Home | History | Annotate | Line # | Download | only in kern
kern_entropy.c revision 1.4
      1  1.4  riastrad /*	$NetBSD: kern_entropy.c,v 1.4 2020/04/30 16:50:00 riastradh Exp $	*/
      2  1.1  riastrad 
      3  1.1  riastrad /*-
      4  1.1  riastrad  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      5  1.1  riastrad  * All rights reserved.
      6  1.1  riastrad  *
      7  1.1  riastrad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1  riastrad  * by Taylor R. Campbell.
      9  1.1  riastrad  *
     10  1.1  riastrad  * Redistribution and use in source and binary forms, with or without
     11  1.1  riastrad  * modification, are permitted provided that the following conditions
     12  1.1  riastrad  * are met:
     13  1.1  riastrad  * 1. Redistributions of source code must retain the above copyright
     14  1.1  riastrad  *    notice, this list of conditions and the following disclaimer.
     15  1.1  riastrad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1  riastrad  *    notice, this list of conditions and the following disclaimer in the
     17  1.1  riastrad  *    documentation and/or other materials provided with the distribution.
     18  1.1  riastrad  *
     19  1.1  riastrad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.1  riastrad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.1  riastrad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.1  riastrad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.1  riastrad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.1  riastrad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1  riastrad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1  riastrad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.1  riastrad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1  riastrad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.1  riastrad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.1  riastrad  */
     31  1.1  riastrad 
     32  1.1  riastrad /*
     33  1.1  riastrad  * Entropy subsystem
     34  1.1  riastrad  *
     35  1.1  riastrad  *	* Each CPU maintains a per-CPU entropy pool so that gathering
     36  1.1  riastrad  *	  entropy requires no interprocessor synchronization, except
     37  1.1  riastrad  *	  early at boot when we may be scrambling to gather entropy as
     38  1.1  riastrad  *	  soon as possible.
     39  1.1  riastrad  *
     40  1.1  riastrad  *	  - entropy_enter gathers entropy and never drops it on the
     41  1.1  riastrad  *	    floor, at the cost of sometimes having to do cryptography.
     42  1.1  riastrad  *
     43  1.1  riastrad  *	  - entropy_enter_intr gathers entropy or drops it on the
     44  1.1  riastrad  *	    floor, with low latency.  Work to stir the pool or kick the
     45  1.1  riastrad  *	    housekeeping thread is scheduled in soft interrupts.
     46  1.1  riastrad  *
     47  1.1  riastrad  *	* entropy_enter immediately enters into the global pool if it
     48  1.1  riastrad  *	  can transition to full entropy in one swell foop.  Otherwise,
     49  1.1  riastrad  *	  it defers to a housekeeping thread that consolidates entropy,
     50  1.1  riastrad  *	  but only when the CPUs collectively have full entropy, in
     51  1.1  riastrad  *	  order to mitigate iterative-guessing attacks.
     52  1.1  riastrad  *
     53  1.1  riastrad  *	* The entropy housekeeping thread continues to consolidate
     54  1.1  riastrad  *	  entropy even after we think we have full entropy, in case we
     55  1.1  riastrad  *	  are wrong, but is limited to one discretionary consolidation
     56  1.1  riastrad  *	  per minute, and only when new entropy is actually coming in,
     57  1.1  riastrad  *	  to limit performance impact.
     58  1.1  riastrad  *
     59  1.1  riastrad  *	* The entropy epoch is the number that changes when we
     60  1.1  riastrad  *	  transition from partial entropy to full entropy, so that
     61  1.1  riastrad  *	  users can easily determine when to reseed.  This also
     62  1.1  riastrad  *	  facilitates an operator explicitly causing everything to
     63  1.1  riastrad  *	  reseed by sysctl -w kern.entropy.consolidate=1, e.g. if they
     64  1.1  riastrad  *	  just flipped a coin 256 times and wrote `echo tthhhhhthh... >
     65  1.1  riastrad  *	  /dev/random'.
     66  1.1  riastrad  *
     67  1.1  riastrad  *	* No entropy estimation based on the sample values, which is a
     68  1.1  riastrad  *	  contradiction in terms and a potential source of side
     69  1.1  riastrad  *	  channels.  It is the responsibility of the driver author to
     70  1.1  riastrad  *	  study how predictable the physical source of input can ever
     71  1.1  riastrad  *	  be, and to furnish a lower bound on the amount of entropy it
     72  1.1  riastrad  *	  has.
     73  1.1  riastrad  *
     74  1.1  riastrad  *	* Entropy depletion is available for testing (or if you're into
     75  1.1  riastrad  *	  that sort of thing), with sysctl -w kern.entropy.depletion=1;
     76  1.1  riastrad  *	  the logic to support it is small, to minimize chance of bugs.
     77  1.1  riastrad  */
     78  1.1  riastrad 
     79  1.1  riastrad #include <sys/cdefs.h>
     80  1.4  riastrad __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.4 2020/04/30 16:50:00 riastradh Exp $");
     81  1.1  riastrad 
     82  1.1  riastrad #include <sys/param.h>
     83  1.1  riastrad #include <sys/types.h>
     84  1.1  riastrad #include <sys/atomic.h>
     85  1.1  riastrad #include <sys/compat_stub.h>
     86  1.1  riastrad #include <sys/condvar.h>
     87  1.1  riastrad #include <sys/cpu.h>
     88  1.1  riastrad #include <sys/entropy.h>
     89  1.1  riastrad #include <sys/errno.h>
     90  1.1  riastrad #include <sys/evcnt.h>
     91  1.1  riastrad #include <sys/event.h>
     92  1.1  riastrad #include <sys/file.h>
     93  1.1  riastrad #include <sys/intr.h>
     94  1.1  riastrad #include <sys/kauth.h>
     95  1.1  riastrad #include <sys/kernel.h>
     96  1.1  riastrad #include <sys/kmem.h>
     97  1.1  riastrad #include <sys/kthread.h>
     98  1.1  riastrad #include <sys/module_hook.h>
     99  1.1  riastrad #include <sys/mutex.h>
    100  1.1  riastrad #include <sys/percpu.h>
    101  1.1  riastrad #include <sys/poll.h>
    102  1.1  riastrad #include <sys/queue.h>
    103  1.1  riastrad #include <sys/rnd.h>		/* legacy kernel API */
    104  1.1  riastrad #include <sys/rndio.h>		/* userland ioctl interface */
    105  1.1  riastrad #include <sys/rndsource.h>	/* kernel rndsource driver API */
    106  1.1  riastrad #include <sys/select.h>
    107  1.1  riastrad #include <sys/selinfo.h>
    108  1.1  riastrad #include <sys/sha1.h>		/* for boot seed checksum */
    109  1.1  riastrad #include <sys/stdint.h>
    110  1.1  riastrad #include <sys/sysctl.h>
    111  1.1  riastrad #include <sys/systm.h>
    112  1.1  riastrad #include <sys/time.h>
    113  1.1  riastrad #include <sys/xcall.h>
    114  1.1  riastrad 
    115  1.1  riastrad #include <lib/libkern/entpool.h>
    116  1.1  riastrad 
    117  1.1  riastrad #include <machine/limits.h>
    118  1.1  riastrad 
    119  1.1  riastrad #ifdef __HAVE_CPU_COUNTER
    120  1.1  riastrad #include <machine/cpu_counter.h>
    121  1.1  riastrad #endif
    122  1.1  riastrad 
    123  1.1  riastrad /*
    124  1.1  riastrad  * struct entropy_cpu
    125  1.1  riastrad  *
    126  1.1  riastrad  *	Per-CPU entropy state.  The pool is allocated separately
    127  1.1  riastrad  *	because percpu(9) sometimes moves per-CPU objects around
    128  1.1  riastrad  *	without zeroing them, which would lead to unwanted copies of
    129  1.1  riastrad  *	sensitive secrets.  The evcnt is allocated separately becuase
    130  1.1  riastrad  *	evcnt(9) assumes it stays put in memory.
    131  1.1  riastrad  */
    132  1.1  riastrad struct entropy_cpu {
    133  1.1  riastrad 	struct evcnt		*ec_softint_evcnt;
    134  1.1  riastrad 	struct entpool		*ec_pool;
    135  1.1  riastrad 	unsigned		ec_pending;
    136  1.1  riastrad 	bool			ec_locked;
    137  1.1  riastrad };
    138  1.1  riastrad 
    139  1.1  riastrad /*
    140  1.1  riastrad  * struct rndsource_cpu
    141  1.1  riastrad  *
    142  1.1  riastrad  *	Per-CPU rndsource state.
    143  1.1  riastrad  */
    144  1.1  riastrad struct rndsource_cpu {
    145  1.1  riastrad 	unsigned		rc_nbits; /* bits of entropy added */
    146  1.1  riastrad };
    147  1.1  riastrad 
    148  1.1  riastrad /*
    149  1.1  riastrad  * entropy_global (a.k.a. E for short in this file)
    150  1.1  riastrad  *
    151  1.1  riastrad  *	Global entropy state.  Writes protected by the global lock.
    152  1.1  riastrad  *	Some fields, marked (A), can be read outside the lock, and are
    153  1.1  riastrad  *	maintained with atomic_load/store_relaxed.
    154  1.1  riastrad  */
    155  1.1  riastrad struct {
    156  1.1  riastrad 	kmutex_t	lock;		/* covers all global state */
    157  1.1  riastrad 	struct entpool	pool;		/* global pool for extraction */
    158  1.1  riastrad 	unsigned	needed;		/* (A) needed globally */
    159  1.1  riastrad 	unsigned	pending;	/* (A) pending in per-CPU pools */
    160  1.1  riastrad 	unsigned	timestamp;	/* (A) time of last consolidation */
    161  1.1  riastrad 	unsigned	epoch;		/* (A) changes when needed -> 0 */
    162  1.1  riastrad 	kcondvar_t	cv;		/* notifies state changes */
    163  1.1  riastrad 	struct selinfo	selq;		/* notifies needed -> 0 */
    164  1.4  riastrad 	struct lwp	*sourcelock;	/* lock on list of sources */
    165  1.1  riastrad 	LIST_HEAD(,krndsource) sources;	/* list of entropy sources */
    166  1.1  riastrad 	enum entropy_stage {
    167  1.1  riastrad 		ENTROPY_COLD = 0, /* single-threaded */
    168  1.1  riastrad 		ENTROPY_WARM,	  /* multi-threaded at boot before CPUs */
    169  1.1  riastrad 		ENTROPY_HOT,	  /* multi-threaded multi-CPU */
    170  1.1  riastrad 	}		stage;
    171  1.1  riastrad 	bool		consolidate;	/* kick thread to consolidate */
    172  1.1  riastrad 	bool		seed_rndsource;	/* true if seed source is attached */
    173  1.1  riastrad 	bool		seeded;		/* true if seed file already loaded */
    174  1.1  riastrad } entropy_global __cacheline_aligned = {
    175  1.1  riastrad 	/* Fields that must be initialized when the kernel is loaded.  */
    176  1.1  riastrad 	.needed = ENTROPY_CAPACITY*NBBY,
    177  1.1  riastrad 	.epoch = (unsigned)-1,	/* -1 means not yet full entropy */
    178  1.1  riastrad 	.sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
    179  1.1  riastrad 	.stage = ENTROPY_COLD,
    180  1.1  riastrad };
    181  1.1  riastrad 
    182  1.1  riastrad #define	E	(&entropy_global)	/* declutter */
    183  1.1  riastrad 
    184  1.1  riastrad /* Read-mostly globals */
    185  1.1  riastrad static struct percpu	*entropy_percpu __read_mostly; /* struct entropy_cpu */
    186  1.1  riastrad static void		*entropy_sih __read_mostly; /* softint handler */
    187  1.1  riastrad static struct lwp	*entropy_lwp __read_mostly; /* housekeeping thread */
    188  1.1  riastrad 
    189  1.1  riastrad int rnd_initial_entropy __read_mostly; /* XXX legacy */
    190  1.1  riastrad 
    191  1.1  riastrad static struct krndsource seed_rndsource __read_mostly;
    192  1.1  riastrad 
    193  1.1  riastrad /*
    194  1.1  riastrad  * Event counters
    195  1.1  riastrad  *
    196  1.1  riastrad  *	Must be careful with adding these because they can serve as
    197  1.1  riastrad  *	side channels.
    198  1.1  riastrad  */
    199  1.1  riastrad static struct evcnt entropy_discretionary_evcnt =
    200  1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
    201  1.1  riastrad EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
    202  1.1  riastrad static struct evcnt entropy_immediate_evcnt =
    203  1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
    204  1.1  riastrad EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
    205  1.1  riastrad static struct evcnt entropy_partial_evcnt =
    206  1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
    207  1.1  riastrad EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
    208  1.1  riastrad static struct evcnt entropy_consolidate_evcnt =
    209  1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
    210  1.1  riastrad EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
    211  1.1  riastrad static struct evcnt entropy_extract_intr_evcnt =
    212  1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract intr");
    213  1.1  riastrad EVCNT_ATTACH_STATIC(entropy_extract_intr_evcnt);
    214  1.1  riastrad static struct evcnt entropy_extract_fail_evcnt =
    215  1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
    216  1.1  riastrad EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
    217  1.1  riastrad static struct evcnt entropy_request_evcnt =
    218  1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
    219  1.1  riastrad EVCNT_ATTACH_STATIC(entropy_request_evcnt);
    220  1.1  riastrad static struct evcnt entropy_deplete_evcnt =
    221  1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
    222  1.1  riastrad EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
    223  1.1  riastrad static struct evcnt entropy_notify_evcnt =
    224  1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
    225  1.1  riastrad EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
    226  1.1  riastrad 
    227  1.1  riastrad /* Sysctl knobs */
    228  1.1  riastrad bool	entropy_collection = 1;
    229  1.1  riastrad bool	entropy_depletion = 0; /* Silly!  */
    230  1.1  riastrad 
    231  1.1  riastrad static const struct sysctlnode	*entropy_sysctlroot;
    232  1.1  riastrad static struct sysctllog		*entropy_sysctllog;
    233  1.1  riastrad 
    234  1.1  riastrad /* Forward declarations */
    235  1.1  riastrad static void	entropy_init_cpu(void *, void *, struct cpu_info *);
    236  1.1  riastrad static void	entropy_fini_cpu(void *, void *, struct cpu_info *);
    237  1.1  riastrad static void	entropy_account_cpu(struct entropy_cpu *);
    238  1.1  riastrad static void	entropy_enter(const void *, size_t, unsigned);
    239  1.1  riastrad static bool	entropy_enter_intr(const void *, size_t, unsigned);
    240  1.1  riastrad static void	entropy_softintr(void *);
    241  1.1  riastrad static void	entropy_thread(void *);
    242  1.1  riastrad static uint32_t	entropy_pending(void);
    243  1.1  riastrad static void	entropy_pending_cpu(void *, void *, struct cpu_info *);
    244  1.1  riastrad static void	entropy_consolidate(void);
    245  1.1  riastrad static void	entropy_gather_xc(void *, void *);
    246  1.1  riastrad static void	entropy_notify(void);
    247  1.1  riastrad static int	sysctl_entropy_consolidate(SYSCTLFN_ARGS);
    248  1.1  riastrad static void	filt_entropy_read_detach(struct knote *);
    249  1.1  riastrad static int	filt_entropy_read_event(struct knote *, long);
    250  1.1  riastrad static void	entropy_request(size_t);
    251  1.1  riastrad static void	rnd_add_data_1(struct krndsource *, const void *, uint32_t,
    252  1.1  riastrad 		    uint32_t);
    253  1.1  riastrad static unsigned	rndsource_entropybits(struct krndsource *);
    254  1.1  riastrad static void	rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
    255  1.1  riastrad static void	rndsource_to_user(struct krndsource *, rndsource_t *);
    256  1.1  riastrad static void	rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
    257  1.1  riastrad 
    258  1.1  riastrad /*
    259  1.1  riastrad  * curcpu_available()
    260  1.1  riastrad  *
    261  1.1  riastrad  *	True if we can inspect the current CPU.  Early on this may not
    262  1.1  riastrad  *	work.  XXX On most if not all ports, this should work earlier.
