kern_entropy.c revision 1.27 1 1.27 riastrad /* $NetBSD: kern_entropy.c,v 1.27 2021/01/13 23:53:23 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad /*
33 1.1 riastrad * Entropy subsystem
34 1.1 riastrad *
35 1.1 riastrad * * Each CPU maintains a per-CPU entropy pool so that gathering
36 1.1 riastrad * entropy requires no interprocessor synchronization, except
37 1.1 riastrad * early at boot when we may be scrambling to gather entropy as
38 1.1 riastrad * soon as possible.
39 1.1 riastrad *
40 1.1 riastrad * - entropy_enter gathers entropy and never drops it on the
41 1.1 riastrad * floor, at the cost of sometimes having to do cryptography.
42 1.1 riastrad *
43 1.1 riastrad * - entropy_enter_intr gathers entropy or drops it on the
44 1.1 riastrad * floor, with low latency. Work to stir the pool or kick the
45 1.1 riastrad * housekeeping thread is scheduled in soft interrupts.
46 1.1 riastrad *
47 1.1 riastrad * * entropy_enter immediately enters into the global pool if it
48 1.1 riastrad * can transition to full entropy in one swell foop. Otherwise,
49 1.1 riastrad * it defers to a housekeeping thread that consolidates entropy,
50 1.1 riastrad * but only when the CPUs collectively have full entropy, in
51 1.1 riastrad * order to mitigate iterative-guessing attacks.
52 1.1 riastrad *
53 1.1 riastrad * * The entropy housekeeping thread continues to consolidate
54 1.1 riastrad * entropy even after we think we have full entropy, in case we
55 1.1 riastrad * are wrong, but is limited to one discretionary consolidation
56 1.1 riastrad * per minute, and only when new entropy is actually coming in,
57 1.1 riastrad * to limit performance impact.
58 1.1 riastrad *
59 1.1 riastrad * * The entropy epoch is the number that changes when we
60 1.1 riastrad * transition from partial entropy to full entropy, so that
61 1.1 riastrad * users can easily determine when to reseed. This also
62 1.1 riastrad * facilitates an operator explicitly causing everything to
63 1.13 riastrad * reseed by sysctl -w kern.entropy.consolidate=1.
64 1.1 riastrad *
65 1.1 riastrad * * No entropy estimation based on the sample values, which is a
66 1.1 riastrad * contradiction in terms and a potential source of side
67 1.1 riastrad * channels. It is the responsibility of the driver author to
68 1.1 riastrad * study how predictable the physical source of input can ever
69 1.1 riastrad * be, and to furnish a lower bound on the amount of entropy it
70 1.1 riastrad * has.
71 1.1 riastrad *
72 1.1 riastrad * * Entropy depletion is available for testing (or if you're into
73 1.1 riastrad * that sort of thing), with sysctl -w kern.entropy.depletion=1;
74 1.1 riastrad * the logic to support it is small, to minimize chance of bugs.
75 1.1 riastrad */
76 1.1 riastrad
77 1.1 riastrad #include <sys/cdefs.h>
78 1.27 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.27 2021/01/13 23:53:23 riastradh Exp $");
79 1.1 riastrad
80 1.1 riastrad #include <sys/param.h>
81 1.1 riastrad #include <sys/types.h>
82 1.1 riastrad #include <sys/atomic.h>
83 1.1 riastrad #include <sys/compat_stub.h>
84 1.1 riastrad #include <sys/condvar.h>
85 1.1 riastrad #include <sys/cpu.h>
86 1.1 riastrad #include <sys/entropy.h>
87 1.1 riastrad #include <sys/errno.h>
88 1.1 riastrad #include <sys/evcnt.h>
89 1.1 riastrad #include <sys/event.h>
90 1.1 riastrad #include <sys/file.h>
91 1.1 riastrad #include <sys/intr.h>
92 1.1 riastrad #include <sys/kauth.h>
93 1.1 riastrad #include <sys/kernel.h>
94 1.1 riastrad #include <sys/kmem.h>
95 1.1 riastrad #include <sys/kthread.h>
96 1.1 riastrad #include <sys/module_hook.h>
97 1.1 riastrad #include <sys/mutex.h>
98 1.1 riastrad #include <sys/percpu.h>
99 1.1 riastrad #include <sys/poll.h>
100 1.1 riastrad #include <sys/queue.h>
101 1.1 riastrad #include <sys/rnd.h> /* legacy kernel API */
102 1.1 riastrad #include <sys/rndio.h> /* userland ioctl interface */
103 1.1 riastrad #include <sys/rndsource.h> /* kernel rndsource driver API */
104 1.1 riastrad #include <sys/select.h>
105 1.1 riastrad #include <sys/selinfo.h>
106 1.1 riastrad #include <sys/sha1.h> /* for boot seed checksum */
107 1.1 riastrad #include <sys/stdint.h>
108 1.1 riastrad #include <sys/sysctl.h>
109 1.26 riastrad #include <sys/syslog.h>
110 1.1 riastrad #include <sys/systm.h>
111 1.1 riastrad #include <sys/time.h>
112 1.1 riastrad #include <sys/xcall.h>
113 1.1 riastrad
114 1.1 riastrad #include <lib/libkern/entpool.h>
115 1.1 riastrad
116 1.1 riastrad #include <machine/limits.h>
117 1.1 riastrad
118 1.1 riastrad #ifdef __HAVE_CPU_COUNTER
119 1.1 riastrad #include <machine/cpu_counter.h>
120 1.1 riastrad #endif
121 1.1 riastrad
122 1.1 riastrad /*
123 1.1 riastrad * struct entropy_cpu
124 1.1 riastrad *
125 1.1 riastrad * Per-CPU entropy state. The pool is allocated separately
126 1.1 riastrad * because percpu(9) sometimes moves per-CPU objects around
127 1.1 riastrad * without zeroing them, which would lead to unwanted copies of
128 1.1 riastrad * sensitive secrets. The evcnt is allocated separately becuase
129 1.1 riastrad * evcnt(9) assumes it stays put in memory.
130 1.1 riastrad */
131 1.1 riastrad struct entropy_cpu {
132 1.1 riastrad struct evcnt *ec_softint_evcnt;
133 1.1 riastrad struct entpool *ec_pool;
134 1.1 riastrad unsigned ec_pending;
135 1.1 riastrad bool ec_locked;
136 1.1 riastrad };
137 1.1 riastrad
138 1.1 riastrad /*
139 1.1 riastrad * struct rndsource_cpu
140 1.1 riastrad *
141 1.1 riastrad * Per-CPU rndsource state.
142 1.1 riastrad */
143 1.1 riastrad struct rndsource_cpu {
144 1.1 riastrad unsigned rc_nbits; /* bits of entropy added */
145 1.1 riastrad };
146 1.1 riastrad
147 1.1 riastrad /*
148 1.1 riastrad * entropy_global (a.k.a. E for short in this file)
149 1.1 riastrad *
150 1.1 riastrad * Global entropy state. Writes protected by the global lock.
151 1.1 riastrad * Some fields, marked (A), can be read outside the lock, and are
152 1.1 riastrad * maintained with atomic_load/store_relaxed.
153 1.1 riastrad */
154 1.1 riastrad struct {
155 1.1 riastrad kmutex_t lock; /* covers all global state */
156 1.1 riastrad struct entpool pool; /* global pool for extraction */
157 1.1 riastrad unsigned needed; /* (A) needed globally */
158 1.1 riastrad unsigned pending; /* (A) pending in per-CPU pools */
159 1.1 riastrad unsigned timestamp; /* (A) time of last consolidation */
160 1.1 riastrad unsigned epoch; /* (A) changes when needed -> 0 */
161 1.1 riastrad kcondvar_t cv; /* notifies state changes */
162 1.1 riastrad struct selinfo selq; /* notifies needed -> 0 */
163 1.4 riastrad struct lwp *sourcelock; /* lock on list of sources */
164 1.27 riastrad kcondvar_t sourcelock_cv; /* notifies sourcelock release */
165 1.1 riastrad LIST_HEAD(,krndsource) sources; /* list of entropy sources */
166 1.1 riastrad enum entropy_stage {
167 1.1 riastrad ENTROPY_COLD = 0, /* single-threaded */
168 1.1 riastrad ENTROPY_WARM, /* multi-threaded at boot before CPUs */
169 1.1 riastrad ENTROPY_HOT, /* multi-threaded multi-CPU */
170 1.1 riastrad } stage;
171 1.1 riastrad bool consolidate; /* kick thread to consolidate */
172 1.1 riastrad bool seed_rndsource; /* true if seed source is attached */
173 1.1 riastrad bool seeded; /* true if seed file already loaded */
174 1.1 riastrad } entropy_global __cacheline_aligned = {
175 1.1 riastrad /* Fields that must be initialized when the kernel is loaded. */
176 1.1 riastrad .needed = ENTROPY_CAPACITY*NBBY,
177 1.14 riastrad .epoch = (unsigned)-1, /* -1 means entropy never consolidated */
178 1.1 riastrad .sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
179 1.1 riastrad .stage = ENTROPY_COLD,
180 1.1 riastrad };
181 1.1 riastrad
182 1.1 riastrad #define E (&entropy_global) /* declutter */
183 1.1 riastrad
184 1.1 riastrad /* Read-mostly globals */
185 1.1 riastrad static struct percpu *entropy_percpu __read_mostly; /* struct entropy_cpu */
186 1.1 riastrad static void *entropy_sih __read_mostly; /* softint handler */
187 1.1 riastrad static struct lwp *entropy_lwp __read_mostly; /* housekeeping thread */
188 1.1 riastrad
189 1.1 riastrad int rnd_initial_entropy __read_mostly; /* XXX legacy */
190 1.1 riastrad
191 1.1 riastrad static struct krndsource seed_rndsource __read_mostly;
192 1.1 riastrad
193 1.1 riastrad /*
194 1.1 riastrad * Event counters
195 1.1 riastrad *
196 1.1 riastrad * Must be careful with adding these because they can serve as
197 1.1 riastrad * side channels.
198 1.1 riastrad */
199 1.1 riastrad static struct evcnt entropy_discretionary_evcnt =
200 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
201 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
202 1.1 riastrad static struct evcnt entropy_immediate_evcnt =
203 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
204 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
205 1.1 riastrad static struct evcnt entropy_partial_evcnt =
206 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
207 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
208 1.1 riastrad static struct evcnt entropy_consolidate_evcnt =
209 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
210 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
211 1.1 riastrad static struct evcnt entropy_extract_intr_evcnt =
212 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract intr");
213 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_extract_intr_evcnt);
214 1.1 riastrad static struct evcnt entropy_extract_fail_evcnt =
215 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
216 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
217 1.1 riastrad static struct evcnt entropy_request_evcnt =
218 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
219 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_request_evcnt);
220 1.1 riastrad static struct evcnt entropy_deplete_evcnt =
221 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
222 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
223 1.1 riastrad static struct evcnt entropy_notify_evcnt =
224 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
225 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
226 1.1 riastrad
227 1.1 riastrad /* Sysctl knobs */
228 1.17 riastrad static bool entropy_collection = 1;
229 1.17 riastrad static bool entropy_depletion = 0; /* Silly! */
230 1.1 riastrad
231 1.1 riastrad static const struct sysctlnode *entropy_sysctlroot;
232 1.1 riastrad static struct sysctllog *entropy_sysctllog;
233 1.1 riastrad
234 1.1 riastrad /* Forward declarations */
235 1.1 riastrad static void entropy_init_cpu(void *, void *, struct cpu_info *);
236 1.1 riastrad static void entropy_fini_cpu(void *, void *, struct cpu_info *);
237 1.1 riastrad static void entropy_account_cpu(struct entropy_cpu *);
238 1.1 riastrad static void entropy_enter(const void *, size_t, unsigned);
239 1.1 riastrad static bool entropy_enter_intr(const void *, size_t, unsigned);
240 1.1 riastrad static void entropy_softintr(void *);
241 1.1 riastrad static void entropy_thread(void *);
242 1.1 riastrad static uint32_t entropy_pending(void);
243 1.1 riastrad static void entropy_pending_cpu(void *, void *, struct cpu_info *);
244 1.13 riastrad static void entropy_do_consolidate(void);
245 1.13 riastrad static void entropy_consolidate_xc(void *, void *);
246 1.1 riastrad static void entropy_notify(void);
247 1.1 riastrad static int sysctl_entropy_consolidate(SYSCTLFN_ARGS);
248 1.10 riastrad static int sysctl_entropy_gather(SYSCTLFN_ARGS);
249 1.1 riastrad static void filt_entropy_read_detach(struct knote *);
250 1.1 riastrad static int filt_entropy_read_event(struct knote *, long);
251 1.1 riastrad static void entropy_request(size_t);
252 1.1 riastrad static void rnd_add_data_1(struct krndsource *, const void *, uint32_t,
253 1.1 riastrad uint32_t);
254 1.1 riastrad static unsigned rndsource_entropybits(struct krndsource *);
255 1.1 riastrad static void rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
256 1.1 riastrad static void rndsource_to_user(struct krndsource *, rndsource_t *);
257 1.1 riastrad static void rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
258 1.1 riastrad
259 1.1 riastrad /*
260 1.1 riastrad * entropy_timer()
261 1.1 riastrad *
262 1.1 riastrad * Cycle counter, time counter, or anything that changes a wee bit
263 1.1 riastrad * unpredictably.
264 1.1 riastrad */
265 1.1 riastrad static inline uint32_t
266 1.1 riastrad entropy_timer(void)
267 1.1 riastrad {
268 1.1 riastrad struct bintime bt;
269 1.1 riastrad uint32_t v;
270 1.1 riastrad
271 1.1 riastrad /* If we have a CPU cycle counter, use the low 32 bits. */
272 1.1 riastrad #ifdef __HAVE_CPU_COUNTER
273 1.1 riastrad if (__predict_true(cpu_hascounter()))
274 1.1 riastrad return cpu_counter32();
275 1.1 riastrad #endif /* __HAVE_CPU_COUNTER */
276 1.1 riastrad
277 1.1 riastrad /* If we're cold, tough. Can't binuptime while cold. */
278 1.1 riastrad if (__predict_false(cold))
279 1.1 riastrad return 0;
280 1.1 riastrad
281 1.1 riastrad /* Fold the 128 bits of binuptime into 32 bits. */
282 1.1 riastrad binuptime(&bt);
283 1.1 riastrad v = bt.frac;
284 1.1 riastrad v ^= bt.frac >> 32;
285 1.1 riastrad v ^= bt.sec;
286 1.1 riastrad v ^= bt.sec >> 32;
287 1.1 riastrad return v;
288 1.1 riastrad }
289 1.1 riastrad
290 1.1 riastrad static void
291 1.1 riastrad attach_seed_rndsource(void)
292 1.1 riastrad {
293 1.1 riastrad
294 1.1 riastrad /*
295 1.1 riastrad * First called no later than entropy_init, while we are still
296 1.1 riastrad * single-threaded, so no need for RUN_ONCE.
