kern_entropy.c revision 1.1 1 1.1 riastrad /* $NetBSD: kern_entropy.c,v 1.1 2020/04/30 03:28:18 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad /*
33 1.1 riastrad * Entropy subsystem
34 1.1 riastrad *
35 1.1 riastrad * * Each CPU maintains a per-CPU entropy pool so that gathering
36 1.1 riastrad * entropy requires no interprocessor synchronization, except
37 1.1 riastrad * early at boot when we may be scrambling to gather entropy as
38 1.1 riastrad * soon as possible.
39 1.1 riastrad *
40 1.1 riastrad * - entropy_enter gathers entropy and never drops it on the
41 1.1 riastrad * floor, at the cost of sometimes having to do cryptography.
42 1.1 riastrad *
43 1.1 riastrad * - entropy_enter_intr gathers entropy or drops it on the
44 1.1 riastrad * floor, with low latency. Work to stir the pool or kick the
45 1.1 riastrad * housekeeping thread is scheduled in soft interrupts.
46 1.1 riastrad *
47 1.1 riastrad * * entropy_enter immediately enters into the global pool if it
48 1.1 riastrad * can transition to full entropy in one swell foop. Otherwise,
49 1.1 riastrad * it defers to a housekeeping thread that consolidates entropy,
50 1.1 riastrad * but only when the CPUs collectively have full entropy, in
51 1.1 riastrad * order to mitigate iterative-guessing attacks.
52 1.1 riastrad *
53 1.1 riastrad * * The entropy housekeeping thread continues to consolidate
54 1.1 riastrad * entropy even after we think we have full entropy, in case we
55 1.1 riastrad * are wrong, but is limited to one discretionary consolidation
56 1.1 riastrad * per minute, and only when new entropy is actually coming in,
57 1.1 riastrad * to limit performance impact.
58 1.1 riastrad *
59 1.1 riastrad * * The entropy epoch is the number that changes when we
60 1.1 riastrad * transition from partial entropy to full entropy, so that
61 1.1 riastrad * users can easily determine when to reseed. This also
62 1.1 riastrad * facilitates an operator explicitly causing everything to
63 1.1 riastrad * reseed by sysctl -w kern.entropy.consolidate=1, e.g. if they
64 1.1 riastrad * just flipped a coin 256 times and wrote `echo tthhhhhthh... >
65 1.1 riastrad * /dev/random'.
66 1.1 riastrad *
67 1.1 riastrad * * No entropy estimation based on the sample values, which is a
68 1.1 riastrad * contradiction in terms and a potential source of side
69 1.1 riastrad * channels. It is the responsibility of the driver author to
70 1.1 riastrad * study how predictable the physical source of input can ever
71 1.1 riastrad * be, and to furnish a lower bound on the amount of entropy it
72 1.1 riastrad * has.
73 1.1 riastrad *
74 1.1 riastrad * * Entropy depletion is available for testing (or if you're into
75 1.1 riastrad * that sort of thing), with sysctl -w kern.entropy.depletion=1;
76 1.1 riastrad * the logic to support it is small, to minimize chance of bugs.
77 1.1 riastrad */
78 1.1 riastrad
79 1.1 riastrad #include <sys/cdefs.h>
80 1.1 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.1 2020/04/30 03:28:18 riastradh Exp $");
81 1.1 riastrad
82 1.1 riastrad #include <sys/param.h>
83 1.1 riastrad #include <sys/types.h>
84 1.1 riastrad #include <sys/atomic.h>
85 1.1 riastrad #include <sys/compat_stub.h>
86 1.1 riastrad #include <sys/condvar.h>
87 1.1 riastrad #include <sys/cpu.h>
88 1.1 riastrad #include <sys/entropy.h>
89 1.1 riastrad #include <sys/errno.h>
90 1.1 riastrad #include <sys/evcnt.h>
91 1.1 riastrad #include <sys/event.h>
92 1.1 riastrad #include <sys/file.h>
93 1.1 riastrad #include <sys/intr.h>
94 1.1 riastrad #include <sys/kauth.h>
95 1.1 riastrad #include <sys/kernel.h>
96 1.1 riastrad #include <sys/kmem.h>
97 1.1 riastrad #include <sys/kthread.h>
98 1.1 riastrad #include <sys/module_hook.h>
99 1.1 riastrad #include <sys/mutex.h>
100 1.1 riastrad #include <sys/percpu.h>
101 1.1 riastrad #include <sys/poll.h>
102 1.1 riastrad #include <sys/queue.h>
103 1.1 riastrad #include <sys/rnd.h> /* legacy kernel API */
104 1.1 riastrad #include <sys/rndio.h> /* userland ioctl interface */
105 1.1 riastrad #include <sys/rndsource.h> /* kernel rndsource driver API */
106 1.1 riastrad #include <sys/select.h>
107 1.1 riastrad #include <sys/selinfo.h>
108 1.1 riastrad #include <sys/sha1.h> /* for boot seed checksum */
109 1.1 riastrad #include <sys/stdint.h>
110 1.1 riastrad #include <sys/sysctl.h>
111 1.1 riastrad #include <sys/systm.h>
112 1.1 riastrad #include <sys/time.h>
113 1.1 riastrad #include <sys/xcall.h>
114 1.1 riastrad
115 1.1 riastrad #include <lib/libkern/entpool.h>
116 1.1 riastrad
117 1.1 riastrad #include <machine/limits.h>
118 1.1 riastrad
119 1.1 riastrad #ifdef __HAVE_CPU_COUNTER
120 1.1 riastrad #include <machine/cpu_counter.h>
121 1.1 riastrad #endif
122 1.1 riastrad
123 1.1 riastrad /*
124 1.1 riastrad * struct entropy_cpu
125 1.1 riastrad *
126 1.1 riastrad * Per-CPU entropy state. The pool is allocated separately
127 1.1 riastrad * because percpu(9) sometimes moves per-CPU objects around
128 1.1 riastrad * without zeroing them, which would lead to unwanted copies of
129 1.1 riastrad * sensitive secrets. The evcnt is allocated separately becuase
130 1.1 riastrad * evcnt(9) assumes it stays put in memory.
131 1.1 riastrad */
132 1.1 riastrad struct entropy_cpu {
133 1.1 riastrad struct evcnt *ec_softint_evcnt;
134 1.1 riastrad struct entpool *ec_pool;
135 1.1 riastrad unsigned ec_pending;
136 1.1 riastrad bool ec_locked;
137 1.1 riastrad };
138 1.1 riastrad
139 1.1 riastrad /*
140 1.1 riastrad * struct rndsource_cpu
141 1.1 riastrad *
142 1.1 riastrad * Per-CPU rndsource state.
143 1.1 riastrad */
144 1.1 riastrad struct rndsource_cpu {
145 1.1 riastrad unsigned rc_nbits; /* bits of entropy added */
146 1.1 riastrad };
147 1.1 riastrad
148 1.1 riastrad /*
149 1.1 riastrad * entropy_global (a.k.a. E for short in this file)
150 1.1 riastrad *
151 1.1 riastrad * Global entropy state. Writes protected by the global lock.
152 1.1 riastrad * Some fields, marked (A), can be read outside the lock, and are
153 1.1 riastrad * maintained with atomic_load/store_relaxed.
154 1.1 riastrad */
155 1.1 riastrad struct {
156 1.1 riastrad kmutex_t lock; /* covers all global state */
157 1.1 riastrad struct entpool pool; /* global pool for extraction */
158 1.1 riastrad unsigned needed; /* (A) needed globally */
159 1.1 riastrad unsigned pending; /* (A) pending in per-CPU pools */
160 1.1 riastrad unsigned timestamp; /* (A) time of last consolidation */
161 1.1 riastrad unsigned epoch; /* (A) changes when needed -> 0 */
162 1.1 riastrad kcondvar_t cv; /* notifies state changes */
163 1.1 riastrad struct selinfo selq; /* notifies needed -> 0 */
164 1.1 riastrad LIST_HEAD(,krndsource) sources; /* list of entropy sources */
165 1.1 riastrad enum entropy_stage {
166 1.1 riastrad ENTROPY_COLD = 0, /* single-threaded */
167 1.1 riastrad ENTROPY_WARM, /* multi-threaded at boot before CPUs */
168 1.1 riastrad ENTROPY_HOT, /* multi-threaded multi-CPU */
169 1.1 riastrad } stage;
170 1.1 riastrad bool requesting; /* busy requesting from sources */
171 1.1 riastrad bool consolidate; /* kick thread to consolidate */
172 1.1 riastrad bool seed_rndsource; /* true if seed source is attached */
173 1.1 riastrad bool seeded; /* true if seed file already loaded */
174 1.1 riastrad } entropy_global __cacheline_aligned = {
175 1.1 riastrad /* Fields that must be initialized when the kernel is loaded. */
176 1.1 riastrad .needed = ENTROPY_CAPACITY*NBBY,
177 1.1 riastrad .epoch = (unsigned)-1, /* -1 means not yet full entropy */
178 1.1 riastrad .sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
179 1.1 riastrad .stage = ENTROPY_COLD,
180 1.1 riastrad };
181 1.1 riastrad
182 1.1 riastrad #define E (&entropy_global) /* declutter */
183 1.1 riastrad
184 1.1 riastrad /* Read-mostly globals */
185 1.1 riastrad static struct percpu *entropy_percpu __read_mostly; /* struct entropy_cpu */
186 1.1 riastrad static void *entropy_sih __read_mostly; /* softint handler */
187 1.1 riastrad static struct lwp *entropy_lwp __read_mostly; /* housekeeping thread */
188 1.1 riastrad
189 1.1 riastrad int rnd_initial_entropy __read_mostly; /* XXX legacy */
190 1.1 riastrad
191 1.1 riastrad static struct krndsource seed_rndsource __read_mostly;
192 1.1 riastrad
193 1.1 riastrad /*
194 1.1 riastrad * Event counters
195 1.1 riastrad *
196 1.1 riastrad * Must be careful with adding these because they can serve as
197 1.1 riastrad * side channels.
198 1.1 riastrad */
199 1.1 riastrad static struct evcnt entropy_discretionary_evcnt =
200 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
201 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
202 1.1 riastrad static struct evcnt entropy_immediate_evcnt =
203 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
204 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
205 1.1 riastrad static struct evcnt entropy_partial_evcnt =
206 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
207 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
208 1.1 riastrad static struct evcnt entropy_consolidate_evcnt =
209 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
210 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
211 1.1 riastrad static struct evcnt entropy_extract_intr_evcnt =
212 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract intr");
213 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_extract_intr_evcnt);
214 1.1 riastrad static struct evcnt entropy_extract_fail_evcnt =
215 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
216 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
217 1.1 riastrad static struct evcnt entropy_request_evcnt =
218 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
219 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_request_evcnt);
220 1.1 riastrad static struct evcnt entropy_deplete_evcnt =
221 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
222 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
223 1.1 riastrad static struct evcnt entropy_notify_evcnt =
224 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
225 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
226 1.1 riastrad
227 1.1 riastrad /* Sysctl knobs */
228 1.1 riastrad bool entropy_collection = 1;
229 1.1 riastrad bool entropy_depletion = 0; /* Silly! */
230 1.1 riastrad
231 1.1 riastrad static const struct sysctlnode *entropy_sysctlroot;
232 1.1 riastrad static struct sysctllog *entropy_sysctllog;
233 1.1 riastrad
234 1.1 riastrad /* Forward declarations */
235 1.1 riastrad static void entropy_init_cpu(void *, void *, struct cpu_info *);
236 1.1 riastrad static void entropy_fini_cpu(void *, void *, struct cpu_info *);
237 1.1 riastrad static void entropy_account_cpu(struct entropy_cpu *);
238 1.1 riastrad static void entropy_enter(const void *, size_t, unsigned);
239 1.1 riastrad static bool entropy_enter_intr(const void *, size_t, unsigned);
240 1.1 riastrad static void entropy_softintr(void *);
241 1.1 riastrad static void entropy_thread(void *);
242 1.1 riastrad static uint32_t entropy_pending(void);
243 1.1 riastrad static void entropy_pending_cpu(void *, void *, struct cpu_info *);
244 1.1 riastrad static void entropy_consolidate(void);
245 1.1 riastrad static void entropy_gather_xc(void *, void *);
246 1.1 riastrad static void entropy_notify(void);
247 1.1 riastrad static int sysctl_entropy_consolidate(SYSCTLFN_ARGS);
248 1.1 riastrad static void filt_entropy_read_detach(struct knote *);
249 1.1 riastrad static int filt_entropy_read_event(struct knote *, long);
250 1.1 riastrad static void entropy_request(size_t);
251 1.1 riastrad static void rnd_add_data_1(struct krndsource *, const void *, uint32_t,
252 1.1 riastrad uint32_t);
253 1.1 riastrad static unsigned rndsource_entropybits(struct krndsource *);
254 1.1 riastrad static void rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
255 1.1 riastrad static void rndsource_to_user(struct krndsource *, rndsource_t *);
256 1.1 riastrad static void rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
257 1.1 riastrad
258 1.1 riastrad /*
259 1.1 riastrad * curcpu_available()
260 1.1 riastrad *
261 1.1 riastrad * True if we can inspect the current CPU. Early on this may not
262 1.1 riastrad * work. XXX On most if not all ports, this should work earlier.