    263  1.1  riastrad  */
    264  1.1  riastrad static inline bool
    265  1.1  riastrad curcpu_available(void)
    266  1.1  riastrad {
    267  1.1  riastrad 
    268  1.1  riastrad 	return __predict_true(!cold);
    269  1.1  riastrad }
    270  1.1  riastrad 
    271  1.1  riastrad /*
    272  1.1  riastrad  * entropy_timer()
    273  1.1  riastrad  *
    274  1.1  riastrad  *	Cycle counter, time counter, or anything that changes a wee bit
    275  1.1  riastrad  *	unpredictably.
    276  1.1  riastrad  */
    277  1.1  riastrad static inline uint32_t
    278  1.1  riastrad entropy_timer(void)
    279  1.1  riastrad {
    280  1.1  riastrad 	struct bintime bt;
    281  1.1  riastrad 	uint32_t v;
    282  1.1  riastrad 
    283  1.1  riastrad 	/* Very early on, cpu_counter32() may not be available.  */
    284  1.1  riastrad 	if (!curcpu_available())
    285  1.1  riastrad 		return 0;
    286  1.1  riastrad 
    287  1.1  riastrad 	/* If we have a CPU cycle counter, use the low 32 bits.  */
    288  1.1  riastrad #ifdef __HAVE_CPU_COUNTER
    289  1.1  riastrad 	if (__predict_true(cpu_hascounter()))
    290  1.1  riastrad 		return cpu_counter32();
    291  1.1  riastrad #endif	/* __HAVE_CPU_COUNTER */
    292  1.1  riastrad 
    293  1.1  riastrad 	/* If we're cold, tough.  Can't binuptime while cold.  */
    294  1.1  riastrad 	if (__predict_false(cold))
    295  1.1  riastrad 		return 0;
    296  1.1  riastrad 
    297  1.1  riastrad 	/* Fold the 128 bits of binuptime into 32 bits.  */
    298  1.1  riastrad 	binuptime(&bt);
    299  1.1  riastrad 	v = bt.frac;
    300  1.1  riastrad 	v ^= bt.frac >> 32;
    301  1.1  riastrad 	v ^= bt.sec;
    302  1.1  riastrad 	v ^= bt.sec >> 32;
    303  1.1  riastrad 	return v;
    304  1.1  riastrad }
    305  1.1  riastrad 
    306  1.1  riastrad static void
    307  1.1  riastrad attach_seed_rndsource(void)
    308  1.1  riastrad {
    309  1.1  riastrad 
    310  1.1  riastrad 	/*
    311  1.1  riastrad 	 * First called no later than entropy_init, while we are still
    312  1.1  riastrad 	 * single-threaded, so no need for RUN_ONCE.
    313  1.1  riastrad 	 */
    314  1.1  riastrad 	if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
    315  1.1  riastrad 		return;
    316  1.1  riastrad 	rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
    317  1.1  riastrad 	    RND_FLAG_COLLECT_VALUE);
    318  1.1  riastrad 	E->seed_rndsource = true;
    319  1.1  riastrad }
    320  1.1  riastrad 
    321  1.1  riastrad /*
    322  1.1  riastrad  * entropy_init()
    323  1.1  riastrad  *
    324  1.1  riastrad  *	Initialize the entropy subsystem.  Panic on failure.
    325  1.1  riastrad  *
    326  1.1  riastrad  *	Requires percpu(9) and sysctl(9) to be initialized.
    327  1.1  riastrad  */
    328  1.1  riastrad static void
    329  1.1  riastrad entropy_init(void)
    330  1.1  riastrad {
    331  1.1  riastrad 	uint32_t extra[2];
    332  1.1  riastrad 	struct krndsource *rs;
    333  1.1  riastrad 	unsigned i = 0;
    334  1.1  riastrad 
    335  1.1  riastrad 	KASSERT(E->stage == ENTROPY_COLD);
    336  1.1  riastrad 
    337  1.1  riastrad 	/* Grab some cycle counts early at boot.  */
    338  1.1  riastrad 	extra[i++] = entropy_timer();
    339  1.1  riastrad 
    340  1.1  riastrad 	/* Run the entropy pool cryptography self-test.  */
    341  1.1  riastrad 	if (entpool_selftest() == -1)
    342  1.1  riastrad 		panic("entropy pool crypto self-test failed");
    343  1.1  riastrad 
    344  1.1  riastrad 	/* Create the sysctl directory.  */
    345  1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
    346  1.1  riastrad 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
    347  1.1  riastrad 	    SYSCTL_DESCR("Entropy (random number sources) options"),
    348  1.1  riastrad 	    NULL, 0, NULL, 0,
    349  1.1  riastrad 	    CTL_KERN, CTL_CREATE, CTL_EOL);
    350  1.1  riastrad 
    351  1.1  riastrad 	/* Create the sysctl knobs.  */
    352  1.1  riastrad 	/* XXX These shouldn't be writable at securelevel>0.  */
    353  1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    354  1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
    355  1.1  riastrad 	    SYSCTL_DESCR("Automatically collect entropy from hardware"),
    356  1.1  riastrad 	    NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
    357  1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    358  1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
    359  1.1  riastrad 	    SYSCTL_DESCR("`Deplete' entropy pool when observed"),
    360  1.1  riastrad 	    NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
    361  1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    362  1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
    363  1.1  riastrad 	    SYSCTL_DESCR("Trigger entropy consolidation now"),
    364  1.1  riastrad 	    sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    365  1.1  riastrad 	/* XXX These should maybe not be readable at securelevel>0.  */
    366  1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    367  1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    368  1.1  riastrad 	    "needed", SYSCTL_DESCR("Systemwide entropy deficit"),
    369  1.1  riastrad 	    NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
    370  1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    371  1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    372  1.1  riastrad 	    "pending", SYSCTL_DESCR("Entropy pending on CPUs"),
    373  1.1  riastrad 	    NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
    374  1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    375  1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    376  1.1  riastrad 	    "epoch", SYSCTL_DESCR("Entropy epoch"),
    377  1.1  riastrad 	    NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
    378  1.1  riastrad 
    379  1.1  riastrad 	/* Initialize the global state for multithreaded operation.  */
    380  1.1  riastrad 	mutex_init(&E->lock, MUTEX_DEFAULT, IPL_VM);
    381  1.1  riastrad 	cv_init(&E->cv, "entropy");
    382  1.1  riastrad 	selinit(&E->selq);
    383  1.1  riastrad 
    384  1.1  riastrad 	/* Make sure the seed source is attached.  */
    385  1.1  riastrad 	attach_seed_rndsource();
    386  1.1  riastrad 
    387  1.1  riastrad 	/* Note if the bootloader didn't provide a seed.  */
    388  1.1  riastrad 	if (!E->seeded)
    389  1.1  riastrad 		printf("entropy: no seed from bootloader\n");
    390  1.1  riastrad 
    391  1.1  riastrad 	/* Allocate the per-CPU records for all early entropy sources.  */
    392  1.1  riastrad 	LIST_FOREACH(rs, &E->sources, list)
    393  1.1  riastrad 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
    394  1.1  riastrad 
    395  1.1  riastrad 	/* Enter the boot cycle count to get started.  */
    396  1.1  riastrad 	extra[i++] = entropy_timer();
    397  1.1  riastrad 	KASSERT(i == __arraycount(extra));
    398  1.1  riastrad 	entropy_enter(extra, sizeof extra, 0);
    399  1.1  riastrad 	explicit_memset(extra, 0, sizeof extra);
    400  1.1  riastrad 
    401  1.1  riastrad 	/* We are now ready for multi-threaded operation.  */
    402  1.1  riastrad 	E->stage = ENTROPY_WARM;
    403  1.1  riastrad }
    404  1.1  riastrad 
    405  1.1  riastrad /*
    406  1.1  riastrad  * entropy_init_late()
    407  1.1  riastrad  *
    408  1.1  riastrad  *	Late initialization.  Panic on failure.
    409  1.1  riastrad  *
    410  1.1  riastrad  *	Requires CPUs to have been detected and LWPs to have started.
    411  1.1  riastrad  */
    412  1.1  riastrad static void
    413  1.1  riastrad entropy_init_late(void)
    414  1.1  riastrad {
    415  1.1  riastrad 	int error;
    416  1.1  riastrad 
    417  1.1  riastrad 	KASSERT(E->stage == ENTROPY_WARM);
    418  1.1  riastrad 
    419  1.1  riastrad 	/* Allocate and initialize the per-CPU state.  */
    420  1.1  riastrad 	entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
    421  1.1  riastrad 	    entropy_init_cpu, entropy_fini_cpu, NULL);
    422  1.1  riastrad 
    423  1.1  riastrad 	/*
    424  1.1  riastrad 	 * Establish the softint at the highest softint priority level.
    425  1.1  riastrad 	 * Must happen after CPU detection.
    426  1.1  riastrad 	 */
    427  1.1  riastrad 	entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
    428  1.1  riastrad 	    &entropy_softintr, NULL);
    429  1.1  riastrad 	if (entropy_sih == NULL)
    430  1.1  riastrad 		panic("unable to establish entropy softint");
    431  1.1  riastrad 
    432  1.1  riastrad 	/*
    433  1.1  riastrad 	 * Create the entropy housekeeping thread.  Must happen after
    434  1.1  riastrad 	 * lwpinit.
    435  1.1  riastrad 	 */
    436  1.1  riastrad 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
    437  1.1  riastrad 	    entropy_thread, NULL, &entropy_lwp, "entbutler");
    438  1.1  riastrad 	if (error)
    439  1.1  riastrad 		panic("unable to create entropy housekeeping thread: %d",
    440  1.1  riastrad 		    error);
    441  1.1  riastrad 
    442  1.1  riastrad 	/*
    443  1.1  riastrad 	 * Wait until the per-CPU initialization has hit all CPUs
    444  1.1  riastrad 	 * before proceeding to mark the entropy system hot.
    445  1.1  riastrad 	 */
    446  1.1  riastrad 	xc_barrier(XC_HIGHPRI);
    447  1.1  riastrad 	E->stage = ENTROPY_HOT;
    448  1.1  riastrad }
    449  1.1  riastrad 
    450  1.1  riastrad /*
    451  1.1  riastrad  * entropy_init_cpu(ptr, cookie, ci)
    452  1.1  riastrad  *
    453  1.1  riastrad  *	percpu(9) constructor for per-CPU entropy pool.
    454  1.1  riastrad  */
    455  1.1  riastrad static void
    456  1.1  riastrad entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    457  1.1  riastrad {
    458  1.1  riastrad 	struct entropy_cpu *ec = ptr;
    459  1.1  riastrad 
    460  1.1  riastrad 	ec->ec_softint_evcnt = kmem_alloc(sizeof(*ec->ec_softint_evcnt),
    461  1.1  riastrad 	    KM_SLEEP);
    462  1.1  riastrad 	ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
    463  1.1  riastrad 	ec->ec_pending = 0;
    464  1.1  riastrad 	ec->ec_locked = false;
    465  1.1  riastrad 
    466  1.1  riastrad 	evcnt_attach_dynamic(ec->ec_softint_evcnt, EVCNT_TYPE_MISC, NULL,
    467  1.1  riastrad 	    ci->ci_cpuname, "entropy softint");
    468  1.1  riastrad }
    469  1.1  riastrad 
    470  1.1  riastrad /*
    471  1.1  riastrad  * entropy_fini_cpu(ptr, cookie, ci)
    472  1.1  riastrad  *
    473  1.1  riastrad  *	percpu(9) destructor for per-CPU entropy pool.
    474  1.1  riastrad  */
    475  1.1  riastrad static void
    476  1.1  riastrad entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    477  1.1  riastrad {
    478  1.1  riastrad 	struct entropy_cpu *ec = ptr;
    479  1.1  riastrad 
    480  1.1  riastrad 	/*
    481  1.1  riastrad 	 * Zero any lingering data.  Disclosure of the per-CPU pool
    482  1.1  riastrad 	 * shouldn't retroactively affect the security of any keys
    483  1.1  riastrad 	 * generated, because entpool(9) erases whatever we have just
    484  1.1  riastrad 	 * drawn out of any pool, but better safe than sorry.
    485  1.1  riastrad 	 */
    486  1.1  riastrad 	explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
    487  1.1  riastrad 
    488  1.1  riastrad 	evcnt_detach(ec->ec_softint_evcnt);
    489  1.1  riastrad 
    490  1.1  riastrad 	kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
    491  1.1  riastrad 	kmem_free(ec->ec_softint_evcnt, sizeof(*ec->ec_softint_evcnt));
    492  1.1  riastrad }
    493  1.1  riastrad 
    494  1.1  riastrad /*
    495  1.1  riastrad  * entropy_seed(seed)
    496  1.1  riastrad  *
    497  1.1  riastrad  *	Seed the entropy pool with seed.  Meant to be called as early
    498  1.1  riastrad  *	as possible by the bootloader; may be called before or after
    499  1.1  riastrad  *	entropy_init.  Must be called before system reaches userland.
    500  1.1  riastrad  *	Must be called in thread or soft interrupt context, not in hard
    501  1.1  riastrad  *	interrupt context.  Must be called at most once.
    502  1.1  riastrad  *
    503  1.1  riastrad  *	Overwrites the seed in place.  Caller may then free the memory.
    504  1.1  riastrad  */
    505  1.1  riastrad static void
    506  1.1  riastrad entropy_seed(rndsave_t *seed)
    507  1.1  riastrad {
    508  1.1  riastrad 	SHA1_CTX ctx;
    509  1.1  riastrad 	uint8_t digest[SHA1_DIGEST_LENGTH];
    510  1.1  riastrad 	bool seeded;
    511  1.1  riastrad 
    512  1.1  riastrad 	/*
    513  1.1  riastrad 	 * Verify the checksum.  If the checksum fails, take the data
    514  1.1  riastrad 	 * but ignore the entropy estimate -- the file may have been
    515  1.1  riastrad 	 * incompletely written with garbage, which is harmless to add
    516  1.1  riastrad 	 * but may not be as unpredictable as alleged.
    517  1.1  riastrad 	 */
    518  1.1  riastrad 	SHA1Init(&ctx);
    519  1.1  riastrad 	SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
    520  1.1  riastrad 	SHA1Update(&ctx, seed->data, sizeof(seed->data));
    521  1.1  riastrad 	SHA1Final(digest, &ctx);
    522  1.1  riastrad 	CTASSERT(sizeof(seed->digest) == sizeof(digest));
    523  1.1  riastrad 	if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
    524  1.1  riastrad 		printf("entropy: invalid seed checksum\n");
    525  1.1  riastrad 		seed->entropy = 0;
    526  1.1  riastrad 	}
    527  1.2  riastrad 	explicit_memset(&ctx, 0, sizeof ctx);
    528  1.1  riastrad 	explicit_memset(digest, 0, sizeof digest);
    529  1.1  riastrad 
    530  1.2  riastrad 	/*
    531  1.2  riastrad 	 * If the entropy is insensibly large, try byte-swapping.
    532  1.2  riastrad 	 * Otherwise assume the file is corrupted and act as though it
    533  1.2  riastrad 	 * has zero entropy.
    534  1.2  riastrad 	 */
    535  1.2  riastrad 	if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
    536  1.2  riastrad 		seed->entropy = bswap32(seed->entropy);
    537  1.2  riastrad 		if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
    538  1.2  riastrad 			seed->entropy = 0;
    539  1.2  riastrad 	}
    540  1.2  riastrad 
    541  1.1  riastrad 	/* Make sure the seed source is attached.  */
    542  1.1  riastrad 	attach_seed_rndsource();
    543  1.1  riastrad 
    544  1.1  riastrad 	/* Test and set E->seeded.  */
    545  1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
    546  1.1  riastrad 		mutex_enter(&E->lock);
    547  1.1  riastrad 	seeded = E->seeded;
    548  1.1  riastrad 	E->seeded = true;
    549  1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
    550  1.1  riastrad 		mutex_exit(&E->lock);
    551  1.1  riastrad 
    552  1.1  riastrad 	/*
    553  1.1  riastrad 	 * If we've been seeded, may be re-entering the same seed
    554  1.1  riastrad 	 * (e.g., bootloader vs module init, or something).  No harm in
    555  1.1  riastrad 	 * entering it twice, but it contributes no additional entropy.