297 1.1 riastrad */
298 1.1 riastrad if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
299 1.1 riastrad return;
300 1.1 riastrad rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
301 1.1 riastrad RND_FLAG_COLLECT_VALUE);
302 1.1 riastrad E->seed_rndsource = true;
303 1.1 riastrad }
304 1.1 riastrad
305 1.1 riastrad /*
306 1.1 riastrad * entropy_init()
307 1.1 riastrad *
308 1.1 riastrad * Initialize the entropy subsystem. Panic on failure.
309 1.1 riastrad *
310 1.1 riastrad * Requires percpu(9) and sysctl(9) to be initialized.
311 1.1 riastrad */
312 1.1 riastrad static void
313 1.1 riastrad entropy_init(void)
314 1.1 riastrad {
315 1.1 riastrad uint32_t extra[2];
316 1.1 riastrad struct krndsource *rs;
317 1.1 riastrad unsigned i = 0;
318 1.1 riastrad
319 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD);
320 1.1 riastrad
321 1.1 riastrad /* Grab some cycle counts early at boot. */
322 1.1 riastrad extra[i++] = entropy_timer();
323 1.1 riastrad
324 1.1 riastrad /* Run the entropy pool cryptography self-test. */
325 1.1 riastrad if (entpool_selftest() == -1)
326 1.1 riastrad panic("entropy pool crypto self-test failed");
327 1.1 riastrad
328 1.1 riastrad /* Create the sysctl directory. */
329 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
330 1.1 riastrad CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
331 1.1 riastrad SYSCTL_DESCR("Entropy (random number sources) options"),
332 1.1 riastrad NULL, 0, NULL, 0,
333 1.1 riastrad CTL_KERN, CTL_CREATE, CTL_EOL);
334 1.1 riastrad
335 1.1 riastrad /* Create the sysctl knobs. */
336 1.1 riastrad /* XXX These shouldn't be writable at securelevel>0. */
337 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
338 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
339 1.1 riastrad SYSCTL_DESCR("Automatically collect entropy from hardware"),
340 1.1 riastrad NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
341 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
342 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
343 1.1 riastrad SYSCTL_DESCR("`Deplete' entropy pool when observed"),
344 1.1 riastrad NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
345 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
346 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
347 1.1 riastrad SYSCTL_DESCR("Trigger entropy consolidation now"),
348 1.1 riastrad sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
349 1.10 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
350 1.10 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
351 1.10 riastrad SYSCTL_DESCR("Trigger entropy gathering from sources now"),
352 1.10 riastrad sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
353 1.1 riastrad /* XXX These should maybe not be readable at securelevel>0. */
354 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
355 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
356 1.1 riastrad "needed", SYSCTL_DESCR("Systemwide entropy deficit"),
357 1.1 riastrad NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
358 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
359 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
360 1.1 riastrad "pending", SYSCTL_DESCR("Entropy pending on CPUs"),
361 1.1 riastrad NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
362 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
363 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
364 1.1 riastrad "epoch", SYSCTL_DESCR("Entropy epoch"),
365 1.1 riastrad NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
366 1.1 riastrad
367 1.1 riastrad /* Initialize the global state for multithreaded operation. */
368 1.1 riastrad mutex_init(&E->lock, MUTEX_DEFAULT, IPL_VM);
369 1.1 riastrad cv_init(&E->cv, "entropy");
370 1.1 riastrad selinit(&E->selq);
371 1.27 riastrad cv_init(&E->sourcelock_cv, "entsrclock");
372 1.1 riastrad
373 1.1 riastrad /* Make sure the seed source is attached. */
374 1.1 riastrad attach_seed_rndsource();
375 1.1 riastrad
376 1.1 riastrad /* Note if the bootloader didn't provide a seed. */
377 1.1 riastrad if (!E->seeded)
378 1.1 riastrad printf("entropy: no seed from bootloader\n");
379 1.1 riastrad
380 1.1 riastrad /* Allocate the per-CPU records for all early entropy sources. */
381 1.1 riastrad LIST_FOREACH(rs, &E->sources, list)
382 1.1 riastrad rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
383 1.1 riastrad
384 1.1 riastrad /* Enter the boot cycle count to get started. */
385 1.1 riastrad extra[i++] = entropy_timer();
386 1.1 riastrad KASSERT(i == __arraycount(extra));
387 1.1 riastrad entropy_enter(extra, sizeof extra, 0);
388 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
389 1.1 riastrad
390 1.1 riastrad /* We are now ready for multi-threaded operation. */
391 1.1 riastrad E->stage = ENTROPY_WARM;
392 1.1 riastrad }
393 1.1 riastrad
394 1.1 riastrad /*
395 1.1 riastrad * entropy_init_late()
396 1.1 riastrad *
397 1.1 riastrad * Late initialization. Panic on failure.
398 1.1 riastrad *
399 1.1 riastrad * Requires CPUs to have been detected and LWPs to have started.
400 1.1 riastrad */
401 1.1 riastrad static void
402 1.1 riastrad entropy_init_late(void)
403 1.1 riastrad {
404 1.1 riastrad int error;
405 1.1 riastrad
406 1.1 riastrad KASSERT(E->stage == ENTROPY_WARM);
407 1.1 riastrad
408 1.1 riastrad /* Allocate and initialize the per-CPU state. */
409 1.1 riastrad entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
410 1.1 riastrad entropy_init_cpu, entropy_fini_cpu, NULL);
411 1.1 riastrad
412 1.1 riastrad /*
413 1.1 riastrad * Establish the softint at the highest softint priority level.
414 1.1 riastrad * Must happen after CPU detection.
415 1.1 riastrad */
416 1.1 riastrad entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
417 1.1 riastrad &entropy_softintr, NULL);
418 1.1 riastrad if (entropy_sih == NULL)
419 1.1 riastrad panic("unable to establish entropy softint");
420 1.1 riastrad
421 1.1 riastrad /*
422 1.1 riastrad * Create the entropy housekeeping thread. Must happen after
423 1.1 riastrad * lwpinit.
424 1.1 riastrad */
425 1.1 riastrad error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
426 1.1 riastrad entropy_thread, NULL, &entropy_lwp, "entbutler");
427 1.1 riastrad if (error)
428 1.1 riastrad panic("unable to create entropy housekeeping thread: %d",
429 1.1 riastrad error);
430 1.1 riastrad
431 1.1 riastrad /*
432 1.1 riastrad * Wait until the per-CPU initialization has hit all CPUs
433 1.1 riastrad * before proceeding to mark the entropy system hot.
434 1.1 riastrad */
435 1.1 riastrad xc_barrier(XC_HIGHPRI);
436 1.1 riastrad E->stage = ENTROPY_HOT;
437 1.1 riastrad }
438 1.1 riastrad
439 1.1 riastrad /*
440 1.1 riastrad * entropy_init_cpu(ptr, cookie, ci)
441 1.1 riastrad *
442 1.1 riastrad * percpu(9) constructor for per-CPU entropy pool.
443 1.1 riastrad */
444 1.1 riastrad static void
445 1.1 riastrad entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
446 1.1 riastrad {
447 1.1 riastrad struct entropy_cpu *ec = ptr;
448 1.1 riastrad
449 1.1 riastrad ec->ec_softint_evcnt = kmem_alloc(sizeof(*ec->ec_softint_evcnt),
450 1.1 riastrad KM_SLEEP);
451 1.1 riastrad ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
452 1.1 riastrad ec->ec_pending = 0;
453 1.1 riastrad ec->ec_locked = false;
454 1.1 riastrad
455 1.1 riastrad evcnt_attach_dynamic(ec->ec_softint_evcnt, EVCNT_TYPE_MISC, NULL,
456 1.1 riastrad ci->ci_cpuname, "entropy softint");
457 1.1 riastrad }
458 1.1 riastrad
459 1.1 riastrad /*
460 1.1 riastrad * entropy_fini_cpu(ptr, cookie, ci)
461 1.1 riastrad *
462 1.1 riastrad * percpu(9) destructor for per-CPU entropy pool.
463 1.1 riastrad */
464 1.1 riastrad static void
465 1.1 riastrad entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
466 1.1 riastrad {
467 1.1 riastrad struct entropy_cpu *ec = ptr;
468 1.1 riastrad
469 1.1 riastrad /*
470 1.1 riastrad * Zero any lingering data. Disclosure of the per-CPU pool
471 1.1 riastrad * shouldn't retroactively affect the security of any keys
472 1.1 riastrad * generated, because entpool(9) erases whatever we have just
473 1.1 riastrad * drawn out of any pool, but better safe than sorry.
474 1.1 riastrad */
475 1.1 riastrad explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
476 1.1 riastrad
477 1.1 riastrad evcnt_detach(ec->ec_softint_evcnt);
478 1.1 riastrad
479 1.1 riastrad kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
480 1.1 riastrad kmem_free(ec->ec_softint_evcnt, sizeof(*ec->ec_softint_evcnt));
481 1.1 riastrad }
482 1.1 riastrad
483 1.1 riastrad /*
484 1.1 riastrad * entropy_seed(seed)
485 1.1 riastrad *
486 1.1 riastrad * Seed the entropy pool with seed. Meant to be called as early
487 1.1 riastrad * as possible by the bootloader; may be called before or after
488 1.1 riastrad * entropy_init. Must be called before system reaches userland.
489 1.1 riastrad * Must be called in thread or soft interrupt context, not in hard
490 1.1 riastrad * interrupt context. Must be called at most once.
491 1.1 riastrad *
492 1.1 riastrad * Overwrites the seed in place. Caller may then free the memory.
493 1.1 riastrad */
494 1.1 riastrad static void
495 1.1 riastrad entropy_seed(rndsave_t *seed)
496 1.1 riastrad {
497 1.1 riastrad SHA1_CTX ctx;
498 1.1 riastrad uint8_t digest[SHA1_DIGEST_LENGTH];
499 1.1 riastrad bool seeded;
500 1.1 riastrad
501 1.1 riastrad /*
502 1.1 riastrad * Verify the checksum. If the checksum fails, take the data
503 1.1 riastrad * but ignore the entropy estimate -- the file may have been
504 1.1 riastrad * incompletely written with garbage, which is harmless to add
505 1.1 riastrad * but may not be as unpredictable as alleged.
506 1.1 riastrad */
507 1.1 riastrad SHA1Init(&ctx);
508 1.1 riastrad SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
509 1.1 riastrad SHA1Update(&ctx, seed->data, sizeof(seed->data));
510 1.1 riastrad SHA1Final(digest, &ctx);
511 1.1 riastrad CTASSERT(sizeof(seed->digest) == sizeof(digest));
512 1.1 riastrad if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
513 1.1 riastrad printf("entropy: invalid seed checksum\n");
514 1.1 riastrad seed->entropy = 0;
515 1.1 riastrad }
516 1.2 riastrad explicit_memset(&ctx, 0, sizeof ctx);
517 1.1 riastrad explicit_memset(digest, 0, sizeof digest);
518 1.1 riastrad
519 1.2 riastrad /*
520 1.2 riastrad * If the entropy is insensibly large, try byte-swapping.
521 1.2 riastrad * Otherwise assume the file is corrupted and act as though it
522 1.2 riastrad * has zero entropy.
523 1.2 riastrad */
524 1.2 riastrad if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
525 1.2 riastrad seed->entropy = bswap32(seed->entropy);
526 1.2 riastrad if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
527 1.2 riastrad seed->entropy = 0;
528 1.2 riastrad }
529 1.2 riastrad
530 1.1 riastrad /* Make sure the seed source is attached. */
531 1.1 riastrad attach_seed_rndsource();
532 1.1 riastrad
533 1.1 riastrad /* Test and set E->seeded. */
534 1.1 riastrad if (E->stage >= ENTROPY_WARM)
535 1.1 riastrad mutex_enter(&E->lock);
536 1.1 riastrad seeded = E->seeded;
537 1.11 riastrad E->seeded = (seed->entropy > 0);
538 1.1 riastrad if (E->stage >= ENTROPY_WARM)
539 1.1 riastrad mutex_exit(&E->lock);
540 1.1 riastrad
541 1.1 riastrad /*
542 1.1 riastrad * If we've been seeded, may be re-entering the same seed
543 1.1 riastrad * (e.g., bootloader vs module init, or something). No harm in
544 1.1 riastrad * entering it twice, but it contributes no additional entropy.
545 1.1 riastrad */
546 1.1 riastrad if (seeded) {
547 1.1 riastrad printf("entropy: double-seeded by bootloader\n");
548 1.1 riastrad seed->entropy = 0;
549 1.1 riastrad } else {
550 1.11 riastrad printf("entropy: entering seed from bootloader"
551 1.11 riastrad " with %u bits of entropy\n", (unsigned)seed->entropy);
552 1.1 riastrad }
553 1.1 riastrad
554 1.1 riastrad /* Enter it into the pool and promptly zero it. */
555 1.1 riastrad rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
556 1.1 riastrad seed->entropy);
557 1.1 riastrad explicit_memset(seed, 0, sizeof(*seed));
558 1.1 riastrad }
559 1.1 riastrad
560 1.1 riastrad /*
561 1.1 riastrad * entropy_bootrequest()
562 1.1 riastrad *
563 1.1 riastrad * Request entropy from all sources at boot, once config is
564 1.1 riastrad * complete and interrupts are running.
565 1.1 riastrad */
566 1.1 riastrad void
567 1.1 riastrad entropy_bootrequest(void)
568 1.1 riastrad {
569 1.1 riastrad
570 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
571 1.1 riastrad
572 1.1 riastrad /*
573 1.1 riastrad * Request enough to satisfy the maximum entropy shortage.
574 1.1 riastrad * This is harmless overkill if the bootloader provided a seed.
575 1.1 riastrad */
576 1.1 riastrad mutex_enter(&E->lock);
577 1.1 riastrad entropy_request(ENTROPY_CAPACITY);
578 1.1 riastrad mutex_exit(&E->lock);
579 1.1 riastrad }
580 1.1 riastrad
581 1.1 riastrad /*
582 1.1 riastrad * entropy_epoch()
583 1.1 riastrad *
584 1.1 riastrad * Returns the current entropy epoch. If this changes, you should
585 1.14 riastrad * reseed. If -1, means system entropy has not yet reached full
586 1.14 riastrad * entropy or been explicitly consolidated; never reverts back to
587 1.14 riastrad * -1. Never zero, so you can always use zero as an uninitialized
588 1.14 riastrad * sentinel value meaning `reseed ASAP'.
