Home | History | Annotate | Line # | Download | only in kern
kern_entropy.c revision 1.59
      1  1.59  riastrad /*	$NetBSD: kern_entropy.c,v 1.59 2023/03/03 12:52:49 riastradh Exp $	*/
      2   1.1  riastrad 
      3   1.1  riastrad /*-
      4   1.1  riastrad  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      5   1.1  riastrad  * All rights reserved.
      6   1.1  riastrad  *
      7   1.1  riastrad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1  riastrad  * by Taylor R. Campbell.
      9   1.1  riastrad  *
     10   1.1  riastrad  * Redistribution and use in source and binary forms, with or without
     11   1.1  riastrad  * modification, are permitted provided that the following conditions
     12   1.1  riastrad  * are met:
     13   1.1  riastrad  * 1. Redistributions of source code must retain the above copyright
     14   1.1  riastrad  *    notice, this list of conditions and the following disclaimer.
     15   1.1  riastrad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1  riastrad  *    notice, this list of conditions and the following disclaimer in the
     17   1.1  riastrad  *    documentation and/or other materials provided with the distribution.
     18   1.1  riastrad  *
     19   1.1  riastrad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1  riastrad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1  riastrad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1  riastrad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1  riastrad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1  riastrad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1  riastrad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1  riastrad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1  riastrad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1  riastrad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1  riastrad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1  riastrad  */
     31   1.1  riastrad 
     32   1.1  riastrad /*
     33   1.1  riastrad  * Entropy subsystem
     34   1.1  riastrad  *
     35   1.1  riastrad  *	* Each CPU maintains a per-CPU entropy pool so that gathering
     36   1.1  riastrad  *	  entropy requires no interprocessor synchronization, except
     37   1.1  riastrad  *	  early at boot when we may be scrambling to gather entropy as
     38   1.1  riastrad  *	  soon as possible.
     39   1.1  riastrad  *
     40   1.1  riastrad  *	  - entropy_enter gathers entropy and never drops it on the
     41   1.1  riastrad  *	    floor, at the cost of sometimes having to do cryptography.
     42   1.1  riastrad  *
     43   1.1  riastrad  *	  - entropy_enter_intr gathers entropy or drops it on the
     44   1.1  riastrad  *	    floor, with low latency.  Work to stir the pool or kick the
     45   1.1  riastrad  *	    housekeeping thread is scheduled in soft interrupts.
     46   1.1  riastrad  *
     47   1.1  riastrad  *	* entropy_enter immediately enters into the global pool if it
     48   1.1  riastrad  *	  can transition to full entropy in one swell foop.  Otherwise,
     49   1.1  riastrad  *	  it defers to a housekeeping thread that consolidates entropy,
     50   1.1  riastrad  *	  but only when the CPUs collectively have full entropy, in
     51   1.1  riastrad  *	  order to mitigate iterative-guessing attacks.
     52   1.1  riastrad  *
     53   1.1  riastrad  *	* The entropy housekeeping thread continues to consolidate
     54   1.1  riastrad  *	  entropy even after we think we have full entropy, in case we
     55   1.1  riastrad  *	  are wrong, but is limited to one discretionary consolidation
     56   1.1  riastrad  *	  per minute, and only when new entropy is actually coming in,
     57   1.1  riastrad  *	  to limit performance impact.
     58   1.1  riastrad  *
     59   1.1  riastrad  *	* The entropy epoch is the number that changes when we
     60   1.1  riastrad  *	  transition from partial entropy to full entropy, so that
     61   1.1  riastrad  *	  users can easily determine when to reseed.  This also
     62   1.1  riastrad  *	  facilitates an operator explicitly causing everything to
     63  1.13  riastrad  *	  reseed by sysctl -w kern.entropy.consolidate=1.
     64   1.1  riastrad  *
     65   1.1  riastrad  *	* No entropy estimation based on the sample values, which is a
     66   1.1  riastrad  *	  contradiction in terms and a potential source of side
     67   1.1  riastrad  *	  channels.  It is the responsibility of the driver author to
     68   1.1  riastrad  *	  study how predictable the physical source of input can ever
     69   1.1  riastrad  *	  be, and to furnish a lower bound on the amount of entropy it
     70   1.1  riastrad  *	  has.
     71   1.1  riastrad  *
     72   1.1  riastrad  *	* Entropy depletion is available for testing (or if you're into
     73   1.1  riastrad  *	  that sort of thing), with sysctl -w kern.entropy.depletion=1;
     74   1.1  riastrad  *	  the logic to support it is small, to minimize chance of bugs.
     75   1.1  riastrad  */
     76   1.1  riastrad 
     77   1.1  riastrad #include <sys/cdefs.h>
     78  1.59  riastrad __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.59 2023/03/03 12:52:49 riastradh Exp $");
     79   1.1  riastrad 
     80   1.1  riastrad #include <sys/param.h>
     81   1.1  riastrad #include <sys/types.h>
     82   1.1  riastrad #include <sys/atomic.h>
     83   1.1  riastrad #include <sys/compat_stub.h>
     84   1.1  riastrad #include <sys/condvar.h>
     85   1.1  riastrad #include <sys/cpu.h>
     86   1.1  riastrad #include <sys/entropy.h>
     87   1.1  riastrad #include <sys/errno.h>
     88   1.1  riastrad #include <sys/evcnt.h>
     89   1.1  riastrad #include <sys/event.h>
     90   1.1  riastrad #include <sys/file.h>
     91   1.1  riastrad #include <sys/intr.h>
     92   1.1  riastrad #include <sys/kauth.h>
     93   1.1  riastrad #include <sys/kernel.h>
     94   1.1  riastrad #include <sys/kmem.h>
     95   1.1  riastrad #include <sys/kthread.h>
     96  1.53  riastrad #include <sys/lwp.h>
     97   1.1  riastrad #include <sys/module_hook.h>
     98   1.1  riastrad #include <sys/mutex.h>
     99   1.1  riastrad #include <sys/percpu.h>
    100   1.1  riastrad #include <sys/poll.h>
    101  1.53  riastrad #include <sys/proc.h>
    102   1.1  riastrad #include <sys/queue.h>
    103  1.30  jmcneill #include <sys/reboot.h>
    104   1.1  riastrad #include <sys/rnd.h>		/* legacy kernel API */
    105   1.1  riastrad #include <sys/rndio.h>		/* userland ioctl interface */
    106   1.1  riastrad #include <sys/rndsource.h>	/* kernel rndsource driver API */
    107   1.1  riastrad #include <sys/select.h>
    108   1.1  riastrad #include <sys/selinfo.h>
    109   1.1  riastrad #include <sys/sha1.h>		/* for boot seed checksum */
    110   1.1  riastrad #include <sys/stdint.h>
    111   1.1  riastrad #include <sys/sysctl.h>
    112  1.26  riastrad #include <sys/syslog.h>
    113   1.1  riastrad #include <sys/systm.h>
    114   1.1  riastrad #include <sys/time.h>
    115   1.1  riastrad #include <sys/xcall.h>
    116   1.1  riastrad 
    117   1.1  riastrad #include <lib/libkern/entpool.h>
    118   1.1  riastrad 
    119   1.1  riastrad #include <machine/limits.h>
    120   1.1  riastrad 
    121   1.1  riastrad #ifdef __HAVE_CPU_COUNTER
    122   1.1  riastrad #include <machine/cpu_counter.h>
    123   1.1  riastrad #endif
    124   1.1  riastrad 
    125   1.1  riastrad /*
    126   1.1  riastrad  * struct entropy_cpu
    127   1.1  riastrad  *
    128   1.1  riastrad  *	Per-CPU entropy state.  The pool is allocated separately
    129   1.1  riastrad  *	because percpu(9) sometimes moves per-CPU objects around
    130   1.1  riastrad  *	without zeroing them, which would lead to unwanted copies of
    131  1.34    andvar  *	sensitive secrets.  The evcnt is allocated separately because
    132   1.1  riastrad  *	evcnt(9) assumes it stays put in memory.
    133   1.1  riastrad  */
    134   1.1  riastrad struct entropy_cpu {
    135  1.40  riastrad 	struct entropy_cpu_evcnt {
    136  1.40  riastrad 		struct evcnt		softint;
    137  1.40  riastrad 		struct evcnt		intrdrop;
    138  1.40  riastrad 		struct evcnt		intrtrunc;
    139  1.40  riastrad 	}			*ec_evcnt;
    140   1.1  riastrad 	struct entpool		*ec_pool;
    141   1.1  riastrad 	unsigned		ec_pending;
    142   1.1  riastrad 	bool			ec_locked;
    143   1.1  riastrad };
    144   1.1  riastrad 
    145   1.1  riastrad /*
    146  1.43  riastrad  * struct entropy_cpu_lock
    147  1.43  riastrad  *
    148  1.43  riastrad  *	State for locking the per-CPU entropy state.
    149  1.43  riastrad  */
    150  1.43  riastrad struct entropy_cpu_lock {
    151  1.43  riastrad 	int		ecl_s;
    152  1.43  riastrad 	uint64_t	ecl_ncsw;
    153  1.43  riastrad };
    154  1.43  riastrad 
    155  1.43  riastrad /*
    156   1.1  riastrad  * struct rndsource_cpu
    157   1.1  riastrad  *
    158   1.1  riastrad  *	Per-CPU rndsource state.
    159   1.1  riastrad  */
    160   1.1  riastrad struct rndsource_cpu {
    161  1.28  riastrad 	unsigned		rc_entropybits;
    162  1.28  riastrad 	unsigned		rc_timesamples;
    163  1.28  riastrad 	unsigned		rc_datasamples;
    164   1.1  riastrad };
    165   1.1  riastrad 
    166   1.1  riastrad /*
    167   1.1  riastrad  * entropy_global (a.k.a. E for short in this file)
    168   1.1  riastrad  *
    169   1.1  riastrad  *	Global entropy state.  Writes protected by the global lock.
    170   1.1  riastrad  *	Some fields, marked (A), can be read outside the lock, and are
    171   1.1  riastrad  *	maintained with atomic_load/store_relaxed.
    172   1.1  riastrad  */
    173   1.1  riastrad struct {
    174   1.1  riastrad 	kmutex_t	lock;		/* covers all global state */
    175   1.1  riastrad 	struct entpool	pool;		/* global pool for extraction */
    176   1.1  riastrad 	unsigned	needed;		/* (A) needed globally */
    177   1.1  riastrad 	unsigned	pending;	/* (A) pending in per-CPU pools */
    178   1.1  riastrad 	unsigned	timestamp;	/* (A) time of last consolidation */
    179   1.1  riastrad 	unsigned	epoch;		/* (A) changes when needed -> 0 */
    180   1.1  riastrad 	kcondvar_t	cv;		/* notifies state changes */
    181   1.1  riastrad 	struct selinfo	selq;		/* notifies needed -> 0 */
    182   1.4  riastrad 	struct lwp	*sourcelock;	/* lock on list of sources */
    183  1.27  riastrad 	kcondvar_t	sourcelock_cv;	/* notifies sourcelock release */
    184   1.1  riastrad 	LIST_HEAD(,krndsource) sources;	/* list of entropy sources */
    185   1.1  riastrad 	enum entropy_stage {
    186   1.1  riastrad 		ENTROPY_COLD = 0, /* single-threaded */
    187   1.1  riastrad 		ENTROPY_WARM,	  /* multi-threaded at boot before CPUs */
    188   1.1  riastrad 		ENTROPY_HOT,	  /* multi-threaded multi-CPU */
    189   1.1  riastrad 	}		stage;
    190   1.1  riastrad 	bool		consolidate;	/* kick thread to consolidate */
    191   1.1  riastrad 	bool		seed_rndsource;	/* true if seed source is attached */
    192   1.1  riastrad 	bool		seeded;		/* true if seed file already loaded */
    193   1.1  riastrad } entropy_global __cacheline_aligned = {
    194   1.1  riastrad 	/* Fields that must be initialized when the kernel is loaded.  */
    195   1.1  riastrad 	.needed = ENTROPY_CAPACITY*NBBY,
    196  1.14  riastrad 	.epoch = (unsigned)-1,	/* -1 means entropy never consolidated */
    197   1.1  riastrad 	.sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
    198   1.1  riastrad 	.stage = ENTROPY_COLD,
    199   1.1  riastrad };
    200   1.1  riastrad 
    201   1.1  riastrad #define	E	(&entropy_global)	/* declutter */
    202   1.1  riastrad 
    203   1.1  riastrad /* Read-mostly globals */
    204   1.1  riastrad static struct percpu	*entropy_percpu __read_mostly; /* struct entropy_cpu */
    205   1.1  riastrad static void		*entropy_sih __read_mostly; /* softint handler */
    206   1.1  riastrad static struct lwp	*entropy_lwp __read_mostly; /* housekeeping thread */
    207   1.1  riastrad 
    208   1.1  riastrad static struct krndsource seed_rndsource __read_mostly;
    209   1.1  riastrad 
    210   1.1  riastrad /*
    211   1.1  riastrad  * Event counters
    212   1.1  riastrad  *
    213   1.1  riastrad  *	Must be careful with adding these because they can serve as
    214   1.1  riastrad  *	side channels.
