if (fp->f_type == DTYPE_VNODE) {
2383 struct vnode *vp = fp->f_vnode;
2384
2385 COND_SET_VALUE(kp->ki_vun, PTRTOUINT64(vp->v_un.vu_socket),
2386 allowaddr);
2387 kp->ki_vsize = vp->v_size;
2388 kp->ki_vtype = vp->v_type;
2389 kp->ki_vtag = vp->v_tag;
2390 COND_SET_VALUE(kp->ki_vdata, PTRTOUINT64(vp->v_data),
2391 allowaddr);
2392 }
2393
2394 /* process information when retrieved via KERN_FILE_BYPID */
2395 if (ff != NULL) {
2396 kp->ki_pid = pid;
2397 kp->ki_fd = i;
2398 kp->ki_ofileflags = ff->ff_exclose;
2399 kp->ki_usecount = ff->ff_refcnt;
2400 }
2401 }
2402