kern_entropy.c revision 1.51 1 1.51 riastrad /* $NetBSD: kern_entropy.c,v 1.51 2022/03/21 00:25:04 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad /*
33 1.1 riastrad * Entropy subsystem
34 1.1 riastrad *
35 1.1 riastrad * * Each CPU maintains a per-CPU entropy pool so that gathering
36 1.1 riastrad * entropy requires no interprocessor synchronization, except
37 1.1 riastrad * early at boot when we may be scrambling to gather entropy as
38 1.1 riastrad * soon as possible.
39 1.1 riastrad *
40 1.1 riastrad * - entropy_enter gathers entropy and never drops it on the
41 1.1 riastrad * floor, at the cost of sometimes having to do cryptography.
42 1.1 riastrad *
43 1.1 riastrad * - entropy_enter_intr gathers entropy or drops it on the
44 1.1 riastrad * floor, with low latency. Work to stir the pool or kick the
45 1.1 riastrad * housekeeping thread is scheduled in soft interrupts.
46 1.1 riastrad *
47 1.1 riastrad * * entropy_enter immediately enters into the global pool if it
48 1.1 riastrad * can transition to full entropy in one swell foop. Otherwise,
49 1.1 riastrad * it defers to a housekeeping thread that consolidates entropy,
50 1.1 riastrad * but only when the CPUs collectively have full entropy, in
51 1.1 riastrad * order to mitigate iterative-guessing attacks.
52 1.1 riastrad *
53 1.1 riastrad * * The entropy housekeeping thread continues to consolidate
54 1.1 riastrad * entropy even after we think we have full entropy, in case we
55 1.1 riastrad * are wrong, but is limited to one discretionary consolidation
56 1.1 riastrad * per minute, and only when new entropy is actually coming in,
57 1.1 riastrad * to limit performance impact.
58 1.1 riastrad *
59 1.1 riastrad * * The entropy epoch is the number that changes when we
60 1.1 riastrad * transition from partial entropy to full entropy, so that
61 1.1 riastrad * users can easily determine when to reseed. This also
62 1.1 riastrad * facilitates an operator explicitly causing everything to
63 1.13 riastrad * reseed by sysctl -w kern.entropy.consolidate=1.
64 1.1 riastrad *
65 1.1 riastrad * * No entropy estimation based on the sample values, which is a
66 1.1 riastrad * contradiction in terms and a potential source of side
67 1.1 riastrad * channels. It is the responsibility of the driver author to
68 1.1 riastrad * study how predictable the physical source of input can ever
69 1.1 riastrad * be, and to furnish a lower bound on the amount of entropy it
70 1.1 riastrad * has.
71 1.1 riastrad *
72 1.1 riastrad * * Entropy depletion is available for testing (or if you're into
73 1.1 riastrad * that sort of thing), with sysctl -w kern.entropy.depletion=1;
74 1.1 riastrad * the logic to support it is small, to minimize chance of bugs.
75 1.1 riastrad */
76 1.1 riastrad
77 1.1 riastrad #include <sys/cdefs.h>
78 1.51 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.51 2022/03/21 00:25:04 riastradh Exp $");
79 1.1 riastrad
80 1.1 riastrad #include <sys/param.h>
81 1.1 riastrad #include <sys/types.h>
82 1.1 riastrad #include <sys/atomic.h>
83 1.1 riastrad #include <sys/compat_stub.h>
84 1.1 riastrad #include <sys/condvar.h>
85 1.1 riastrad #include <sys/cpu.h>
86 1.1 riastrad #include <sys/entropy.h>
87 1.1 riastrad #include <sys/errno.h>
88 1.1 riastrad #include <sys/evcnt.h>
89 1.1 riastrad #include <sys/event.h>
90 1.1 riastrad #include <sys/file.h>
91 1.1 riastrad #include <sys/intr.h>
92 1.1 riastrad #include <sys/kauth.h>
93 1.1 riastrad #include <sys/kernel.h>
94 1.1 riastrad #include <sys/kmem.h>
95 1.1 riastrad #include <sys/kthread.h>
96 1.1 riastrad #include <sys/module_hook.h>
97 1.1 riastrad #include <sys/mutex.h>
98 1.1 riastrad #include <sys/percpu.h>
99 1.1 riastrad #include <sys/poll.h>
100 1.1 riastrad #include <sys/queue.h>
101 1.30 jmcneill #include <sys/reboot.h>
102 1.1 riastrad #include <sys/rnd.h> /* legacy kernel API */
103 1.1 riastrad #include <sys/rndio.h> /* userland ioctl interface */
104 1.1 riastrad #include <sys/rndsource.h> /* kernel rndsource driver API */
105 1.1 riastrad #include <sys/select.h>
106 1.1 riastrad #include <sys/selinfo.h>
107 1.1 riastrad #include <sys/sha1.h> /* for boot seed checksum */
108 1.1 riastrad #include <sys/stdint.h>
109 1.1 riastrad #include <sys/sysctl.h>
110 1.26 riastrad #include <sys/syslog.h>
111 1.1 riastrad #include <sys/systm.h>
112 1.1 riastrad #include <sys/time.h>
113 1.1 riastrad #include <sys/xcall.h>
114 1.1 riastrad
115 1.1 riastrad #include <lib/libkern/entpool.h>
116 1.1 riastrad
117 1.1 riastrad #include <machine/limits.h>
118 1.1 riastrad
119 1.1 riastrad #ifdef __HAVE_CPU_COUNTER
120 1.1 riastrad #include <machine/cpu_counter.h>
121 1.1 riastrad #endif
122 1.1 riastrad
123 1.1 riastrad /*
124 1.1 riastrad * struct entropy_cpu
125 1.1 riastrad *
126 1.1 riastrad * Per-CPU entropy state. The pool is allocated separately
127 1.1 riastrad * because percpu(9) sometimes moves per-CPU objects around
128 1.1 riastrad * without zeroing them, which would lead to unwanted copies of
129 1.34 andvar * sensitive secrets. The evcnt is allocated separately because
130 1.1 riastrad * evcnt(9) assumes it stays put in memory.
131 1.1 riastrad */
132 1.1 riastrad struct entropy_cpu {
133 1.40 riastrad struct entropy_cpu_evcnt {
134 1.40 riastrad struct evcnt softint;
135 1.40 riastrad struct evcnt intrdrop;
136 1.40 riastrad struct evcnt intrtrunc;
137 1.40 riastrad } *ec_evcnt;
138 1.1 riastrad struct entpool *ec_pool;
139 1.1 riastrad unsigned ec_pending;
140 1.1 riastrad bool ec_locked;
141 1.1 riastrad };
142 1.1 riastrad
143 1.1 riastrad /*
144 1.43 riastrad * struct entropy_cpu_lock
145 1.43 riastrad *
146 1.43 riastrad * State for locking the per-CPU entropy state.
147 1.43 riastrad */
148 1.43 riastrad struct entropy_cpu_lock {
149 1.43 riastrad int ecl_s;
150 1.43 riastrad uint64_t ecl_ncsw;
151 1.43 riastrad };
152 1.43 riastrad
153 1.43 riastrad /*
154 1.1 riastrad * struct rndsource_cpu
155 1.1 riastrad *
156 1.1 riastrad * Per-CPU rndsource state.
157 1.1 riastrad */
158 1.1 riastrad struct rndsource_cpu {
159 1.28 riastrad unsigned rc_entropybits;
160 1.28 riastrad unsigned rc_timesamples;
161 1.28 riastrad unsigned rc_datasamples;
162 1.1 riastrad };
163 1.1 riastrad
164 1.1 riastrad /*
165 1.1 riastrad * entropy_global (a.k.a. E for short in this file)
166 1.1 riastrad *
167 1.1 riastrad * Global entropy state. Writes protected by the global lock.
168 1.1 riastrad * Some fields, marked (A), can be read outside the lock, and are
169 1.1 riastrad * maintained with atomic_load/store_relaxed.
170 1.1 riastrad */
171 1.1 riastrad struct {
172 1.1 riastrad kmutex_t lock; /* covers all global state */
173 1.1 riastrad struct entpool pool; /* global pool for extraction */
174 1.1 riastrad unsigned needed; /* (A) needed globally */
175 1.1 riastrad unsigned pending; /* (A) pending in per-CPU pools */
176 1.1 riastrad unsigned timestamp; /* (A) time of last consolidation */
177 1.1 riastrad unsigned epoch; /* (A) changes when needed -> 0 */
178 1.1 riastrad kcondvar_t cv; /* notifies state changes */
179 1.1 riastrad struct selinfo selq; /* notifies needed -> 0 */
180 1.4 riastrad struct lwp *sourcelock; /* lock on list of sources */
181 1.27 riastrad kcondvar_t sourcelock_cv; /* notifies sourcelock release */
182 1.1 riastrad LIST_HEAD(,krndsource) sources; /* list of entropy sources */
183 1.1 riastrad enum entropy_stage {
184 1.1 riastrad ENTROPY_COLD = 0, /* single-threaded */
185 1.1 riastrad ENTROPY_WARM, /* multi-threaded at boot before CPUs */
186 1.1 riastrad ENTROPY_HOT, /* multi-threaded multi-CPU */
187 1.1 riastrad } stage;
188 1.1 riastrad bool consolidate; /* kick thread to consolidate */
189 1.1 riastrad bool seed_rndsource; /* true if seed source is attached */
190 1.1 riastrad bool seeded; /* true if seed file already loaded */
191 1.1 riastrad } entropy_global __cacheline_aligned = {
192 1.1 riastrad /* Fields that must be initialized when the kernel is loaded. */
193 1.1 riastrad .needed = ENTROPY_CAPACITY*NBBY,
194 1.14 riastrad .epoch = (unsigned)-1, /* -1 means entropy never consolidated */
195 1.1 riastrad .sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
196 1.1 riastrad .stage = ENTROPY_COLD,
197 1.1 riastrad };
198 1.1 riastrad
199 1.1 riastrad #define E (&entropy_global) /* declutter */
200 1.1 riastrad
201 1.1 riastrad /* Read-mostly globals */
202 1.1 riastrad static struct percpu *entropy_percpu __read_mostly; /* struct entropy_cpu */
203 1.1 riastrad static void *entropy_sih __read_mostly; /* softint handler */
204 1.1 riastrad static struct lwp *entropy_lwp __read_mostly; /* housekeeping thread */
205 1.1 riastrad
206 1.1 riastrad static struct krndsource seed_rndsource __read_mostly;
207 1.1 riastrad
208 1.1 riastrad /*
209 1.1 riastrad * Event counters
210 1.1 riastrad *
211 1.1 riastrad * Must be careful with adding these because they can serve as
212 1.1 riastrad * side channels.
213 1.1 riastrad */
214 1.1 riastrad static struct evcnt entropy_discretionary_evcnt =
215 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
216 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
217 1.1 riastrad static struct evcnt entropy_immediate_evcnt =
218 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
219 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
220 1.1 riastrad static struct evcnt entropy_partial_evcnt =
221 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
222 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
223 1.1 riastrad static struct evcnt entropy_consolidate_evcnt =
224 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
225 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
226 1.1 riastrad static struct evcnt entropy_extract_fail_evcnt =
227 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
228 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
229 1.1 riastrad static struct evcnt entropy_request_evcnt =
230 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
231 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_request_evcnt);
232 1.1 riastrad static struct evcnt entropy_deplete_evcnt =
233 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
234 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
235 1.1 riastrad static struct evcnt entropy_notify_evcnt =
236 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
237 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
238 1.1 riastrad
239 1.1 riastrad /* Sysctl knobs */
240 1.17 riastrad static bool entropy_collection = 1;
241 1.17 riastrad static bool entropy_depletion = 0; /* Silly! */
242 1.1 riastrad
243 1.1 riastrad static const struct sysctlnode *entropy_sysctlroot;
244 1.1 riastrad static struct sysctllog *entropy_sysctllog;
245 1.1 riastrad
246 1.1 riastrad /* Forward declarations */
247 1.1 riastrad static void entropy_init_cpu(void *, void *, struct cpu_info *);
248 1.1 riastrad static void entropy_fini_cpu(void *, void *, struct cpu_info *);
249 1.1 riastrad static void entropy_account_cpu(struct entropy_cpu *);
250 1.1 riastrad static void entropy_enter(const void *, size_t, unsigned);
251 1.1 riastrad static bool entropy_enter_intr(const void *, size_t, unsigned);
252 1.1 riastrad static void entropy_softintr(void *);
253 1.1 riastrad static void entropy_thread(void *);
254 1.1 riastrad static uint32_t entropy_pending(void);
255 1.1 riastrad static void entropy_pending_cpu(void *, void *, struct cpu_info *);
256 1.13 riastrad static void entropy_do_consolidate(void);
257 1.13 riastrad static void entropy_consolidate_xc(void *, void *);
258 1.1 riastrad static void entropy_notify(void);
259 1.1 riastrad static int sysctl_entropy_consolidate(SYSCTLFN_ARGS);
260 1.10 riastrad static int sysctl_entropy_gather(SYSCTLFN_ARGS);
261 1.1 riastrad static void filt_entropy_read_detach(struct knote *);
262 1.1 riastrad static int filt_entropy_read_event(struct knote *, long);
263 1.49 riastrad static int entropy_request(size_t, int);
264 1.1 riastrad static void rnd_add_data_1(struct krndsource *, const void *, uint32_t,
265 1.28 riastrad uint32_t, uint32_t);
266 1.1 riastrad static unsigned rndsource_entropybits(struct krndsource *);
267 1.1 riastrad static void rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
268 1.1 riastrad static void rndsource_to_user(struct krndsource *, rndsource_t *);
269 1.1 riastrad static void rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
270 1.28 riastrad static void rndsource_to_user_est_cpu(void *, void *, struct cpu_info *);
271 1.1 riastrad
272 1.1 riastrad /*
273 1.1 riastrad * entropy_timer()
274 1.1 riastrad *
275 1.1 riastrad * Cycle counter, time counter, or anything that changes a wee bit
276 1.1 riastrad * unpredictably.
277 1.1 riastrad */
278 1.1 riastrad static inline uint32_t
279 1.1 riastrad entropy_timer(void)
280 1.1 riastrad {
281 1.1 riastrad struct bintime bt;
282 1.1 riastrad uint32_t v;
283 1.1 riastrad
284 1.1 riastrad /* If we have a CPU cycle counter, use the low 32 bits. */
285 1.1 riastrad #ifdef __HAVE_CPU_COUNTER
286 1.1 riastrad if (__predict_true(cpu_hascounter()))
287 1.1 riastrad return cpu_counter32();
288 1.1 riastrad #endif /* __HAVE_CPU_COUNTER */
289 1.1 riastrad
290 1.1 riastrad /* If we're cold, tough. Can't binuptime while cold. */
291 1.1 riastrad if (__predict_false(cold))
292 1.1 riastrad return 0;
293 1.1 riastrad
294 1.1 riastrad /* Fold the 128 bits of binuptime into 32 bits. */
295 1.1 riastrad binuptime(&bt);
296 1.1 riastrad v = bt.frac;
297 1.1 riastrad v ^= bt.frac >> 32;
298 1.1 riastrad v ^= bt.sec;
299 1.1 riastrad v ^= bt.sec >> 32;
300 1.1 riastrad return v;
301 1.1 riastrad }
302 1.1 riastrad
303 1.1 riastrad static void
304 1.1 riastrad attach_seed_rndsource(void)
305 1.1 riastrad {
306 1.1 riastrad
307 1.1 riastrad /*
308 1.1 riastrad * First called no later than entropy_init, while we are still
309 1.1 riastrad * single-threaded, so no need for RUN_ONCE.