    215   1.1  riastrad  */
    216   1.1  riastrad static struct evcnt entropy_discretionary_evcnt =
    217   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
    218   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
    219   1.1  riastrad static struct evcnt entropy_immediate_evcnt =
    220   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
    221   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
    222   1.1  riastrad static struct evcnt entropy_partial_evcnt =
    223   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
    224   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
    225   1.1  riastrad static struct evcnt entropy_consolidate_evcnt =
    226   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
    227   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
    228   1.1  riastrad static struct evcnt entropy_extract_fail_evcnt =
    229   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
    230   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
    231   1.1  riastrad static struct evcnt entropy_request_evcnt =
    232   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
    233   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_request_evcnt);
    234   1.1  riastrad static struct evcnt entropy_deplete_evcnt =
    235   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
    236   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
    237   1.1  riastrad static struct evcnt entropy_notify_evcnt =
    238   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
    239   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
    240   1.1  riastrad 
    241   1.1  riastrad /* Sysctl knobs */
    242  1.17  riastrad static bool	entropy_collection = 1;
    243  1.17  riastrad static bool	entropy_depletion = 0; /* Silly!  */
    244   1.1  riastrad 
    245   1.1  riastrad static const struct sysctlnode	*entropy_sysctlroot;
    246   1.1  riastrad static struct sysctllog		*entropy_sysctllog;
    247   1.1  riastrad 
    248   1.1  riastrad /* Forward declarations */
    249   1.1  riastrad static void	entropy_init_cpu(void *, void *, struct cpu_info *);
    250   1.1  riastrad static void	entropy_fini_cpu(void *, void *, struct cpu_info *);
    251   1.1  riastrad static void	entropy_account_cpu(struct entropy_cpu *);
    252   1.1  riastrad static void	entropy_enter(const void *, size_t, unsigned);
    253   1.1  riastrad static bool	entropy_enter_intr(const void *, size_t, unsigned);
    254   1.1  riastrad static void	entropy_softintr(void *);
    255   1.1  riastrad static void	entropy_thread(void *);
    256   1.1  riastrad static uint32_t	entropy_pending(void);
    257   1.1  riastrad static void	entropy_pending_cpu(void *, void *, struct cpu_info *);
    258  1.13  riastrad static void	entropy_do_consolidate(void);
    259  1.13  riastrad static void	entropy_consolidate_xc(void *, void *);
    260   1.1  riastrad static void	entropy_notify(void);
    261   1.1  riastrad static int	sysctl_entropy_consolidate(SYSCTLFN_ARGS);
    262  1.10  riastrad static int	sysctl_entropy_gather(SYSCTLFN_ARGS);
    263   1.1  riastrad static void	filt_entropy_read_detach(struct knote *);
    264   1.1  riastrad static int	filt_entropy_read_event(struct knote *, long);
    265  1.49  riastrad static int	entropy_request(size_t, int);
    266   1.1  riastrad static void	rnd_add_data_1(struct krndsource *, const void *, uint32_t,
    267  1.28  riastrad 		    uint32_t, uint32_t);
    268   1.1  riastrad static unsigned	rndsource_entropybits(struct krndsource *);
    269   1.1  riastrad static void	rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
    270   1.1  riastrad static void	rndsource_to_user(struct krndsource *, rndsource_t *);
    271   1.1  riastrad static void	rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
    272  1.28  riastrad static void	rndsource_to_user_est_cpu(void *, void *, struct cpu_info *);
    273   1.1  riastrad 
    274   1.1  riastrad /*
    275   1.1  riastrad  * entropy_timer()
    276   1.1  riastrad  *
    277   1.1  riastrad  *	Cycle counter, time counter, or anything that changes a wee bit
    278   1.1  riastrad  *	unpredictably.
    279   1.1  riastrad  */
    280   1.1  riastrad static inline uint32_t
    281   1.1  riastrad entropy_timer(void)
    282   1.1  riastrad {
    283   1.1  riastrad 	struct bintime bt;
    284   1.1  riastrad 	uint32_t v;
    285   1.1  riastrad 
    286   1.1  riastrad 	/* If we have a CPU cycle counter, use the low 32 bits.  */
    287   1.1  riastrad #ifdef __HAVE_CPU_COUNTER
    288   1.1  riastrad 	if (__predict_true(cpu_hascounter()))
    289   1.1  riastrad 		return cpu_counter32();
    290   1.1  riastrad #endif	/* __HAVE_CPU_COUNTER */
    291   1.1  riastrad 
    292   1.1  riastrad 	/* If we're cold, tough.  Can't binuptime while cold.  */
    293   1.1  riastrad 	if (__predict_false(cold))
    294   1.1  riastrad 		return 0;
    295   1.1  riastrad 
    296   1.1  riastrad 	/* Fold the 128 bits of binuptime into 32 bits.  */
    297   1.1  riastrad 	binuptime(&bt);
    298   1.1  riastrad 	v = bt.frac;
    299   1.1  riastrad 	v ^= bt.frac >> 32;
    300   1.1  riastrad 	v ^= bt.sec;
    301   1.1  riastrad 	v ^= bt.sec >> 32;
    302   1.1  riastrad 	return v;
    303   1.1  riastrad }
    304   1.1  riastrad 
    305   1.1  riastrad static void
    306   1.1  riastrad attach_seed_rndsource(void)
    307   1.1  riastrad {
    308   1.1  riastrad 
    309   1.1  riastrad 	/*
    310   1.1  riastrad 	 * First called no later than entropy_init, while we are still
    311   1.1  riastrad 	 * single-threaded, so no need for RUN_ONCE.
    312   1.1  riastrad 	 */
    313   1.1  riastrad 	if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
    314   1.1  riastrad 		return;
    315   1.1  riastrad 	rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
    316   1.1  riastrad 	    RND_FLAG_COLLECT_VALUE);
    317   1.1  riastrad 	E->seed_rndsource = true;
    318   1.1  riastrad }
    319   1.1  riastrad 
    320   1.1  riastrad /*
    321   1.1  riastrad  * entropy_init()
    322   1.1  riastrad  *
    323   1.1  riastrad  *	Initialize the entropy subsystem.  Panic on failure.
    324   1.1  riastrad  *
    325   1.1  riastrad  *	Requires percpu(9) and sysctl(9) to be initialized.
    326   1.1  riastrad  */
    327   1.1  riastrad static void
    328   1.1  riastrad entropy_init(void)
    329   1.1  riastrad {
    330   1.1  riastrad 	uint32_t extra[2];
    331   1.1  riastrad 	struct krndsource *rs;
    332   1.1  riastrad 	unsigned i = 0;
    333   1.1  riastrad 
    334   1.1  riastrad 	KASSERT(E->stage == ENTROPY_COLD);
    335   1.1  riastrad 
    336   1.1  riastrad 	/* Grab some cycle counts early at boot.  */
    337   1.1  riastrad 	extra[i++] = entropy_timer();
    338   1.1  riastrad 
    339   1.1  riastrad 	/* Run the entropy pool cryptography self-test.  */
    340   1.1  riastrad 	if (entpool_selftest() == -1)
    341   1.1  riastrad 		panic("entropy pool crypto self-test failed");
    342   1.1  riastrad 
    343   1.1  riastrad 	/* Create the sysctl directory.  */
    344   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
    345   1.1  riastrad 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
    346   1.1  riastrad 	    SYSCTL_DESCR("Entropy (random number sources) options"),
    347   1.1  riastrad 	    NULL, 0, NULL, 0,
    348   1.1  riastrad 	    CTL_KERN, CTL_CREATE, CTL_EOL);
    349   1.1  riastrad 
    350   1.1  riastrad 	/* Create the sysctl knobs.  */
    351   1.1  riastrad 	/* XXX These shouldn't be writable at securelevel>0.  */
    352   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    353   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
    354   1.1  riastrad 	    SYSCTL_DESCR("Automatically collect entropy from hardware"),
    355   1.1  riastrad 	    NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
    356   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    357   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
    358   1.1  riastrad 	    SYSCTL_DESCR("`Deplete' entropy pool when observed"),
    359   1.1  riastrad 	    NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
    360   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    361   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
    362   1.1  riastrad 	    SYSCTL_DESCR("Trigger entropy consolidation now"),
    363   1.1  riastrad 	    sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    364  1.10  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    365  1.10  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
    366  1.10  riastrad 	    SYSCTL_DESCR("Trigger entropy gathering from sources now"),
    367  1.10  riastrad 	    sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    368   1.1  riastrad 	/* XXX These should maybe not be readable at securelevel>0.  */
    369   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    370   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    371   1.1  riastrad 	    "needed", SYSCTL_DESCR("Systemwide entropy deficit"),
    372   1.1  riastrad 	    NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
    373   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    374   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    375   1.1  riastrad 	    "pending", SYSCTL_DESCR("Entropy pending on CPUs"),
    376   1.1  riastrad 	    NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
    377   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    378   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    379   1.1  riastrad 	    "epoch", SYSCTL_DESCR("Entropy epoch"),
    380   1.1  riastrad 	    NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
    381   1.1  riastrad 
    382   1.1  riastrad 	/* Initialize the global state for multithreaded operation.  */
    383  1.39  riastrad 	mutex_init(&E->lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
    384   1.1  riastrad 	cv_init(&E->cv, "entropy");
    385   1.1  riastrad 	selinit(&E->selq);
    386  1.27  riastrad 	cv_init(&E->sourcelock_cv, "entsrclock");
    387   1.1  riastrad 
    388   1.1  riastrad 	/* Make sure the seed source is attached.  */
    389   1.1  riastrad 	attach_seed_rndsource();
    390   1.1  riastrad 
    391   1.1  riastrad 	/* Note if the bootloader didn't provide a seed.  */
    392   1.1  riastrad 	if (!E->seeded)
    393  1.29  riastrad 		aprint_debug("entropy: no seed from bootloader\n");
    394   1.1  riastrad 
    395   1.1  riastrad 	/* Allocate the per-CPU records for all early entropy sources.  */
    396   1.1  riastrad 	LIST_FOREACH(rs, &E->sources, list)
    397   1.1  riastrad 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
    398   1.1  riastrad 
    399  1.36  riastrad 	/* Allocate and initialize the per-CPU state.  */
    400  1.36  riastrad 	entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
    401  1.36  riastrad 	    entropy_init_cpu, entropy_fini_cpu, NULL);
    402  1.36  riastrad 
    403   1.1  riastrad 	/* Enter the boot cycle count to get started.  */
    404   1.1  riastrad 	extra[i++] = entropy_timer();
    405   1.1  riastrad 	KASSERT(i == __arraycount(extra));
    406   1.1  riastrad 	entropy_enter(extra, sizeof extra, 0);
    407   1.1  riastrad 	explicit_memset(extra, 0, sizeof extra);
    408   1.1  riastrad 
    409   1.1  riastrad 	/* We are now ready for multi-threaded operation.  */
    410   1.1  riastrad 	E->stage = ENTROPY_WARM;
    411   1.1  riastrad }
    412   1.1  riastrad 
    413  1.37  riastrad static void
    414  1.37  riastrad entropy_init_late_cpu(void *a, void *b)
    415  1.37  riastrad {
    416  1.54  riastrad 	int bound;
    417  1.37  riastrad 
    418  1.54  riastrad 	/*
    419  1.54  riastrad 	 * We're not necessarily in a softint lwp here (xc_broadcast
    420  1.54  riastrad 	 * triggers softint on other CPUs, but calls directly on this
    421  1.54  riastrad 	 * CPU), so explicitly bind to the current CPU to invoke the
    422  1.54  riastrad 	 * softintr -- this lets us have a simpler assertion in
    423  1.54  riastrad 	 * entropy_account_cpu.  Not necessary to avoid migration
    424  1.54  riastrad 	 * because xc_broadcast disables kpreemption anyway, but it
    425  1.54  riastrad 	 * doesn't hurt.