589 1.1 riastrad *
590 1.1 riastrad * Usage model:
591 1.1 riastrad *
592 1.1 riastrad * struct foo {
593 1.1 riastrad * struct crypto_prng prng;
594 1.1 riastrad * unsigned epoch;
595 1.1 riastrad * } *foo;
596 1.1 riastrad *
597 1.1 riastrad * unsigned epoch = entropy_epoch();
598 1.1 riastrad * if (__predict_false(epoch != foo->epoch)) {
599 1.1 riastrad * uint8_t seed[32];
600 1.1 riastrad * if (entropy_extract(seed, sizeof seed, 0) != 0)
601 1.1 riastrad * warn("no entropy");
602 1.1 riastrad * crypto_prng_reseed(&foo->prng, seed, sizeof seed);
603 1.1 riastrad * foo->epoch = epoch;
604 1.1 riastrad * }
605 1.1 riastrad */
606 1.1 riastrad unsigned
607 1.1 riastrad entropy_epoch(void)
608 1.1 riastrad {
609 1.1 riastrad
610 1.1 riastrad /*
611 1.1 riastrad * Unsigned int, so no need for seqlock for an atomic read, but
612 1.1 riastrad * make sure we read it afresh each time.
613 1.1 riastrad */
614 1.1 riastrad return atomic_load_relaxed(&E->epoch);
615 1.1 riastrad }
616 1.1 riastrad
617 1.1 riastrad /*
618 1.23 riastrad * entropy_ready()
619 1.23 riastrad *
620 1.23 riastrad * True if the entropy pool has full entropy.
621 1.23 riastrad */
622 1.23 riastrad bool
623 1.23 riastrad entropy_ready(void)
624 1.23 riastrad {
625 1.23 riastrad
626 1.23 riastrad return atomic_load_relaxed(&E->needed) == 0;
627 1.23 riastrad }
628 1.23 riastrad
629 1.23 riastrad /*
630 1.1 riastrad * entropy_account_cpu(ec)
631 1.1 riastrad *
632 1.1 riastrad * Consider whether to consolidate entropy into the global pool
633 1.1 riastrad * after we just added some into the current CPU's pending pool.
634 1.1 riastrad *
635 1.1 riastrad * - If this CPU can provide enough entropy now, do so.
636 1.1 riastrad *
637 1.1 riastrad * - If this and whatever else is available on other CPUs can
638 1.1 riastrad * provide enough entropy, kick the consolidation thread.
639 1.1 riastrad *
640 1.1 riastrad * - Otherwise, do as little as possible, except maybe consolidate
641 1.1 riastrad * entropy at most once a minute.
642 1.1 riastrad *
643 1.1 riastrad * Caller must be bound to a CPU and therefore have exclusive
644 1.1 riastrad * access to ec. Will acquire and release the global lock.
645 1.1 riastrad */
646 1.1 riastrad static void
647 1.1 riastrad entropy_account_cpu(struct entropy_cpu *ec)
648 1.1 riastrad {
649 1.1 riastrad unsigned diff;
650 1.1 riastrad
651 1.1 riastrad KASSERT(E->stage == ENTROPY_HOT);
652 1.1 riastrad
653 1.1 riastrad /*
654 1.1 riastrad * If there's no entropy needed, and entropy has been
655 1.1 riastrad * consolidated in the last minute, do nothing.
656 1.1 riastrad */
657 1.1 riastrad if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
658 1.1 riastrad __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
659 1.1 riastrad __predict_true((time_uptime - E->timestamp) <= 60))
660 1.1 riastrad return;
661 1.1 riastrad
662 1.1 riastrad /* If there's nothing pending, stop here. */
663 1.1 riastrad if (ec->ec_pending == 0)
664 1.1 riastrad return;
665 1.1 riastrad
666 1.1 riastrad /* Consider consolidation, under the lock. */
667 1.1 riastrad mutex_enter(&E->lock);
668 1.1 riastrad if (E->needed != 0 && E->needed <= ec->ec_pending) {
669 1.1 riastrad /*
670 1.1 riastrad * If we have not yet attained full entropy but we can
671 1.1 riastrad * now, do so. This way we disseminate entropy
672 1.1 riastrad * promptly when it becomes available early at boot;
673 1.1 riastrad * otherwise we leave it to the entropy consolidation
674 1.1 riastrad * thread, which is rate-limited to mitigate side
675 1.1 riastrad * channels and abuse.
676 1.1 riastrad */
677 1.1 riastrad uint8_t buf[ENTPOOL_CAPACITY];
678 1.1 riastrad
679 1.1 riastrad /* Transfer from the local pool to the global pool. */
680 1.1 riastrad entpool_extract(ec->ec_pool, buf, sizeof buf);
681 1.1 riastrad entpool_enter(&E->pool, buf, sizeof buf);
682 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, 0);
683 1.1 riastrad atomic_store_relaxed(&E->needed, 0);
684 1.1 riastrad
685 1.1 riastrad /* Notify waiters that we now have full entropy. */
686 1.1 riastrad entropy_notify();
687 1.1 riastrad entropy_immediate_evcnt.ev_count++;
688 1.18 riastrad } else {
689 1.1 riastrad /* Record how much we can add to the global pool. */
690 1.1 riastrad diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
691 1.1 riastrad E->pending += diff;
692 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
693 1.1 riastrad
694 1.1 riastrad /*
695 1.1 riastrad * This should have made a difference unless we were
696 1.1 riastrad * already saturated.
697 1.1 riastrad */
698 1.1 riastrad KASSERT(diff || E->pending == ENTROPY_CAPACITY*NBBY);
699 1.1 riastrad KASSERT(E->pending);
700 1.1 riastrad
701 1.1 riastrad if (E->needed <= E->pending) {
702 1.1 riastrad /*
703 1.1 riastrad * Enough entropy between all the per-CPU
704 1.1 riastrad * pools. Wake up the housekeeping thread.
705 1.1 riastrad *
706 1.1 riastrad * If we don't need any entropy, this doesn't
707 1.1 riastrad * mean much, but it is the only time we ever
708 1.1 riastrad * gather additional entropy in case the
709 1.1 riastrad * accounting has been overly optimistic. This
710 1.1 riastrad * happens at most once a minute, so there's
711 1.1 riastrad * negligible performance cost.
712 1.1 riastrad */
713 1.1 riastrad E->consolidate = true;
714 1.1 riastrad cv_broadcast(&E->cv);
715 1.1 riastrad if (E->needed == 0)
716 1.1 riastrad entropy_discretionary_evcnt.ev_count++;
717 1.1 riastrad } else {
718 1.1 riastrad /* Can't get full entropy. Keep gathering. */
719 1.1 riastrad entropy_partial_evcnt.ev_count++;
720 1.1 riastrad }
721 1.1 riastrad }
722 1.1 riastrad mutex_exit(&E->lock);
723 1.1 riastrad }
724 1.1 riastrad
725 1.1 riastrad /*
726 1.1 riastrad * entropy_enter_early(buf, len, nbits)
727 1.1 riastrad *
728 1.1 riastrad * Do entropy bookkeeping globally, before we have established
729 1.1 riastrad * per-CPU pools. Enter directly into the global pool in the hope
730 1.1 riastrad * that we enter enough before the first entropy_extract to thwart
731 1.1 riastrad * iterative-guessing attacks; entropy_extract will warn if not.
732 1.1 riastrad */
733 1.1 riastrad static void
734 1.1 riastrad entropy_enter_early(const void *buf, size_t len, unsigned nbits)
735 1.1 riastrad {
736 1.1 riastrad bool notify = false;
737 1.1 riastrad
738 1.1 riastrad if (E->stage >= ENTROPY_WARM)
739 1.1 riastrad mutex_enter(&E->lock);
740 1.1 riastrad
741 1.1 riastrad /* Enter it into the pool. */
742 1.1 riastrad entpool_enter(&E->pool, buf, len);
743 1.1 riastrad
744 1.1 riastrad /*
745 1.1 riastrad * Decide whether to notify reseed -- we will do so if either:
746 1.1 riastrad * (a) we transition from partial entropy to full entropy, or
747 1.1 riastrad * (b) we get a batch of full entropy all at once.
748 1.1 riastrad */
749 1.1 riastrad notify |= (E->needed && E->needed <= nbits);
750 1.1 riastrad notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
751 1.1 riastrad
752 1.1 riastrad /* Subtract from the needed count and notify if appropriate. */
753 1.1 riastrad E->needed -= MIN(E->needed, nbits);
754 1.1 riastrad if (notify) {
755 1.1 riastrad entropy_notify();
756 1.1 riastrad entropy_immediate_evcnt.ev_count++;
757 1.1 riastrad }
758 1.1 riastrad
759 1.1 riastrad if (E->stage >= ENTROPY_WARM)
760 1.1 riastrad mutex_exit(&E->lock);
761 1.1 riastrad }
762 1.1 riastrad
763 1.1 riastrad /*
764 1.1 riastrad * entropy_enter(buf, len, nbits)
765 1.1 riastrad *
766 1.1 riastrad * Enter len bytes of data from buf into the system's entropy
767 1.1 riastrad * pool, stirring as necessary when the internal buffer fills up.
768 1.1 riastrad * nbits is a lower bound on the number of bits of entropy in the
769 1.1 riastrad * process that led to this sample.
770 1.1 riastrad */
771 1.1 riastrad static void
772 1.1 riastrad entropy_enter(const void *buf, size_t len, unsigned nbits)
773 1.1 riastrad {
774 1.1 riastrad struct entropy_cpu *ec;
775 1.1 riastrad uint32_t pending;
776 1.1 riastrad int s;
777 1.1 riastrad
778 1.16 riastrad KASSERTMSG(!cpu_intr_p(),
779 1.1 riastrad "use entropy_enter_intr from interrupt context");
780 1.1 riastrad KASSERTMSG(howmany(nbits, NBBY) <= len,
781 1.1 riastrad "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
782 1.1 riastrad
783 1.1 riastrad /* If it's too early after boot, just use entropy_enter_early. */
784 1.1 riastrad if (__predict_false(E->stage < ENTROPY_HOT)) {
785 1.1 riastrad entropy_enter_early(buf, len, nbits);
786 1.1 riastrad return;
787 1.1 riastrad }
788 1.1 riastrad
789 1.1 riastrad /*
790 1.1 riastrad * Acquire the per-CPU state, blocking soft interrupts and
791 1.1 riastrad * causing hard interrupts to drop samples on the floor.
792 1.1 riastrad */
793 1.1 riastrad ec = percpu_getref(entropy_percpu);
794 1.1 riastrad s = splsoftserial();
795 1.1 riastrad KASSERT(!ec->ec_locked);
796 1.1 riastrad ec->ec_locked = true;
797 1.1 riastrad __insn_barrier();
798 1.1 riastrad
799 1.1 riastrad /* Enter into the per-CPU pool. */
800 1.1 riastrad entpool_enter(ec->ec_pool, buf, len);
801 1.1 riastrad
802 1.1 riastrad /* Count up what we can add. */
803 1.1 riastrad pending = ec->ec_pending;
804 1.1 riastrad pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
805 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, pending);
806 1.1 riastrad
807 1.1 riastrad /* Consolidate globally if appropriate based on what we added. */
808 1.1 riastrad entropy_account_cpu(ec);
809 1.1 riastrad
810 1.1 riastrad /* Release the per-CPU state. */
811 1.1 riastrad KASSERT(ec->ec_locked);
812 1.1 riastrad __insn_barrier();
813 1.1 riastrad ec->ec_locked = false;
814 1.1 riastrad splx(s);
815 1.1 riastrad percpu_putref(entropy_percpu);
816 1.1 riastrad }
817 1.1 riastrad
818 1.1 riastrad /*
819 1.1 riastrad * entropy_enter_intr(buf, len, nbits)
820 1.1 riastrad *
821 1.1 riastrad * Enter up to len bytes of data from buf into the system's
822 1.1 riastrad * entropy pool without stirring. nbits is a lower bound on the
823 1.1 riastrad * number of bits of entropy in the process that led to this
824 1.1 riastrad * sample. If the sample could be entered completely, assume
825 1.1 riastrad * nbits of entropy pending; otherwise assume none, since we don't
826 1.1 riastrad * know whether some parts of the sample are constant, for
827 1.1 riastrad * instance. Schedule a softint to stir the entropy pool if
828 1.1 riastrad * needed. Return true if used fully, false if truncated at all.
829 1.1 riastrad *
830 1.1 riastrad * Using this in thread context will work, but you might as well
831 1.1 riastrad * use entropy_enter in that case.
832 1.1 riastrad */
833 1.1 riastrad static bool
834 1.1 riastrad entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
835 1.1 riastrad {
836 1.1 riastrad struct entropy_cpu *ec;
837 1.1 riastrad bool fullyused = false;
838 1.1 riastrad uint32_t pending;
839 1.1 riastrad
840 1.1 riastrad KASSERTMSG(howmany(nbits, NBBY) <= len,
841 1.1 riastrad "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
842 1.1 riastrad
843 1.1 riastrad /* If it's too early after boot, just use entropy_enter_early. */
844 1.1 riastrad if (__predict_false(E->stage < ENTROPY_HOT)) {
845 1.1 riastrad entropy_enter_early(buf, len, nbits);
846 1.1 riastrad return true;
847 1.1 riastrad }
848 1.1 riastrad
849 1.1 riastrad /*
850 1.1 riastrad * Acquire the per-CPU state. If someone is in the middle of
851 1.1 riastrad * using it, drop the sample. Otherwise, take the lock so that
852 1.1 riastrad * higher-priority interrupts will drop their samples.
853 1.1 riastrad */
854 1.1 riastrad ec = percpu_getref(entropy_percpu);
855 1.1 riastrad if (ec->ec_locked)
856 1.1 riastrad goto out0;
857 1.1 riastrad ec->ec_locked = true;
858 1.1 riastrad __insn_barrier();
859 1.1 riastrad
860 1.1 riastrad /*
861 1.1 riastrad * Enter as much as we can into the per-CPU pool. If it was
862 1.1 riastrad * truncated, schedule a softint to stir the pool and stop.
863 1.1 riastrad */
864 1.1 riastrad if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
865 1.1 riastrad softint_schedule(entropy_sih);
866 1.1 riastrad goto out1;
867 1.1 riastrad }
868 1.1 riastrad fullyused = true;
869 1.1 riastrad
870 1.1 riastrad /* Count up what we can contribute. */
871 1.1 riastrad pending = ec->ec_pending;
872 1.1 riastrad pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
873 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, pending);
874 1.1 riastrad
875 1.1 riastrad /* Schedule a softint if we added anything and it matters. */
876 1.1 riastrad if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
877 1.1 riastrad atomic_load_relaxed(&entropy_depletion)) &&
878 1.1 riastrad nbits != 0)
879 1.1 riastrad softint_schedule(entropy_sih);
880 1.1 riastrad
881 1.1 riastrad out1: /* Release the per-CPU state. */
882 1.1 riastrad KASSERT(ec->ec_locked);
883 1.1 riastrad __insn_barrier();
884 1.1 riastrad ec->ec_locked = false;
885 1.1 riastrad out0: percpu_putref(entropy_percpu);
886 1.1 riastrad
887 1.1 riastrad return fullyused;
888 1.1 riastrad }
889 1.1 riastrad
890 1.1 riastrad /*
891 1.1 riastrad * entropy_softintr(cookie)
892 1.1 riastrad *
893 1.1 riastrad * Soft interrupt handler for entering entropy. Takes care of
894 1.1 riastrad * stirring the local CPU's entropy pool if it filled up during
895 1.1 riastrad * hard interrupts, and promptly crediting entropy from the local
896 1.1 riastrad * CPU's entropy pool to the global entropy pool if needed.