310 1.1 riastrad */
311 1.1 riastrad if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
312 1.1 riastrad return;
313 1.1 riastrad rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
314 1.1 riastrad RND_FLAG_COLLECT_VALUE);
315 1.1 riastrad E->seed_rndsource = true;
316 1.1 riastrad }
317 1.1 riastrad
318 1.1 riastrad /*
319 1.1 riastrad * entropy_init()
320 1.1 riastrad *
321 1.1 riastrad * Initialize the entropy subsystem. Panic on failure.
322 1.1 riastrad *
323 1.1 riastrad * Requires percpu(9) and sysctl(9) to be initialized.
324 1.1 riastrad */
325 1.1 riastrad static void
326 1.1 riastrad entropy_init(void)
327 1.1 riastrad {
328 1.1 riastrad uint32_t extra[2];
329 1.1 riastrad struct krndsource *rs;
330 1.1 riastrad unsigned i = 0;
331 1.1 riastrad
332 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD);
333 1.1 riastrad
334 1.1 riastrad /* Grab some cycle counts early at boot. */
335 1.1 riastrad extra[i++] = entropy_timer();
336 1.1 riastrad
337 1.1 riastrad /* Run the entropy pool cryptography self-test. */
338 1.1 riastrad if (entpool_selftest() == -1)
339 1.1 riastrad panic("entropy pool crypto self-test failed");
340 1.1 riastrad
341 1.1 riastrad /* Create the sysctl directory. */
342 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
343 1.1 riastrad CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
344 1.1 riastrad SYSCTL_DESCR("Entropy (random number sources) options"),
345 1.1 riastrad NULL, 0, NULL, 0,
346 1.1 riastrad CTL_KERN, CTL_CREATE, CTL_EOL);
347 1.1 riastrad
348 1.1 riastrad /* Create the sysctl knobs. */
349 1.1 riastrad /* XXX These shouldn't be writable at securelevel>0. */
350 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
351 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
352 1.1 riastrad SYSCTL_DESCR("Automatically collect entropy from hardware"),
353 1.1 riastrad NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
354 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
355 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
356 1.1 riastrad SYSCTL_DESCR("`Deplete' entropy pool when observed"),
357 1.1 riastrad NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
358 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
359 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
360 1.1 riastrad SYSCTL_DESCR("Trigger entropy consolidation now"),
361 1.1 riastrad sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
362 1.10 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
363 1.10 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
364 1.10 riastrad SYSCTL_DESCR("Trigger entropy gathering from sources now"),
365 1.10 riastrad sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
366 1.1 riastrad /* XXX These should maybe not be readable at securelevel>0. */
367 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
368 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
369 1.1 riastrad "needed", SYSCTL_DESCR("Systemwide entropy deficit"),
370 1.1 riastrad NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
371 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
372 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
373 1.1 riastrad "pending", SYSCTL_DESCR("Entropy pending on CPUs"),
374 1.1 riastrad NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
375 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
376 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
377 1.1 riastrad "epoch", SYSCTL_DESCR("Entropy epoch"),
378 1.1 riastrad NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
379 1.1 riastrad
380 1.1 riastrad /* Initialize the global state for multithreaded operation. */
381 1.39 riastrad mutex_init(&E->lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
382 1.1 riastrad cv_init(&E->cv, "entropy");
383 1.1 riastrad selinit(&E->selq);
384 1.27 riastrad cv_init(&E->sourcelock_cv, "entsrclock");
385 1.1 riastrad
386 1.1 riastrad /* Make sure the seed source is attached. */
387 1.1 riastrad attach_seed_rndsource();
388 1.1 riastrad
389 1.1 riastrad /* Note if the bootloader didn't provide a seed. */
390 1.1 riastrad if (!E->seeded)
391 1.29 riastrad aprint_debug("entropy: no seed from bootloader\n");
392 1.1 riastrad
393 1.1 riastrad /* Allocate the per-CPU records for all early entropy sources. */
394 1.1 riastrad LIST_FOREACH(rs, &E->sources, list)
395 1.1 riastrad rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
396 1.1 riastrad
397 1.36 riastrad /* Allocate and initialize the per-CPU state. */
398 1.36 riastrad entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
399 1.36 riastrad entropy_init_cpu, entropy_fini_cpu, NULL);
400 1.36 riastrad
401 1.1 riastrad /* Enter the boot cycle count to get started. */
402 1.1 riastrad extra[i++] = entropy_timer();
403 1.1 riastrad KASSERT(i == __arraycount(extra));
404 1.1 riastrad entropy_enter(extra, sizeof extra, 0);
405 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
406 1.1 riastrad
407 1.1 riastrad /* We are now ready for multi-threaded operation. */
408 1.1 riastrad E->stage = ENTROPY_WARM;
409 1.1 riastrad }
410 1.1 riastrad
411 1.37 riastrad static void
412 1.37 riastrad entropy_init_late_cpu(void *a, void *b)
413 1.37 riastrad {
414 1.37 riastrad
415 1.37 riastrad entropy_softintr(NULL);
416 1.37 riastrad }
417 1.37 riastrad
418 1.1 riastrad /*
419 1.1 riastrad * entropy_init_late()
420 1.1 riastrad *
421 1.1 riastrad * Late initialization. Panic on failure.
422 1.1 riastrad *
423 1.1 riastrad * Requires CPUs to have been detected and LWPs to have started.
424 1.1 riastrad */
425 1.1 riastrad static void
426 1.1 riastrad entropy_init_late(void)
427 1.1 riastrad {
428 1.37 riastrad void *sih;
429 1.1 riastrad int error;
430 1.1 riastrad
431 1.1 riastrad KASSERT(E->stage == ENTROPY_WARM);
432 1.1 riastrad
433 1.1 riastrad /*
434 1.1 riastrad * Establish the softint at the highest softint priority level.
435 1.1 riastrad * Must happen after CPU detection.
436 1.1 riastrad */
437 1.37 riastrad sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
438 1.1 riastrad &entropy_softintr, NULL);
439 1.37 riastrad if (sih == NULL)
440 1.1 riastrad panic("unable to establish entropy softint");
441 1.1 riastrad
442 1.1 riastrad /*
443 1.1 riastrad * Create the entropy housekeeping thread. Must happen after
444 1.1 riastrad * lwpinit.
445 1.1 riastrad */
446 1.1 riastrad error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
447 1.1 riastrad entropy_thread, NULL, &entropy_lwp, "entbutler");
448 1.1 riastrad if (error)
449 1.1 riastrad panic("unable to create entropy housekeeping thread: %d",
450 1.1 riastrad error);
451 1.1 riastrad
452 1.1 riastrad /*
453 1.1 riastrad * Wait until the per-CPU initialization has hit all CPUs
454 1.37 riastrad * before proceeding to mark the entropy system hot and
455 1.37 riastrad * enabling use of the softint.
456 1.1 riastrad */
457 1.1 riastrad xc_barrier(XC_HIGHPRI);
458 1.1 riastrad E->stage = ENTROPY_HOT;
459 1.37 riastrad atomic_store_relaxed(&entropy_sih, sih);
460 1.37 riastrad
461 1.37 riastrad /*
462 1.37 riastrad * At this point, entering new samples from interrupt handlers
463 1.37 riastrad * will trigger the softint to process them. But there may be
464 1.37 riastrad * some samples that were entered from interrupt handlers
465 1.37 riastrad * before the softint was available. Make sure we process
466 1.37 riastrad * those samples on all CPUs by running the softint logic on
467 1.37 riastrad * all CPUs.
468 1.37 riastrad */
469 1.37 riastrad xc_wait(xc_broadcast(XC_HIGHPRI, entropy_init_late_cpu, NULL, NULL));
470 1.1 riastrad }
471 1.1 riastrad
472 1.1 riastrad /*
473 1.1 riastrad * entropy_init_cpu(ptr, cookie, ci)
474 1.1 riastrad *
475 1.1 riastrad * percpu(9) constructor for per-CPU entropy pool.
476 1.1 riastrad */
477 1.1 riastrad static void
478 1.1 riastrad entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
479 1.1 riastrad {
480 1.1 riastrad struct entropy_cpu *ec = ptr;
481 1.40 riastrad const char *cpuname;
482 1.1 riastrad
483 1.40 riastrad ec->ec_evcnt = kmem_alloc(sizeof(*ec->ec_evcnt), KM_SLEEP);
484 1.1 riastrad ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
485 1.1 riastrad ec->ec_pending = 0;
486 1.1 riastrad ec->ec_locked = false;
487 1.1 riastrad
488 1.36 riastrad /* XXX ci_cpuname may not be initialized early enough. */
489 1.40 riastrad cpuname = ci->ci_cpuname[0] == '\0' ? "cpu0" : ci->ci_cpuname;
490 1.40 riastrad evcnt_attach_dynamic(&ec->ec_evcnt->softint, EVCNT_TYPE_MISC, NULL,
491 1.40 riastrad cpuname, "entropy softint");
492 1.40 riastrad evcnt_attach_dynamic(&ec->ec_evcnt->intrdrop, EVCNT_TYPE_MISC, NULL,
493 1.40 riastrad cpuname, "entropy intrdrop");
494 1.40 riastrad evcnt_attach_dynamic(&ec->ec_evcnt->intrtrunc, EVCNT_TYPE_MISC, NULL,
495 1.40 riastrad cpuname, "entropy intrtrunc");
496 1.1 riastrad }
497 1.1 riastrad
498 1.1 riastrad /*
499 1.1 riastrad * entropy_fini_cpu(ptr, cookie, ci)
500 1.1 riastrad *
501 1.1 riastrad * percpu(9) destructor for per-CPU entropy pool.
502 1.1 riastrad */
503 1.1 riastrad static void
504 1.1 riastrad entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
505 1.1 riastrad {
506 1.1 riastrad struct entropy_cpu *ec = ptr;
507 1.1 riastrad
508 1.1 riastrad /*
509 1.1 riastrad * Zero any lingering data. Disclosure of the per-CPU pool
510 1.1 riastrad * shouldn't retroactively affect the security of any keys
511 1.1 riastrad * generated, because entpool(9) erases whatever we have just
512 1.1 riastrad * drawn out of any pool, but better safe than sorry.
513 1.1 riastrad */
514 1.1 riastrad explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
515 1.1 riastrad
516 1.40 riastrad evcnt_detach(&ec->ec_evcnt->intrtrunc);
517 1.40 riastrad evcnt_detach(&ec->ec_evcnt->intrdrop);
518 1.40 riastrad evcnt_detach(&ec->ec_evcnt->softint);
519 1.1 riastrad
520 1.1 riastrad kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
521 1.40 riastrad kmem_free(ec->ec_evcnt, sizeof(*ec->ec_evcnt));
522 1.1 riastrad }
523 1.1 riastrad
524 1.1 riastrad /*
525 1.43 riastrad * ec = entropy_cpu_get(&lock)
526 1.43 riastrad * entropy_cpu_put(&lock, ec)
527 1.43 riastrad *
528 1.43 riastrad * Lock and unlock the per-CPU entropy state. This only prevents
529 1.43 riastrad * access on the same CPU -- by hard interrupts, by soft
530 1.43 riastrad * interrupts, or by other threads.
531 1.43 riastrad *
532 1.43 riastrad * Blocks soft interrupts and preemption altogether; doesn't block
533 1.43 riastrad * hard interrupts, but causes samples in hard interrupts to be
534 1.43 riastrad * dropped.
535 1.43 riastrad */
536 1.43 riastrad static struct entropy_cpu *
537 1.43 riastrad entropy_cpu_get(struct entropy_cpu_lock *lock)
538 1.43 riastrad {
539 1.43 riastrad struct entropy_cpu *ec;
540 1.43 riastrad
541 1.43 riastrad ec = percpu_getref(entropy_percpu);
542 1.43 riastrad lock->ecl_s = splsoftserial();
543 1.43 riastrad KASSERT(!ec->ec_locked);
544 1.43 riastrad ec->ec_locked = true;
545 1.43 riastrad lock->ecl_ncsw = curlwp->l_ncsw;
546 1.43 riastrad __insn_barrier();
547 1.43 riastrad
548 1.43 riastrad return ec;
549 1.43 riastrad }
550 1.43 riastrad
551 1.43 riastrad static void
552 1.43 riastrad entropy_cpu_put(struct entropy_cpu_lock *lock, struct entropy_cpu *ec)
553 1.43 riastrad {
554 1.43 riastrad
555 1.43 riastrad KASSERT(ec == percpu_getptr_remote(entropy_percpu, curcpu()));
556 1.43 riastrad KASSERT(ec->ec_locked);
557 1.43 riastrad
558 1.43 riastrad __insn_barrier();
559 1.43 riastrad KASSERT(lock->ecl_ncsw == curlwp->l_ncsw);
560 1.43 riastrad ec->ec_locked = false;
561 1.43 riastrad splx(lock->ecl_s);
562 1.43 riastrad percpu_putref(entropy_percpu);
563 1.43 riastrad }
564 1.43 riastrad
565 1.43 riastrad /*
566 1.1 riastrad * entropy_seed(seed)
567 1.1 riastrad *
568 1.1 riastrad * Seed the entropy pool with seed. Meant to be called as early
569 1.1 riastrad * as possible by the bootloader; may be called before or after
570 1.1 riastrad * entropy_init. Must be called before system reaches userland.
571 1.1 riastrad * Must be called in thread or soft interrupt context, not in hard
572 1.1 riastrad * interrupt context. Must be called at most once.
573 1.1 riastrad *
574 1.1 riastrad * Overwrites the seed in place. Caller may then free the memory.
575 1.1 riastrad */
576 1.1 riastrad static void
577 1.1 riastrad entropy_seed(rndsave_t *seed)
578 1.1 riastrad {
579 1.1 riastrad SHA1_CTX ctx;
580 1.1 riastrad uint8_t digest[SHA1_DIGEST_LENGTH];
581 1.1 riastrad bool seeded;
582 1.1 riastrad
583 1.1 riastrad /*
584 1.1 riastrad * Verify the checksum. If the checksum fails, take the data
585 1.1 riastrad * but ignore the entropy estimate -- the file may have been
586 1.1 riastrad * incompletely written with garbage, which is harmless to add
587 1.1 riastrad * but may not be as unpredictable as alleged.
588 1.1 riastrad */
589 1.1 riastrad SHA1Init(&ctx);
590 1.1 riastrad SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
591 1.1 riastrad SHA1Update(&ctx, seed->data, sizeof(seed->data));
592 1.1 riastrad SHA1Final(digest, &ctx);
593 1.1 riastrad CTASSERT(sizeof(seed->digest) == sizeof(digest));
594 1.1 riastrad if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
595 1.1 riastrad printf("entropy: invalid seed checksum\n");
596 1.1 riastrad seed->entropy = 0;
597 1.1 riastrad }
598 1.2 riastrad explicit_memset(&ctx, 0, sizeof ctx);
599 1.1 riastrad explicit_memset(digest, 0, sizeof digest);
600 1.1 riastrad
601 1.2 riastrad /*
602 1.2 riastrad * If the entropy is insensibly large, try byte-swapping.
603 1.2 riastrad * Otherwise assume the file is corrupted and act as though it
604 1.2 riastrad * has zero entropy.
605 1.2 riastrad */
606 1.2 riastrad if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
607 1.2 riastrad seed->entropy = bswap32(seed->entropy);
608 1.2 riastrad if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
609 1.2 riastrad seed->entropy = 0;
610 1.2 riastrad }
611 1.2 riastrad
612 1.1 riastrad /* Make sure the seed source is attached. */
613 1.1 riastrad attach_seed_rndsource();
614 1.1 riastrad
615 1.1 riastrad /* Test and set E->seeded. */
616 1.1 riastrad if (E->stage >= ENTROPY_WARM)
617 1.1 riastrad mutex_enter(&E->lock);
618 1.1 riastrad seeded = E->seeded;
619 1.11 riastrad E->seeded = (seed->entropy > 0);
620 1.1 riastrad if (E->stage >= ENTROPY_WARM)
621 1.1 riastrad mutex_exit(&E->lock);
622 1.1 riastrad
623 1.1 riastrad /*
624 1.1 riastrad * If we've been seeded, may be re-entering the same seed
625 1.1 riastrad * (e.g., bootloader vs module init, or something). No harm in
626 1.1 riastrad * entering it twice, but it contributes no additional entropy.