    556  1.1  riastrad 	 */
    557  1.1  riastrad 	if (seeded) {
    558  1.1  riastrad 		printf("entropy: double-seeded by bootloader\n");
    559  1.1  riastrad 		seed->entropy = 0;
    560  1.1  riastrad 	} else {
    561  1.1  riastrad 		printf("entropy: entering seed from bootloader\n");
    562  1.1  riastrad 	}
    563  1.1  riastrad 
    564  1.1  riastrad 	/* Enter it into the pool and promptly zero it.  */
    565  1.1  riastrad 	rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
    566  1.1  riastrad 	    seed->entropy);
    567  1.1  riastrad 	explicit_memset(seed, 0, sizeof(*seed));
    568  1.1  riastrad }
    569  1.1  riastrad 
    570  1.1  riastrad /*
    571  1.1  riastrad  * entropy_bootrequest()
    572  1.1  riastrad  *
    573  1.1  riastrad  *	Request entropy from all sources at boot, once config is
    574  1.1  riastrad  *	complete and interrupts are running.
    575  1.1  riastrad  */
    576  1.1  riastrad void
    577  1.1  riastrad entropy_bootrequest(void)
    578  1.1  riastrad {
    579  1.1  riastrad 
    580  1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
    581  1.1  riastrad 
    582  1.1  riastrad 	/*
    583  1.1  riastrad 	 * Request enough to satisfy the maximum entropy shortage.
    584  1.1  riastrad 	 * This is harmless overkill if the bootloader provided a seed.
    585  1.1  riastrad 	 */
    586  1.1  riastrad 	mutex_enter(&E->lock);
    587  1.1  riastrad 	entropy_request(ENTROPY_CAPACITY);
    588  1.1  riastrad 	mutex_exit(&E->lock);
    589  1.1  riastrad }
    590  1.1  riastrad 
    591  1.1  riastrad /*
    592  1.1  riastrad  * entropy_epoch()
    593  1.1  riastrad  *
    594  1.1  riastrad  *	Returns the current entropy epoch.  If this changes, you should
    595  1.1  riastrad  *	reseed.  If -1, means the system has not yet reached full
    596  1.1  riastrad  *	entropy; never reverts back to -1 after full entropy has been
    597  1.1  riastrad  *	reached.  Never zero, so you can always use zero as an
    598  1.1  riastrad  *	uninitialized sentinel value meaning `reseed ASAP'.
    599  1.1  riastrad  *
    600  1.1  riastrad  *	Usage model:
    601  1.1  riastrad  *
    602  1.1  riastrad  *		struct foo {
    603  1.1  riastrad  *			struct crypto_prng prng;
    604  1.1  riastrad  *			unsigned epoch;
    605  1.1  riastrad  *		} *foo;
    606  1.1  riastrad  *
    607  1.1  riastrad  *		unsigned epoch = entropy_epoch();
    608  1.1  riastrad  *		if (__predict_false(epoch != foo->epoch)) {
    609  1.1  riastrad  *			uint8_t seed[32];
    610  1.1  riastrad  *			if (entropy_extract(seed, sizeof seed, 0) != 0)
    611  1.1  riastrad  *				warn("no entropy");
    612  1.1  riastrad  *			crypto_prng_reseed(&foo->prng, seed, sizeof seed);
    613  1.1  riastrad  *			foo->epoch = epoch;
    614  1.1  riastrad  *		}
    615  1.1  riastrad  */
    616  1.1  riastrad unsigned
    617  1.1  riastrad entropy_epoch(void)
    618  1.1  riastrad {
    619  1.1  riastrad 
    620  1.1  riastrad 	/*
    621  1.1  riastrad 	 * Unsigned int, so no need for seqlock for an atomic read, but
    622  1.1  riastrad 	 * make sure we read it afresh each time.
    623  1.1  riastrad 	 */
    624  1.1  riastrad 	return atomic_load_relaxed(&E->epoch);
    625  1.1  riastrad }
    626  1.1  riastrad 
    627  1.1  riastrad /*
    628  1.1  riastrad  * entropy_account_cpu(ec)
    629  1.1  riastrad  *
    630  1.1  riastrad  *	Consider whether to consolidate entropy into the global pool
    631  1.1  riastrad  *	after we just added some into the current CPU's pending pool.
    632  1.1  riastrad  *
    633  1.1  riastrad  *	- If this CPU can provide enough entropy now, do so.
    634  1.1  riastrad  *
    635  1.1  riastrad  *	- If this and whatever else is available on other CPUs can
    636  1.1  riastrad  *	  provide enough entropy, kick the consolidation thread.
    637  1.1  riastrad  *
    638  1.1  riastrad  *	- Otherwise, do as little as possible, except maybe consolidate
    639  1.1  riastrad  *	  entropy at most once a minute.
    640  1.1  riastrad  *
    641  1.1  riastrad  *	Caller must be bound to a CPU and therefore have exclusive
    642  1.1  riastrad  *	access to ec.  Will acquire and release the global lock.
    643  1.1  riastrad  */
    644  1.1  riastrad static void
    645  1.1  riastrad entropy_account_cpu(struct entropy_cpu *ec)
    646  1.1  riastrad {
    647  1.1  riastrad 	unsigned diff;
    648  1.1  riastrad 
    649  1.1  riastrad 	KASSERT(E->stage == ENTROPY_HOT);
    650  1.1  riastrad 
    651  1.1  riastrad 	/*
    652  1.1  riastrad 	 * If there's no entropy needed, and entropy has been
    653  1.1  riastrad 	 * consolidated in the last minute, do nothing.
    654  1.1  riastrad 	 */
    655  1.1  riastrad 	if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
    656  1.1  riastrad 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
    657  1.1  riastrad 	    __predict_true((time_uptime - E->timestamp) <= 60))
    658  1.1  riastrad 		return;
    659  1.1  riastrad 
    660  1.1  riastrad 	/* If there's nothing pending, stop here.  */
    661  1.1  riastrad 	if (ec->ec_pending == 0)
    662  1.1  riastrad 		return;
    663  1.1  riastrad 
    664  1.1  riastrad 	/* Consider consolidation, under the lock.  */
    665  1.1  riastrad 	mutex_enter(&E->lock);
    666  1.1  riastrad 	if (E->needed != 0 && E->needed <= ec->ec_pending) {
    667  1.1  riastrad 		/*
    668  1.1  riastrad 		 * If we have not yet attained full entropy but we can
    669  1.1  riastrad 		 * now, do so.  This way we disseminate entropy
    670  1.1  riastrad 		 * promptly when it becomes available early at boot;
    671  1.1  riastrad 		 * otherwise we leave it to the entropy consolidation
    672  1.1  riastrad 		 * thread, which is rate-limited to mitigate side
    673  1.1  riastrad 		 * channels and abuse.
    674  1.1  riastrad 		 */
    675  1.1  riastrad 		uint8_t buf[ENTPOOL_CAPACITY];
    676  1.1  riastrad 
    677  1.1  riastrad 		/* Transfer from the local pool to the global pool.  */
    678  1.1  riastrad 		entpool_extract(ec->ec_pool, buf, sizeof buf);
    679  1.1  riastrad 		entpool_enter(&E->pool, buf, sizeof buf);
    680  1.1  riastrad 		atomic_store_relaxed(&ec->ec_pending, 0);
    681  1.1  riastrad 		atomic_store_relaxed(&E->needed, 0);
    682  1.1  riastrad 
    683  1.1  riastrad 		/* Notify waiters that we now have full entropy.  */
    684  1.1  riastrad 		entropy_notify();
    685  1.1  riastrad 		entropy_immediate_evcnt.ev_count++;
    686  1.1  riastrad 	} else if (ec->ec_pending) {
    687  1.1  riastrad 		/* Record how much we can add to the global pool.  */
    688  1.1  riastrad 		diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
    689  1.1  riastrad 		E->pending += diff;
    690  1.1  riastrad 		atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
    691  1.1  riastrad 
    692  1.1  riastrad 		/*
    693  1.1  riastrad 		 * This should have made a difference unless we were
    694  1.1  riastrad 		 * already saturated.
    695  1.1  riastrad 		 */
    696  1.1  riastrad 		KASSERT(diff || E->pending == ENTROPY_CAPACITY*NBBY);
    697  1.1  riastrad 		KASSERT(E->pending);
    698  1.1  riastrad 
    699  1.1  riastrad 		if (E->needed <= E->pending) {
    700  1.1  riastrad 			/*
    701  1.1  riastrad 			 * Enough entropy between all the per-CPU
    702  1.1  riastrad 			 * pools.  Wake up the housekeeping thread.
    703  1.1  riastrad 			 *
    704  1.1  riastrad 			 * If we don't need any entropy, this doesn't
    705  1.1  riastrad 			 * mean much, but it is the only time we ever
    706  1.1  riastrad 			 * gather additional entropy in case the
    707  1.1  riastrad 			 * accounting has been overly optimistic.  This
    708  1.1  riastrad 			 * happens at most once a minute, so there's
    709  1.1  riastrad 			 * negligible performance cost.
    710  1.1  riastrad 			 */
    711  1.1  riastrad 			E->consolidate = true;
    712  1.1  riastrad 			cv_broadcast(&E->cv);
    713  1.1  riastrad 			if (E->needed == 0)
    714  1.1  riastrad 				entropy_discretionary_evcnt.ev_count++;
    715  1.1  riastrad 		} else {
    716  1.1  riastrad 			/* Can't get full entropy.  Keep gathering.  */
    717  1.1  riastrad 			entropy_partial_evcnt.ev_count++;
    718  1.1  riastrad 		}
    719  1.1  riastrad 	}
    720  1.1  riastrad 	mutex_exit(&E->lock);
    721  1.1  riastrad }
    722  1.1  riastrad 
    723  1.1  riastrad /*
    724  1.1  riastrad  * entropy_enter_early(buf, len, nbits)
    725  1.1  riastrad  *
    726  1.1  riastrad  *	Do entropy bookkeeping globally, before we have established
    727  1.1  riastrad  *	per-CPU pools.  Enter directly into the global pool in the hope
    728  1.1  riastrad  *	that we enter enough before the first entropy_extract to thwart
    729  1.1  riastrad  *	iterative-guessing attacks; entropy_extract will warn if not.
    730  1.1  riastrad  */
    731  1.1  riastrad static void
    732  1.1  riastrad entropy_enter_early(const void *buf, size_t len, unsigned nbits)
    733  1.1  riastrad {
    734  1.1  riastrad 	bool notify = false;
    735  1.1  riastrad 
    736  1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
    737  1.1  riastrad 		mutex_enter(&E->lock);
    738  1.1  riastrad 
    739  1.1  riastrad 	/* Enter it into the pool.  */
    740  1.1  riastrad 	entpool_enter(&E->pool, buf, len);
    741  1.1  riastrad 
    742  1.1  riastrad 	/*
    743  1.1  riastrad 	 * Decide whether to notify reseed -- we will do so if either:
    744  1.1  riastrad 	 * (a) we transition from partial entropy to full entropy, or
    745  1.1  riastrad 	 * (b) we get a batch of full entropy all at once.
    746  1.1  riastrad 	 */
    747  1.1  riastrad 	notify |= (E->needed && E->needed <= nbits);
    748  1.1  riastrad 	notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
    749  1.1  riastrad 
    750  1.1  riastrad 	/* Subtract from the needed count and notify if appropriate.  */
    751  1.1  riastrad 	E->needed -= MIN(E->needed, nbits);
    752  1.1  riastrad 	if (notify) {
    753  1.1  riastrad 		entropy_notify();
    754  1.1  riastrad 		entropy_immediate_evcnt.ev_count++;
    755  1.1  riastrad 	}
    756  1.1  riastrad 
    757  1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
    758  1.1  riastrad 		mutex_exit(&E->lock);
    759  1.1  riastrad }
    760  1.1  riastrad 
    761  1.1  riastrad /*
    762  1.1  riastrad  * entropy_enter(buf, len, nbits)
    763  1.1  riastrad  *
    764  1.1  riastrad  *	Enter len bytes of data from buf into the system's entropy
    765  1.1  riastrad  *	pool, stirring as necessary when the internal buffer fills up.
    766  1.1  riastrad  *	nbits is a lower bound on the number of bits of entropy in the
    767  1.1  riastrad  *	process that led to this sample.
    768  1.1  riastrad  */
    769  1.1  riastrad static void
    770  1.1  riastrad entropy_enter(const void *buf, size_t len, unsigned nbits)
    771  1.1  riastrad {
    772  1.1  riastrad 	struct entropy_cpu *ec;
    773  1.1  riastrad 	uint32_t pending;
    774  1.1  riastrad 	int s;
    775  1.1  riastrad 
    776  1.1  riastrad 	KASSERTMSG(!curcpu_available() || !cpu_intr_p(),
    777  1.1  riastrad 	    "use entropy_enter_intr from interrupt context");
    778  1.1  riastrad 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    779  1.1  riastrad 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    780  1.1  riastrad 
    781  1.1  riastrad 	/* If it's too early after boot, just use entropy_enter_early.  */
    782  1.1  riastrad 	if (__predict_false(E->stage < ENTROPY_HOT)) {
    783  1.1  riastrad 		entropy_enter_early(buf, len, nbits);
    784  1.1  riastrad 		return;
    785  1.1  riastrad 	}
    786  1.1  riastrad 
    787  1.1  riastrad 	/*
    788  1.1  riastrad 	 * Acquire the per-CPU state, blocking soft interrupts and
    789  1.1  riastrad 	 * causing hard interrupts to drop samples on the floor.
    790  1.1  riastrad 	 */
    791  1.1  riastrad 	ec = percpu_getref(entropy_percpu);
    792  1.1  riastrad 	s = splsoftserial();
    793  1.1  riastrad 	KASSERT(!ec->ec_locked);
    794  1.1  riastrad 	ec->ec_locked = true;
    795  1.1  riastrad 	__insn_barrier();
    796  1.1  riastrad 
    797  1.1  riastrad 	/* Enter into the per-CPU pool.  */
    798  1.1  riastrad 	entpool_enter(ec->ec_pool, buf, len);
    799  1.1  riastrad 
    800  1.1  riastrad 	/* Count up what we can add.  */
    801  1.1  riastrad 	pending = ec->ec_pending;
    802  1.1  riastrad 	pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
    803  1.1  riastrad 	atomic_store_relaxed(&ec->ec_pending, pending);
    804  1.1  riastrad 
    805  1.1  riastrad 	/* Consolidate globally if appropriate based on what we added.  */
    806  1.1  riastrad 	entropy_account_cpu(ec);
    807  1.1  riastrad 
    808  1.1  riastrad 	/* Release the per-CPU state.  */
    809  1.1  riastrad 	KASSERT(ec->ec_locked);
    810  1.1  riastrad 	__insn_barrier();
    811  1.1  riastrad 	ec->ec_locked = false;
    812  1.1  riastrad 	splx(s);
    813  1.1  riastrad 	percpu_putref(entropy_percpu);
    814  1.1  riastrad }
    815  1.1  riastrad 
    816  1.1  riastrad /*
    817  1.1  riastrad  * entropy_enter_intr(buf, len, nbits)
    818  1.1  riastrad  *
    819  1.1  riastrad  *	Enter up to len bytes of data from buf into the system's
    820  1.1  riastrad  *	entropy pool without stirring.  nbits is a lower bound on the
    821  1.1  riastrad  *	number of bits of entropy in the process that led to this
    822  1.1  riastrad  *	sample.  If the sample could be entered completely, assume
    823  1.1  riastrad  *	nbits of entropy pending; otherwise assume none, since we don't
    824  1.1  riastrad  *	know whether some parts of the sample are constant, for
    825  1.1  riastrad  *	instance.  Schedule a softint to stir the entropy pool if
    826  1.1  riastrad  *	needed.  Return true if used fully, false if truncated at all.
