kern_entropy.c revision 1.53 1 1.53 riastrad /* $NetBSD: kern_entropy.c,v 1.53 2022/03/23 23:20:52 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad /*
33 1.1 riastrad * Entropy subsystem
34 1.1 riastrad *
35 1.1 riastrad * * Each CPU maintains a per-CPU entropy pool so that gathering
36 1.1 riastrad * entropy requires no interprocessor synchronization, except
37 1.1 riastrad * early at boot when we may be scrambling to gather entropy as
38 1.1 riastrad * soon as possible.
39 1.1 riastrad *
40 1.1 riastrad * - entropy_enter gathers entropy and never drops it on the
41 1.1 riastrad * floor, at the cost of sometimes having to do cryptography.
42 1.1 riastrad *
43 1.1 riastrad * - entropy_enter_intr gathers entropy or drops it on the
44 1.1 riastrad * floor, with low latency. Work to stir the pool or kick the
45 1.1 riastrad * housekeeping thread is scheduled in soft interrupts.
46 1.1 riastrad *
47 1.1 riastrad * * entropy_enter immediately enters into the global pool if it
48 1.1 riastrad * can transition to full entropy in one swell foop. Otherwise,
49 1.1 riastrad * it defers to a housekeeping thread that consolidates entropy,
50 1.1 riastrad * but only when the CPUs collectively have full entropy, in
51 1.1 riastrad * order to mitigate iterative-guessing attacks.
52 1.1 riastrad *
53 1.1 riastrad * * The entropy housekeeping thread continues to consolidate
54 1.1 riastrad * entropy even after we think we have full entropy, in case we
55 1.1 riastrad * are wrong, but is limited to one discretionary consolidation
56 1.1 riastrad * per minute, and only when new entropy is actually coming in,
57 1.1 riastrad * to limit performance impact.
58 1.1 riastrad *
59 1.1 riastrad * * The entropy epoch is the number that changes when we
60 1.1 riastrad * transition from partial entropy to full entropy, so that
61 1.1 riastrad * users can easily determine when to reseed. This also
62 1.1 riastrad * facilitates an operator explicitly causing everything to
63 1.13 riastrad * reseed by sysctl -w kern.entropy.consolidate=1.
64 1.1 riastrad *
65 1.1 riastrad * * No entropy estimation based on the sample values, which is a
66 1.1 riastrad * contradiction in terms and a potential source of side
67 1.1 riastrad * channels. It is the responsibility of the driver author to
68 1.1 riastrad * study how predictable the physical source of input can ever
69 1.1 riastrad * be, and to furnish a lower bound on the amount of entropy it
70 1.1 riastrad * has.
71 1.1 riastrad *
72 1.1 riastrad * * Entropy depletion is available for testing (or if you're into
73 1.1 riastrad * that sort of thing), with sysctl -w kern.entropy.depletion=1;
74 1.1 riastrad * the logic to support it is small, to minimize chance of bugs.
75 1.1 riastrad */
76 1.1 riastrad
77 1.1 riastrad #include <sys/cdefs.h>
78 1.53 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.53 2022/03/23 23:20:52 riastradh Exp $");
79 1.1 riastrad
80 1.1 riastrad #include <sys/param.h>
81 1.1 riastrad #include <sys/types.h>
82 1.1 riastrad #include <sys/atomic.h>
83 1.1 riastrad #include <sys/compat_stub.h>
84 1.1 riastrad #include <sys/condvar.h>
85 1.1 riastrad #include <sys/cpu.h>
86 1.1 riastrad #include <sys/entropy.h>
87 1.1 riastrad #include <sys/errno.h>
88 1.1 riastrad #include <sys/evcnt.h>
89 1.1 riastrad #include <sys/event.h>
90 1.1 riastrad #include <sys/file.h>
91 1.1 riastrad #include <sys/intr.h>
92 1.1 riastrad #include <sys/kauth.h>
93 1.1 riastrad #include <sys/kernel.h>
94 1.1 riastrad #include <sys/kmem.h>
95 1.1 riastrad #include <sys/kthread.h>
96 1.53 riastrad #include <sys/lwp.h>
97 1.1 riastrad #include <sys/module_hook.h>
98 1.1 riastrad #include <sys/mutex.h>
99 1.1 riastrad #include <sys/percpu.h>
100 1.1 riastrad #include <sys/poll.h>
101 1.53 riastrad #include <sys/proc.h>
102 1.1 riastrad #include <sys/queue.h>
103 1.30 jmcneill #include <sys/reboot.h>
104 1.1 riastrad #include <sys/rnd.h> /* legacy kernel API */
105 1.1 riastrad #include <sys/rndio.h> /* userland ioctl interface */
106 1.1 riastrad #include <sys/rndsource.h> /* kernel rndsource driver API */
107 1.1 riastrad #include <sys/select.h>
108 1.1 riastrad #include <sys/selinfo.h>
109 1.1 riastrad #include <sys/sha1.h> /* for boot seed checksum */
110 1.1 riastrad #include <sys/stdint.h>
111 1.1 riastrad #include <sys/sysctl.h>
112 1.26 riastrad #include <sys/syslog.h>
113 1.1 riastrad #include <sys/systm.h>
114 1.1 riastrad #include <sys/time.h>
115 1.1 riastrad #include <sys/xcall.h>
116 1.1 riastrad
117 1.1 riastrad #include <lib/libkern/entpool.h>
118 1.1 riastrad
119 1.1 riastrad #include <machine/limits.h>
120 1.1 riastrad
121 1.1 riastrad #ifdef __HAVE_CPU_COUNTER
122 1.1 riastrad #include <machine/cpu_counter.h>
123 1.1 riastrad #endif
124 1.1 riastrad
125 1.1 riastrad /*
126 1.1 riastrad * struct entropy_cpu
127 1.1 riastrad *
128 1.1 riastrad * Per-CPU entropy state. The pool is allocated separately
129 1.1 riastrad * because percpu(9) sometimes moves per-CPU objects around
130 1.1 riastrad * without zeroing them, which would lead to unwanted copies of
131 1.34 andvar * sensitive secrets. The evcnt is allocated separately because
132 1.1 riastrad * evcnt(9) assumes it stays put in memory.
133 1.1 riastrad */
134 1.1 riastrad struct entropy_cpu {
135 1.40 riastrad struct entropy_cpu_evcnt {
136 1.40 riastrad struct evcnt softint;
137 1.40 riastrad struct evcnt intrdrop;
138 1.40 riastrad struct evcnt intrtrunc;
139 1.40 riastrad } *ec_evcnt;
140 1.1 riastrad struct entpool *ec_pool;
141 1.1 riastrad unsigned ec_pending;
142 1.1 riastrad bool ec_locked;
143 1.1 riastrad };
144 1.1 riastrad
145 1.1 riastrad /*
146 1.43 riastrad * struct entropy_cpu_lock
147 1.43 riastrad *
148 1.43 riastrad * State for locking the per-CPU entropy state.
149 1.43 riastrad */
150 1.43 riastrad struct entropy_cpu_lock {
151 1.43 riastrad int ecl_s;
152 1.43 riastrad uint64_t ecl_ncsw;
153 1.43 riastrad };
154 1.43 riastrad
155 1.43 riastrad /*
156 1.1 riastrad * struct rndsource_cpu
157 1.1 riastrad *
158 1.1 riastrad * Per-CPU rndsource state.
159 1.1 riastrad */
160 1.1 riastrad struct rndsource_cpu {
161 1.28 riastrad unsigned rc_entropybits;
162 1.28 riastrad unsigned rc_timesamples;
163 1.28 riastrad unsigned rc_datasamples;
164 1.1 riastrad };
165 1.1 riastrad
166 1.1 riastrad /*
167 1.1 riastrad * entropy_global (a.k.a. E for short in this file)
168 1.1 riastrad *
169 1.1 riastrad * Global entropy state. Writes protected by the global lock.
170 1.1 riastrad * Some fields, marked (A), can be read outside the lock, and are
171 1.1 riastrad * maintained with atomic_load/store_relaxed.
172 1.1 riastrad */
173 1.1 riastrad struct {
174 1.1 riastrad kmutex_t lock; /* covers all global state */
175 1.1 riastrad struct entpool pool; /* global pool for extraction */
176 1.1 riastrad unsigned needed; /* (A) needed globally */
177 1.1 riastrad unsigned pending; /* (A) pending in per-CPU pools */
178 1.1 riastrad unsigned timestamp; /* (A) time of last consolidation */
179 1.1 riastrad unsigned epoch; /* (A) changes when needed -> 0 */
180 1.1 riastrad kcondvar_t cv; /* notifies state changes */
181 1.1 riastrad struct selinfo selq; /* notifies needed -> 0 */
182 1.4 riastrad struct lwp *sourcelock; /* lock on list of sources */
183 1.27 riastrad kcondvar_t sourcelock_cv; /* notifies sourcelock release */
184 1.1 riastrad LIST_HEAD(,krndsource) sources; /* list of entropy sources */
185 1.1 riastrad enum entropy_stage {
186 1.1 riastrad ENTROPY_COLD = 0, /* single-threaded */
187 1.1 riastrad ENTROPY_WARM, /* multi-threaded at boot before CPUs */
188 1.1 riastrad ENTROPY_HOT, /* multi-threaded multi-CPU */
189 1.1 riastrad } stage;
190 1.1 riastrad bool consolidate; /* kick thread to consolidate */
191 1.1 riastrad bool seed_rndsource; /* true if seed source is attached */
192 1.1 riastrad bool seeded; /* true if seed file already loaded */
193 1.1 riastrad } entropy_global __cacheline_aligned = {
194 1.1 riastrad /* Fields that must be initialized when the kernel is loaded. */
195 1.1 riastrad .needed = ENTROPY_CAPACITY*NBBY,
196 1.14 riastrad .epoch = (unsigned)-1, /* -1 means entropy never consolidated */
197 1.1 riastrad .sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
198 1.1 riastrad .stage = ENTROPY_COLD,
199 1.1 riastrad };
200 1.1 riastrad
201 1.1 riastrad #define E (&entropy_global) /* declutter */
202 1.1 riastrad
203 1.1 riastrad /* Read-mostly globals */
204 1.1 riastrad static struct percpu *entropy_percpu __read_mostly; /* struct entropy_cpu */
205 1.1 riastrad static void *entropy_sih __read_mostly; /* softint handler */
206 1.1 riastrad static struct lwp *entropy_lwp __read_mostly; /* housekeeping thread */
207 1.1 riastrad
208 1.1 riastrad static struct krndsource seed_rndsource __read_mostly;
209 1.1 riastrad
210 1.1 riastrad /*
211 1.1 riastrad * Event counters
212 1.1 riastrad *
213 1.1 riastrad * Must be careful with adding these because they can serve as
214 1.1 riastrad * side channels.
215 1.1 riastrad */
216 1.1 riastrad static struct evcnt entropy_discretionary_evcnt =
217 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
218 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
219 1.1 riastrad static struct evcnt entropy_immediate_evcnt =
220 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
221 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
222 1.1 riastrad static struct evcnt entropy_partial_evcnt =
223 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
224 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
225 1.1 riastrad static struct evcnt entropy_consolidate_evcnt =
226 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
227 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
228 1.1 riastrad static struct evcnt entropy_extract_fail_evcnt =
229 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
230 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
231 1.1 riastrad static struct evcnt entropy_request_evcnt =
232 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
233 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_request_evcnt);
234 1.1 riastrad static struct evcnt entropy_deplete_evcnt =
235 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
236 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
237 1.1 riastrad static struct evcnt entropy_notify_evcnt =
238 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
239 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
240 1.1 riastrad
241 1.1 riastrad /* Sysctl knobs */
242 1.17 riastrad static bool entropy_collection = 1;
243 1.17 riastrad static bool entropy_depletion = 0; /* Silly! */
244 1.1 riastrad
245 1.1 riastrad static const struct sysctlnode *entropy_sysctlroot;
246 1.1 riastrad static struct sysctllog *entropy_sysctllog;
247 1.1 riastrad
248 1.1 riastrad /* Forward declarations */
249 1.1 riastrad static void entropy_init_cpu(void *, void *, struct cpu_info *);
250 1.1 riastrad static void entropy_fini_cpu(void *, void *, struct cpu_info *);
251 1.1 riastrad static void entropy_account_cpu(struct entropy_cpu *);
252 1.1 riastrad static void entropy_enter(const void *, size_t, unsigned);
253 1.1 riastrad static bool entropy_enter_intr(const void *, size_t, unsigned);
254 1.1 riastrad static void entropy_softintr(void *);
255 1.1 riastrad static void entropy_thread(void *);
256 1.1 riastrad static uint32_t entropy_pending(void);
257 1.1 riastrad static void entropy_pending_cpu(void *, void *, struct cpu_info *);
258 1.13 riastrad static void entropy_do_consolidate(void);
259 1.13 riastrad static void entropy_consolidate_xc(void *, void *);
260 1.1 riastrad static void entropy_notify(void);
261 1.1 riastrad static int sysctl_entropy_consolidate(SYSCTLFN_ARGS);
262 1.10 riastrad static int sysctl_entropy_gather(SYSCTLFN_ARGS);
263 1.1 riastrad static void filt_entropy_read_detach(struct knote *);
264 1.1 riastrad static int filt_entropy_read_event(struct knote *, long);
265 1.49 riastrad static int entropy_request(size_t, int);
266 1.1 riastrad static void rnd_add_data_1(struct krndsource *, const void *, uint32_t,
267 1.28 riastrad uint32_t, uint32_t);
268 1.1 riastrad static unsigned rndsource_entropybits(struct krndsource *);
269 1.1 riastrad static void rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
270 1.1 riastrad static void rndsource_to_user(struct krndsource *, rndsource_t *);
271 1.1 riastrad static void rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
272 1.28 riastrad static void rndsource_to_user_est_cpu(void *, void *, struct cpu_info *);
273 1.1 riastrad
274 1.1 riastrad /*
275 1.1 riastrad * entropy_timer()
276 1.1 riastrad *
277 1.1 riastrad * Cycle counter, time counter, or anything that changes a wee bit
278 1.1 riastrad * unpredictably.
279 1.1 riastrad */
280 1.1 riastrad static inline uint32_t
281 1.1 riastrad entropy_timer(void)
282 1.1 riastrad {
283 1.1 riastrad struct bintime bt;
284 1.1 riastrad uint32_t v;
285 1.1 riastrad
286 1.1 riastrad /* If we have a CPU cycle counter, use the low 32 bits. */
287 1.1 riastrad #ifdef __HAVE_CPU_COUNTER
288 1.1 riastrad if (__predict_true(cpu_hascounter()))
289 1.1 riastrad return cpu_counter32();
290 1.1 riastrad #endif /* __HAVE_CPU_COUNTER */
291 1.1 riastrad
292 1.1 riastrad /* If we're cold, tough. Can't binuptime while cold. */
293 1.1 riastrad if (__predict_false(cold))
294 1.1 riastrad return 0;
295 1.1 riastrad
296 1.1 riastrad /* Fold the 128 bits of binuptime into 32 bits. */
297 1.1 riastrad binuptime(&bt);
298 1.1 riastrad v = bt.frac;
299 1.1 riastrad v ^= bt.frac >> 32;
300 1.1 riastrad v ^= bt.sec;
301 1.1 riastrad v ^= bt.sec >> 32;
302 1.1 riastrad return v;
303 1.1 riastrad }
304 1.1 riastrad
305 1.1 riastrad static void
306 1.1 riastrad attach_seed_rndsource(void)
307 1.1 riastrad {
308 1.1 riastrad
309 1.1 riastrad /*
310 1.1 riastrad * First called no later than entropy_init, while we are still
311 1.1 riastrad * single-threaded, so no need for RUN_ONCE.