627 1.1 riastrad */
628 1.1 riastrad if (seeded) {
629 1.1 riastrad printf("entropy: double-seeded by bootloader\n");
630 1.1 riastrad seed->entropy = 0;
631 1.1 riastrad } else {
632 1.11 riastrad printf("entropy: entering seed from bootloader"
633 1.11 riastrad " with %u bits of entropy\n", (unsigned)seed->entropy);
634 1.1 riastrad }
635 1.1 riastrad
636 1.1 riastrad /* Enter it into the pool and promptly zero it. */
637 1.1 riastrad rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
638 1.1 riastrad seed->entropy);
639 1.1 riastrad explicit_memset(seed, 0, sizeof(*seed));
640 1.1 riastrad }
641 1.1 riastrad
642 1.1 riastrad /*
643 1.1 riastrad * entropy_bootrequest()
644 1.1 riastrad *
645 1.1 riastrad * Request entropy from all sources at boot, once config is
646 1.1 riastrad * complete and interrupts are running.
647 1.1 riastrad */
648 1.1 riastrad void
649 1.1 riastrad entropy_bootrequest(void)
650 1.1 riastrad {
651 1.49 riastrad int error;
652 1.1 riastrad
653 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
654 1.1 riastrad
655 1.1 riastrad /*
656 1.1 riastrad * Request enough to satisfy the maximum entropy shortage.
657 1.1 riastrad * This is harmless overkill if the bootloader provided a seed.
658 1.1 riastrad */
659 1.1 riastrad mutex_enter(&E->lock);
660 1.49 riastrad error = entropy_request(ENTROPY_CAPACITY, ENTROPY_WAIT);
661 1.49 riastrad KASSERT(error == 0);
662 1.1 riastrad mutex_exit(&E->lock);
663 1.1 riastrad }
664 1.1 riastrad
665 1.1 riastrad /*
666 1.1 riastrad * entropy_epoch()
667 1.1 riastrad *
668 1.1 riastrad * Returns the current entropy epoch. If this changes, you should
669 1.14 riastrad * reseed. If -1, means system entropy has not yet reached full
670 1.14 riastrad * entropy or been explicitly consolidated; never reverts back to
671 1.14 riastrad * -1. Never zero, so you can always use zero as an uninitialized
672 1.14 riastrad * sentinel value meaning `reseed ASAP'.
673 1.1 riastrad *
674 1.1 riastrad * Usage model:
675 1.1 riastrad *
676 1.1 riastrad * struct foo {
677 1.1 riastrad * struct crypto_prng prng;
678 1.1 riastrad * unsigned epoch;
679 1.1 riastrad * } *foo;
680 1.1 riastrad *
681 1.1 riastrad * unsigned epoch = entropy_epoch();
682 1.1 riastrad * if (__predict_false(epoch != foo->epoch)) {
683 1.1 riastrad * uint8_t seed[32];
684 1.1 riastrad * if (entropy_extract(seed, sizeof seed, 0) != 0)
685 1.1 riastrad * warn("no entropy");
686 1.1 riastrad * crypto_prng_reseed(&foo->prng, seed, sizeof seed);
687 1.1 riastrad * foo->epoch = epoch;
688 1.1 riastrad * }
689 1.1 riastrad */
690 1.1 riastrad unsigned
691 1.1 riastrad entropy_epoch(void)
692 1.1 riastrad {
693 1.1 riastrad
694 1.1 riastrad /*
695 1.1 riastrad * Unsigned int, so no need for seqlock for an atomic read, but
696 1.1 riastrad * make sure we read it afresh each time.
697 1.1 riastrad */
698 1.1 riastrad return atomic_load_relaxed(&E->epoch);
699 1.1 riastrad }
700 1.1 riastrad
701 1.1 riastrad /*
702 1.23 riastrad * entropy_ready()
703 1.23 riastrad *
704 1.23 riastrad * True if the entropy pool has full entropy.
705 1.23 riastrad */
706 1.23 riastrad bool
707 1.23 riastrad entropy_ready(void)
708 1.23 riastrad {
709 1.23 riastrad
710 1.23 riastrad return atomic_load_relaxed(&E->needed) == 0;
711 1.23 riastrad }
712 1.23 riastrad
713 1.23 riastrad /*
714 1.1 riastrad * entropy_account_cpu(ec)
715 1.1 riastrad *
716 1.1 riastrad * Consider whether to consolidate entropy into the global pool
717 1.1 riastrad * after we just added some into the current CPU's pending pool.
718 1.1 riastrad *
719 1.1 riastrad * - If this CPU can provide enough entropy now, do so.
720 1.1 riastrad *
721 1.1 riastrad * - If this and whatever else is available on other CPUs can
722 1.1 riastrad * provide enough entropy, kick the consolidation thread.
723 1.1 riastrad *
724 1.1 riastrad * - Otherwise, do as little as possible, except maybe consolidate
725 1.1 riastrad * entropy at most once a minute.
726 1.1 riastrad *
727 1.1 riastrad * Caller must be bound to a CPU and therefore have exclusive
728 1.1 riastrad * access to ec. Will acquire and release the global lock.
729 1.1 riastrad */
730 1.1 riastrad static void
731 1.1 riastrad entropy_account_cpu(struct entropy_cpu *ec)
732 1.1 riastrad {
733 1.44 riastrad struct entropy_cpu_lock lock;
734 1.44 riastrad struct entropy_cpu *ec0;
735 1.1 riastrad unsigned diff;
736 1.1 riastrad
737 1.37 riastrad KASSERT(E->stage >= ENTROPY_WARM);
738 1.1 riastrad
739 1.1 riastrad /*
740 1.1 riastrad * If there's no entropy needed, and entropy has been
741 1.1 riastrad * consolidated in the last minute, do nothing.
742 1.1 riastrad */
743 1.1 riastrad if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
744 1.1 riastrad __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
745 1.1 riastrad __predict_true((time_uptime - E->timestamp) <= 60))
746 1.1 riastrad return;
747 1.1 riastrad
748 1.44 riastrad /*
749 1.44 riastrad * Consider consolidation, under the global lock and with the
750 1.44 riastrad * per-CPU state locked.
751 1.44 riastrad */
752 1.1 riastrad mutex_enter(&E->lock);
753 1.44 riastrad ec0 = entropy_cpu_get(&lock);
754 1.44 riastrad KASSERT(ec0 == ec);
755 1.46 riastrad if (ec->ec_pending == 0) {
756 1.46 riastrad /* Raced with consolidation xcall. Nothing to do. */
757 1.46 riastrad } else if (E->needed != 0 && E->needed <= ec->ec_pending) {
758 1.1 riastrad /*
759 1.1 riastrad * If we have not yet attained full entropy but we can
760 1.1 riastrad * now, do so. This way we disseminate entropy
761 1.1 riastrad * promptly when it becomes available early at boot;
762 1.1 riastrad * otherwise we leave it to the entropy consolidation
763 1.1 riastrad * thread, which is rate-limited to mitigate side
764 1.1 riastrad * channels and abuse.
765 1.1 riastrad */
766 1.1 riastrad uint8_t buf[ENTPOOL_CAPACITY];
767 1.1 riastrad
768 1.1 riastrad /* Transfer from the local pool to the global pool. */
769 1.1 riastrad entpool_extract(ec->ec_pool, buf, sizeof buf);
770 1.1 riastrad entpool_enter(&E->pool, buf, sizeof buf);
771 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, 0);
772 1.1 riastrad atomic_store_relaxed(&E->needed, 0);
773 1.1 riastrad
774 1.1 riastrad /* Notify waiters that we now have full entropy. */
775 1.1 riastrad entropy_notify();
776 1.1 riastrad entropy_immediate_evcnt.ev_count++;
777 1.18 riastrad } else {
778 1.45 riastrad /* Determine how much we can add to the global pool. */
779 1.45 riastrad KASSERTMSG(E->pending <= ENTROPY_CAPACITY*NBBY,
780 1.45 riastrad "E->pending=%u", E->pending);
781 1.1 riastrad diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
782 1.1 riastrad
783 1.1 riastrad /*
784 1.45 riastrad * This should make a difference unless we are already
785 1.45 riastrad * saturated.
786 1.1 riastrad */
787 1.45 riastrad KASSERTMSG(diff || E->pending == ENTROPY_CAPACITY*NBBY,
788 1.45 riastrad "diff=%u E->pending=%u ec->ec_pending=%u cap=%u",
789 1.45 riastrad diff, E->pending, ec->ec_pending,
790 1.45 riastrad (unsigned)ENTROPY_CAPACITY*NBBY);
791 1.45 riastrad
792 1.45 riastrad /* Add to the global, subtract from the local. */
793 1.45 riastrad E->pending += diff;
794 1.1 riastrad KASSERT(E->pending);
795 1.45 riastrad KASSERTMSG(E->pending <= ENTROPY_CAPACITY*NBBY,
796 1.45 riastrad "E->pending=%u", E->pending);
797 1.45 riastrad atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
798 1.1 riastrad
799 1.1 riastrad if (E->needed <= E->pending) {
800 1.1 riastrad /*
801 1.1 riastrad * Enough entropy between all the per-CPU
802 1.1 riastrad * pools. Wake up the housekeeping thread.
803 1.1 riastrad *
804 1.1 riastrad * If we don't need any entropy, this doesn't
805 1.1 riastrad * mean much, but it is the only time we ever
806 1.1 riastrad * gather additional entropy in case the
807 1.1 riastrad * accounting has been overly optimistic. This
808 1.1 riastrad * happens at most once a minute, so there's
809 1.1 riastrad * negligible performance cost.
810 1.1 riastrad */
811 1.1 riastrad E->consolidate = true;
812 1.1 riastrad cv_broadcast(&E->cv);
813 1.1 riastrad if (E->needed == 0)
814 1.1 riastrad entropy_discretionary_evcnt.ev_count++;
815 1.1 riastrad } else {
816 1.1 riastrad /* Can't get full entropy. Keep gathering. */
817 1.1 riastrad entropy_partial_evcnt.ev_count++;
818 1.1 riastrad }
819 1.1 riastrad }
820 1.44 riastrad entropy_cpu_put(&lock, ec);
821 1.1 riastrad mutex_exit(&E->lock);
822 1.1 riastrad }
823 1.1 riastrad
824 1.1 riastrad /*
825 1.1 riastrad * entropy_enter_early(buf, len, nbits)
826 1.1 riastrad *
827 1.1 riastrad * Do entropy bookkeeping globally, before we have established
828 1.1 riastrad * per-CPU pools. Enter directly into the global pool in the hope
829 1.1 riastrad * that we enter enough before the first entropy_extract to thwart
830 1.1 riastrad * iterative-guessing attacks; entropy_extract will warn if not.
831 1.1 riastrad */
832 1.1 riastrad static void
833 1.1 riastrad entropy_enter_early(const void *buf, size_t len, unsigned nbits)
834 1.1 riastrad {
835 1.1 riastrad bool notify = false;
836 1.1 riastrad
837 1.37 riastrad KASSERT(E->stage == ENTROPY_COLD);
838 1.1 riastrad
839 1.1 riastrad /* Enter it into the pool. */
840 1.1 riastrad entpool_enter(&E->pool, buf, len);
841 1.1 riastrad
842 1.1 riastrad /*
843 1.1 riastrad * Decide whether to notify reseed -- we will do so if either:
844 1.1 riastrad * (a) we transition from partial entropy to full entropy, or
845 1.1 riastrad * (b) we get a batch of full entropy all at once.
846 1.1 riastrad */
847 1.1 riastrad notify |= (E->needed && E->needed <= nbits);
848 1.1 riastrad notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
849 1.1 riastrad
850 1.1 riastrad /* Subtract from the needed count and notify if appropriate. */
851 1.1 riastrad E->needed -= MIN(E->needed, nbits);
852 1.1 riastrad if (notify) {
853 1.1 riastrad entropy_notify();
854 1.1 riastrad entropy_immediate_evcnt.ev_count++;
855 1.1 riastrad }
856 1.1 riastrad }
857 1.1 riastrad
858 1.1 riastrad /*
859 1.1 riastrad * entropy_enter(buf, len, nbits)
860 1.1 riastrad *
861 1.1 riastrad * Enter len bytes of data from buf into the system's entropy
862 1.1 riastrad * pool, stirring as necessary when the internal buffer fills up.
863 1.1 riastrad * nbits is a lower bound on the number of bits of entropy in the
864 1.1 riastrad * process that led to this sample.
865 1.1 riastrad */
866 1.1 riastrad static void
867 1.1 riastrad entropy_enter(const void *buf, size_t len, unsigned nbits)
868 1.1 riastrad {
869 1.43 riastrad struct entropy_cpu_lock lock;
870 1.1 riastrad struct entropy_cpu *ec;
871 1.42 riastrad unsigned pending;
872 1.1 riastrad
873 1.16 riastrad KASSERTMSG(!cpu_intr_p(),
874 1.1 riastrad "use entropy_enter_intr from interrupt context");
875 1.1 riastrad KASSERTMSG(howmany(nbits, NBBY) <= len,
876 1.1 riastrad "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
877 1.1 riastrad
878 1.1 riastrad /* If it's too early after boot, just use entropy_enter_early. */
879 1.37 riastrad if (__predict_false(E->stage == ENTROPY_COLD)) {
880 1.1 riastrad entropy_enter_early(buf, len, nbits);
881 1.1 riastrad return;
882 1.1 riastrad }
883 1.1 riastrad
884 1.1 riastrad /*
885 1.43 riastrad * With the per-CPU state locked, enter into the per-CPU pool
886 1.43 riastrad * and count up what we can add.
887 1.1 riastrad */
888 1.43 riastrad ec = entropy_cpu_get(&lock);
889 1.1 riastrad entpool_enter(ec->ec_pool, buf, len);
890 1.1 riastrad pending = ec->ec_pending;
891 1.1 riastrad pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
892 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, pending);
893 1.43 riastrad entropy_cpu_put(&lock, ec);
894 1.42 riastrad
895 1.42 riastrad /* Consolidate globally if appropriate based on what we added. */
896 1.42 riastrad if (pending)
897 1.42 riastrad entropy_account_cpu(ec);
898 1.1 riastrad }
899 1.1 riastrad
900 1.1 riastrad /*
901 1.1 riastrad * entropy_enter_intr(buf, len, nbits)
902 1.1 riastrad *
903 1.1 riastrad * Enter up to len bytes of data from buf into the system's
904 1.1 riastrad * entropy pool without stirring. nbits is a lower bound on the
905 1.1 riastrad * number of bits of entropy in the process that led to this
906 1.1 riastrad * sample. If the sample could be entered completely, assume
907 1.1 riastrad * nbits of entropy pending; otherwise assume none, since we don't
908 1.1 riastrad * know whether some parts of the sample are constant, for
909 1.1 riastrad * instance. Schedule a softint to stir the entropy pool if
910 1.1 riastrad * needed. Return true if used fully, false if truncated at all.
911 1.1 riastrad *
912 1.1 riastrad * Using this in thread context will work, but you might as well
913 1.1 riastrad * use entropy_enter in that case.
914 1.1 riastrad */
915 1.1 riastrad static bool
916 1.1 riastrad entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
917 1.1 riastrad {
918 1.1 riastrad struct entropy_cpu *ec;
919 1.1 riastrad bool fullyused = false;
920 1.1 riastrad uint32_t pending;
921 1.37 riastrad void *sih;
922 1.1 riastrad
923 1.45 riastrad KASSERT(cpu_intr_p());
924 1.1 riastrad KASSERTMSG(howmany(nbits, NBBY) <= len,
925 1.1 riastrad "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
926 1.1 riastrad
927 1.1 riastrad /* If it's too early after boot, just use entropy_enter_early. */
928 1.37 riastrad if (__predict_false(E->stage == ENTROPY_COLD)) {
929 1.1 riastrad entropy_enter_early(buf, len, nbits);
930 1.1 riastrad return true;
931 1.1 riastrad }
932 1.1 riastrad
933 1.1 riastrad /*
934 1.1 riastrad * Acquire the per-CPU state. If someone is in the middle of
935 1.1 riastrad * using it, drop the sample. Otherwise, take the lock so that
936 1.1 riastrad * higher-priority interrupts will drop their samples.