    827  1.1  riastrad  *
    828  1.1  riastrad  *	Using this in thread context will work, but you might as well
    829  1.1  riastrad  *	use entropy_enter in that case.
    830  1.1  riastrad  */
    831  1.1  riastrad static bool
    832  1.1  riastrad entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
    833  1.1  riastrad {
    834  1.1  riastrad 	struct entropy_cpu *ec;
    835  1.1  riastrad 	bool fullyused = false;
    836  1.1  riastrad 	uint32_t pending;
    837  1.1  riastrad 
    838  1.1  riastrad 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    839  1.1  riastrad 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    840  1.1  riastrad 
    841  1.1  riastrad 	/* If it's too early after boot, just use entropy_enter_early.  */
    842  1.1  riastrad 	if (__predict_false(E->stage < ENTROPY_HOT)) {
    843  1.1  riastrad 		entropy_enter_early(buf, len, nbits);
    844  1.1  riastrad 		return true;
    845  1.1  riastrad 	}
    846  1.1  riastrad 
    847  1.1  riastrad 	/*
    848  1.1  riastrad 	 * Acquire the per-CPU state.  If someone is in the middle of
    849  1.1  riastrad 	 * using it, drop the sample.  Otherwise, take the lock so that
    850  1.1  riastrad 	 * higher-priority interrupts will drop their samples.
    851  1.1  riastrad 	 */
    852  1.1  riastrad 	ec = percpu_getref(entropy_percpu);
    853  1.1  riastrad 	if (ec->ec_locked)
    854  1.1  riastrad 		goto out0;
    855  1.1  riastrad 	ec->ec_locked = true;
    856  1.1  riastrad 	__insn_barrier();
    857  1.1  riastrad 
    858  1.1  riastrad 	/*
    859  1.1  riastrad 	 * Enter as much as we can into the per-CPU pool.  If it was
    860  1.1  riastrad 	 * truncated, schedule a softint to stir the pool and stop.
    861  1.1  riastrad 	 */
    862  1.1  riastrad 	if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
    863  1.1  riastrad 		softint_schedule(entropy_sih);
    864  1.1  riastrad 		goto out1;
    865  1.1  riastrad 	}
    866  1.1  riastrad 	fullyused = true;
    867  1.1  riastrad 
    868  1.1  riastrad 	/* Count up what we can contribute.  */
    869  1.1  riastrad 	pending = ec->ec_pending;
    870  1.1  riastrad 	pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
    871  1.1  riastrad 	atomic_store_relaxed(&ec->ec_pending, pending);
    872  1.1  riastrad 
    873  1.1  riastrad 	/* Schedule a softint if we added anything and it matters.  */
    874  1.1  riastrad 	if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
    875  1.1  riastrad 		atomic_load_relaxed(&entropy_depletion)) &&
    876  1.1  riastrad 	    nbits != 0)
    877  1.1  riastrad 		softint_schedule(entropy_sih);
    878  1.1  riastrad 
    879  1.1  riastrad out1:	/* Release the per-CPU state.  */
    880  1.1  riastrad 	KASSERT(ec->ec_locked);
    881  1.1  riastrad 	__insn_barrier();
    882  1.1  riastrad 	ec->ec_locked = false;
    883  1.1  riastrad out0:	percpu_putref(entropy_percpu);
    884  1.1  riastrad 
    885  1.1  riastrad 	return fullyused;
    886  1.1  riastrad }
    887  1.1  riastrad 
    888  1.1  riastrad /*
    889  1.1  riastrad  * entropy_softintr(cookie)
    890  1.1  riastrad  *
    891  1.1  riastrad  *	Soft interrupt handler for entering entropy.  Takes care of
    892  1.1  riastrad  *	stirring the local CPU's entropy pool if it filled up during
    893  1.1  riastrad  *	hard interrupts, and promptly crediting entropy from the local
    894  1.1  riastrad  *	CPU's entropy pool to the global entropy pool if needed.
    895  1.1  riastrad  */
    896  1.1  riastrad static void
    897  1.1  riastrad entropy_softintr(void *cookie)
    898  1.1  riastrad {
    899  1.1  riastrad 	struct entropy_cpu *ec;
    900  1.1  riastrad 
    901  1.1  riastrad 	/*
    902  1.1  riastrad 	 * Acquire the per-CPU state.  Other users can lock this only
    903  1.1  riastrad 	 * while soft interrupts are blocked.  Cause hard interrupts to
    904  1.1  riastrad 	 * drop samples on the floor.
    905  1.1  riastrad 	 */
    906  1.1  riastrad 	ec = percpu_getref(entropy_percpu);
    907  1.1  riastrad 	KASSERT(!ec->ec_locked);
    908  1.1  riastrad 	ec->ec_locked = true;
    909  1.1  riastrad 	__insn_barrier();
    910  1.1  riastrad 
    911  1.1  riastrad 	/* Count statistics.  */
    912  1.1  riastrad 	ec->ec_softint_evcnt->ev_count++;
    913  1.1  riastrad 
    914  1.1  riastrad 	/* Stir the pool if necessary.  */
    915  1.1  riastrad 	entpool_stir(ec->ec_pool);
    916  1.1  riastrad 
    917  1.1  riastrad 	/* Consolidate globally if appropriate based on what we added.  */
    918  1.1  riastrad 	entropy_account_cpu(ec);
    919  1.1  riastrad 
    920  1.1  riastrad 	/* Release the per-CPU state.  */
    921  1.1  riastrad 	KASSERT(ec->ec_locked);
    922  1.1  riastrad 	__insn_barrier();
    923  1.1  riastrad 	ec->ec_locked = false;
    924  1.1  riastrad 	percpu_putref(entropy_percpu);
    925  1.1  riastrad }
    926  1.1  riastrad 
    927  1.1  riastrad /*
    928  1.1  riastrad  * entropy_thread(cookie)
    929  1.1  riastrad  *
    930  1.1  riastrad  *	Handle any asynchronous entropy housekeeping.
    931  1.1  riastrad  */
    932  1.1  riastrad static void
    933  1.1  riastrad entropy_thread(void *cookie)
    934  1.1  riastrad {
    935  1.3  riastrad 	bool consolidate;
    936  1.1  riastrad 
    937  1.1  riastrad 	for (;;) {
    938  1.1  riastrad 		/*
    939  1.3  riastrad 		 * Wait until there's full entropy somewhere among the
    940  1.3  riastrad 		 * CPUs, as confirmed at most once per minute, or
    941  1.3  riastrad 		 * someone wants to consolidate.
    942  1.1  riastrad 		 */
    943  1.3  riastrad 		if (entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
    944  1.3  riastrad 			consolidate = true;
    945  1.3  riastrad 		} else {
    946  1.3  riastrad 			mutex_enter(&E->lock);
    947  1.3  riastrad 			if (!E->consolidate)
    948  1.3  riastrad 				cv_timedwait(&E->cv, &E->lock, 60*hz);
    949  1.3  riastrad 			consolidate = E->consolidate;
    950  1.3  riastrad 			E->consolidate = false;
    951  1.3  riastrad 			mutex_exit(&E->lock);
    952  1.1  riastrad 		}
    953  1.1  riastrad 
    954  1.3  riastrad 		if (consolidate) {
    955  1.3  riastrad 			/* Do it.  */
    956  1.3  riastrad 			entropy_consolidate();
    957  1.1  riastrad 
    958  1.3  riastrad 			/* Mitigate abuse.  */
    959  1.3  riastrad 			kpause("entropy", false, hz, NULL);
    960  1.3  riastrad 		}
    961  1.1  riastrad 	}
    962  1.1  riastrad }
    963  1.1  riastrad 
    964  1.1  riastrad /*
    965  1.1  riastrad  * entropy_pending()
    966  1.1  riastrad  *
    967  1.1  riastrad  *	Count up the amount of entropy pending on other CPUs.
    968  1.1  riastrad  */
    969  1.1  riastrad static uint32_t
    970  1.1  riastrad entropy_pending(void)
    971  1.1  riastrad {
    972  1.1  riastrad 	uint32_t pending = 0;
    973  1.1  riastrad 
    974  1.1  riastrad 	percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
    975  1.1  riastrad 	return pending;
    976  1.1  riastrad }
    977  1.1  riastrad 
    978  1.1  riastrad static void
    979  1.1  riastrad entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    980  1.1  riastrad {
    981  1.1  riastrad 	struct entropy_cpu *ec = ptr;
    982  1.1  riastrad 	uint32_t *pendingp = cookie;
    983  1.1  riastrad 	uint32_t cpu_pending;
    984  1.1  riastrad 
    985  1.1  riastrad 	cpu_pending = atomic_load_relaxed(&ec->ec_pending);
    986  1.1  riastrad 	*pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
    987  1.1  riastrad }
    988  1.1  riastrad 
    989  1.1  riastrad /*
    990  1.1  riastrad  * entropy_consolidate()
    991  1.1  riastrad  *
    992  1.1  riastrad  *	Issue a cross-call to gather entropy on all CPUs and advance
    993  1.1  riastrad  *	the entropy epoch.
    994  1.1  riastrad  */
    995  1.1  riastrad static void
    996  1.1  riastrad entropy_consolidate(void)
    997  1.1  riastrad {
    998  1.1  riastrad 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
    999  1.1  riastrad 	static struct timeval lasttime; /* serialized by E->lock */
   1000  1.1  riastrad 	unsigned diff;
   1001  1.1  riastrad 	uint64_t ticket;
   1002  1.1  riastrad 
   1003  1.1  riastrad 	/* Gather entropy on all CPUs.  */
   1004  1.1  riastrad 	ticket = xc_broadcast(0, &entropy_gather_xc, NULL, NULL);
   1005  1.1  riastrad 	xc_wait(ticket);
   1006  1.1  riastrad 
   1007  1.1  riastrad 	/* Acquire the lock to notify waiters.  */
   1008  1.1  riastrad 	mutex_enter(&E->lock);
   1009  1.1  riastrad 
   1010  1.1  riastrad 	/* Count another consolidation.  */
   1011  1.1  riastrad 	entropy_consolidate_evcnt.ev_count++;
   1012  1.1  riastrad 
   1013  1.1  riastrad 	/* Note when we last consolidated, i.e. now.  */
   1014  1.1  riastrad 	E->timestamp = time_uptime;
   1015  1.1  riastrad 
   1016  1.1  riastrad 	/* Count the entropy that was gathered.  */
   1017  1.1  riastrad 	diff = MIN(E->needed, E->pending);
   1018  1.1  riastrad 	atomic_store_relaxed(&E->needed, E->needed - diff);
   1019  1.1  riastrad 	E->pending -= diff;
   1020  1.1  riastrad 	if (__predict_false(E->needed > 0)) {
   1021  1.1  riastrad 		if (ratecheck(&lasttime, &interval))
   1022  1.1  riastrad 			printf("entropy: WARNING:"
   1023  1.1  riastrad 			    " consolidating less than full entropy\n");
   1024  1.1  riastrad 	}
   1025  1.1  riastrad 
   1026  1.1  riastrad 	/* Advance the epoch and notify waiters.  */
   1027  1.1  riastrad 	entropy_notify();
   1028  1.1  riastrad 
   1029  1.1  riastrad 	/* Release the lock.  */
   1030  1.1  riastrad 	mutex_exit(&E->lock);
   1031  1.1  riastrad }
   1032  1.1  riastrad 
   1033  1.1  riastrad /*
   1034  1.1  riastrad  * entropy_gather_xc(arg1, arg2)
   1035  1.1  riastrad  *
   1036  1.1  riastrad  *	Extract output from the local CPU's input pool and enter it
   1037  1.1  riastrad  *	into the global pool.
   1038  1.1  riastrad  */
   1039  1.1  riastrad static void
   1040  1.1  riastrad entropy_gather_xc(void *arg1 __unused, void *arg2 __unused)
   1041  1.1  riastrad {
   1042  1.1  riastrad 	struct entropy_cpu *ec;
   1043  1.1  riastrad 	uint8_t buf[ENTPOOL_CAPACITY];
   1044  1.1  riastrad 	uint32_t extra[7];
   1045  1.1  riastrad 	unsigned i = 0;
   1046  1.1  riastrad 	int s;
   1047  1.1  riastrad 
   1048  1.1  riastrad 	/* Grab CPU number and cycle counter to mix extra into the pool.  */
   1049  1.1  riastrad 	extra[i++] = cpu_number();
   1050  1.1  riastrad 	extra[i++] = entropy_timer();
   1051  1.1  riastrad 
   1052  1.1  riastrad 	/*
   1053  1.1  riastrad 	 * Acquire the per-CPU state, blocking soft interrupts and
   1054  1.1  riastrad 	 * discarding entropy in hard interrupts, so that we can
   1055  1.1  riastrad 	 * extract from the per-CPU pool.
   1056  1.1  riastrad 	 */
   1057  1.1  riastrad 	ec = percpu_getref(entropy_percpu);
   1058  1.1  riastrad 	s = splsoftserial();
   1059  1.1  riastrad 	KASSERT(!ec->ec_locked);
   1060  1.1  riastrad 	ec->ec_locked = true;
   1061  1.1  riastrad 	__insn_barrier();
   1062  1.1  riastrad 	extra[i++] = entropy_timer();
   1063  1.1  riastrad 
   1064  1.1  riastrad 	/* Extract the data.  */
   1065  1.1  riastrad 	entpool_extract(ec->ec_pool, buf, sizeof buf);
   1066  1.1  riastrad 	extra[i++] = entropy_timer();
   1067  1.1  riastrad 
   1068  1.1  riastrad 	/* Release the per-CPU state.  */
   1069  1.1  riastrad 	KASSERT(ec->ec_locked);
   1070  1.1  riastrad 	__insn_barrier();
   1071  1.1  riastrad 	ec->ec_locked = false;
   1072  1.1  riastrad 	splx(s);
   1073  1.1  riastrad 	percpu_putref(entropy_percpu);
   1074  1.1  riastrad 	extra[i++] = entropy_timer();
   1075  1.1  riastrad 
   1076  1.1  riastrad 	/*
   1077  1.1  riastrad 	 * Copy over statistics, and enter the per-CPU extract and the
   1078  1.1  riastrad 	 * extra timing into the global pool, under the global lock.
   1079  1.1  riastrad 	 */
   1080  1.1  riastrad 	mutex_enter(&E->lock);
   1081  1.1  riastrad 	extra[i++] = entropy_timer();
   1082  1.1  riastrad 	entpool_enter(&E->pool, buf, sizeof buf);
   1083  1.1  riastrad 	explicit_memset(buf, 0, sizeof buf);
   1084  1.1  riastrad 	extra[i++] = entropy_timer();
   1085  1.1  riastrad 	KASSERT(i == __arraycount(extra));
   1086  1.1  riastrad 	entpool_enter(&E->pool, extra, sizeof extra);
   1087  1.1  riastrad 	explicit_memset(extra, 0, sizeof extra);
   1088  1.1  riastrad 	mutex_exit(&E->lock);
   1089  1.1  riastrad }
   1090  1.1  riastrad 
   1091  1.1  riastrad /*
   1092  1.1  riastrad  * entropy_notify()
   1093  1.1  riastrad  *
   1094  1.1  riastrad  *	Caller just contributed entropy to the global pool.  Advance
   1095  1.1  riastrad  *	the entropy epoch and notify waiters.
   1096  1.1  riastrad  *
   1097  1.1  riastrad  *	Caller must hold the global entropy lock.  Except for the
   1098  1.1  riastrad  *	`sysctl -w kern.entropy.consolidate=1` trigger, the caller must
   1099  1.1  riastrad  *	have just have transitioned from partial entropy to full
   1100  1.1  riastrad  *	entropy -- E->needed should be zero now.