312 1.1 riastrad */
313 1.1 riastrad if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
314 1.1 riastrad return;
315 1.1 riastrad rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
316 1.1 riastrad RND_FLAG_COLLECT_VALUE);
317 1.1 riastrad E->seed_rndsource = true;
318 1.1 riastrad }
319 1.1 riastrad
320 1.1 riastrad /*
321 1.1 riastrad * entropy_init()
322 1.1 riastrad *
323 1.1 riastrad * Initialize the entropy subsystem. Panic on failure.
324 1.1 riastrad *
325 1.1 riastrad * Requires percpu(9) and sysctl(9) to be initialized.
326 1.1 riastrad */
327 1.1 riastrad static void
328 1.1 riastrad entropy_init(void)
329 1.1 riastrad {
330 1.1 riastrad uint32_t extra[2];
331 1.1 riastrad struct krndsource *rs;
332 1.1 riastrad unsigned i = 0;
333 1.1 riastrad
334 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD);
335 1.1 riastrad
336 1.1 riastrad /* Grab some cycle counts early at boot. */
337 1.1 riastrad extra[i++] = entropy_timer();
338 1.1 riastrad
339 1.1 riastrad /* Run the entropy pool cryptography self-test. */
340 1.1 riastrad if (entpool_selftest() == -1)
341 1.1 riastrad panic("entropy pool crypto self-test failed");
342 1.1 riastrad
343 1.1 riastrad /* Create the sysctl directory. */
344 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
345 1.1 riastrad CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
346 1.1 riastrad SYSCTL_DESCR("Entropy (random number sources) options"),
347 1.1 riastrad NULL, 0, NULL, 0,
348 1.1 riastrad CTL_KERN, CTL_CREATE, CTL_EOL);
349 1.1 riastrad
350 1.1 riastrad /* Create the sysctl knobs. */
351 1.1 riastrad /* XXX These shouldn't be writable at securelevel>0. */
352 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
353 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
354 1.1 riastrad SYSCTL_DESCR("Automatically collect entropy from hardware"),
355 1.1 riastrad NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
356 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
357 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
358 1.1 riastrad SYSCTL_DESCR("`Deplete' entropy pool when observed"),
359 1.1 riastrad NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
360 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
361 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
362 1.1 riastrad SYSCTL_DESCR("Trigger entropy consolidation now"),
363 1.1 riastrad sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
364 1.10 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
365 1.10 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
366 1.10 riastrad SYSCTL_DESCR("Trigger entropy gathering from sources now"),
367 1.10 riastrad sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
368 1.1 riastrad /* XXX These should maybe not be readable at securelevel>0. */
369 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
370 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
371 1.1 riastrad "needed", SYSCTL_DESCR("Systemwide entropy deficit"),
372 1.1 riastrad NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
373 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
374 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
375 1.1 riastrad "pending", SYSCTL_DESCR("Entropy pending on CPUs"),
376 1.1 riastrad NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
377 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
378 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
379 1.1 riastrad "epoch", SYSCTL_DESCR("Entropy epoch"),
380 1.1 riastrad NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
381 1.1 riastrad
382 1.1 riastrad /* Initialize the global state for multithreaded operation. */
383 1.39 riastrad mutex_init(&E->lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
384 1.1 riastrad cv_init(&E->cv, "entropy");
385 1.1 riastrad selinit(&E->selq);
386 1.27 riastrad cv_init(&E->sourcelock_cv, "entsrclock");
387 1.1 riastrad
388 1.1 riastrad /* Make sure the seed source is attached. */
389 1.1 riastrad attach_seed_rndsource();
390 1.1 riastrad
391 1.1 riastrad /* Note if the bootloader didn't provide a seed. */
392 1.1 riastrad if (!E->seeded)
393 1.29 riastrad aprint_debug("entropy: no seed from bootloader\n");
394 1.1 riastrad
395 1.1 riastrad /* Allocate the per-CPU records for all early entropy sources. */
396 1.1 riastrad LIST_FOREACH(rs, &E->sources, list)
397 1.1 riastrad rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
398 1.1 riastrad
399 1.36 riastrad /* Allocate and initialize the per-CPU state. */
400 1.36 riastrad entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
401 1.36 riastrad entropy_init_cpu, entropy_fini_cpu, NULL);
402 1.36 riastrad
403 1.1 riastrad /* Enter the boot cycle count to get started. */
404 1.1 riastrad extra[i++] = entropy_timer();
405 1.1 riastrad KASSERT(i == __arraycount(extra));
406 1.1 riastrad entropy_enter(extra, sizeof extra, 0);
407 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
408 1.1 riastrad
409 1.1 riastrad /* We are now ready for multi-threaded operation. */
410 1.1 riastrad E->stage = ENTROPY_WARM;
411 1.1 riastrad }
412 1.1 riastrad
413 1.37 riastrad static void
414 1.37 riastrad entropy_init_late_cpu(void *a, void *b)
415 1.37 riastrad {
416 1.37 riastrad
417 1.37 riastrad entropy_softintr(NULL);
418 1.37 riastrad }
419 1.37 riastrad
420 1.1 riastrad /*
421 1.1 riastrad * entropy_init_late()
422 1.1 riastrad *
423 1.1 riastrad * Late initialization. Panic on failure.
424 1.1 riastrad *
425 1.1 riastrad * Requires CPUs to have been detected and LWPs to have started.
426 1.1 riastrad */
427 1.1 riastrad static void
428 1.1 riastrad entropy_init_late(void)
429 1.1 riastrad {
430 1.37 riastrad void *sih;
431 1.1 riastrad int error;
432 1.1 riastrad
433 1.1 riastrad KASSERT(E->stage == ENTROPY_WARM);
434 1.1 riastrad
435 1.1 riastrad /*
436 1.1 riastrad * Establish the softint at the highest softint priority level.
437 1.1 riastrad * Must happen after CPU detection.
438 1.1 riastrad */
439 1.37 riastrad sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
440 1.1 riastrad &entropy_softintr, NULL);
441 1.37 riastrad if (sih == NULL)
442 1.1 riastrad panic("unable to establish entropy softint");
443 1.1 riastrad
444 1.1 riastrad /*
445 1.1 riastrad * Create the entropy housekeeping thread. Must happen after
446 1.1 riastrad * lwpinit.
447 1.1 riastrad */
448 1.1 riastrad error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
449 1.1 riastrad entropy_thread, NULL, &entropy_lwp, "entbutler");
450 1.1 riastrad if (error)
451 1.1 riastrad panic("unable to create entropy housekeeping thread: %d",
452 1.1 riastrad error);
453 1.1 riastrad
454 1.1 riastrad /*
455 1.1 riastrad * Wait until the per-CPU initialization has hit all CPUs
456 1.37 riastrad * before proceeding to mark the entropy system hot and
457 1.37 riastrad * enabling use of the softint.
458 1.1 riastrad */
459 1.1 riastrad xc_barrier(XC_HIGHPRI);
460 1.1 riastrad E->stage = ENTROPY_HOT;
461 1.37 riastrad atomic_store_relaxed(&entropy_sih, sih);
462 1.37 riastrad
463 1.37 riastrad /*
464 1.37 riastrad * At this point, entering new samples from interrupt handlers
465 1.37 riastrad * will trigger the softint to process them. But there may be
466 1.37 riastrad * some samples that were entered from interrupt handlers
467 1.37 riastrad * before the softint was available. Make sure we process
468 1.37 riastrad * those samples on all CPUs by running the softint logic on
469 1.37 riastrad * all CPUs.
470 1.37 riastrad */
471 1.37 riastrad xc_wait(xc_broadcast(XC_HIGHPRI, entropy_init_late_cpu, NULL, NULL));
472 1.1 riastrad }
473 1.1 riastrad
474 1.1 riastrad /*
475 1.1 riastrad * entropy_init_cpu(ptr, cookie, ci)
476 1.1 riastrad *
477 1.1 riastrad * percpu(9) constructor for per-CPU entropy pool.
478 1.1 riastrad */
479 1.1 riastrad static void
480 1.1 riastrad entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
481 1.1 riastrad {
482 1.1 riastrad struct entropy_cpu *ec = ptr;
483 1.40 riastrad const char *cpuname;
484 1.1 riastrad
485 1.40 riastrad ec->ec_evcnt = kmem_alloc(sizeof(*ec->ec_evcnt), KM_SLEEP);
486 1.1 riastrad ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
487 1.1 riastrad ec->ec_pending = 0;
488 1.1 riastrad ec->ec_locked = false;
489 1.1 riastrad
490 1.36 riastrad /* XXX ci_cpuname may not be initialized early enough. */
491 1.40 riastrad cpuname = ci->ci_cpuname[0] == '\0' ? "cpu0" : ci->ci_cpuname;
492 1.40 riastrad evcnt_attach_dynamic(&ec->ec_evcnt->softint, EVCNT_TYPE_MISC, NULL,
493 1.40 riastrad cpuname, "entropy softint");
494 1.40 riastrad evcnt_attach_dynamic(&ec->ec_evcnt->intrdrop, EVCNT_TYPE_MISC, NULL,
495 1.40 riastrad cpuname, "entropy intrdrop");
496 1.40 riastrad evcnt_attach_dynamic(&ec->ec_evcnt->intrtrunc, EVCNT_TYPE_MISC, NULL,
497 1.40 riastrad cpuname, "entropy intrtrunc");
498 1.1 riastrad }
499 1.1 riastrad
500 1.1 riastrad /*
501 1.1 riastrad * entropy_fini_cpu(ptr, cookie, ci)
502 1.1 riastrad *
503 1.1 riastrad * percpu(9) destructor for per-CPU entropy pool.
504 1.1 riastrad */
505 1.1 riastrad static void
506 1.1 riastrad entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
507 1.1 riastrad {
508 1.1 riastrad struct entropy_cpu *ec = ptr;
509 1.1 riastrad
510 1.1 riastrad /*
511 1.1 riastrad * Zero any lingering data. Disclosure of the per-CPU pool
512 1.1 riastrad * shouldn't retroactively affect the security of any keys
513 1.1 riastrad * generated, because entpool(9) erases whatever we have just
514 1.1 riastrad * drawn out of any pool, but better safe than sorry.
515 1.1 riastrad */
516 1.1 riastrad explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
517 1.1 riastrad
518 1.40 riastrad evcnt_detach(&ec->ec_evcnt->intrtrunc);
519 1.40 riastrad evcnt_detach(&ec->ec_evcnt->intrdrop);
520 1.40 riastrad evcnt_detach(&ec->ec_evcnt->softint);
521 1.1 riastrad
522 1.1 riastrad kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
523 1.40 riastrad kmem_free(ec->ec_evcnt, sizeof(*ec->ec_evcnt));
524 1.1 riastrad }
525 1.1 riastrad
526 1.1 riastrad /*
527 1.43 riastrad * ec = entropy_cpu_get(&lock)
528 1.43 riastrad * entropy_cpu_put(&lock, ec)
529 1.43 riastrad *
530 1.43 riastrad * Lock and unlock the per-CPU entropy state. This only prevents
531 1.43 riastrad * access on the same CPU -- by hard interrupts, by soft
532 1.43 riastrad * interrupts, or by other threads.
533 1.43 riastrad *
534 1.43 riastrad * Blocks soft interrupts and preemption altogether; doesn't block
535 1.43 riastrad * hard interrupts, but causes samples in hard interrupts to be
536 1.43 riastrad * dropped.
537 1.43 riastrad */
538 1.43 riastrad static struct entropy_cpu *
539 1.43 riastrad entropy_cpu_get(struct entropy_cpu_lock *lock)
540 1.43 riastrad {
541 1.43 riastrad struct entropy_cpu *ec;
542 1.43 riastrad
543 1.43 riastrad ec = percpu_getref(entropy_percpu);
544 1.43 riastrad lock->ecl_s = splsoftserial();
545 1.43 riastrad KASSERT(!ec->ec_locked);
546 1.43 riastrad ec->ec_locked = true;
547 1.43 riastrad lock->ecl_ncsw = curlwp->l_ncsw;
548 1.43 riastrad __insn_barrier();
549 1.43 riastrad
550 1.43 riastrad return ec;
551 1.43 riastrad }
552 1.43 riastrad
553 1.43 riastrad static void
554 1.43 riastrad entropy_cpu_put(struct entropy_cpu_lock *lock, struct entropy_cpu *ec)
555 1.43 riastrad {
556 1.43 riastrad
557 1.43 riastrad KASSERT(ec == percpu_getptr_remote(entropy_percpu, curcpu()));
558 1.43 riastrad KASSERT(ec->ec_locked);
559 1.43 riastrad
560 1.43 riastrad __insn_barrier();
561 1.43 riastrad KASSERT(lock->ecl_ncsw == curlwp->l_ncsw);
562 1.43 riastrad ec->ec_locked = false;
563 1.43 riastrad splx(lock->ecl_s);
564 1.43 riastrad percpu_putref(entropy_percpu);
565 1.43 riastrad }
566 1.43 riastrad
567 1.43 riastrad /*
568 1.1 riastrad * entropy_seed(seed)
569 1.1 riastrad *
570 1.1 riastrad * Seed the entropy pool with seed. Meant to be called as early
571 1.1 riastrad * as possible by the bootloader; may be called before or after
572 1.1 riastrad * entropy_init. Must be called before system reaches userland.
573 1.1 riastrad * Must be called in thread or soft interrupt context, not in hard
574 1.1 riastrad * interrupt context. Must be called at most once.
575 1.1 riastrad *
576 1.1 riastrad * Overwrites the seed in place. Caller may then free the memory.
577 1.1 riastrad */
578 1.1 riastrad static void
579 1.1 riastrad entropy_seed(rndsave_t *seed)
580 1.1 riastrad {
581 1.1 riastrad SHA1_CTX ctx;
582 1.1 riastrad uint8_t digest[SHA1_DIGEST_LENGTH];
583 1.1 riastrad bool seeded;
584 1.1 riastrad
585 1.1 riastrad /*
586 1.1 riastrad * Verify the checksum. If the checksum fails, take the data
587 1.1 riastrad * but ignore the entropy estimate -- the file may have been
588 1.1 riastrad * incompletely written with garbage, which is harmless to add
589 1.1 riastrad * but may not be as unpredictable as alleged.
590 1.1 riastrad */
591 1.1 riastrad SHA1Init(&ctx);
592 1.1 riastrad SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
593 1.1 riastrad SHA1Update(&ctx, seed->data, sizeof(seed->data));
594 1.1 riastrad SHA1Final(digest, &ctx);
595 1.1 riastrad CTASSERT(sizeof(seed->digest) == sizeof(digest));
596 1.1 riastrad if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
597 1.1 riastrad printf("entropy: invalid seed checksum\n");
598 1.1 riastrad seed->entropy = 0;
599 1.1 riastrad }
600 1.2 riastrad explicit_memset(&ctx, 0, sizeof ctx);
601 1.1 riastrad explicit_memset(digest, 0, sizeof digest);
602 1.1 riastrad
603 1.2 riastrad /*
604 1.2 riastrad * If the entropy is insensibly large, try byte-swapping.
605 1.2 riastrad * Otherwise assume the file is corrupted and act as though it
606 1.2 riastrad * has zero entropy.
607 1.2 riastrad */
608 1.2 riastrad if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
609 1.2 riastrad seed->entropy = bswap32(seed->entropy);
610 1.2 riastrad if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
611 1.2 riastrad seed->entropy = 0;
612 1.2 riastrad }
613 1.2 riastrad
614 1.1 riastrad /* Make sure the seed source is attached. */
615 1.1 riastrad attach_seed_rndsource();
616 1.1 riastrad
617 1.1 riastrad /* Test and set E->seeded. */
618 1.1 riastrad if (E->stage >= ENTROPY_WARM)
619 1.1 riastrad mutex_enter(&E->lock);
620 1.1 riastrad seeded = E->seeded;
621 1.11 riastrad E->seeded = (seed->entropy > 0);
622 1.1 riastrad if (E->stage >= ENTROPY_WARM)
623 1.1 riastrad mutex_exit(&E->lock);
624 1.1 riastrad
625 1.1 riastrad /*
626 1.1 riastrad * If we've been seeded, may be re-entering the same seed
627 1.1 riastrad * (e.g., bootloader vs module init, or something). No harm in
628 1.1 riastrad * entering it twice, but it contributes no additional entropy.