937 1.1 riastrad */
938 1.1 riastrad ec = percpu_getref(entropy_percpu);
939 1.40 riastrad if (ec->ec_locked) {
940 1.40 riastrad ec->ec_evcnt->intrdrop.ev_count++;
941 1.1 riastrad goto out0;
942 1.40 riastrad }
943 1.1 riastrad ec->ec_locked = true;
944 1.1 riastrad __insn_barrier();
945 1.1 riastrad
946 1.1 riastrad /*
947 1.1 riastrad * Enter as much as we can into the per-CPU pool. If it was
948 1.1 riastrad * truncated, schedule a softint to stir the pool and stop.
949 1.1 riastrad */
950 1.1 riastrad if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
951 1.37 riastrad sih = atomic_load_relaxed(&entropy_sih);
952 1.37 riastrad if (__predict_true(sih != NULL))
953 1.37 riastrad softint_schedule(sih);
954 1.40 riastrad ec->ec_evcnt->intrtrunc.ev_count++;
955 1.1 riastrad goto out1;
956 1.1 riastrad }
957 1.1 riastrad fullyused = true;
958 1.1 riastrad
959 1.1 riastrad /* Count up what we can contribute. */
960 1.1 riastrad pending = ec->ec_pending;
961 1.1 riastrad pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
962 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, pending);
963 1.1 riastrad
964 1.1 riastrad /* Schedule a softint if we added anything and it matters. */
965 1.1 riastrad if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
966 1.1 riastrad atomic_load_relaxed(&entropy_depletion)) &&
967 1.37 riastrad nbits != 0) {
968 1.37 riastrad sih = atomic_load_relaxed(&entropy_sih);
969 1.37 riastrad if (__predict_true(sih != NULL))
970 1.37 riastrad softint_schedule(sih);
971 1.37 riastrad }
972 1.1 riastrad
973 1.1 riastrad out1: /* Release the per-CPU state. */
974 1.1 riastrad KASSERT(ec->ec_locked);
975 1.1 riastrad __insn_barrier();
976 1.1 riastrad ec->ec_locked = false;
977 1.1 riastrad out0: percpu_putref(entropy_percpu);
978 1.1 riastrad
979 1.1 riastrad return fullyused;
980 1.1 riastrad }
981 1.1 riastrad
982 1.1 riastrad /*
983 1.1 riastrad * entropy_softintr(cookie)
984 1.1 riastrad *
985 1.1 riastrad * Soft interrupt handler for entering entropy. Takes care of
986 1.1 riastrad * stirring the local CPU's entropy pool if it filled up during
987 1.1 riastrad * hard interrupts, and promptly crediting entropy from the local
988 1.1 riastrad * CPU's entropy pool to the global entropy pool if needed.
989 1.1 riastrad */
990 1.1 riastrad static void
991 1.1 riastrad entropy_softintr(void *cookie)
992 1.1 riastrad {
993 1.43 riastrad struct entropy_cpu_lock lock;
994 1.1 riastrad struct entropy_cpu *ec;
995 1.42 riastrad unsigned pending;
996 1.1 riastrad
997 1.1 riastrad /*
998 1.43 riastrad * With the per-CPU state locked, stir the pool if necessary
999 1.43 riastrad * and determine if there's any pending entropy on this CPU to
1000 1.43 riastrad * account globally.
1001 1.1 riastrad */
1002 1.43 riastrad ec = entropy_cpu_get(&lock);
1003 1.40 riastrad ec->ec_evcnt->softint.ev_count++;
1004 1.1 riastrad entpool_stir(ec->ec_pool);
1005 1.42 riastrad pending = ec->ec_pending;
1006 1.43 riastrad entropy_cpu_put(&lock, ec);
1007 1.42 riastrad
1008 1.42 riastrad /* Consolidate globally if appropriate based on what we added. */
1009 1.42 riastrad if (pending)
1010 1.42 riastrad entropy_account_cpu(ec);
1011 1.1 riastrad }
1012 1.1 riastrad
1013 1.1 riastrad /*
1014 1.1 riastrad * entropy_thread(cookie)
1015 1.1 riastrad *
1016 1.1 riastrad * Handle any asynchronous entropy housekeeping.
1017 1.1 riastrad */
1018 1.1 riastrad static void
1019 1.1 riastrad entropy_thread(void *cookie)
1020 1.1 riastrad {
1021 1.3 riastrad bool consolidate;
1022 1.1 riastrad
1023 1.1 riastrad for (;;) {
1024 1.1 riastrad /*
1025 1.3 riastrad * Wait until there's full entropy somewhere among the
1026 1.3 riastrad * CPUs, as confirmed at most once per minute, or
1027 1.3 riastrad * someone wants to consolidate.
1028 1.1 riastrad */
1029 1.3 riastrad if (entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
1030 1.3 riastrad consolidate = true;
1031 1.3 riastrad } else {
1032 1.3 riastrad mutex_enter(&E->lock);
1033 1.3 riastrad if (!E->consolidate)
1034 1.3 riastrad cv_timedwait(&E->cv, &E->lock, 60*hz);
1035 1.3 riastrad consolidate = E->consolidate;
1036 1.3 riastrad E->consolidate = false;
1037 1.3 riastrad mutex_exit(&E->lock);
1038 1.1 riastrad }
1039 1.1 riastrad
1040 1.3 riastrad if (consolidate) {
1041 1.3 riastrad /* Do it. */
1042 1.13 riastrad entropy_do_consolidate();
1043 1.1 riastrad
1044 1.3 riastrad /* Mitigate abuse. */
1045 1.3 riastrad kpause("entropy", false, hz, NULL);
1046 1.3 riastrad }
1047 1.1 riastrad }
1048 1.1 riastrad }
1049 1.1 riastrad
1050 1.1 riastrad /*
1051 1.1 riastrad * entropy_pending()
1052 1.1 riastrad *
1053 1.1 riastrad * Count up the amount of entropy pending on other CPUs.
1054 1.1 riastrad */
1055 1.1 riastrad static uint32_t
1056 1.1 riastrad entropy_pending(void)
1057 1.1 riastrad {
1058 1.1 riastrad uint32_t pending = 0;
1059 1.1 riastrad
1060 1.1 riastrad percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
1061 1.1 riastrad return pending;
1062 1.1 riastrad }
1063 1.1 riastrad
1064 1.1 riastrad static void
1065 1.1 riastrad entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
1066 1.1 riastrad {
1067 1.1 riastrad struct entropy_cpu *ec = ptr;
1068 1.1 riastrad uint32_t *pendingp = cookie;
1069 1.1 riastrad uint32_t cpu_pending;
1070 1.1 riastrad
1071 1.1 riastrad cpu_pending = atomic_load_relaxed(&ec->ec_pending);
1072 1.1 riastrad *pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
1073 1.1 riastrad }
1074 1.1 riastrad
1075 1.1 riastrad /*
1076 1.13 riastrad * entropy_do_consolidate()
1077 1.1 riastrad *
1078 1.1 riastrad * Issue a cross-call to gather entropy on all CPUs and advance
1079 1.1 riastrad * the entropy epoch.
1080 1.1 riastrad */
1081 1.1 riastrad static void
1082 1.13 riastrad entropy_do_consolidate(void)
1083 1.1 riastrad {
1084 1.1 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1085 1.1 riastrad static struct timeval lasttime; /* serialized by E->lock */
1086 1.19 riastrad struct entpool pool;
1087 1.19 riastrad uint8_t buf[ENTPOOL_CAPACITY];
1088 1.1 riastrad unsigned diff;
1089 1.1 riastrad uint64_t ticket;
1090 1.1 riastrad
1091 1.19 riastrad /* Gather entropy on all CPUs into a temporary pool. */
1092 1.19 riastrad memset(&pool, 0, sizeof pool);
1093 1.19 riastrad ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
1094 1.1 riastrad xc_wait(ticket);
1095 1.1 riastrad
1096 1.1 riastrad /* Acquire the lock to notify waiters. */
1097 1.1 riastrad mutex_enter(&E->lock);
1098 1.1 riastrad
1099 1.1 riastrad /* Count another consolidation. */
1100 1.1 riastrad entropy_consolidate_evcnt.ev_count++;
1101 1.1 riastrad
1102 1.1 riastrad /* Note when we last consolidated, i.e. now. */
1103 1.1 riastrad E->timestamp = time_uptime;
1104 1.1 riastrad
1105 1.19 riastrad /* Mix what we gathered into the global pool. */
1106 1.19 riastrad entpool_extract(&pool, buf, sizeof buf);
1107 1.19 riastrad entpool_enter(&E->pool, buf, sizeof buf);
1108 1.19 riastrad explicit_memset(&pool, 0, sizeof pool);
1109 1.19 riastrad
1110 1.1 riastrad /* Count the entropy that was gathered. */
1111 1.1 riastrad diff = MIN(E->needed, E->pending);
1112 1.1 riastrad atomic_store_relaxed(&E->needed, E->needed - diff);
1113 1.1 riastrad E->pending -= diff;
1114 1.1 riastrad if (__predict_false(E->needed > 0)) {
1115 1.50 riastrad if ((boothowto & AB_DEBUG) != 0 &&
1116 1.50 riastrad ratecheck(&lasttime, &interval)) {
1117 1.50 riastrad printf("WARNING:"
1118 1.1 riastrad " consolidating less than full entropy\n");
1119 1.30 jmcneill }
1120 1.1 riastrad }
1121 1.1 riastrad
1122 1.1 riastrad /* Advance the epoch and notify waiters. */
1123 1.1 riastrad entropy_notify();
1124 1.1 riastrad
1125 1.1 riastrad /* Release the lock. */
1126 1.1 riastrad mutex_exit(&E->lock);
1127 1.1 riastrad }
1128 1.1 riastrad
1129 1.1 riastrad /*
1130 1.20 riastrad * entropy_consolidate_xc(vpool, arg2)
1131 1.1 riastrad *
1132 1.1 riastrad * Extract output from the local CPU's input pool and enter it
1133 1.20 riastrad * into a temporary pool passed as vpool.
1134 1.1 riastrad */
1135 1.1 riastrad static void
1136 1.19 riastrad entropy_consolidate_xc(void *vpool, void *arg2 __unused)
1137 1.1 riastrad {
1138 1.19 riastrad struct entpool *pool = vpool;
1139 1.43 riastrad struct entropy_cpu_lock lock;
1140 1.1 riastrad struct entropy_cpu *ec;
1141 1.1 riastrad uint8_t buf[ENTPOOL_CAPACITY];
1142 1.1 riastrad uint32_t extra[7];
1143 1.1 riastrad unsigned i = 0;
1144 1.1 riastrad
1145 1.1 riastrad /* Grab CPU number and cycle counter to mix extra into the pool. */
1146 1.1 riastrad extra[i++] = cpu_number();
1147 1.1 riastrad extra[i++] = entropy_timer();
1148 1.1 riastrad
1149 1.1 riastrad /*
1150 1.43 riastrad * With the per-CPU state locked, extract from the per-CPU pool
1151 1.43 riastrad * and count it as no longer pending.
1152 1.1 riastrad */
1153 1.43 riastrad ec = entropy_cpu_get(&lock);
1154 1.1 riastrad extra[i++] = entropy_timer();
1155 1.1 riastrad entpool_extract(ec->ec_pool, buf, sizeof buf);
1156 1.12 riastrad atomic_store_relaxed(&ec->ec_pending, 0);
1157 1.1 riastrad extra[i++] = entropy_timer();
1158 1.43 riastrad entropy_cpu_put(&lock, ec);
1159 1.1 riastrad extra[i++] = entropy_timer();
1160 1.1 riastrad
1161 1.1 riastrad /*
1162 1.1 riastrad * Copy over statistics, and enter the per-CPU extract and the
1163 1.19 riastrad * extra timing into the temporary pool, under the global lock.
1164 1.1 riastrad */
1165 1.1 riastrad mutex_enter(&E->lock);
1166 1.1 riastrad extra[i++] = entropy_timer();
1167 1.19 riastrad entpool_enter(pool, buf, sizeof buf);
1168 1.1 riastrad explicit_memset(buf, 0, sizeof buf);
1169 1.1 riastrad extra[i++] = entropy_timer();
1170 1.1 riastrad KASSERT(i == __arraycount(extra));
1171 1.19 riastrad entpool_enter(pool, extra, sizeof extra);
1172 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
1173 1.1 riastrad mutex_exit(&E->lock);
1174 1.1 riastrad }
1175 1.1 riastrad
1176 1.1 riastrad /*
1177 1.1 riastrad * entropy_notify()
1178 1.1 riastrad *
1179 1.1 riastrad * Caller just contributed entropy to the global pool. Advance
1180 1.1 riastrad * the entropy epoch and notify waiters.
1181 1.1 riastrad *
1182 1.1 riastrad * Caller must hold the global entropy lock. Except for the
1183 1.1 riastrad * `sysctl -w kern.entropy.consolidate=1` trigger, the caller must
1184 1.1 riastrad * have just have transitioned from partial entropy to full
1185 1.1 riastrad * entropy -- E->needed should be zero now.
1186 1.1 riastrad */
1187 1.1 riastrad static void
1188 1.1 riastrad entropy_notify(void)
1189 1.1 riastrad {
1190 1.12 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1191 1.12 riastrad static struct timeval lasttime; /* serialized by E->lock */
1192 1.1 riastrad unsigned epoch;
1193 1.1 riastrad
1194 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1195 1.1 riastrad
1196 1.1 riastrad /*
1197 1.1 riastrad * If this is the first time, print a message to the console
1198 1.1 riastrad * that we're ready so operators can compare it to the timing
1199 1.1 riastrad * of other events.
1200 1.1 riastrad */
1201 1.41 riastrad if (__predict_false(E->epoch == (unsigned)-1) && E->needed == 0)
1202 1.1 riastrad printf("entropy: ready\n");
1203 1.1 riastrad
1204 1.1 riastrad /* Set the epoch; roll over from UINTMAX-1 to 1. */
1205 1.12 riastrad if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
1206 1.12 riastrad ratecheck(&lasttime, &interval)) {
1207 1.12 riastrad epoch = E->epoch + 1;
1208 1.12 riastrad if (epoch == 0 || epoch == (unsigned)-1)
1209 1.12 riastrad epoch = 1;
1210 1.12 riastrad atomic_store_relaxed(&E->epoch, epoch);
1211 1.12 riastrad }
1212 1.41 riastrad KASSERT(E->epoch != (unsigned)-1);
1213 1.1 riastrad
1214 1.1 riastrad /* Notify waiters. */
1215 1.1 riastrad if (E->stage >= ENTROPY_WARM) {
1216 1.1 riastrad cv_broadcast(&E->cv);
1217 1.1 riastrad selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
1218 1.1 riastrad }
1219 1.1 riastrad
1220 1.1 riastrad /* Count another notification. */
1221 1.1 riastrad entropy_notify_evcnt.ev_count++;
1222 1.1 riastrad }
1223 1.1 riastrad
1224 1.1 riastrad /*
1225 1.13 riastrad * entropy_consolidate()
1226 1.13 riastrad *
1227 1.13 riastrad * Trigger entropy consolidation and wait for it to complete.