263 1.1 riastrad */
264 1.1 riastrad static inline bool
265 1.1 riastrad curcpu_available(void)
266 1.1 riastrad {
267 1.1 riastrad
268 1.1 riastrad return __predict_true(!cold);
269 1.1 riastrad }
270 1.1 riastrad
271 1.1 riastrad /*
272 1.1 riastrad * entropy_timer()
273 1.1 riastrad *
274 1.1 riastrad * Cycle counter, time counter, or anything that changes a wee bit
275 1.1 riastrad * unpredictably.
276 1.1 riastrad */
277 1.1 riastrad static inline uint32_t
278 1.1 riastrad entropy_timer(void)
279 1.1 riastrad {
280 1.1 riastrad struct bintime bt;
281 1.1 riastrad uint32_t v;
282 1.1 riastrad
283 1.1 riastrad /* Very early on, cpu_counter32() may not be available. */
284 1.1 riastrad if (!curcpu_available())
285 1.1 riastrad return 0;
286 1.1 riastrad
287 1.1 riastrad /* If we have a CPU cycle counter, use the low 32 bits. */
288 1.1 riastrad #ifdef __HAVE_CPU_COUNTER
289 1.1 riastrad if (__predict_true(cpu_hascounter()))
290 1.1 riastrad return cpu_counter32();
291 1.1 riastrad #endif /* __HAVE_CPU_COUNTER */
292 1.1 riastrad
293 1.1 riastrad /* If we're cold, tough. Can't binuptime while cold. */
294 1.1 riastrad if (__predict_false(cold))
295 1.1 riastrad return 0;
296 1.1 riastrad
297 1.1 riastrad /* Fold the 128 bits of binuptime into 32 bits. */
298 1.1 riastrad binuptime(&bt);
299 1.1 riastrad v = bt.frac;
300 1.1 riastrad v ^= bt.frac >> 32;
301 1.1 riastrad v ^= bt.sec;
302 1.1 riastrad v ^= bt.sec >> 32;
303 1.1 riastrad return v;
304 1.1 riastrad }
305 1.1 riastrad
306 1.1 riastrad static void
307 1.1 riastrad attach_seed_rndsource(void)
308 1.1 riastrad {
309 1.1 riastrad
310 1.1 riastrad /*
311 1.1 riastrad * First called no later than entropy_init, while we are still
312 1.1 riastrad * single-threaded, so no need for RUN_ONCE.
313 1.1 riastrad */
314 1.1 riastrad if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
315 1.1 riastrad return;
316 1.1 riastrad rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
317 1.1 riastrad RND_FLAG_COLLECT_VALUE);
318 1.1 riastrad E->seed_rndsource = true;
319 1.1 riastrad }
320 1.1 riastrad
321 1.1 riastrad /*
322 1.1 riastrad * entropy_init()
323 1.1 riastrad *
324 1.1 riastrad * Initialize the entropy subsystem. Panic on failure.
325 1.1 riastrad *
326 1.1 riastrad * Requires percpu(9) and sysctl(9) to be initialized.
327 1.1 riastrad */
328 1.1 riastrad static void
329 1.1 riastrad entropy_init(void)
330 1.1 riastrad {
331 1.1 riastrad uint32_t extra[2];
332 1.1 riastrad struct krndsource *rs;
333 1.1 riastrad unsigned i = 0;
334 1.1 riastrad
335 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD);
336 1.1 riastrad
337 1.1 riastrad /* Grab some cycle counts early at boot. */
338 1.1 riastrad extra[i++] = entropy_timer();
339 1.1 riastrad
340 1.1 riastrad /* Run the entropy pool cryptography self-test. */
341 1.1 riastrad if (entpool_selftest() == -1)
342 1.1 riastrad panic("entropy pool crypto self-test failed");
343 1.1 riastrad
344 1.1 riastrad /* Create the sysctl directory. */
345 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
346 1.1 riastrad CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
347 1.1 riastrad SYSCTL_DESCR("Entropy (random number sources) options"),
348 1.1 riastrad NULL, 0, NULL, 0,
349 1.1 riastrad CTL_KERN, CTL_CREATE, CTL_EOL);
350 1.1 riastrad
351 1.1 riastrad /* Create the sysctl knobs. */
352 1.1 riastrad /* XXX These shouldn't be writable at securelevel>0. */
353 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
354 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
355 1.1 riastrad SYSCTL_DESCR("Automatically collect entropy from hardware"),
356 1.1 riastrad NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
357 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
358 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
359 1.1 riastrad SYSCTL_DESCR("`Deplete' entropy pool when observed"),
360 1.1 riastrad NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
361 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
362 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
363 1.1 riastrad SYSCTL_DESCR("Trigger entropy consolidation now"),
364 1.1 riastrad sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
365 1.1 riastrad /* XXX These should maybe not be readable at securelevel>0. */
366 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
367 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
368 1.1 riastrad "needed", SYSCTL_DESCR("Systemwide entropy deficit"),
369 1.1 riastrad NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
370 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
371 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
372 1.1 riastrad "pending", SYSCTL_DESCR("Entropy pending on CPUs"),
373 1.1 riastrad NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
374 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
375 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
376 1.1 riastrad "epoch", SYSCTL_DESCR("Entropy epoch"),
377 1.1 riastrad NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
378 1.1 riastrad
379 1.1 riastrad /* Initialize the global state for multithreaded operation. */
380 1.1 riastrad mutex_init(&E->lock, MUTEX_DEFAULT, IPL_VM);
381 1.1 riastrad cv_init(&E->cv, "entropy");
382 1.1 riastrad selinit(&E->selq);
383 1.1 riastrad
384 1.1 riastrad /* Make sure the seed source is attached. */
385 1.1 riastrad attach_seed_rndsource();
386 1.1 riastrad
387 1.1 riastrad /* Note if the bootloader didn't provide a seed. */
388 1.1 riastrad if (!E->seeded)
389 1.1 riastrad printf("entropy: no seed from bootloader\n");
390 1.1 riastrad
391 1.1 riastrad /* Allocate the per-CPU records for all early entropy sources. */
392 1.1 riastrad LIST_FOREACH(rs, &E->sources, list)
393 1.1 riastrad rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
394 1.1 riastrad
395 1.1 riastrad /* Enter the boot cycle count to get started. */
396 1.1 riastrad extra[i++] = entropy_timer();
397 1.1 riastrad KASSERT(i == __arraycount(extra));
398 1.1 riastrad entropy_enter(extra, sizeof extra, 0);
399 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
400 1.1 riastrad
401 1.1 riastrad /* We are now ready for multi-threaded operation. */
402 1.1 riastrad E->stage = ENTROPY_WARM;
403 1.1 riastrad }
404 1.1 riastrad
405 1.1 riastrad /*
406 1.1 riastrad * entropy_init_late()
407 1.1 riastrad *
408 1.1 riastrad * Late initialization. Panic on failure.
409 1.1 riastrad *
410 1.1 riastrad * Requires CPUs to have been detected and LWPs to have started.
411 1.1 riastrad */
412 1.1 riastrad static void
413 1.1 riastrad entropy_init_late(void)
414 1.1 riastrad {
415 1.1 riastrad int error;
416 1.1 riastrad
417 1.1 riastrad KASSERT(E->stage == ENTROPY_WARM);
418 1.1 riastrad
419 1.1 riastrad /* Allocate and initialize the per-CPU state. */
420 1.1 riastrad entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
421 1.1 riastrad entropy_init_cpu, entropy_fini_cpu, NULL);
422 1.1 riastrad
423 1.1 riastrad /*
424 1.1 riastrad * Establish the softint at the highest softint priority level.
425 1.1 riastrad * Must happen after CPU detection.
426 1.1 riastrad */
427 1.1 riastrad entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
428 1.1 riastrad &entropy_softintr, NULL);
429 1.1 riastrad if (entropy_sih == NULL)
430 1.1 riastrad panic("unable to establish entropy softint");
431 1.1 riastrad
432 1.1 riastrad /*
433 1.1 riastrad * Create the entropy housekeeping thread. Must happen after
434 1.1 riastrad * lwpinit.
435 1.1 riastrad */
436 1.1 riastrad error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
437 1.1 riastrad entropy_thread, NULL, &entropy_lwp, "entbutler");
438 1.1 riastrad if (error)
439 1.1 riastrad panic("unable to create entropy housekeeping thread: %d",
440 1.1 riastrad error);
441 1.1 riastrad
442 1.1 riastrad /*
443 1.1 riastrad * Wait until the per-CPU initialization has hit all CPUs
444 1.1 riastrad * before proceeding to mark the entropy system hot.
445 1.1 riastrad */
446 1.1 riastrad xc_barrier(XC_HIGHPRI);
447 1.1 riastrad E->stage = ENTROPY_HOT;
448 1.1 riastrad }
449 1.1 riastrad
450 1.1 riastrad /*
451 1.1 riastrad * entropy_init_cpu(ptr, cookie, ci)
452 1.1 riastrad *
453 1.1 riastrad * percpu(9) constructor for per-CPU entropy pool.
454 1.1 riastrad */
455 1.1 riastrad static void
456 1.1 riastrad entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
457 1.1 riastrad {
458 1.1 riastrad struct entropy_cpu *ec = ptr;
459 1.1 riastrad
460 1.1 riastrad ec->ec_softint_evcnt = kmem_alloc(sizeof(*ec->ec_softint_evcnt),
461 1.1 riastrad KM_SLEEP);
462 1.1 riastrad ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
463 1.1 riastrad ec->ec_pending = 0;
464 1.1 riastrad ec->ec_locked = false;
465 1.1 riastrad
466 1.1 riastrad evcnt_attach_dynamic(ec->ec_softint_evcnt, EVCNT_TYPE_MISC, NULL,
467 1.1 riastrad ci->ci_cpuname, "entropy softint");
468 1.1 riastrad }
469 1.1 riastrad
470 1.1 riastrad /*
471 1.1 riastrad * entropy_fini_cpu(ptr, cookie, ci)
472 1.1 riastrad *
473 1.1 riastrad * percpu(9) destructor for per-CPU entropy pool.
474 1.1 riastrad */
475 1.1 riastrad static void
476 1.1 riastrad entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
477 1.1 riastrad {
478 1.1 riastrad struct entropy_cpu *ec = ptr;
479 1.1 riastrad
480 1.1 riastrad /*
481 1.1 riastrad * Zero any lingering data. Disclosure of the per-CPU pool
482 1.1 riastrad * shouldn't retroactively affect the security of any keys
483 1.1 riastrad * generated, because entpool(9) erases whatever we have just
484 1.1 riastrad * drawn out of any pool, but better safe than sorry.
485 1.1 riastrad */
486 1.1 riastrad explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
487 1.1 riastrad
488 1.1 riastrad evcnt_detach(ec->ec_softint_evcnt);
489 1.1 riastrad
490 1.1 riastrad kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
491 1.1 riastrad kmem_free(ec->ec_softint_evcnt, sizeof(*ec->ec_softint_evcnt));
492 1.1 riastrad }
493 1.1 riastrad
494 1.1 riastrad /*
495 1.1 riastrad * entropy_seed(seed)
496 1.1 riastrad *
497 1.1 riastrad * Seed the entropy pool with seed. Meant to be called as early
498 1.1 riastrad * as possible by the bootloader; may be called before or after
499 1.1 riastrad * entropy_init. Must be called before system reaches userland.
500 1.1 riastrad * Must be called in thread or soft interrupt context, not in hard
501 1.1 riastrad * interrupt context. Must be called at most once.
502 1.1 riastrad *
503 1.1 riastrad * Overwrites the seed in place. Caller may then free the memory.
504 1.1 riastrad */
505 1.1 riastrad static void
506 1.1 riastrad entropy_seed(rndsave_t *seed)
507 1.1 riastrad {
508 1.1 riastrad SHA1_CTX ctx;
509 1.1 riastrad uint8_t digest[SHA1_DIGEST_LENGTH];
510 1.1 riastrad bool seeded;
511 1.1 riastrad
512 1.1 riastrad /*
513 1.1 riastrad * Verify the checksum. If the checksum fails, take the data
514 1.1 riastrad * but ignore the entropy estimate -- the file may have been
515 1.1 riastrad * incompletely written with garbage, which is harmless to add
516 1.1 riastrad * but may not be as unpredictable as alleged.
517 1.1 riastrad *
518 1.1 riastrad * XXX There is a byte order dependency here...