   1101  1.1  riastrad  */
   1102  1.1  riastrad static void
   1103  1.1  riastrad entropy_notify(void)
   1104  1.1  riastrad {
   1105  1.1  riastrad 	unsigned epoch;
   1106  1.1  riastrad 
   1107  1.1  riastrad 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1108  1.1  riastrad 
   1109  1.1  riastrad 	/*
   1110  1.1  riastrad 	 * If this is the first time, print a message to the console
   1111  1.1  riastrad 	 * that we're ready so operators can compare it to the timing
   1112  1.1  riastrad 	 * of other events.
   1113  1.1  riastrad 	 */
   1114  1.1  riastrad 	if (E->epoch == (unsigned)-1)
   1115  1.1  riastrad 		printf("entropy: ready\n");
   1116  1.1  riastrad 
   1117  1.1  riastrad 	/* Set the epoch; roll over from UINTMAX-1 to 1.  */
   1118  1.1  riastrad 	rnd_initial_entropy = 1; /* XXX legacy */
   1119  1.1  riastrad 	epoch = E->epoch + 1;
   1120  1.1  riastrad 	if (epoch == 0 || epoch == (unsigned)-1)
   1121  1.1  riastrad 		epoch = 1;
   1122  1.1  riastrad 	atomic_store_relaxed(&E->epoch, epoch);
   1123  1.1  riastrad 
   1124  1.1  riastrad 	/* Notify waiters.  */
   1125  1.1  riastrad 	if (E->stage >= ENTROPY_WARM) {
   1126  1.1  riastrad 		cv_broadcast(&E->cv);
   1127  1.1  riastrad 		selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
   1128  1.1  riastrad 	}
   1129  1.1  riastrad 
   1130  1.1  riastrad 	/* Count another notification.  */
   1131  1.1  riastrad 	entropy_notify_evcnt.ev_count++;
   1132  1.1  riastrad }
   1133  1.1  riastrad 
   1134  1.1  riastrad /*
   1135  1.1  riastrad  * sysctl -w kern.entropy.consolidate=1
   1136  1.1  riastrad  *
   1137  1.1  riastrad  *	Trigger entropy consolidation and wait for it to complete.
   1138  1.1  riastrad  *	Writable only by superuser.  This is the only way for the
   1139  1.1  riastrad  *	system to consolidate entropy if the operator knows something
   1140  1.1  riastrad  *	the kernel doesn't about how unpredictable the pending entropy
   1141  1.1  riastrad  *	pools are.
   1142  1.1  riastrad  */
   1143  1.1  riastrad static int
   1144  1.1  riastrad sysctl_entropy_consolidate(SYSCTLFN_ARGS)
   1145  1.1  riastrad {
   1146  1.1  riastrad 	struct sysctlnode node = *rnode;
   1147  1.1  riastrad 	uint64_t ticket;
   1148  1.1  riastrad 	int arg;
   1149  1.1  riastrad 	int error;
   1150  1.1  riastrad 
   1151  1.1  riastrad 	KASSERT(E->stage == ENTROPY_HOT);
   1152  1.1  riastrad 
   1153  1.1  riastrad 	node.sysctl_data = &arg;
   1154  1.1  riastrad 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1155  1.1  riastrad 	if (error || newp == NULL)
   1156  1.1  riastrad 		return error;
   1157  1.1  riastrad 	if (arg) {
   1158  1.1  riastrad 		mutex_enter(&E->lock);
   1159  1.1  riastrad 		ticket = entropy_consolidate_evcnt.ev_count;
   1160  1.1  riastrad 		E->consolidate = true;
   1161  1.1  riastrad 		cv_broadcast(&E->cv);
   1162  1.1  riastrad 		while (ticket == entropy_consolidate_evcnt.ev_count) {
   1163  1.1  riastrad 			error = cv_wait_sig(&E->cv, &E->lock);
   1164  1.1  riastrad 			if (error)
   1165  1.1  riastrad 				break;
   1166  1.1  riastrad 		}
   1167  1.1  riastrad 		mutex_exit(&E->lock);
   1168  1.1  riastrad 	}
   1169  1.1  riastrad 
   1170  1.1  riastrad 	return error;
   1171  1.1  riastrad }
   1172  1.1  riastrad 
   1173  1.1  riastrad /*
   1174  1.1  riastrad  * entropy_extract(buf, len, flags)
   1175  1.1  riastrad  *
   1176  1.1  riastrad  *	Extract len bytes from the global entropy pool into buf.
   1177  1.1  riastrad  *
   1178  1.1  riastrad  *	Flags may have:
   1179  1.1  riastrad  *
   1180  1.1  riastrad  *		ENTROPY_WAIT	Wait for entropy if not available yet.
   1181  1.1  riastrad  *		ENTROPY_SIG	Allow interruption by a signal during wait.
   1182  1.1  riastrad  *
   1183  1.1  riastrad  *	Return zero on success, or error on failure:
   1184  1.1  riastrad  *
   1185  1.1  riastrad  *		EWOULDBLOCK	No entropy and ENTROPY_WAIT not set.
   1186  1.1  riastrad  *		EINTR/ERESTART	No entropy, ENTROPY_SIG set, and interrupted.
   1187  1.1  riastrad  *
   1188  1.1  riastrad  *	If ENTROPY_WAIT is set, allowed only in thread context.  If
   1189  1.1  riastrad  *	ENTROPY_WAIT is not set, allowed up to IPL_VM.  (XXX That's
   1190  1.1  riastrad  *	awfully high...  Do we really need it in hard interrupts?  This
   1191  1.1  riastrad  *	arises from use of cprng_strong(9).)
   1192  1.1  riastrad  */
   1193  1.1  riastrad int
   1194  1.1  riastrad entropy_extract(void *buf, size_t len, int flags)
   1195  1.1  riastrad {
   1196  1.1  riastrad 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1197  1.1  riastrad 	static struct timeval lasttime; /* serialized by E->lock */
   1198  1.1  riastrad 	int error;
   1199  1.1  riastrad 
   1200  1.1  riastrad 	if (ISSET(flags, ENTROPY_WAIT)) {
   1201  1.1  riastrad 		ASSERT_SLEEPABLE();
   1202  1.1  riastrad 		KASSERTMSG(E->stage >= ENTROPY_WARM,
   1203  1.1  riastrad 		    "can't wait for entropy until warm");
   1204  1.1  riastrad 	}
   1205  1.1  riastrad 
   1206  1.1  riastrad 	/* Acquire the global lock to get at the global pool.  */
   1207  1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1208  1.1  riastrad 		mutex_enter(&E->lock);
   1209  1.1  riastrad 
   1210  1.1  riastrad 	/* Count up request for entropy in interrupt context.  */
   1211  1.1  riastrad 	if (curcpu_available() && cpu_intr_p())
   1212  1.1  riastrad 		entropy_extract_intr_evcnt.ev_count++;
   1213  1.1  riastrad 
   1214  1.1  riastrad 	/* Wait until there is enough entropy in the system.  */
   1215  1.1  riastrad 	error = 0;
   1216  1.1  riastrad 	while (E->needed) {
   1217  1.1  riastrad 		/* Ask for more, synchronously if possible.  */
   1218  1.1  riastrad 		entropy_request(len);
   1219  1.1  riastrad 
   1220  1.1  riastrad 		/* If we got enough, we're done.  */
   1221  1.1  riastrad 		if (E->needed == 0) {
   1222  1.1  riastrad 			KASSERT(error == 0);
   1223  1.1  riastrad 			break;
   1224  1.1  riastrad 		}
   1225  1.1  riastrad 
   1226  1.1  riastrad 		/* If not waiting, stop here.  */
   1227  1.1  riastrad 		if (!ISSET(flags, ENTROPY_WAIT)) {
   1228  1.1  riastrad 			error = EWOULDBLOCK;
   1229  1.1  riastrad 			break;
   1230  1.1  riastrad 		}
   1231  1.1  riastrad 
   1232  1.1  riastrad 		/* Wait for some entropy to come in and try again.  */
   1233  1.1  riastrad 		KASSERT(E->stage >= ENTROPY_WARM);
   1234  1.1  riastrad 		if (ISSET(flags, ENTROPY_SIG)) {
   1235  1.1  riastrad 			error = cv_wait_sig(&E->cv, &E->lock);
   1236  1.1  riastrad 			if (error)
   1237  1.1  riastrad 				break;
   1238  1.1  riastrad 		} else {
   1239  1.1  riastrad 			cv_wait(&E->cv, &E->lock);
   1240  1.1  riastrad 		}
   1241  1.1  riastrad 	}
   1242  1.1  riastrad 
   1243  1.1  riastrad 	/* Count failure -- but fill the buffer nevertheless.  */
   1244  1.1  riastrad 	if (error)
   1245  1.1  riastrad 		entropy_extract_fail_evcnt.ev_count++;
   1246  1.1  riastrad 
   1247  1.1  riastrad 	/*
   1248  1.1  riastrad 	 * Report a warning if we have never yet reached full entropy.
   1249  1.1  riastrad 	 * This is the only case where we consider entropy to be
   1250  1.1  riastrad 	 * `depleted' without kern.entropy.depletion enabled -- when we
   1251  1.1  riastrad 	 * only have partial entropy, an adversary may be able to
   1252  1.1  riastrad 	 * narrow the state of the pool down to a small number of
   1253  1.1  riastrad 	 * possibilities; the output then enables them to confirm a
   1254  1.1  riastrad 	 * guess, reducing its entropy from the adversary's perspective
   1255  1.1  riastrad 	 * to zero.
   1256  1.1  riastrad 	 */
   1257  1.1  riastrad 	if (__predict_false(E->epoch == (unsigned)-1)) {
   1258  1.1  riastrad 		if (ratecheck(&lasttime, &interval))
   1259  1.1  riastrad 			printf("entropy: WARNING:"
   1260  1.1  riastrad 			    " extracting entropy too early\n");
   1261  1.1  riastrad 		atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
   1262  1.1  riastrad 	}
   1263  1.1  riastrad 
   1264  1.1  riastrad 	/* Extract data from the pool, and `deplete' if we're doing that.  */
   1265  1.1  riastrad 	entpool_extract(&E->pool, buf, len);
   1266  1.1  riastrad 	if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
   1267  1.1  riastrad 	    error == 0) {
   1268  1.1  riastrad 		unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
   1269  1.1  riastrad 
   1270  1.1  riastrad 		atomic_store_relaxed(&E->needed,
   1271  1.1  riastrad 		    E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
   1272  1.1  riastrad 		entropy_deplete_evcnt.ev_count++;
   1273  1.1  riastrad 	}
   1274  1.1  riastrad 
   1275  1.1  riastrad 	/* Release the global lock and return the error.  */
   1276  1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1277  1.1  riastrad 		mutex_exit(&E->lock);
   1278  1.1  riastrad 	return error;
   1279  1.1  riastrad }
   1280  1.1  riastrad 
   1281  1.1  riastrad /*
   1282  1.1  riastrad  * entropy_poll(events)
   1283  1.1  riastrad  *
   1284  1.1  riastrad  *	Return the subset of events ready, and if it is not all of
   1285  1.1  riastrad  *	events, record curlwp as waiting for entropy.
   1286  1.1  riastrad  */
   1287  1.1  riastrad int
   1288  1.1  riastrad entropy_poll(int events)
   1289  1.1  riastrad {
   1290  1.1  riastrad 	int revents = 0;
   1291  1.1  riastrad 
   1292  1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1293  1.1  riastrad 
   1294  1.1  riastrad 	/* Always ready for writing.  */
   1295  1.1  riastrad 	revents |= events & (POLLOUT|POLLWRNORM);
   1296  1.1  riastrad 
   1297  1.1  riastrad 	/* Narrow it down to reads.  */
   1298  1.1  riastrad 	events &= POLLIN|POLLRDNORM;
   1299  1.1  riastrad 	if (events == 0)
   1300  1.1  riastrad 		return revents;
   1301  1.1  riastrad 
   1302  1.1  riastrad 	/*
   1303  1.1  riastrad 	 * If we have reached full entropy and we're not depleting
   1304  1.1  riastrad 	 * entropy, we are forever ready.
   1305  1.1  riastrad 	 */
   1306  1.1  riastrad 	if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
   1307  1.1  riastrad 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)))
   1308  1.1  riastrad 		return revents | events;
   1309  1.1  riastrad 
   1310  1.1  riastrad 	/*
   1311  1.1  riastrad 	 * Otherwise, check whether we need entropy under the lock.  If
   1312  1.1  riastrad 	 * we don't, we're ready; if we do, add ourselves to the queue.
   1313  1.1  riastrad 	 */
   1314  1.1  riastrad 	mutex_enter(&E->lock);
   1315  1.1  riastrad 	if (E->needed == 0)
   1316  1.1  riastrad 		revents |= events;
   1317  1.1  riastrad 	else
   1318  1.1  riastrad 		selrecord(curlwp, &E->selq);
   1319  1.1  riastrad 	mutex_exit(&E->lock);
   1320  1.1  riastrad 
   1321  1.1  riastrad 	return revents;
   1322  1.1  riastrad }
   1323  1.1  riastrad 
   1324  1.1  riastrad /*
   1325  1.1  riastrad  * filt_entropy_read_detach(kn)
   1326  1.1  riastrad  *
   1327  1.1  riastrad  *	struct filterops::f_detach callback for entropy read events:
   1328  1.1  riastrad  *	remove kn from the list of waiters.
   1329  1.1  riastrad  */
   1330  1.1  riastrad static void
   1331  1.1  riastrad filt_entropy_read_detach(struct knote *kn)
   1332  1.1  riastrad {
   1333  1.1  riastrad 
   1334  1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1335  1.1  riastrad 
   1336  1.1  riastrad 	mutex_enter(&E->lock);
   1337  1.1  riastrad 	SLIST_REMOVE(&E->selq.sel_klist, kn, knote, kn_selnext);
   1338  1.1  riastrad 	mutex_exit(&E->lock);
   1339  1.1  riastrad }
   1340  1.1  riastrad 
   1341  1.1  riastrad /*
   1342  1.1  riastrad  * filt_entropy_read_event(kn, hint)
   1343  1.1  riastrad  *
   1344  1.1  riastrad  *	struct filterops::f_event callback for entropy read events:
   1345  1.1  riastrad  *	poll for entropy.  Caller must hold the global entropy lock if
   1346  1.1  riastrad  *	hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
   1347  1.1  riastrad  */
   1348  1.1  riastrad static int
   1349  1.1  riastrad filt_entropy_read_event(struct knote *kn, long hint)
   1350  1.1  riastrad {
   1351  1.1  riastrad 	int ret;
   1352  1.1  riastrad 
   1353  1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1354  1.1  riastrad 
   1355  1.1  riastrad 	/* Acquire the lock, if caller is outside entropy subsystem.  */
   1356  1.1  riastrad 	if (hint == NOTE_SUBMIT)
   1357  1.1  riastrad 		KASSERT(mutex_owned(&E->lock));
   1358  1.1  riastrad 	else
   1359  1.1  riastrad 		mutex_enter(&E->lock);
   1360  1.1  riastrad 
   1361  1.1  riastrad 	/*
   1362  1.1  riastrad 	 * If we still need entropy, can't read anything; if not, can
   1363  1.1  riastrad 	 * read arbitrarily much.