1228 1.13 riastrad *
1229 1.13 riastrad * This should be used sparingly, not periodically -- requiring
1230 1.13 riastrad * conscious intervention by the operator or a clear policy
1231 1.13 riastrad * decision. Otherwise, the kernel will automatically consolidate
1232 1.13 riastrad * when enough entropy has been gathered into per-CPU pools to
1233 1.13 riastrad * transition to full entropy.
1234 1.13 riastrad */
1235 1.13 riastrad void
1236 1.13 riastrad entropy_consolidate(void)
1237 1.13 riastrad {
1238 1.13 riastrad uint64_t ticket;
1239 1.13 riastrad int error;
1240 1.13 riastrad
1241 1.13 riastrad KASSERT(E->stage == ENTROPY_HOT);
1242 1.13 riastrad
1243 1.13 riastrad mutex_enter(&E->lock);
1244 1.13 riastrad ticket = entropy_consolidate_evcnt.ev_count;
1245 1.13 riastrad E->consolidate = true;
1246 1.13 riastrad cv_broadcast(&E->cv);
1247 1.13 riastrad while (ticket == entropy_consolidate_evcnt.ev_count) {
1248 1.13 riastrad error = cv_wait_sig(&E->cv, &E->lock);
1249 1.13 riastrad if (error)
1250 1.13 riastrad break;
1251 1.13 riastrad }
1252 1.13 riastrad mutex_exit(&E->lock);
1253 1.13 riastrad }
1254 1.13 riastrad
1255 1.13 riastrad /*
1256 1.1 riastrad * sysctl -w kern.entropy.consolidate=1
1257 1.1 riastrad *
1258 1.1 riastrad * Trigger entropy consolidation and wait for it to complete.
1259 1.13 riastrad * Writable only by superuser. This, writing to /dev/random, and
1260 1.13 riastrad * ioctl(RNDADDDATA) are the only ways for the system to
1261 1.13 riastrad * consolidate entropy if the operator knows something the kernel
1262 1.13 riastrad * doesn't about how unpredictable the pending entropy pools are.
1263 1.1 riastrad */
1264 1.1 riastrad static int
1265 1.1 riastrad sysctl_entropy_consolidate(SYSCTLFN_ARGS)
1266 1.1 riastrad {
1267 1.1 riastrad struct sysctlnode node = *rnode;
1268 1.1 riastrad int arg;
1269 1.1 riastrad int error;
1270 1.1 riastrad
1271 1.1 riastrad KASSERT(E->stage == ENTROPY_HOT);
1272 1.1 riastrad
1273 1.1 riastrad node.sysctl_data = &arg;
1274 1.1 riastrad error = sysctl_lookup(SYSCTLFN_CALL(&node));
1275 1.1 riastrad if (error || newp == NULL)
1276 1.1 riastrad return error;
1277 1.13 riastrad if (arg)
1278 1.13 riastrad entropy_consolidate();
1279 1.1 riastrad
1280 1.1 riastrad return error;
1281 1.1 riastrad }
1282 1.1 riastrad
1283 1.1 riastrad /*
1284 1.10 riastrad * sysctl -w kern.entropy.gather=1
1285 1.10 riastrad *
1286 1.10 riastrad * Trigger gathering entropy from all on-demand sources, and wait
1287 1.10 riastrad * for synchronous sources (but not asynchronous sources) to
1288 1.10 riastrad * complete. Writable only by superuser.
1289 1.10 riastrad */
1290 1.10 riastrad static int
1291 1.10 riastrad sysctl_entropy_gather(SYSCTLFN_ARGS)
1292 1.10 riastrad {
1293 1.10 riastrad struct sysctlnode node = *rnode;
1294 1.10 riastrad int arg;
1295 1.10 riastrad int error;
1296 1.10 riastrad
1297 1.10 riastrad KASSERT(E->stage == ENTROPY_HOT);
1298 1.10 riastrad
1299 1.10 riastrad node.sysctl_data = &arg;
1300 1.10 riastrad error = sysctl_lookup(SYSCTLFN_CALL(&node));
1301 1.10 riastrad if (error || newp == NULL)
1302 1.10 riastrad return error;
1303 1.10 riastrad if (arg) {
1304 1.10 riastrad mutex_enter(&E->lock);
1305 1.49 riastrad error = entropy_request(ENTROPY_CAPACITY,
1306 1.49 riastrad ENTROPY_WAIT|ENTROPY_SIG);
1307 1.10 riastrad mutex_exit(&E->lock);
1308 1.10 riastrad }
1309 1.10 riastrad
1310 1.10 riastrad return 0;
1311 1.10 riastrad }
1312 1.10 riastrad
1313 1.10 riastrad /*
1314 1.1 riastrad * entropy_extract(buf, len, flags)
1315 1.1 riastrad *
1316 1.1 riastrad * Extract len bytes from the global entropy pool into buf.
1317 1.1 riastrad *
1318 1.1 riastrad * Flags may have:
1319 1.1 riastrad *
1320 1.1 riastrad * ENTROPY_WAIT Wait for entropy if not available yet.
1321 1.1 riastrad * ENTROPY_SIG Allow interruption by a signal during wait.
1322 1.23 riastrad * ENTROPY_HARDFAIL Either fill the buffer with full entropy,
1323 1.23 riastrad * or fail without filling it at all.
1324 1.1 riastrad *
1325 1.1 riastrad * Return zero on success, or error on failure:
1326 1.1 riastrad *
1327 1.1 riastrad * EWOULDBLOCK No entropy and ENTROPY_WAIT not set.
1328 1.1 riastrad * EINTR/ERESTART No entropy, ENTROPY_SIG set, and interrupted.
1329 1.1 riastrad *
1330 1.1 riastrad * If ENTROPY_WAIT is set, allowed only in thread context. If
1331 1.1 riastrad * ENTROPY_WAIT is not set, allowed up to IPL_VM. (XXX That's
1332 1.1 riastrad * awfully high... Do we really need it in hard interrupts? This
1333 1.1 riastrad * arises from use of cprng_strong(9).)
1334 1.1 riastrad */
1335 1.1 riastrad int
1336 1.1 riastrad entropy_extract(void *buf, size_t len, int flags)
1337 1.1 riastrad {
1338 1.1 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1339 1.1 riastrad static struct timeval lasttime; /* serialized by E->lock */
1340 1.1 riastrad int error;
1341 1.1 riastrad
1342 1.1 riastrad if (ISSET(flags, ENTROPY_WAIT)) {
1343 1.1 riastrad ASSERT_SLEEPABLE();
1344 1.1 riastrad KASSERTMSG(E->stage >= ENTROPY_WARM,
1345 1.1 riastrad "can't wait for entropy until warm");
1346 1.1 riastrad }
1347 1.1 riastrad
1348 1.35 riastrad /* Refuse to operate in interrupt context. */
1349 1.35 riastrad KASSERT(!cpu_intr_p());
1350 1.35 riastrad
1351 1.1 riastrad /* Acquire the global lock to get at the global pool. */
1352 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1353 1.1 riastrad mutex_enter(&E->lock);
1354 1.1 riastrad
1355 1.1 riastrad /* Wait until there is enough entropy in the system. */
1356 1.1 riastrad error = 0;
1357 1.1 riastrad while (E->needed) {
1358 1.1 riastrad /* Ask for more, synchronously if possible. */
1359 1.49 riastrad error = entropy_request(len, flags);
1360 1.49 riastrad if (error)
1361 1.49 riastrad break;
1362 1.1 riastrad
1363 1.1 riastrad /* If we got enough, we're done. */
1364 1.1 riastrad if (E->needed == 0) {
1365 1.1 riastrad KASSERT(error == 0);
1366 1.1 riastrad break;
1367 1.1 riastrad }
1368 1.1 riastrad
1369 1.1 riastrad /* If not waiting, stop here. */
1370 1.1 riastrad if (!ISSET(flags, ENTROPY_WAIT)) {
1371 1.1 riastrad error = EWOULDBLOCK;
1372 1.1 riastrad break;
1373 1.1 riastrad }
1374 1.1 riastrad
1375 1.1 riastrad /* Wait for some entropy to come in and try again. */
1376 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1377 1.24 gson printf("entropy: pid %d (%s) blocking due to lack of entropy\n",
1378 1.24 gson curproc->p_pid, curproc->p_comm);
1379 1.24 gson
1380 1.1 riastrad if (ISSET(flags, ENTROPY_SIG)) {
1381 1.1 riastrad error = cv_wait_sig(&E->cv, &E->lock);
1382 1.1 riastrad if (error)
1383 1.1 riastrad break;
1384 1.1 riastrad } else {
1385 1.1 riastrad cv_wait(&E->cv, &E->lock);
1386 1.1 riastrad }
1387 1.1 riastrad }
1388 1.1 riastrad
1389 1.23 riastrad /*
1390 1.23 riastrad * Count failure -- but fill the buffer nevertheless, unless
1391 1.23 riastrad * the caller specified ENTROPY_HARDFAIL.
1392 1.23 riastrad */
1393 1.23 riastrad if (error) {
1394 1.23 riastrad if (ISSET(flags, ENTROPY_HARDFAIL))
1395 1.23 riastrad goto out;
1396 1.1 riastrad entropy_extract_fail_evcnt.ev_count++;
1397 1.23 riastrad }
1398 1.1 riastrad
1399 1.1 riastrad /*
1400 1.1 riastrad * Report a warning if we have never yet reached full entropy.
1401 1.1 riastrad * This is the only case where we consider entropy to be
1402 1.1 riastrad * `depleted' without kern.entropy.depletion enabled -- when we
1403 1.1 riastrad * only have partial entropy, an adversary may be able to
1404 1.1 riastrad * narrow the state of the pool down to a small number of
1405 1.1 riastrad * possibilities; the output then enables them to confirm a
1406 1.1 riastrad * guess, reducing its entropy from the adversary's perspective
1407 1.1 riastrad * to zero.
1408 1.1 riastrad */
1409 1.1 riastrad if (__predict_false(E->epoch == (unsigned)-1)) {
1410 1.1 riastrad if (ratecheck(&lasttime, &interval))
1411 1.50 riastrad printf("WARNING:"
1412 1.50 riastrad " system needs entropy for security;"
1413 1.50 riastrad " see entropy(7)\n");
1414 1.1 riastrad atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
1415 1.1 riastrad }
1416 1.1 riastrad
1417 1.1 riastrad /* Extract data from the pool, and `deplete' if we're doing that. */
1418 1.1 riastrad entpool_extract(&E->pool, buf, len);
1419 1.1 riastrad if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
1420 1.1 riastrad error == 0) {
1421 1.1 riastrad unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
1422 1.1 riastrad
1423 1.1 riastrad atomic_store_relaxed(&E->needed,
1424 1.1 riastrad E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
1425 1.1 riastrad entropy_deplete_evcnt.ev_count++;
1426 1.1 riastrad }
1427 1.1 riastrad
1428 1.23 riastrad out: /* Release the global lock and return the error. */
1429 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1430 1.1 riastrad mutex_exit(&E->lock);
1431 1.1 riastrad return error;
1432 1.1 riastrad }
1433 1.1 riastrad
1434 1.1 riastrad /*
1435 1.1 riastrad * entropy_poll(events)
1436 1.1 riastrad *
1437 1.1 riastrad * Return the subset of events ready, and if it is not all of
1438 1.1 riastrad * events, record curlwp as waiting for entropy.
1439 1.1 riastrad */
1440 1.1 riastrad int
1441 1.1 riastrad entropy_poll(int events)
1442 1.1 riastrad {
1443 1.1 riastrad int revents = 0;
1444 1.1 riastrad
1445 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1446 1.1 riastrad
1447 1.1 riastrad /* Always ready for writing. */
1448 1.1 riastrad revents |= events & (POLLOUT|POLLWRNORM);
1449 1.1 riastrad
1450 1.1 riastrad /* Narrow it down to reads. */
1451 1.1 riastrad events &= POLLIN|POLLRDNORM;
1452 1.1 riastrad if (events == 0)
1453 1.1 riastrad return revents;
1454 1.1 riastrad
1455 1.1 riastrad /*
1456 1.1 riastrad * If we have reached full entropy and we're not depleting
1457 1.1 riastrad * entropy, we are forever ready.
1458 1.1 riastrad */
1459 1.1 riastrad if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
1460 1.1 riastrad __predict_true(!atomic_load_relaxed(&entropy_depletion)))
1461 1.1 riastrad return revents | events;
1462 1.1 riastrad
1463 1.1 riastrad /*
1464 1.1 riastrad * Otherwise, check whether we need entropy under the lock. If
1465 1.1 riastrad * we don't, we're ready; if we do, add ourselves to the queue.
1466 1.1 riastrad */
1467 1.1 riastrad mutex_enter(&E->lock);
1468 1.1 riastrad if (E->needed == 0)
1469 1.1 riastrad revents |= events;
1470 1.1 riastrad else
1471 1.1 riastrad selrecord(curlwp, &E->selq);
1472 1.1 riastrad mutex_exit(&E->lock);
1473 1.1 riastrad
1474 1.1 riastrad return revents;
1475 1.1 riastrad }
1476 1.1 riastrad
1477 1.1 riastrad /*
1478 1.1 riastrad * filt_entropy_read_detach(kn)
1479 1.1 riastrad *
1480 1.1 riastrad * struct filterops::f_detach callback for entropy read events:
1481 1.1 riastrad * remove kn from the list of waiters.
1482 1.1 riastrad */
1483 1.1 riastrad static void
1484 1.1 riastrad filt_entropy_read_detach(struct knote *kn)
1485 1.1 riastrad {
1486 1.1 riastrad
1487 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1488 1.1 riastrad
1489 1.1 riastrad mutex_enter(&E->lock);
1490 1.25 thorpej selremove_knote(&E->selq, kn);
1491 1.1 riastrad mutex_exit(&E->lock);
1492 1.1 riastrad }
1493 1.1 riastrad
1494 1.1 riastrad /*
1495 1.1 riastrad * filt_entropy_read_event(kn, hint)
1496 1.1 riastrad *
1497 1.1 riastrad * struct filterops::f_event callback for entropy read events:
1498 1.1 riastrad * poll for entropy. Caller must hold the global entropy lock if
1499 1.1 riastrad * hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
1500 1.1 riastrad */
1501 1.1 riastrad static int
1502 1.1 riastrad filt_entropy_read_event(struct knote *kn, long hint)
1503 1.1 riastrad {
1504 1.1 riastrad int ret;
1505 1.1 riastrad
1506 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1507 1.1 riastrad
1508 1.1 riastrad /* Acquire the lock, if caller is outside entropy subsystem. */
1509 1.1 riastrad if (hint == NOTE_SUBMIT)
1510 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1511 1.1 riastrad else
1512 1.1 riastrad mutex_enter(&E->lock);
1513 1.1 riastrad
1514 1.1 riastrad /*
1515 1.1 riastrad * If we still need entropy, can't read anything; if not, can
1516 1.1 riastrad * read arbitrarily much.