519 1.1 riastrad */
520 1.1 riastrad SHA1Init(&ctx);
521 1.1 riastrad SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
522 1.1 riastrad SHA1Update(&ctx, seed->data, sizeof(seed->data));
523 1.1 riastrad SHA1Final(digest, &ctx);
524 1.1 riastrad CTASSERT(sizeof(seed->digest) == sizeof(digest));
525 1.1 riastrad if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
526 1.1 riastrad printf("entropy: invalid seed checksum\n");
527 1.1 riastrad seed->entropy = 0;
528 1.1 riastrad }
529 1.1 riastrad explicit_memset(&ctx, 0, sizeof &ctx);
530 1.1 riastrad explicit_memset(digest, 0, sizeof digest);
531 1.1 riastrad
532 1.1 riastrad /* Make sure the seed source is attached. */
533 1.1 riastrad attach_seed_rndsource();
534 1.1 riastrad
535 1.1 riastrad /* Test and set E->seeded. */
536 1.1 riastrad if (E->stage >= ENTROPY_WARM)
537 1.1 riastrad mutex_enter(&E->lock);
538 1.1 riastrad seeded = E->seeded;
539 1.1 riastrad E->seeded = true;
540 1.1 riastrad if (E->stage >= ENTROPY_WARM)
541 1.1 riastrad mutex_exit(&E->lock);
542 1.1 riastrad
543 1.1 riastrad /*
544 1.1 riastrad * If we've been seeded, may be re-entering the same seed
545 1.1 riastrad * (e.g., bootloader vs module init, or something). No harm in
546 1.1 riastrad * entering it twice, but it contributes no additional entropy.
547 1.1 riastrad */
548 1.1 riastrad if (seeded) {
549 1.1 riastrad printf("entropy: double-seeded by bootloader\n");
550 1.1 riastrad seed->entropy = 0;
551 1.1 riastrad } else {
552 1.1 riastrad printf("entropy: entering seed from bootloader\n");
553 1.1 riastrad }
554 1.1 riastrad
555 1.1 riastrad /* Enter it into the pool and promptly zero it. */
556 1.1 riastrad rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
557 1.1 riastrad seed->entropy);
558 1.1 riastrad explicit_memset(seed, 0, sizeof(*seed));
559 1.1 riastrad }
560 1.1 riastrad
561 1.1 riastrad /*
562 1.1 riastrad * entropy_bootrequest()
563 1.1 riastrad *
564 1.1 riastrad * Request entropy from all sources at boot, once config is
565 1.1 riastrad * complete and interrupts are running.
566 1.1 riastrad */
567 1.1 riastrad void
568 1.1 riastrad entropy_bootrequest(void)
569 1.1 riastrad {
570 1.1 riastrad
571 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
572 1.1 riastrad
573 1.1 riastrad /*
574 1.1 riastrad * Request enough to satisfy the maximum entropy shortage.
575 1.1 riastrad * This is harmless overkill if the bootloader provided a seed.
576 1.1 riastrad */
577 1.1 riastrad mutex_enter(&E->lock);
578 1.1 riastrad entropy_request(ENTROPY_CAPACITY);
579 1.1 riastrad mutex_exit(&E->lock);
580 1.1 riastrad }
581 1.1 riastrad
582 1.1 riastrad /*
583 1.1 riastrad * entropy_epoch()
584 1.1 riastrad *
585 1.1 riastrad * Returns the current entropy epoch. If this changes, you should
586 1.1 riastrad * reseed. If -1, means the system has not yet reached full
587 1.1 riastrad * entropy; never reverts back to -1 after full entropy has been
588 1.1 riastrad * reached. Never zero, so you can always use zero as an
589 1.1 riastrad * uninitialized sentinel value meaning `reseed ASAP'.
590 1.1 riastrad *
591 1.1 riastrad * Usage model:
592 1.1 riastrad *
593 1.1 riastrad * struct foo {
594 1.1 riastrad * struct crypto_prng prng;
595 1.1 riastrad * unsigned epoch;
596 1.1 riastrad * } *foo;
597 1.1 riastrad *
598 1.1 riastrad * unsigned epoch = entropy_epoch();
599 1.1 riastrad * if (__predict_false(epoch != foo->epoch)) {
600 1.1 riastrad * uint8_t seed[32];
601 1.1 riastrad * if (entropy_extract(seed, sizeof seed, 0) != 0)
602 1.1 riastrad * warn("no entropy");
603 1.1 riastrad * crypto_prng_reseed(&foo->prng, seed, sizeof seed);
604 1.1 riastrad * foo->epoch = epoch;
605 1.1 riastrad * }
606 1.1 riastrad */
607 1.1 riastrad unsigned
608 1.1 riastrad entropy_epoch(void)
609 1.1 riastrad {
610 1.1 riastrad
611 1.1 riastrad /*
612 1.1 riastrad * Unsigned int, so no need for seqlock for an atomic read, but
613 1.1 riastrad * make sure we read it afresh each time.
614 1.1 riastrad */
615 1.1 riastrad return atomic_load_relaxed(&E->epoch);
616 1.1 riastrad }
617 1.1 riastrad
618 1.1 riastrad /*
619 1.1 riastrad * entropy_account_cpu(ec)
620 1.1 riastrad *
621 1.1 riastrad * Consider whether to consolidate entropy into the global pool
622 1.1 riastrad * after we just added some into the current CPU's pending pool.
623 1.1 riastrad *
624 1.1 riastrad * - If this CPU can provide enough entropy now, do so.
625 1.1 riastrad *
626 1.1 riastrad * - If this and whatever else is available on other CPUs can
627 1.1 riastrad * provide enough entropy, kick the consolidation thread.
628 1.1 riastrad *
629 1.1 riastrad * - Otherwise, do as little as possible, except maybe consolidate
630 1.1 riastrad * entropy at most once a minute.
631 1.1 riastrad *
632 1.1 riastrad * Caller must be bound to a CPU and therefore have exclusive
633 1.1 riastrad * access to ec. Will acquire and release the global lock.
634 1.1 riastrad */
635 1.1 riastrad static void
636 1.1 riastrad entropy_account_cpu(struct entropy_cpu *ec)
637 1.1 riastrad {
638 1.1 riastrad unsigned diff;
639 1.1 riastrad
640 1.1 riastrad KASSERT(E->stage == ENTROPY_HOT);
641 1.1 riastrad
642 1.1 riastrad /*
643 1.1 riastrad * If there's no entropy needed, and entropy has been
644 1.1 riastrad * consolidated in the last minute, do nothing.
645 1.1 riastrad */
646 1.1 riastrad if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
647 1.1 riastrad __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
648 1.1 riastrad __predict_true((time_uptime - E->timestamp) <= 60))
649 1.1 riastrad return;
650 1.1 riastrad
651 1.1 riastrad /* If there's nothing pending, stop here. */
652 1.1 riastrad if (ec->ec_pending == 0)
653 1.1 riastrad return;
654 1.1 riastrad
655 1.1 riastrad /* Consider consolidation, under the lock. */
656 1.1 riastrad mutex_enter(&E->lock);
657 1.1 riastrad if (E->needed != 0 && E->needed <= ec->ec_pending) {
658 1.1 riastrad /*
659 1.1 riastrad * If we have not yet attained full entropy but we can
660 1.1 riastrad * now, do so. This way we disseminate entropy
661 1.1 riastrad * promptly when it becomes available early at boot;
662 1.1 riastrad * otherwise we leave it to the entropy consolidation
663 1.1 riastrad * thread, which is rate-limited to mitigate side
664 1.1 riastrad * channels and abuse.
665 1.1 riastrad */
666 1.1 riastrad uint8_t buf[ENTPOOL_CAPACITY];
667 1.1 riastrad
668 1.1 riastrad /* Transfer from the local pool to the global pool. */
669 1.1 riastrad entpool_extract(ec->ec_pool, buf, sizeof buf);
670 1.1 riastrad entpool_enter(&E->pool, buf, sizeof buf);
671 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, 0);
672 1.1 riastrad atomic_store_relaxed(&E->needed, 0);
673 1.1 riastrad
674 1.1 riastrad /* Notify waiters that we now have full entropy. */
675 1.1 riastrad entropy_notify();
676 1.1 riastrad entropy_immediate_evcnt.ev_count++;
677 1.1 riastrad } else if (ec->ec_pending) {
678 1.1 riastrad /* Record how much we can add to the global pool. */
679 1.1 riastrad diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
680 1.1 riastrad E->pending += diff;
681 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
682 1.1 riastrad
683 1.1 riastrad /*
684 1.1 riastrad * This should have made a difference unless we were
685 1.1 riastrad * already saturated.
686 1.1 riastrad */
687 1.1 riastrad KASSERT(diff || E->pending == ENTROPY_CAPACITY*NBBY);
688 1.1 riastrad KASSERT(E->pending);
689 1.1 riastrad
690 1.1 riastrad if (E->needed <= E->pending) {
691 1.1 riastrad /*
692 1.1 riastrad * Enough entropy between all the per-CPU
693 1.1 riastrad * pools. Wake up the housekeeping thread.
694 1.1 riastrad *
695 1.1 riastrad * If we don't need any entropy, this doesn't
696 1.1 riastrad * mean much, but it is the only time we ever
697 1.1 riastrad * gather additional entropy in case the
698 1.1 riastrad * accounting has been overly optimistic. This
699 1.1 riastrad * happens at most once a minute, so there's
700 1.1 riastrad * negligible performance cost.
701 1.1 riastrad */
702 1.1 riastrad E->consolidate = true;
703 1.1 riastrad cv_broadcast(&E->cv);
704 1.1 riastrad if (E->needed == 0)
705 1.1 riastrad entropy_discretionary_evcnt.ev_count++;
706 1.1 riastrad } else {
707 1.1 riastrad /* Can't get full entropy. Keep gathering. */
708 1.1 riastrad entropy_partial_evcnt.ev_count++;
709 1.1 riastrad }
710 1.1 riastrad }
711 1.1 riastrad mutex_exit(&E->lock);
712 1.1 riastrad }
713 1.1 riastrad
714 1.1 riastrad /*
715 1.1 riastrad * entropy_enter_early(buf, len, nbits)
716 1.1 riastrad *
717 1.1 riastrad * Do entropy bookkeeping globally, before we have established
718 1.1 riastrad * per-CPU pools. Enter directly into the global pool in the hope
719 1.1 riastrad * that we enter enough before the first entropy_extract to thwart
720 1.1 riastrad * iterative-guessing attacks; entropy_extract will warn if not.
721 1.1 riastrad */
722 1.1 riastrad static void
723 1.1 riastrad entropy_enter_early(const void *buf, size_t len, unsigned nbits)
724 1.1 riastrad {
725 1.1 riastrad bool notify = false;
726 1.1 riastrad
727 1.1 riastrad if (E->stage >= ENTROPY_WARM)
728 1.1 riastrad mutex_enter(&E->lock);
729 1.1 riastrad
730 1.1 riastrad /* Enter it into the pool. */
731 1.1 riastrad entpool_enter(&E->pool, buf, len);
732 1.1 riastrad
733 1.1 riastrad /*
734 1.1 riastrad * Decide whether to notify reseed -- we will do so if either:
735 1.1 riastrad * (a) we transition from partial entropy to full entropy, or
736 1.1 riastrad * (b) we get a batch of full entropy all at once.
737 1.1 riastrad */
738 1.1 riastrad notify |= (E->needed && E->needed <= nbits);
739 1.1 riastrad notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
740 1.1 riastrad
741 1.1 riastrad /* Subtract from the needed count and notify if appropriate. */
742 1.1 riastrad E->needed -= MIN(E->needed, nbits);
743 1.1 riastrad if (notify) {
744 1.1 riastrad entropy_notify();
745 1.1 riastrad entropy_immediate_evcnt.ev_count++;
746 1.1 riastrad }
747 1.1 riastrad
748 1.1 riastrad if (E->stage >= ENTROPY_WARM)
749 1.1 riastrad mutex_exit(&E->lock);
750 1.1 riastrad }
751 1.1 riastrad
752 1.1 riastrad /*
753 1.1 riastrad * entropy_enter(buf, len, nbits)
754 1.1 riastrad *
755 1.1 riastrad * Enter len bytes of data from buf into the system's entropy
756 1.1 riastrad * pool, stirring as necessary when the internal buffer fills up.
757 1.1 riastrad * nbits is a lower bound on the number of bits of entropy in the
758 1.1 riastrad * process that led to this sample.
759 1.1 riastrad */
760 1.1 riastrad static void
761 1.1 riastrad entropy_enter(const void *buf, size_t len, unsigned nbits)
762 1.1 riastrad {
763 1.1 riastrad struct entropy_cpu *ec;
764 1.1 riastrad uint32_t pending;
765 1.1 riastrad int s;
766 1.1 riastrad
767 1.1 riastrad KASSERTMSG(!curcpu_available() || !cpu_intr_p(),
768 1.1 riastrad "use entropy_enter_intr from interrupt context");
769 1.1 riastrad KASSERTMSG(howmany(nbits, NBBY) <= len,
770 1.1 riastrad "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
771 1.1 riastrad
772 1.1 riastrad /* If it's too early after boot, just use entropy_enter_early. */
773 1.1 riastrad if (__predict_false(E->stage < ENTROPY_HOT)) {
774 1.1 riastrad entropy_enter_early(buf, len, nbits);
775 1.1 riastrad return;
776 1.1 riastrad }
777 1.1 riastrad
778 1.1 riastrad /*
779 1.1 riastrad * Acquire the per-CPU state, blocking soft interrupts and
780 1.1 riastrad * causing hard interrupts to drop samples on the floor.