629 1.1 riastrad */
630 1.1 riastrad if (seeded) {
631 1.1 riastrad printf("entropy: double-seeded by bootloader\n");
632 1.1 riastrad seed->entropy = 0;
633 1.1 riastrad } else {
634 1.11 riastrad printf("entropy: entering seed from bootloader"
635 1.11 riastrad " with %u bits of entropy\n", (unsigned)seed->entropy);
636 1.1 riastrad }
637 1.1 riastrad
638 1.1 riastrad /* Enter it into the pool and promptly zero it. */
639 1.1 riastrad rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
640 1.1 riastrad seed->entropy);
641 1.1 riastrad explicit_memset(seed, 0, sizeof(*seed));
642 1.1 riastrad }
643 1.1 riastrad
644 1.1 riastrad /*
645 1.1 riastrad * entropy_bootrequest()
646 1.1 riastrad *
647 1.1 riastrad * Request entropy from all sources at boot, once config is
648 1.1 riastrad * complete and interrupts are running.
649 1.1 riastrad */
650 1.1 riastrad void
651 1.1 riastrad entropy_bootrequest(void)
652 1.1 riastrad {
653 1.49 riastrad int error;
654 1.1 riastrad
655 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
656 1.1 riastrad
657 1.1 riastrad /*
658 1.1 riastrad * Request enough to satisfy the maximum entropy shortage.
659 1.1 riastrad * This is harmless overkill if the bootloader provided a seed.
660 1.1 riastrad */
661 1.1 riastrad mutex_enter(&E->lock);
662 1.49 riastrad error = entropy_request(ENTROPY_CAPACITY, ENTROPY_WAIT);
663 1.49 riastrad KASSERT(error == 0);
664 1.1 riastrad mutex_exit(&E->lock);
665 1.1 riastrad }
666 1.1 riastrad
667 1.1 riastrad /*
668 1.1 riastrad * entropy_epoch()
669 1.1 riastrad *
670 1.1 riastrad * Returns the current entropy epoch. If this changes, you should
671 1.14 riastrad * reseed. If -1, means system entropy has not yet reached full
672 1.14 riastrad * entropy or been explicitly consolidated; never reverts back to
673 1.14 riastrad * -1. Never zero, so you can always use zero as an uninitialized
674 1.14 riastrad * sentinel value meaning `reseed ASAP'.
675 1.1 riastrad *
676 1.1 riastrad * Usage model:
677 1.1 riastrad *
678 1.1 riastrad * struct foo {
679 1.1 riastrad * struct crypto_prng prng;
680 1.1 riastrad * unsigned epoch;
681 1.1 riastrad * } *foo;
682 1.1 riastrad *
683 1.1 riastrad * unsigned epoch = entropy_epoch();
684 1.1 riastrad * if (__predict_false(epoch != foo->epoch)) {
685 1.1 riastrad * uint8_t seed[32];
686 1.1 riastrad * if (entropy_extract(seed, sizeof seed, 0) != 0)
687 1.1 riastrad * warn("no entropy");
688 1.1 riastrad * crypto_prng_reseed(&foo->prng, seed, sizeof seed);
689 1.1 riastrad * foo->epoch = epoch;
690 1.1 riastrad * }
691 1.1 riastrad */
692 1.1 riastrad unsigned
693 1.1 riastrad entropy_epoch(void)
694 1.1 riastrad {
695 1.1 riastrad
696 1.1 riastrad /*
697 1.1 riastrad * Unsigned int, so no need for seqlock for an atomic read, but
698 1.1 riastrad * make sure we read it afresh each time.
699 1.1 riastrad */
700 1.1 riastrad return atomic_load_relaxed(&E->epoch);
701 1.1 riastrad }
702 1.1 riastrad
703 1.1 riastrad /*
704 1.23 riastrad * entropy_ready()
705 1.23 riastrad *
706 1.23 riastrad * True if the entropy pool has full entropy.
707 1.23 riastrad */
708 1.23 riastrad bool
709 1.23 riastrad entropy_ready(void)
710 1.23 riastrad {
711 1.23 riastrad
712 1.23 riastrad return atomic_load_relaxed(&E->needed) == 0;
713 1.23 riastrad }
714 1.23 riastrad
715 1.23 riastrad /*
716 1.1 riastrad * entropy_account_cpu(ec)
717 1.1 riastrad *
718 1.1 riastrad * Consider whether to consolidate entropy into the global pool
719 1.1 riastrad * after we just added some into the current CPU's pending pool.
720 1.1 riastrad *
721 1.1 riastrad * - If this CPU can provide enough entropy now, do so.
722 1.1 riastrad *
723 1.1 riastrad * - If this and whatever else is available on other CPUs can
724 1.1 riastrad * provide enough entropy, kick the consolidation thread.
725 1.1 riastrad *
726 1.1 riastrad * - Otherwise, do as little as possible, except maybe consolidate
727 1.1 riastrad * entropy at most once a minute.
728 1.1 riastrad *
729 1.1 riastrad * Caller must be bound to a CPU and therefore have exclusive
730 1.1 riastrad * access to ec. Will acquire and release the global lock.
731 1.1 riastrad */
732 1.1 riastrad static void
733 1.1 riastrad entropy_account_cpu(struct entropy_cpu *ec)
734 1.1 riastrad {
735 1.44 riastrad struct entropy_cpu_lock lock;
736 1.44 riastrad struct entropy_cpu *ec0;
737 1.1 riastrad unsigned diff;
738 1.1 riastrad
739 1.37 riastrad KASSERT(E->stage >= ENTROPY_WARM);
740 1.52 riastrad KASSERT(curlwp->l_pflag & LP_BOUND);
741 1.1 riastrad
742 1.1 riastrad /*
743 1.1 riastrad * If there's no entropy needed, and entropy has been
744 1.1 riastrad * consolidated in the last minute, do nothing.
745 1.1 riastrad */
746 1.1 riastrad if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
747 1.1 riastrad __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
748 1.1 riastrad __predict_true((time_uptime - E->timestamp) <= 60))
749 1.1 riastrad return;
750 1.1 riastrad
751 1.44 riastrad /*
752 1.44 riastrad * Consider consolidation, under the global lock and with the
753 1.44 riastrad * per-CPU state locked.
754 1.44 riastrad */
755 1.1 riastrad mutex_enter(&E->lock);
756 1.44 riastrad ec0 = entropy_cpu_get(&lock);
757 1.44 riastrad KASSERT(ec0 == ec);
758 1.46 riastrad if (ec->ec_pending == 0) {
759 1.46 riastrad /* Raced with consolidation xcall. Nothing to do. */
760 1.46 riastrad } else if (E->needed != 0 && E->needed <= ec->ec_pending) {
761 1.1 riastrad /*
762 1.1 riastrad * If we have not yet attained full entropy but we can
763 1.1 riastrad * now, do so. This way we disseminate entropy
764 1.1 riastrad * promptly when it becomes available early at boot;
765 1.1 riastrad * otherwise we leave it to the entropy consolidation
766 1.1 riastrad * thread, which is rate-limited to mitigate side
767 1.1 riastrad * channels and abuse.
768 1.1 riastrad */
769 1.1 riastrad uint8_t buf[ENTPOOL_CAPACITY];
770 1.1 riastrad
771 1.1 riastrad /* Transfer from the local pool to the global pool. */
772 1.1 riastrad entpool_extract(ec->ec_pool, buf, sizeof buf);
773 1.1 riastrad entpool_enter(&E->pool, buf, sizeof buf);
774 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, 0);
775 1.1 riastrad atomic_store_relaxed(&E->needed, 0);
776 1.1 riastrad
777 1.1 riastrad /* Notify waiters that we now have full entropy. */
778 1.1 riastrad entropy_notify();
779 1.1 riastrad entropy_immediate_evcnt.ev_count++;
780 1.18 riastrad } else {
781 1.45 riastrad /* Determine how much we can add to the global pool. */
782 1.45 riastrad KASSERTMSG(E->pending <= ENTROPY_CAPACITY*NBBY,
783 1.45 riastrad "E->pending=%u", E->pending);
784 1.1 riastrad diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
785 1.1 riastrad
786 1.1 riastrad /*
787 1.45 riastrad * This should make a difference unless we are already
788 1.45 riastrad * saturated.
789 1.1 riastrad */
790 1.45 riastrad KASSERTMSG(diff || E->pending == ENTROPY_CAPACITY*NBBY,
791 1.45 riastrad "diff=%u E->pending=%u ec->ec_pending=%u cap=%u",
792 1.45 riastrad diff, E->pending, ec->ec_pending,
793 1.45 riastrad (unsigned)ENTROPY_CAPACITY*NBBY);
794 1.45 riastrad
795 1.45 riastrad /* Add to the global, subtract from the local. */
796 1.45 riastrad E->pending += diff;
797 1.1 riastrad KASSERT(E->pending);
798 1.45 riastrad KASSERTMSG(E->pending <= ENTROPY_CAPACITY*NBBY,
799 1.45 riastrad "E->pending=%u", E->pending);
800 1.45 riastrad atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
801 1.1 riastrad
802 1.1 riastrad if (E->needed <= E->pending) {
803 1.1 riastrad /*
804 1.1 riastrad * Enough entropy between all the per-CPU
805 1.1 riastrad * pools. Wake up the housekeeping thread.
806 1.1 riastrad *
807 1.1 riastrad * If we don't need any entropy, this doesn't
808 1.1 riastrad * mean much, but it is the only time we ever
809 1.1 riastrad * gather additional entropy in case the
810 1.1 riastrad * accounting has been overly optimistic. This
811 1.1 riastrad * happens at most once a minute, so there's
812 1.1 riastrad * negligible performance cost.
813 1.1 riastrad */
814 1.1 riastrad E->consolidate = true;
815 1.1 riastrad cv_broadcast(&E->cv);
816 1.1 riastrad if (E->needed == 0)
817 1.1 riastrad entropy_discretionary_evcnt.ev_count++;
818 1.1 riastrad } else {
819 1.1 riastrad /* Can't get full entropy. Keep gathering. */
820 1.1 riastrad entropy_partial_evcnt.ev_count++;
821 1.1 riastrad }
822 1.1 riastrad }
823 1.44 riastrad entropy_cpu_put(&lock, ec);
824 1.1 riastrad mutex_exit(&E->lock);
825 1.1 riastrad }
826 1.1 riastrad
827 1.1 riastrad /*
828 1.1 riastrad * entropy_enter_early(buf, len, nbits)
829 1.1 riastrad *
830 1.1 riastrad * Do entropy bookkeeping globally, before we have established
831 1.1 riastrad * per-CPU pools. Enter directly into the global pool in the hope
832 1.1 riastrad * that we enter enough before the first entropy_extract to thwart
833 1.1 riastrad * iterative-guessing attacks; entropy_extract will warn if not.
834 1.1 riastrad */
835 1.1 riastrad static void
836 1.1 riastrad entropy_enter_early(const void *buf, size_t len, unsigned nbits)
837 1.1 riastrad {
838 1.1 riastrad bool notify = false;
839 1.1 riastrad
840 1.37 riastrad KASSERT(E->stage == ENTROPY_COLD);
841 1.1 riastrad
842 1.1 riastrad /* Enter it into the pool. */
843 1.1 riastrad entpool_enter(&E->pool, buf, len);
844 1.1 riastrad
845 1.1 riastrad /*
846 1.1 riastrad * Decide whether to notify reseed -- we will do so if either:
847 1.1 riastrad * (a) we transition from partial entropy to full entropy, or
848 1.1 riastrad * (b) we get a batch of full entropy all at once.
849 1.1 riastrad */
850 1.1 riastrad notify |= (E->needed && E->needed <= nbits);
851 1.1 riastrad notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
852 1.1 riastrad
853 1.1 riastrad /* Subtract from the needed count and notify if appropriate. */
854 1.1 riastrad E->needed -= MIN(E->needed, nbits);
855 1.1 riastrad if (notify) {
856 1.1 riastrad entropy_notify();
857 1.1 riastrad entropy_immediate_evcnt.ev_count++;
858 1.1 riastrad }
859 1.1 riastrad }
860 1.1 riastrad
861 1.1 riastrad /*
862 1.1 riastrad * entropy_enter(buf, len, nbits)
863 1.1 riastrad *
864 1.1 riastrad * Enter len bytes of data from buf into the system's entropy
865 1.1 riastrad * pool, stirring as necessary when the internal buffer fills up.
866 1.1 riastrad * nbits is a lower bound on the number of bits of entropy in the
867 1.1 riastrad * process that led to this sample.
868 1.1 riastrad */
869 1.1 riastrad static void
870 1.1 riastrad entropy_enter(const void *buf, size_t len, unsigned nbits)
871 1.1 riastrad {
872 1.43 riastrad struct entropy_cpu_lock lock;
873 1.1 riastrad struct entropy_cpu *ec;
874 1.42 riastrad unsigned pending;
875 1.52 riastrad int bound;
876 1.1 riastrad
877 1.16 riastrad KASSERTMSG(!cpu_intr_p(),
878 1.1 riastrad "use entropy_enter_intr from interrupt context");
879 1.1 riastrad KASSERTMSG(howmany(nbits, NBBY) <= len,
880 1.1 riastrad "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
881 1.1 riastrad
882 1.1 riastrad /* If it's too early after boot, just use entropy_enter_early. */
883 1.37 riastrad if (__predict_false(E->stage == ENTROPY_COLD)) {
884 1.1 riastrad entropy_enter_early(buf, len, nbits);
885 1.1 riastrad return;
886 1.1 riastrad }
887 1.1 riastrad
888 1.1 riastrad /*
889 1.52 riastrad * Bind ourselves to the current CPU so we don't switch CPUs
890 1.52 riastrad * between entering data into the current CPU's pool (and
891 1.52 riastrad * updating the pending count) and transferring it to the
892 1.52 riastrad * global pool in entropy_account_cpu.
893 1.52 riastrad */
894 1.52 riastrad bound = curlwp_bind();
895 1.52 riastrad
896 1.52 riastrad /*
897 1.43 riastrad * With the per-CPU state locked, enter into the per-CPU pool
898 1.43 riastrad * and count up what we can add.
899 1.1 riastrad */
900 1.43 riastrad ec = entropy_cpu_get(&lock);
901 1.1 riastrad entpool_enter(ec->ec_pool, buf, len);
902 1.1 riastrad pending = ec->ec_pending;
903 1.1 riastrad pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
904 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, pending);
905 1.43 riastrad entropy_cpu_put(&lock, ec);
906 1.42 riastrad
907 1.42 riastrad /* Consolidate globally if appropriate based on what we added. */
908 1.42 riastrad if (pending)
909 1.42 riastrad entropy_account_cpu(ec);
910 1.52 riastrad
911 1.52 riastrad curlwp_bindx(bound);
912 1.1 riastrad }
913 1.1 riastrad
914 1.1 riastrad /*
915 1.1 riastrad * entropy_enter_intr(buf, len, nbits)
916 1.1 riastrad *
917 1.1 riastrad * Enter up to len bytes of data from buf into the system's
918 1.1 riastrad * entropy pool without stirring. nbits is a lower bound on the
919 1.1 riastrad * number of bits of entropy in the process that led to this
920 1.1 riastrad * sample. If the sample could be entered completely, assume
921 1.1 riastrad * nbits of entropy pending; otherwise assume none, since we don't
922 1.1 riastrad * know whether some parts of the sample are constant, for
923 1.1 riastrad * instance. Schedule a softint to stir the entropy pool if
924 1.1 riastrad * needed. Return true if used fully, false if truncated at all.
925 1.1 riastrad *
926 1.1 riastrad * Using this in thread context will work, but you might as well
927 1.1 riastrad * use entropy_enter in that case.