897 1.1 riastrad */
898 1.1 riastrad static void
899 1.1 riastrad entropy_softintr(void *cookie)
900 1.1 riastrad {
901 1.1 riastrad struct entropy_cpu *ec;
902 1.1 riastrad
903 1.1 riastrad /*
904 1.1 riastrad * Acquire the per-CPU state. Other users can lock this only
905 1.1 riastrad * while soft interrupts are blocked. Cause hard interrupts to
906 1.1 riastrad * drop samples on the floor.
907 1.1 riastrad */
908 1.1 riastrad ec = percpu_getref(entropy_percpu);
909 1.1 riastrad KASSERT(!ec->ec_locked);
910 1.1 riastrad ec->ec_locked = true;
911 1.1 riastrad __insn_barrier();
912 1.1 riastrad
913 1.1 riastrad /* Count statistics. */
914 1.1 riastrad ec->ec_softint_evcnt->ev_count++;
915 1.1 riastrad
916 1.1 riastrad /* Stir the pool if necessary. */
917 1.1 riastrad entpool_stir(ec->ec_pool);
918 1.1 riastrad
919 1.1 riastrad /* Consolidate globally if appropriate based on what we added. */
920 1.1 riastrad entropy_account_cpu(ec);
921 1.1 riastrad
922 1.1 riastrad /* Release the per-CPU state. */
923 1.1 riastrad KASSERT(ec->ec_locked);
924 1.1 riastrad __insn_barrier();
925 1.1 riastrad ec->ec_locked = false;
926 1.1 riastrad percpu_putref(entropy_percpu);
927 1.1 riastrad }
928 1.1 riastrad
929 1.1 riastrad /*
930 1.1 riastrad * entropy_thread(cookie)
931 1.1 riastrad *
932 1.1 riastrad * Handle any asynchronous entropy housekeeping.
933 1.1 riastrad */
934 1.1 riastrad static void
935 1.1 riastrad entropy_thread(void *cookie)
936 1.1 riastrad {
937 1.3 riastrad bool consolidate;
938 1.1 riastrad
939 1.1 riastrad for (;;) {
940 1.1 riastrad /*
941 1.3 riastrad * Wait until there's full entropy somewhere among the
942 1.3 riastrad * CPUs, as confirmed at most once per minute, or
943 1.3 riastrad * someone wants to consolidate.
944 1.1 riastrad */
945 1.3 riastrad if (entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
946 1.3 riastrad consolidate = true;
947 1.3 riastrad } else {
948 1.3 riastrad mutex_enter(&E->lock);
949 1.3 riastrad if (!E->consolidate)
950 1.3 riastrad cv_timedwait(&E->cv, &E->lock, 60*hz);
951 1.3 riastrad consolidate = E->consolidate;
952 1.3 riastrad E->consolidate = false;
953 1.3 riastrad mutex_exit(&E->lock);
954 1.1 riastrad }
955 1.1 riastrad
956 1.3 riastrad if (consolidate) {
957 1.3 riastrad /* Do it. */
958 1.13 riastrad entropy_do_consolidate();
959 1.1 riastrad
960 1.3 riastrad /* Mitigate abuse. */
961 1.3 riastrad kpause("entropy", false, hz, NULL);
962 1.3 riastrad }
963 1.1 riastrad }
964 1.1 riastrad }
965 1.1 riastrad
966 1.1 riastrad /*
967 1.1 riastrad * entropy_pending()
968 1.1 riastrad *
969 1.1 riastrad * Count up the amount of entropy pending on other CPUs.
970 1.1 riastrad */
971 1.1 riastrad static uint32_t
972 1.1 riastrad entropy_pending(void)
973 1.1 riastrad {
974 1.1 riastrad uint32_t pending = 0;
975 1.1 riastrad
976 1.1 riastrad percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
977 1.1 riastrad return pending;
978 1.1 riastrad }
979 1.1 riastrad
980 1.1 riastrad static void
981 1.1 riastrad entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
982 1.1 riastrad {
983 1.1 riastrad struct entropy_cpu *ec = ptr;
984 1.1 riastrad uint32_t *pendingp = cookie;
985 1.1 riastrad uint32_t cpu_pending;
986 1.1 riastrad
987 1.1 riastrad cpu_pending = atomic_load_relaxed(&ec->ec_pending);
988 1.1 riastrad *pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
989 1.1 riastrad }
990 1.1 riastrad
991 1.1 riastrad /*
992 1.13 riastrad * entropy_do_consolidate()
993 1.1 riastrad *
994 1.1 riastrad * Issue a cross-call to gather entropy on all CPUs and advance
995 1.1 riastrad * the entropy epoch.
996 1.1 riastrad */
997 1.1 riastrad static void
998 1.13 riastrad entropy_do_consolidate(void)
999 1.1 riastrad {
1000 1.1 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1001 1.1 riastrad static struct timeval lasttime; /* serialized by E->lock */
1002 1.19 riastrad struct entpool pool;
1003 1.19 riastrad uint8_t buf[ENTPOOL_CAPACITY];
1004 1.1 riastrad unsigned diff;
1005 1.1 riastrad uint64_t ticket;
1006 1.1 riastrad
1007 1.19 riastrad /* Gather entropy on all CPUs into a temporary pool. */
1008 1.19 riastrad memset(&pool, 0, sizeof pool);
1009 1.19 riastrad ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
1010 1.1 riastrad xc_wait(ticket);
1011 1.1 riastrad
1012 1.1 riastrad /* Acquire the lock to notify waiters. */
1013 1.1 riastrad mutex_enter(&E->lock);
1014 1.1 riastrad
1015 1.1 riastrad /* Count another consolidation. */
1016 1.1 riastrad entropy_consolidate_evcnt.ev_count++;
1017 1.1 riastrad
1018 1.1 riastrad /* Note when we last consolidated, i.e. now. */
1019 1.1 riastrad E->timestamp = time_uptime;
1020 1.1 riastrad
1021 1.19 riastrad /* Mix what we gathered into the global pool. */
1022 1.19 riastrad entpool_extract(&pool, buf, sizeof buf);
1023 1.19 riastrad entpool_enter(&E->pool, buf, sizeof buf);
1024 1.19 riastrad explicit_memset(&pool, 0, sizeof pool);
1025 1.19 riastrad
1026 1.1 riastrad /* Count the entropy that was gathered. */
1027 1.1 riastrad diff = MIN(E->needed, E->pending);
1028 1.1 riastrad atomic_store_relaxed(&E->needed, E->needed - diff);
1029 1.1 riastrad E->pending -= diff;
1030 1.1 riastrad if (__predict_false(E->needed > 0)) {
1031 1.1 riastrad if (ratecheck(&lasttime, &interval))
1032 1.26 riastrad log(LOG_DEBUG, "entropy: WARNING:"
1033 1.1 riastrad " consolidating less than full entropy\n");
1034 1.1 riastrad }
1035 1.1 riastrad
1036 1.1 riastrad /* Advance the epoch and notify waiters. */
1037 1.1 riastrad entropy_notify();
1038 1.1 riastrad
1039 1.1 riastrad /* Release the lock. */
1040 1.1 riastrad mutex_exit(&E->lock);
1041 1.1 riastrad }
1042 1.1 riastrad
1043 1.1 riastrad /*
1044 1.20 riastrad * entropy_consolidate_xc(vpool, arg2)
1045 1.1 riastrad *
1046 1.1 riastrad * Extract output from the local CPU's input pool and enter it
1047 1.20 riastrad * into a temporary pool passed as vpool.
1048 1.1 riastrad */
1049 1.1 riastrad static void
1050 1.19 riastrad entropy_consolidate_xc(void *vpool, void *arg2 __unused)
1051 1.1 riastrad {
1052 1.19 riastrad struct entpool *pool = vpool;
1053 1.1 riastrad struct entropy_cpu *ec;
1054 1.1 riastrad uint8_t buf[ENTPOOL_CAPACITY];
1055 1.1 riastrad uint32_t extra[7];
1056 1.1 riastrad unsigned i = 0;
1057 1.1 riastrad int s;
1058 1.1 riastrad
1059 1.1 riastrad /* Grab CPU number and cycle counter to mix extra into the pool. */
1060 1.1 riastrad extra[i++] = cpu_number();
1061 1.1 riastrad extra[i++] = entropy_timer();
1062 1.1 riastrad
1063 1.1 riastrad /*
1064 1.1 riastrad * Acquire the per-CPU state, blocking soft interrupts and
1065 1.1 riastrad * discarding entropy in hard interrupts, so that we can
1066 1.1 riastrad * extract from the per-CPU pool.
1067 1.1 riastrad */
1068 1.1 riastrad ec = percpu_getref(entropy_percpu);
1069 1.1 riastrad s = splsoftserial();
1070 1.1 riastrad KASSERT(!ec->ec_locked);
1071 1.1 riastrad ec->ec_locked = true;
1072 1.1 riastrad __insn_barrier();
1073 1.1 riastrad extra[i++] = entropy_timer();
1074 1.1 riastrad
1075 1.12 riastrad /* Extract the data and count it no longer pending. */
1076 1.1 riastrad entpool_extract(ec->ec_pool, buf, sizeof buf);
1077 1.12 riastrad atomic_store_relaxed(&ec->ec_pending, 0);
1078 1.1 riastrad extra[i++] = entropy_timer();
1079 1.1 riastrad
1080 1.1 riastrad /* Release the per-CPU state. */
1081 1.1 riastrad KASSERT(ec->ec_locked);
1082 1.1 riastrad __insn_barrier();
1083 1.1 riastrad ec->ec_locked = false;
1084 1.1 riastrad splx(s);
1085 1.1 riastrad percpu_putref(entropy_percpu);
1086 1.1 riastrad extra[i++] = entropy_timer();
1087 1.1 riastrad
1088 1.1 riastrad /*
1089 1.1 riastrad * Copy over statistics, and enter the per-CPU extract and the
1090 1.19 riastrad * extra timing into the temporary pool, under the global lock.
1091 1.1 riastrad */
1092 1.1 riastrad mutex_enter(&E->lock);
1093 1.1 riastrad extra[i++] = entropy_timer();
1094 1.19 riastrad entpool_enter(pool, buf, sizeof buf);
1095 1.1 riastrad explicit_memset(buf, 0, sizeof buf);
1096 1.1 riastrad extra[i++] = entropy_timer();
1097 1.1 riastrad KASSERT(i == __arraycount(extra));
1098 1.19 riastrad entpool_enter(pool, extra, sizeof extra);
1099 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
1100 1.1 riastrad mutex_exit(&E->lock);
1101 1.1 riastrad }
1102 1.1 riastrad
1103 1.1 riastrad /*
1104 1.1 riastrad * entropy_notify()
1105 1.1 riastrad *
1106 1.1 riastrad * Caller just contributed entropy to the global pool. Advance
1107 1.1 riastrad * the entropy epoch and notify waiters.
1108 1.1 riastrad *
1109 1.1 riastrad * Caller must hold the global entropy lock. Except for the
1110 1.1 riastrad * `sysctl -w kern.entropy.consolidate=1` trigger, the caller must
1111 1.1 riastrad * have just have transitioned from partial entropy to full
1112 1.1 riastrad * entropy -- E->needed should be zero now.
1113 1.1 riastrad */
1114 1.1 riastrad static void
1115 1.1 riastrad entropy_notify(void)
1116 1.1 riastrad {
1117 1.12 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1118 1.12 riastrad static struct timeval lasttime; /* serialized by E->lock */
1119 1.1 riastrad unsigned epoch;
1120 1.1 riastrad
1121 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1122 1.1 riastrad
1123 1.1 riastrad /*
1124 1.1 riastrad * If this is the first time, print a message to the console
1125 1.1 riastrad * that we're ready so operators can compare it to the timing
1126 1.1 riastrad * of other events.
1127 1.1 riastrad */
1128 1.14 riastrad if (__predict_false(!rnd_initial_entropy) && E->needed == 0) {
1129 1.1 riastrad printf("entropy: ready\n");
1130 1.14 riastrad rnd_initial_entropy = 1;
1131 1.14 riastrad }
1132 1.1 riastrad
1133 1.1 riastrad /* Set the epoch; roll over from UINTMAX-1 to 1. */
1134 1.12 riastrad if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
1135 1.12 riastrad ratecheck(&lasttime, &interval)) {
1136 1.12 riastrad epoch = E->epoch + 1;
1137 1.12 riastrad if (epoch == 0 || epoch == (unsigned)-1)
1138 1.12 riastrad epoch = 1;
1139 1.12 riastrad atomic_store_relaxed(&E->epoch, epoch);
1140 1.12 riastrad }
1141 1.1 riastrad
1142 1.1 riastrad /* Notify waiters. */
1143 1.1 riastrad if (E->stage >= ENTROPY_WARM) {
1144 1.1 riastrad cv_broadcast(&E->cv);
1145 1.1 riastrad selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
1146 1.1 riastrad }
1147 1.1 riastrad
1148 1.1 riastrad /* Count another notification. */
1149 1.1 riastrad entropy_notify_evcnt.ev_count++;
1150 1.1 riastrad }
1151 1.1 riastrad
1152 1.1 riastrad /*
1153 1.13 riastrad * entropy_consolidate()
1154 1.13 riastrad *
1155 1.13 riastrad * Trigger entropy consolidation and wait for it to complete.
1156 1.13 riastrad *
1157 1.13 riastrad * This should be used sparingly, not periodically -- requiring
1158 1.13 riastrad * conscious intervention by the operator or a clear policy
1159 1.13 riastrad * decision. Otherwise, the kernel will automatically consolidate
1160 1.13 riastrad * when enough entropy has been gathered into per-CPU pools to
1161 1.13 riastrad * transition to full entropy.
1162 1.13 riastrad */
1163 1.13 riastrad void
1164 1.13 riastrad entropy_consolidate(void)
1165 1.13 riastrad {
1166 1.13 riastrad uint64_t ticket;
1167 1.13 riastrad int error;
1168 1.13 riastrad
1169 1.13 riastrad KASSERT(E->stage == ENTROPY_HOT);
1170 1.13 riastrad
1171 1.13 riastrad mutex_enter(&E->lock);
1172 1.13 riastrad ticket = entropy_consolidate_evcnt.ev_count;
1173 1.13 riastrad E->consolidate = true;
1174 1.13 riastrad cv_broadcast(&E->cv);
1175 1.13 riastrad while (ticket == entropy_consolidate_evcnt.ev_count) {
1176 1.13 riastrad error = cv_wait_sig(&E->cv, &E->lock);
1177 1.13 riastrad if (error)
1178 1.13 riastrad break;
1179 1.13 riastrad }
1180 1.13 riastrad mutex_exit(&E->lock);
1181 1.13 riastrad }
1182 1.13 riastrad
1183 1.13 riastrad /*
1184 1.1 riastrad * sysctl -w kern.entropy.consolidate=1
1185 1.1 riastrad *
1186 1.1 riastrad * Trigger entropy consolidation and wait for it to complete.