781 1.1 riastrad */
782 1.1 riastrad ec = percpu_getref(entropy_percpu);
783 1.1 riastrad s = splsoftserial();
784 1.1 riastrad KASSERT(!ec->ec_locked);
785 1.1 riastrad ec->ec_locked = true;
786 1.1 riastrad __insn_barrier();
787 1.1 riastrad
788 1.1 riastrad /* Enter into the per-CPU pool. */
789 1.1 riastrad entpool_enter(ec->ec_pool, buf, len);
790 1.1 riastrad
791 1.1 riastrad /* Count up what we can add. */
792 1.1 riastrad pending = ec->ec_pending;
793 1.1 riastrad pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
794 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, pending);
795 1.1 riastrad
796 1.1 riastrad /* Consolidate globally if appropriate based on what we added. */
797 1.1 riastrad entropy_account_cpu(ec);
798 1.1 riastrad
799 1.1 riastrad /* Release the per-CPU state. */
800 1.1 riastrad KASSERT(ec->ec_locked);
801 1.1 riastrad __insn_barrier();
802 1.1 riastrad ec->ec_locked = false;
803 1.1 riastrad splx(s);
804 1.1 riastrad percpu_putref(entropy_percpu);
805 1.1 riastrad }
806 1.1 riastrad
807 1.1 riastrad /*
808 1.1 riastrad * entropy_enter_intr(buf, len, nbits)
809 1.1 riastrad *
810 1.1 riastrad * Enter up to len bytes of data from buf into the system's
811 1.1 riastrad * entropy pool without stirring. nbits is a lower bound on the
812 1.1 riastrad * number of bits of entropy in the process that led to this
813 1.1 riastrad * sample. If the sample could be entered completely, assume
814 1.1 riastrad * nbits of entropy pending; otherwise assume none, since we don't
815 1.1 riastrad * know whether some parts of the sample are constant, for
816 1.1 riastrad * instance. Schedule a softint to stir the entropy pool if
817 1.1 riastrad * needed. Return true if used fully, false if truncated at all.
818 1.1 riastrad *
819 1.1 riastrad * Using this in thread context will work, but you might as well
820 1.1 riastrad * use entropy_enter in that case.
821 1.1 riastrad */
822 1.1 riastrad static bool
823 1.1 riastrad entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
824 1.1 riastrad {
825 1.1 riastrad struct entropy_cpu *ec;
826 1.1 riastrad bool fullyused = false;
827 1.1 riastrad uint32_t pending;
828 1.1 riastrad
829 1.1 riastrad KASSERTMSG(howmany(nbits, NBBY) <= len,
830 1.1 riastrad "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
831 1.1 riastrad
832 1.1 riastrad /* If it's too early after boot, just use entropy_enter_early. */
833 1.1 riastrad if (__predict_false(E->stage < ENTROPY_HOT)) {
834 1.1 riastrad entropy_enter_early(buf, len, nbits);
835 1.1 riastrad return true;
836 1.1 riastrad }
837 1.1 riastrad
838 1.1 riastrad /*
839 1.1 riastrad * Acquire the per-CPU state. If someone is in the middle of
840 1.1 riastrad * using it, drop the sample. Otherwise, take the lock so that
841 1.1 riastrad * higher-priority interrupts will drop their samples.
842 1.1 riastrad */
843 1.1 riastrad ec = percpu_getref(entropy_percpu);
844 1.1 riastrad if (ec->ec_locked)
845 1.1 riastrad goto out0;
846 1.1 riastrad ec->ec_locked = true;
847 1.1 riastrad __insn_barrier();
848 1.1 riastrad
849 1.1 riastrad /*
850 1.1 riastrad * Enter as much as we can into the per-CPU pool. If it was
851 1.1 riastrad * truncated, schedule a softint to stir the pool and stop.
852 1.1 riastrad */
853 1.1 riastrad if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
854 1.1 riastrad softint_schedule(entropy_sih);
855 1.1 riastrad goto out1;
856 1.1 riastrad }
857 1.1 riastrad fullyused = true;
858 1.1 riastrad
859 1.1 riastrad /* Count up what we can contribute. */
860 1.1 riastrad pending = ec->ec_pending;
861 1.1 riastrad pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
862 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, pending);
863 1.1 riastrad
864 1.1 riastrad /* Schedule a softint if we added anything and it matters. */
865 1.1 riastrad if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
866 1.1 riastrad atomic_load_relaxed(&entropy_depletion)) &&
867 1.1 riastrad nbits != 0)
868 1.1 riastrad softint_schedule(entropy_sih);
869 1.1 riastrad
870 1.1 riastrad out1: /* Release the per-CPU state. */
871 1.1 riastrad KASSERT(ec->ec_locked);
872 1.1 riastrad __insn_barrier();
873 1.1 riastrad ec->ec_locked = false;
874 1.1 riastrad out0: percpu_putref(entropy_percpu);
875 1.1 riastrad
876 1.1 riastrad return fullyused;
877 1.1 riastrad }
878 1.1 riastrad
879 1.1 riastrad /*
880 1.1 riastrad * entropy_softintr(cookie)
881 1.1 riastrad *
882 1.1 riastrad * Soft interrupt handler for entering entropy. Takes care of
883 1.1 riastrad * stirring the local CPU's entropy pool if it filled up during
884 1.1 riastrad * hard interrupts, and promptly crediting entropy from the local
885 1.1 riastrad * CPU's entropy pool to the global entropy pool if needed.
886 1.1 riastrad */
887 1.1 riastrad static void
888 1.1 riastrad entropy_softintr(void *cookie)
889 1.1 riastrad {
890 1.1 riastrad struct entropy_cpu *ec;
891 1.1 riastrad
892 1.1 riastrad /*
893 1.1 riastrad * Acquire the per-CPU state. Other users can lock this only
894 1.1 riastrad * while soft interrupts are blocked. Cause hard interrupts to
895 1.1 riastrad * drop samples on the floor.
896 1.1 riastrad */
897 1.1 riastrad ec = percpu_getref(entropy_percpu);
898 1.1 riastrad KASSERT(!ec->ec_locked);
899 1.1 riastrad ec->ec_locked = true;
900 1.1 riastrad __insn_barrier();
901 1.1 riastrad
902 1.1 riastrad /* Count statistics. */
903 1.1 riastrad ec->ec_softint_evcnt->ev_count++;
904 1.1 riastrad
905 1.1 riastrad /* Stir the pool if necessary. */
906 1.1 riastrad entpool_stir(ec->ec_pool);
907 1.1 riastrad
908 1.1 riastrad /* Consolidate globally if appropriate based on what we added. */
909 1.1 riastrad entropy_account_cpu(ec);
910 1.1 riastrad
911 1.1 riastrad /* Release the per-CPU state. */
912 1.1 riastrad KASSERT(ec->ec_locked);
913 1.1 riastrad __insn_barrier();
914 1.1 riastrad ec->ec_locked = false;
915 1.1 riastrad percpu_putref(entropy_percpu);
916 1.1 riastrad }
917 1.1 riastrad
918 1.1 riastrad /*
919 1.1 riastrad * entropy_thread(cookie)
920 1.1 riastrad *
921 1.1 riastrad * Handle any asynchronous entropy housekeeping.
922 1.1 riastrad */
923 1.1 riastrad static void
924 1.1 riastrad entropy_thread(void *cookie)
925 1.1 riastrad {
926 1.1 riastrad
927 1.1 riastrad for (;;) {
928 1.1 riastrad /*
929 1.1 riastrad * Wait until someone wants to consolidate or there's
930 1.1 riastrad * full entropy somewhere among the CPUs, as confirmed
931 1.1 riastrad * at most once per minute.
932 1.1 riastrad */
933 1.1 riastrad mutex_enter(&E->lock);
934 1.1 riastrad for (;;) {
935 1.1 riastrad if (E->consolidate ||
936 1.1 riastrad entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
937 1.1 riastrad E->consolidate = false;
938 1.1 riastrad break;
939 1.1 riastrad }
940 1.1 riastrad cv_timedwait(&E->cv, &E->lock, 60*hz);
941 1.1 riastrad }
942 1.1 riastrad mutex_exit(&E->lock);
943 1.1 riastrad
944 1.1 riastrad /* Do it. */
945 1.1 riastrad entropy_consolidate();
946 1.1 riastrad
947 1.1 riastrad /* Mitigate abuse. */
948 1.1 riastrad kpause("entropy", false, hz, NULL);
949 1.1 riastrad }
950 1.1 riastrad }
951 1.1 riastrad
952 1.1 riastrad /*
953 1.1 riastrad * entropy_pending()
954 1.1 riastrad *
955 1.1 riastrad * Count up the amount of entropy pending on other CPUs.
956 1.1 riastrad */
957 1.1 riastrad static uint32_t
958 1.1 riastrad entropy_pending(void)
959 1.1 riastrad {
960 1.1 riastrad uint32_t pending = 0;
961 1.1 riastrad
962 1.1 riastrad percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
963 1.1 riastrad
964 1.1 riastrad return pending;
965 1.1 riastrad }
966 1.1 riastrad
967 1.1 riastrad static void
968 1.1 riastrad entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
969 1.1 riastrad {
970 1.1 riastrad struct entropy_cpu *ec = ptr;
971 1.1 riastrad uint32_t *pendingp = cookie;
972 1.1 riastrad uint32_t cpu_pending;
973 1.1 riastrad
974 1.1 riastrad cpu_pending = atomic_load_relaxed(&ec->ec_pending);
975 1.1 riastrad *pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
976 1.1 riastrad }
977 1.1 riastrad
978 1.1 riastrad /*
979 1.1 riastrad * entropy_consolidate()
980 1.1 riastrad *
981 1.1 riastrad * Issue a cross-call to gather entropy on all CPUs and advance
982 1.1 riastrad * the entropy epoch.
983 1.1 riastrad */
984 1.1 riastrad static void
985 1.1 riastrad entropy_consolidate(void)
986 1.1 riastrad {
987 1.1 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
988 1.1 riastrad static struct timeval lasttime; /* serialized by E->lock */
989 1.1 riastrad unsigned diff;
990 1.1 riastrad uint64_t ticket;
991 1.1 riastrad
992 1.1 riastrad /* Gather entropy on all CPUs. */
993 1.1 riastrad ticket = xc_broadcast(0, &entropy_gather_xc, NULL, NULL);
994 1.1 riastrad xc_wait(ticket);
995 1.1 riastrad
996 1.1 riastrad /* Acquire the lock to notify waiters. */
997 1.1 riastrad mutex_enter(&E->lock);
998 1.1 riastrad
999 1.1 riastrad /* Count another consolidation. */
1000 1.1 riastrad entropy_consolidate_evcnt.ev_count++;
1001 1.1 riastrad
1002 1.1 riastrad /* Note when we last consolidated, i.e. now. */
1003 1.1 riastrad E->timestamp = time_uptime;
1004 1.1 riastrad
1005 1.1 riastrad /* Count the entropy that was gathered. */
1006 1.1 riastrad diff = MIN(E->needed, E->pending);
1007 1.1 riastrad atomic_store_relaxed(&E->needed, E->needed - diff);
1008 1.1 riastrad E->pending -= diff;
1009 1.1 riastrad if (__predict_false(E->needed > 0)) {
1010 1.1 riastrad if (ratecheck(&lasttime, &interval))
1011 1.1 riastrad printf("entropy: WARNING:"
1012 1.1 riastrad " consolidating less than full entropy\n");
1013 1.1 riastrad }
1014 1.1 riastrad
1015 1.1 riastrad /* Advance the epoch and notify waiters. */
1016 1.1 riastrad entropy_notify();
1017 1.1 riastrad
1018 1.1 riastrad /* Release the lock. */
1019 1.1 riastrad mutex_exit(&E->lock);
1020 1.1 riastrad }
1021 1.1 riastrad
1022 1.1 riastrad /*
1023 1.1 riastrad * entropy_gather_xc(arg1, arg2)
1024 1.1 riastrad *
1025 1.1 riastrad * Extract output from the local CPU's input pool and enter it
1026 1.1 riastrad * into the global pool.
1027 1.1 riastrad */
1028 1.1 riastrad static void
1029 1.1 riastrad entropy_gather_xc(void *arg1 __unused, void *arg2 __unused)
1030 1.1 riastrad {
1031 1.1 riastrad struct entropy_cpu *ec;
1032 1.1 riastrad uint8_t buf[ENTPOOL_CAPACITY];
1033 1.1 riastrad uint32_t extra[7];
1034 1.1 riastrad unsigned i = 0;
1035 1.1 riastrad int s;
1036 1.1 riastrad
1037 1.1 riastrad /* Grab CPU number and cycle counter to mix extra into the pool. */
1038 1.1 riastrad extra[i++] = cpu_number();
1039 1.1 riastrad extra[i++] = entropy_timer();
1040 1.1 riastrad
1041 1.1 riastrad /*
1042 1.1 riastrad * Acquire the per-CPU state, blocking soft interrupts and
1043 1.1 riastrad * discarding entropy in hard interrupts, so that we can
1044 1.1 riastrad * extract from the per-CPU pool.