928 1.1 riastrad */
929 1.1 riastrad static bool
930 1.1 riastrad entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
931 1.1 riastrad {
932 1.1 riastrad struct entropy_cpu *ec;
933 1.1 riastrad bool fullyused = false;
934 1.1 riastrad uint32_t pending;
935 1.37 riastrad void *sih;
936 1.1 riastrad
937 1.45 riastrad KASSERT(cpu_intr_p());
938 1.1 riastrad KASSERTMSG(howmany(nbits, NBBY) <= len,
939 1.1 riastrad "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
940 1.1 riastrad
941 1.1 riastrad /* If it's too early after boot, just use entropy_enter_early. */
942 1.37 riastrad if (__predict_false(E->stage == ENTROPY_COLD)) {
943 1.1 riastrad entropy_enter_early(buf, len, nbits);
944 1.1 riastrad return true;
945 1.1 riastrad }
946 1.1 riastrad
947 1.1 riastrad /*
948 1.1 riastrad * Acquire the per-CPU state. If someone is in the middle of
949 1.1 riastrad * using it, drop the sample. Otherwise, take the lock so that
950 1.1 riastrad * higher-priority interrupts will drop their samples.
951 1.1 riastrad */
952 1.1 riastrad ec = percpu_getref(entropy_percpu);
953 1.40 riastrad if (ec->ec_locked) {
954 1.40 riastrad ec->ec_evcnt->intrdrop.ev_count++;
955 1.1 riastrad goto out0;
956 1.40 riastrad }
957 1.1 riastrad ec->ec_locked = true;
958 1.1 riastrad __insn_barrier();
959 1.1 riastrad
960 1.1 riastrad /*
961 1.1 riastrad * Enter as much as we can into the per-CPU pool. If it was
962 1.1 riastrad * truncated, schedule a softint to stir the pool and stop.
963 1.1 riastrad */
964 1.1 riastrad if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
965 1.37 riastrad sih = atomic_load_relaxed(&entropy_sih);
966 1.37 riastrad if (__predict_true(sih != NULL))
967 1.37 riastrad softint_schedule(sih);
968 1.40 riastrad ec->ec_evcnt->intrtrunc.ev_count++;
969 1.1 riastrad goto out1;
970 1.1 riastrad }
971 1.1 riastrad fullyused = true;
972 1.1 riastrad
973 1.1 riastrad /* Count up what we can contribute. */
974 1.1 riastrad pending = ec->ec_pending;
975 1.1 riastrad pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
976 1.1 riastrad atomic_store_relaxed(&ec->ec_pending, pending);
977 1.1 riastrad
978 1.1 riastrad /* Schedule a softint if we added anything and it matters. */
979 1.1 riastrad if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
980 1.1 riastrad atomic_load_relaxed(&entropy_depletion)) &&
981 1.37 riastrad nbits != 0) {
982 1.37 riastrad sih = atomic_load_relaxed(&entropy_sih);
983 1.37 riastrad if (__predict_true(sih != NULL))
984 1.37 riastrad softint_schedule(sih);
985 1.37 riastrad }
986 1.1 riastrad
987 1.1 riastrad out1: /* Release the per-CPU state. */
988 1.1 riastrad KASSERT(ec->ec_locked);
989 1.1 riastrad __insn_barrier();
990 1.1 riastrad ec->ec_locked = false;
991 1.1 riastrad out0: percpu_putref(entropy_percpu);
992 1.1 riastrad
993 1.1 riastrad return fullyused;
994 1.1 riastrad }
995 1.1 riastrad
996 1.1 riastrad /*
997 1.1 riastrad * entropy_softintr(cookie)
998 1.1 riastrad *
999 1.1 riastrad * Soft interrupt handler for entering entropy. Takes care of
1000 1.1 riastrad * stirring the local CPU's entropy pool if it filled up during
1001 1.1 riastrad * hard interrupts, and promptly crediting entropy from the local
1002 1.1 riastrad * CPU's entropy pool to the global entropy pool if needed.
1003 1.1 riastrad */
1004 1.1 riastrad static void
1005 1.1 riastrad entropy_softintr(void *cookie)
1006 1.1 riastrad {
1007 1.43 riastrad struct entropy_cpu_lock lock;
1008 1.1 riastrad struct entropy_cpu *ec;
1009 1.42 riastrad unsigned pending;
1010 1.1 riastrad
1011 1.1 riastrad /*
1012 1.43 riastrad * With the per-CPU state locked, stir the pool if necessary
1013 1.43 riastrad * and determine if there's any pending entropy on this CPU to
1014 1.43 riastrad * account globally.
1015 1.1 riastrad */
1016 1.43 riastrad ec = entropy_cpu_get(&lock);
1017 1.40 riastrad ec->ec_evcnt->softint.ev_count++;
1018 1.1 riastrad entpool_stir(ec->ec_pool);
1019 1.42 riastrad pending = ec->ec_pending;
1020 1.43 riastrad entropy_cpu_put(&lock, ec);
1021 1.42 riastrad
1022 1.42 riastrad /* Consolidate globally if appropriate based on what we added. */
1023 1.42 riastrad if (pending)
1024 1.42 riastrad entropy_account_cpu(ec);
1025 1.1 riastrad }
1026 1.1 riastrad
1027 1.1 riastrad /*
1028 1.1 riastrad * entropy_thread(cookie)
1029 1.1 riastrad *
1030 1.1 riastrad * Handle any asynchronous entropy housekeeping.
1031 1.1 riastrad */
1032 1.1 riastrad static void
1033 1.1 riastrad entropy_thread(void *cookie)
1034 1.1 riastrad {
1035 1.3 riastrad bool consolidate;
1036 1.1 riastrad
1037 1.1 riastrad for (;;) {
1038 1.1 riastrad /*
1039 1.3 riastrad * Wait until there's full entropy somewhere among the
1040 1.3 riastrad * CPUs, as confirmed at most once per minute, or
1041 1.3 riastrad * someone wants to consolidate.
1042 1.1 riastrad */
1043 1.3 riastrad if (entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
1044 1.3 riastrad consolidate = true;
1045 1.3 riastrad } else {
1046 1.3 riastrad mutex_enter(&E->lock);
1047 1.3 riastrad if (!E->consolidate)
1048 1.3 riastrad cv_timedwait(&E->cv, &E->lock, 60*hz);
1049 1.3 riastrad consolidate = E->consolidate;
1050 1.3 riastrad E->consolidate = false;
1051 1.3 riastrad mutex_exit(&E->lock);
1052 1.1 riastrad }
1053 1.1 riastrad
1054 1.3 riastrad if (consolidate) {
1055 1.3 riastrad /* Do it. */
1056 1.13 riastrad entropy_do_consolidate();
1057 1.1 riastrad
1058 1.3 riastrad /* Mitigate abuse. */
1059 1.3 riastrad kpause("entropy", false, hz, NULL);
1060 1.3 riastrad }
1061 1.1 riastrad }
1062 1.1 riastrad }
1063 1.1 riastrad
1064 1.1 riastrad /*
1065 1.1 riastrad * entropy_pending()
1066 1.1 riastrad *
1067 1.1 riastrad * Count up the amount of entropy pending on other CPUs.
1068 1.1 riastrad */
1069 1.1 riastrad static uint32_t
1070 1.1 riastrad entropy_pending(void)
1071 1.1 riastrad {
1072 1.1 riastrad uint32_t pending = 0;
1073 1.1 riastrad
1074 1.1 riastrad percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
1075 1.1 riastrad return pending;
1076 1.1 riastrad }
1077 1.1 riastrad
1078 1.1 riastrad static void
1079 1.1 riastrad entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
1080 1.1 riastrad {
1081 1.1 riastrad struct entropy_cpu *ec = ptr;
1082 1.1 riastrad uint32_t *pendingp = cookie;
1083 1.1 riastrad uint32_t cpu_pending;
1084 1.1 riastrad
1085 1.1 riastrad cpu_pending = atomic_load_relaxed(&ec->ec_pending);
1086 1.1 riastrad *pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
1087 1.1 riastrad }
1088 1.1 riastrad
1089 1.1 riastrad /*
1090 1.13 riastrad * entropy_do_consolidate()
1091 1.1 riastrad *
1092 1.1 riastrad * Issue a cross-call to gather entropy on all CPUs and advance
1093 1.1 riastrad * the entropy epoch.
1094 1.1 riastrad */
1095 1.1 riastrad static void
1096 1.13 riastrad entropy_do_consolidate(void)
1097 1.1 riastrad {
1098 1.1 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1099 1.1 riastrad static struct timeval lasttime; /* serialized by E->lock */
1100 1.19 riastrad struct entpool pool;
1101 1.19 riastrad uint8_t buf[ENTPOOL_CAPACITY];
1102 1.1 riastrad unsigned diff;
1103 1.1 riastrad uint64_t ticket;
1104 1.1 riastrad
1105 1.19 riastrad /* Gather entropy on all CPUs into a temporary pool. */
1106 1.19 riastrad memset(&pool, 0, sizeof pool);
1107 1.19 riastrad ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
1108 1.1 riastrad xc_wait(ticket);
1109 1.1 riastrad
1110 1.1 riastrad /* Acquire the lock to notify waiters. */
1111 1.1 riastrad mutex_enter(&E->lock);
1112 1.1 riastrad
1113 1.1 riastrad /* Count another consolidation. */
1114 1.1 riastrad entropy_consolidate_evcnt.ev_count++;
1115 1.1 riastrad
1116 1.1 riastrad /* Note when we last consolidated, i.e. now. */
1117 1.1 riastrad E->timestamp = time_uptime;
1118 1.1 riastrad
1119 1.19 riastrad /* Mix what we gathered into the global pool. */
1120 1.19 riastrad entpool_extract(&pool, buf, sizeof buf);
1121 1.19 riastrad entpool_enter(&E->pool, buf, sizeof buf);
1122 1.19 riastrad explicit_memset(&pool, 0, sizeof pool);
1123 1.19 riastrad
1124 1.1 riastrad /* Count the entropy that was gathered. */
1125 1.1 riastrad diff = MIN(E->needed, E->pending);
1126 1.1 riastrad atomic_store_relaxed(&E->needed, E->needed - diff);
1127 1.1 riastrad E->pending -= diff;
1128 1.1 riastrad if (__predict_false(E->needed > 0)) {
1129 1.50 riastrad if ((boothowto & AB_DEBUG) != 0 &&
1130 1.50 riastrad ratecheck(&lasttime, &interval)) {
1131 1.50 riastrad printf("WARNING:"
1132 1.1 riastrad " consolidating less than full entropy\n");
1133 1.30 jmcneill }
1134 1.1 riastrad }
1135 1.1 riastrad
1136 1.1 riastrad /* Advance the epoch and notify waiters. */
1137 1.1 riastrad entropy_notify();
1138 1.1 riastrad
1139 1.1 riastrad /* Release the lock. */
1140 1.1 riastrad mutex_exit(&E->lock);
1141 1.1 riastrad }
1142 1.1 riastrad
1143 1.1 riastrad /*
1144 1.20 riastrad * entropy_consolidate_xc(vpool, arg2)
1145 1.1 riastrad *
1146 1.1 riastrad * Extract output from the local CPU's input pool and enter it
1147 1.20 riastrad * into a temporary pool passed as vpool.
1148 1.1 riastrad */
1149 1.1 riastrad static void
1150 1.19 riastrad entropy_consolidate_xc(void *vpool, void *arg2 __unused)
1151 1.1 riastrad {
1152 1.19 riastrad struct entpool *pool = vpool;
1153 1.43 riastrad struct entropy_cpu_lock lock;
1154 1.1 riastrad struct entropy_cpu *ec;
1155 1.1 riastrad uint8_t buf[ENTPOOL_CAPACITY];
1156 1.1 riastrad uint32_t extra[7];
1157 1.1 riastrad unsigned i = 0;
1158 1.1 riastrad
1159 1.1 riastrad /* Grab CPU number and cycle counter to mix extra into the pool. */
1160 1.1 riastrad extra[i++] = cpu_number();
1161 1.1 riastrad extra[i++] = entropy_timer();
1162 1.1 riastrad
1163 1.1 riastrad /*
1164 1.43 riastrad * With the per-CPU state locked, extract from the per-CPU pool
1165 1.43 riastrad * and count it as no longer pending.
1166 1.1 riastrad */
1167 1.43 riastrad ec = entropy_cpu_get(&lock);
1168 1.1 riastrad extra[i++] = entropy_timer();
1169 1.1 riastrad entpool_extract(ec->ec_pool, buf, sizeof buf);
1170 1.12 riastrad atomic_store_relaxed(&ec->ec_pending, 0);
1171 1.1 riastrad extra[i++] = entropy_timer();
1172 1.43 riastrad entropy_cpu_put(&lock, ec);
1173 1.1 riastrad extra[i++] = entropy_timer();
1174 1.1 riastrad
1175 1.1 riastrad /*
1176 1.1 riastrad * Copy over statistics, and enter the per-CPU extract and the
1177 1.19 riastrad * extra timing into the temporary pool, under the global lock.
1178 1.1 riastrad */
1179 1.1 riastrad mutex_enter(&E->lock);
1180 1.1 riastrad extra[i++] = entropy_timer();
1181 1.19 riastrad entpool_enter(pool, buf, sizeof buf);
1182 1.1 riastrad explicit_memset(buf, 0, sizeof buf);
1183 1.1 riastrad extra[i++] = entropy_timer();
1184 1.1 riastrad KASSERT(i == __arraycount(extra));
1185 1.19 riastrad entpool_enter(pool, extra, sizeof extra);
1186 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
1187 1.1 riastrad mutex_exit(&E->lock);
1188 1.1 riastrad }
1189 1.1 riastrad
1190 1.1 riastrad /*
1191 1.1 riastrad * entropy_notify()
1192 1.1 riastrad *
1193 1.1 riastrad * Caller just contributed entropy to the global pool. Advance
1194 1.1 riastrad * the entropy epoch and notify waiters.
1195 1.1 riastrad *
1196 1.1 riastrad * Caller must hold the global entropy lock. Except for the
1197 1.1 riastrad * `sysctl -w kern.entropy.consolidate=1` trigger, the caller must
1198 1.1 riastrad * have just have transitioned from partial entropy to full
1199 1.1 riastrad * entropy -- E->needed should be zero now.
1200 1.1 riastrad */
1201 1.1 riastrad static void
1202 1.1 riastrad entropy_notify(void)
1203 1.1 riastrad {
1204 1.12 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1205 1.12 riastrad static struct timeval lasttime; /* serialized by E->lock */
1206 1.1 riastrad unsigned epoch;
1207 1.1 riastrad
1208 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1209 1.1 riastrad
1210 1.1 riastrad /*
1211 1.1 riastrad * If this is the first time, print a message to the console
1212 1.1 riastrad * that we're ready so operators can compare it to the timing
1213 1.1 riastrad * of other events.
1214 1.1 riastrad */
1215 1.41 riastrad if (__predict_false(E->epoch == (unsigned)-1) && E->needed == 0)
1216 1.1 riastrad printf("entropy: ready\n");
1217 1.1 riastrad
1218 1.1 riastrad /* Set the epoch; roll over from UINTMAX-1 to 1. */
1219 1.12 riastrad if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
1220 1.12 riastrad ratecheck(&lasttime, &interval)) {
1221 1.12 riastrad epoch = E->epoch + 1;
1222 1.12 riastrad if (epoch == 0 || epoch == (unsigned)-1)
1223 1.12 riastrad epoch = 1;
1224 1.12 riastrad atomic_store_relaxed(&E->epoch, epoch);
1225 1.12 riastrad }
1226 1.41 riastrad KASSERT(E->epoch != (unsigned)-1);
1227 1.1 riastrad
1228 1.1 riastrad /* Notify waiters. */
1229 1.1 riastrad if (E->stage >= ENTROPY_WARM) {
1230 1.1 riastrad cv_broadcast(&E->cv);
1231 1.1 riastrad selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
1232 1.1 riastrad }
1233 1.1 riastrad
1234 1.1 riastrad /* Count another notification. */
1235 1.1 riastrad entropy_notify_evcnt.ev_count++;
1236 1.1 riastrad }
1237 1.1 riastrad
1238 1.1 riastrad /*
1239 1.13 riastrad * entropy_consolidate()
1240 1.13 riastrad *
1241 1.13 riastrad * Trigger entropy consolidation and wait for it to complete.