    426  1.54  riastrad 	 */
    427  1.54  riastrad 	bound = curlwp_bind();
    428  1.37  riastrad 	entropy_softintr(NULL);
    429  1.54  riastrad 	curlwp_bindx(bound);
    430  1.37  riastrad }
    431  1.37  riastrad 
    432   1.1  riastrad /*
    433   1.1  riastrad  * entropy_init_late()
    434   1.1  riastrad  *
    435   1.1  riastrad  *	Late initialization.  Panic on failure.
    436   1.1  riastrad  *
    437   1.1  riastrad  *	Requires CPUs to have been detected and LWPs to have started.
    438   1.1  riastrad  */
    439   1.1  riastrad static void
    440   1.1  riastrad entropy_init_late(void)
    441   1.1  riastrad {
    442  1.37  riastrad 	void *sih;
    443   1.1  riastrad 	int error;
    444   1.1  riastrad 
    445   1.1  riastrad 	KASSERT(E->stage == ENTROPY_WARM);
    446   1.1  riastrad 
    447   1.1  riastrad 	/*
    448   1.1  riastrad 	 * Establish the softint at the highest softint priority level.
    449   1.1  riastrad 	 * Must happen after CPU detection.
    450   1.1  riastrad 	 */
    451  1.37  riastrad 	sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
    452   1.1  riastrad 	    &entropy_softintr, NULL);
    453  1.37  riastrad 	if (sih == NULL)
    454   1.1  riastrad 		panic("unable to establish entropy softint");
    455   1.1  riastrad 
    456   1.1  riastrad 	/*
    457   1.1  riastrad 	 * Create the entropy housekeeping thread.  Must happen after
    458   1.1  riastrad 	 * lwpinit.
    459   1.1  riastrad 	 */
    460   1.1  riastrad 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
    461   1.1  riastrad 	    entropy_thread, NULL, &entropy_lwp, "entbutler");
    462   1.1  riastrad 	if (error)
    463   1.1  riastrad 		panic("unable to create entropy housekeeping thread: %d",
    464   1.1  riastrad 		    error);
    465   1.1  riastrad 
    466   1.1  riastrad 	/*
    467   1.1  riastrad 	 * Wait until the per-CPU initialization has hit all CPUs
    468  1.37  riastrad 	 * before proceeding to mark the entropy system hot and
    469  1.37  riastrad 	 * enabling use of the softint.
    470   1.1  riastrad 	 */
    471   1.1  riastrad 	xc_barrier(XC_HIGHPRI);
    472   1.1  riastrad 	E->stage = ENTROPY_HOT;
    473  1.37  riastrad 	atomic_store_relaxed(&entropy_sih, sih);
    474  1.37  riastrad 
    475  1.37  riastrad 	/*
    476  1.37  riastrad 	 * At this point, entering new samples from interrupt handlers
    477  1.37  riastrad 	 * will trigger the softint to process them.  But there may be
    478  1.37  riastrad 	 * some samples that were entered from interrupt handlers
    479  1.37  riastrad 	 * before the softint was available.  Make sure we process
    480  1.37  riastrad 	 * those samples on all CPUs by running the softint logic on
    481  1.37  riastrad 	 * all CPUs.
    482  1.37  riastrad 	 */
    483  1.37  riastrad 	xc_wait(xc_broadcast(XC_HIGHPRI, entropy_init_late_cpu, NULL, NULL));
    484   1.1  riastrad }
    485   1.1  riastrad 
    486   1.1  riastrad /*
    487   1.1  riastrad  * entropy_init_cpu(ptr, cookie, ci)
    488   1.1  riastrad  *
    489   1.1  riastrad  *	percpu(9) constructor for per-CPU entropy pool.
    490   1.1  riastrad  */
    491   1.1  riastrad static void
    492   1.1  riastrad entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    493   1.1  riastrad {
    494   1.1  riastrad 	struct entropy_cpu *ec = ptr;
    495  1.40  riastrad 	const char *cpuname;
    496   1.1  riastrad 
    497  1.40  riastrad 	ec->ec_evcnt = kmem_alloc(sizeof(*ec->ec_evcnt), KM_SLEEP);
    498   1.1  riastrad 	ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
    499   1.1  riastrad 	ec->ec_pending = 0;
    500   1.1  riastrad 	ec->ec_locked = false;
    501   1.1  riastrad 
    502  1.36  riastrad 	/* XXX ci_cpuname may not be initialized early enough.  */
    503  1.40  riastrad 	cpuname = ci->ci_cpuname[0] == '\0' ? "cpu0" : ci->ci_cpuname;
    504  1.40  riastrad 	evcnt_attach_dynamic(&ec->ec_evcnt->softint, EVCNT_TYPE_MISC, NULL,
    505  1.40  riastrad 	    cpuname, "entropy softint");
    506  1.40  riastrad 	evcnt_attach_dynamic(&ec->ec_evcnt->intrdrop, EVCNT_TYPE_MISC, NULL,
    507  1.40  riastrad 	    cpuname, "entropy intrdrop");
    508  1.40  riastrad 	evcnt_attach_dynamic(&ec->ec_evcnt->intrtrunc, EVCNT_TYPE_MISC, NULL,
    509  1.40  riastrad 	    cpuname, "entropy intrtrunc");
    510   1.1  riastrad }
    511   1.1  riastrad 
    512   1.1  riastrad /*
    513   1.1  riastrad  * entropy_fini_cpu(ptr, cookie, ci)
    514   1.1  riastrad  *
    515   1.1  riastrad  *	percpu(9) destructor for per-CPU entropy pool.
    516   1.1  riastrad  */
    517   1.1  riastrad static void
    518   1.1  riastrad entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    519   1.1  riastrad {
    520   1.1  riastrad 	struct entropy_cpu *ec = ptr;
    521   1.1  riastrad 
    522   1.1  riastrad 	/*
    523   1.1  riastrad 	 * Zero any lingering data.  Disclosure of the per-CPU pool
    524   1.1  riastrad 	 * shouldn't retroactively affect the security of any keys
    525   1.1  riastrad 	 * generated, because entpool(9) erases whatever we have just
    526   1.1  riastrad 	 * drawn out of any pool, but better safe than sorry.
    527   1.1  riastrad 	 */
    528   1.1  riastrad 	explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
    529   1.1  riastrad 
    530  1.40  riastrad 	evcnt_detach(&ec->ec_evcnt->intrtrunc);
    531  1.40  riastrad 	evcnt_detach(&ec->ec_evcnt->intrdrop);
    532  1.40  riastrad 	evcnt_detach(&ec->ec_evcnt->softint);
    533   1.1  riastrad 
    534   1.1  riastrad 	kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
    535  1.40  riastrad 	kmem_free(ec->ec_evcnt, sizeof(*ec->ec_evcnt));
    536   1.1  riastrad }
    537   1.1  riastrad 
    538   1.1  riastrad /*
    539  1.43  riastrad  * ec = entropy_cpu_get(&lock)
    540  1.43  riastrad  * entropy_cpu_put(&lock, ec)
    541  1.43  riastrad  *
    542  1.43  riastrad  *	Lock and unlock the per-CPU entropy state.  This only prevents
    543  1.43  riastrad  *	access on the same CPU -- by hard interrupts, by soft
    544  1.43  riastrad  *	interrupts, or by other threads.
    545  1.43  riastrad  *
    546  1.43  riastrad  *	Blocks soft interrupts and preemption altogether; doesn't block
    547  1.43  riastrad  *	hard interrupts, but causes samples in hard interrupts to be
    548  1.43  riastrad  *	dropped.
    549  1.43  riastrad  */
    550  1.43  riastrad static struct entropy_cpu *
    551  1.43  riastrad entropy_cpu_get(struct entropy_cpu_lock *lock)
    552  1.43  riastrad {
    553  1.43  riastrad 	struct entropy_cpu *ec;
    554  1.43  riastrad 
    555  1.43  riastrad 	ec = percpu_getref(entropy_percpu);
    556  1.43  riastrad 	lock->ecl_s = splsoftserial();
    557  1.43  riastrad 	KASSERT(!ec->ec_locked);
    558  1.43  riastrad 	ec->ec_locked = true;
    559  1.43  riastrad 	lock->ecl_ncsw = curlwp->l_ncsw;
    560  1.43  riastrad 	__insn_barrier();
    561  1.43  riastrad 
    562  1.43  riastrad 	return ec;
    563  1.43  riastrad }
    564  1.43  riastrad 
    565  1.43  riastrad static void
    566  1.43  riastrad entropy_cpu_put(struct entropy_cpu_lock *lock, struct entropy_cpu *ec)
    567  1.43  riastrad {
    568  1.43  riastrad 
    569  1.43  riastrad 	KASSERT(ec == percpu_getptr_remote(entropy_percpu, curcpu()));
    570  1.43  riastrad 	KASSERT(ec->ec_locked);
    571  1.43  riastrad 
    572  1.43  riastrad 	__insn_barrier();
    573  1.43  riastrad 	KASSERT(lock->ecl_ncsw == curlwp->l_ncsw);
    574  1.43  riastrad 	ec->ec_locked = false;
    575  1.43  riastrad 	splx(lock->ecl_s);
    576  1.43  riastrad 	percpu_putref(entropy_percpu);
    577  1.43  riastrad }
    578  1.43  riastrad 
    579  1.43  riastrad /*
    580   1.1  riastrad  * entropy_seed(seed)
    581   1.1  riastrad  *
    582   1.1  riastrad  *	Seed the entropy pool with seed.  Meant to be called as early
    583   1.1  riastrad  *	as possible by the bootloader; may be called before or after
    584   1.1  riastrad  *	entropy_init.  Must be called before system reaches userland.
    585   1.1  riastrad  *	Must be called in thread or soft interrupt context, not in hard
    586   1.1  riastrad  *	interrupt context.  Must be called at most once.
    587   1.1  riastrad  *
    588   1.1  riastrad  *	Overwrites the seed in place.  Caller may then free the memory.
    589   1.1  riastrad  */
    590   1.1  riastrad static void
    591   1.1  riastrad entropy_seed(rndsave_t *seed)
    592   1.1  riastrad {
    593   1.1  riastrad 	SHA1_CTX ctx;
    594   1.1  riastrad 	uint8_t digest[SHA1_DIGEST_LENGTH];
    595   1.1  riastrad 	bool seeded;
    596   1.1  riastrad 
    597   1.1  riastrad 	/*
    598   1.1  riastrad 	 * Verify the checksum.  If the checksum fails, take the data
    599   1.1  riastrad 	 * but ignore the entropy estimate -- the file may have been
    600   1.1  riastrad 	 * incompletely written with garbage, which is harmless to add
    601   1.1  riastrad 	 * but may not be as unpredictable as alleged.