   1364  1.1  riastrad 	 */
   1365  1.1  riastrad 	if (E->needed != 0) {
   1366  1.1  riastrad 		ret = 0;
   1367  1.1  riastrad 	} else {
   1368  1.1  riastrad 		if (atomic_load_relaxed(&entropy_depletion))
   1369  1.1  riastrad 			kn->kn_data = ENTROPY_CAPACITY*NBBY;
   1370  1.1  riastrad 		else
   1371  1.1  riastrad 			kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
   1372  1.1  riastrad 		ret = 1;
   1373  1.1  riastrad 	}
   1374  1.1  riastrad 
   1375  1.1  riastrad 	/* Release the lock, if caller is outside entropy subsystem.  */
   1376  1.1  riastrad 	if (hint == NOTE_SUBMIT)
   1377  1.1  riastrad 		KASSERT(mutex_owned(&E->lock));
   1378  1.1  riastrad 	else
   1379  1.1  riastrad 		mutex_exit(&E->lock);
   1380  1.1  riastrad 
   1381  1.1  riastrad 	return ret;
   1382  1.1  riastrad }
   1383  1.1  riastrad 
   1384  1.1  riastrad static const struct filterops entropy_read_filtops = {
   1385  1.1  riastrad 	.f_isfd = 1,		/* XXX Makes sense only for /dev/u?random.  */
   1386  1.1  riastrad 	.f_attach = NULL,
   1387  1.1  riastrad 	.f_detach = filt_entropy_read_detach,
   1388  1.1  riastrad 	.f_event = filt_entropy_read_event,
   1389  1.1  riastrad };
   1390  1.1  riastrad 
   1391  1.1  riastrad /*
   1392  1.1  riastrad  * entropy_kqfilter(kn)
   1393  1.1  riastrad  *
   1394  1.1  riastrad  *	Register kn to receive entropy event notifications.  May be
   1395  1.1  riastrad  *	EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
   1396  1.1  riastrad  */
   1397  1.1  riastrad int
   1398  1.1  riastrad entropy_kqfilter(struct knote *kn)
   1399  1.1  riastrad {
   1400  1.1  riastrad 
   1401  1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1402  1.1  riastrad 
   1403  1.1  riastrad 	switch (kn->kn_filter) {
   1404  1.1  riastrad 	case EVFILT_READ:
   1405  1.1  riastrad 		/* Enter into the global select queue.  */
   1406  1.1  riastrad 		mutex_enter(&E->lock);
   1407  1.1  riastrad 		kn->kn_fop = &entropy_read_filtops;
   1408  1.1  riastrad 		SLIST_INSERT_HEAD(&E->selq.sel_klist, kn, kn_selnext);
   1409  1.1  riastrad 		mutex_exit(&E->lock);
   1410  1.1  riastrad 		return 0;
   1411  1.1  riastrad 	case EVFILT_WRITE:
   1412  1.1  riastrad 		/* Can always dump entropy into the system.  */
   1413  1.1  riastrad 		kn->kn_fop = &seltrue_filtops;
   1414  1.1  riastrad 		return 0;
   1415  1.1  riastrad 	default:
   1416  1.1  riastrad 		return EINVAL;
   1417  1.1  riastrad 	}
   1418  1.1  riastrad }
   1419  1.1  riastrad 
   1420  1.1  riastrad /*
   1421  1.1  riastrad  * rndsource_setcb(rs, get, getarg)
   1422  1.1  riastrad  *
   1423  1.1  riastrad  *	Set the request callback for the entropy source rs, if it can
   1424  1.1  riastrad  *	provide entropy on demand.  Must precede rnd_attach_source.
   1425  1.1  riastrad  */
   1426  1.1  riastrad void
   1427  1.1  riastrad rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
   1428  1.1  riastrad     void *getarg)
   1429  1.1  riastrad {
   1430  1.1  riastrad 
   1431  1.1  riastrad 	rs->get = get;
   1432  1.1  riastrad 	rs->getarg = getarg;
   1433  1.1  riastrad }
   1434  1.1  riastrad 
   1435  1.1  riastrad /*
   1436  1.1  riastrad  * rnd_attach_source(rs, name, type, flags)
   1437  1.1  riastrad  *
   1438  1.1  riastrad  *	Attach the entropy source rs.  Must be done after
   1439  1.1  riastrad  *	rndsource_setcb, if any, and before any calls to rnd_add_data.
   1440  1.1  riastrad  */
   1441  1.1  riastrad void
   1442  1.1  riastrad rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
   1443  1.1  riastrad     uint32_t flags)
   1444  1.1  riastrad {
   1445  1.1  riastrad 	uint32_t extra[4];
   1446  1.1  riastrad 	unsigned i = 0;
   1447  1.1  riastrad 
   1448  1.1  riastrad 	/* Grab cycle counter to mix extra into the pool.  */
   1449  1.1  riastrad 	extra[i++] = entropy_timer();
   1450  1.1  riastrad 
   1451  1.1  riastrad 	/*
   1452  1.1  riastrad 	 * Apply some standard flags:
   1453  1.1  riastrad 	 *
   1454  1.1  riastrad 	 * - We do not bother with network devices by default, for
   1455  1.1  riastrad 	 *   hysterical raisins (perhaps: because it is often the case
   1456  1.1  riastrad 	 *   that an adversary can influence network packet timings).
   1457  1.1  riastrad 	 */
   1458  1.1  riastrad 	switch (type) {
   1459  1.1  riastrad 	case RND_TYPE_NET:
   1460  1.1  riastrad 		flags |= RND_FLAG_NO_COLLECT;
   1461  1.1  riastrad 		break;
   1462  1.1  riastrad 	}
   1463  1.1  riastrad 
   1464  1.1  riastrad 	/* Sanity-check the callback if RND_FLAG_HASCB is set.  */
   1465  1.1  riastrad 	KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
   1466  1.1  riastrad 
   1467  1.1  riastrad 	/* Initialize the random source.  */
   1468  1.1  riastrad 	memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
   1469  1.1  riastrad 	strlcpy(rs->name, name, sizeof(rs->name));
   1470  1.1  riastrad 	rs->type = type;
   1471  1.1  riastrad 	rs->flags = flags;
   1472  1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1473  1.1  riastrad 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
   1474  1.1  riastrad 	extra[i++] = entropy_timer();
   1475  1.1  riastrad 
   1476  1.1  riastrad 	/* Wire it into the global list of random sources.  */
   1477  1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1478  1.1  riastrad 		mutex_enter(&E->lock);
   1479  1.1  riastrad 	LIST_INSERT_HEAD(&E->sources, rs, list);
   1480  1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1481  1.1  riastrad 		mutex_exit(&E->lock);
   1482  1.1  riastrad 	extra[i++] = entropy_timer();
   1483  1.1  riastrad 
   1484  1.1  riastrad 	/* Request that it provide entropy ASAP, if we can.  */
   1485  1.1  riastrad 	if (ISSET(flags, RND_FLAG_HASCB))
   1486  1.1  riastrad 		(*rs->get)(ENTROPY_CAPACITY, rs->getarg);
   1487  1.1  riastrad 	extra[i++] = entropy_timer();
   1488  1.1  riastrad 
   1489  1.1  riastrad 	/* Mix the extra into the pool.  */
   1490  1.1  riastrad 	KASSERT(i == __arraycount(extra));
   1491  1.1  riastrad 	entropy_enter(extra, sizeof extra, 0);
   1492  1.1  riastrad 	explicit_memset(extra, 0, sizeof extra);
   1493  1.1  riastrad }
   1494  1.1  riastrad 
   1495  1.1  riastrad /*
   1496  1.1  riastrad  * rnd_detach_source(rs)
   1497  1.1  riastrad  *
   1498  1.1  riastrad  *	Detach the entropy source rs.  May sleep waiting for users to
   1499  1.1  riastrad  *	drain.  Further use is not allowed.
   1500  1.1  riastrad  */
   1501  1.1  riastrad void
   1502  1.1  riastrad rnd_detach_source(struct krndsource *rs)
   1503  1.1  riastrad {
   1504  1.1  riastrad 
   1505  1.1  riastrad 	/*
   1506  1.1  riastrad 	 * If we're cold (shouldn't happen, but hey), just remove it
   1507  1.1  riastrad 	 * from the list -- there's nothing allocated.
   1508  1.1  riastrad 	 */
   1509  1.1  riastrad 	if (E->stage == ENTROPY_COLD) {
   1510  1.1  riastrad 		LIST_REMOVE(rs, list);
   1511  1.1  riastrad 		return;
   1512  1.1  riastrad 	}
   1513  1.1  riastrad 
   1514  1.1  riastrad 	/* We may have to wait for entropy_request.  */
   1515  1.1  riastrad 	ASSERT_SLEEPABLE();
   1516  1.1  riastrad 
   1517  1.4  riastrad 	/* Wait until the source list is not in use, and remove it.  */
   1518  1.1  riastrad 	mutex_enter(&E->lock);
   1519  1.4  riastrad 	while (E->sourcelock)
   1520  1.4  riastrad 		cv_wait(&E->cv, &E->lock);
   1521  1.1  riastrad 	LIST_REMOVE(rs, list);
   1522  1.1  riastrad 	mutex_exit(&E->lock);
   1523  1.1  riastrad 
   1524  1.1  riastrad 	/* Free the per-CPU data.  */
   1525  1.1  riastrad 	percpu_free(rs->state, sizeof(struct rndsource_cpu));
   1526  1.1  riastrad }
   1527  1.1  riastrad 
   1528  1.1  riastrad /*
   1529  1.4  riastrad  * rnd_lock_sources()
   1530  1.4  riastrad  *
   1531  1.4  riastrad  *	Prevent changes to the list of rndsources while we iterate it.
   1532  1.4  riastrad  *	Interruptible.  Caller must hold the global entropy lock.  If
   1533  1.4  riastrad  *	successful, no rndsource will go away until rnd_unlock_sources
   1534  1.4  riastrad  *	even while the caller releases the global entropy lock.
   1535  1.4  riastrad  */
   1536  1.4  riastrad static int
   1537  1.4  riastrad rnd_lock_sources(void)
   1538  1.4  riastrad {
   1539  1.4  riastrad 	int error;
   1540  1.4  riastrad 
   1541  1.4  riastrad 	KASSERT(mutex_owned(&E->lock));
   1542  1.4  riastrad 
   1543  1.4  riastrad 	while (E->sourcelock) {
   1544  1.4  riastrad 		error = cv_wait_sig(&E->cv, &E->lock);
   1545  1.4  riastrad 		if (error)
   1546  1.4  riastrad 			return error;
   1547  1.4  riastrad 	}
   1548  1.4  riastrad 
   1549  1.4  riastrad 	E->sourcelock = curlwp;
   1550  1.4  riastrad 	return 0;
   1551  1.4  riastrad }
   1552  1.4  riastrad 
   1553  1.4  riastrad /*
   1554  1.4  riastrad  * rnd_trylock_sources()
   1555  1.4  riastrad  *
   1556  1.4  riastrad  *	Try to lock the list of sources, but if it's already locked,
   1557  1.4  riastrad  *	fail.  Caller must hold the global entropy lock.  If
   1558  1.4  riastrad  *	successful, no rndsource will go away until rnd_unlock_sources
   1559  1.4  riastrad  *	even while the caller releases the global entropy lock.
   1560  1.4  riastrad  */
   1561  1.4  riastrad static bool
   1562  1.4  riastrad rnd_trylock_sources(void)
   1563  1.4  riastrad {
   1564  1.4  riastrad 
   1565  1.4  riastrad 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1566  1.4  riastrad 
   1567  1.4  riastrad 	if (E->sourcelock)
   1568  1.4  riastrad 		return false;
   1569  1.4  riastrad 	E->sourcelock = curlwp;
   1570  1.4  riastrad 	return true;
   1571  1.4  riastrad }
   1572  1.4  riastrad 
   1573  1.4  riastrad /*
   1574  1.4  riastrad  * rnd_unlock_sources()
   1575  1.4  riastrad  *
   1576  1.4  riastrad  *	Unlock the list of sources after rnd_lock_sources or
   1577  1.4  riastrad  *	rnd_trylock_sources.  Caller must hold the global entropy lock.
   1578  1.4  riastrad  */
   1579  1.4  riastrad static void
   1580  1.4  riastrad rnd_unlock_sources(void)
   1581  1.4  riastrad {
   1582  1.4  riastrad 
   1583  1.4  riastrad 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1584  1.4  riastrad 
   1585  1.4  riastrad 	KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
   1586  1.4  riastrad 	    curlwp, E->sourcelock);
   1587  1.4  riastrad 	E->sourcelock = NULL;
   1588  1.4  riastrad 	if (E->stage >= ENTROPY_WARM)
   1589  1.4  riastrad 		cv_broadcast(&E->cv);
   1590  1.4  riastrad }
   1591  1.4  riastrad 
   1592  1.4  riastrad /*
   1593  1.4  riastrad  * rnd_sources_locked()
   1594  1.4  riastrad  *
   1595  1.4  riastrad  *	True if we hold the list of rndsources locked, for diagnostic
   1596  1.4  riastrad  *	assertions.
   1597  1.4  riastrad  */
   1598  1.4  riastrad static bool
   1599  1.4  riastrad rnd_sources_locked(void)
   1600  1.4  riastrad {
   1601  1.4  riastrad 
   1602  1.4  riastrad 	return E->sourcelock == curlwp;
   1603  1.4  riastrad }
   1604  1.4  riastrad 
   1605  1.4  riastrad /*
   1606  1.1  riastrad  * entropy_request(nbytes)
   1607  1.1  riastrad  *
   1608  1.1  riastrad  *	Request nbytes bytes of entropy from all sources in the system.
   1609  1.1  riastrad  *	OK if we overdo it.  Caller must hold the global entropy lock;
   1610  1.1  riastrad  *	will release and re-acquire it.
   1611  1.1  riastrad  */
   1612  1.1  riastrad static void
   1613  1.1  riastrad entropy_request(size_t nbytes)
   1614  1.1  riastrad {
   1615  1.4  riastrad 	struct krndsource *rs;
   1616  1.1  riastrad 
   1617  1.1  riastrad 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1618  1.1  riastrad 
   1619  1.1  riastrad 	/*
   1620  1.1  riastrad 	 * If there is a request in progress, let it proceed.
   1621  1.1  riastrad 	 * Otherwise, note that a request is in progress to avoid
   1622  1.1  riastrad 	 * reentry and to block rnd_detach_source until we're done.
   1623  1.1  riastrad 	 */
   1624  1.4  riastrad 	if (!rnd_trylock_sources())
   1625  1.1  riastrad 		return;
   1626  1.1  riastrad 	entropy_request_evcnt.ev_count++;
   1627  1.1  riastrad 
   1628  1.1  riastrad 	/* Clamp to the maximum reasonable request.  */
   1629  1.1  riastrad 	nbytes = MIN(nbytes, ENTROPY_CAPACITY);
   1630  1.1  riastrad 
   1631  1.1  riastrad 	/* Walk the list of sources.  */
   1632  1.4  riastrad 	LIST_FOREACH(rs, &E->sources, list) {
   1633  1.1  riastrad 		/* Skip sources without callbacks.  */
   1634  1.1  riastrad 		if (!ISSET(rs->flags, RND_FLAG_HASCB))
   1635  1.1  riastrad 			continue;
   1636  1.1  riastrad 
   1637  1.1  riastrad 		/* Drop the lock while we call the callback.  */
   1638  1.1  riastrad 		if (E->stage >= ENTROPY_WARM)
   1639  1.1  riastrad 			mutex_exit(&E->lock);
   1640  1.1  riastrad 		(*rs->get)(nbytes, rs->getarg);
   1641  1.1  riastrad 		if (E->stage >= ENTROPY_WARM)
   1642  1.1  riastrad 			mutex_enter(&E->lock);
   1643  1.1  riastrad 	}
   1644  1.1  riastrad 
   1645  1.1  riastrad 	/* Notify rnd_detach_source that the request is done.  */
   1646  1.4  riastrad 	rnd_unlock_sources();
   1647  1.1  riastrad }
   1648  1.1  riastrad 
   1649  1.1  riastrad /*
   1650  1.1  riastrad  * rnd_add_uint32(rs, value)
   1651  1.1  riastrad  *
   1652  1.1  riastrad  *	Enter 32 bits of data from an entropy source into the pool.
   1653  1.1  riastrad  *
   1654  1.1  riastrad  *	If rs is NULL, may not be called from interrupt context.
   1655  1.1  riastrad  *
   1656  1.1  riastrad  *	If rs is non-NULL, may be called from any context.  May drop
   1657  1.1  riastrad  *	data if called from interrupt context.