1242 1.13 riastrad *
1243 1.13 riastrad * This should be used sparingly, not periodically -- requiring
1244 1.13 riastrad * conscious intervention by the operator or a clear policy
1245 1.13 riastrad * decision. Otherwise, the kernel will automatically consolidate
1246 1.13 riastrad * when enough entropy has been gathered into per-CPU pools to
1247 1.13 riastrad * transition to full entropy.
1248 1.13 riastrad */
1249 1.13 riastrad void
1250 1.13 riastrad entropy_consolidate(void)
1251 1.13 riastrad {
1252 1.13 riastrad uint64_t ticket;
1253 1.13 riastrad int error;
1254 1.13 riastrad
1255 1.13 riastrad KASSERT(E->stage == ENTROPY_HOT);
1256 1.13 riastrad
1257 1.13 riastrad mutex_enter(&E->lock);
1258 1.13 riastrad ticket = entropy_consolidate_evcnt.ev_count;
1259 1.13 riastrad E->consolidate = true;
1260 1.13 riastrad cv_broadcast(&E->cv);
1261 1.13 riastrad while (ticket == entropy_consolidate_evcnt.ev_count) {
1262 1.13 riastrad error = cv_wait_sig(&E->cv, &E->lock);
1263 1.13 riastrad if (error)
1264 1.13 riastrad break;
1265 1.13 riastrad }
1266 1.13 riastrad mutex_exit(&E->lock);
1267 1.13 riastrad }
1268 1.13 riastrad
1269 1.13 riastrad /*
1270 1.1 riastrad * sysctl -w kern.entropy.consolidate=1
1271 1.1 riastrad *
1272 1.1 riastrad * Trigger entropy consolidation and wait for it to complete.
1273 1.13 riastrad * Writable only by superuser. This, writing to /dev/random, and
1274 1.13 riastrad * ioctl(RNDADDDATA) are the only ways for the system to
1275 1.13 riastrad * consolidate entropy if the operator knows something the kernel
1276 1.13 riastrad * doesn't about how unpredictable the pending entropy pools are.
1277 1.1 riastrad */
1278 1.1 riastrad static int
1279 1.1 riastrad sysctl_entropy_consolidate(SYSCTLFN_ARGS)
1280 1.1 riastrad {
1281 1.1 riastrad struct sysctlnode node = *rnode;
1282 1.1 riastrad int arg;
1283 1.1 riastrad int error;
1284 1.1 riastrad
1285 1.1 riastrad KASSERT(E->stage == ENTROPY_HOT);
1286 1.1 riastrad
1287 1.1 riastrad node.sysctl_data = &arg;
1288 1.1 riastrad error = sysctl_lookup(SYSCTLFN_CALL(&node));
1289 1.1 riastrad if (error || newp == NULL)
1290 1.1 riastrad return error;
1291 1.13 riastrad if (arg)
1292 1.13 riastrad entropy_consolidate();
1293 1.1 riastrad
1294 1.1 riastrad return error;
1295 1.1 riastrad }
1296 1.1 riastrad
1297 1.1 riastrad /*
1298 1.10 riastrad * sysctl -w kern.entropy.gather=1
1299 1.10 riastrad *
1300 1.10 riastrad * Trigger gathering entropy from all on-demand sources, and wait
1301 1.10 riastrad * for synchronous sources (but not asynchronous sources) to
1302 1.10 riastrad * complete. Writable only by superuser.
1303 1.10 riastrad */
1304 1.10 riastrad static int
1305 1.10 riastrad sysctl_entropy_gather(SYSCTLFN_ARGS)
1306 1.10 riastrad {
1307 1.10 riastrad struct sysctlnode node = *rnode;
1308 1.10 riastrad int arg;
1309 1.10 riastrad int error;
1310 1.10 riastrad
1311 1.10 riastrad KASSERT(E->stage == ENTROPY_HOT);
1312 1.10 riastrad
1313 1.10 riastrad node.sysctl_data = &arg;
1314 1.10 riastrad error = sysctl_lookup(SYSCTLFN_CALL(&node));
1315 1.10 riastrad if (error || newp == NULL)
1316 1.10 riastrad return error;
1317 1.10 riastrad if (arg) {
1318 1.10 riastrad mutex_enter(&E->lock);
1319 1.49 riastrad error = entropy_request(ENTROPY_CAPACITY,
1320 1.49 riastrad ENTROPY_WAIT|ENTROPY_SIG);
1321 1.10 riastrad mutex_exit(&E->lock);
1322 1.10 riastrad }
1323 1.10 riastrad
1324 1.10 riastrad return 0;
1325 1.10 riastrad }
1326 1.10 riastrad
1327 1.10 riastrad /*
1328 1.1 riastrad * entropy_extract(buf, len, flags)
1329 1.1 riastrad *
1330 1.1 riastrad * Extract len bytes from the global entropy pool into buf.
1331 1.1 riastrad *
1332 1.1 riastrad * Flags may have:
1333 1.1 riastrad *
1334 1.1 riastrad * ENTROPY_WAIT Wait for entropy if not available yet.
1335 1.1 riastrad * ENTROPY_SIG Allow interruption by a signal during wait.
1336 1.23 riastrad * ENTROPY_HARDFAIL Either fill the buffer with full entropy,
1337 1.23 riastrad * or fail without filling it at all.
1338 1.1 riastrad *
1339 1.1 riastrad * Return zero on success, or error on failure:
1340 1.1 riastrad *
1341 1.1 riastrad * EWOULDBLOCK No entropy and ENTROPY_WAIT not set.
1342 1.1 riastrad * EINTR/ERESTART No entropy, ENTROPY_SIG set, and interrupted.
1343 1.1 riastrad *
1344 1.1 riastrad * If ENTROPY_WAIT is set, allowed only in thread context. If
1345 1.1 riastrad * ENTROPY_WAIT is not set, allowed up to IPL_VM. (XXX That's
1346 1.1 riastrad * awfully high... Do we really need it in hard interrupts? This
1347 1.1 riastrad * arises from use of cprng_strong(9).)
1348 1.1 riastrad */
1349 1.1 riastrad int
1350 1.1 riastrad entropy_extract(void *buf, size_t len, int flags)
1351 1.1 riastrad {
1352 1.1 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1353 1.1 riastrad static struct timeval lasttime; /* serialized by E->lock */
1354 1.1 riastrad int error;
1355 1.1 riastrad
1356 1.1 riastrad if (ISSET(flags, ENTROPY_WAIT)) {
1357 1.1 riastrad ASSERT_SLEEPABLE();
1358 1.1 riastrad KASSERTMSG(E->stage >= ENTROPY_WARM,
1359 1.1 riastrad "can't wait for entropy until warm");
1360 1.1 riastrad }
1361 1.1 riastrad
1362 1.35 riastrad /* Refuse to operate in interrupt context. */
1363 1.35 riastrad KASSERT(!cpu_intr_p());
1364 1.35 riastrad
1365 1.1 riastrad /* Acquire the global lock to get at the global pool. */
1366 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1367 1.1 riastrad mutex_enter(&E->lock);
1368 1.1 riastrad
1369 1.1 riastrad /* Wait until there is enough entropy in the system. */
1370 1.1 riastrad error = 0;
1371 1.1 riastrad while (E->needed) {
1372 1.1 riastrad /* Ask for more, synchronously if possible. */
1373 1.49 riastrad error = entropy_request(len, flags);
1374 1.49 riastrad if (error)
1375 1.49 riastrad break;
1376 1.1 riastrad
1377 1.1 riastrad /* If we got enough, we're done. */
1378 1.1 riastrad if (E->needed == 0) {
1379 1.1 riastrad KASSERT(error == 0);
1380 1.1 riastrad break;
1381 1.1 riastrad }
1382 1.1 riastrad
1383 1.1 riastrad /* If not waiting, stop here. */
1384 1.1 riastrad if (!ISSET(flags, ENTROPY_WAIT)) {
1385 1.1 riastrad error = EWOULDBLOCK;
1386 1.1 riastrad break;
1387 1.1 riastrad }
1388 1.1 riastrad
1389 1.1 riastrad /* Wait for some entropy to come in and try again. */
1390 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1391 1.24 gson printf("entropy: pid %d (%s) blocking due to lack of entropy\n",
1392 1.24 gson curproc->p_pid, curproc->p_comm);
1393 1.24 gson
1394 1.1 riastrad if (ISSET(flags, ENTROPY_SIG)) {
1395 1.1 riastrad error = cv_wait_sig(&E->cv, &E->lock);
1396 1.1 riastrad if (error)
1397 1.1 riastrad break;
1398 1.1 riastrad } else {
1399 1.1 riastrad cv_wait(&E->cv, &E->lock);
1400 1.1 riastrad }
1401 1.1 riastrad }
1402 1.1 riastrad
1403 1.23 riastrad /*
1404 1.23 riastrad * Count failure -- but fill the buffer nevertheless, unless
1405 1.23 riastrad * the caller specified ENTROPY_HARDFAIL.
1406 1.23 riastrad */
1407 1.23 riastrad if (error) {
1408 1.23 riastrad if (ISSET(flags, ENTROPY_HARDFAIL))
1409 1.23 riastrad goto out;
1410 1.1 riastrad entropy_extract_fail_evcnt.ev_count++;
1411 1.23 riastrad }
1412 1.1 riastrad
1413 1.1 riastrad /*
1414 1.1 riastrad * Report a warning if we have never yet reached full entropy.
1415 1.1 riastrad * This is the only case where we consider entropy to be
1416 1.1 riastrad * `depleted' without kern.entropy.depletion enabled -- when we
1417 1.1 riastrad * only have partial entropy, an adversary may be able to
1418 1.1 riastrad * narrow the state of the pool down to a small number of
1419 1.1 riastrad * possibilities; the output then enables them to confirm a
1420 1.1 riastrad * guess, reducing its entropy from the adversary's perspective
1421 1.1 riastrad * to zero.
1422 1.1 riastrad */
1423 1.1 riastrad if (__predict_false(E->epoch == (unsigned)-1)) {
1424 1.1 riastrad if (ratecheck(&lasttime, &interval))
1425 1.50 riastrad printf("WARNING:"
1426 1.50 riastrad " system needs entropy for security;"
1427 1.50 riastrad " see entropy(7)\n");
1428 1.1 riastrad atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
1429 1.1 riastrad }
1430 1.1 riastrad
1431 1.1 riastrad /* Extract data from the pool, and `deplete' if we're doing that. */
1432 1.1 riastrad entpool_extract(&E->pool, buf, len);
1433 1.1 riastrad if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
1434 1.1 riastrad error == 0) {
1435 1.1 riastrad unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
1436 1.1 riastrad
1437 1.1 riastrad atomic_store_relaxed(&E->needed,
1438 1.1 riastrad E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
1439 1.1 riastrad entropy_deplete_evcnt.ev_count++;
1440 1.1 riastrad }
1441 1.1 riastrad
1442 1.23 riastrad out: /* Release the global lock and return the error. */
1443 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1444 1.1 riastrad mutex_exit(&E->lock);
1445 1.1 riastrad return error;
1446 1.1 riastrad }
1447 1.1 riastrad
1448 1.1 riastrad /*
1449 1.1 riastrad * entropy_poll(events)
1450 1.1 riastrad *
1451 1.1 riastrad * Return the subset of events ready, and if it is not all of
1452 1.1 riastrad * events, record curlwp as waiting for entropy.
1453 1.1 riastrad */
1454 1.1 riastrad int
1455 1.1 riastrad entropy_poll(int events)
1456 1.1 riastrad {
1457 1.1 riastrad int revents = 0;
1458 1.1 riastrad
1459 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1460 1.1 riastrad
1461 1.1 riastrad /* Always ready for writing. */
1462 1.1 riastrad revents |= events & (POLLOUT|POLLWRNORM);
1463 1.1 riastrad
1464 1.1 riastrad /* Narrow it down to reads. */
1465 1.1 riastrad events &= POLLIN|POLLRDNORM;
1466 1.1 riastrad if (events == 0)
1467 1.1 riastrad return revents;
1468 1.1 riastrad
1469 1.1 riastrad /*
1470 1.1 riastrad * If we have reached full entropy and we're not depleting
1471 1.1 riastrad * entropy, we are forever ready.
1472 1.1 riastrad */
1473 1.1 riastrad if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
1474 1.1 riastrad __predict_true(!atomic_load_relaxed(&entropy_depletion)))
1475 1.1 riastrad return revents | events;
1476 1.1 riastrad
1477 1.1 riastrad /*
1478 1.1 riastrad * Otherwise, check whether we need entropy under the lock. If
1479 1.1 riastrad * we don't, we're ready; if we do, add ourselves to the queue.
1480 1.1 riastrad */
1481 1.1 riastrad mutex_enter(&E->lock);
1482 1.1 riastrad if (E->needed == 0)
1483 1.1 riastrad revents |= events;
1484 1.1 riastrad else
1485 1.1 riastrad selrecord(curlwp, &E->selq);
1486 1.1 riastrad mutex_exit(&E->lock);
1487 1.1 riastrad
1488 1.1 riastrad return revents;
1489 1.1 riastrad }
1490 1.1 riastrad
1491 1.1 riastrad /*
1492 1.1 riastrad * filt_entropy_read_detach(kn)
1493 1.1 riastrad *
1494 1.1 riastrad * struct filterops::f_detach callback for entropy read events:
1495 1.1 riastrad * remove kn from the list of waiters.
1496 1.1 riastrad */
1497 1.1 riastrad static void
1498 1.1 riastrad filt_entropy_read_detach(struct knote *kn)
1499 1.1 riastrad {
1500 1.1 riastrad
1501 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1502 1.1 riastrad
1503 1.1 riastrad mutex_enter(&E->lock);
1504 1.25 thorpej selremove_knote(&E->selq, kn);
1505 1.1 riastrad mutex_exit(&E->lock);
1506 1.1 riastrad }
1507 1.1 riastrad
1508 1.1 riastrad /*
1509 1.1 riastrad * filt_entropy_read_event(kn, hint)
1510 1.1 riastrad *
1511 1.1 riastrad * struct filterops::f_event callback for entropy read events:
1512 1.1 riastrad * poll for entropy. Caller must hold the global entropy lock if
1513 1.1 riastrad * hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
1514 1.1 riastrad */
1515 1.1 riastrad static int
1516 1.1 riastrad filt_entropy_read_event(struct knote *kn, long hint)
1517 1.1 riastrad {
1518 1.1 riastrad int ret;
1519 1.1 riastrad
1520 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1521 1.1 riastrad
1522 1.1 riastrad /* Acquire the lock, if caller is outside entropy subsystem. */
1523 1.1 riastrad if (hint == NOTE_SUBMIT)
1524 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1525 1.1 riastrad else
1526 1.1 riastrad mutex_enter(&E->lock);
1527 1.1 riastrad
1528 1.1 riastrad /*
1529 1.1 riastrad * If we still need entropy, can't read anything; if not, can
1530 1.1 riastrad * read arbitrarily much.