    602   1.1  riastrad 	 */
    603   1.1  riastrad 	SHA1Init(&ctx);
    604   1.1  riastrad 	SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
    605   1.1  riastrad 	SHA1Update(&ctx, seed->data, sizeof(seed->data));
    606   1.1  riastrad 	SHA1Final(digest, &ctx);
    607   1.1  riastrad 	CTASSERT(sizeof(seed->digest) == sizeof(digest));
    608   1.1  riastrad 	if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
    609   1.1  riastrad 		printf("entropy: invalid seed checksum\n");
    610   1.1  riastrad 		seed->entropy = 0;
    611   1.1  riastrad 	}
    612   1.2  riastrad 	explicit_memset(&ctx, 0, sizeof ctx);
    613   1.1  riastrad 	explicit_memset(digest, 0, sizeof digest);
    614   1.1  riastrad 
    615   1.2  riastrad 	/*
    616   1.2  riastrad 	 * If the entropy is insensibly large, try byte-swapping.
    617   1.2  riastrad 	 * Otherwise assume the file is corrupted and act as though it
    618   1.2  riastrad 	 * has zero entropy.
    619   1.2  riastrad 	 */
    620   1.2  riastrad 	if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
    621   1.2  riastrad 		seed->entropy = bswap32(seed->entropy);
    622   1.2  riastrad 		if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
    623   1.2  riastrad 			seed->entropy = 0;
    624   1.2  riastrad 	}
    625   1.2  riastrad 
    626   1.1  riastrad 	/* Make sure the seed source is attached.  */
    627   1.1  riastrad 	attach_seed_rndsource();
    628   1.1  riastrad 
    629   1.1  riastrad 	/* Test and set E->seeded.  */
    630   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
    631   1.1  riastrad 		mutex_enter(&E->lock);
    632   1.1  riastrad 	seeded = E->seeded;
    633  1.11  riastrad 	E->seeded = (seed->entropy > 0);
    634   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
    635   1.1  riastrad 		mutex_exit(&E->lock);
    636   1.1  riastrad 
    637   1.1  riastrad 	/*
    638   1.1  riastrad 	 * If we've been seeded, may be re-entering the same seed
    639   1.1  riastrad 	 * (e.g., bootloader vs module init, or something).  No harm in
    640   1.1  riastrad 	 * entering it twice, but it contributes no additional entropy.
    641   1.1  riastrad 	 */
    642   1.1  riastrad 	if (seeded) {
    643   1.1  riastrad 		printf("entropy: double-seeded by bootloader\n");
    644   1.1  riastrad 		seed->entropy = 0;
    645   1.1  riastrad 	} else {
    646  1.11  riastrad 		printf("entropy: entering seed from bootloader"
    647  1.11  riastrad 		    " with %u bits of entropy\n", (unsigned)seed->entropy);
    648   1.1  riastrad 	}
    649   1.1  riastrad 
    650   1.1  riastrad 	/* Enter it into the pool and promptly zero it.  */
    651   1.1  riastrad 	rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
    652   1.1  riastrad 	    seed->entropy);
    653   1.1  riastrad 	explicit_memset(seed, 0, sizeof(*seed));
    654   1.1  riastrad }
    655   1.1  riastrad 
    656   1.1  riastrad /*
    657   1.1  riastrad  * entropy_bootrequest()
    658   1.1  riastrad  *
    659   1.1  riastrad  *	Request entropy from all sources at boot, once config is
    660   1.1  riastrad  *	complete and interrupts are running.
    661   1.1  riastrad  */
    662   1.1  riastrad void
    663   1.1  riastrad entropy_bootrequest(void)
    664   1.1  riastrad {
    665  1.49  riastrad 	int error;
    666   1.1  riastrad 
    667   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
    668   1.1  riastrad 
    669   1.1  riastrad 	/*
    670   1.1  riastrad 	 * Request enough to satisfy the maximum entropy shortage.
    671   1.1  riastrad 	 * This is harmless overkill if the bootloader provided a seed.
    672   1.1  riastrad 	 */
    673   1.1  riastrad 	mutex_enter(&E->lock);
    674  1.49  riastrad 	error = entropy_request(ENTROPY_CAPACITY, ENTROPY_WAIT);
    675  1.49  riastrad 	KASSERT(error == 0);
    676   1.1  riastrad 	mutex_exit(&E->lock);
    677   1.1  riastrad }
    678   1.1  riastrad 
    679   1.1  riastrad /*
    680   1.1  riastrad  * entropy_epoch()
    681   1.1  riastrad  *
    682   1.1  riastrad  *	Returns the current entropy epoch.  If this changes, you should
    683  1.14  riastrad  *	reseed.  If -1, means system entropy has not yet reached full
    684  1.14  riastrad  *	entropy or been explicitly consolidated; never reverts back to
    685  1.14  riastrad  *	-1.  Never zero, so you can always use zero as an uninitialized
    686  1.14  riastrad  *	sentinel value meaning `reseed ASAP'.
    687   1.1  riastrad  *
    688   1.1  riastrad  *	Usage model:
    689   1.1  riastrad  *
    690   1.1  riastrad  *		struct foo {
    691   1.1  riastrad  *			struct crypto_prng prng;
    692   1.1  riastrad  *			unsigned epoch;
    693   1.1  riastrad  *		} *foo;
    694   1.1  riastrad  *
    695   1.1  riastrad  *		unsigned epoch = entropy_epoch();
    696   1.1  riastrad  *		if (__predict_false(epoch != foo->epoch)) {
    697   1.1  riastrad  *			uint8_t seed[32];
    698   1.1  riastrad  *			if (entropy_extract(seed, sizeof seed, 0) != 0)
    699   1.1  riastrad  *				warn("no entropy");
    700   1.1  riastrad  *			crypto_prng_reseed(&foo->prng, seed, sizeof seed);
    701   1.1  riastrad  *			foo->epoch = epoch;
    702   1.1  riastrad  *		}
    703   1.1  riastrad  */
    704   1.1  riastrad unsigned
    705   1.1  riastrad entropy_epoch(void)
    706   1.1  riastrad {
    707   1.1  riastrad 
    708   1.1  riastrad 	/*
    709   1.1  riastrad 	 * Unsigned int, so no need for seqlock for an atomic read, but
    710   1.1  riastrad 	 * make sure we read it afresh each time.
    711   1.1  riastrad 	 */
    712   1.1  riastrad 	return atomic_load_relaxed(&E->epoch);
    713   1.1  riastrad }
    714   1.1  riastrad 
    715   1.1  riastrad /*
    716  1.23  riastrad  * entropy_ready()
    717  1.23  riastrad  *
    718  1.23  riastrad  *	True if the entropy pool has full entropy.
    719  1.23  riastrad  */
    720  1.23  riastrad bool
    721  1.23  riastrad entropy_ready(void)
    722  1.23  riastrad {
    723  1.23  riastrad 
    724  1.23  riastrad 	return atomic_load_relaxed(&E->needed) == 0;
    725  1.23  riastrad }
    726  1.23  riastrad 
    727  1.23  riastrad /*
    728   1.1  riastrad  * entropy_account_cpu(ec)
    729   1.1  riastrad  *
    730   1.1  riastrad  *	Consider whether to consolidate entropy into the global pool
    731   1.1  riastrad  *	after we just added some into the current CPU's pending pool.
    732   1.1  riastrad  *
    733   1.1  riastrad  *	- If this CPU can provide enough entropy now, do so.
    734   1.1  riastrad  *
    735   1.1  riastrad  *	- If this and whatever else is available on other CPUs can
    736   1.1  riastrad  *	  provide enough entropy, kick the consolidation thread.
    737   1.1  riastrad  *
    738   1.1  riastrad  *	- Otherwise, do as little as possible, except maybe consolidate
    739   1.1  riastrad  *	  entropy at most once a minute.
    740   1.1  riastrad  *
    741   1.1  riastrad  *	Caller must be bound to a CPU and therefore have exclusive
    742   1.1  riastrad  *	access to ec.  Will acquire and release the global lock.
    743   1.1  riastrad  */
    744   1.1  riastrad static void
    745   1.1  riastrad entropy_account_cpu(struct entropy_cpu *ec)
    746   1.1  riastrad {
    747  1.44  riastrad 	struct entropy_cpu_lock lock;
    748  1.44  riastrad 	struct entropy_cpu *ec0;
    749   1.1  riastrad 	unsigned diff;
    750   1.1  riastrad 
    751  1.37  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
    752  1.52  riastrad 	KASSERT(curlwp->l_pflag & LP_BOUND);
    753   1.1  riastrad 
    754   1.1  riastrad 	/*
    755   1.1  riastrad 	 * If there's no entropy needed, and entropy has been
    756   1.1  riastrad 	 * consolidated in the last minute, do nothing.
    757   1.1  riastrad 	 */
    758   1.1  riastrad 	if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
    759   1.1  riastrad 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
    760   1.1  riastrad 	    __predict_true((time_uptime - E->timestamp) <= 60))
    761   1.1  riastrad 		return;
    762   1.1  riastrad 
    763  1.44  riastrad 	/*
    764  1.44  riastrad 	 * Consider consolidation, under the global lock and with the
    765  1.44  riastrad 	 * per-CPU state locked.
    766  1.44  riastrad 	 */
    767   1.1  riastrad 	mutex_enter(&E->lock);
    768  1.44  riastrad 	ec0 = entropy_cpu_get(&lock);
    769  1.44  riastrad 	KASSERT(ec0 == ec);
    770  1.46  riastrad 	if (ec->ec_pending == 0) {
    771  1.46  riastrad 		/* Raced with consolidation xcall.  Nothing to do.  */
    772  1.46  riastrad 	} else if (E->needed != 0 && E->needed <= ec->ec_pending) {
    773   1.1  riastrad 		/*
    774   1.1  riastrad 		 * If we have not yet attained full entropy but we can
    775   1.1  riastrad 		 * now, do so.  This way we disseminate entropy
    776   1.1  riastrad 		 * promptly when it becomes available early at boot;
    777   1.1  riastrad 		 * otherwise we leave it to the entropy consolidation
    778   1.1  riastrad 		 * thread, which is rate-limited to mitigate side
    779   1.1  riastrad 		 * channels and abuse.
    780   1.1  riastrad 		 */
    781   1.1  riastrad 		uint8_t buf[ENTPOOL_CAPACITY];
    782   1.1  riastrad 
    783   1.1  riastrad 		/* Transfer from the local pool to the global pool.  */
    784   1.1  riastrad 		entpool_extract(ec->ec_pool, buf, sizeof buf);
    785   1.1  riastrad 		entpool_enter(&E->pool, buf, sizeof buf);
    786   1.1  riastrad 		atomic_store_relaxed(&ec->ec_pending, 0);
    787   1.1  riastrad 		atomic_store_relaxed(&E->needed, 0);
    788   1.1  riastrad 
    789   1.1  riastrad 		/* Notify waiters that we now have full entropy.  */
    790   1.1  riastrad 		entropy_notify();
    791   1.1  riastrad 		entropy_immediate_evcnt.ev_count++;
    792  1.18  riastrad 	} else {
    793  1.45  riastrad 		/* Determine how much we can add to the global pool.  */
    794  1.45  riastrad 		KASSERTMSG(E->pending <= ENTROPY_CAPACITY*NBBY,
    795  1.45  riastrad 		    "E->pending=%u", E->pending);
    796   1.1  riastrad 		diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
    797   1.1  riastrad 
    798   1.1  riastrad 		/*
    799  1.45  riastrad 		 * This should make a difference unless we are already
    800  1.45  riastrad 		 * saturated.