1517 1.1 riastrad */
1518 1.1 riastrad if (E->needed != 0) {
1519 1.1 riastrad ret = 0;
1520 1.1 riastrad } else {
1521 1.1 riastrad if (atomic_load_relaxed(&entropy_depletion))
1522 1.1 riastrad kn->kn_data = ENTROPY_CAPACITY*NBBY;
1523 1.1 riastrad else
1524 1.1 riastrad kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
1525 1.1 riastrad ret = 1;
1526 1.1 riastrad }
1527 1.1 riastrad
1528 1.1 riastrad /* Release the lock, if caller is outside entropy subsystem. */
1529 1.1 riastrad if (hint == NOTE_SUBMIT)
1530 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1531 1.1 riastrad else
1532 1.1 riastrad mutex_exit(&E->lock);
1533 1.1 riastrad
1534 1.1 riastrad return ret;
1535 1.1 riastrad }
1536 1.1 riastrad
1537 1.33 thorpej /* XXX Makes sense only for /dev/u?random. */
1538 1.1 riastrad static const struct filterops entropy_read_filtops = {
1539 1.33 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1540 1.1 riastrad .f_attach = NULL,
1541 1.1 riastrad .f_detach = filt_entropy_read_detach,
1542 1.1 riastrad .f_event = filt_entropy_read_event,
1543 1.1 riastrad };
1544 1.1 riastrad
1545 1.1 riastrad /*
1546 1.1 riastrad * entropy_kqfilter(kn)
1547 1.1 riastrad *
1548 1.1 riastrad * Register kn to receive entropy event notifications. May be
1549 1.1 riastrad * EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
1550 1.1 riastrad */
1551 1.1 riastrad int
1552 1.1 riastrad entropy_kqfilter(struct knote *kn)
1553 1.1 riastrad {
1554 1.1 riastrad
1555 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1556 1.1 riastrad
1557 1.1 riastrad switch (kn->kn_filter) {
1558 1.1 riastrad case EVFILT_READ:
1559 1.1 riastrad /* Enter into the global select queue. */
1560 1.1 riastrad mutex_enter(&E->lock);
1561 1.1 riastrad kn->kn_fop = &entropy_read_filtops;
1562 1.25 thorpej selrecord_knote(&E->selq, kn);
1563 1.1 riastrad mutex_exit(&E->lock);
1564 1.1 riastrad return 0;
1565 1.1 riastrad case EVFILT_WRITE:
1566 1.1 riastrad /* Can always dump entropy into the system. */
1567 1.1 riastrad kn->kn_fop = &seltrue_filtops;
1568 1.1 riastrad return 0;
1569 1.1 riastrad default:
1570 1.1 riastrad return EINVAL;
1571 1.1 riastrad }
1572 1.1 riastrad }
1573 1.1 riastrad
1574 1.1 riastrad /*
1575 1.1 riastrad * rndsource_setcb(rs, get, getarg)
1576 1.1 riastrad *
1577 1.1 riastrad * Set the request callback for the entropy source rs, if it can
1578 1.1 riastrad * provide entropy on demand. Must precede rnd_attach_source.
1579 1.1 riastrad */
1580 1.1 riastrad void
1581 1.1 riastrad rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
1582 1.1 riastrad void *getarg)
1583 1.1 riastrad {
1584 1.1 riastrad
1585 1.1 riastrad rs->get = get;
1586 1.1 riastrad rs->getarg = getarg;
1587 1.1 riastrad }
1588 1.1 riastrad
1589 1.1 riastrad /*
1590 1.1 riastrad * rnd_attach_source(rs, name, type, flags)
1591 1.1 riastrad *
1592 1.1 riastrad * Attach the entropy source rs. Must be done after
1593 1.1 riastrad * rndsource_setcb, if any, and before any calls to rnd_add_data.
1594 1.1 riastrad */
1595 1.1 riastrad void
1596 1.1 riastrad rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
1597 1.1 riastrad uint32_t flags)
1598 1.1 riastrad {
1599 1.1 riastrad uint32_t extra[4];
1600 1.1 riastrad unsigned i = 0;
1601 1.1 riastrad
1602 1.1 riastrad /* Grab cycle counter to mix extra into the pool. */
1603 1.1 riastrad extra[i++] = entropy_timer();
1604 1.1 riastrad
1605 1.1 riastrad /*
1606 1.1 riastrad * Apply some standard flags:
1607 1.1 riastrad *
1608 1.1 riastrad * - We do not bother with network devices by default, for
1609 1.1 riastrad * hysterical raisins (perhaps: because it is often the case
1610 1.1 riastrad * that an adversary can influence network packet timings).
1611 1.1 riastrad */
1612 1.1 riastrad switch (type) {
1613 1.1 riastrad case RND_TYPE_NET:
1614 1.1 riastrad flags |= RND_FLAG_NO_COLLECT;
1615 1.1 riastrad break;
1616 1.1 riastrad }
1617 1.1 riastrad
1618 1.1 riastrad /* Sanity-check the callback if RND_FLAG_HASCB is set. */
1619 1.1 riastrad KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
1620 1.1 riastrad
1621 1.1 riastrad /* Initialize the random source. */
1622 1.1 riastrad memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
1623 1.1 riastrad strlcpy(rs->name, name, sizeof(rs->name));
1624 1.28 riastrad memset(&rs->time_delta, 0, sizeof(rs->time_delta));
1625 1.28 riastrad memset(&rs->value_delta, 0, sizeof(rs->value_delta));
1626 1.9 riastrad rs->total = 0;
1627 1.1 riastrad rs->type = type;
1628 1.1 riastrad rs->flags = flags;
1629 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1630 1.1 riastrad rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
1631 1.1 riastrad extra[i++] = entropy_timer();
1632 1.1 riastrad
1633 1.1 riastrad /* Wire it into the global list of random sources. */
1634 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1635 1.1 riastrad mutex_enter(&E->lock);
1636 1.1 riastrad LIST_INSERT_HEAD(&E->sources, rs, list);
1637 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1638 1.1 riastrad mutex_exit(&E->lock);
1639 1.1 riastrad extra[i++] = entropy_timer();
1640 1.1 riastrad
1641 1.1 riastrad /* Request that it provide entropy ASAP, if we can. */
1642 1.1 riastrad if (ISSET(flags, RND_FLAG_HASCB))
1643 1.1 riastrad (*rs->get)(ENTROPY_CAPACITY, rs->getarg);
1644 1.1 riastrad extra[i++] = entropy_timer();
1645 1.1 riastrad
1646 1.1 riastrad /* Mix the extra into the pool. */
1647 1.1 riastrad KASSERT(i == __arraycount(extra));
1648 1.1 riastrad entropy_enter(extra, sizeof extra, 0);
1649 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
1650 1.1 riastrad }
1651 1.1 riastrad
1652 1.1 riastrad /*
1653 1.1 riastrad * rnd_detach_source(rs)
1654 1.1 riastrad *
1655 1.1 riastrad * Detach the entropy source rs. May sleep waiting for users to
1656 1.1 riastrad * drain. Further use is not allowed.
1657 1.1 riastrad */
1658 1.1 riastrad void
1659 1.1 riastrad rnd_detach_source(struct krndsource *rs)
1660 1.1 riastrad {
1661 1.1 riastrad
1662 1.1 riastrad /*
1663 1.1 riastrad * If we're cold (shouldn't happen, but hey), just remove it
1664 1.1 riastrad * from the list -- there's nothing allocated.
1665 1.1 riastrad */
1666 1.1 riastrad if (E->stage == ENTROPY_COLD) {
1667 1.1 riastrad LIST_REMOVE(rs, list);
1668 1.1 riastrad return;
1669 1.1 riastrad }
1670 1.1 riastrad
1671 1.1 riastrad /* We may have to wait for entropy_request. */
1672 1.1 riastrad ASSERT_SLEEPABLE();
1673 1.1 riastrad
1674 1.4 riastrad /* Wait until the source list is not in use, and remove it. */
1675 1.1 riastrad mutex_enter(&E->lock);
1676 1.4 riastrad while (E->sourcelock)
1677 1.27 riastrad cv_wait(&E->sourcelock_cv, &E->lock);
1678 1.1 riastrad LIST_REMOVE(rs, list);
1679 1.1 riastrad mutex_exit(&E->lock);
1680 1.1 riastrad
1681 1.1 riastrad /* Free the per-CPU data. */
1682 1.1 riastrad percpu_free(rs->state, sizeof(struct rndsource_cpu));
1683 1.1 riastrad }
1684 1.1 riastrad
1685 1.1 riastrad /*
1686 1.49 riastrad * rnd_lock_sources(flags)
1687 1.49 riastrad *
1688 1.49 riastrad * Lock the list of entropy sources. Caller must hold the global
1689 1.49 riastrad * entropy lock. If successful, no rndsource will go away until
1690 1.49 riastrad * rnd_unlock_sources even while the caller releases the global
1691 1.49 riastrad * entropy lock.
1692 1.4 riastrad *
1693 1.49 riastrad * If flags & ENTROPY_WAIT, wait for concurrent access to finish.
1694 1.49 riastrad * If flags & ENTROPY_SIG, allow interruption by signal.
1695 1.4 riastrad */
1696 1.49 riastrad static int __attribute__((warn_unused_result))
1697 1.49 riastrad rnd_lock_sources(int flags)
1698 1.4 riastrad {
1699 1.4 riastrad int error;
1700 1.4 riastrad
1701 1.51 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1702 1.4 riastrad
1703 1.4 riastrad while (E->sourcelock) {
1704 1.51 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1705 1.49 riastrad if (!ISSET(flags, ENTROPY_WAIT))
1706 1.49 riastrad return EWOULDBLOCK;
1707 1.49 riastrad if (ISSET(flags, ENTROPY_SIG)) {
1708 1.49 riastrad error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
1709 1.49 riastrad if (error)
1710 1.49 riastrad return error;
1711 1.49 riastrad } else {
1712 1.49 riastrad cv_wait(&E->sourcelock_cv, &E->lock);
1713 1.49 riastrad }
1714 1.4 riastrad }
1715 1.4 riastrad
1716 1.4 riastrad E->sourcelock = curlwp;
1717 1.4 riastrad return 0;
1718 1.4 riastrad }
1719 1.4 riastrad
1720 1.4 riastrad /*
1721 1.4 riastrad * rnd_unlock_sources()
1722 1.4 riastrad *
1723 1.49 riastrad * Unlock the list of sources after rnd_lock_sources. Caller must
1724 1.49 riastrad * hold the global entropy lock.
1725 1.4 riastrad */
1726 1.4 riastrad static void
1727 1.4 riastrad rnd_unlock_sources(void)
1728 1.4 riastrad {
1729 1.4 riastrad
1730 1.4 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1731 1.4 riastrad
1732 1.16 riastrad KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
1733 1.16 riastrad curlwp, E->sourcelock);
1734 1.4 riastrad E->sourcelock = NULL;
1735 1.4 riastrad if (E->stage >= ENTROPY_WARM)
1736 1.27 riastrad cv_signal(&E->sourcelock_cv);
1737 1.4 riastrad }
1738 1.4 riastrad
1739 1.4 riastrad /*
1740 1.4 riastrad * rnd_sources_locked()
1741 1.4 riastrad *
1742 1.4 riastrad * True if we hold the list of rndsources locked, for diagnostic
1743 1.4 riastrad * assertions.
1744 1.4 riastrad */
1745 1.7 riastrad static bool __diagused
1746 1.4 riastrad rnd_sources_locked(void)
1747 1.4 riastrad {
1748 1.4 riastrad
1749 1.16 riastrad return E->sourcelock == curlwp;
1750 1.4 riastrad }
1751 1.4 riastrad
1752 1.4 riastrad /*
1753 1.49 riastrad * entropy_request(nbytes, flags)
1754 1.1 riastrad *
1755 1.1 riastrad * Request nbytes bytes of entropy from all sources in the system.
1756 1.1 riastrad * OK if we overdo it. Caller must hold the global entropy lock;
1757 1.1 riastrad * will release and re-acquire it.
1758 1.49 riastrad *
1759 1.49 riastrad * If flags & ENTROPY_WAIT, wait for concurrent access to finish.
1760 1.49 riastrad * If flags & ENTROPY_SIG, allow interruption by signal.
1761 1.1 riastrad */
1762 1.49 riastrad static int
1763 1.49 riastrad entropy_request(size_t nbytes, int flags)
1764 1.1 riastrad {
1765 1.4 riastrad struct krndsource *rs;
1766 1.49 riastrad int error;
1767 1.1 riastrad
1768 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1769 1.49 riastrad if (flags & ENTROPY_WAIT)
1770 1.49 riastrad ASSERT_SLEEPABLE();
1771 1.1 riastrad
1772 1.1 riastrad /*
1773 1.49 riastrad * Lock the list of entropy sources to block rnd_detach_source
1774 1.49 riastrad * until we're done, and to serialize calls to the entropy
1775 1.49 riastrad * callbacks as guaranteed to drivers.
1776 1.1 riastrad */
1777 1.49 riastrad error = rnd_lock_sources(flags);
1778 1.49 riastrad if (error)
1779 1.49 riastrad return error;
1780 1.1 riastrad entropy_request_evcnt.ev_count++;
1781 1.1 riastrad
1782 1.1 riastrad /* Clamp to the maximum reasonable request. */
1783 1.1 riastrad nbytes = MIN(nbytes, ENTROPY_CAPACITY);
1784 1.1 riastrad
1785 1.1 riastrad /* Walk the list of sources. */
1786 1.4 riastrad LIST_FOREACH(rs, &E->sources, list) {
1787 1.1 riastrad /* Skip sources without callbacks. */
1788 1.1 riastrad if (!ISSET(rs->flags, RND_FLAG_HASCB))
1789 1.1 riastrad continue;
1790 1.1 riastrad
1791 1.22 riastrad /*
1792 1.22 riastrad * Skip sources that are disabled altogether -- we
1793 1.22 riastrad * would just ignore their samples anyway.
1794 1.22 riastrad */
1795 1.22 riastrad if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
1796 1.22 riastrad continue;
1797 1.22 riastrad
1798 1.1 riastrad /* Drop the lock while we call the callback. */
1799 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1800 1.1 riastrad mutex_exit(&E->lock);
1801 1.1 riastrad (*rs->get)(nbytes, rs->getarg);
1802 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1803 1.1 riastrad mutex_enter(&E->lock);
1804 1.1 riastrad }
1805 1.1 riastrad
1806 1.49 riastrad /* Request done; unlock the list of entropy sources. */
1807 1.4 riastrad rnd_unlock_sources();
1808 1.49 riastrad return 0;
1809 1.1 riastrad }
1810 1.1 riastrad
1811 1.1 riastrad /*
1812 1.1 riastrad * rnd_add_uint32(rs, value)
1813 1.1 riastrad *
1814 1.1 riastrad * Enter 32 bits of data from an entropy source into the pool.
1815 1.1 riastrad *
1816 1.1 riastrad * If rs is NULL, may not be called from interrupt context.
1817 1.1 riastrad *
1818 1.1 riastrad * If rs is non-NULL, may be called from any context. May drop
1819 1.1 riastrad * data if called from interrupt context.
1820 1.1 riastrad */
1821 1.1 riastrad void
1822 1.1 riastrad rnd_add_uint32(struct krndsource *rs, uint32_t value)
1823 1.1 riastrad {
1824 1.1 riastrad
1825 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
1826 1.1 riastrad }
1827 1.1 riastrad
1828 1.1 riastrad void
1829 1.1 riastrad _rnd_add_uint32(struct krndsource *rs, uint32_t value)
1830 1.1 riastrad {
1831 1.1 riastrad
1832 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
1833 1.1 riastrad }
1834 1.1 riastrad
1835 1.1 riastrad void
1836 1.1 riastrad _rnd_add_uint64(struct krndsource *rs, uint64_t value)
1837 1.1 riastrad {
1838 1.1 riastrad
1839 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
1840 1.1 riastrad }
1841 1.1 riastrad
1842 1.1 riastrad /*
1843 1.1 riastrad * rnd_add_data(rs, buf, len, entropybits)
1844 1.1 riastrad *
1845 1.1 riastrad * Enter data from an entropy source into the pool, with a
1846 1.1 riastrad * driver's estimate of how much entropy the physical source of
1847 1.1 riastrad * the data has. If RND_FLAG_NO_ESTIMATE, we ignore the driver's
1848 1.1 riastrad * estimate and treat it as zero.
1849 1.1 riastrad *
1850 1.1 riastrad * If rs is NULL, may not be called from interrupt context.
1851 1.1 riastrad *
1852 1.1 riastrad * If rs is non-NULL, may be called from any context. May drop
1853 1.1 riastrad * data if called from interrupt context.