1531 1.1 riastrad */
1532 1.1 riastrad if (E->needed != 0) {
1533 1.1 riastrad ret = 0;
1534 1.1 riastrad } else {
1535 1.1 riastrad if (atomic_load_relaxed(&entropy_depletion))
1536 1.1 riastrad kn->kn_data = ENTROPY_CAPACITY*NBBY;
1537 1.1 riastrad else
1538 1.1 riastrad kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
1539 1.1 riastrad ret = 1;
1540 1.1 riastrad }
1541 1.1 riastrad
1542 1.1 riastrad /* Release the lock, if caller is outside entropy subsystem. */
1543 1.1 riastrad if (hint == NOTE_SUBMIT)
1544 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1545 1.1 riastrad else
1546 1.1 riastrad mutex_exit(&E->lock);
1547 1.1 riastrad
1548 1.1 riastrad return ret;
1549 1.1 riastrad }
1550 1.1 riastrad
1551 1.33 thorpej /* XXX Makes sense only for /dev/u?random. */
1552 1.1 riastrad static const struct filterops entropy_read_filtops = {
1553 1.33 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1554 1.1 riastrad .f_attach = NULL,
1555 1.1 riastrad .f_detach = filt_entropy_read_detach,
1556 1.1 riastrad .f_event = filt_entropy_read_event,
1557 1.1 riastrad };
1558 1.1 riastrad
1559 1.1 riastrad /*
1560 1.1 riastrad * entropy_kqfilter(kn)
1561 1.1 riastrad *
1562 1.1 riastrad * Register kn to receive entropy event notifications. May be
1563 1.1 riastrad * EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
1564 1.1 riastrad */
1565 1.1 riastrad int
1566 1.1 riastrad entropy_kqfilter(struct knote *kn)
1567 1.1 riastrad {
1568 1.1 riastrad
1569 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1570 1.1 riastrad
1571 1.1 riastrad switch (kn->kn_filter) {
1572 1.1 riastrad case EVFILT_READ:
1573 1.1 riastrad /* Enter into the global select queue. */
1574 1.1 riastrad mutex_enter(&E->lock);
1575 1.1 riastrad kn->kn_fop = &entropy_read_filtops;
1576 1.25 thorpej selrecord_knote(&E->selq, kn);
1577 1.1 riastrad mutex_exit(&E->lock);
1578 1.1 riastrad return 0;
1579 1.1 riastrad case EVFILT_WRITE:
1580 1.1 riastrad /* Can always dump entropy into the system. */
1581 1.1 riastrad kn->kn_fop = &seltrue_filtops;
1582 1.1 riastrad return 0;
1583 1.1 riastrad default:
1584 1.1 riastrad return EINVAL;
1585 1.1 riastrad }
1586 1.1 riastrad }
1587 1.1 riastrad
1588 1.1 riastrad /*
1589 1.1 riastrad * rndsource_setcb(rs, get, getarg)
1590 1.1 riastrad *
1591 1.1 riastrad * Set the request callback for the entropy source rs, if it can
1592 1.1 riastrad * provide entropy on demand. Must precede rnd_attach_source.
1593 1.1 riastrad */
1594 1.1 riastrad void
1595 1.1 riastrad rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
1596 1.1 riastrad void *getarg)
1597 1.1 riastrad {
1598 1.1 riastrad
1599 1.1 riastrad rs->get = get;
1600 1.1 riastrad rs->getarg = getarg;
1601 1.1 riastrad }
1602 1.1 riastrad
1603 1.1 riastrad /*
1604 1.1 riastrad * rnd_attach_source(rs, name, type, flags)
1605 1.1 riastrad *
1606 1.1 riastrad * Attach the entropy source rs. Must be done after
1607 1.1 riastrad * rndsource_setcb, if any, and before any calls to rnd_add_data.
1608 1.1 riastrad */
1609 1.1 riastrad void
1610 1.1 riastrad rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
1611 1.1 riastrad uint32_t flags)
1612 1.1 riastrad {
1613 1.1 riastrad uint32_t extra[4];
1614 1.1 riastrad unsigned i = 0;
1615 1.1 riastrad
1616 1.1 riastrad /* Grab cycle counter to mix extra into the pool. */
1617 1.1 riastrad extra[i++] = entropy_timer();
1618 1.1 riastrad
1619 1.1 riastrad /*
1620 1.1 riastrad * Apply some standard flags:
1621 1.1 riastrad *
1622 1.1 riastrad * - We do not bother with network devices by default, for
1623 1.1 riastrad * hysterical raisins (perhaps: because it is often the case
1624 1.1 riastrad * that an adversary can influence network packet timings).
1625 1.1 riastrad */
1626 1.1 riastrad switch (type) {
1627 1.1 riastrad case RND_TYPE_NET:
1628 1.1 riastrad flags |= RND_FLAG_NO_COLLECT;
1629 1.1 riastrad break;
1630 1.1 riastrad }
1631 1.1 riastrad
1632 1.1 riastrad /* Sanity-check the callback if RND_FLAG_HASCB is set. */
1633 1.1 riastrad KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
1634 1.1 riastrad
1635 1.1 riastrad /* Initialize the random source. */
1636 1.1 riastrad memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
1637 1.1 riastrad strlcpy(rs->name, name, sizeof(rs->name));
1638 1.28 riastrad memset(&rs->time_delta, 0, sizeof(rs->time_delta));
1639 1.28 riastrad memset(&rs->value_delta, 0, sizeof(rs->value_delta));
1640 1.9 riastrad rs->total = 0;
1641 1.1 riastrad rs->type = type;
1642 1.1 riastrad rs->flags = flags;
1643 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1644 1.1 riastrad rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
1645 1.1 riastrad extra[i++] = entropy_timer();
1646 1.1 riastrad
1647 1.1 riastrad /* Wire it into the global list of random sources. */
1648 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1649 1.1 riastrad mutex_enter(&E->lock);
1650 1.1 riastrad LIST_INSERT_HEAD(&E->sources, rs, list);
1651 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1652 1.1 riastrad mutex_exit(&E->lock);
1653 1.1 riastrad extra[i++] = entropy_timer();
1654 1.1 riastrad
1655 1.1 riastrad /* Request that it provide entropy ASAP, if we can. */
1656 1.1 riastrad if (ISSET(flags, RND_FLAG_HASCB))
1657 1.1 riastrad (*rs->get)(ENTROPY_CAPACITY, rs->getarg);
1658 1.1 riastrad extra[i++] = entropy_timer();
1659 1.1 riastrad
1660 1.1 riastrad /* Mix the extra into the pool. */
1661 1.1 riastrad KASSERT(i == __arraycount(extra));
1662 1.1 riastrad entropy_enter(extra, sizeof extra, 0);
1663 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
1664 1.1 riastrad }
1665 1.1 riastrad
1666 1.1 riastrad /*
1667 1.1 riastrad * rnd_detach_source(rs)
1668 1.1 riastrad *
1669 1.1 riastrad * Detach the entropy source rs. May sleep waiting for users to
1670 1.1 riastrad * drain. Further use is not allowed.
1671 1.1 riastrad */
1672 1.1 riastrad void
1673 1.1 riastrad rnd_detach_source(struct krndsource *rs)
1674 1.1 riastrad {
1675 1.1 riastrad
1676 1.1 riastrad /*
1677 1.1 riastrad * If we're cold (shouldn't happen, but hey), just remove it
1678 1.1 riastrad * from the list -- there's nothing allocated.
1679 1.1 riastrad */
1680 1.1 riastrad if (E->stage == ENTROPY_COLD) {
1681 1.1 riastrad LIST_REMOVE(rs, list);
1682 1.1 riastrad return;
1683 1.1 riastrad }
1684 1.1 riastrad
1685 1.1 riastrad /* We may have to wait for entropy_request. */
1686 1.1 riastrad ASSERT_SLEEPABLE();
1687 1.1 riastrad
1688 1.4 riastrad /* Wait until the source list is not in use, and remove it. */
1689 1.1 riastrad mutex_enter(&E->lock);
1690 1.4 riastrad while (E->sourcelock)
1691 1.27 riastrad cv_wait(&E->sourcelock_cv, &E->lock);
1692 1.1 riastrad LIST_REMOVE(rs, list);
1693 1.1 riastrad mutex_exit(&E->lock);
1694 1.1 riastrad
1695 1.1 riastrad /* Free the per-CPU data. */
1696 1.1 riastrad percpu_free(rs->state, sizeof(struct rndsource_cpu));
1697 1.1 riastrad }
1698 1.1 riastrad
1699 1.1 riastrad /*
1700 1.49 riastrad * rnd_lock_sources(flags)
1701 1.49 riastrad *
1702 1.49 riastrad * Lock the list of entropy sources. Caller must hold the global
1703 1.49 riastrad * entropy lock. If successful, no rndsource will go away until
1704 1.49 riastrad * rnd_unlock_sources even while the caller releases the global
1705 1.49 riastrad * entropy lock.
1706 1.4 riastrad *
1707 1.49 riastrad * If flags & ENTROPY_WAIT, wait for concurrent access to finish.
1708 1.49 riastrad * If flags & ENTROPY_SIG, allow interruption by signal.
1709 1.4 riastrad */
1710 1.49 riastrad static int __attribute__((warn_unused_result))
1711 1.49 riastrad rnd_lock_sources(int flags)
1712 1.4 riastrad {
1713 1.4 riastrad int error;
1714 1.4 riastrad
1715 1.51 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1716 1.4 riastrad
1717 1.4 riastrad while (E->sourcelock) {
1718 1.51 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1719 1.49 riastrad if (!ISSET(flags, ENTROPY_WAIT))
1720 1.49 riastrad return EWOULDBLOCK;
1721 1.49 riastrad if (ISSET(flags, ENTROPY_SIG)) {
1722 1.49 riastrad error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
1723 1.49 riastrad if (error)
1724 1.49 riastrad return error;
1725 1.49 riastrad } else {
1726 1.49 riastrad cv_wait(&E->sourcelock_cv, &E->lock);
1727 1.49 riastrad }
1728 1.4 riastrad }
1729 1.4 riastrad
1730 1.4 riastrad E->sourcelock = curlwp;
1731 1.4 riastrad return 0;
1732 1.4 riastrad }
1733 1.4 riastrad
1734 1.4 riastrad /*
1735 1.4 riastrad * rnd_unlock_sources()
1736 1.4 riastrad *
1737 1.49 riastrad * Unlock the list of sources after rnd_lock_sources. Caller must
1738 1.49 riastrad * hold the global entropy lock.
1739 1.4 riastrad */
1740 1.4 riastrad static void
1741 1.4 riastrad rnd_unlock_sources(void)
1742 1.4 riastrad {
1743 1.4 riastrad
1744 1.4 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1745 1.4 riastrad
1746 1.16 riastrad KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
1747 1.16 riastrad curlwp, E->sourcelock);
1748 1.4 riastrad E->sourcelock = NULL;
1749 1.4 riastrad if (E->stage >= ENTROPY_WARM)
1750 1.27 riastrad cv_signal(&E->sourcelock_cv);
1751 1.4 riastrad }
1752 1.4 riastrad
1753 1.4 riastrad /*
1754 1.4 riastrad * rnd_sources_locked()
1755 1.4 riastrad *
1756 1.4 riastrad * True if we hold the list of rndsources locked, for diagnostic
1757 1.4 riastrad * assertions.
1758 1.4 riastrad */
1759 1.7 riastrad static bool __diagused
1760 1.4 riastrad rnd_sources_locked(void)
1761 1.4 riastrad {
1762 1.4 riastrad
1763 1.16 riastrad return E->sourcelock == curlwp;
1764 1.4 riastrad }
1765 1.4 riastrad
1766 1.4 riastrad /*
1767 1.49 riastrad * entropy_request(nbytes, flags)
1768 1.1 riastrad *
1769 1.1 riastrad * Request nbytes bytes of entropy from all sources in the system.
1770 1.1 riastrad * OK if we overdo it. Caller must hold the global entropy lock;
1771 1.1 riastrad * will release and re-acquire it.
1772 1.49 riastrad *
1773 1.49 riastrad * If flags & ENTROPY_WAIT, wait for concurrent access to finish.
1774 1.49 riastrad * If flags & ENTROPY_SIG, allow interruption by signal.
1775 1.1 riastrad */
1776 1.49 riastrad static int
1777 1.49 riastrad entropy_request(size_t nbytes, int flags)
1778 1.1 riastrad {
1779 1.4 riastrad struct krndsource *rs;
1780 1.49 riastrad int error;
1781 1.1 riastrad
1782 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1783 1.49 riastrad if (flags & ENTROPY_WAIT)
1784 1.49 riastrad ASSERT_SLEEPABLE();
1785 1.1 riastrad
1786 1.1 riastrad /*
1787 1.49 riastrad * Lock the list of entropy sources to block rnd_detach_source
1788 1.49 riastrad * until we're done, and to serialize calls to the entropy
1789 1.49 riastrad * callbacks as guaranteed to drivers.
1790 1.1 riastrad */
1791 1.49 riastrad error = rnd_lock_sources(flags);
1792 1.49 riastrad if (error)
1793 1.49 riastrad return error;
1794 1.1 riastrad entropy_request_evcnt.ev_count++;
1795 1.1 riastrad
1796 1.1 riastrad /* Clamp to the maximum reasonable request. */
1797 1.1 riastrad nbytes = MIN(nbytes, ENTROPY_CAPACITY);
1798 1.1 riastrad
1799 1.1 riastrad /* Walk the list of sources. */
1800 1.4 riastrad LIST_FOREACH(rs, &E->sources, list) {
1801 1.1 riastrad /* Skip sources without callbacks. */
1802 1.1 riastrad if (!ISSET(rs->flags, RND_FLAG_HASCB))
1803 1.1 riastrad continue;
1804 1.1 riastrad
1805 1.22 riastrad /*
1806 1.22 riastrad * Skip sources that are disabled altogether -- we
1807 1.22 riastrad * would just ignore their samples anyway.
1808 1.22 riastrad */
1809 1.22 riastrad if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
1810 1.22 riastrad continue;
1811 1.22 riastrad
1812 1.1 riastrad /* Drop the lock while we call the callback. */
1813 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1814 1.1 riastrad mutex_exit(&E->lock);
1815 1.1 riastrad (*rs->get)(nbytes, rs->getarg);
1816 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1817 1.1 riastrad mutex_enter(&E->lock);
1818 1.1 riastrad }
1819 1.1 riastrad
1820 1.49 riastrad /* Request done; unlock the list of entropy sources. */
1821 1.4 riastrad rnd_unlock_sources();
1822 1.49 riastrad return 0;
1823 1.1 riastrad }
1824 1.1 riastrad
1825 1.1 riastrad /*
1826 1.1 riastrad * rnd_add_uint32(rs, value)
1827 1.1 riastrad *
1828 1.1 riastrad * Enter 32 bits of data from an entropy source into the pool.
1829 1.1 riastrad *
1830 1.1 riastrad * If rs is NULL, may not be called from interrupt context.
1831 1.1 riastrad *
1832 1.1 riastrad * If rs is non-NULL, may be called from any context. May drop
1833 1.1 riastrad * data if called from interrupt context.
1834 1.1 riastrad */
1835 1.1 riastrad void
1836 1.1 riastrad rnd_add_uint32(struct krndsource *rs, uint32_t value)
1837 1.1 riastrad {
1838 1.1 riastrad
1839 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
1840 1.1 riastrad }
1841 1.1 riastrad
1842 1.1 riastrad void
1843 1.1 riastrad _rnd_add_uint32(struct krndsource *rs, uint32_t value)
1844 1.1 riastrad {
1845 1.1 riastrad
1846 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
1847 1.1 riastrad }
1848 1.1 riastrad
1849 1.1 riastrad void
1850 1.1 riastrad _rnd_add_uint64(struct krndsource *rs, uint64_t value)
1851 1.1 riastrad {
1852 1.1 riastrad
1853 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
1854 1.1 riastrad }
1855 1.1 riastrad
1856 1.1 riastrad /*
1857 1.1 riastrad * rnd_add_data(rs, buf, len, entropybits)
1858 1.1 riastrad *
1859 1.1 riastrad * Enter data from an entropy source into the pool, with a
1860 1.1 riastrad * driver's estimate of how much entropy the physical source of
1861 1.1 riastrad * the data has. If RND_FLAG_NO_ESTIMATE, we ignore the driver's
1862 1.1 riastrad * estimate and treat it as zero.
1863 1.1 riastrad *
1864 1.1 riastrad * If rs is NULL, may not be called from interrupt context.
1865 1.1 riastrad *
1866 1.1 riastrad * If rs is non-NULL, may be called from any context. May drop
1867 1.1 riastrad * data if called from interrupt context.