    801   1.1  riastrad 		 */
    802  1.45  riastrad 		KASSERTMSG(diff || E->pending == ENTROPY_CAPACITY*NBBY,
    803  1.45  riastrad 		    "diff=%u E->pending=%u ec->ec_pending=%u cap=%u",
    804  1.45  riastrad 		    diff, E->pending, ec->ec_pending,
    805  1.45  riastrad 		    (unsigned)ENTROPY_CAPACITY*NBBY);
    806  1.45  riastrad 
    807  1.45  riastrad 		/* Add to the global, subtract from the local.  */
    808  1.45  riastrad 		E->pending += diff;
    809   1.1  riastrad 		KASSERT(E->pending);
    810  1.45  riastrad 		KASSERTMSG(E->pending <= ENTROPY_CAPACITY*NBBY,
    811  1.45  riastrad 		    "E->pending=%u", E->pending);
    812  1.45  riastrad 		atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
    813   1.1  riastrad 
    814   1.1  riastrad 		if (E->needed <= E->pending) {
    815   1.1  riastrad 			/*
    816   1.1  riastrad 			 * Enough entropy between all the per-CPU
    817   1.1  riastrad 			 * pools.  Wake up the housekeeping thread.
    818   1.1  riastrad 			 *
    819   1.1  riastrad 			 * If we don't need any entropy, this doesn't
    820   1.1  riastrad 			 * mean much, but it is the only time we ever
    821   1.1  riastrad 			 * gather additional entropy in case the
    822   1.1  riastrad 			 * accounting has been overly optimistic.  This
    823   1.1  riastrad 			 * happens at most once a minute, so there's
    824   1.1  riastrad 			 * negligible performance cost.
    825   1.1  riastrad 			 */
    826   1.1  riastrad 			E->consolidate = true;
    827   1.1  riastrad 			cv_broadcast(&E->cv);
    828   1.1  riastrad 			if (E->needed == 0)
    829   1.1  riastrad 				entropy_discretionary_evcnt.ev_count++;
    830   1.1  riastrad 		} else {
    831   1.1  riastrad 			/* Can't get full entropy.  Keep gathering.  */
    832   1.1  riastrad 			entropy_partial_evcnt.ev_count++;
    833   1.1  riastrad 		}
    834   1.1  riastrad 	}
    835  1.44  riastrad 	entropy_cpu_put(&lock, ec);
    836   1.1  riastrad 	mutex_exit(&E->lock);
    837   1.1  riastrad }
    838   1.1  riastrad 
    839   1.1  riastrad /*
    840   1.1  riastrad  * entropy_enter_early(buf, len, nbits)
    841   1.1  riastrad  *
    842   1.1  riastrad  *	Do entropy bookkeeping globally, before we have established
    843   1.1  riastrad  *	per-CPU pools.  Enter directly into the global pool in the hope
    844   1.1  riastrad  *	that we enter enough before the first entropy_extract to thwart
    845   1.1  riastrad  *	iterative-guessing attacks; entropy_extract will warn if not.
    846   1.1  riastrad  */
    847   1.1  riastrad static void
    848   1.1  riastrad entropy_enter_early(const void *buf, size_t len, unsigned nbits)
    849   1.1  riastrad {
    850   1.1  riastrad 	bool notify = false;
    851   1.1  riastrad 
    852  1.37  riastrad 	KASSERT(E->stage == ENTROPY_COLD);
    853   1.1  riastrad 
    854   1.1  riastrad 	/* Enter it into the pool.  */
    855   1.1  riastrad 	entpool_enter(&E->pool, buf, len);
    856   1.1  riastrad 
    857   1.1  riastrad 	/*
    858   1.1  riastrad 	 * Decide whether to notify reseed -- we will do so if either:
    859   1.1  riastrad 	 * (a) we transition from partial entropy to full entropy, or
    860   1.1  riastrad 	 * (b) we get a batch of full entropy all at once.
    861   1.1  riastrad 	 */
    862   1.1  riastrad 	notify |= (E->needed && E->needed <= nbits);
    863   1.1  riastrad 	notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
    864   1.1  riastrad 
    865   1.1  riastrad 	/* Subtract from the needed count and notify if appropriate.  */
    866   1.1  riastrad 	E->needed -= MIN(E->needed, nbits);
    867   1.1  riastrad 	if (notify) {
    868   1.1  riastrad 		entropy_notify();
    869   1.1  riastrad 		entropy_immediate_evcnt.ev_count++;
    870   1.1  riastrad 	}
    871   1.1  riastrad }
    872   1.1  riastrad 
    873   1.1  riastrad /*
    874   1.1  riastrad  * entropy_enter(buf, len, nbits)
    875   1.1  riastrad  *
    876   1.1  riastrad  *	Enter len bytes of data from buf into the system's entropy
    877   1.1  riastrad  *	pool, stirring as necessary when the internal buffer fills up.
    878   1.1  riastrad  *	nbits is a lower bound on the number of bits of entropy in the
    879   1.1  riastrad  *	process that led to this sample.
    880   1.1  riastrad  */
    881   1.1  riastrad static void
    882   1.1  riastrad entropy_enter(const void *buf, size_t len, unsigned nbits)
    883   1.1  riastrad {
    884  1.43  riastrad 	struct entropy_cpu_lock lock;
    885   1.1  riastrad 	struct entropy_cpu *ec;
    886  1.42  riastrad 	unsigned pending;
    887  1.52  riastrad 	int bound;
    888   1.1  riastrad 
    889  1.16  riastrad 	KASSERTMSG(!cpu_intr_p(),
    890   1.1  riastrad 	    "use entropy_enter_intr from interrupt context");
    891   1.1  riastrad 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    892   1.1  riastrad 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    893   1.1  riastrad 
    894   1.1  riastrad 	/* If it's too early after boot, just use entropy_enter_early.  */
    895  1.37  riastrad 	if (__predict_false(E->stage == ENTROPY_COLD)) {
    896   1.1  riastrad 		entropy_enter_early(buf, len, nbits);
    897   1.1  riastrad 		return;
    898   1.1  riastrad 	}
    899   1.1  riastrad 
    900   1.1  riastrad 	/*
    901  1.52  riastrad 	 * Bind ourselves to the current CPU so we don't switch CPUs
    902  1.52  riastrad 	 * between entering data into the current CPU's pool (and
    903  1.52  riastrad 	 * updating the pending count) and transferring it to the
    904  1.52  riastrad 	 * global pool in entropy_account_cpu.
    905  1.52  riastrad 	 */
    906  1.52  riastrad 	bound = curlwp_bind();
    907  1.52  riastrad 
    908  1.52  riastrad 	/*
    909  1.43  riastrad 	 * With the per-CPU state locked, enter into the per-CPU pool
    910  1.43  riastrad 	 * and count up what we can add.
    911   1.1  riastrad 	 */
    912  1.43  riastrad 	ec = entropy_cpu_get(&lock);
    913   1.1  riastrad 	entpool_enter(ec->ec_pool, buf, len);
    914   1.1  riastrad 	pending = ec->ec_pending;
    915   1.1  riastrad 	pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
    916   1.1  riastrad 	atomic_store_relaxed(&ec->ec_pending, pending);
    917  1.43  riastrad 	entropy_cpu_put(&lock, ec);
    918  1.42  riastrad 
    919  1.42  riastrad 	/* Consolidate globally if appropriate based on what we added.  */
    920  1.42  riastrad 	if (pending)
    921  1.42  riastrad 		entropy_account_cpu(ec);
    922  1.52  riastrad 
    923  1.52  riastrad 	curlwp_bindx(bound);
    924   1.1  riastrad }
    925   1.1  riastrad 
    926   1.1  riastrad /*
    927   1.1  riastrad  * entropy_enter_intr(buf, len, nbits)
    928   1.1  riastrad  *
    929   1.1  riastrad  *	Enter up to len bytes of data from buf into the system's
    930   1.1  riastrad  *	entropy pool without stirring.  nbits is a lower bound on the
    931   1.1  riastrad  *	number of bits of entropy in the process that led to this
    932   1.1  riastrad  *	sample.  If the sample could be entered completely, assume
    933   1.1  riastrad  *	nbits of entropy pending; otherwise assume none, since we don't
    934   1.1  riastrad  *	know whether some parts of the sample are constant, for
    935   1.1  riastrad  *	instance.  Schedule a softint to stir the entropy pool if
    936   1.1  riastrad  *	needed.  Return true if used fully, false if truncated at all.
    937   1.1  riastrad  *
    938   1.1  riastrad  *	Using this in thread context will work, but you might as well
    939   1.1  riastrad  *	use entropy_enter in that case.
    940   1.1  riastrad  */
    941   1.1  riastrad static bool
    942   1.1  riastrad entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
    943   1.1  riastrad {
    944   1.1  riastrad 	struct entropy_cpu *ec;
    945   1.1  riastrad 	bool fullyused = false;
    946   1.1  riastrad 	uint32_t pending;
    947  1.37  riastrad 	void *sih;
    948   1.1  riastrad 
    949  1.45  riastrad 	KASSERT(cpu_intr_p());
    950   1.1  riastrad 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    951   1.1  riastrad 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    952   1.1  riastrad 
    953   1.1  riastrad 	/* If it's too early after boot, just use entropy_enter_early.  */
    954  1.37  riastrad 	if (__predict_false(E->stage == ENTROPY_COLD)) {
    955   1.1  riastrad 		entropy_enter_early(buf, len, nbits);
    956   1.1  riastrad 		return true;
    957   1.1  riastrad 	}
    958   1.1  riastrad 
    959   1.1  riastrad 	/*
    960   1.1  riastrad 	 * Acquire the per-CPU state.  If someone is in the middle of
    961   1.1  riastrad 	 * using it, drop the sample.  Otherwise, take the lock so that
    962   1.1  riastrad 	 * higher-priority interrupts will drop their samples.
    963   1.1  riastrad 	 */
    964   1.1  riastrad 	ec = percpu_getref(entropy_percpu);
    965  1.40  riastrad 	if (ec->ec_locked) {
    966  1.40  riastrad 		ec->ec_evcnt->intrdrop.ev_count++;
    967   1.1  riastrad 		goto out0;
    968  1.40  riastrad 	}
    969   1.1  riastrad 	ec->ec_locked = true;
    970   1.1  riastrad 	__insn_barrier();
    971   1.1  riastrad 
    972   1.1  riastrad 	/*
    973   1.1  riastrad 	 * Enter as much as we can into the per-CPU pool.  If it was
    974   1.1  riastrad 	 * truncated, schedule a softint to stir the pool and stop.
    975   1.1  riastrad 	 */
    976   1.1  riastrad 	if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
    977  1.37  riastrad 		sih = atomic_load_relaxed(&entropy_sih);
    978  1.37  riastrad 		if (__predict_true(sih != NULL))
    979  1.37  riastrad 			softint_schedule(sih);
    980  1.40  riastrad 		ec->ec_evcnt->intrtrunc.ev_count++;
    981   1.1  riastrad 		goto out1;
    982   1.1  riastrad 	}
    983   1.1  riastrad 	fullyused = true;
    984   1.1  riastrad 
    985   1.1  riastrad 	/* Count up what we can contribute.  */
    986   1.1  riastrad 	pending = ec->ec_pending;
    987   1.1  riastrad 	pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
    988   1.1  riastrad 	atomic_store_relaxed(&ec->ec_pending, pending);
    989   1.1  riastrad 
    990   1.1  riastrad 	/* Schedule a softint if we added anything and it matters.  */
    991   1.1  riastrad 	if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
    992   1.1  riastrad 		atomic_load_relaxed(&entropy_depletion)) &&
    993  1.37  riastrad 	    nbits != 0) {
    994  1.37  riastrad 		sih = atomic_load_relaxed(&entropy_sih);
    995  1.37  riastrad 		if (__predict_true(sih != NULL))
    996  1.37  riastrad 			softint_schedule(sih);
    997  1.37  riastrad 	}
    998   1.1  riastrad 
    999   1.1  riastrad out1:	/* Release the per-CPU state.  */
   1000   1.1  riastrad 	KASSERT(ec->ec_locked);
   1001   1.1  riastrad 	__insn_barrier();
   1002   1.1  riastrad 	ec->ec_locked = false;
   1003   1.1  riastrad out0:	percpu_putref(entropy_percpu);
   1004   1.1  riastrad 
   1005   1.1  riastrad 	return fullyused;
   1006   1.1  riastrad }
   1007   1.1  riastrad 
   1008   1.1  riastrad /*
   1009   1.1  riastrad  * entropy_softintr(cookie)
   1010   1.1  riastrad  *
   1011   1.1  riastrad  *	Soft interrupt handler for entering entropy.  Takes care of
   1012   1.1  riastrad  *	stirring the local CPU's entropy pool if it filled up during
   1013   1.1  riastrad  *	hard interrupts, and promptly crediting entropy from the local
   1014   1.1  riastrad  *	CPU's entropy pool to the global entropy pool if needed.