1854 1.1 riastrad */
1855 1.1 riastrad void
1856 1.1 riastrad rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
1857 1.1 riastrad uint32_t entropybits)
1858 1.1 riastrad {
1859 1.1 riastrad uint32_t extra;
1860 1.1 riastrad uint32_t flags;
1861 1.1 riastrad
1862 1.1 riastrad KASSERTMSG(howmany(entropybits, NBBY) <= len,
1863 1.1 riastrad "%s: impossible entropy rate:"
1864 1.1 riastrad " %"PRIu32" bits in %"PRIu32"-byte string",
1865 1.1 riastrad rs ? rs->name : "(anonymous)", entropybits, len);
1866 1.1 riastrad
1867 1.1 riastrad /* If there's no rndsource, just enter the data and time now. */
1868 1.1 riastrad if (rs == NULL) {
1869 1.1 riastrad entropy_enter(buf, len, entropybits);
1870 1.1 riastrad extra = entropy_timer();
1871 1.1 riastrad entropy_enter(&extra, sizeof extra, 0);
1872 1.1 riastrad explicit_memset(&extra, 0, sizeof extra);
1873 1.1 riastrad return;
1874 1.1 riastrad }
1875 1.1 riastrad
1876 1.1 riastrad /* Load a snapshot of the flags. Ioctl may change them under us. */
1877 1.1 riastrad flags = atomic_load_relaxed(&rs->flags);
1878 1.1 riastrad
1879 1.1 riastrad /*
1880 1.1 riastrad * Skip if:
1881 1.1 riastrad * - we're not collecting entropy, or
1882 1.1 riastrad * - the operator doesn't want to collect entropy from this, or
1883 1.1 riastrad * - neither data nor timings are being collected from this.
1884 1.1 riastrad */
1885 1.1 riastrad if (!atomic_load_relaxed(&entropy_collection) ||
1886 1.1 riastrad ISSET(flags, RND_FLAG_NO_COLLECT) ||
1887 1.1 riastrad !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
1888 1.1 riastrad return;
1889 1.1 riastrad
1890 1.1 riastrad /* If asked, ignore the estimate. */
1891 1.1 riastrad if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
1892 1.1 riastrad entropybits = 0;
1893 1.1 riastrad
1894 1.1 riastrad /* If we are collecting data, enter them. */
1895 1.1 riastrad if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
1896 1.28 riastrad rnd_add_data_1(rs, buf, len, entropybits,
1897 1.28 riastrad RND_FLAG_COLLECT_VALUE);
1898 1.1 riastrad
1899 1.1 riastrad /* If we are collecting timings, enter one. */
1900 1.1 riastrad if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
1901 1.1 riastrad extra = entropy_timer();
1902 1.28 riastrad rnd_add_data_1(rs, &extra, sizeof extra, 0,
1903 1.28 riastrad RND_FLAG_COLLECT_TIME);
1904 1.1 riastrad }
1905 1.1 riastrad }
1906 1.1 riastrad
1907 1.28 riastrad static unsigned
1908 1.28 riastrad add_sat(unsigned a, unsigned b)
1909 1.28 riastrad {
1910 1.28 riastrad unsigned c = a + b;
1911 1.28 riastrad
1912 1.28 riastrad return (c < a ? UINT_MAX : c);
1913 1.28 riastrad }
1914 1.28 riastrad
1915 1.1 riastrad /*
1916 1.28 riastrad * rnd_add_data_1(rs, buf, len, entropybits, flag)
1917 1.1 riastrad *
1918 1.1 riastrad * Internal subroutine to call either entropy_enter_intr, if we're
1919 1.1 riastrad * in interrupt context, or entropy_enter if not, and to count the
1920 1.1 riastrad * entropy in an rndsource.
1921 1.1 riastrad */
1922 1.1 riastrad static void
1923 1.1 riastrad rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
1924 1.28 riastrad uint32_t entropybits, uint32_t flag)
1925 1.1 riastrad {
1926 1.1 riastrad bool fullyused;
1927 1.1 riastrad
1928 1.1 riastrad /*
1929 1.1 riastrad * If we're in interrupt context, use entropy_enter_intr and
1930 1.1 riastrad * take note of whether it consumed the full sample; if not,
1931 1.1 riastrad * use entropy_enter, which always consumes the full sample.
1932 1.1 riastrad */
1933 1.16 riastrad if (curlwp && cpu_intr_p()) {
1934 1.1 riastrad fullyused = entropy_enter_intr(buf, len, entropybits);
1935 1.1 riastrad } else {
1936 1.1 riastrad entropy_enter(buf, len, entropybits);
1937 1.1 riastrad fullyused = true;
1938 1.1 riastrad }
1939 1.1 riastrad
1940 1.1 riastrad /*
1941 1.1 riastrad * If we used the full sample, note how many bits were
1942 1.1 riastrad * contributed from this source.
1943 1.1 riastrad */
1944 1.1 riastrad if (fullyused) {
1945 1.37 riastrad if (__predict_false(E->stage == ENTROPY_COLD)) {
1946 1.28 riastrad rs->total = add_sat(rs->total, entropybits);
1947 1.28 riastrad switch (flag) {
1948 1.28 riastrad case RND_FLAG_COLLECT_TIME:
1949 1.28 riastrad rs->time_delta.insamples =
1950 1.28 riastrad add_sat(rs->time_delta.insamples, 1);
1951 1.28 riastrad break;
1952 1.28 riastrad case RND_FLAG_COLLECT_VALUE:
1953 1.28 riastrad rs->value_delta.insamples =
1954 1.28 riastrad add_sat(rs->value_delta.insamples, 1);
1955 1.28 riastrad break;
1956 1.28 riastrad }
1957 1.1 riastrad } else {
1958 1.1 riastrad struct rndsource_cpu *rc = percpu_getref(rs->state);
1959 1.1 riastrad
1960 1.28 riastrad atomic_store_relaxed(&rc->rc_entropybits,
1961 1.28 riastrad add_sat(rc->rc_entropybits, entropybits));
1962 1.28 riastrad switch (flag) {
1963 1.28 riastrad case RND_FLAG_COLLECT_TIME:
1964 1.28 riastrad atomic_store_relaxed(&rc->rc_timesamples,
1965 1.28 riastrad add_sat(rc->rc_timesamples, 1));
1966 1.28 riastrad break;
1967 1.28 riastrad case RND_FLAG_COLLECT_VALUE:
1968 1.28 riastrad atomic_store_relaxed(&rc->rc_datasamples,
1969 1.28 riastrad add_sat(rc->rc_datasamples, 1));
1970 1.28 riastrad break;
1971 1.28 riastrad }
1972 1.1 riastrad percpu_putref(rs->state);
1973 1.1 riastrad }
1974 1.1 riastrad }
1975 1.1 riastrad }
1976 1.1 riastrad
1977 1.1 riastrad /*
1978 1.1 riastrad * rnd_add_data_sync(rs, buf, len, entropybits)
1979 1.1 riastrad *
1980 1.1 riastrad * Same as rnd_add_data. Originally used in rndsource callbacks,
1981 1.1 riastrad * to break an unnecessary cycle; no longer really needed.
1982 1.1 riastrad */
1983 1.1 riastrad void
1984 1.1 riastrad rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
1985 1.1 riastrad uint32_t entropybits)
1986 1.1 riastrad {
1987 1.1 riastrad
1988 1.1 riastrad rnd_add_data(rs, buf, len, entropybits);
1989 1.1 riastrad }
1990 1.1 riastrad
1991 1.1 riastrad /*
1992 1.1 riastrad * rndsource_entropybits(rs)
1993 1.1 riastrad *
1994 1.1 riastrad * Return approximately the number of bits of entropy that have
1995 1.1 riastrad * been contributed via rs so far. Approximate if other CPUs may
1996 1.1 riastrad * be calling rnd_add_data concurrently.
1997 1.1 riastrad */
1998 1.1 riastrad static unsigned
1999 1.1 riastrad rndsource_entropybits(struct krndsource *rs)
2000 1.1 riastrad {
2001 1.1 riastrad unsigned nbits = rs->total;
2002 1.1 riastrad
2003 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2004 1.4 riastrad KASSERT(rnd_sources_locked());
2005 1.1 riastrad percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
2006 1.1 riastrad return nbits;
2007 1.1 riastrad }
2008 1.1 riastrad
2009 1.1 riastrad static void
2010 1.1 riastrad rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
2011 1.1 riastrad {
2012 1.1 riastrad struct rndsource_cpu *rc = ptr;
2013 1.1 riastrad unsigned *nbitsp = cookie;
2014 1.1 riastrad unsigned cpu_nbits;
2015 1.1 riastrad
2016 1.28 riastrad cpu_nbits = atomic_load_relaxed(&rc->rc_entropybits);
2017 1.1 riastrad *nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
2018 1.1 riastrad }
2019 1.1 riastrad
2020 1.1 riastrad /*
2021 1.1 riastrad * rndsource_to_user(rs, urs)
2022 1.1 riastrad *
2023 1.1 riastrad * Copy a description of rs out to urs for userland.
2024 1.1 riastrad */
2025 1.1 riastrad static void
2026 1.1 riastrad rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
2027 1.1 riastrad {
2028 1.1 riastrad
2029 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2030 1.4 riastrad KASSERT(rnd_sources_locked());
2031 1.1 riastrad
2032 1.1 riastrad /* Avoid kernel memory disclosure. */
2033 1.1 riastrad memset(urs, 0, sizeof(*urs));
2034 1.1 riastrad
2035 1.1 riastrad CTASSERT(sizeof(urs->name) == sizeof(rs->name));
2036 1.1 riastrad strlcpy(urs->name, rs->name, sizeof(urs->name));
2037 1.1 riastrad urs->total = rndsource_entropybits(rs);
2038 1.1 riastrad urs->type = rs->type;
2039 1.1 riastrad urs->flags = atomic_load_relaxed(&rs->flags);
2040 1.1 riastrad }
2041 1.1 riastrad
2042 1.1 riastrad /*
2043 1.1 riastrad * rndsource_to_user_est(rs, urse)
2044 1.1 riastrad *
2045 1.1 riastrad * Copy a description of rs and estimation statistics out to urse
2046 1.1 riastrad * for userland.
2047 1.1 riastrad */
2048 1.1 riastrad static void
2049 1.1 riastrad rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
2050 1.1 riastrad {
2051 1.1 riastrad
2052 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2053 1.4 riastrad KASSERT(rnd_sources_locked());
2054 1.1 riastrad
2055 1.1 riastrad /* Avoid kernel memory disclosure. */
2056 1.1 riastrad memset(urse, 0, sizeof(*urse));
2057 1.1 riastrad
2058 1.1 riastrad /* Copy out the rndsource description. */
2059 1.1 riastrad rndsource_to_user(rs, &urse->rt);
2060 1.1 riastrad
2061 1.28 riastrad /* Gather the statistics. */
2062 1.28 riastrad urse->dt_samples = rs->time_delta.insamples;
2063 1.1 riastrad urse->dt_total = 0;
2064 1.28 riastrad urse->dv_samples = rs->value_delta.insamples;
2065 1.28 riastrad urse->dv_total = urse->rt.total;
2066 1.28 riastrad percpu_foreach(rs->state, rndsource_to_user_est_cpu, urse);
2067 1.28 riastrad }
2068 1.28 riastrad
2069 1.28 riastrad static void
2070 1.28 riastrad rndsource_to_user_est_cpu(void *ptr, void *cookie, struct cpu_info *ci)
2071 1.28 riastrad {
2072 1.28 riastrad struct rndsource_cpu *rc = ptr;
2073 1.28 riastrad rndsource_est_t *urse = cookie;
2074 1.28 riastrad
2075 1.28 riastrad urse->dt_samples = add_sat(urse->dt_samples,
2076 1.28 riastrad atomic_load_relaxed(&rc->rc_timesamples));
2077 1.28 riastrad urse->dv_samples = add_sat(urse->dv_samples,
2078 1.28 riastrad atomic_load_relaxed(&rc->rc_datasamples));
2079 1.1 riastrad }
2080 1.1 riastrad
2081 1.1 riastrad /*
2082 1.21 riastrad * entropy_reset_xc(arg1, arg2)
2083 1.21 riastrad *
2084 1.21 riastrad * Reset the current CPU's pending entropy to zero.
2085 1.21 riastrad */
2086 1.21 riastrad static void
2087 1.21 riastrad entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
2088 1.21 riastrad {
2089 1.21 riastrad uint32_t extra = entropy_timer();
2090 1.43 riastrad struct entropy_cpu_lock lock;
2091 1.21 riastrad struct entropy_cpu *ec;
2092 1.21 riastrad
2093 1.21 riastrad /*
2094 1.43 riastrad * With the per-CPU state locked, zero the pending count and
2095 1.43 riastrad * enter a cycle count for fun.
2096 1.21 riastrad */
2097 1.43 riastrad ec = entropy_cpu_get(&lock);
2098 1.21 riastrad ec->ec_pending = 0;
2099 1.21 riastrad entpool_enter(ec->ec_pool, &extra, sizeof extra);
2100 1.43 riastrad entropy_cpu_put(&lock, ec);
2101 1.21 riastrad }
2102 1.21 riastrad
2103 1.21 riastrad /*
2104 1.1 riastrad * entropy_ioctl(cmd, data)
2105 1.1 riastrad *
2106 1.1 riastrad * Handle various /dev/random ioctl queries.
2107 1.1 riastrad */
2108 1.1 riastrad int
2109 1.1 riastrad entropy_ioctl(unsigned long cmd, void *data)
2110 1.1 riastrad {
2111 1.1 riastrad struct krndsource *rs;
2112 1.1 riastrad bool privileged;
2113 1.1 riastrad int error;
2114 1.1 riastrad
2115 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2116 1.1 riastrad
2117 1.1 riastrad /* Verify user's authorization to perform the ioctl. */
2118 1.1 riastrad switch (cmd) {
2119 1.1 riastrad case RNDGETENTCNT:
2120 1.1 riastrad case RNDGETPOOLSTAT:
2121 1.1 riastrad case RNDGETSRCNUM:
2122 1.1 riastrad case RNDGETSRCNAME:
2123 1.1 riastrad case RNDGETESTNUM:
2124 1.1 riastrad case RNDGETESTNAME:
2125 1.31 christos error = kauth_authorize_device(kauth_cred_get(),
2126 1.1 riastrad KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
2127 1.1 riastrad break;
2128 1.1 riastrad case RNDCTL:
2129 1.31 christos error = kauth_authorize_device(kauth_cred_get(),
2130 1.1 riastrad KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
2131 1.1 riastrad break;
2132 1.1 riastrad case RNDADDDATA:
2133 1.31 christos error = kauth_authorize_device(kauth_cred_get(),
2134 1.1 riastrad KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
2135 1.1 riastrad /* Ascertain whether the user's inputs should be counted. */
2136 1.31 christos if (kauth_authorize_device(kauth_cred_get(),
2137 1.1 riastrad KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
2138 1.1 riastrad NULL, NULL, NULL, NULL) == 0)
2139 1.1 riastrad privileged = true;
2140 1.1 riastrad break;
2141 1.1 riastrad default: {
2142 1.1 riastrad /*
2143 1.1 riastrad * XXX Hack to avoid changing module ABI so this can be
2144 1.1 riastrad * pulled up. Later, we can just remove the argument.