1868 1.1 riastrad */
1869 1.1 riastrad void
1870 1.1 riastrad rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
1871 1.1 riastrad uint32_t entropybits)
1872 1.1 riastrad {
1873 1.1 riastrad uint32_t extra;
1874 1.1 riastrad uint32_t flags;
1875 1.1 riastrad
1876 1.1 riastrad KASSERTMSG(howmany(entropybits, NBBY) <= len,
1877 1.1 riastrad "%s: impossible entropy rate:"
1878 1.1 riastrad " %"PRIu32" bits in %"PRIu32"-byte string",
1879 1.1 riastrad rs ? rs->name : "(anonymous)", entropybits, len);
1880 1.1 riastrad
1881 1.1 riastrad /* If there's no rndsource, just enter the data and time now. */
1882 1.1 riastrad if (rs == NULL) {
1883 1.1 riastrad entropy_enter(buf, len, entropybits);
1884 1.1 riastrad extra = entropy_timer();
1885 1.1 riastrad entropy_enter(&extra, sizeof extra, 0);
1886 1.1 riastrad explicit_memset(&extra, 0, sizeof extra);
1887 1.1 riastrad return;
1888 1.1 riastrad }
1889 1.1 riastrad
1890 1.1 riastrad /* Load a snapshot of the flags. Ioctl may change them under us. */
1891 1.1 riastrad flags = atomic_load_relaxed(&rs->flags);
1892 1.1 riastrad
1893 1.1 riastrad /*
1894 1.1 riastrad * Skip if:
1895 1.1 riastrad * - we're not collecting entropy, or
1896 1.1 riastrad * - the operator doesn't want to collect entropy from this, or
1897 1.1 riastrad * - neither data nor timings are being collected from this.
1898 1.1 riastrad */
1899 1.1 riastrad if (!atomic_load_relaxed(&entropy_collection) ||
1900 1.1 riastrad ISSET(flags, RND_FLAG_NO_COLLECT) ||
1901 1.1 riastrad !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
1902 1.1 riastrad return;
1903 1.1 riastrad
1904 1.1 riastrad /* If asked, ignore the estimate. */
1905 1.1 riastrad if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
1906 1.1 riastrad entropybits = 0;
1907 1.1 riastrad
1908 1.1 riastrad /* If we are collecting data, enter them. */
1909 1.1 riastrad if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
1910 1.28 riastrad rnd_add_data_1(rs, buf, len, entropybits,
1911 1.28 riastrad RND_FLAG_COLLECT_VALUE);
1912 1.1 riastrad
1913 1.1 riastrad /* If we are collecting timings, enter one. */
1914 1.1 riastrad if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
1915 1.1 riastrad extra = entropy_timer();
1916 1.28 riastrad rnd_add_data_1(rs, &extra, sizeof extra, 0,
1917 1.28 riastrad RND_FLAG_COLLECT_TIME);
1918 1.1 riastrad }
1919 1.1 riastrad }
1920 1.1 riastrad
1921 1.28 riastrad static unsigned
1922 1.28 riastrad add_sat(unsigned a, unsigned b)
1923 1.28 riastrad {
1924 1.28 riastrad unsigned c = a + b;
1925 1.28 riastrad
1926 1.28 riastrad return (c < a ? UINT_MAX : c);
1927 1.28 riastrad }
1928 1.28 riastrad
1929 1.1 riastrad /*
1930 1.28 riastrad * rnd_add_data_1(rs, buf, len, entropybits, flag)
1931 1.1 riastrad *
1932 1.1 riastrad * Internal subroutine to call either entropy_enter_intr, if we're
1933 1.1 riastrad * in interrupt context, or entropy_enter if not, and to count the
1934 1.1 riastrad * entropy in an rndsource.
1935 1.1 riastrad */
1936 1.1 riastrad static void
1937 1.1 riastrad rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
1938 1.28 riastrad uint32_t entropybits, uint32_t flag)
1939 1.1 riastrad {
1940 1.1 riastrad bool fullyused;
1941 1.1 riastrad
1942 1.1 riastrad /*
1943 1.1 riastrad * If we're in interrupt context, use entropy_enter_intr and
1944 1.1 riastrad * take note of whether it consumed the full sample; if not,
1945 1.1 riastrad * use entropy_enter, which always consumes the full sample.
1946 1.1 riastrad */
1947 1.16 riastrad if (curlwp && cpu_intr_p()) {
1948 1.1 riastrad fullyused = entropy_enter_intr(buf, len, entropybits);
1949 1.1 riastrad } else {
1950 1.1 riastrad entropy_enter(buf, len, entropybits);
1951 1.1 riastrad fullyused = true;
1952 1.1 riastrad }
1953 1.1 riastrad
1954 1.1 riastrad /*
1955 1.1 riastrad * If we used the full sample, note how many bits were
1956 1.1 riastrad * contributed from this source.
1957 1.1 riastrad */
1958 1.1 riastrad if (fullyused) {
1959 1.37 riastrad if (__predict_false(E->stage == ENTROPY_COLD)) {
1960 1.28 riastrad rs->total = add_sat(rs->total, entropybits);
1961 1.28 riastrad switch (flag) {
1962 1.28 riastrad case RND_FLAG_COLLECT_TIME:
1963 1.28 riastrad rs->time_delta.insamples =
1964 1.28 riastrad add_sat(rs->time_delta.insamples, 1);
1965 1.28 riastrad break;
1966 1.28 riastrad case RND_FLAG_COLLECT_VALUE:
1967 1.28 riastrad rs->value_delta.insamples =
1968 1.28 riastrad add_sat(rs->value_delta.insamples, 1);
1969 1.28 riastrad break;
1970 1.28 riastrad }
1971 1.1 riastrad } else {
1972 1.1 riastrad struct rndsource_cpu *rc = percpu_getref(rs->state);
1973 1.1 riastrad
1974 1.28 riastrad atomic_store_relaxed(&rc->rc_entropybits,
1975 1.28 riastrad add_sat(rc->rc_entropybits, entropybits));
1976 1.28 riastrad switch (flag) {
1977 1.28 riastrad case RND_FLAG_COLLECT_TIME:
1978 1.28 riastrad atomic_store_relaxed(&rc->rc_timesamples,
1979 1.28 riastrad add_sat(rc->rc_timesamples, 1));
1980 1.28 riastrad break;
1981 1.28 riastrad case RND_FLAG_COLLECT_VALUE:
1982 1.28 riastrad atomic_store_relaxed(&rc->rc_datasamples,
1983 1.28 riastrad add_sat(rc->rc_datasamples, 1));
1984 1.28 riastrad break;
1985 1.28 riastrad }
1986 1.1 riastrad percpu_putref(rs->state);
1987 1.1 riastrad }
1988 1.1 riastrad }
1989 1.1 riastrad }
1990 1.1 riastrad
1991 1.1 riastrad /*
1992 1.1 riastrad * rnd_add_data_sync(rs, buf, len, entropybits)
1993 1.1 riastrad *
1994 1.1 riastrad * Same as rnd_add_data. Originally used in rndsource callbacks,
1995 1.1 riastrad * to break an unnecessary cycle; no longer really needed.
1996 1.1 riastrad */
1997 1.1 riastrad void
1998 1.1 riastrad rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
1999 1.1 riastrad uint32_t entropybits)
2000 1.1 riastrad {
2001 1.1 riastrad
2002 1.1 riastrad rnd_add_data(rs, buf, len, entropybits);
2003 1.1 riastrad }
2004 1.1 riastrad
2005 1.1 riastrad /*
2006 1.1 riastrad * rndsource_entropybits(rs)
2007 1.1 riastrad *
2008 1.1 riastrad * Return approximately the number of bits of entropy that have
2009 1.1 riastrad * been contributed via rs so far. Approximate if other CPUs may
2010 1.1 riastrad * be calling rnd_add_data concurrently.
2011 1.1 riastrad */
2012 1.1 riastrad static unsigned
2013 1.1 riastrad rndsource_entropybits(struct krndsource *rs)
2014 1.1 riastrad {
2015 1.1 riastrad unsigned nbits = rs->total;
2016 1.1 riastrad
2017 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2018 1.4 riastrad KASSERT(rnd_sources_locked());
2019 1.1 riastrad percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
2020 1.1 riastrad return nbits;
2021 1.1 riastrad }
2022 1.1 riastrad
2023 1.1 riastrad static void
2024 1.1 riastrad rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
2025 1.1 riastrad {
2026 1.1 riastrad struct rndsource_cpu *rc = ptr;
2027 1.1 riastrad unsigned *nbitsp = cookie;
2028 1.1 riastrad unsigned cpu_nbits;
2029 1.1 riastrad
2030 1.28 riastrad cpu_nbits = atomic_load_relaxed(&rc->rc_entropybits);
2031 1.1 riastrad *nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
2032 1.1 riastrad }
2033 1.1 riastrad
2034 1.1 riastrad /*
2035 1.1 riastrad * rndsource_to_user(rs, urs)
2036 1.1 riastrad *
2037 1.1 riastrad * Copy a description of rs out to urs for userland.
2038 1.1 riastrad */
2039 1.1 riastrad static void
2040 1.1 riastrad rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
2041 1.1 riastrad {
2042 1.1 riastrad
2043 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2044 1.4 riastrad KASSERT(rnd_sources_locked());
2045 1.1 riastrad
2046 1.1 riastrad /* Avoid kernel memory disclosure. */
2047 1.1 riastrad memset(urs, 0, sizeof(*urs));
2048 1.1 riastrad
2049 1.1 riastrad CTASSERT(sizeof(urs->name) == sizeof(rs->name));
2050 1.1 riastrad strlcpy(urs->name, rs->name, sizeof(urs->name));
2051 1.1 riastrad urs->total = rndsource_entropybits(rs);
2052 1.1 riastrad urs->type = rs->type;
2053 1.1 riastrad urs->flags = atomic_load_relaxed(&rs->flags);
2054 1.1 riastrad }
2055 1.1 riastrad
2056 1.1 riastrad /*
2057 1.1 riastrad * rndsource_to_user_est(rs, urse)
2058 1.1 riastrad *
2059 1.1 riastrad * Copy a description of rs and estimation statistics out to urse
2060 1.1 riastrad * for userland.
2061 1.1 riastrad */
2062 1.1 riastrad static void
2063 1.1 riastrad rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
2064 1.1 riastrad {
2065 1.1 riastrad
2066 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2067 1.4 riastrad KASSERT(rnd_sources_locked());
2068 1.1 riastrad
2069 1.1 riastrad /* Avoid kernel memory disclosure. */
2070 1.1 riastrad memset(urse, 0, sizeof(*urse));
2071 1.1 riastrad
2072 1.1 riastrad /* Copy out the rndsource description. */
2073 1.1 riastrad rndsource_to_user(rs, &urse->rt);
2074 1.1 riastrad
2075 1.28 riastrad /* Gather the statistics. */
2076 1.28 riastrad urse->dt_samples = rs->time_delta.insamples;
2077 1.1 riastrad urse->dt_total = 0;
2078 1.28 riastrad urse->dv_samples = rs->value_delta.insamples;
2079 1.28 riastrad urse->dv_total = urse->rt.total;
2080 1.28 riastrad percpu_foreach(rs->state, rndsource_to_user_est_cpu, urse);
2081 1.28 riastrad }
2082 1.28 riastrad
2083 1.28 riastrad static void
2084 1.28 riastrad rndsource_to_user_est_cpu(void *ptr, void *cookie, struct cpu_info *ci)
2085 1.28 riastrad {
2086 1.28 riastrad struct rndsource_cpu *rc = ptr;
2087 1.28 riastrad rndsource_est_t *urse = cookie;
2088 1.28 riastrad
2089 1.28 riastrad urse->dt_samples = add_sat(urse->dt_samples,
2090 1.28 riastrad atomic_load_relaxed(&rc->rc_timesamples));
2091 1.28 riastrad urse->dv_samples = add_sat(urse->dv_samples,
2092 1.28 riastrad atomic_load_relaxed(&rc->rc_datasamples));
2093 1.1 riastrad }
2094 1.1 riastrad
2095 1.1 riastrad /*
2096 1.21 riastrad * entropy_reset_xc(arg1, arg2)
2097 1.21 riastrad *
2098 1.21 riastrad * Reset the current CPU's pending entropy to zero.
2099 1.21 riastrad */
2100 1.21 riastrad static void
2101 1.21 riastrad entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
2102 1.21 riastrad {
2103 1.21 riastrad uint32_t extra = entropy_timer();
2104 1.43 riastrad struct entropy_cpu_lock lock;
2105 1.21 riastrad struct entropy_cpu *ec;
2106 1.21 riastrad
2107 1.21 riastrad /*
2108 1.43 riastrad * With the per-CPU state locked, zero the pending count and
2109 1.43 riastrad * enter a cycle count for fun.
2110 1.21 riastrad */
2111 1.43 riastrad ec = entropy_cpu_get(&lock);
2112 1.21 riastrad ec->ec_pending = 0;
2113 1.21 riastrad entpool_enter(ec->ec_pool, &extra, sizeof extra);
2114 1.43 riastrad entropy_cpu_put(&lock, ec);
2115 1.21 riastrad }
2116 1.21 riastrad
2117 1.21 riastrad /*
2118 1.1 riastrad * entropy_ioctl(cmd, data)
2119 1.1 riastrad *
2120 1.1 riastrad * Handle various /dev/random ioctl queries.
2121 1.1 riastrad */
2122 1.1 riastrad int
2123 1.1 riastrad entropy_ioctl(unsigned long cmd, void *data)
2124 1.1 riastrad {
2125 1.1 riastrad struct krndsource *rs;
2126 1.1 riastrad bool privileged;
2127 1.1 riastrad int error;
2128 1.1 riastrad
2129 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2130 1.1 riastrad
2131 1.1 riastrad /* Verify user's authorization to perform the ioctl. */
2132 1.1 riastrad switch (cmd) {
2133 1.1 riastrad case RNDGETENTCNT:
2134 1.1 riastrad case RNDGETPOOLSTAT:
2135 1.1 riastrad case RNDGETSRCNUM:
2136 1.1 riastrad case RNDGETSRCNAME:
2137 1.1 riastrad case RNDGETESTNUM:
2138 1.1 riastrad case RNDGETESTNAME:
2139 1.31 christos error = kauth_authorize_device(kauth_cred_get(),
2140 1.1 riastrad KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
2141 1.1 riastrad break;
2142 1.1 riastrad case RNDCTL:
2143 1.31 christos error = kauth_authorize_device(kauth_cred_get(),
2144 1.1 riastrad KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
2145 1.1 riastrad break;
2146 1.1 riastrad case RNDADDDATA:
2147 1.31 christos error = kauth_authorize_device(kauth_cred_get(),
2148 1.1 riastrad KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
2149 1.1 riastrad /* Ascertain whether the user's inputs should be counted. */
2150 1.31 christos if (kauth_authorize_device(kauth_cred_get(),
2151 1.1 riastrad KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
2152 1.1 riastrad NULL, NULL, NULL, NULL) == 0)
2153 1.1 riastrad privileged = true;
2154 1.1 riastrad break;
2155 1.1 riastrad default: {
2156 1.1 riastrad /*
2157 1.1 riastrad * XXX Hack to avoid changing module ABI so this can be
2158 1.1 riastrad * pulled up. Later, we can just remove the argument.