   1015   1.1  riastrad  */
   1016   1.1  riastrad static void
   1017   1.1  riastrad entropy_softintr(void *cookie)
   1018   1.1  riastrad {
   1019  1.43  riastrad 	struct entropy_cpu_lock lock;
   1020   1.1  riastrad 	struct entropy_cpu *ec;
   1021  1.42  riastrad 	unsigned pending;
   1022   1.1  riastrad 
   1023   1.1  riastrad 	/*
   1024  1.43  riastrad 	 * With the per-CPU state locked, stir the pool if necessary
   1025  1.43  riastrad 	 * and determine if there's any pending entropy on this CPU to
   1026  1.43  riastrad 	 * account globally.
   1027   1.1  riastrad 	 */
   1028  1.43  riastrad 	ec = entropy_cpu_get(&lock);
   1029  1.40  riastrad 	ec->ec_evcnt->softint.ev_count++;
   1030   1.1  riastrad 	entpool_stir(ec->ec_pool);
   1031  1.42  riastrad 	pending = ec->ec_pending;
   1032  1.43  riastrad 	entropy_cpu_put(&lock, ec);
   1033  1.42  riastrad 
   1034  1.42  riastrad 	/* Consolidate globally if appropriate based on what we added.  */
   1035  1.42  riastrad 	if (pending)
   1036  1.42  riastrad 		entropy_account_cpu(ec);
   1037   1.1  riastrad }
   1038   1.1  riastrad 
   1039   1.1  riastrad /*
   1040   1.1  riastrad  * entropy_thread(cookie)
   1041   1.1  riastrad  *
   1042   1.1  riastrad  *	Handle any asynchronous entropy housekeeping.
   1043   1.1  riastrad  */
   1044   1.1  riastrad static void
   1045   1.1  riastrad entropy_thread(void *cookie)
   1046   1.1  riastrad {
   1047   1.3  riastrad 	bool consolidate;
   1048   1.1  riastrad 
   1049   1.1  riastrad 	for (;;) {
   1050   1.1  riastrad 		/*
   1051   1.3  riastrad 		 * Wait until there's full entropy somewhere among the
   1052   1.3  riastrad 		 * CPUs, as confirmed at most once per minute, or
   1053   1.3  riastrad 		 * someone wants to consolidate.
   1054   1.1  riastrad 		 */
   1055   1.3  riastrad 		if (entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
   1056   1.3  riastrad 			consolidate = true;
   1057   1.3  riastrad 		} else {
   1058   1.3  riastrad 			mutex_enter(&E->lock);
   1059   1.3  riastrad 			if (!E->consolidate)
   1060   1.3  riastrad 				cv_timedwait(&E->cv, &E->lock, 60*hz);
   1061   1.3  riastrad 			consolidate = E->consolidate;
   1062   1.3  riastrad 			E->consolidate = false;
   1063   1.3  riastrad 			mutex_exit(&E->lock);
   1064   1.1  riastrad 		}
   1065   1.1  riastrad 
   1066   1.3  riastrad 		if (consolidate) {
   1067   1.3  riastrad 			/* Do it.  */
   1068  1.13  riastrad 			entropy_do_consolidate();
   1069   1.1  riastrad 
   1070   1.3  riastrad 			/* Mitigate abuse.  */
   1071   1.3  riastrad 			kpause("entropy", false, hz, NULL);
   1072   1.3  riastrad 		}
   1073   1.1  riastrad 	}
   1074   1.1  riastrad }
   1075   1.1  riastrad 
   1076   1.1  riastrad /*
   1077   1.1  riastrad  * entropy_pending()
   1078   1.1  riastrad  *
   1079   1.1  riastrad  *	Count up the amount of entropy pending on other CPUs.
   1080   1.1  riastrad  */
   1081   1.1  riastrad static uint32_t
   1082   1.1  riastrad entropy_pending(void)
   1083   1.1  riastrad {
   1084   1.1  riastrad 	uint32_t pending = 0;
   1085   1.1  riastrad 
   1086   1.1  riastrad 	percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
   1087   1.1  riastrad 	return pending;
   1088   1.1  riastrad }
   1089   1.1  riastrad 
   1090   1.1  riastrad static void
   1091   1.1  riastrad entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   1092   1.1  riastrad {
   1093   1.1  riastrad 	struct entropy_cpu *ec = ptr;
   1094   1.1  riastrad 	uint32_t *pendingp = cookie;
   1095   1.1  riastrad 	uint32_t cpu_pending;
   1096   1.1  riastrad 
   1097   1.1  riastrad 	cpu_pending = atomic_load_relaxed(&ec->ec_pending);
   1098   1.1  riastrad 	*pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
   1099   1.1  riastrad }
   1100   1.1  riastrad 
   1101   1.1  riastrad /*
   1102  1.13  riastrad  * entropy_do_consolidate()
   1103   1.1  riastrad  *
   1104   1.1  riastrad  *	Issue a cross-call to gather entropy on all CPUs and advance
   1105   1.1  riastrad  *	the entropy epoch.
   1106   1.1  riastrad  */
   1107   1.1  riastrad static void
   1108  1.13  riastrad entropy_do_consolidate(void)
   1109   1.1  riastrad {
   1110   1.1  riastrad 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1111   1.1  riastrad 	static struct timeval lasttime; /* serialized by E->lock */
   1112  1.19  riastrad 	struct entpool pool;
   1113  1.19  riastrad 	uint8_t buf[ENTPOOL_CAPACITY];
   1114   1.1  riastrad 	unsigned diff;
   1115   1.1  riastrad 	uint64_t ticket;
   1116   1.1  riastrad 
   1117  1.19  riastrad 	/* Gather entropy on all CPUs into a temporary pool.  */
   1118  1.19  riastrad 	memset(&pool, 0, sizeof pool);
   1119  1.19  riastrad 	ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
   1120   1.1  riastrad 	xc_wait(ticket);
   1121   1.1  riastrad 
   1122   1.1  riastrad 	/* Acquire the lock to notify waiters.  */
   1123   1.1  riastrad 	mutex_enter(&E->lock);
   1124   1.1  riastrad 
   1125   1.1  riastrad 	/* Count another consolidation.  */
   1126   1.1  riastrad 	entropy_consolidate_evcnt.ev_count++;
   1127   1.1  riastrad 
   1128   1.1  riastrad 	/* Note when we last consolidated, i.e. now.  */
   1129   1.1  riastrad 	E->timestamp = time_uptime;
   1130   1.1  riastrad 
   1131  1.19  riastrad 	/* Mix what we gathered into the global pool.  */
   1132  1.19  riastrad 	entpool_extract(&pool, buf, sizeof buf);
   1133  1.19  riastrad 	entpool_enter(&E->pool, buf, sizeof buf);
   1134  1.19  riastrad 	explicit_memset(&pool, 0, sizeof pool);
   1135  1.19  riastrad 
   1136   1.1  riastrad 	/* Count the entropy that was gathered.  */
   1137   1.1  riastrad 	diff = MIN(E->needed, E->pending);
   1138   1.1  riastrad 	atomic_store_relaxed(&E->needed, E->needed - diff);
   1139   1.1  riastrad 	E->pending -= diff;
   1140   1.1  riastrad 	if (__predict_false(E->needed > 0)) {
   1141  1.50  riastrad 		if ((boothowto & AB_DEBUG) != 0 &&
   1142  1.50  riastrad 		    ratecheck(&lasttime, &interval)) {
   1143  1.50  riastrad 			printf("WARNING:"
   1144   1.1  riastrad 			    " consolidating less than full entropy\n");
   1145  1.30  jmcneill 		}
   1146   1.1  riastrad 	}
   1147   1.1  riastrad 
   1148   1.1  riastrad 	/* Advance the epoch and notify waiters.  */
   1149   1.1  riastrad 	entropy_notify();
   1150   1.1  riastrad 
   1151   1.1  riastrad 	/* Release the lock.  */
   1152   1.1  riastrad 	mutex_exit(&E->lock);
   1153   1.1  riastrad }
   1154   1.1  riastrad 
   1155   1.1  riastrad /*
   1156  1.20  riastrad  * entropy_consolidate_xc(vpool, arg2)
   1157   1.1  riastrad  *
   1158   1.1  riastrad  *	Extract output from the local CPU's input pool and enter it
   1159  1.20  riastrad  *	into a temporary pool passed as vpool.
   1160   1.1  riastrad  */
   1161   1.1  riastrad static void
   1162  1.19  riastrad entropy_consolidate_xc(void *vpool, void *arg2 __unused)
   1163   1.1  riastrad {
   1164  1.19  riastrad 	struct entpool *pool = vpool;
   1165  1.43  riastrad 	struct entropy_cpu_lock lock;
   1166   1.1  riastrad 	struct entropy_cpu *ec;
   1167   1.1  riastrad 	uint8_t buf[ENTPOOL_CAPACITY];
   1168   1.1  riastrad 	uint32_t extra[7];
   1169   1.1  riastrad 	unsigned i = 0;
   1170   1.1  riastrad 
   1171   1.1  riastrad 	/* Grab CPU number and cycle counter to mix extra into the pool.  */
   1172   1.1  riastrad 	extra[i++] = cpu_number();
   1173   1.1  riastrad 	extra[i++] = entropy_timer();
   1174   1.1  riastrad 
   1175   1.1  riastrad 	/*
   1176  1.43  riastrad 	 * With the per-CPU state locked, extract from the per-CPU pool
   1177  1.43  riastrad 	 * and count it as no longer pending.
   1178   1.1  riastrad 	 */
   1179  1.43  riastrad 	ec = entropy_cpu_get(&lock);
   1180   1.1  riastrad 	extra[i++] = entropy_timer();
   1181   1.1  riastrad 	entpool_extract(ec->ec_pool, buf, sizeof buf);
   1182  1.12  riastrad 	atomic_store_relaxed(&ec->ec_pending, 0);
   1183   1.1  riastrad 	extra[i++] = entropy_timer();
   1184  1.43  riastrad 	entropy_cpu_put(&lock, ec);
   1185   1.1  riastrad 	extra[i++] = entropy_timer();
   1186   1.1  riastrad 
   1187   1.1  riastrad 	/*
   1188   1.1  riastrad 	 * Copy over statistics, and enter the per-CPU extract and the
   1189  1.19  riastrad 	 * extra timing into the temporary pool, under the global lock.
   1190   1.1  riastrad 	 */
   1191   1.1  riastrad 	mutex_enter(&E->lock);
   1192   1.1  riastrad 	extra[i++] = entropy_timer();
   1193  1.19  riastrad 	entpool_enter(pool, buf, sizeof buf);
   1194   1.1  riastrad 	explicit_memset(buf, 0, sizeof buf);
   1195   1.1  riastrad 	extra[i++] = entropy_timer();
   1196   1.1  riastrad 	KASSERT(i == __arraycount(extra));
   1197  1.19  riastrad 	entpool_enter(pool, extra, sizeof extra);
   1198   1.1  riastrad 	explicit_memset(extra, 0, sizeof extra);
   1199   1.1  riastrad 	mutex_exit(&E->lock);
   1200   1.1  riastrad }
   1201   1.1  riastrad 
   1202   1.1  riastrad /*
   1203   1.1  riastrad  * entropy_notify()
   1204   1.1  riastrad  *
   1205   1.1  riastrad  *	Caller just contributed entropy to the global pool.  Advance
   1206   1.1  riastrad  *	the entropy epoch and notify waiters.