1045 1.1 riastrad */
1046 1.1 riastrad ec = percpu_getref(entropy_percpu);
1047 1.1 riastrad s = splsoftserial();
1048 1.1 riastrad KASSERT(!ec->ec_locked);
1049 1.1 riastrad ec->ec_locked = true;
1050 1.1 riastrad __insn_barrier();
1051 1.1 riastrad extra[i++] = entropy_timer();
1052 1.1 riastrad
1053 1.1 riastrad /* Extract the data. */
1054 1.1 riastrad entpool_extract(ec->ec_pool, buf, sizeof buf);
1055 1.1 riastrad extra[i++] = entropy_timer();
1056 1.1 riastrad
1057 1.1 riastrad /* Release the per-CPU state. */
1058 1.1 riastrad KASSERT(ec->ec_locked);
1059 1.1 riastrad __insn_barrier();
1060 1.1 riastrad ec->ec_locked = false;
1061 1.1 riastrad splx(s);
1062 1.1 riastrad percpu_putref(entropy_percpu);
1063 1.1 riastrad extra[i++] = entropy_timer();
1064 1.1 riastrad
1065 1.1 riastrad /*
1066 1.1 riastrad * Copy over statistics, and enter the per-CPU extract and the
1067 1.1 riastrad * extra timing into the global pool, under the global lock.
1068 1.1 riastrad */
1069 1.1 riastrad mutex_enter(&E->lock);
1070 1.1 riastrad extra[i++] = entropy_timer();
1071 1.1 riastrad entpool_enter(&E->pool, buf, sizeof buf);
1072 1.1 riastrad explicit_memset(buf, 0, sizeof buf);
1073 1.1 riastrad extra[i++] = entropy_timer();
1074 1.1 riastrad KASSERT(i == __arraycount(extra));
1075 1.1 riastrad entpool_enter(&E->pool, extra, sizeof extra);
1076 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
1077 1.1 riastrad mutex_exit(&E->lock);
1078 1.1 riastrad }
1079 1.1 riastrad
1080 1.1 riastrad /*
1081 1.1 riastrad * entropy_notify()
1082 1.1 riastrad *
1083 1.1 riastrad * Caller just contributed entropy to the global pool. Advance
1084 1.1 riastrad * the entropy epoch and notify waiters.
1085 1.1 riastrad *
1086 1.1 riastrad * Caller must hold the global entropy lock. Except for the
1087 1.1 riastrad * `sysctl -w kern.entropy.consolidate=1` trigger, the caller must
1088 1.1 riastrad * have just have transitioned from partial entropy to full
1089 1.1 riastrad * entropy -- E->needed should be zero now.
1090 1.1 riastrad */
1091 1.1 riastrad static void
1092 1.1 riastrad entropy_notify(void)
1093 1.1 riastrad {
1094 1.1 riastrad unsigned epoch;
1095 1.1 riastrad
1096 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1097 1.1 riastrad
1098 1.1 riastrad /*
1099 1.1 riastrad * If this is the first time, print a message to the console
1100 1.1 riastrad * that we're ready so operators can compare it to the timing
1101 1.1 riastrad * of other events.
1102 1.1 riastrad */
1103 1.1 riastrad if (E->epoch == (unsigned)-1)
1104 1.1 riastrad printf("entropy: ready\n");
1105 1.1 riastrad
1106 1.1 riastrad /* Set the epoch; roll over from UINTMAX-1 to 1. */
1107 1.1 riastrad rnd_initial_entropy = 1; /* XXX legacy */
1108 1.1 riastrad epoch = E->epoch + 1;
1109 1.1 riastrad if (epoch == 0 || epoch == (unsigned)-1)
1110 1.1 riastrad epoch = 1;
1111 1.1 riastrad atomic_store_relaxed(&E->epoch, epoch);
1112 1.1 riastrad
1113 1.1 riastrad /* Notify waiters. */
1114 1.1 riastrad if (E->stage >= ENTROPY_WARM) {
1115 1.1 riastrad cv_broadcast(&E->cv);
1116 1.1 riastrad selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
1117 1.1 riastrad }
1118 1.1 riastrad
1119 1.1 riastrad /* Count another notification. */
1120 1.1 riastrad entropy_notify_evcnt.ev_count++;
1121 1.1 riastrad }
1122 1.1 riastrad
1123 1.1 riastrad /*
1124 1.1 riastrad * sysctl -w kern.entropy.consolidate=1
1125 1.1 riastrad *
1126 1.1 riastrad * Trigger entropy consolidation and wait for it to complete.
1127 1.1 riastrad * Writable only by superuser. This is the only way for the
1128 1.1 riastrad * system to consolidate entropy if the operator knows something
1129 1.1 riastrad * the kernel doesn't about how unpredictable the pending entropy
1130 1.1 riastrad * pools are.
1131 1.1 riastrad */
1132 1.1 riastrad static int
1133 1.1 riastrad sysctl_entropy_consolidate(SYSCTLFN_ARGS)
1134 1.1 riastrad {
1135 1.1 riastrad struct sysctlnode node = *rnode;
1136 1.1 riastrad uint64_t ticket;
1137 1.1 riastrad int arg;
1138 1.1 riastrad int error;
1139 1.1 riastrad
1140 1.1 riastrad KASSERT(E->stage == ENTROPY_HOT);
1141 1.1 riastrad
1142 1.1 riastrad node.sysctl_data = &arg;
1143 1.1 riastrad error = sysctl_lookup(SYSCTLFN_CALL(&node));
1144 1.1 riastrad if (error || newp == NULL)
1145 1.1 riastrad return error;
1146 1.1 riastrad if (arg) {
1147 1.1 riastrad mutex_enter(&E->lock);
1148 1.1 riastrad ticket = entropy_consolidate_evcnt.ev_count;
1149 1.1 riastrad E->consolidate = true;
1150 1.1 riastrad cv_broadcast(&E->cv);
1151 1.1 riastrad while (ticket == entropy_consolidate_evcnt.ev_count) {
1152 1.1 riastrad error = cv_wait_sig(&E->cv, &E->lock);
1153 1.1 riastrad if (error)
1154 1.1 riastrad break;
1155 1.1 riastrad }
1156 1.1 riastrad mutex_exit(&E->lock);
1157 1.1 riastrad }
1158 1.1 riastrad
1159 1.1 riastrad return error;
1160 1.1 riastrad }
1161 1.1 riastrad
1162 1.1 riastrad /*
1163 1.1 riastrad * entropy_extract(buf, len, flags)
1164 1.1 riastrad *
1165 1.1 riastrad * Extract len bytes from the global entropy pool into buf.
1166 1.1 riastrad *
1167 1.1 riastrad * Flags may have:
1168 1.1 riastrad *
1169 1.1 riastrad * ENTROPY_WAIT Wait for entropy if not available yet.
1170 1.1 riastrad * ENTROPY_SIG Allow interruption by a signal during wait.
1171 1.1 riastrad *
1172 1.1 riastrad * Return zero on success, or error on failure:
1173 1.1 riastrad *
1174 1.1 riastrad * EWOULDBLOCK No entropy and ENTROPY_WAIT not set.
1175 1.1 riastrad * EINTR/ERESTART No entropy, ENTROPY_SIG set, and interrupted.
1176 1.1 riastrad *
1177 1.1 riastrad * If ENTROPY_WAIT is set, allowed only in thread context. If
1178 1.1 riastrad * ENTROPY_WAIT is not set, allowed up to IPL_VM. (XXX That's
1179 1.1 riastrad * awfully high... Do we really need it in hard interrupts? This
1180 1.1 riastrad * arises from use of cprng_strong(9).)
1181 1.1 riastrad */
1182 1.1 riastrad int
1183 1.1 riastrad entropy_extract(void *buf, size_t len, int flags)
1184 1.1 riastrad {
1185 1.1 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1186 1.1 riastrad static struct timeval lasttime; /* serialized by E->lock */
1187 1.1 riastrad int error;
1188 1.1 riastrad
1189 1.1 riastrad if (ISSET(flags, ENTROPY_WAIT)) {
1190 1.1 riastrad ASSERT_SLEEPABLE();
1191 1.1 riastrad KASSERTMSG(E->stage >= ENTROPY_WARM,
1192 1.1 riastrad "can't wait for entropy until warm");
1193 1.1 riastrad }
1194 1.1 riastrad
1195 1.1 riastrad /* Acquire the global lock to get at the global pool. */
1196 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1197 1.1 riastrad mutex_enter(&E->lock);
1198 1.1 riastrad
1199 1.1 riastrad /* Count up request for entropy in interrupt context. */
1200 1.1 riastrad if (curcpu_available() && cpu_intr_p())
1201 1.1 riastrad entropy_extract_intr_evcnt.ev_count++;
1202 1.1 riastrad
1203 1.1 riastrad /* Wait until there is enough entropy in the system. */
1204 1.1 riastrad error = 0;
1205 1.1 riastrad while (E->needed) {
1206 1.1 riastrad /* Ask for more, synchronously if possible. */
1207 1.1 riastrad entropy_request(len);
1208 1.1 riastrad
1209 1.1 riastrad /* If we got enough, we're done. */
1210 1.1 riastrad if (E->needed == 0) {
1211 1.1 riastrad KASSERT(error == 0);
1212 1.1 riastrad break;
1213 1.1 riastrad }
1214 1.1 riastrad
1215 1.1 riastrad /* If not waiting, stop here. */
1216 1.1 riastrad if (!ISSET(flags, ENTROPY_WAIT)) {
1217 1.1 riastrad error = EWOULDBLOCK;
1218 1.1 riastrad break;
1219 1.1 riastrad }
1220 1.1 riastrad
1221 1.1 riastrad /* Wait for some entropy to come in and try again. */
1222 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1223 1.1 riastrad if (ISSET(flags, ENTROPY_SIG)) {
1224 1.1 riastrad error = cv_wait_sig(&E->cv, &E->lock);
1225 1.1 riastrad if (error)
1226 1.1 riastrad break;
1227 1.1 riastrad } else {
1228 1.1 riastrad cv_wait(&E->cv, &E->lock);
1229 1.1 riastrad }
1230 1.1 riastrad }
1231 1.1 riastrad
1232 1.1 riastrad /* Count failure -- but fill the buffer nevertheless. */
1233 1.1 riastrad if (error)
1234 1.1 riastrad entropy_extract_fail_evcnt.ev_count++;
1235 1.1 riastrad
1236 1.1 riastrad /*
1237 1.1 riastrad * Report a warning if we have never yet reached full entropy.
1238 1.1 riastrad * This is the only case where we consider entropy to be
1239 1.1 riastrad * `depleted' without kern.entropy.depletion enabled -- when we
1240 1.1 riastrad * only have partial entropy, an adversary may be able to
1241 1.1 riastrad * narrow the state of the pool down to a small number of
1242 1.1 riastrad * possibilities; the output then enables them to confirm a
1243 1.1 riastrad * guess, reducing its entropy from the adversary's perspective
1244 1.1 riastrad * to zero.
1245 1.1 riastrad */
1246 1.1 riastrad if (__predict_false(E->epoch == (unsigned)-1)) {
1247 1.1 riastrad if (ratecheck(&lasttime, &interval))
1248 1.1 riastrad printf("entropy: WARNING:"
1249 1.1 riastrad " extracting entropy too early\n");
1250 1.1 riastrad atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
1251 1.1 riastrad }
1252 1.1 riastrad
1253 1.1 riastrad /* Extract data from the pool, and `deplete' if we're doing that. */
1254 1.1 riastrad entpool_extract(&E->pool, buf, len);
1255 1.1 riastrad if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
1256 1.1 riastrad error == 0) {
1257 1.1 riastrad unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
1258 1.1 riastrad
1259 1.1 riastrad atomic_store_relaxed(&E->needed,
1260 1.1 riastrad E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
1261 1.1 riastrad entropy_deplete_evcnt.ev_count++;
1262 1.1 riastrad }
1263 1.1 riastrad
1264 1.1 riastrad /* Release the global lock and return the error. */
1265 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1266 1.1 riastrad mutex_exit(&E->lock);
1267 1.1 riastrad return error;
1268 1.1 riastrad }
1269 1.1 riastrad
1270 1.1 riastrad /*
1271 1.1 riastrad * entropy_poll(events)
1272 1.1 riastrad *
1273 1.1 riastrad * Return the subset of events ready, and if it is not all of
1274 1.1 riastrad * events, record curlwp as waiting for entropy.
1275 1.1 riastrad */
1276 1.1 riastrad int
1277 1.1 riastrad entropy_poll(int events)
1278 1.1 riastrad {
1279 1.1 riastrad int revents = 0;
1280 1.1 riastrad
1281 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1282 1.1 riastrad
1283 1.1 riastrad /* Always ready for writing. */
1284 1.1 riastrad revents |= events & (POLLOUT|POLLWRNORM);
1285 1.1 riastrad
1286 1.1 riastrad /* Narrow it down to reads. */
1287 1.1 riastrad events &= POLLIN|POLLRDNORM;
1288 1.1 riastrad if (events == 0)
1289 1.1 riastrad return revents;
1290 1.1 riastrad
1291 1.1 riastrad /*
1292 1.1 riastrad * If we have reached full entropy and we're not depleting
1293 1.1 riastrad * entropy, we are forever ready.
1294 1.1 riastrad */
1295 1.1 riastrad if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
1296 1.1 riastrad __predict_true(!atomic_load_relaxed(&entropy_depletion)))
1297 1.1 riastrad return revents | events;
1298 1.1 riastrad
1299 1.1 riastrad /*
1300 1.1 riastrad * Otherwise, check whether we need entropy under the lock. If
1301 1.1 riastrad * we don't, we're ready; if we do, add ourselves to the queue.