2159 1.1 riastrad */
2160 1.1 riastrad static const struct fileops fops = {
2161 1.1 riastrad .fo_ioctl = rnd_system_ioctl,
2162 1.1 riastrad };
2163 1.1 riastrad struct file f = {
2164 1.1 riastrad .f_ops = &fops,
2165 1.1 riastrad };
2166 1.1 riastrad MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
2167 1.1 riastrad enosys(), error);
2168 1.1 riastrad #if defined(_LP64)
2169 1.1 riastrad if (error == ENOSYS)
2170 1.1 riastrad MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
2171 1.1 riastrad enosys(), error);
2172 1.1 riastrad #endif
2173 1.1 riastrad if (error == ENOSYS)
2174 1.1 riastrad error = ENOTTY;
2175 1.1 riastrad break;
2176 1.1 riastrad }
2177 1.1 riastrad }
2178 1.1 riastrad
2179 1.1 riastrad /* If anything went wrong with authorization, stop here. */
2180 1.1 riastrad if (error)
2181 1.1 riastrad return error;
2182 1.1 riastrad
2183 1.1 riastrad /* Dispatch on the command. */
2184 1.1 riastrad switch (cmd) {
2185 1.1 riastrad case RNDGETENTCNT: { /* Get current entropy count in bits. */
2186 1.1 riastrad uint32_t *countp = data;
2187 1.1 riastrad
2188 1.1 riastrad mutex_enter(&E->lock);
2189 1.1 riastrad *countp = ENTROPY_CAPACITY*NBBY - E->needed;
2190 1.1 riastrad mutex_exit(&E->lock);
2191 1.1 riastrad
2192 1.1 riastrad break;
2193 1.1 riastrad }
2194 1.1 riastrad case RNDGETPOOLSTAT: { /* Get entropy pool statistics. */
2195 1.1 riastrad rndpoolstat_t *pstat = data;
2196 1.1 riastrad
2197 1.1 riastrad mutex_enter(&E->lock);
2198 1.1 riastrad
2199 1.1 riastrad /* parameters */
2200 1.1 riastrad pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
2201 1.1 riastrad pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
2202 1.1 riastrad pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
2203 1.1 riastrad
2204 1.1 riastrad /* state */
2205 1.1 riastrad pstat->added = 0; /* XXX total entropy_enter count */
2206 1.1 riastrad pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
2207 1.1 riastrad pstat->removed = 0; /* XXX total entropy_extract count */
2208 1.1 riastrad pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
2209 1.1 riastrad pstat->generated = 0; /* XXX bits of data...fabricated? */
2210 1.1 riastrad
2211 1.1 riastrad mutex_exit(&E->lock);
2212 1.1 riastrad break;
2213 1.1 riastrad }
2214 1.1 riastrad case RNDGETSRCNUM: { /* Get entropy sources by number. */
2215 1.1 riastrad rndstat_t *stat = data;
2216 1.1 riastrad uint32_t start = 0, i = 0;
2217 1.1 riastrad
2218 1.1 riastrad /* Skip if none requested; fail if too many requested. */
2219 1.1 riastrad if (stat->count == 0)
2220 1.1 riastrad break;
2221 1.1 riastrad if (stat->count > RND_MAXSTATCOUNT)
2222 1.1 riastrad return EINVAL;
2223 1.1 riastrad
2224 1.1 riastrad /*
2225 1.1 riastrad * Under the lock, find the first one, copy out as many
2226 1.1 riastrad * as requested, and report how many we copied out.
2227 1.1 riastrad */
2228 1.1 riastrad mutex_enter(&E->lock);
2229 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2230 1.4 riastrad if (error) {
2231 1.4 riastrad mutex_exit(&E->lock);
2232 1.4 riastrad return error;
2233 1.4 riastrad }
2234 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2235 1.1 riastrad if (start++ == stat->start)
2236 1.1 riastrad break;
2237 1.1 riastrad }
2238 1.1 riastrad while (i < stat->count && rs != NULL) {
2239 1.5 riastrad mutex_exit(&E->lock);
2240 1.1 riastrad rndsource_to_user(rs, &stat->source[i++]);
2241 1.5 riastrad mutex_enter(&E->lock);
2242 1.1 riastrad rs = LIST_NEXT(rs, list);
2243 1.1 riastrad }
2244 1.1 riastrad KASSERT(i <= stat->count);
2245 1.1 riastrad stat->count = i;
2246 1.4 riastrad rnd_unlock_sources();
2247 1.1 riastrad mutex_exit(&E->lock);
2248 1.1 riastrad break;
2249 1.1 riastrad }
2250 1.1 riastrad case RNDGETESTNUM: { /* Get sources and estimates by number. */
2251 1.1 riastrad rndstat_est_t *estat = data;
2252 1.1 riastrad uint32_t start = 0, i = 0;
2253 1.1 riastrad
2254 1.1 riastrad /* Skip if none requested; fail if too many requested. */
2255 1.1 riastrad if (estat->count == 0)
2256 1.1 riastrad break;
2257 1.1 riastrad if (estat->count > RND_MAXSTATCOUNT)
2258 1.1 riastrad return EINVAL;
2259 1.1 riastrad
2260 1.1 riastrad /*
2261 1.1 riastrad * Under the lock, find the first one, copy out as many
2262 1.1 riastrad * as requested, and report how many we copied out.
2263 1.1 riastrad */
2264 1.1 riastrad mutex_enter(&E->lock);
2265 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2266 1.4 riastrad if (error) {
2267 1.4 riastrad mutex_exit(&E->lock);
2268 1.4 riastrad return error;
2269 1.4 riastrad }
2270 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2271 1.1 riastrad if (start++ == estat->start)
2272 1.1 riastrad break;
2273 1.1 riastrad }
2274 1.1 riastrad while (i < estat->count && rs != NULL) {
2275 1.4 riastrad mutex_exit(&E->lock);
2276 1.1 riastrad rndsource_to_user_est(rs, &estat->source[i++]);
2277 1.4 riastrad mutex_enter(&E->lock);
2278 1.1 riastrad rs = LIST_NEXT(rs, list);
2279 1.1 riastrad }
2280 1.1 riastrad KASSERT(i <= estat->count);
2281 1.1 riastrad estat->count = i;
2282 1.4 riastrad rnd_unlock_sources();
2283 1.1 riastrad mutex_exit(&E->lock);
2284 1.1 riastrad break;
2285 1.1 riastrad }
2286 1.1 riastrad case RNDGETSRCNAME: { /* Get entropy sources by name. */
2287 1.1 riastrad rndstat_name_t *nstat = data;
2288 1.1 riastrad const size_t n = sizeof(rs->name);
2289 1.1 riastrad
2290 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
2291 1.1 riastrad
2292 1.1 riastrad /*
2293 1.1 riastrad * Under the lock, search by name. If found, copy it
2294 1.1 riastrad * out; if not found, fail with ENOENT.
2295 1.1 riastrad */
2296 1.1 riastrad mutex_enter(&E->lock);
2297 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2298 1.4 riastrad if (error) {
2299 1.4 riastrad mutex_exit(&E->lock);
2300 1.4 riastrad return error;
2301 1.4 riastrad }
2302 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2303 1.1 riastrad if (strncmp(rs->name, nstat->name, n) == 0)
2304 1.1 riastrad break;
2305 1.1 riastrad }
2306 1.4 riastrad if (rs != NULL) {
2307 1.4 riastrad mutex_exit(&E->lock);
2308 1.1 riastrad rndsource_to_user(rs, &nstat->source);
2309 1.4 riastrad mutex_enter(&E->lock);
2310 1.4 riastrad } else {
2311 1.1 riastrad error = ENOENT;
2312 1.4 riastrad }
2313 1.4 riastrad rnd_unlock_sources();
2314 1.1 riastrad mutex_exit(&E->lock);
2315 1.1 riastrad break;
2316 1.1 riastrad }
2317 1.1 riastrad case RNDGETESTNAME: { /* Get sources and estimates by name. */
2318 1.1 riastrad rndstat_est_name_t *enstat = data;
2319 1.1 riastrad const size_t n = sizeof(rs->name);
2320 1.1 riastrad
2321 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
2322 1.1 riastrad
2323 1.1 riastrad /*
2324 1.1 riastrad * Under the lock, search by name. If found, copy it
2325 1.1 riastrad * out; if not found, fail with ENOENT.
2326 1.1 riastrad */
2327 1.1 riastrad mutex_enter(&E->lock);
2328 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2329 1.4 riastrad if (error) {
2330 1.4 riastrad mutex_exit(&E->lock);
2331 1.4 riastrad return error;
2332 1.4 riastrad }
2333 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2334 1.1 riastrad if (strncmp(rs->name, enstat->name, n) == 0)
2335 1.1 riastrad break;
2336 1.1 riastrad }
2337 1.4 riastrad if (rs != NULL) {
2338 1.4 riastrad mutex_exit(&E->lock);
2339 1.1 riastrad rndsource_to_user_est(rs, &enstat->source);
2340 1.4 riastrad mutex_enter(&E->lock);
2341 1.4 riastrad } else {
2342 1.1 riastrad error = ENOENT;
2343 1.4 riastrad }
2344 1.4 riastrad rnd_unlock_sources();
2345 1.1 riastrad mutex_exit(&E->lock);
2346 1.1 riastrad break;
2347 1.1 riastrad }
2348 1.1 riastrad case RNDCTL: { /* Modify entropy source flags. */
2349 1.1 riastrad rndctl_t *rndctl = data;
2350 1.1 riastrad const size_t n = sizeof(rs->name);
2351 1.21 riastrad uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2352 1.1 riastrad uint32_t flags;
2353 1.21 riastrad bool reset = false, request = false;
2354 1.1 riastrad
2355 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
2356 1.1 riastrad
2357 1.1 riastrad /* Whitelist the flags that user can change. */
2358 1.1 riastrad rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2359 1.1 riastrad
2360 1.1 riastrad /*
2361 1.1 riastrad * For each matching rndsource, either by type if
2362 1.1 riastrad * specified or by name if not, set the masked flags.
2363 1.1 riastrad */
2364 1.1 riastrad mutex_enter(&E->lock);
2365 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2366 1.1 riastrad if (rndctl->type != 0xff) {
2367 1.1 riastrad if (rs->type != rndctl->type)
2368 1.1 riastrad continue;
2369 1.1 riastrad } else {
2370 1.1 riastrad if (strncmp(rs->name, rndctl->name, n) != 0)
2371 1.1 riastrad continue;
2372 1.1 riastrad }
2373 1.1 riastrad flags = rs->flags & ~rndctl->mask;
2374 1.1 riastrad flags |= rndctl->flags & rndctl->mask;
2375 1.21 riastrad if ((rs->flags & resetflags) == 0 &&
2376 1.21 riastrad (flags & resetflags) != 0)
2377 1.21 riastrad reset = true;
2378 1.21 riastrad if ((rs->flags ^ flags) & resetflags)
2379 1.21 riastrad request = true;
2380 1.1 riastrad atomic_store_relaxed(&rs->flags, flags);
2381 1.1 riastrad }
2382 1.1 riastrad mutex_exit(&E->lock);
2383 1.21 riastrad
2384 1.21 riastrad /*
2385 1.21 riastrad * If we disabled estimation or collection, nix all the
2386 1.21 riastrad * pending entropy and set needed to the maximum.
2387 1.21 riastrad */
2388 1.21 riastrad if (reset) {
2389 1.21 riastrad xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
2390 1.21 riastrad mutex_enter(&E->lock);
2391 1.21 riastrad E->pending = 0;
2392 1.21 riastrad atomic_store_relaxed(&E->needed,
2393 1.21 riastrad ENTROPY_CAPACITY*NBBY);
2394 1.21 riastrad mutex_exit(&E->lock);
2395 1.21 riastrad }
2396 1.21 riastrad
2397 1.21 riastrad /*
2398 1.21 riastrad * If we changed any of the estimation or collection
2399 1.21 riastrad * flags, request new samples from everyone -- either
2400 1.21 riastrad * to make up for what we just lost, or to get new
2401 1.21 riastrad * samples from what we just added.
2402 1.49 riastrad *
2403 1.49 riastrad * Failing on signal, while waiting for another process
2404 1.49 riastrad * to finish requesting entropy, is OK here even though
2405 1.49 riastrad * we have committed side effects, because this ioctl
2406 1.49 riastrad * command is idempotent, so repeating it is safe.
2407 1.21 riastrad */
2408 1.21 riastrad if (request) {
2409 1.21 riastrad mutex_enter(&E->lock);
2410 1.49 riastrad error = entropy_request(ENTROPY_CAPACITY,
2411 1.49 riastrad ENTROPY_WAIT|ENTROPY_SIG);
2412 1.21 riastrad mutex_exit(&E->lock);
2413 1.21 riastrad }
2414 1.1 riastrad break;
2415 1.1 riastrad }
2416 1.1 riastrad case RNDADDDATA: { /* Enter seed into entropy pool. */
2417 1.1 riastrad rnddata_t *rdata = data;
2418 1.1 riastrad unsigned entropybits = 0;
2419 1.1 riastrad
2420 1.1 riastrad if (!atomic_load_relaxed(&entropy_collection))
2421 1.1 riastrad break; /* thanks but no thanks */
2422 1.1 riastrad if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
2423 1.1 riastrad return EINVAL;
2424 1.1 riastrad
2425 1.1 riastrad /*
2426 1.1 riastrad * This ioctl serves as the userland alternative a
2427 1.1 riastrad * bootloader-provided seed -- typically furnished by
2428 1.1 riastrad * /etc/rc.d/random_seed. We accept the user's entropy
2429 1.1 riastrad * claim only if
2430 1.1 riastrad *
2431 1.1 riastrad * (a) the user is privileged, and
2432 1.1 riastrad * (b) we have not entered a bootloader seed.
2433 1.1 riastrad *
2434 1.1 riastrad * under the assumption that the user may use this to
2435 1.1 riastrad * load a seed from disk that we have already loaded
2436 1.1 riastrad * from the bootloader, so we don't double-count it.
2437 1.1 riastrad */
2438 1.11 riastrad if (privileged && rdata->entropy && rdata->len) {
2439 1.1 riastrad mutex_enter(&E->lock);
2440 1.1 riastrad if (!E->seeded) {
2441 1.1 riastrad entropybits = MIN(rdata->entropy,
2442 1.1 riastrad MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
2443 1.1 riastrad E->seeded = true;
2444 1.1 riastrad }
2445 1.1 riastrad mutex_exit(&E->lock);
2446 1.1 riastrad }
2447 1.1 riastrad
2448 1.13 riastrad /* Enter the data and consolidate entropy. */
2449 1.1 riastrad rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
2450 1.1 riastrad entropybits);
2451 1.13 riastrad entropy_consolidate();
2452 1.1 riastrad break;
2453 1.1 riastrad }
2454 1.1 riastrad default:
2455 1.1 riastrad error = ENOTTY;
2456 1.1 riastrad }
2457 1.1 riastrad
2458 1.1 riastrad /* Return any error that may have come up. */
2459 1.1 riastrad return error;
2460 1.1 riastrad }
2461 1.1 riastrad
2462 1.1 riastrad /* Legacy entry points */
2463 1.1 riastrad
2464 1.1 riastrad void
2465 1.1 riastrad rnd_seed(void *seed, size_t len)
2466 1.1 riastrad {
2467 1.1 riastrad
2468 1.1 riastrad if (len != sizeof(rndsave_t)) {
2469 1.1 riastrad printf("entropy: invalid seed length: %zu,"
2470 1.1 riastrad " expected sizeof(rndsave_t) = %zu\n",
2471 1.1 riastrad len, sizeof(rndsave_t));
2472 1.1 riastrad return;
2473 1.1 riastrad }
2474 1.1 riastrad entropy_seed(seed);
2475 1.1 riastrad }
2476 1.1 riastrad
2477 1.1 riastrad void
2478 1.1 riastrad rnd_init(void)
2479 1.1 riastrad {
2480 1.1 riastrad
2481 1.1 riastrad entropy_init();
2482 1.1 riastrad }
2483 1.1 riastrad
2484 1.1 riastrad void
2485 1.1 riastrad rnd_init_softint(void)
2486 1.1 riastrad {
2487 1.1 riastrad
2488 1.1 riastrad entropy_init_late();
2489 1.38 riastrad entropy_bootrequest();
2490 1.1 riastrad }
2491 1.1 riastrad
2492 1.1 riastrad int
2493 1.1 riastrad rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
2494 1.1 riastrad {
2495 1.1 riastrad
2496 1.1 riastrad return entropy_ioctl(cmd, data);
2497 1.1 riastrad }
2498