2145 1.1 riastrad */
2146 1.1 riastrad static const struct fileops fops = {
2147 1.1 riastrad .fo_ioctl = rnd_system_ioctl,
2148 1.1 riastrad };
2149 1.1 riastrad struct file f = {
2150 1.1 riastrad .f_ops = &fops,
2151 1.1 riastrad };
2152 1.1 riastrad MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
2153 1.1 riastrad enosys(), error);
2154 1.1 riastrad #if defined(_LP64)
2155 1.1 riastrad if (error == ENOSYS)
2156 1.1 riastrad MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
2157 1.1 riastrad enosys(), error);
2158 1.1 riastrad #endif
2159 1.1 riastrad if (error == ENOSYS)
2160 1.1 riastrad error = ENOTTY;
2161 1.1 riastrad break;
2162 1.1 riastrad }
2163 1.1 riastrad }
2164 1.1 riastrad
2165 1.1 riastrad /* If anything went wrong with authorization, stop here. */
2166 1.1 riastrad if (error)
2167 1.1 riastrad return error;
2168 1.1 riastrad
2169 1.1 riastrad /* Dispatch on the command. */
2170 1.1 riastrad switch (cmd) {
2171 1.1 riastrad case RNDGETENTCNT: { /* Get current entropy count in bits. */
2172 1.1 riastrad uint32_t *countp = data;
2173 1.1 riastrad
2174 1.1 riastrad mutex_enter(&E->lock);
2175 1.1 riastrad *countp = ENTROPY_CAPACITY*NBBY - E->needed;
2176 1.1 riastrad mutex_exit(&E->lock);
2177 1.1 riastrad
2178 1.1 riastrad break;
2179 1.1 riastrad }
2180 1.1 riastrad case RNDGETPOOLSTAT: { /* Get entropy pool statistics. */
2181 1.1 riastrad rndpoolstat_t *pstat = data;
2182 1.1 riastrad
2183 1.1 riastrad mutex_enter(&E->lock);
2184 1.1 riastrad
2185 1.1 riastrad /* parameters */
2186 1.1 riastrad pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
2187 1.1 riastrad pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
2188 1.1 riastrad pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
2189 1.1 riastrad
2190 1.1 riastrad /* state */
2191 1.1 riastrad pstat->added = 0; /* XXX total entropy_enter count */
2192 1.1 riastrad pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
2193 1.1 riastrad pstat->removed = 0; /* XXX total entropy_extract count */
2194 1.1 riastrad pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
2195 1.1 riastrad pstat->generated = 0; /* XXX bits of data...fabricated? */
2196 1.1 riastrad
2197 1.1 riastrad mutex_exit(&E->lock);
2198 1.1 riastrad break;
2199 1.1 riastrad }
2200 1.1 riastrad case RNDGETSRCNUM: { /* Get entropy sources by number. */
2201 1.1 riastrad rndstat_t *stat = data;
2202 1.1 riastrad uint32_t start = 0, i = 0;
2203 1.1 riastrad
2204 1.1 riastrad /* Skip if none requested; fail if too many requested. */
2205 1.1 riastrad if (stat->count == 0)
2206 1.1 riastrad break;
2207 1.1 riastrad if (stat->count > RND_MAXSTATCOUNT)
2208 1.1 riastrad return EINVAL;
2209 1.1 riastrad
2210 1.1 riastrad /*
2211 1.1 riastrad * Under the lock, find the first one, copy out as many
2212 1.1 riastrad * as requested, and report how many we copied out.
2213 1.1 riastrad */
2214 1.1 riastrad mutex_enter(&E->lock);
2215 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2216 1.4 riastrad if (error) {
2217 1.4 riastrad mutex_exit(&E->lock);
2218 1.4 riastrad return error;
2219 1.4 riastrad }
2220 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2221 1.1 riastrad if (start++ == stat->start)
2222 1.1 riastrad break;
2223 1.1 riastrad }
2224 1.1 riastrad while (i < stat->count && rs != NULL) {
2225 1.5 riastrad mutex_exit(&E->lock);
2226 1.1 riastrad rndsource_to_user(rs, &stat->source[i++]);
2227 1.5 riastrad mutex_enter(&E->lock);
2228 1.1 riastrad rs = LIST_NEXT(rs, list);
2229 1.1 riastrad }
2230 1.1 riastrad KASSERT(i <= stat->count);
2231 1.1 riastrad stat->count = i;
2232 1.4 riastrad rnd_unlock_sources();
2233 1.1 riastrad mutex_exit(&E->lock);
2234 1.1 riastrad break;
2235 1.1 riastrad }
2236 1.1 riastrad case RNDGETESTNUM: { /* Get sources and estimates by number. */
2237 1.1 riastrad rndstat_est_t *estat = data;
2238 1.1 riastrad uint32_t start = 0, i = 0;
2239 1.1 riastrad
2240 1.1 riastrad /* Skip if none requested; fail if too many requested. */
2241 1.1 riastrad if (estat->count == 0)
2242 1.1 riastrad break;
2243 1.1 riastrad if (estat->count > RND_MAXSTATCOUNT)
2244 1.1 riastrad return EINVAL;
2245 1.1 riastrad
2246 1.1 riastrad /*
2247 1.1 riastrad * Under the lock, find the first one, copy out as many
2248 1.1 riastrad * as requested, and report how many we copied out.
2249 1.1 riastrad */
2250 1.1 riastrad mutex_enter(&E->lock);
2251 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2252 1.4 riastrad if (error) {
2253 1.4 riastrad mutex_exit(&E->lock);
2254 1.4 riastrad return error;
2255 1.4 riastrad }
2256 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2257 1.1 riastrad if (start++ == estat->start)
2258 1.1 riastrad break;
2259 1.1 riastrad }
2260 1.1 riastrad while (i < estat->count && rs != NULL) {
2261 1.4 riastrad mutex_exit(&E->lock);
2262 1.1 riastrad rndsource_to_user_est(rs, &estat->source[i++]);
2263 1.4 riastrad mutex_enter(&E->lock);
2264 1.1 riastrad rs = LIST_NEXT(rs, list);
2265 1.1 riastrad }
2266 1.1 riastrad KASSERT(i <= estat->count);
2267 1.1 riastrad estat->count = i;
2268 1.4 riastrad rnd_unlock_sources();
2269 1.1 riastrad mutex_exit(&E->lock);
2270 1.1 riastrad break;
2271 1.1 riastrad }
2272 1.1 riastrad case RNDGETSRCNAME: { /* Get entropy sources by name. */
2273 1.1 riastrad rndstat_name_t *nstat = data;
2274 1.1 riastrad const size_t n = sizeof(rs->name);
2275 1.1 riastrad
2276 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
2277 1.1 riastrad
2278 1.1 riastrad /*
2279 1.1 riastrad * Under the lock, search by name. If found, copy it
2280 1.1 riastrad * out; if not found, fail with ENOENT.
2281 1.1 riastrad */
2282 1.1 riastrad mutex_enter(&E->lock);
2283 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2284 1.4 riastrad if (error) {
2285 1.4 riastrad mutex_exit(&E->lock);
2286 1.4 riastrad return error;
2287 1.4 riastrad }
2288 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2289 1.1 riastrad if (strncmp(rs->name, nstat->name, n) == 0)
2290 1.1 riastrad break;
2291 1.1 riastrad }
2292 1.4 riastrad if (rs != NULL) {
2293 1.4 riastrad mutex_exit(&E->lock);
2294 1.1 riastrad rndsource_to_user(rs, &nstat->source);
2295 1.4 riastrad mutex_enter(&E->lock);
2296 1.4 riastrad } else {
2297 1.1 riastrad error = ENOENT;
2298 1.4 riastrad }
2299 1.4 riastrad rnd_unlock_sources();
2300 1.1 riastrad mutex_exit(&E->lock);
2301 1.1 riastrad break;
2302 1.1 riastrad }
2303 1.1 riastrad case RNDGETESTNAME: { /* Get sources and estimates by name. */
2304 1.1 riastrad rndstat_est_name_t *enstat = data;
2305 1.1 riastrad const size_t n = sizeof(rs->name);
2306 1.1 riastrad
2307 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
2308 1.1 riastrad
2309 1.1 riastrad /*
2310 1.1 riastrad * Under the lock, search by name. If found, copy it
2311 1.1 riastrad * out; if not found, fail with ENOENT.
2312 1.1 riastrad */
2313 1.1 riastrad mutex_enter(&E->lock);
2314 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2315 1.4 riastrad if (error) {
2316 1.4 riastrad mutex_exit(&E->lock);
2317 1.4 riastrad return error;
2318 1.4 riastrad }
2319 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2320 1.1 riastrad if (strncmp(rs->name, enstat->name, n) == 0)
2321 1.1 riastrad break;
2322 1.1 riastrad }
2323 1.4 riastrad if (rs != NULL) {
2324 1.4 riastrad mutex_exit(&E->lock);
2325 1.1 riastrad rndsource_to_user_est(rs, &enstat->source);
2326 1.4 riastrad mutex_enter(&E->lock);
2327 1.4 riastrad } else {
2328 1.1 riastrad error = ENOENT;
2329 1.4 riastrad }
2330 1.4 riastrad rnd_unlock_sources();
2331 1.1 riastrad mutex_exit(&E->lock);
2332 1.1 riastrad break;
2333 1.1 riastrad }
2334 1.1 riastrad case RNDCTL: { /* Modify entropy source flags. */
2335 1.1 riastrad rndctl_t *rndctl = data;
2336 1.1 riastrad const size_t n = sizeof(rs->name);
2337 1.21 riastrad uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2338 1.1 riastrad uint32_t flags;
2339 1.21 riastrad bool reset = false, request = false;
2340 1.1 riastrad
2341 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
2342 1.1 riastrad
2343 1.1 riastrad /* Whitelist the flags that user can change. */
2344 1.1 riastrad rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2345 1.1 riastrad
2346 1.1 riastrad /*
2347 1.1 riastrad * For each matching rndsource, either by type if
2348 1.1 riastrad * specified or by name if not, set the masked flags.
2349 1.1 riastrad */
2350 1.1 riastrad mutex_enter(&E->lock);
2351 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2352 1.1 riastrad if (rndctl->type != 0xff) {
2353 1.1 riastrad if (rs->type != rndctl->type)
2354 1.1 riastrad continue;
2355 1.1 riastrad } else {
2356 1.1 riastrad if (strncmp(rs->name, rndctl->name, n) != 0)
2357 1.1 riastrad continue;
2358 1.1 riastrad }
2359 1.1 riastrad flags = rs->flags & ~rndctl->mask;
2360 1.1 riastrad flags |= rndctl->flags & rndctl->mask;
2361 1.21 riastrad if ((rs->flags & resetflags) == 0 &&
2362 1.21 riastrad (flags & resetflags) != 0)
2363 1.21 riastrad reset = true;
2364 1.21 riastrad if ((rs->flags ^ flags) & resetflags)
2365 1.21 riastrad request = true;
2366 1.1 riastrad atomic_store_relaxed(&rs->flags, flags);
2367 1.1 riastrad }
2368 1.1 riastrad mutex_exit(&E->lock);
2369 1.21 riastrad
2370 1.21 riastrad /*
2371 1.21 riastrad * If we disabled estimation or collection, nix all the
2372 1.21 riastrad * pending entropy and set needed to the maximum.
2373 1.21 riastrad */
2374 1.21 riastrad if (reset) {
2375 1.21 riastrad xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
2376 1.21 riastrad mutex_enter(&E->lock);
2377 1.21 riastrad E->pending = 0;
2378 1.21 riastrad atomic_store_relaxed(&E->needed,
2379 1.21 riastrad ENTROPY_CAPACITY*NBBY);
2380 1.21 riastrad mutex_exit(&E->lock);
2381 1.21 riastrad }
2382 1.21 riastrad
2383 1.21 riastrad /*
2384 1.21 riastrad * If we changed any of the estimation or collection
2385 1.21 riastrad * flags, request new samples from everyone -- either
2386 1.21 riastrad * to make up for what we just lost, or to get new
2387 1.21 riastrad * samples from what we just added.
2388 1.49 riastrad *
2389 1.49 riastrad * Failing on signal, while waiting for another process
2390 1.49 riastrad * to finish requesting entropy, is OK here even though
2391 1.49 riastrad * we have committed side effects, because this ioctl
2392 1.49 riastrad * command is idempotent, so repeating it is safe.
2393 1.21 riastrad */
2394 1.21 riastrad if (request) {
2395 1.21 riastrad mutex_enter(&E->lock);
2396 1.49 riastrad error = entropy_request(ENTROPY_CAPACITY,
2397 1.49 riastrad ENTROPY_WAIT|ENTROPY_SIG);
2398 1.21 riastrad mutex_exit(&E->lock);
2399 1.21 riastrad }
2400 1.1 riastrad break;
2401 1.1 riastrad }
2402 1.1 riastrad case RNDADDDATA: { /* Enter seed into entropy pool. */
2403 1.1 riastrad rnddata_t *rdata = data;
2404 1.1 riastrad unsigned entropybits = 0;
2405 1.1 riastrad
2406 1.1 riastrad if (!atomic_load_relaxed(&entropy_collection))
2407 1.1 riastrad break; /* thanks but no thanks */
2408 1.1 riastrad if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
2409 1.1 riastrad return EINVAL;
2410 1.1 riastrad
2411 1.1 riastrad /*
2412 1.1 riastrad * This ioctl serves as the userland alternative a
2413 1.1 riastrad * bootloader-provided seed -- typically furnished by
2414 1.1 riastrad * /etc/rc.d/random_seed. We accept the user's entropy
2415 1.1 riastrad * claim only if
2416 1.1 riastrad *
2417 1.1 riastrad * (a) the user is privileged, and
2418 1.1 riastrad * (b) we have not entered a bootloader seed.
2419 1.1 riastrad *
2420 1.1 riastrad * under the assumption that the user may use this to
2421 1.1 riastrad * load a seed from disk that we have already loaded
2422 1.1 riastrad * from the bootloader, so we don't double-count it.
2423 1.1 riastrad */
2424 1.11 riastrad if (privileged && rdata->entropy && rdata->len) {
2425 1.1 riastrad mutex_enter(&E->lock);
2426 1.1 riastrad if (!E->seeded) {
2427 1.1 riastrad entropybits = MIN(rdata->entropy,
2428 1.1 riastrad MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
2429 1.1 riastrad E->seeded = true;
2430 1.1 riastrad }
2431 1.1 riastrad mutex_exit(&E->lock);
2432 1.1 riastrad }
2433 1.1 riastrad
2434 1.13 riastrad /* Enter the data and consolidate entropy. */
2435 1.1 riastrad rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
2436 1.1 riastrad entropybits);
2437 1.13 riastrad entropy_consolidate();
2438 1.1 riastrad break;
2439 1.1 riastrad }
2440 1.1 riastrad default:
2441 1.1 riastrad error = ENOTTY;
2442 1.1 riastrad }
2443 1.1 riastrad
2444 1.1 riastrad /* Return any error that may have come up. */
2445 1.1 riastrad return error;
2446 1.1 riastrad }
2447 1.1 riastrad
2448 1.1 riastrad /* Legacy entry points */
2449 1.1 riastrad
2450 1.1 riastrad void
2451 1.1 riastrad rnd_seed(void *seed, size_t len)
2452 1.1 riastrad {
2453 1.1 riastrad
2454 1.1 riastrad if (len != sizeof(rndsave_t)) {
2455 1.1 riastrad printf("entropy: invalid seed length: %zu,"
2456 1.1 riastrad " expected sizeof(rndsave_t) = %zu\n",
2457 1.1 riastrad len, sizeof(rndsave_t));
2458 1.1 riastrad return;
2459 1.1 riastrad }
2460 1.1 riastrad entropy_seed(seed);
2461 1.1 riastrad }
2462 1.1 riastrad
2463 1.1 riastrad void
2464 1.1 riastrad rnd_init(void)
2465 1.1 riastrad {
2466 1.1 riastrad
2467 1.1 riastrad entropy_init();
2468 1.1 riastrad }
2469 1.1 riastrad
2470 1.1 riastrad void
2471 1.1 riastrad rnd_init_softint(void)
2472 1.1 riastrad {
2473 1.1 riastrad
2474 1.1 riastrad entropy_init_late();
2475 1.38 riastrad entropy_bootrequest();
2476 1.1 riastrad }
2477 1.1 riastrad
2478 1.1 riastrad int
2479 1.1 riastrad rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
2480 1.1 riastrad {
2481 1.1 riastrad
2482 1.1 riastrad return entropy_ioctl(cmd, data);
2483 1.1 riastrad }
2484