1302 1.1 riastrad */
1303 1.1 riastrad mutex_enter(&E->lock);
1304 1.1 riastrad if (E->needed == 0)
1305 1.1 riastrad revents |= events;
1306 1.1 riastrad else
1307 1.1 riastrad selrecord(curlwp, &E->selq);
1308 1.1 riastrad mutex_exit(&E->lock);
1309 1.1 riastrad
1310 1.1 riastrad return revents;
1311 1.1 riastrad }
1312 1.1 riastrad
1313 1.1 riastrad /*
1314 1.1 riastrad * filt_entropy_read_detach(kn)
1315 1.1 riastrad *
1316 1.1 riastrad * struct filterops::f_detach callback for entropy read events:
1317 1.1 riastrad * remove kn from the list of waiters.
1318 1.1 riastrad */
1319 1.1 riastrad static void
1320 1.1 riastrad filt_entropy_read_detach(struct knote *kn)
1321 1.1 riastrad {
1322 1.1 riastrad
1323 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1324 1.1 riastrad
1325 1.1 riastrad mutex_enter(&E->lock);
1326 1.1 riastrad SLIST_REMOVE(&E->selq.sel_klist, kn, knote, kn_selnext);
1327 1.1 riastrad mutex_exit(&E->lock);
1328 1.1 riastrad }
1329 1.1 riastrad
1330 1.1 riastrad /*
1331 1.1 riastrad * filt_entropy_read_event(kn, hint)
1332 1.1 riastrad *
1333 1.1 riastrad * struct filterops::f_event callback for entropy read events:
1334 1.1 riastrad * poll for entropy. Caller must hold the global entropy lock if
1335 1.1 riastrad * hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
1336 1.1 riastrad */
1337 1.1 riastrad static int
1338 1.1 riastrad filt_entropy_read_event(struct knote *kn, long hint)
1339 1.1 riastrad {
1340 1.1 riastrad int ret;
1341 1.1 riastrad
1342 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1343 1.1 riastrad
1344 1.1 riastrad /* Acquire the lock, if caller is outside entropy subsystem. */
1345 1.1 riastrad if (hint == NOTE_SUBMIT)
1346 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1347 1.1 riastrad else
1348 1.1 riastrad mutex_enter(&E->lock);
1349 1.1 riastrad
1350 1.1 riastrad /*
1351 1.1 riastrad * If we still need entropy, can't read anything; if not, can
1352 1.1 riastrad * read arbitrarily much.
1353 1.1 riastrad */
1354 1.1 riastrad if (E->needed != 0) {
1355 1.1 riastrad ret = 0;
1356 1.1 riastrad } else {
1357 1.1 riastrad if (atomic_load_relaxed(&entropy_depletion))
1358 1.1 riastrad kn->kn_data = ENTROPY_CAPACITY*NBBY;
1359 1.1 riastrad else
1360 1.1 riastrad kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
1361 1.1 riastrad ret = 1;
1362 1.1 riastrad }
1363 1.1 riastrad
1364 1.1 riastrad /* Release the lock, if caller is outside entropy subsystem. */
1365 1.1 riastrad if (hint == NOTE_SUBMIT)
1366 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1367 1.1 riastrad else
1368 1.1 riastrad mutex_exit(&E->lock);
1369 1.1 riastrad
1370 1.1 riastrad return ret;
1371 1.1 riastrad }
1372 1.1 riastrad
1373 1.1 riastrad static const struct filterops entropy_read_filtops = {
1374 1.1 riastrad .f_isfd = 1, /* XXX Makes sense only for /dev/u?random. */
1375 1.1 riastrad .f_attach = NULL,
1376 1.1 riastrad .f_detach = filt_entropy_read_detach,
1377 1.1 riastrad .f_event = filt_entropy_read_event,
1378 1.1 riastrad };
1379 1.1 riastrad
1380 1.1 riastrad /*
1381 1.1 riastrad * entropy_kqfilter(kn)
1382 1.1 riastrad *
1383 1.1 riastrad * Register kn to receive entropy event notifications. May be
1384 1.1 riastrad * EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
1385 1.1 riastrad */
1386 1.1 riastrad int
1387 1.1 riastrad entropy_kqfilter(struct knote *kn)
1388 1.1 riastrad {
1389 1.1 riastrad
1390 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1391 1.1 riastrad
1392 1.1 riastrad switch (kn->kn_filter) {
1393 1.1 riastrad case EVFILT_READ:
1394 1.1 riastrad /* Enter into the global select queue. */
1395 1.1 riastrad mutex_enter(&E->lock);
1396 1.1 riastrad kn->kn_fop = &entropy_read_filtops;
1397 1.1 riastrad SLIST_INSERT_HEAD(&E->selq.sel_klist, kn, kn_selnext);
1398 1.1 riastrad mutex_exit(&E->lock);
1399 1.1 riastrad return 0;
1400 1.1 riastrad case EVFILT_WRITE:
1401 1.1 riastrad /* Can always dump entropy into the system. */
1402 1.1 riastrad kn->kn_fop = &seltrue_filtops;
1403 1.1 riastrad return 0;
1404 1.1 riastrad default:
1405 1.1 riastrad return EINVAL;
1406 1.1 riastrad }
1407 1.1 riastrad }
1408 1.1 riastrad
1409 1.1 riastrad /*
1410 1.1 riastrad * rndsource_setcb(rs, get, getarg)
1411 1.1 riastrad *
1412 1.1 riastrad * Set the request callback for the entropy source rs, if it can
1413 1.1 riastrad * provide entropy on demand. Must precede rnd_attach_source.
1414 1.1 riastrad */
1415 1.1 riastrad void
1416 1.1 riastrad rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
1417 1.1 riastrad void *getarg)
1418 1.1 riastrad {
1419 1.1 riastrad
1420 1.1 riastrad rs->get = get;
1421 1.1 riastrad rs->getarg = getarg;
1422 1.1 riastrad }
1423 1.1 riastrad
1424 1.1 riastrad /*
1425 1.1 riastrad * rnd_attach_source(rs, name, type, flags)
1426 1.1 riastrad *
1427 1.1 riastrad * Attach the entropy source rs. Must be done after
1428 1.1 riastrad * rndsource_setcb, if any, and before any calls to rnd_add_data.
1429 1.1 riastrad */
1430 1.1 riastrad void
1431 1.1 riastrad rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
1432 1.1 riastrad uint32_t flags)
1433 1.1 riastrad {
1434 1.1 riastrad uint32_t extra[4];
1435 1.1 riastrad unsigned i = 0;
1436 1.1 riastrad
1437 1.1 riastrad /* Grab cycle counter to mix extra into the pool. */
1438 1.1 riastrad extra[i++] = entropy_timer();
1439 1.1 riastrad
1440 1.1 riastrad /*
1441 1.1 riastrad * Apply some standard flags:
1442 1.1 riastrad *
1443 1.1 riastrad * - We do not bother with network devices by default, for
1444 1.1 riastrad * hysterical raisins (perhaps: because it is often the case
1445 1.1 riastrad * that an adversary can influence network packet timings).
1446 1.1 riastrad */
1447 1.1 riastrad switch (type) {
1448 1.1 riastrad case RND_TYPE_NET:
1449 1.1 riastrad flags |= RND_FLAG_NO_COLLECT;
1450 1.1 riastrad break;
1451 1.1 riastrad }
1452 1.1 riastrad
1453 1.1 riastrad /* Sanity-check the callback if RND_FLAG_HASCB is set. */
1454 1.1 riastrad KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
1455 1.1 riastrad
1456 1.1 riastrad /* Initialize the random source. */
1457 1.1 riastrad memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
1458 1.1 riastrad strlcpy(rs->name, name, sizeof(rs->name));
1459 1.1 riastrad rs->type = type;
1460 1.1 riastrad rs->flags = flags;
1461 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1462 1.1 riastrad rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
1463 1.1 riastrad extra[i++] = entropy_timer();
1464 1.1 riastrad
1465 1.1 riastrad /* Wire it into the global list of random sources. */
1466 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1467 1.1 riastrad mutex_enter(&E->lock);
1468 1.1 riastrad LIST_INSERT_HEAD(&E->sources, rs, list);
1469 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1470 1.1 riastrad mutex_exit(&E->lock);
1471 1.1 riastrad extra[i++] = entropy_timer();
1472 1.1 riastrad
1473 1.1 riastrad /* Request that it provide entropy ASAP, if we can. */
1474 1.1 riastrad if (ISSET(flags, RND_FLAG_HASCB))
1475 1.1 riastrad (*rs->get)(ENTROPY_CAPACITY, rs->getarg);
1476 1.1 riastrad extra[i++] = entropy_timer();
1477 1.1 riastrad
1478 1.1 riastrad /* Mix the extra into the pool. */
1479 1.1 riastrad KASSERT(i == __arraycount(extra));
1480 1.1 riastrad entropy_enter(extra, sizeof extra, 0);
1481 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
1482 1.1 riastrad }
1483 1.1 riastrad
1484 1.1 riastrad /*
1485 1.1 riastrad * rnd_detach_source(rs)
1486 1.1 riastrad *
1487 1.1 riastrad * Detach the entropy source rs. May sleep waiting for users to
1488 1.1 riastrad * drain. Further use is not allowed.
1489 1.1 riastrad */
1490 1.1 riastrad void
1491 1.1 riastrad rnd_detach_source(struct krndsource *rs)
1492 1.1 riastrad {
1493 1.1 riastrad
1494 1.1 riastrad /*
1495 1.1 riastrad * If we're cold (shouldn't happen, but hey), just remove it
1496 1.1 riastrad * from the list -- there's nothing allocated.
1497 1.1 riastrad */
1498 1.1 riastrad if (E->stage == ENTROPY_COLD) {
1499 1.1 riastrad LIST_REMOVE(rs, list);
1500 1.1 riastrad return;
1501 1.1 riastrad }
1502 1.1 riastrad
1503 1.1 riastrad /* We may have to wait for entropy_request. */
1504 1.1 riastrad ASSERT_SLEEPABLE();
1505 1.1 riastrad
1506 1.1 riastrad /* Remove it from the list and wait for entropy_request. */
1507 1.1 riastrad mutex_enter(&E->lock);
1508 1.1 riastrad LIST_REMOVE(rs, list);
1509 1.1 riastrad while (E->requesting)
1510 1.1 riastrad cv_wait(&E->cv, &E->lock);
1511 1.1 riastrad mutex_exit(&E->lock);
1512 1.1 riastrad
1513 1.1 riastrad /* Free the per-CPU data. */
1514 1.1 riastrad percpu_free(rs->state, sizeof(struct rndsource_cpu));
1515 1.1 riastrad }
1516 1.1 riastrad
1517 1.1 riastrad /*
1518 1.1 riastrad * entropy_request(nbytes)
1519 1.1 riastrad *
1520 1.1 riastrad * Request nbytes bytes of entropy from all sources in the system.
1521 1.1 riastrad * OK if we overdo it. Caller must hold the global entropy lock;
1522 1.1 riastrad * will release and re-acquire it.
1523 1.1 riastrad */
1524 1.1 riastrad static void
1525 1.1 riastrad entropy_request(size_t nbytes)
1526 1.1 riastrad {
1527 1.1 riastrad struct krndsource *rs, *next;
1528 1.1 riastrad
1529 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1530 1.1 riastrad
1531 1.1 riastrad /*
1532 1.1 riastrad * If there is a request in progress, let it proceed.
1533 1.1 riastrad * Otherwise, note that a request is in progress to avoid
1534 1.1 riastrad * reentry and to block rnd_detach_source until we're done.
1535 1.1 riastrad */
1536 1.1 riastrad if (E->requesting)
1537 1.1 riastrad return;
1538 1.1 riastrad E->requesting = true;
1539 1.1 riastrad entropy_request_evcnt.ev_count++;
1540 1.1 riastrad
1541 1.1 riastrad /* Clamp to the maximum reasonable request. */
1542 1.1 riastrad nbytes = MIN(nbytes, ENTROPY_CAPACITY);
1543 1.1 riastrad
1544 1.1 riastrad /* Walk the list of sources. */
1545 1.1 riastrad LIST_FOREACH_SAFE(rs, &E->sources, list, next) {
1546 1.1 riastrad /* Skip sources without callbacks. */
1547 1.1 riastrad if (!ISSET(rs->flags, RND_FLAG_HASCB))
1548 1.1 riastrad continue;
1549 1.1 riastrad
1550 1.1 riastrad /* Drop the lock while we call the callback. */
1551 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1552 1.1 riastrad mutex_exit(&E->lock);
1553 1.1 riastrad (*rs->get)(nbytes, rs->getarg);
1554 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1555 1.1 riastrad mutex_enter(&E->lock);
1556 1.1 riastrad }
1557 1.1 riastrad
1558 1.1 riastrad /* Notify rnd_detach_source that the request is done. */
1559 1.1 riastrad E->requesting = false;
1560 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1561 1.1 riastrad cv_broadcast(&E->cv);
1562 1.1 riastrad }
1563 1.1 riastrad
1564 1.1 riastrad /*
1565 1.1 riastrad * rnd_add_uint32(rs, value)
1566 1.1 riastrad *
1567 1.1 riastrad * Enter 32 bits of data from an entropy source into the pool.