1187 1.13 riastrad * Writable only by superuser. This, writing to /dev/random, and
1188 1.13 riastrad * ioctl(RNDADDDATA) are the only ways for the system to
1189 1.13 riastrad * consolidate entropy if the operator knows something the kernel
1190 1.13 riastrad * doesn't about how unpredictable the pending entropy pools are.
1191 1.1 riastrad */
1192 1.1 riastrad static int
1193 1.1 riastrad sysctl_entropy_consolidate(SYSCTLFN_ARGS)
1194 1.1 riastrad {
1195 1.1 riastrad struct sysctlnode node = *rnode;
1196 1.1 riastrad int arg;
1197 1.1 riastrad int error;
1198 1.1 riastrad
1199 1.1 riastrad KASSERT(E->stage == ENTROPY_HOT);
1200 1.1 riastrad
1201 1.1 riastrad node.sysctl_data = &arg;
1202 1.1 riastrad error = sysctl_lookup(SYSCTLFN_CALL(&node));
1203 1.1 riastrad if (error || newp == NULL)
1204 1.1 riastrad return error;
1205 1.13 riastrad if (arg)
1206 1.13 riastrad entropy_consolidate();
1207 1.1 riastrad
1208 1.1 riastrad return error;
1209 1.1 riastrad }
1210 1.1 riastrad
1211 1.1 riastrad /*
1212 1.10 riastrad * sysctl -w kern.entropy.gather=1
1213 1.10 riastrad *
1214 1.10 riastrad * Trigger gathering entropy from all on-demand sources, and wait
1215 1.10 riastrad * for synchronous sources (but not asynchronous sources) to
1216 1.10 riastrad * complete. Writable only by superuser.
1217 1.10 riastrad */
1218 1.10 riastrad static int
1219 1.10 riastrad sysctl_entropy_gather(SYSCTLFN_ARGS)
1220 1.10 riastrad {
1221 1.10 riastrad struct sysctlnode node = *rnode;
1222 1.10 riastrad int arg;
1223 1.10 riastrad int error;
1224 1.10 riastrad
1225 1.10 riastrad KASSERT(E->stage == ENTROPY_HOT);
1226 1.10 riastrad
1227 1.10 riastrad node.sysctl_data = &arg;
1228 1.10 riastrad error = sysctl_lookup(SYSCTLFN_CALL(&node));
1229 1.10 riastrad if (error || newp == NULL)
1230 1.10 riastrad return error;
1231 1.10 riastrad if (arg) {
1232 1.10 riastrad mutex_enter(&E->lock);
1233 1.10 riastrad entropy_request(ENTROPY_CAPACITY);
1234 1.10 riastrad mutex_exit(&E->lock);
1235 1.10 riastrad }
1236 1.10 riastrad
1237 1.10 riastrad return 0;
1238 1.10 riastrad }
1239 1.10 riastrad
1240 1.10 riastrad /*
1241 1.1 riastrad * entropy_extract(buf, len, flags)
1242 1.1 riastrad *
1243 1.1 riastrad * Extract len bytes from the global entropy pool into buf.
1244 1.1 riastrad *
1245 1.1 riastrad * Flags may have:
1246 1.1 riastrad *
1247 1.1 riastrad * ENTROPY_WAIT Wait for entropy if not available yet.
1248 1.1 riastrad * ENTROPY_SIG Allow interruption by a signal during wait.
1249 1.23 riastrad * ENTROPY_HARDFAIL Either fill the buffer with full entropy,
1250 1.23 riastrad * or fail without filling it at all.
1251 1.1 riastrad *
1252 1.1 riastrad * Return zero on success, or error on failure:
1253 1.1 riastrad *
1254 1.1 riastrad * EWOULDBLOCK No entropy and ENTROPY_WAIT not set.
1255 1.1 riastrad * EINTR/ERESTART No entropy, ENTROPY_SIG set, and interrupted.
1256 1.1 riastrad *
1257 1.1 riastrad * If ENTROPY_WAIT is set, allowed only in thread context. If
1258 1.1 riastrad * ENTROPY_WAIT is not set, allowed up to IPL_VM. (XXX That's
1259 1.1 riastrad * awfully high... Do we really need it in hard interrupts? This
1260 1.1 riastrad * arises from use of cprng_strong(9).)
1261 1.1 riastrad */
1262 1.1 riastrad int
1263 1.1 riastrad entropy_extract(void *buf, size_t len, int flags)
1264 1.1 riastrad {
1265 1.1 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1266 1.1 riastrad static struct timeval lasttime; /* serialized by E->lock */
1267 1.1 riastrad int error;
1268 1.1 riastrad
1269 1.1 riastrad if (ISSET(flags, ENTROPY_WAIT)) {
1270 1.1 riastrad ASSERT_SLEEPABLE();
1271 1.1 riastrad KASSERTMSG(E->stage >= ENTROPY_WARM,
1272 1.1 riastrad "can't wait for entropy until warm");
1273 1.1 riastrad }
1274 1.1 riastrad
1275 1.1 riastrad /* Acquire the global lock to get at the global pool. */
1276 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1277 1.1 riastrad mutex_enter(&E->lock);
1278 1.1 riastrad
1279 1.1 riastrad /* Count up request for entropy in interrupt context. */
1280 1.16 riastrad if (cpu_intr_p())
1281 1.1 riastrad entropy_extract_intr_evcnt.ev_count++;
1282 1.1 riastrad
1283 1.1 riastrad /* Wait until there is enough entropy in the system. */
1284 1.1 riastrad error = 0;
1285 1.1 riastrad while (E->needed) {
1286 1.1 riastrad /* Ask for more, synchronously if possible. */
1287 1.1 riastrad entropy_request(len);
1288 1.1 riastrad
1289 1.1 riastrad /* If we got enough, we're done. */
1290 1.1 riastrad if (E->needed == 0) {
1291 1.1 riastrad KASSERT(error == 0);
1292 1.1 riastrad break;
1293 1.1 riastrad }
1294 1.1 riastrad
1295 1.1 riastrad /* If not waiting, stop here. */
1296 1.1 riastrad if (!ISSET(flags, ENTROPY_WAIT)) {
1297 1.1 riastrad error = EWOULDBLOCK;
1298 1.1 riastrad break;
1299 1.1 riastrad }
1300 1.1 riastrad
1301 1.1 riastrad /* Wait for some entropy to come in and try again. */
1302 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1303 1.24 gson printf("entropy: pid %d (%s) blocking due to lack of entropy\n",
1304 1.24 gson curproc->p_pid, curproc->p_comm);
1305 1.24 gson
1306 1.1 riastrad if (ISSET(flags, ENTROPY_SIG)) {
1307 1.1 riastrad error = cv_wait_sig(&E->cv, &E->lock);
1308 1.1 riastrad if (error)
1309 1.1 riastrad break;
1310 1.1 riastrad } else {
1311 1.1 riastrad cv_wait(&E->cv, &E->lock);
1312 1.1 riastrad }
1313 1.1 riastrad }
1314 1.1 riastrad
1315 1.23 riastrad /*
1316 1.23 riastrad * Count failure -- but fill the buffer nevertheless, unless
1317 1.23 riastrad * the caller specified ENTROPY_HARDFAIL.
1318 1.23 riastrad */
1319 1.23 riastrad if (error) {
1320 1.23 riastrad if (ISSET(flags, ENTROPY_HARDFAIL))
1321 1.23 riastrad goto out;
1322 1.1 riastrad entropy_extract_fail_evcnt.ev_count++;
1323 1.23 riastrad }
1324 1.1 riastrad
1325 1.1 riastrad /*
1326 1.1 riastrad * Report a warning if we have never yet reached full entropy.
1327 1.1 riastrad * This is the only case where we consider entropy to be
1328 1.1 riastrad * `depleted' without kern.entropy.depletion enabled -- when we
1329 1.1 riastrad * only have partial entropy, an adversary may be able to
1330 1.1 riastrad * narrow the state of the pool down to a small number of
1331 1.1 riastrad * possibilities; the output then enables them to confirm a
1332 1.1 riastrad * guess, reducing its entropy from the adversary's perspective
1333 1.1 riastrad * to zero.
1334 1.1 riastrad */
1335 1.1 riastrad if (__predict_false(E->epoch == (unsigned)-1)) {
1336 1.1 riastrad if (ratecheck(&lasttime, &interval))
1337 1.1 riastrad printf("entropy: WARNING:"
1338 1.1 riastrad " extracting entropy too early\n");
1339 1.1 riastrad atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
1340 1.1 riastrad }
1341 1.1 riastrad
1342 1.1 riastrad /* Extract data from the pool, and `deplete' if we're doing that. */
1343 1.1 riastrad entpool_extract(&E->pool, buf, len);
1344 1.1 riastrad if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
1345 1.1 riastrad error == 0) {
1346 1.1 riastrad unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
1347 1.1 riastrad
1348 1.1 riastrad atomic_store_relaxed(&E->needed,
1349 1.1 riastrad E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
1350 1.1 riastrad entropy_deplete_evcnt.ev_count++;
1351 1.1 riastrad }
1352 1.1 riastrad
1353 1.23 riastrad out: /* Release the global lock and return the error. */
1354 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1355 1.1 riastrad mutex_exit(&E->lock);
1356 1.1 riastrad return error;
1357 1.1 riastrad }
1358 1.1 riastrad
1359 1.1 riastrad /*
1360 1.1 riastrad * entropy_poll(events)
1361 1.1 riastrad *
1362 1.1 riastrad * Return the subset of events ready, and if it is not all of
1363 1.1 riastrad * events, record curlwp as waiting for entropy.
1364 1.1 riastrad */
1365 1.1 riastrad int
1366 1.1 riastrad entropy_poll(int events)
1367 1.1 riastrad {
1368 1.1 riastrad int revents = 0;
1369 1.1 riastrad
1370 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1371 1.1 riastrad
1372 1.1 riastrad /* Always ready for writing. */
1373 1.1 riastrad revents |= events & (POLLOUT|POLLWRNORM);
1374 1.1 riastrad
1375 1.1 riastrad /* Narrow it down to reads. */
1376 1.1 riastrad events &= POLLIN|POLLRDNORM;
1377 1.1 riastrad if (events == 0)
1378 1.1 riastrad return revents;
1379 1.1 riastrad
1380 1.1 riastrad /*
1381 1.1 riastrad * If we have reached full entropy and we're not depleting
1382 1.1 riastrad * entropy, we are forever ready.
1383 1.1 riastrad */
1384 1.1 riastrad if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
1385 1.1 riastrad __predict_true(!atomic_load_relaxed(&entropy_depletion)))
1386 1.1 riastrad return revents | events;
1387 1.1 riastrad
1388 1.1 riastrad /*
1389 1.1 riastrad * Otherwise, check whether we need entropy under the lock. If
1390 1.1 riastrad * we don't, we're ready; if we do, add ourselves to the queue.
1391 1.1 riastrad */
1392 1.1 riastrad mutex_enter(&E->lock);
1393 1.1 riastrad if (E->needed == 0)
1394 1.1 riastrad revents |= events;
1395 1.1 riastrad else
1396 1.1 riastrad selrecord(curlwp, &E->selq);
1397 1.1 riastrad mutex_exit(&E->lock);
1398 1.1 riastrad
1399 1.1 riastrad return revents;
1400 1.1 riastrad }
1401 1.1 riastrad
1402 1.1 riastrad /*
1403 1.1 riastrad * filt_entropy_read_detach(kn)
1404 1.1 riastrad *
1405 1.1 riastrad * struct filterops::f_detach callback for entropy read events:
1406 1.1 riastrad * remove kn from the list of waiters.
1407 1.1 riastrad */
1408 1.1 riastrad static void
1409 1.1 riastrad filt_entropy_read_detach(struct knote *kn)
1410 1.1 riastrad {
1411 1.1 riastrad
1412 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1413 1.1 riastrad
1414 1.1 riastrad mutex_enter(&E->lock);
1415 1.25 thorpej selremove_knote(&E->selq, kn);
1416 1.1 riastrad mutex_exit(&E->lock);
1417 1.1 riastrad }
1418 1.1 riastrad
1419 1.1 riastrad /*
1420 1.1 riastrad * filt_entropy_read_event(kn, hint)
1421 1.1 riastrad *
1422 1.1 riastrad * struct filterops::f_event callback for entropy read events:
1423 1.1 riastrad * poll for entropy. Caller must hold the global entropy lock if
1424 1.1 riastrad * hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
1425 1.1 riastrad */
1426 1.1 riastrad static int
1427 1.1 riastrad filt_entropy_read_event(struct knote *kn, long hint)
1428 1.1 riastrad {
1429 1.1 riastrad int ret;
1430 1.1 riastrad
1431 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1432 1.1 riastrad
1433 1.1 riastrad /* Acquire the lock, if caller is outside entropy subsystem. */
1434 1.1 riastrad if (hint == NOTE_SUBMIT)
1435 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1436 1.1 riastrad else
1437 1.1 riastrad mutex_enter(&E->lock);
1438 1.1 riastrad
1439 1.1 riastrad /*
1440 1.1 riastrad * If we still need entropy, can't read anything; if not, can
1441 1.1 riastrad * read arbitrarily much.
1442 1.1 riastrad */
1443 1.1 riastrad if (E->needed != 0) {
1444 1.1 riastrad ret = 0;
1445 1.1 riastrad } else {
1446 1.1 riastrad if (atomic_load_relaxed(&entropy_depletion))
1447 1.1 riastrad kn->kn_data = ENTROPY_CAPACITY*NBBY;
1448 1.1 riastrad else
1449 1.1 riastrad kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
1450 1.1 riastrad ret = 1;
1451 1.1 riastrad }
1452 1.1 riastrad
1453 1.1 riastrad /* Release the lock, if caller is outside entropy subsystem. */
1454 1.1 riastrad if (hint == NOTE_SUBMIT)
1455 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1456 1.1 riastrad else
1457 1.1 riastrad mutex_exit(&E->lock);
1458 1.1 riastrad
1459 1.1 riastrad return ret;
1460 1.1 riastrad }
1461 1.1 riastrad
1462 1.1 riastrad static const struct filterops entropy_read_filtops = {
1463 1.1 riastrad .f_isfd = 1, /* XXX Makes sense only for /dev/u?random. */
1464 1.1 riastrad .f_attach = NULL,
1465 1.1 riastrad .f_detach = filt_entropy_read_detach,
1466 1.1 riastrad .f_event = filt_entropy_read_event,
1467 1.1 riastrad };
1468 1.1 riastrad
1469 1.1 riastrad /*
1470 1.1 riastrad * entropy_kqfilter(kn)
1471 1.1 riastrad *
1472 1.1 riastrad * Register kn to receive entropy event notifications. May be
1473 1.1 riastrad * EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
1474 1.1 riastrad */
1475 1.1 riastrad int
1476 1.1 riastrad entropy_kqfilter(struct knote *kn)
1477 1.1 riastrad {
1478 1.1 riastrad
1479 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1480 1.1 riastrad
1481 1.1 riastrad switch (kn->kn_filter) {
1482 1.1 riastrad case EVFILT_READ:
1483 1.1 riastrad /* Enter into the global select queue. */
1484 1.1 riastrad mutex_enter(&E->lock);
1485 1.1 riastrad kn->kn_fop = &entropy_read_filtops;
1486 1.25 thorpej selrecord_knote(&E->selq, kn);
1487 1.1 riastrad mutex_exit(&E->lock);
1488 1.1 riastrad return 0;
1489 1.1 riastrad case EVFILT_WRITE:
1490 1.1 riastrad /* Can always dump entropy into the system. */
1491 1.1 riastrad kn->kn_fop = &seltrue_filtops;
1492 1.1 riastrad return 0;
1493 1.1 riastrad default:
1494 1.1 riastrad return EINVAL;
1495 1.1 riastrad }
1496 1.1 riastrad }
1497 1.1 riastrad
1498 1.1 riastrad /*
1499 1.1 riastrad * rndsource_setcb(rs, get, getarg)
1500 1.1 riastrad *
1501 1.1 riastrad * Set the request callback for the entropy source rs, if it can
1502 1.1 riastrad * provide entropy on demand. Must precede rnd_attach_source.