   1658  1.1  riastrad  */
   1659  1.1  riastrad void
   1660  1.1  riastrad rnd_add_uint32(struct krndsource *rs, uint32_t value)
   1661  1.1  riastrad {
   1662  1.1  riastrad 
   1663  1.1  riastrad 	rnd_add_data(rs, &value, sizeof value, 0);
   1664  1.1  riastrad }
   1665  1.1  riastrad 
   1666  1.1  riastrad void
   1667  1.1  riastrad _rnd_add_uint32(struct krndsource *rs, uint32_t value)
   1668  1.1  riastrad {
   1669  1.1  riastrad 
   1670  1.1  riastrad 	rnd_add_data(rs, &value, sizeof value, 0);
   1671  1.1  riastrad }
   1672  1.1  riastrad 
   1673  1.1  riastrad void
   1674  1.1  riastrad _rnd_add_uint64(struct krndsource *rs, uint64_t value)
   1675  1.1  riastrad {
   1676  1.1  riastrad 
   1677  1.1  riastrad 	rnd_add_data(rs, &value, sizeof value, 0);
   1678  1.1  riastrad }
   1679  1.1  riastrad 
   1680  1.1  riastrad /*
   1681  1.1  riastrad  * rnd_add_data(rs, buf, len, entropybits)
   1682  1.1  riastrad  *
   1683  1.1  riastrad  *	Enter data from an entropy source into the pool, with a
   1684  1.1  riastrad  *	driver's estimate of how much entropy the physical source of
   1685  1.1  riastrad  *	the data has.  If RND_FLAG_NO_ESTIMATE, we ignore the driver's
   1686  1.1  riastrad  *	estimate and treat it as zero.
   1687  1.1  riastrad  *
   1688  1.1  riastrad  *	If rs is NULL, may not be called from interrupt context.
   1689  1.1  riastrad  *
   1690  1.1  riastrad  *	If rs is non-NULL, may be called from any context.  May drop
   1691  1.1  riastrad  *	data if called from interrupt context.
   1692  1.1  riastrad  */
   1693  1.1  riastrad void
   1694  1.1  riastrad rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
   1695  1.1  riastrad     uint32_t entropybits)
   1696  1.1  riastrad {
   1697  1.1  riastrad 	uint32_t extra;
   1698  1.1  riastrad 	uint32_t flags;
   1699  1.1  riastrad 
   1700  1.1  riastrad 	KASSERTMSG(howmany(entropybits, NBBY) <= len,
   1701  1.1  riastrad 	    "%s: impossible entropy rate:"
   1702  1.1  riastrad 	    " %"PRIu32" bits in %"PRIu32"-byte string",
   1703  1.1  riastrad 	    rs ? rs->name : "(anonymous)", entropybits, len);
   1704  1.1  riastrad 
   1705  1.1  riastrad 	/* If there's no rndsource, just enter the data and time now.  */
   1706  1.1  riastrad 	if (rs == NULL) {
   1707  1.1  riastrad 		entropy_enter(buf, len, entropybits);
   1708  1.1  riastrad 		extra = entropy_timer();
   1709  1.1  riastrad 		entropy_enter(&extra, sizeof extra, 0);
   1710  1.1  riastrad 		explicit_memset(&extra, 0, sizeof extra);
   1711  1.1  riastrad 		return;
   1712  1.1  riastrad 	}
   1713  1.1  riastrad 
   1714  1.1  riastrad 	/* Load a snapshot of the flags.  Ioctl may change them under us.  */
   1715  1.1  riastrad 	flags = atomic_load_relaxed(&rs->flags);
   1716  1.1  riastrad 
   1717  1.1  riastrad 	/*
   1718  1.1  riastrad 	 * Skip if:
   1719  1.1  riastrad 	 * - we're not collecting entropy, or
   1720  1.1  riastrad 	 * - the operator doesn't want to collect entropy from this, or
   1721  1.1  riastrad 	 * - neither data nor timings are being collected from this.
   1722  1.1  riastrad 	 */
   1723  1.1  riastrad 	if (!atomic_load_relaxed(&entropy_collection) ||
   1724  1.1  riastrad 	    ISSET(flags, RND_FLAG_NO_COLLECT) ||
   1725  1.1  riastrad 	    !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
   1726  1.1  riastrad 		return;
   1727  1.1  riastrad 
   1728  1.1  riastrad 	/* If asked, ignore the estimate.  */
   1729  1.1  riastrad 	if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
   1730  1.1  riastrad 		entropybits = 0;
   1731  1.1  riastrad 
   1732  1.1  riastrad 	/* If we are collecting data, enter them.  */
   1733  1.1  riastrad 	if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
   1734  1.1  riastrad 		rnd_add_data_1(rs, buf, len, entropybits);
   1735  1.1  riastrad 
   1736  1.1  riastrad 	/* If we are collecting timings, enter one.  */
   1737  1.1  riastrad 	if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
   1738  1.1  riastrad 		extra = entropy_timer();
   1739  1.1  riastrad 		rnd_add_data_1(rs, &extra, sizeof extra, 0);
   1740  1.1  riastrad 	}
   1741  1.1  riastrad }
   1742  1.1  riastrad 
   1743  1.1  riastrad /*
   1744  1.1  riastrad  * rnd_add_data_1(rs, buf, len, entropybits)
   1745  1.1  riastrad  *
   1746  1.1  riastrad  *	Internal subroutine to call either entropy_enter_intr, if we're
   1747  1.1  riastrad  *	in interrupt context, or entropy_enter if not, and to count the
   1748  1.1  riastrad  *	entropy in an rndsource.
   1749  1.1  riastrad  */
   1750  1.1  riastrad static void
   1751  1.1  riastrad rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
   1752  1.1  riastrad     uint32_t entropybits)
   1753  1.1  riastrad {
   1754  1.1  riastrad 	bool fullyused;
   1755  1.1  riastrad 
   1756  1.1  riastrad 	/*
   1757  1.1  riastrad 	 * If we're in interrupt context, use entropy_enter_intr and
   1758  1.1  riastrad 	 * take note of whether it consumed the full sample; if not,
   1759  1.1  riastrad 	 * use entropy_enter, which always consumes the full sample.
   1760  1.1  riastrad 	 */
   1761  1.1  riastrad 	if (curcpu_available() && cpu_intr_p()) {
   1762  1.1  riastrad 		fullyused = entropy_enter_intr(buf, len, entropybits);
   1763  1.1  riastrad 	} else {
   1764  1.1  riastrad 		entropy_enter(buf, len, entropybits);
   1765  1.1  riastrad 		fullyused = true;
   1766  1.1  riastrad 	}
   1767  1.1  riastrad 
   1768  1.1  riastrad 	/*
   1769  1.1  riastrad 	 * If we used the full sample, note how many bits were
   1770  1.1  riastrad 	 * contributed from this source.
   1771  1.1  riastrad 	 */
   1772  1.1  riastrad 	if (fullyused) {
   1773  1.1  riastrad 		if (E->stage < ENTROPY_HOT) {
   1774  1.1  riastrad 			if (E->stage >= ENTROPY_WARM)
   1775  1.1  riastrad 				mutex_enter(&E->lock);
   1776  1.1  riastrad 			rs->total += MIN(UINT_MAX - rs->total, entropybits);
   1777  1.1  riastrad 			if (E->stage >= ENTROPY_WARM)
   1778  1.1  riastrad 				mutex_exit(&E->lock);
   1779  1.1  riastrad 		} else {
   1780  1.1  riastrad 			struct rndsource_cpu *rc = percpu_getref(rs->state);
   1781  1.1  riastrad 			unsigned nbits = rc->rc_nbits;
   1782  1.1  riastrad 
   1783  1.1  riastrad 			nbits += MIN(UINT_MAX - nbits, entropybits);
   1784  1.1  riastrad 			atomic_store_relaxed(&rc->rc_nbits, nbits);
   1785  1.1  riastrad 			percpu_putref(rs->state);
   1786  1.1  riastrad 		}
   1787  1.1  riastrad 	}
   1788  1.1  riastrad }
   1789  1.1  riastrad 
   1790  1.1  riastrad /*
   1791  1.1  riastrad  * rnd_add_data_sync(rs, buf, len, entropybits)
   1792  1.1  riastrad  *
   1793  1.1  riastrad  *	Same as rnd_add_data.  Originally used in rndsource callbacks,
   1794  1.1  riastrad  *	to break an unnecessary cycle; no longer really needed.
   1795  1.1  riastrad  */
   1796  1.1  riastrad void
   1797  1.1  riastrad rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
   1798  1.1  riastrad     uint32_t entropybits)
   1799  1.1  riastrad {
   1800  1.1  riastrad 
   1801  1.1  riastrad 	rnd_add_data(rs, buf, len, entropybits);
   1802  1.1  riastrad }
   1803  1.1  riastrad 
   1804  1.1  riastrad /*
   1805  1.1  riastrad  * rndsource_entropybits(rs)
   1806  1.1  riastrad  *
   1807  1.1  riastrad  *	Return approximately the number of bits of entropy that have
   1808  1.1  riastrad  *	been contributed via rs so far.  Approximate if other CPUs may
   1809  1.1  riastrad  *	be calling rnd_add_data concurrently.
   1810  1.1  riastrad  */
   1811  1.1  riastrad static unsigned
   1812  1.1  riastrad rndsource_entropybits(struct krndsource *rs)
   1813  1.1  riastrad {
   1814  1.1  riastrad 	unsigned nbits = rs->total;
   1815  1.1  riastrad 
   1816  1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1817  1.4  riastrad 	KASSERT(rnd_sources_locked());
   1818  1.1  riastrad 	percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
   1819  1.1  riastrad 	return nbits;
   1820  1.1  riastrad }
   1821  1.1  riastrad 
   1822  1.1  riastrad static void
   1823  1.1  riastrad rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   1824  1.1  riastrad {
   1825  1.1  riastrad 	struct rndsource_cpu *rc = ptr;
   1826  1.1  riastrad 	unsigned *nbitsp = cookie;
   1827  1.1  riastrad 	unsigned cpu_nbits;
   1828  1.1  riastrad 
   1829  1.1  riastrad 	cpu_nbits = atomic_load_relaxed(&rc->rc_nbits);
   1830  1.1  riastrad 	*nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
   1831  1.1  riastrad }
   1832  1.1  riastrad 
   1833  1.1  riastrad /*
   1834  1.1  riastrad  * rndsource_to_user(rs, urs)
   1835  1.1  riastrad  *
   1836  1.1  riastrad  *	Copy a description of rs out to urs for userland.
   1837  1.1  riastrad  */
   1838  1.1  riastrad static void
   1839  1.1  riastrad rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
   1840  1.1  riastrad {
   1841  1.1  riastrad 
   1842  1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1843  1.4  riastrad 	KASSERT(rnd_sources_locked());
   1844  1.1  riastrad 
   1845  1.1  riastrad 	/* Avoid kernel memory disclosure.  */
   1846  1.1  riastrad 	memset(urs, 0, sizeof(*urs));
   1847  1.1  riastrad 
   1848  1.1  riastrad 	CTASSERT(sizeof(urs->name) == sizeof(rs->name));
   1849  1.1  riastrad 	strlcpy(urs->name, rs->name, sizeof(urs->name));
   1850  1.1  riastrad 	urs->total = rndsource_entropybits(rs);
   1851  1.1  riastrad 	urs->type = rs->type;
   1852  1.1  riastrad 	urs->flags = atomic_load_relaxed(&rs->flags);
   1853  1.1  riastrad }
   1854  1.1  riastrad 
   1855  1.1  riastrad /*
   1856  1.1  riastrad  * rndsource_to_user_est(rs, urse)
   1857  1.1  riastrad  *
   1858  1.1  riastrad  *	Copy a description of rs and estimation statistics out to urse
   1859  1.1  riastrad  *	for userland.
   1860  1.1  riastrad  */
   1861  1.1  riastrad static void
   1862  1.1  riastrad rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
   1863  1.1  riastrad {
   1864  1.1  riastrad 
   1865  1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1866  1.4  riastrad 	KASSERT(rnd_sources_locked());
   1867  1.1  riastrad 
   1868  1.1  riastrad 	/* Avoid kernel memory disclosure.  */
   1869  1.1  riastrad 	memset(urse, 0, sizeof(*urse));
   1870  1.1  riastrad 
   1871  1.1  riastrad 	/* Copy out the rndsource description.  */
   1872  1.1  riastrad 	rndsource_to_user(rs, &urse->rt);
   1873  1.1  riastrad 
   1874  1.1  riastrad 	/* Zero out the statistics because we don't do estimation.  */
   1875  1.1  riastrad 	urse->dt_samples = 0;
   1876  1.1  riastrad 	urse->dt_total = 0;
   1877  1.1  riastrad 	urse->dv_samples = 0;
   1878  1.1  riastrad 	urse->dv_total = 0;
   1879  1.1  riastrad }
   1880  1.1  riastrad 
   1881  1.1  riastrad /*
   1882  1.1  riastrad  * entropy_ioctl(cmd, data)
   1883  1.1  riastrad  *
   1884  1.1  riastrad  *	Handle various /dev/random ioctl queries.
   1885  1.1  riastrad  */
   1886  1.1  riastrad int
   1887  1.1  riastrad entropy_ioctl(unsigned long cmd, void *data)
   1888  1.1  riastrad {
   1889  1.1  riastrad 	struct krndsource *rs;
   1890  1.1  riastrad 	bool privileged;
   1891  1.1  riastrad 	int error;
   1892  1.1  riastrad 
   1893  1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1894  1.1  riastrad 
   1895  1.1  riastrad 	/* Verify user's authorization to perform the ioctl.  */
   1896  1.1  riastrad 	switch (cmd) {
   1897  1.1  riastrad 	case RNDGETENTCNT:
   1898  1.1  riastrad 	case RNDGETPOOLSTAT:
   1899  1.1  riastrad 	case RNDGETSRCNUM:
   1900  1.1  riastrad 	case RNDGETSRCNAME:
   1901  1.1  riastrad 	case RNDGETESTNUM:
   1902  1.1  riastrad 	case RNDGETESTNAME:
   1903  1.1  riastrad 		error = kauth_authorize_device(curlwp->l_cred,
   1904  1.1  riastrad 		    KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
   1905  1.1  riastrad 		break;
   1906  1.1  riastrad 	case RNDCTL:
   1907  1.1  riastrad 		error = kauth_authorize_device(curlwp->l_cred,
   1908  1.1  riastrad 		    KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
   1909  1.1  riastrad 		break;
   1910  1.1  riastrad 	case RNDADDDATA:
   1911  1.1  riastrad 		error = kauth_authorize_device(curlwp->l_cred,
   1912  1.1  riastrad 		    KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
   1913  1.1  riastrad 		/* Ascertain whether the user's inputs should be counted.  */
   1914  1.1  riastrad 		if (kauth_authorize_device(curlwp->l_cred,
   1915  1.1  riastrad 			KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
   1916  1.1  riastrad 			NULL, NULL, NULL, NULL) == 0)
   1917  1.1  riastrad 			privileged = true;
   1918  1.1  riastrad 		break;
   1919  1.1  riastrad 	default: {
   1920  1.1  riastrad 		/*
   1921  1.1  riastrad 		 * XXX Hack to avoid changing module ABI so this can be
   1922  1.1  riastrad 		 * pulled up.  Later, we can just remove the argument.