1568 1.1 riastrad *
1569 1.1 riastrad * If rs is NULL, may not be called from interrupt context.
1570 1.1 riastrad *
1571 1.1 riastrad * If rs is non-NULL, may be called from any context. May drop
1572 1.1 riastrad * data if called from interrupt context.
1573 1.1 riastrad */
1574 1.1 riastrad void
1575 1.1 riastrad rnd_add_uint32(struct krndsource *rs, uint32_t value)
1576 1.1 riastrad {
1577 1.1 riastrad
1578 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
1579 1.1 riastrad }
1580 1.1 riastrad
1581 1.1 riastrad void
1582 1.1 riastrad _rnd_add_uint32(struct krndsource *rs, uint32_t value)
1583 1.1 riastrad {
1584 1.1 riastrad
1585 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
1586 1.1 riastrad }
1587 1.1 riastrad
1588 1.1 riastrad void
1589 1.1 riastrad _rnd_add_uint64(struct krndsource *rs, uint64_t value)
1590 1.1 riastrad {
1591 1.1 riastrad
1592 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
1593 1.1 riastrad }
1594 1.1 riastrad
1595 1.1 riastrad /*
1596 1.1 riastrad * rnd_add_data(rs, buf, len, entropybits)
1597 1.1 riastrad *
1598 1.1 riastrad * Enter data from an entropy source into the pool, with a
1599 1.1 riastrad * driver's estimate of how much entropy the physical source of
1600 1.1 riastrad * the data has. If RND_FLAG_NO_ESTIMATE, we ignore the driver's
1601 1.1 riastrad * estimate and treat it as zero.
1602 1.1 riastrad *
1603 1.1 riastrad * If rs is NULL, may not be called from interrupt context.
1604 1.1 riastrad *
1605 1.1 riastrad * If rs is non-NULL, may be called from any context. May drop
1606 1.1 riastrad * data if called from interrupt context.
1607 1.1 riastrad */
1608 1.1 riastrad void
1609 1.1 riastrad rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
1610 1.1 riastrad uint32_t entropybits)
1611 1.1 riastrad {
1612 1.1 riastrad uint32_t extra;
1613 1.1 riastrad uint32_t flags;
1614 1.1 riastrad
1615 1.1 riastrad KASSERTMSG(howmany(entropybits, NBBY) <= len,
1616 1.1 riastrad "%s: impossible entropy rate:"
1617 1.1 riastrad " %"PRIu32" bits in %"PRIu32"-byte string",
1618 1.1 riastrad rs ? rs->name : "(anonymous)", entropybits, len);
1619 1.1 riastrad
1620 1.1 riastrad /* If there's no rndsource, just enter the data and time now. */
1621 1.1 riastrad if (rs == NULL) {
1622 1.1 riastrad entropy_enter(buf, len, entropybits);
1623 1.1 riastrad extra = entropy_timer();
1624 1.1 riastrad entropy_enter(&extra, sizeof extra, 0);
1625 1.1 riastrad explicit_memset(&extra, 0, sizeof extra);
1626 1.1 riastrad return;
1627 1.1 riastrad }
1628 1.1 riastrad
1629 1.1 riastrad /* Load a snapshot of the flags. Ioctl may change them under us. */
1630 1.1 riastrad flags = atomic_load_relaxed(&rs->flags);
1631 1.1 riastrad
1632 1.1 riastrad /*
1633 1.1 riastrad * Skip if:
1634 1.1 riastrad * - we're not collecting entropy, or
1635 1.1 riastrad * - the operator doesn't want to collect entropy from this, or
1636 1.1 riastrad * - neither data nor timings are being collected from this.
1637 1.1 riastrad */
1638 1.1 riastrad if (!atomic_load_relaxed(&entropy_collection) ||
1639 1.1 riastrad ISSET(flags, RND_FLAG_NO_COLLECT) ||
1640 1.1 riastrad !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
1641 1.1 riastrad return;
1642 1.1 riastrad
1643 1.1 riastrad /* If asked, ignore the estimate. */
1644 1.1 riastrad if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
1645 1.1 riastrad entropybits = 0;
1646 1.1 riastrad
1647 1.1 riastrad /* If we are collecting data, enter them. */
1648 1.1 riastrad if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
1649 1.1 riastrad rnd_add_data_1(rs, buf, len, entropybits);
1650 1.1 riastrad
1651 1.1 riastrad /* If we are collecting timings, enter one. */
1652 1.1 riastrad if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
1653 1.1 riastrad extra = entropy_timer();
1654 1.1 riastrad rnd_add_data_1(rs, &extra, sizeof extra, 0);
1655 1.1 riastrad }
1656 1.1 riastrad }
1657 1.1 riastrad
1658 1.1 riastrad /*
1659 1.1 riastrad * rnd_add_data_1(rs, buf, len, entropybits)
1660 1.1 riastrad *
1661 1.1 riastrad * Internal subroutine to call either entropy_enter_intr, if we're
1662 1.1 riastrad * in interrupt context, or entropy_enter if not, and to count the
1663 1.1 riastrad * entropy in an rndsource.
1664 1.1 riastrad */
1665 1.1 riastrad static void
1666 1.1 riastrad rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
1667 1.1 riastrad uint32_t entropybits)
1668 1.1 riastrad {
1669 1.1 riastrad bool fullyused;
1670 1.1 riastrad
1671 1.1 riastrad /*
1672 1.1 riastrad * If we're in interrupt context, use entropy_enter_intr and
1673 1.1 riastrad * take note of whether it consumed the full sample; if not,
1674 1.1 riastrad * use entropy_enter, which always consumes the full sample.
1675 1.1 riastrad */
1676 1.1 riastrad if (curcpu_available() && cpu_intr_p()) {
1677 1.1 riastrad fullyused = entropy_enter_intr(buf, len, entropybits);
1678 1.1 riastrad } else {
1679 1.1 riastrad entropy_enter(buf, len, entropybits);
1680 1.1 riastrad fullyused = true;
1681 1.1 riastrad }
1682 1.1 riastrad
1683 1.1 riastrad /*
1684 1.1 riastrad * If we used the full sample, note how many bits were
1685 1.1 riastrad * contributed from this source.
1686 1.1 riastrad */
1687 1.1 riastrad if (fullyused) {
1688 1.1 riastrad if (E->stage < ENTROPY_HOT) {
1689 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1690 1.1 riastrad mutex_enter(&E->lock);
1691 1.1 riastrad rs->total += MIN(UINT_MAX - rs->total, entropybits);
1692 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1693 1.1 riastrad mutex_exit(&E->lock);
1694 1.1 riastrad } else {
1695 1.1 riastrad struct rndsource_cpu *rc = percpu_getref(rs->state);
1696 1.1 riastrad unsigned nbits = rc->rc_nbits;
1697 1.1 riastrad
1698 1.1 riastrad nbits += MIN(UINT_MAX - nbits, entropybits);
1699 1.1 riastrad atomic_store_relaxed(&rc->rc_nbits, nbits);
1700 1.1 riastrad percpu_putref(rs->state);
1701 1.1 riastrad }
1702 1.1 riastrad }
1703 1.1 riastrad }
1704 1.1 riastrad
1705 1.1 riastrad /*
1706 1.1 riastrad * rnd_add_data_sync(rs, buf, len, entropybits)
1707 1.1 riastrad *
1708 1.1 riastrad * Same as rnd_add_data. Originally used in rndsource callbacks,
1709 1.1 riastrad * to break an unnecessary cycle; no longer really needed.
1710 1.1 riastrad */
1711 1.1 riastrad void
1712 1.1 riastrad rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
1713 1.1 riastrad uint32_t entropybits)
1714 1.1 riastrad {
1715 1.1 riastrad
1716 1.1 riastrad rnd_add_data(rs, buf, len, entropybits);
1717 1.1 riastrad }
1718 1.1 riastrad
1719 1.1 riastrad /*
1720 1.1 riastrad * rndsource_entropybits(rs)
1721 1.1 riastrad *
1722 1.1 riastrad * Return approximately the number of bits of entropy that have
1723 1.1 riastrad * been contributed via rs so far. Approximate if other CPUs may
1724 1.1 riastrad * be calling rnd_add_data concurrently.
1725 1.1 riastrad */
1726 1.1 riastrad static unsigned
1727 1.1 riastrad rndsource_entropybits(struct krndsource *rs)
1728 1.1 riastrad {
1729 1.1 riastrad unsigned nbits = rs->total;
1730 1.1 riastrad
1731 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1732 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1733 1.1 riastrad percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
1734 1.1 riastrad return nbits;
1735 1.1 riastrad }
1736 1.1 riastrad
1737 1.1 riastrad static void
1738 1.1 riastrad rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
1739 1.1 riastrad {
1740 1.1 riastrad struct rndsource_cpu *rc = ptr;
1741 1.1 riastrad unsigned *nbitsp = cookie;
1742 1.1 riastrad unsigned cpu_nbits;
1743 1.1 riastrad
1744 1.1 riastrad cpu_nbits = atomic_load_relaxed(&rc->rc_nbits);
1745 1.1 riastrad *nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
1746 1.1 riastrad }
1747 1.1 riastrad
1748 1.1 riastrad /*
1749 1.1 riastrad * rndsource_to_user(rs, urs)
1750 1.1 riastrad *
1751 1.1 riastrad * Copy a description of rs out to urs for userland.
1752 1.1 riastrad */
1753 1.1 riastrad static void
1754 1.1 riastrad rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
1755 1.1 riastrad {
1756 1.1 riastrad
1757 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1758 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1759 1.1 riastrad
1760 1.1 riastrad /* Avoid kernel memory disclosure. */
1761 1.1 riastrad memset(urs, 0, sizeof(*urs));
1762 1.1 riastrad
1763 1.1 riastrad CTASSERT(sizeof(urs->name) == sizeof(rs->name));
1764 1.1 riastrad strlcpy(urs->name, rs->name, sizeof(urs->name));
1765 1.1 riastrad urs->total = rndsource_entropybits(rs);
1766 1.1 riastrad urs->type = rs->type;
1767 1.1 riastrad urs->flags = atomic_load_relaxed(&rs->flags);
1768 1.1 riastrad }
1769 1.1 riastrad
1770 1.1 riastrad /*
1771 1.1 riastrad * rndsource_to_user_est(rs, urse)
1772 1.1 riastrad *
1773 1.1 riastrad * Copy a description of rs and estimation statistics out to urse
1774 1.1 riastrad * for userland.
1775 1.1 riastrad */
1776 1.1 riastrad static void
1777 1.1 riastrad rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
1778 1.1 riastrad {
1779 1.1 riastrad
1780 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1781 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1782 1.1 riastrad
1783 1.1 riastrad /* Avoid kernel memory disclosure. */
1784 1.1 riastrad memset(urse, 0, sizeof(*urse));
1785 1.1 riastrad
1786 1.1 riastrad /* Copy out the rndsource description. */
1787 1.1 riastrad rndsource_to_user(rs, &urse->rt);
1788 1.1 riastrad
1789 1.1 riastrad /* Zero out the statistics because we don't do estimation. */
1790 1.1 riastrad urse->dt_samples = 0;
1791 1.1 riastrad urse->dt_total = 0;
1792 1.1 riastrad urse->dv_samples = 0;
1793 1.1 riastrad urse->dv_total = 0;
1794 1.1 riastrad }
1795 1.1 riastrad
1796 1.1 riastrad /*
1797 1.1 riastrad * entropy_ioctl(cmd, data)
1798 1.1 riastrad *
1799 1.1 riastrad * Handle various /dev/random ioctl queries.
1800 1.1 riastrad */
1801 1.1 riastrad int
1802 1.1 riastrad entropy_ioctl(unsigned long cmd, void *data)
1803 1.1 riastrad {
1804 1.1 riastrad struct krndsource *rs;
1805 1.1 riastrad bool privileged;
1806 1.1 riastrad int error;
1807 1.1 riastrad
1808 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1809 1.1 riastrad
1810 1.1 riastrad /* Verify user's authorization to perform the ioctl. */
1811 1.1 riastrad switch (cmd) {
1812 1.1 riastrad case RNDGETENTCNT:
1813 1.1 riastrad case RNDGETPOOLSTAT:
1814 1.1 riastrad case RNDGETSRCNUM:
1815 1.1 riastrad case RNDGETSRCNAME:
1816 1.1 riastrad case RNDGETESTNUM:
1817 1.1 riastrad case RNDGETESTNAME:
1818 1.1 riastrad error = kauth_authorize_device(curlwp->l_cred,
1819 1.1 riastrad KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
1820 1.1 riastrad break;
1821 1.1 riastrad case RNDCTL:
1822 1.1 riastrad error = kauth_authorize_device(curlwp->l_cred,
1823 1.1 riastrad KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
1824 1.1 riastrad break;
1825 1.1 riastrad case RNDADDDATA:
1826 1.1 riastrad error = kauth_authorize_device(curlwp->l_cred,
1827 1.1 riastrad KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
1828 1.1 riastrad /* Ascertain whether the user's inputs should be counted. */
1829 1.1 riastrad if (kauth_authorize_device(curlwp->l_cred,
1830 1.1 riastrad KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
1831 1.1 riastrad NULL, NULL, NULL, NULL) == 0)
1832 1.1 riastrad privileged = true;
1833 1.1 riastrad break;
1834 1.1 riastrad default: {
1835 1.1 riastrad /*
1836 1.1 riastrad * XXX Hack to avoid changing module ABI so this can be
1837 1.1 riastrad * pulled up. Later, we can just remove the argument.