1503 1.1 riastrad */
1504 1.1 riastrad void
1505 1.1 riastrad rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
1506 1.1 riastrad void *getarg)
1507 1.1 riastrad {
1508 1.1 riastrad
1509 1.1 riastrad rs->get = get;
1510 1.1 riastrad rs->getarg = getarg;
1511 1.1 riastrad }
1512 1.1 riastrad
1513 1.1 riastrad /*
1514 1.1 riastrad * rnd_attach_source(rs, name, type, flags)
1515 1.1 riastrad *
1516 1.1 riastrad * Attach the entropy source rs. Must be done after
1517 1.1 riastrad * rndsource_setcb, if any, and before any calls to rnd_add_data.
1518 1.1 riastrad */
1519 1.1 riastrad void
1520 1.1 riastrad rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
1521 1.1 riastrad uint32_t flags)
1522 1.1 riastrad {
1523 1.1 riastrad uint32_t extra[4];
1524 1.1 riastrad unsigned i = 0;
1525 1.1 riastrad
1526 1.1 riastrad /* Grab cycle counter to mix extra into the pool. */
1527 1.1 riastrad extra[i++] = entropy_timer();
1528 1.1 riastrad
1529 1.1 riastrad /*
1530 1.1 riastrad * Apply some standard flags:
1531 1.1 riastrad *
1532 1.1 riastrad * - We do not bother with network devices by default, for
1533 1.1 riastrad * hysterical raisins (perhaps: because it is often the case
1534 1.1 riastrad * that an adversary can influence network packet timings).
1535 1.1 riastrad */
1536 1.1 riastrad switch (type) {
1537 1.1 riastrad case RND_TYPE_NET:
1538 1.1 riastrad flags |= RND_FLAG_NO_COLLECT;
1539 1.1 riastrad break;
1540 1.1 riastrad }
1541 1.1 riastrad
1542 1.1 riastrad /* Sanity-check the callback if RND_FLAG_HASCB is set. */
1543 1.1 riastrad KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
1544 1.1 riastrad
1545 1.1 riastrad /* Initialize the random source. */
1546 1.1 riastrad memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
1547 1.1 riastrad strlcpy(rs->name, name, sizeof(rs->name));
1548 1.9 riastrad rs->total = 0;
1549 1.1 riastrad rs->type = type;
1550 1.1 riastrad rs->flags = flags;
1551 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1552 1.1 riastrad rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
1553 1.1 riastrad extra[i++] = entropy_timer();
1554 1.1 riastrad
1555 1.1 riastrad /* Wire it into the global list of random sources. */
1556 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1557 1.1 riastrad mutex_enter(&E->lock);
1558 1.1 riastrad LIST_INSERT_HEAD(&E->sources, rs, list);
1559 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1560 1.1 riastrad mutex_exit(&E->lock);
1561 1.1 riastrad extra[i++] = entropy_timer();
1562 1.1 riastrad
1563 1.1 riastrad /* Request that it provide entropy ASAP, if we can. */
1564 1.1 riastrad if (ISSET(flags, RND_FLAG_HASCB))
1565 1.1 riastrad (*rs->get)(ENTROPY_CAPACITY, rs->getarg);
1566 1.1 riastrad extra[i++] = entropy_timer();
1567 1.1 riastrad
1568 1.1 riastrad /* Mix the extra into the pool. */
1569 1.1 riastrad KASSERT(i == __arraycount(extra));
1570 1.1 riastrad entropy_enter(extra, sizeof extra, 0);
1571 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
1572 1.1 riastrad }
1573 1.1 riastrad
1574 1.1 riastrad /*
1575 1.1 riastrad * rnd_detach_source(rs)
1576 1.1 riastrad *
1577 1.1 riastrad * Detach the entropy source rs. May sleep waiting for users to
1578 1.1 riastrad * drain. Further use is not allowed.
1579 1.1 riastrad */
1580 1.1 riastrad void
1581 1.1 riastrad rnd_detach_source(struct krndsource *rs)
1582 1.1 riastrad {
1583 1.1 riastrad
1584 1.1 riastrad /*
1585 1.1 riastrad * If we're cold (shouldn't happen, but hey), just remove it
1586 1.1 riastrad * from the list -- there's nothing allocated.
1587 1.1 riastrad */
1588 1.1 riastrad if (E->stage == ENTROPY_COLD) {
1589 1.1 riastrad LIST_REMOVE(rs, list);
1590 1.1 riastrad return;
1591 1.1 riastrad }
1592 1.1 riastrad
1593 1.1 riastrad /* We may have to wait for entropy_request. */
1594 1.1 riastrad ASSERT_SLEEPABLE();
1595 1.1 riastrad
1596 1.4 riastrad /* Wait until the source list is not in use, and remove it. */
1597 1.1 riastrad mutex_enter(&E->lock);
1598 1.4 riastrad while (E->sourcelock)
1599 1.27 riastrad cv_wait(&E->sourcelock_cv, &E->lock);
1600 1.1 riastrad LIST_REMOVE(rs, list);
1601 1.1 riastrad mutex_exit(&E->lock);
1602 1.1 riastrad
1603 1.1 riastrad /* Free the per-CPU data. */
1604 1.1 riastrad percpu_free(rs->state, sizeof(struct rndsource_cpu));
1605 1.1 riastrad }
1606 1.1 riastrad
1607 1.1 riastrad /*
1608 1.4 riastrad * rnd_lock_sources()
1609 1.4 riastrad *
1610 1.4 riastrad * Prevent changes to the list of rndsources while we iterate it.
1611 1.4 riastrad * Interruptible. Caller must hold the global entropy lock. If
1612 1.4 riastrad * successful, no rndsource will go away until rnd_unlock_sources
1613 1.4 riastrad * even while the caller releases the global entropy lock.
1614 1.4 riastrad */
1615 1.4 riastrad static int
1616 1.4 riastrad rnd_lock_sources(void)
1617 1.4 riastrad {
1618 1.4 riastrad int error;
1619 1.4 riastrad
1620 1.4 riastrad KASSERT(mutex_owned(&E->lock));
1621 1.4 riastrad
1622 1.4 riastrad while (E->sourcelock) {
1623 1.27 riastrad error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
1624 1.4 riastrad if (error)
1625 1.4 riastrad return error;
1626 1.4 riastrad }
1627 1.4 riastrad
1628 1.4 riastrad E->sourcelock = curlwp;
1629 1.4 riastrad return 0;
1630 1.4 riastrad }
1631 1.4 riastrad
1632 1.4 riastrad /*
1633 1.4 riastrad * rnd_trylock_sources()
1634 1.4 riastrad *
1635 1.4 riastrad * Try to lock the list of sources, but if it's already locked,
1636 1.4 riastrad * fail. Caller must hold the global entropy lock. If
1637 1.4 riastrad * successful, no rndsource will go away until rnd_unlock_sources
1638 1.4 riastrad * even while the caller releases the global entropy lock.
1639 1.4 riastrad */
1640 1.4 riastrad static bool
1641 1.4 riastrad rnd_trylock_sources(void)
1642 1.4 riastrad {
1643 1.4 riastrad
1644 1.4 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1645 1.4 riastrad
1646 1.4 riastrad if (E->sourcelock)
1647 1.4 riastrad return false;
1648 1.16 riastrad E->sourcelock = curlwp;
1649 1.4 riastrad return true;
1650 1.4 riastrad }
1651 1.4 riastrad
1652 1.4 riastrad /*
1653 1.4 riastrad * rnd_unlock_sources()
1654 1.4 riastrad *
1655 1.4 riastrad * Unlock the list of sources after rnd_lock_sources or
1656 1.4 riastrad * rnd_trylock_sources. Caller must hold the global entropy lock.
1657 1.4 riastrad */
1658 1.4 riastrad static void
1659 1.4 riastrad rnd_unlock_sources(void)
1660 1.4 riastrad {
1661 1.4 riastrad
1662 1.4 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1663 1.4 riastrad
1664 1.16 riastrad KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
1665 1.16 riastrad curlwp, E->sourcelock);
1666 1.4 riastrad E->sourcelock = NULL;
1667 1.4 riastrad if (E->stage >= ENTROPY_WARM)
1668 1.27 riastrad cv_signal(&E->sourcelock_cv);
1669 1.4 riastrad }
1670 1.4 riastrad
1671 1.4 riastrad /*
1672 1.4 riastrad * rnd_sources_locked()
1673 1.4 riastrad *
1674 1.4 riastrad * True if we hold the list of rndsources locked, for diagnostic
1675 1.4 riastrad * assertions.
1676 1.4 riastrad */
1677 1.7 riastrad static bool __diagused
1678 1.4 riastrad rnd_sources_locked(void)
1679 1.4 riastrad {
1680 1.4 riastrad
1681 1.16 riastrad return E->sourcelock == curlwp;
1682 1.4 riastrad }
1683 1.4 riastrad
1684 1.4 riastrad /*
1685 1.1 riastrad * entropy_request(nbytes)
1686 1.1 riastrad *
1687 1.1 riastrad * Request nbytes bytes of entropy from all sources in the system.
1688 1.1 riastrad * OK if we overdo it. Caller must hold the global entropy lock;
1689 1.1 riastrad * will release and re-acquire it.
1690 1.1 riastrad */
1691 1.1 riastrad static void
1692 1.1 riastrad entropy_request(size_t nbytes)
1693 1.1 riastrad {
1694 1.4 riastrad struct krndsource *rs;
1695 1.1 riastrad
1696 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1697 1.1 riastrad
1698 1.1 riastrad /*
1699 1.1 riastrad * If there is a request in progress, let it proceed.
1700 1.1 riastrad * Otherwise, note that a request is in progress to avoid
1701 1.1 riastrad * reentry and to block rnd_detach_source until we're done.
1702 1.1 riastrad */
1703 1.4 riastrad if (!rnd_trylock_sources())
1704 1.1 riastrad return;
1705 1.1 riastrad entropy_request_evcnt.ev_count++;
1706 1.1 riastrad
1707 1.1 riastrad /* Clamp to the maximum reasonable request. */
1708 1.1 riastrad nbytes = MIN(nbytes, ENTROPY_CAPACITY);
1709 1.1 riastrad
1710 1.1 riastrad /* Walk the list of sources. */
1711 1.4 riastrad LIST_FOREACH(rs, &E->sources, list) {
1712 1.1 riastrad /* Skip sources without callbacks. */
1713 1.1 riastrad if (!ISSET(rs->flags, RND_FLAG_HASCB))
1714 1.1 riastrad continue;
1715 1.1 riastrad
1716 1.22 riastrad /*
1717 1.22 riastrad * Skip sources that are disabled altogether -- we
1718 1.22 riastrad * would just ignore their samples anyway.
1719 1.22 riastrad */
1720 1.22 riastrad if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
1721 1.22 riastrad continue;
1722 1.22 riastrad
1723 1.1 riastrad /* Drop the lock while we call the callback. */
1724 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1725 1.1 riastrad mutex_exit(&E->lock);
1726 1.1 riastrad (*rs->get)(nbytes, rs->getarg);
1727 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1728 1.1 riastrad mutex_enter(&E->lock);
1729 1.1 riastrad }
1730 1.1 riastrad
1731 1.1 riastrad /* Notify rnd_detach_source that the request is done. */
1732 1.4 riastrad rnd_unlock_sources();
1733 1.1 riastrad }
1734 1.1 riastrad
1735 1.1 riastrad /*
1736 1.1 riastrad * rnd_add_uint32(rs, value)
1737 1.1 riastrad *
1738 1.1 riastrad * Enter 32 bits of data from an entropy source into the pool.
1739 1.1 riastrad *
1740 1.1 riastrad * If rs is NULL, may not be called from interrupt context.
1741 1.1 riastrad *
1742 1.1 riastrad * If rs is non-NULL, may be called from any context. May drop
1743 1.1 riastrad * data if called from interrupt context.
1744 1.1 riastrad */
1745 1.1 riastrad void
1746 1.1 riastrad rnd_add_uint32(struct krndsource *rs, uint32_t value)
1747 1.1 riastrad {
1748 1.1 riastrad
1749 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
1750 1.1 riastrad }
1751 1.1 riastrad
1752 1.1 riastrad void
1753 1.1 riastrad _rnd_add_uint32(struct krndsource *rs, uint32_t value)
1754 1.1 riastrad {
1755 1.1 riastrad
1756 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
1757 1.1 riastrad }
1758 1.1 riastrad
1759 1.1 riastrad void
1760 1.1 riastrad _rnd_add_uint64(struct krndsource *rs, uint64_t value)
1761 1.1 riastrad {
1762 1.1 riastrad
1763 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
1764 1.1 riastrad }
1765 1.1 riastrad
1766 1.1 riastrad /*
1767 1.1 riastrad * rnd_add_data(rs, buf, len, entropybits)
1768 1.1 riastrad *
1769 1.1 riastrad * Enter data from an entropy source into the pool, with a
1770 1.1 riastrad * driver's estimate of how much entropy the physical source of
1771 1.1 riastrad * the data has. If RND_FLAG_NO_ESTIMATE, we ignore the driver's
1772 1.1 riastrad * estimate and treat it as zero.
1773 1.1 riastrad *
1774 1.1 riastrad * If rs is NULL, may not be called from interrupt context.
1775 1.1 riastrad *
1776 1.1 riastrad * If rs is non-NULL, may be called from any context. May drop
1777 1.1 riastrad * data if called from interrupt context.