   1923  1.1  riastrad 		 */
   1924  1.1  riastrad 		static const struct fileops fops = {
   1925  1.1  riastrad 			.fo_ioctl = rnd_system_ioctl,
   1926  1.1  riastrad 		};
   1927  1.1  riastrad 		struct file f = {
   1928  1.1  riastrad 			.f_ops = &fops,
   1929  1.1  riastrad 		};
   1930  1.1  riastrad 		MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
   1931  1.1  riastrad 		    enosys(), error);
   1932  1.1  riastrad #if defined(_LP64)
   1933  1.1  riastrad 		if (error == ENOSYS)
   1934  1.1  riastrad 			MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
   1935  1.1  riastrad 			    enosys(), error);
   1936  1.1  riastrad #endif
   1937  1.1  riastrad 		if (error == ENOSYS)
   1938  1.1  riastrad 			error = ENOTTY;
   1939  1.1  riastrad 		break;
   1940  1.1  riastrad 	}
   1941  1.1  riastrad 	}
   1942  1.1  riastrad 
   1943  1.1  riastrad 	/* If anything went wrong with authorization, stop here.  */
   1944  1.1  riastrad 	if (error)
   1945  1.1  riastrad 		return error;
   1946  1.1  riastrad 
   1947  1.1  riastrad 	/* Dispatch on the command.  */
   1948  1.1  riastrad 	switch (cmd) {
   1949  1.1  riastrad 	case RNDGETENTCNT: {	/* Get current entropy count in bits.  */
   1950  1.1  riastrad 		uint32_t *countp = data;
   1951  1.1  riastrad 
   1952  1.1  riastrad 		mutex_enter(&E->lock);
   1953  1.1  riastrad 		*countp = ENTROPY_CAPACITY*NBBY - E->needed;
   1954  1.1  riastrad 		mutex_exit(&E->lock);
   1955  1.1  riastrad 
   1956  1.1  riastrad 		break;
   1957  1.1  riastrad 	}
   1958  1.1  riastrad 	case RNDGETPOOLSTAT: {	/* Get entropy pool statistics.  */
   1959  1.1  riastrad 		rndpoolstat_t *pstat = data;
   1960  1.1  riastrad 
   1961  1.1  riastrad 		mutex_enter(&E->lock);
   1962  1.1  riastrad 
   1963  1.1  riastrad 		/* parameters */
   1964  1.1  riastrad 		pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
   1965  1.1  riastrad 		pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
   1966  1.1  riastrad 		pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
   1967  1.1  riastrad 
   1968  1.1  riastrad 		/* state */
   1969  1.1  riastrad 		pstat->added = 0; /* XXX total entropy_enter count */
   1970  1.1  riastrad 		pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
   1971  1.1  riastrad 		pstat->removed = 0; /* XXX total entropy_extract count */
   1972  1.1  riastrad 		pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
   1973  1.1  riastrad 		pstat->generated = 0; /* XXX bits of data...fabricated? */
   1974  1.1  riastrad 
   1975  1.1  riastrad 		mutex_exit(&E->lock);
   1976  1.1  riastrad 		break;
   1977  1.1  riastrad 	}
   1978  1.1  riastrad 	case RNDGETSRCNUM: {	/* Get entropy sources by number.  */
   1979  1.1  riastrad 		rndstat_t *stat = data;
   1980  1.1  riastrad 		uint32_t start = 0, i = 0;
   1981  1.1  riastrad 
   1982  1.1  riastrad 		/* Skip if none requested; fail if too many requested.  */
   1983  1.1  riastrad 		if (stat->count == 0)
   1984  1.1  riastrad 			break;
   1985  1.1  riastrad 		if (stat->count > RND_MAXSTATCOUNT)
   1986  1.1  riastrad 			return EINVAL;
   1987  1.1  riastrad 
   1988  1.1  riastrad 		/*
   1989  1.1  riastrad 		 * Under the lock, find the first one, copy out as many
   1990  1.1  riastrad 		 * as requested, and report how many we copied out.
   1991  1.1  riastrad 		 */
   1992  1.1  riastrad 		mutex_enter(&E->lock);
   1993  1.4  riastrad 		error = rnd_lock_sources();
   1994  1.4  riastrad 		if (error) {
   1995  1.4  riastrad 			mutex_exit(&E->lock);
   1996  1.4  riastrad 			return error;
   1997  1.4  riastrad 		}
   1998  1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   1999  1.1  riastrad 			if (start++ == stat->start)
   2000  1.1  riastrad 				break;
   2001  1.1  riastrad 		}
   2002  1.1  riastrad 		while (i < stat->count && rs != NULL) {
   2003  1.1  riastrad 			rndsource_to_user(rs, &stat->source[i++]);
   2004  1.1  riastrad 			rs = LIST_NEXT(rs, list);
   2005  1.1  riastrad 		}
   2006  1.1  riastrad 		KASSERT(i <= stat->count);
   2007  1.1  riastrad 		stat->count = i;
   2008  1.4  riastrad 		rnd_unlock_sources();
   2009  1.1  riastrad 		mutex_exit(&E->lock);
   2010  1.1  riastrad 		break;
   2011  1.1  riastrad 	}
   2012  1.1  riastrad 	case RNDGETESTNUM: {	/* Get sources and estimates by number.  */
   2013  1.1  riastrad 		rndstat_est_t *estat = data;
   2014  1.1  riastrad 		uint32_t start = 0, i = 0;
   2015  1.1  riastrad 
   2016  1.1  riastrad 		/* Skip if none requested; fail if too many requested.  */
   2017  1.1  riastrad 		if (estat->count == 0)
   2018  1.1  riastrad 			break;
   2019  1.1  riastrad 		if (estat->count > RND_MAXSTATCOUNT)
   2020  1.1  riastrad 			return EINVAL;
   2021  1.1  riastrad 
   2022  1.1  riastrad 		/*
   2023  1.1  riastrad 		 * Under the lock, find the first one, copy out as many
   2024  1.1  riastrad 		 * as requested, and report how many we copied out.
   2025  1.1  riastrad 		 */
   2026  1.1  riastrad 		mutex_enter(&E->lock);
   2027  1.4  riastrad 		error = rnd_lock_sources();
   2028  1.4  riastrad 		if (error) {
   2029  1.4  riastrad 			mutex_exit(&E->lock);
   2030  1.4  riastrad 			return error;
   2031  1.4  riastrad 		}
   2032  1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2033  1.1  riastrad 			if (start++ == estat->start)
   2034  1.1  riastrad 				break;
   2035  1.1  riastrad 		}
   2036  1.1  riastrad 		while (i < estat->count && rs != NULL) {
   2037  1.4  riastrad 			mutex_exit(&E->lock);
   2038  1.1  riastrad 			rndsource_to_user_est(rs, &estat->source[i++]);
   2039  1.4  riastrad 			mutex_enter(&E->lock);
   2040  1.1  riastrad 			rs = LIST_NEXT(rs, list);
   2041  1.1  riastrad 		}
   2042  1.1  riastrad 		KASSERT(i <= estat->count);
   2043  1.1  riastrad 		estat->count = i;
   2044  1.4  riastrad 		rnd_unlock_sources();
   2045  1.1  riastrad 		mutex_exit(&E->lock);
   2046  1.1  riastrad 		break;
   2047  1.1  riastrad 	}
   2048  1.1  riastrad 	case RNDGETSRCNAME: {	/* Get entropy sources by name.  */
   2049  1.1  riastrad 		rndstat_name_t *nstat = data;
   2050  1.1  riastrad 		const size_t n = sizeof(rs->name);
   2051  1.1  riastrad 
   2052  1.1  riastrad 		CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
   2053  1.1  riastrad 
   2054  1.1  riastrad 		/*
   2055  1.1  riastrad 		 * Under the lock, search by name.  If found, copy it
   2056  1.1  riastrad 		 * out; if not found, fail with ENOENT.
   2057  1.1  riastrad 		 */
   2058  1.1  riastrad 		mutex_enter(&E->lock);
   2059  1.4  riastrad 		error = rnd_lock_sources();
   2060  1.4  riastrad 		if (error) {
   2061  1.4  riastrad 			mutex_exit(&E->lock);
   2062  1.4  riastrad 			return error;
   2063  1.4  riastrad 		}
   2064  1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2065  1.1  riastrad 			if (strncmp(rs->name, nstat->name, n) == 0)
   2066  1.1  riastrad 				break;
   2067  1.1  riastrad 		}
   2068  1.4  riastrad 		if (rs != NULL) {
   2069  1.4  riastrad 			mutex_exit(&E->lock);
   2070  1.1  riastrad 			rndsource_to_user(rs, &nstat->source);
   2071  1.4  riastrad 			mutex_enter(&E->lock);
   2072  1.4  riastrad 		} else {
   2073  1.1  riastrad 			error = ENOENT;
   2074  1.4  riastrad 		}
   2075  1.4  riastrad 		rnd_unlock_sources();
   2076  1.1  riastrad 		mutex_exit(&E->lock);
   2077  1.1  riastrad 		break;
   2078  1.1  riastrad 	}
   2079  1.1  riastrad 	case RNDGETESTNAME: {	/* Get sources and estimates by name.  */
   2080  1.1  riastrad 		rndstat_est_name_t *enstat = data;
   2081  1.1  riastrad 		const size_t n = sizeof(rs->name);
   2082  1.1  riastrad 
   2083  1.1  riastrad 		CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
   2084  1.1  riastrad 
   2085  1.1  riastrad 		/*
   2086  1.1  riastrad 		 * Under the lock, search by name.  If found, copy it
   2087  1.1  riastrad 		 * out; if not found, fail with ENOENT.
   2088  1.1  riastrad 		 */
   2089  1.1  riastrad 		mutex_enter(&E->lock);
   2090  1.4  riastrad 		error = rnd_lock_sources();
   2091  1.4  riastrad 		if (error) {
   2092  1.4  riastrad 			mutex_exit(&E->lock);
   2093  1.4  riastrad 			return error;
   2094  1.4  riastrad 		}
   2095  1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2096  1.1  riastrad 			if (strncmp(rs->name, enstat->name, n) == 0)
   2097  1.1  riastrad 				break;
   2098  1.1  riastrad 		}
   2099  1.4  riastrad 		if (rs != NULL) {
   2100  1.4  riastrad 			mutex_exit(&E->lock);
   2101  1.1  riastrad 			rndsource_to_user_est(rs, &enstat->source);
   2102  1.4  riastrad 			mutex_enter(&E->lock);
   2103  1.4  riastrad 		} else {
   2104  1.1  riastrad 			error = ENOENT;
   2105  1.4  riastrad 		}
   2106  1.4  riastrad 		rnd_unlock_sources();
   2107  1.1  riastrad 		mutex_exit(&E->lock);
   2108  1.1  riastrad 		break;
   2109  1.1  riastrad 	}
   2110  1.1  riastrad 	case RNDCTL: {		/* Modify entropy source flags.  */
   2111  1.1  riastrad 		rndctl_t *rndctl = data;
   2112  1.1  riastrad 		const size_t n = sizeof(rs->name);
   2113  1.1  riastrad 		uint32_t flags;
   2114  1.1  riastrad 
   2115  1.1  riastrad 		CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
   2116  1.1  riastrad 
   2117  1.1  riastrad 		/* Whitelist the flags that user can change.  */
   2118  1.1  riastrad 		rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2119  1.1  riastrad 
   2120  1.1  riastrad 		/*
   2121  1.1  riastrad 		 * For each matching rndsource, either by type if
   2122  1.1  riastrad 		 * specified or by name if not, set the masked flags.
   2123  1.1  riastrad 		 */
   2124  1.1  riastrad 		mutex_enter(&E->lock);
   2125  1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2126  1.1  riastrad 			if (rndctl->type != 0xff) {
   2127  1.1  riastrad 				if (rs->type != rndctl->type)
   2128  1.1  riastrad 					continue;
   2129  1.1  riastrad 			} else {
   2130  1.1  riastrad 				if (strncmp(rs->name, rndctl->name, n) != 0)
   2131  1.1  riastrad 					continue;
   2132  1.1  riastrad 			}
   2133  1.1  riastrad 			flags = rs->flags & ~rndctl->mask;
   2134  1.1  riastrad 			flags |= rndctl->flags & rndctl->mask;
   2135  1.1  riastrad 			atomic_store_relaxed(&rs->flags, flags);
   2136  1.1  riastrad 		}
   2137  1.1  riastrad 		mutex_exit(&E->lock);
   2138  1.1  riastrad 		break;
   2139  1.1  riastrad 	}
   2140  1.1  riastrad 	case RNDADDDATA: {	/* Enter seed into entropy pool.  */
   2141  1.1  riastrad 		rnddata_t *rdata = data;
   2142  1.1  riastrad 		unsigned entropybits = 0;
   2143  1.1  riastrad 
   2144  1.1  riastrad 		if (!atomic_load_relaxed(&entropy_collection))
   2145  1.1  riastrad 			break;	/* thanks but no thanks */
   2146  1.1  riastrad 		if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
   2147  1.1  riastrad 			return EINVAL;
   2148  1.1  riastrad 
   2149  1.1  riastrad 		/*
   2150  1.1  riastrad 		 * This ioctl serves as the userland alternative a
   2151  1.1  riastrad 		 * bootloader-provided seed -- typically furnished by
   2152  1.1  riastrad 		 * /etc/rc.d/random_seed.  We accept the user's entropy
   2153  1.1  riastrad 		 * claim only if
   2154  1.1  riastrad 		 *
   2155  1.1  riastrad 		 * (a) the user is privileged, and
   2156  1.1  riastrad 		 * (b) we have not entered a bootloader seed.
   2157  1.1  riastrad 		 *
   2158  1.1  riastrad 		 * under the assumption that the user may use this to
   2159  1.1  riastrad 		 * load a seed from disk that we have already loaded
   2160  1.1  riastrad 		 * from the bootloader, so we don't double-count it.
   2161  1.1  riastrad 		 */
   2162  1.1  riastrad 		if (privileged) {
   2163  1.1  riastrad 			mutex_enter(&E->lock);
   2164  1.1  riastrad 			if (!E->seeded) {
   2165  1.1  riastrad 				entropybits = MIN(rdata->entropy,
   2166  1.1  riastrad 				    MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
   2167  1.1  riastrad 				E->seeded = true;
   2168  1.1  riastrad 			}
   2169  1.1  riastrad 			mutex_exit(&E->lock);
   2170  1.1  riastrad 		}
   2171  1.1  riastrad 
   2172  1.1  riastrad 		/* Enter the data.  */
   2173  1.1  riastrad 		rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
   2174  1.1  riastrad 		    entropybits);
   2175  1.1  riastrad 		break;
   2176  1.1  riastrad 	}
   2177  1.1  riastrad 	default:
   2178  1.1  riastrad 		error = ENOTTY;
   2179  1.1  riastrad 	}
   2180  1.1  riastrad 
   2181  1.1  riastrad 	/* Return any error that may have come up.  */
   2182  1.1  riastrad 	return error;
   2183  1.1  riastrad }
   2184  1.1  riastrad 
   2185  1.1  riastrad /* Legacy entry points */
   2186  1.1  riastrad 
   2187  1.1  riastrad void
   2188  1.1  riastrad rnd_seed(void *seed, size_t len)
   2189  1.1  riastrad {
   2190  1.1  riastrad 
   2191  1.1  riastrad 	if (len != sizeof(rndsave_t)) {
   2192  1.1  riastrad 		printf("entropy: invalid seed length: %zu,"
   2193  1.1  riastrad 		    " expected sizeof(rndsave_t) = %zu\n",
   2194  1.1  riastrad 		    len, sizeof(rndsave_t));
   2195  1.1  riastrad 		return;
   2196  1.1  riastrad 	}
   2197  1.1  riastrad 	entropy_seed(seed);
   2198  1.1  riastrad }
   2199  1.1  riastrad 
   2200  1.1  riastrad void
   2201  1.1  riastrad rnd_init(void)
   2202  1.1  riastrad {
   2203  1.1  riastrad 
   2204  1.1  riastrad 	entropy_init();
   2205  1.1  riastrad }
   2206  1.1  riastrad 
   2207  1.1  riastrad void
   2208  1.1  riastrad rnd_init_softint(void)
   2209  1.1  riastrad {
   2210  1.1  riastrad 
   2211  1.1  riastrad 	entropy_init_late();
   2212  1.1  riastrad }
   2213  1.1  riastrad 
   2214  1.1  riastrad int
   2215  1.1  riastrad rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
   2216  1.1  riastrad {
   2217  1.1  riastrad 
   2218  1.1  riastrad 	return entropy_ioctl(cmd, data);
   2219  1.1  riastrad }
   2220