   1207   1.1  riastrad  *
   1208   1.1  riastrad  *	Caller must hold the global entropy lock.  Except for the
   1209   1.1  riastrad  *	`sysctl -w kern.entropy.consolidate=1` trigger, the caller must
   1210   1.1  riastrad  *	have just have transitioned from partial entropy to full
   1211   1.1  riastrad  *	entropy -- E->needed should be zero now.
   1212   1.1  riastrad  */
   1213   1.1  riastrad static void
   1214   1.1  riastrad entropy_notify(void)
   1215   1.1  riastrad {
   1216  1.12  riastrad 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1217  1.12  riastrad 	static struct timeval lasttime; /* serialized by E->lock */
   1218   1.1  riastrad 	unsigned epoch;
   1219   1.1  riastrad 
   1220   1.1  riastrad 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1221   1.1  riastrad 
   1222   1.1  riastrad 	/*
   1223   1.1  riastrad 	 * If this is the first time, print a message to the console
   1224   1.1  riastrad 	 * that we're ready so operators can compare it to the timing
   1225   1.1  riastrad 	 * of other events.
   1226   1.1  riastrad 	 */
   1227  1.41  riastrad 	if (__predict_false(E->epoch == (unsigned)-1) && E->needed == 0)
   1228   1.1  riastrad 		printf("entropy: ready\n");
   1229   1.1  riastrad 
   1230   1.1  riastrad 	/* Set the epoch; roll over from UINTMAX-1 to 1.  */
   1231  1.12  riastrad 	if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
   1232  1.12  riastrad 	    ratecheck(&lasttime, &interval)) {
   1233  1.12  riastrad 		epoch = E->epoch + 1;
   1234  1.12  riastrad 		if (epoch == 0 || epoch == (unsigned)-1)
   1235  1.12  riastrad 			epoch = 1;
   1236  1.12  riastrad 		atomic_store_relaxed(&E->epoch, epoch);
   1237  1.12  riastrad 	}
   1238  1.41  riastrad 	KASSERT(E->epoch != (unsigned)-1);
   1239   1.1  riastrad 
   1240   1.1  riastrad 	/* Notify waiters.  */
   1241   1.1  riastrad 	if (E->stage >= ENTROPY_WARM) {
   1242   1.1  riastrad 		cv_broadcast(&E->cv);
   1243   1.1  riastrad 		selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
   1244   1.1  riastrad 	}
   1245   1.1  riastrad 
   1246   1.1  riastrad 	/* Count another notification.  */
   1247   1.1  riastrad 	entropy_notify_evcnt.ev_count++;
   1248   1.1  riastrad }
   1249   1.1  riastrad 
   1250   1.1  riastrad /*
   1251  1.13  riastrad  * entropy_consolidate()
   1252  1.13  riastrad  *
   1253  1.13  riastrad  *	Trigger entropy consolidation and wait for it to complete.
   1254  1.13  riastrad  *
   1255  1.13  riastrad  *	This should be used sparingly, not periodically -- requiring
   1256  1.13  riastrad  *	conscious intervention by the operator or a clear policy
   1257  1.13  riastrad  *	decision.  Otherwise, the kernel will automatically consolidate
   1258  1.13  riastrad  *	when enough entropy has been gathered into per-CPU pools to
   1259  1.13  riastrad  *	transition to full entropy.
   1260  1.13  riastrad  */
   1261  1.13  riastrad void
   1262  1.13  riastrad entropy_consolidate(void)
   1263  1.13  riastrad {
   1264  1.13  riastrad 	uint64_t ticket;
   1265  1.13  riastrad 	int error;
   1266  1.13  riastrad 
   1267  1.13  riastrad 	KASSERT(E->stage == ENTROPY_HOT);
   1268  1.13  riastrad 
   1269  1.13  riastrad 	mutex_enter(&E->lock);
   1270  1.13  riastrad 	ticket = entropy_consolidate_evcnt.ev_count;
   1271  1.13  riastrad 	E->consolidate = true;
   1272  1.13  riastrad 	cv_broadcast(&E->cv);
   1273  1.13  riastrad 	while (ticket == entropy_consolidate_evcnt.ev_count) {
   1274  1.13  riastrad 		error = cv_wait_sig(&E->cv, &E->lock);
   1275  1.13  riastrad 		if (error)
   1276  1.13  riastrad 			break;
   1277  1.13  riastrad 	}
   1278  1.13  riastrad 	mutex_exit(&E->lock);
   1279  1.13  riastrad }
   1280  1.13  riastrad 
   1281  1.13  riastrad /*
   1282   1.1  riastrad  * sysctl -w kern.entropy.consolidate=1
   1283   1.1  riastrad  *
   1284   1.1  riastrad  *	Trigger entropy consolidation and wait for it to complete.
   1285  1.13  riastrad  *	Writable only by superuser.  This, writing to /dev/random, and
   1286  1.13  riastrad  *	ioctl(RNDADDDATA) are the only ways for the system to
   1287  1.13  riastrad  *	consolidate entropy if the operator knows something the kernel
   1288  1.13  riastrad  *	doesn't about how unpredictable the pending entropy pools are.
   1289   1.1  riastrad  */
   1290   1.1  riastrad static int
   1291   1.1  riastrad sysctl_entropy_consolidate(SYSCTLFN_ARGS)
   1292   1.1  riastrad {
   1293   1.1  riastrad 	struct sysctlnode node = *rnode;
   1294  1.57  riastrad 	int arg = 0;
   1295   1.1  riastrad 	int error;
   1296   1.1  riastrad 
   1297   1.1  riastrad 	KASSERT(E->stage == ENTROPY_HOT);
   1298   1.1  riastrad 
   1299   1.1  riastrad 	node.sysctl_data = &arg;
   1300   1.1  riastrad 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1301   1.1  riastrad 	if (error || newp == NULL)
   1302   1.1  riastrad 		return error;
   1303  1.13  riastrad 	if (arg)
   1304  1.13  riastrad 		entropy_consolidate();
   1305   1.1  riastrad 
   1306   1.1  riastrad 	return error;
   1307   1.1  riastrad }
   1308   1.1  riastrad 
   1309   1.1  riastrad /*
   1310  1.10  riastrad  * sysctl -w kern.entropy.gather=1
   1311  1.10  riastrad  *
   1312  1.10  riastrad  *	Trigger gathering entropy from all on-demand sources, and wait
   1313  1.10  riastrad  *	for synchronous sources (but not asynchronous sources) to
   1314  1.10  riastrad  *	complete.  Writable only by superuser.
   1315  1.10  riastrad  */
   1316  1.10  riastrad static int
   1317  1.10  riastrad sysctl_entropy_gather(SYSCTLFN_ARGS)
   1318  1.10  riastrad {
   1319  1.10  riastrad 	struct sysctlnode node = *rnode;
   1320  1.57  riastrad 	int arg = 0;
   1321  1.10  riastrad 	int error;
   1322  1.10  riastrad 
   1323  1.10  riastrad 	KASSERT(E->stage == ENTROPY_HOT);
   1324  1.10  riastrad 
   1325  1.10  riastrad 	node.sysctl_data = &arg;
   1326  1.10  riastrad 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1327  1.10  riastrad 	if (error || newp == NULL)
   1328  1.10  riastrad 		return error;
   1329  1.10  riastrad 	if (arg) {
   1330  1.10  riastrad 		mutex_enter(&E->lock);
   1331  1.49  riastrad 		error = entropy_request(ENTROPY_CAPACITY,
   1332  1.49  riastrad 		    ENTROPY_WAIT|ENTROPY_SIG);
   1333  1.10  riastrad 		mutex_exit(&E->lock);
   1334  1.10  riastrad 	}
   1335  1.10  riastrad 
   1336  1.10  riastrad 	return 0;
   1337  1.10  riastrad }
   1338  1.10  riastrad 
   1339  1.10  riastrad /*
   1340   1.1  riastrad  * entropy_extract(buf, len, flags)
   1341   1.1  riastrad  *
   1342   1.1  riastrad  *	Extract len bytes from the global entropy pool into buf.
   1343   1.1  riastrad  *
   1344  1.55  riastrad  *	Caller MUST NOT expose these bytes directly -- must use them
   1345  1.55  riastrad  *	ONLY to seed a cryptographic pseudorandom number generator
   1346  1.55  riastrad  *	(`CPRNG'), a.k.a. deterministic random bit generator (`DRBG'),
   1347  1.55  riastrad  *	and then erase them.  entropy_extract does not, on its own,
   1348  1.55  riastrad  *	provide backtracking resistance -- it must be combined with a
   1349  1.55  riastrad  *	PRNG/DRBG that does.
   1350  1.55  riastrad  *
   1351  1.55  riastrad  *	You generally shouldn't use this directly -- use cprng(9)
   1352  1.55  riastrad  *	instead.
   1353  1.55  riastrad  *
   1354   1.1  riastrad  *	Flags may have:
   1355   1.1  riastrad  *
   1356   1.1  riastrad  *		ENTROPY_WAIT	Wait for entropy if not available yet.
   1357   1.1  riastrad  *		ENTROPY_SIG	Allow interruption by a signal during wait.
   1358  1.23  riastrad  *		ENTROPY_HARDFAIL Either fill the buffer with full entropy,
   1359  1.23  riastrad  *				or fail without filling it at all.
   1360   1.1  riastrad  *
   1361   1.1  riastrad  *	Return zero on success, or error on failure:
   1362   1.1  riastrad  *
   1363   1.1  riastrad  *		EWOULDBLOCK	No entropy and ENTROPY_WAIT not set.
   1364   1.1  riastrad  *		EINTR/ERESTART	No entropy, ENTROPY_SIG set, and interrupted.
   1365   1.1  riastrad  *
   1366   1.1  riastrad  *	If ENTROPY_WAIT is set, allowed only in thread context.  If
   1367  1.56  riastrad  *	ENTROPY_WAIT is not set, allowed also in softint context.
   1368  1.56  riastrad  *	Forbidden in hard interrupt context.
   1369   1.1  riastrad  */
   1370   1.1  riastrad int
   1371   1.1  riastrad entropy_extract(void *buf, size_t len, int flags)
   1372   1.1  riastrad {
   1373   1.1  riastrad 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1374   1.1  riastrad 	static struct timeval lasttime; /* serialized by E->lock */
   1375   1.1  riastrad 	int error;
   1376   1.1  riastrad 
   1377   1.1  riastrad 	if (ISSET(flags, ENTROPY_WAIT)) {
   1378   1.1  riastrad 		ASSERT_SLEEPABLE();
   1379   1.1  riastrad 		KASSERTMSG(E->stage >= ENTROPY_WARM,
   1380   1.1  riastrad 		    "can't wait for entropy until warm");
   1381   1.1  riastrad 	}
   1382   1.1  riastrad 
   1383  1.35  riastrad 	/* Refuse to operate in interrupt context.  */
   1384  1.35  riastrad 	KASSERT(!cpu_intr_p());
   1385  1.35  riastrad 
   1386   1.1  riastrad 	/* Acquire the global lock to get at the global pool.  */
   1387   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1388   1.1  riastrad 		mutex_enter(&E->lock);
   1389   1.1  riastrad 
   1390   1.1  riastrad 	/* Wait until there is enough entropy in the system.  */
   1391   1.1  riastrad 	error = 0;
   1392   1.1  riastrad 	while (E->needed) {
   1393   1.1  riastrad 		/* Ask for more, synchronously if possible.  */
   1394  1.49  riastrad 		error = entropy_request(len, flags);
   1395  1.49  riastrad 		if (error)
   1396  1.49  riastrad 			break;
   1397   1.1  riastrad 
   1398   1.1  riastrad 		/* If we got enough, we're done.  */
   1399   1.1  riastrad 		if (E->needed == 0) {
   1400   1.1  riastrad 			KASSERT(error == 0);
   1401   1.1  riastrad 			break;
   1402   1.1  riastrad 		}
   1403   1.1  riastrad 
   1404   1.1  riastrad 		/* If not waiting, stop here.  */
   1405   1.1  riastrad 		if (!ISSET(flags, ENTROPY_WAIT)) {
   1406   1.1  riastrad 			error = EWOULDBLOCK;
   1407   1.1  riastrad 			break;
   1408   1.1  riastrad 		}
   1409   1.1  riastrad 
   1410   1.1  riastrad 		/* Wait for some entropy to come in and try again.  */
   1411   1.1  riastrad 		KASSERT(E->stage >= ENTROPY_WARM);
   1412  1.24      gson 		printf("entropy: pid %d (%s) blocking due to lack of entropy\n",
   1413  1.24      gson 		       curproc->p_pid, curproc->p_comm);
   1414  1.24      gson 
   1415   1.1  riastrad 		if (ISSET(flags, ENTROPY_SIG)) {
   1416   1.1  riastrad 			error = cv_wait_sig(&E->cv, &E->lock);
   1417   1.1  riastrad 			if (error)
   1418   1.1  riastrad 				break;
   1419   1.1  riastrad 		} else {
   1420   1.1  riastrad 			cv_wait(&E->cv, &E->lock);
   1421   1.1  riastrad 		}
   1422   1.1  riastrad 	}
   1423   1.1  riastrad 
   1424  1.23  riastrad 	/*
   1425  1.23  riastrad 	 * Count failure -- but fill the buffer nevertheless, unless
   1426  1.23  riastrad 	 * the caller specified ENTROPY_HARDFAIL.