1778 1.1 riastrad */
1779 1.1 riastrad void
1780 1.1 riastrad rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
1781 1.1 riastrad uint32_t entropybits)
1782 1.1 riastrad {
1783 1.1 riastrad uint32_t extra;
1784 1.1 riastrad uint32_t flags;
1785 1.1 riastrad
1786 1.1 riastrad KASSERTMSG(howmany(entropybits, NBBY) <= len,
1787 1.1 riastrad "%s: impossible entropy rate:"
1788 1.1 riastrad " %"PRIu32" bits in %"PRIu32"-byte string",
1789 1.1 riastrad rs ? rs->name : "(anonymous)", entropybits, len);
1790 1.1 riastrad
1791 1.1 riastrad /* If there's no rndsource, just enter the data and time now. */
1792 1.1 riastrad if (rs == NULL) {
1793 1.1 riastrad entropy_enter(buf, len, entropybits);
1794 1.1 riastrad extra = entropy_timer();
1795 1.1 riastrad entropy_enter(&extra, sizeof extra, 0);
1796 1.1 riastrad explicit_memset(&extra, 0, sizeof extra);
1797 1.1 riastrad return;
1798 1.1 riastrad }
1799 1.1 riastrad
1800 1.1 riastrad /* Load a snapshot of the flags. Ioctl may change them under us. */
1801 1.1 riastrad flags = atomic_load_relaxed(&rs->flags);
1802 1.1 riastrad
1803 1.1 riastrad /*
1804 1.1 riastrad * Skip if:
1805 1.1 riastrad * - we're not collecting entropy, or
1806 1.1 riastrad * - the operator doesn't want to collect entropy from this, or
1807 1.1 riastrad * - neither data nor timings are being collected from this.
1808 1.1 riastrad */
1809 1.1 riastrad if (!atomic_load_relaxed(&entropy_collection) ||
1810 1.1 riastrad ISSET(flags, RND_FLAG_NO_COLLECT) ||
1811 1.1 riastrad !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
1812 1.1 riastrad return;
1813 1.1 riastrad
1814 1.1 riastrad /* If asked, ignore the estimate. */
1815 1.1 riastrad if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
1816 1.1 riastrad entropybits = 0;
1817 1.1 riastrad
1818 1.1 riastrad /* If we are collecting data, enter them. */
1819 1.1 riastrad if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
1820 1.1 riastrad rnd_add_data_1(rs, buf, len, entropybits);
1821 1.1 riastrad
1822 1.1 riastrad /* If we are collecting timings, enter one. */
1823 1.1 riastrad if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
1824 1.1 riastrad extra = entropy_timer();
1825 1.1 riastrad rnd_add_data_1(rs, &extra, sizeof extra, 0);
1826 1.1 riastrad }
1827 1.1 riastrad }
1828 1.1 riastrad
1829 1.1 riastrad /*
1830 1.1 riastrad * rnd_add_data_1(rs, buf, len, entropybits)
1831 1.1 riastrad *
1832 1.1 riastrad * Internal subroutine to call either entropy_enter_intr, if we're
1833 1.1 riastrad * in interrupt context, or entropy_enter if not, and to count the
1834 1.1 riastrad * entropy in an rndsource.
1835 1.1 riastrad */
1836 1.1 riastrad static void
1837 1.1 riastrad rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
1838 1.1 riastrad uint32_t entropybits)
1839 1.1 riastrad {
1840 1.1 riastrad bool fullyused;
1841 1.1 riastrad
1842 1.1 riastrad /*
1843 1.1 riastrad * If we're in interrupt context, use entropy_enter_intr and
1844 1.1 riastrad * take note of whether it consumed the full sample; if not,
1845 1.1 riastrad * use entropy_enter, which always consumes the full sample.
1846 1.1 riastrad */
1847 1.16 riastrad if (curlwp && cpu_intr_p()) {
1848 1.1 riastrad fullyused = entropy_enter_intr(buf, len, entropybits);
1849 1.1 riastrad } else {
1850 1.1 riastrad entropy_enter(buf, len, entropybits);
1851 1.1 riastrad fullyused = true;
1852 1.1 riastrad }
1853 1.1 riastrad
1854 1.1 riastrad /*
1855 1.1 riastrad * If we used the full sample, note how many bits were
1856 1.1 riastrad * contributed from this source.
1857 1.1 riastrad */
1858 1.1 riastrad if (fullyused) {
1859 1.1 riastrad if (E->stage < ENTROPY_HOT) {
1860 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1861 1.1 riastrad mutex_enter(&E->lock);
1862 1.1 riastrad rs->total += MIN(UINT_MAX - rs->total, entropybits);
1863 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1864 1.1 riastrad mutex_exit(&E->lock);
1865 1.1 riastrad } else {
1866 1.1 riastrad struct rndsource_cpu *rc = percpu_getref(rs->state);
1867 1.1 riastrad unsigned nbits = rc->rc_nbits;
1868 1.1 riastrad
1869 1.1 riastrad nbits += MIN(UINT_MAX - nbits, entropybits);
1870 1.1 riastrad atomic_store_relaxed(&rc->rc_nbits, nbits);
1871 1.1 riastrad percpu_putref(rs->state);
1872 1.1 riastrad }
1873 1.1 riastrad }
1874 1.1 riastrad }
1875 1.1 riastrad
1876 1.1 riastrad /*
1877 1.1 riastrad * rnd_add_data_sync(rs, buf, len, entropybits)
1878 1.1 riastrad *
1879 1.1 riastrad * Same as rnd_add_data. Originally used in rndsource callbacks,
1880 1.1 riastrad * to break an unnecessary cycle; no longer really needed.
1881 1.1 riastrad */
1882 1.1 riastrad void
1883 1.1 riastrad rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
1884 1.1 riastrad uint32_t entropybits)
1885 1.1 riastrad {
1886 1.1 riastrad
1887 1.1 riastrad rnd_add_data(rs, buf, len, entropybits);
1888 1.1 riastrad }
1889 1.1 riastrad
1890 1.1 riastrad /*
1891 1.1 riastrad * rndsource_entropybits(rs)
1892 1.1 riastrad *
1893 1.1 riastrad * Return approximately the number of bits of entropy that have
1894 1.1 riastrad * been contributed via rs so far. Approximate if other CPUs may
1895 1.1 riastrad * be calling rnd_add_data concurrently.
1896 1.1 riastrad */
1897 1.1 riastrad static unsigned
1898 1.1 riastrad rndsource_entropybits(struct krndsource *rs)
1899 1.1 riastrad {
1900 1.1 riastrad unsigned nbits = rs->total;
1901 1.1 riastrad
1902 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1903 1.4 riastrad KASSERT(rnd_sources_locked());
1904 1.1 riastrad percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
1905 1.1 riastrad return nbits;
1906 1.1 riastrad }
1907 1.1 riastrad
1908 1.1 riastrad static void
1909 1.1 riastrad rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
1910 1.1 riastrad {
1911 1.1 riastrad struct rndsource_cpu *rc = ptr;
1912 1.1 riastrad unsigned *nbitsp = cookie;
1913 1.1 riastrad unsigned cpu_nbits;
1914 1.1 riastrad
1915 1.1 riastrad cpu_nbits = atomic_load_relaxed(&rc->rc_nbits);
1916 1.1 riastrad *nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
1917 1.1 riastrad }
1918 1.1 riastrad
1919 1.1 riastrad /*
1920 1.1 riastrad * rndsource_to_user(rs, urs)
1921 1.1 riastrad *
1922 1.1 riastrad * Copy a description of rs out to urs for userland.
1923 1.1 riastrad */
1924 1.1 riastrad static void
1925 1.1 riastrad rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
1926 1.1 riastrad {
1927 1.1 riastrad
1928 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1929 1.4 riastrad KASSERT(rnd_sources_locked());
1930 1.1 riastrad
1931 1.1 riastrad /* Avoid kernel memory disclosure. */
1932 1.1 riastrad memset(urs, 0, sizeof(*urs));
1933 1.1 riastrad
1934 1.1 riastrad CTASSERT(sizeof(urs->name) == sizeof(rs->name));
1935 1.1 riastrad strlcpy(urs->name, rs->name, sizeof(urs->name));
1936 1.1 riastrad urs->total = rndsource_entropybits(rs);
1937 1.1 riastrad urs->type = rs->type;
1938 1.1 riastrad urs->flags = atomic_load_relaxed(&rs->flags);
1939 1.1 riastrad }
1940 1.1 riastrad
1941 1.1 riastrad /*
1942 1.1 riastrad * rndsource_to_user_est(rs, urse)
1943 1.1 riastrad *
1944 1.1 riastrad * Copy a description of rs and estimation statistics out to urse
1945 1.1 riastrad * for userland.
1946 1.1 riastrad */
1947 1.1 riastrad static void
1948 1.1 riastrad rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
1949 1.1 riastrad {
1950 1.1 riastrad
1951 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1952 1.4 riastrad KASSERT(rnd_sources_locked());
1953 1.1 riastrad
1954 1.1 riastrad /* Avoid kernel memory disclosure. */
1955 1.1 riastrad memset(urse, 0, sizeof(*urse));
1956 1.1 riastrad
1957 1.1 riastrad /* Copy out the rndsource description. */
1958 1.1 riastrad rndsource_to_user(rs, &urse->rt);
1959 1.1 riastrad
1960 1.1 riastrad /* Zero out the statistics because we don't do estimation. */
1961 1.1 riastrad urse->dt_samples = 0;
1962 1.1 riastrad urse->dt_total = 0;
1963 1.1 riastrad urse->dv_samples = 0;
1964 1.1 riastrad urse->dv_total = 0;
1965 1.1 riastrad }
1966 1.1 riastrad
1967 1.1 riastrad /*
1968 1.21 riastrad * entropy_reset_xc(arg1, arg2)
1969 1.21 riastrad *
1970 1.21 riastrad * Reset the current CPU's pending entropy to zero.
1971 1.21 riastrad */
1972 1.21 riastrad static void
1973 1.21 riastrad entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
1974 1.21 riastrad {
1975 1.21 riastrad uint32_t extra = entropy_timer();
1976 1.21 riastrad struct entropy_cpu *ec;
1977 1.21 riastrad int s;
1978 1.21 riastrad
1979 1.21 riastrad /*
1980 1.21 riastrad * Acquire the per-CPU state, blocking soft interrupts and
1981 1.21 riastrad * causing hard interrupts to drop samples on the floor.
1982 1.21 riastrad */
1983 1.21 riastrad ec = percpu_getref(entropy_percpu);
1984 1.21 riastrad s = splsoftserial();
1985 1.21 riastrad KASSERT(!ec->ec_locked);
1986 1.21 riastrad ec->ec_locked = true;
1987 1.21 riastrad __insn_barrier();
1988 1.21 riastrad
1989 1.21 riastrad /* Zero the pending count and enter a cycle count for fun. */
1990 1.21 riastrad ec->ec_pending = 0;
1991 1.21 riastrad entpool_enter(ec->ec_pool, &extra, sizeof extra);
1992 1.21 riastrad
1993 1.21 riastrad /* Release the per-CPU state. */
1994 1.21 riastrad KASSERT(ec->ec_locked);
1995 1.21 riastrad __insn_barrier();
1996 1.21 riastrad ec->ec_locked = false;
1997 1.21 riastrad splx(s);
1998 1.21 riastrad percpu_putref(entropy_percpu);
1999 1.21 riastrad }
2000 1.21 riastrad
2001 1.21 riastrad /*
2002 1.1 riastrad * entropy_ioctl(cmd, data)
2003 1.1 riastrad *
2004 1.1 riastrad * Handle various /dev/random ioctl queries.
2005 1.1 riastrad */
2006 1.1 riastrad int
2007 1.1 riastrad entropy_ioctl(unsigned long cmd, void *data)
2008 1.1 riastrad {
2009 1.1 riastrad struct krndsource *rs;
2010 1.1 riastrad bool privileged;
2011 1.1 riastrad int error;
2012 1.1 riastrad
2013 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2014 1.1 riastrad
2015 1.1 riastrad /* Verify user's authorization to perform the ioctl. */
2016 1.1 riastrad switch (cmd) {
2017 1.1 riastrad case RNDGETENTCNT:
2018 1.1 riastrad case RNDGETPOOLSTAT:
2019 1.1 riastrad case RNDGETSRCNUM:
2020 1.1 riastrad case RNDGETSRCNAME:
2021 1.1 riastrad case RNDGETESTNUM:
2022 1.1 riastrad case RNDGETESTNAME:
2023 1.1 riastrad error = kauth_authorize_device(curlwp->l_cred,
2024 1.1 riastrad KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
2025 1.1 riastrad break;
2026 1.1 riastrad case RNDCTL:
2027 1.1 riastrad error = kauth_authorize_device(curlwp->l_cred,
2028 1.1 riastrad KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
2029 1.1 riastrad break;
2030 1.1 riastrad case RNDADDDATA:
2031 1.1 riastrad error = kauth_authorize_device(curlwp->l_cred,
2032 1.1 riastrad KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
2033 1.1 riastrad /* Ascertain whether the user's inputs should be counted. */
2034 1.1 riastrad if (kauth_authorize_device(curlwp->l_cred,
2035 1.1 riastrad KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
2036 1.1 riastrad NULL, NULL, NULL, NULL) == 0)
2037 1.1 riastrad privileged = true;
2038 1.1 riastrad break;
2039 1.1 riastrad default: {
2040 1.1 riastrad /*
2041 1.1 riastrad * XXX Hack to avoid changing module ABI so this can be
2042 1.1 riastrad * pulled up. Later, we can just remove the argument.