1838 1.1 riastrad */
1839 1.1 riastrad static const struct fileops fops = {
1840 1.1 riastrad .fo_ioctl = rnd_system_ioctl,
1841 1.1 riastrad };
1842 1.1 riastrad struct file f = {
1843 1.1 riastrad .f_ops = &fops,
1844 1.1 riastrad };
1845 1.1 riastrad MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
1846 1.1 riastrad enosys(), error);
1847 1.1 riastrad #if defined(_LP64)
1848 1.1 riastrad if (error == ENOSYS)
1849 1.1 riastrad MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
1850 1.1 riastrad enosys(), error);
1851 1.1 riastrad #endif
1852 1.1 riastrad if (error == ENOSYS)
1853 1.1 riastrad error = ENOTTY;
1854 1.1 riastrad break;
1855 1.1 riastrad }
1856 1.1 riastrad }
1857 1.1 riastrad
1858 1.1 riastrad /* If anything went wrong with authorization, stop here. */
1859 1.1 riastrad if (error)
1860 1.1 riastrad return error;
1861 1.1 riastrad
1862 1.1 riastrad /* Dispatch on the command. */
1863 1.1 riastrad switch (cmd) {
1864 1.1 riastrad case RNDGETENTCNT: { /* Get current entropy count in bits. */
1865 1.1 riastrad uint32_t *countp = data;
1866 1.1 riastrad
1867 1.1 riastrad mutex_enter(&E->lock);
1868 1.1 riastrad *countp = ENTROPY_CAPACITY*NBBY - E->needed;
1869 1.1 riastrad mutex_exit(&E->lock);
1870 1.1 riastrad
1871 1.1 riastrad break;
1872 1.1 riastrad }
1873 1.1 riastrad case RNDGETPOOLSTAT: { /* Get entropy pool statistics. */
1874 1.1 riastrad rndpoolstat_t *pstat = data;
1875 1.1 riastrad
1876 1.1 riastrad mutex_enter(&E->lock);
1877 1.1 riastrad
1878 1.1 riastrad /* parameters */
1879 1.1 riastrad pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
1880 1.1 riastrad pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
1881 1.1 riastrad pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
1882 1.1 riastrad
1883 1.1 riastrad /* state */
1884 1.1 riastrad pstat->added = 0; /* XXX total entropy_enter count */
1885 1.1 riastrad pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
1886 1.1 riastrad pstat->removed = 0; /* XXX total entropy_extract count */
1887 1.1 riastrad pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
1888 1.1 riastrad pstat->generated = 0; /* XXX bits of data...fabricated? */
1889 1.1 riastrad
1890 1.1 riastrad mutex_exit(&E->lock);
1891 1.1 riastrad break;
1892 1.1 riastrad }
1893 1.1 riastrad case RNDGETSRCNUM: { /* Get entropy sources by number. */
1894 1.1 riastrad rndstat_t *stat = data;
1895 1.1 riastrad uint32_t start = 0, i = 0;
1896 1.1 riastrad
1897 1.1 riastrad /* Skip if none requested; fail if too many requested. */
1898 1.1 riastrad if (stat->count == 0)
1899 1.1 riastrad break;
1900 1.1 riastrad if (stat->count > RND_MAXSTATCOUNT)
1901 1.1 riastrad return EINVAL;
1902 1.1 riastrad
1903 1.1 riastrad /*
1904 1.1 riastrad * Under the lock, find the first one, copy out as many
1905 1.1 riastrad * as requested, and report how many we copied out.
1906 1.1 riastrad */
1907 1.1 riastrad mutex_enter(&E->lock);
1908 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
1909 1.1 riastrad if (start++ == stat->start)
1910 1.1 riastrad break;
1911 1.1 riastrad }
1912 1.1 riastrad while (i < stat->count && rs != NULL) {
1913 1.1 riastrad rndsource_to_user(rs, &stat->source[i++]);
1914 1.1 riastrad rs = LIST_NEXT(rs, list);
1915 1.1 riastrad }
1916 1.1 riastrad KASSERT(i <= stat->count);
1917 1.1 riastrad stat->count = i;
1918 1.1 riastrad mutex_exit(&E->lock);
1919 1.1 riastrad break;
1920 1.1 riastrad }
1921 1.1 riastrad case RNDGETESTNUM: { /* Get sources and estimates by number. */
1922 1.1 riastrad rndstat_est_t *estat = data;
1923 1.1 riastrad uint32_t start = 0, i = 0;
1924 1.1 riastrad
1925 1.1 riastrad /* Skip if none requested; fail if too many requested. */
1926 1.1 riastrad if (estat->count == 0)
1927 1.1 riastrad break;
1928 1.1 riastrad if (estat->count > RND_MAXSTATCOUNT)
1929 1.1 riastrad return EINVAL;
1930 1.1 riastrad
1931 1.1 riastrad /*
1932 1.1 riastrad * Under the lock, find the first one, copy out as many
1933 1.1 riastrad * as requested, and report how many we copied out.
1934 1.1 riastrad */
1935 1.1 riastrad mutex_enter(&E->lock);
1936 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
1937 1.1 riastrad if (start++ == estat->start)
1938 1.1 riastrad break;
1939 1.1 riastrad }
1940 1.1 riastrad while (i < estat->count && rs != NULL) {
1941 1.1 riastrad rndsource_to_user_est(rs, &estat->source[i++]);
1942 1.1 riastrad rs = LIST_NEXT(rs, list);
1943 1.1 riastrad }
1944 1.1 riastrad KASSERT(i <= estat->count);
1945 1.1 riastrad estat->count = i;
1946 1.1 riastrad mutex_exit(&E->lock);
1947 1.1 riastrad break;
1948 1.1 riastrad }
1949 1.1 riastrad case RNDGETSRCNAME: { /* Get entropy sources by name. */
1950 1.1 riastrad rndstat_name_t *nstat = data;
1951 1.1 riastrad const size_t n = sizeof(rs->name);
1952 1.1 riastrad
1953 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
1954 1.1 riastrad
1955 1.1 riastrad /*
1956 1.1 riastrad * Under the lock, search by name. If found, copy it
1957 1.1 riastrad * out; if not found, fail with ENOENT.
1958 1.1 riastrad */
1959 1.1 riastrad mutex_enter(&E->lock);
1960 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
1961 1.1 riastrad if (strncmp(rs->name, nstat->name, n) == 0)
1962 1.1 riastrad break;
1963 1.1 riastrad }
1964 1.1 riastrad if (rs != NULL)
1965 1.1 riastrad rndsource_to_user(rs, &nstat->source);
1966 1.1 riastrad else
1967 1.1 riastrad error = ENOENT;
1968 1.1 riastrad mutex_exit(&E->lock);
1969 1.1 riastrad break;
1970 1.1 riastrad }
1971 1.1 riastrad case RNDGETESTNAME: { /* Get sources and estimates by name. */
1972 1.1 riastrad rndstat_est_name_t *enstat = data;
1973 1.1 riastrad const size_t n = sizeof(rs->name);
1974 1.1 riastrad
1975 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
1976 1.1 riastrad
1977 1.1 riastrad /*
1978 1.1 riastrad * Under the lock, search by name. If found, copy it
1979 1.1 riastrad * out; if not found, fail with ENOENT.
1980 1.1 riastrad */
1981 1.1 riastrad mutex_enter(&E->lock);
1982 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
1983 1.1 riastrad if (strncmp(rs->name, enstat->name, n) == 0)
1984 1.1 riastrad break;
1985 1.1 riastrad }
1986 1.1 riastrad if (rs != NULL)
1987 1.1 riastrad rndsource_to_user_est(rs, &enstat->source);
1988 1.1 riastrad else
1989 1.1 riastrad error = ENOENT;
1990 1.1 riastrad mutex_exit(&E->lock);
1991 1.1 riastrad break;
1992 1.1 riastrad }
1993 1.1 riastrad case RNDCTL: { /* Modify entropy source flags. */
1994 1.1 riastrad rndctl_t *rndctl = data;
1995 1.1 riastrad const size_t n = sizeof(rs->name);
1996 1.1 riastrad uint32_t flags;
1997 1.1 riastrad
1998 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
1999 1.1 riastrad
2000 1.1 riastrad /* Whitelist the flags that user can change. */
2001 1.1 riastrad rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2002 1.1 riastrad
2003 1.1 riastrad /*
2004 1.1 riastrad * For each matching rndsource, either by type if
2005 1.1 riastrad * specified or by name if not, set the masked flags.
2006 1.1 riastrad */
2007 1.1 riastrad mutex_enter(&E->lock);
2008 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2009 1.1 riastrad if (rndctl->type != 0xff) {
2010 1.1 riastrad if (rs->type != rndctl->type)
2011 1.1 riastrad continue;
2012 1.1 riastrad } else {
2013 1.1 riastrad if (strncmp(rs->name, rndctl->name, n) != 0)
2014 1.1 riastrad continue;
2015 1.1 riastrad }
2016 1.1 riastrad flags = rs->flags & ~rndctl->mask;
2017 1.1 riastrad flags |= rndctl->flags & rndctl->mask;
2018 1.1 riastrad atomic_store_relaxed(&rs->flags, flags);
2019 1.1 riastrad }
2020 1.1 riastrad mutex_exit(&E->lock);
2021 1.1 riastrad break;
2022 1.1 riastrad }
2023 1.1 riastrad case RNDADDDATA: { /* Enter seed into entropy pool. */
2024 1.1 riastrad rnddata_t *rdata = data;
2025 1.1 riastrad unsigned entropybits = 0;
2026 1.1 riastrad
2027 1.1 riastrad if (!atomic_load_relaxed(&entropy_collection))
2028 1.1 riastrad break; /* thanks but no thanks */
2029 1.1 riastrad if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
2030 1.1 riastrad return EINVAL;
2031 1.1 riastrad
2032 1.1 riastrad /*
2033 1.1 riastrad * This ioctl serves as the userland alternative a
2034 1.1 riastrad * bootloader-provided seed -- typically furnished by
2035 1.1 riastrad * /etc/rc.d/random_seed. We accept the user's entropy
2036 1.1 riastrad * claim only if
2037 1.1 riastrad *
2038 1.1 riastrad * (a) the user is privileged, and
2039 1.1 riastrad * (b) we have not entered a bootloader seed.
2040 1.1 riastrad *
2041 1.1 riastrad * under the assumption that the user may use this to
2042 1.1 riastrad * load a seed from disk that we have already loaded
2043 1.1 riastrad * from the bootloader, so we don't double-count it.
2044 1.1 riastrad */
2045 1.1 riastrad if (privileged) {
2046 1.1 riastrad mutex_enter(&E->lock);
2047 1.1 riastrad if (!E->seeded) {
2048 1.1 riastrad entropybits = MIN(rdata->entropy,
2049 1.1 riastrad MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
2050 1.1 riastrad E->seeded = true;
2051 1.1 riastrad }
2052 1.1 riastrad mutex_exit(&E->lock);
2053 1.1 riastrad }
2054 1.1 riastrad
2055 1.1 riastrad /* Enter the data. */
2056 1.1 riastrad rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
2057 1.1 riastrad entropybits);
2058 1.1 riastrad break;
2059 1.1 riastrad }
2060 1.1 riastrad default:
2061 1.1 riastrad error = ENOTTY;
2062 1.1 riastrad }
2063 1.1 riastrad
2064 1.1 riastrad /* Return any error that may have come up. */
2065 1.1 riastrad return error;
2066 1.1 riastrad }
2067 1.1 riastrad
2068 1.1 riastrad /* Legacy entry points */
2069 1.1 riastrad
2070 1.1 riastrad void
2071 1.1 riastrad rnd_seed(void *seed, size_t len)
2072 1.1 riastrad {
2073 1.1 riastrad
2074 1.1 riastrad if (len != sizeof(rndsave_t)) {
2075 1.1 riastrad printf("entropy: invalid seed length: %zu,"
2076 1.1 riastrad " expected sizeof(rndsave_t) = %zu\n",
2077 1.1 riastrad len, sizeof(rndsave_t));
2078 1.1 riastrad return;
2079 1.1 riastrad }
2080 1.1 riastrad entropy_seed(seed);
2081 1.1 riastrad }
2082 1.1 riastrad
2083 1.1 riastrad void
2084 1.1 riastrad rnd_init(void)
2085 1.1 riastrad {
2086 1.1 riastrad
2087 1.1 riastrad entropy_init();
2088 1.1 riastrad }
2089 1.1 riastrad
2090 1.1 riastrad void
2091 1.1 riastrad rnd_init_softint(void)
2092 1.1 riastrad {
2093 1.1 riastrad
2094 1.1 riastrad entropy_init_late();
2095 1.1 riastrad }
2096 1.1 riastrad
2097 1.1 riastrad int
2098 1.1 riastrad rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
2099 1.1 riastrad {
2100 1.1 riastrad
2101 1.1 riastrad return entropy_ioctl(cmd, data);
2102 1.1 riastrad }
2103