2043 1.1 riastrad */
2044 1.1 riastrad static const struct fileops fops = {
2045 1.1 riastrad .fo_ioctl = rnd_system_ioctl,
2046 1.1 riastrad };
2047 1.1 riastrad struct file f = {
2048 1.1 riastrad .f_ops = &fops,
2049 1.1 riastrad };
2050 1.1 riastrad MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
2051 1.1 riastrad enosys(), error);
2052 1.1 riastrad #if defined(_LP64)
2053 1.1 riastrad if (error == ENOSYS)
2054 1.1 riastrad MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
2055 1.1 riastrad enosys(), error);
2056 1.1 riastrad #endif
2057 1.1 riastrad if (error == ENOSYS)
2058 1.1 riastrad error = ENOTTY;
2059 1.1 riastrad break;
2060 1.1 riastrad }
2061 1.1 riastrad }
2062 1.1 riastrad
2063 1.1 riastrad /* If anything went wrong with authorization, stop here. */
2064 1.1 riastrad if (error)
2065 1.1 riastrad return error;
2066 1.1 riastrad
2067 1.1 riastrad /* Dispatch on the command. */
2068 1.1 riastrad switch (cmd) {
2069 1.1 riastrad case RNDGETENTCNT: { /* Get current entropy count in bits. */
2070 1.1 riastrad uint32_t *countp = data;
2071 1.1 riastrad
2072 1.1 riastrad mutex_enter(&E->lock);
2073 1.1 riastrad *countp = ENTROPY_CAPACITY*NBBY - E->needed;
2074 1.1 riastrad mutex_exit(&E->lock);
2075 1.1 riastrad
2076 1.1 riastrad break;
2077 1.1 riastrad }
2078 1.1 riastrad case RNDGETPOOLSTAT: { /* Get entropy pool statistics. */
2079 1.1 riastrad rndpoolstat_t *pstat = data;
2080 1.1 riastrad
2081 1.1 riastrad mutex_enter(&E->lock);
2082 1.1 riastrad
2083 1.1 riastrad /* parameters */
2084 1.1 riastrad pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
2085 1.1 riastrad pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
2086 1.1 riastrad pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
2087 1.1 riastrad
2088 1.1 riastrad /* state */
2089 1.1 riastrad pstat->added = 0; /* XXX total entropy_enter count */
2090 1.1 riastrad pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
2091 1.1 riastrad pstat->removed = 0; /* XXX total entropy_extract count */
2092 1.1 riastrad pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
2093 1.1 riastrad pstat->generated = 0; /* XXX bits of data...fabricated? */
2094 1.1 riastrad
2095 1.1 riastrad mutex_exit(&E->lock);
2096 1.1 riastrad break;
2097 1.1 riastrad }
2098 1.1 riastrad case RNDGETSRCNUM: { /* Get entropy sources by number. */
2099 1.1 riastrad rndstat_t *stat = data;
2100 1.1 riastrad uint32_t start = 0, i = 0;
2101 1.1 riastrad
2102 1.1 riastrad /* Skip if none requested; fail if too many requested. */
2103 1.1 riastrad if (stat->count == 0)
2104 1.1 riastrad break;
2105 1.1 riastrad if (stat->count > RND_MAXSTATCOUNT)
2106 1.1 riastrad return EINVAL;
2107 1.1 riastrad
2108 1.1 riastrad /*
2109 1.1 riastrad * Under the lock, find the first one, copy out as many
2110 1.1 riastrad * as requested, and report how many we copied out.
2111 1.1 riastrad */
2112 1.1 riastrad mutex_enter(&E->lock);
2113 1.4 riastrad error = rnd_lock_sources();
2114 1.4 riastrad if (error) {
2115 1.4 riastrad mutex_exit(&E->lock);
2116 1.4 riastrad return error;
2117 1.4 riastrad }
2118 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2119 1.1 riastrad if (start++ == stat->start)
2120 1.1 riastrad break;
2121 1.1 riastrad }
2122 1.1 riastrad while (i < stat->count && rs != NULL) {
2123 1.5 riastrad mutex_exit(&E->lock);
2124 1.1 riastrad rndsource_to_user(rs, &stat->source[i++]);
2125 1.5 riastrad mutex_enter(&E->lock);
2126 1.1 riastrad rs = LIST_NEXT(rs, list);
2127 1.1 riastrad }
2128 1.1 riastrad KASSERT(i <= stat->count);
2129 1.1 riastrad stat->count = i;
2130 1.4 riastrad rnd_unlock_sources();
2131 1.1 riastrad mutex_exit(&E->lock);
2132 1.1 riastrad break;
2133 1.1 riastrad }
2134 1.1 riastrad case RNDGETESTNUM: { /* Get sources and estimates by number. */
2135 1.1 riastrad rndstat_est_t *estat = data;
2136 1.1 riastrad uint32_t start = 0, i = 0;
2137 1.1 riastrad
2138 1.1 riastrad /* Skip if none requested; fail if too many requested. */
2139 1.1 riastrad if (estat->count == 0)
2140 1.1 riastrad break;
2141 1.1 riastrad if (estat->count > RND_MAXSTATCOUNT)
2142 1.1 riastrad return EINVAL;
2143 1.1 riastrad
2144 1.1 riastrad /*
2145 1.1 riastrad * Under the lock, find the first one, copy out as many
2146 1.1 riastrad * as requested, and report how many we copied out.
2147 1.1 riastrad */
2148 1.1 riastrad mutex_enter(&E->lock);
2149 1.4 riastrad error = rnd_lock_sources();
2150 1.4 riastrad if (error) {
2151 1.4 riastrad mutex_exit(&E->lock);
2152 1.4 riastrad return error;
2153 1.4 riastrad }
2154 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2155 1.1 riastrad if (start++ == estat->start)
2156 1.1 riastrad break;
2157 1.1 riastrad }
2158 1.1 riastrad while (i < estat->count && rs != NULL) {
2159 1.4 riastrad mutex_exit(&E->lock);
2160 1.1 riastrad rndsource_to_user_est(rs, &estat->source[i++]);
2161 1.4 riastrad mutex_enter(&E->lock);
2162 1.1 riastrad rs = LIST_NEXT(rs, list);
2163 1.1 riastrad }
2164 1.1 riastrad KASSERT(i <= estat->count);
2165 1.1 riastrad estat->count = i;
2166 1.4 riastrad rnd_unlock_sources();
2167 1.1 riastrad mutex_exit(&E->lock);
2168 1.1 riastrad break;
2169 1.1 riastrad }
2170 1.1 riastrad case RNDGETSRCNAME: { /* Get entropy sources by name. */
2171 1.1 riastrad rndstat_name_t *nstat = data;
2172 1.1 riastrad const size_t n = sizeof(rs->name);
2173 1.1 riastrad
2174 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
2175 1.1 riastrad
2176 1.1 riastrad /*
2177 1.1 riastrad * Under the lock, search by name. If found, copy it
2178 1.1 riastrad * out; if not found, fail with ENOENT.
2179 1.1 riastrad */
2180 1.1 riastrad mutex_enter(&E->lock);
2181 1.4 riastrad error = rnd_lock_sources();
2182 1.4 riastrad if (error) {
2183 1.4 riastrad mutex_exit(&E->lock);
2184 1.4 riastrad return error;
2185 1.4 riastrad }
2186 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2187 1.1 riastrad if (strncmp(rs->name, nstat->name, n) == 0)
2188 1.1 riastrad break;
2189 1.1 riastrad }
2190 1.4 riastrad if (rs != NULL) {
2191 1.4 riastrad mutex_exit(&E->lock);
2192 1.1 riastrad rndsource_to_user(rs, &nstat->source);
2193 1.4 riastrad mutex_enter(&E->lock);
2194 1.4 riastrad } else {
2195 1.1 riastrad error = ENOENT;
2196 1.4 riastrad }
2197 1.4 riastrad rnd_unlock_sources();
2198 1.1 riastrad mutex_exit(&E->lock);
2199 1.1 riastrad break;
2200 1.1 riastrad }
2201 1.1 riastrad case RNDGETESTNAME: { /* Get sources and estimates by name. */
2202 1.1 riastrad rndstat_est_name_t *enstat = data;
2203 1.1 riastrad const size_t n = sizeof(rs->name);
2204 1.1 riastrad
2205 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
2206 1.1 riastrad
2207 1.1 riastrad /*
2208 1.1 riastrad * Under the lock, search by name. If found, copy it
2209 1.1 riastrad * out; if not found, fail with ENOENT.
2210 1.1 riastrad */
2211 1.1 riastrad mutex_enter(&E->lock);
2212 1.4 riastrad error = rnd_lock_sources();
2213 1.4 riastrad if (error) {
2214 1.4 riastrad mutex_exit(&E->lock);
2215 1.4 riastrad return error;
2216 1.4 riastrad }
2217 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2218 1.1 riastrad if (strncmp(rs->name, enstat->name, n) == 0)
2219 1.1 riastrad break;
2220 1.1 riastrad }
2221 1.4 riastrad if (rs != NULL) {
2222 1.4 riastrad mutex_exit(&E->lock);
2223 1.1 riastrad rndsource_to_user_est(rs, &enstat->source);
2224 1.4 riastrad mutex_enter(&E->lock);
2225 1.4 riastrad } else {
2226 1.1 riastrad error = ENOENT;
2227 1.4 riastrad }
2228 1.4 riastrad rnd_unlock_sources();
2229 1.1 riastrad mutex_exit(&E->lock);
2230 1.1 riastrad break;
2231 1.1 riastrad }
2232 1.1 riastrad case RNDCTL: { /* Modify entropy source flags. */
2233 1.1 riastrad rndctl_t *rndctl = data;
2234 1.1 riastrad const size_t n = sizeof(rs->name);
2235 1.21 riastrad uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2236 1.1 riastrad uint32_t flags;
2237 1.21 riastrad bool reset = false, request = false;
2238 1.1 riastrad
2239 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
2240 1.1 riastrad
2241 1.1 riastrad /* Whitelist the flags that user can change. */
2242 1.1 riastrad rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2243 1.1 riastrad
2244 1.1 riastrad /*
2245 1.1 riastrad * For each matching rndsource, either by type if
2246 1.1 riastrad * specified or by name if not, set the masked flags.
2247 1.1 riastrad */
2248 1.1 riastrad mutex_enter(&E->lock);
2249 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2250 1.1 riastrad if (rndctl->type != 0xff) {
2251 1.1 riastrad if (rs->type != rndctl->type)
2252 1.1 riastrad continue;
2253 1.1 riastrad } else {
2254 1.1 riastrad if (strncmp(rs->name, rndctl->name, n) != 0)
2255 1.1 riastrad continue;
2256 1.1 riastrad }
2257 1.1 riastrad flags = rs->flags & ~rndctl->mask;
2258 1.1 riastrad flags |= rndctl->flags & rndctl->mask;
2259 1.21 riastrad if ((rs->flags & resetflags) == 0 &&
2260 1.21 riastrad (flags & resetflags) != 0)
2261 1.21 riastrad reset = true;
2262 1.21 riastrad if ((rs->flags ^ flags) & resetflags)
2263 1.21 riastrad request = true;
2264 1.1 riastrad atomic_store_relaxed(&rs->flags, flags);
2265 1.1 riastrad }
2266 1.1 riastrad mutex_exit(&E->lock);
2267 1.21 riastrad
2268 1.21 riastrad /*
2269 1.21 riastrad * If we disabled estimation or collection, nix all the
2270 1.21 riastrad * pending entropy and set needed to the maximum.
2271 1.21 riastrad */
2272 1.21 riastrad if (reset) {
2273 1.21 riastrad xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
2274 1.21 riastrad mutex_enter(&E->lock);
2275 1.21 riastrad E->pending = 0;
2276 1.21 riastrad atomic_store_relaxed(&E->needed,
2277 1.21 riastrad ENTROPY_CAPACITY*NBBY);
2278 1.21 riastrad mutex_exit(&E->lock);
2279 1.21 riastrad }
2280 1.21 riastrad
2281 1.21 riastrad /*
2282 1.21 riastrad * If we changed any of the estimation or collection
2283 1.21 riastrad * flags, request new samples from everyone -- either
2284 1.21 riastrad * to make up for what we just lost, or to get new
2285 1.21 riastrad * samples from what we just added.
2286 1.21 riastrad */
2287 1.21 riastrad if (request) {
2288 1.21 riastrad mutex_enter(&E->lock);
2289 1.21 riastrad entropy_request(ENTROPY_CAPACITY);
2290 1.21 riastrad mutex_exit(&E->lock);
2291 1.21 riastrad }
2292 1.1 riastrad break;
2293 1.1 riastrad }
2294 1.1 riastrad case RNDADDDATA: { /* Enter seed into entropy pool. */
2295 1.1 riastrad rnddata_t *rdata = data;
2296 1.1 riastrad unsigned entropybits = 0;
2297 1.1 riastrad
2298 1.1 riastrad if (!atomic_load_relaxed(&entropy_collection))
2299 1.1 riastrad break; /* thanks but no thanks */
2300 1.1 riastrad if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
2301 1.1 riastrad return EINVAL;
2302 1.1 riastrad
2303 1.1 riastrad /*
2304 1.1 riastrad * This ioctl serves as the userland alternative a
2305 1.1 riastrad * bootloader-provided seed -- typically furnished by
2306 1.1 riastrad * /etc/rc.d/random_seed. We accept the user's entropy
2307 1.1 riastrad * claim only if
2308 1.1 riastrad *
2309 1.1 riastrad * (a) the user is privileged, and
2310 1.1 riastrad * (b) we have not entered a bootloader seed.
2311 1.1 riastrad *
2312 1.1 riastrad * under the assumption that the user may use this to
2313 1.1 riastrad * load a seed from disk that we have already loaded
2314 1.1 riastrad * from the bootloader, so we don't double-count it.
2315 1.1 riastrad */
2316 1.11 riastrad if (privileged && rdata->entropy && rdata->len) {
2317 1.1 riastrad mutex_enter(&E->lock);
2318 1.1 riastrad if (!E->seeded) {
2319 1.1 riastrad entropybits = MIN(rdata->entropy,
2320 1.1 riastrad MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
2321 1.1 riastrad E->seeded = true;
2322 1.1 riastrad }
2323 1.1 riastrad mutex_exit(&E->lock);
2324 1.1 riastrad }
2325 1.1 riastrad
2326 1.13 riastrad /* Enter the data and consolidate entropy. */
2327 1.1 riastrad rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
2328 1.1 riastrad entropybits);
2329 1.13 riastrad entropy_consolidate();
2330 1.1 riastrad break;
2331 1.1 riastrad }
2332 1.1 riastrad default:
2333 1.1 riastrad error = ENOTTY;
2334 1.1 riastrad }
2335 1.1 riastrad
2336 1.1 riastrad /* Return any error that may have come up. */
2337 1.1 riastrad return error;
2338 1.1 riastrad }
2339 1.1 riastrad
2340 1.1 riastrad /* Legacy entry points */
2341 1.1 riastrad
2342 1.1 riastrad void
2343 1.1 riastrad rnd_seed(void *seed, size_t len)
2344 1.1 riastrad {
2345 1.1 riastrad
2346 1.1 riastrad if (len != sizeof(rndsave_t)) {
2347 1.1 riastrad printf("entropy: invalid seed length: %zu,"
2348 1.1 riastrad " expected sizeof(rndsave_t) = %zu\n",
2349 1.1 riastrad len, sizeof(rndsave_t));
2350 1.1 riastrad return;
2351 1.1 riastrad }
2352 1.1 riastrad entropy_seed(seed);
2353 1.1 riastrad }
2354 1.1 riastrad
2355 1.1 riastrad void
2356 1.1 riastrad rnd_init(void)
2357 1.1 riastrad {
2358 1.1 riastrad
2359 1.1 riastrad entropy_init();
2360 1.1 riastrad }
2361 1.1 riastrad
2362 1.1 riastrad void
2363 1.1 riastrad rnd_init_softint(void)
2364 1.1 riastrad {
2365 1.1 riastrad
2366 1.1 riastrad entropy_init_late();
2367 1.1 riastrad }
2368 1.1 riastrad
2369 1.1 riastrad int
2370 1.1 riastrad rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
2371 1.1 riastrad {
2372 1.1 riastrad
2373 1.1 riastrad return entropy_ioctl(cmd, data);
2374 1.1 riastrad }
2375