   1427  1.23  riastrad 	 */
   1428  1.23  riastrad 	if (error) {
   1429  1.23  riastrad 		if (ISSET(flags, ENTROPY_HARDFAIL))
   1430  1.23  riastrad 			goto out;
   1431   1.1  riastrad 		entropy_extract_fail_evcnt.ev_count++;
   1432  1.23  riastrad 	}
   1433   1.1  riastrad 
   1434   1.1  riastrad 	/*
   1435   1.1  riastrad 	 * Report a warning if we have never yet reached full entropy.
   1436   1.1  riastrad 	 * This is the only case where we consider entropy to be
   1437   1.1  riastrad 	 * `depleted' without kern.entropy.depletion enabled -- when we
   1438   1.1  riastrad 	 * only have partial entropy, an adversary may be able to
   1439   1.1  riastrad 	 * narrow the state of the pool down to a small number of
   1440   1.1  riastrad 	 * possibilities; the output then enables them to confirm a
   1441   1.1  riastrad 	 * guess, reducing its entropy from the adversary's perspective
   1442   1.1  riastrad 	 * to zero.
   1443   1.1  riastrad 	 */
   1444   1.1  riastrad 	if (__predict_false(E->epoch == (unsigned)-1)) {
   1445   1.1  riastrad 		if (ratecheck(&lasttime, &interval))
   1446  1.50  riastrad 			printf("WARNING:"
   1447  1.50  riastrad 			    " system needs entropy for security;"
   1448  1.50  riastrad 			    " see entropy(7)\n");
   1449   1.1  riastrad 		atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
   1450   1.1  riastrad 	}
   1451   1.1  riastrad 
   1452   1.1  riastrad 	/* Extract data from the pool, and `deplete' if we're doing that.  */
   1453   1.1  riastrad 	entpool_extract(&E->pool, buf, len);
   1454   1.1  riastrad 	if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
   1455   1.1  riastrad 	    error == 0) {
   1456   1.1  riastrad 		unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
   1457   1.1  riastrad 
   1458   1.1  riastrad 		atomic_store_relaxed(&E->needed,
   1459   1.1  riastrad 		    E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
   1460   1.1  riastrad 		entropy_deplete_evcnt.ev_count++;
   1461   1.1  riastrad 	}
   1462   1.1  riastrad 
   1463  1.23  riastrad out:	/* Release the global lock and return the error.  */
   1464   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1465   1.1  riastrad 		mutex_exit(&E->lock);
   1466   1.1  riastrad 	return error;
   1467   1.1  riastrad }
   1468   1.1  riastrad 
   1469   1.1  riastrad /*
   1470   1.1  riastrad  * entropy_poll(events)
   1471   1.1  riastrad  *
   1472   1.1  riastrad  *	Return the subset of events ready, and if it is not all of
   1473   1.1  riastrad  *	events, record curlwp as waiting for entropy.
   1474   1.1  riastrad  */
   1475   1.1  riastrad int
   1476   1.1  riastrad entropy_poll(int events)
   1477   1.1  riastrad {
   1478   1.1  riastrad 	int revents = 0;
   1479   1.1  riastrad 
   1480   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1481   1.1  riastrad 
   1482   1.1  riastrad 	/* Always ready for writing.  */
   1483   1.1  riastrad 	revents |= events & (POLLOUT|POLLWRNORM);
   1484   1.1  riastrad 
   1485   1.1  riastrad 	/* Narrow it down to reads.  */
   1486   1.1  riastrad 	events &= POLLIN|POLLRDNORM;
   1487   1.1  riastrad 	if (events == 0)
   1488   1.1  riastrad 		return revents;
   1489   1.1  riastrad 
   1490   1.1  riastrad 	/*
   1491   1.1  riastrad 	 * If we have reached full entropy and we're not depleting
   1492   1.1  riastrad 	 * entropy, we are forever ready.
   1493   1.1  riastrad 	 */
   1494   1.1  riastrad 	if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
   1495   1.1  riastrad 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)))
   1496   1.1  riastrad 		return revents | events;
   1497   1.1  riastrad 
   1498   1.1  riastrad 	/*
   1499   1.1  riastrad 	 * Otherwise, check whether we need entropy under the lock.  If
   1500   1.1  riastrad 	 * we don't, we're ready; if we do, add ourselves to the queue.
   1501   1.1  riastrad 	 */
   1502   1.1  riastrad 	mutex_enter(&E->lock);
   1503   1.1  riastrad 	if (E->needed == 0)
   1504   1.1  riastrad 		revents |= events;
   1505   1.1  riastrad 	else
   1506   1.1  riastrad 		selrecord(curlwp, &E->selq);
   1507   1.1  riastrad 	mutex_exit(&E->lock);
   1508   1.1  riastrad 
   1509   1.1  riastrad 	return revents;
   1510   1.1  riastrad }
   1511   1.1  riastrad 
   1512   1.1  riastrad /*
   1513   1.1  riastrad  * filt_entropy_read_detach(kn)
   1514   1.1  riastrad  *
   1515   1.1  riastrad  *	struct filterops::f_detach callback for entropy read events:
   1516   1.1  riastrad  *	remove kn from the list of waiters.
   1517   1.1  riastrad  */
   1518   1.1  riastrad static void
   1519   1.1  riastrad filt_entropy_read_detach(struct knote *kn)
   1520   1.1  riastrad {
   1521   1.1  riastrad 
   1522   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1523   1.1  riastrad 
   1524   1.1  riastrad 	mutex_enter(&E->lock);
   1525  1.25   thorpej 	selremove_knote(&E->selq, kn);
   1526   1.1  riastrad 	mutex_exit(&E->lock);
   1527   1.1  riastrad }
   1528   1.1  riastrad 
   1529   1.1  riastrad /*
   1530   1.1  riastrad  * filt_entropy_read_event(kn, hint)
   1531   1.1  riastrad  *
   1532   1.1  riastrad  *	struct filterops::f_event callback for entropy read events:
   1533   1.1  riastrad  *	poll for entropy.  Caller must hold the global entropy lock if
   1534   1.1  riastrad  *	hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
   1535   1.1  riastrad  */
   1536   1.1  riastrad static int
   1537   1.1  riastrad filt_entropy_read_event(struct knote *kn, long hint)
   1538   1.1  riastrad {
   1539   1.1  riastrad 	int ret;
   1540   1.1  riastrad 
   1541   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1542   1.1  riastrad 
   1543   1.1  riastrad 	/* Acquire the lock, if caller is outside entropy subsystem.  */
   1544   1.1  riastrad 	if (hint == NOTE_SUBMIT)
   1545   1.1  riastrad 		KASSERT(mutex_owned(&E->lock));
   1546   1.1  riastrad 	else
   1547   1.1  riastrad 		mutex_enter(&E->lock);
   1548   1.1  riastrad 
   1549   1.1  riastrad 	/*
   1550   1.1  riastrad 	 * If we still need entropy, can't read anything; if not, can
   1551   1.1  riastrad 	 * read arbitrarily much.
   1552   1.1  riastrad 	 */
   1553   1.1  riastrad 	if (E->needed != 0) {
   1554   1.1  riastrad 		ret = 0;
   1555   1.1  riastrad 	} else {
   1556   1.1  riastrad 		if (atomic_load_relaxed(&entropy_depletion))
   1557  1.58  riastrad 			kn->kn_data = ENTROPY_CAPACITY; /* bytes */
   1558   1.1  riastrad 		else
   1559   1.1  riastrad 			kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
   1560   1.1  riastrad 		ret = 1;
   1561   1.1  riastrad 	}
   1562   1.1  riastrad 
   1563   1.1  riastrad 	/* Release the lock, if caller is outside entropy subsystem.  */
   1564   1.1  riastrad 	if (hint == NOTE_SUBMIT)
   1565   1.1  riastrad 		KASSERT(mutex_owned(&E->lock));
   1566   1.1  riastrad 	else
   1567   1.1  riastrad 		mutex_exit(&E->lock);
   1568   1.1  riastrad 
   1569   1.1  riastrad 	return ret;
   1570   1.1  riastrad }
   1571   1.1  riastrad 
   1572  1.33   thorpej /* XXX Makes sense only for /dev/u?random.  */
   1573   1.1  riastrad static const struct filterops entropy_read_filtops = {
   1574  1.33   thorpej 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   1575   1.1  riastrad 	.f_attach = NULL,
   1576   1.1  riastrad 	.f_detach = filt_entropy_read_detach,
   1577   1.1  riastrad 	.f_event = filt_entropy_read_event,
   1578   1.1  riastrad };
   1579   1.1  riastrad 
   1580   1.1  riastrad /*
   1581   1.1  riastrad  * entropy_kqfilter(kn)
   1582   1.1  riastrad  *
   1583   1.1  riastrad  *	Register kn to receive entropy event notifications.  May be
   1584   1.1  riastrad  *	EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
   1585   1.1  riastrad  */
   1586   1.1  riastrad int
   1587   1.1  riastrad entropy_kqfilter(struct knote *kn)
   1588   1.1  riastrad {
   1589   1.1  riastrad 
   1590   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1591   1.1  riastrad 
   1592   1.1  riastrad 	switch (kn->kn_filter) {
   1593   1.1  riastrad 	case EVFILT_READ:
   1594   1.1  riastrad 		/* Enter into the global select queue.  */
   1595   1.1  riastrad 		mutex_enter(&E->lock);
   1596   1.1  riastrad 		kn->kn_fop = &entropy_read_filtops;
   1597  1.25   thorpej 		selrecord_knote(&E->selq, kn);
   1598   1.1  riastrad 		mutex_exit(&E->lock);
   1599   1.1  riastrad 		return 0;
   1600   1.1  riastrad 	case EVFILT_WRITE:
   1601   1.1  riastrad 		/* Can always dump entropy into the system.  */
   1602   1.1  riastrad 		kn->kn_fop = &seltrue_filtops;
   1603   1.1  riastrad 		return 0;
   1604   1.1  riastrad 	default:
   1605   1.1  riastrad 		return EINVAL;
   1606   1.1  riastrad 	}
   1607   1.1  riastrad }
   1608   1.1  riastrad 
   1609   1.1  riastrad /*
   1610   1.1  riastrad  * rndsource_setcb(rs, get, getarg)
   1611   1.1  riastrad  *
   1612   1.1  riastrad  *	Set the request callback for the entropy source rs, if it can
   1613   1.1  riastrad  *	provide entropy on demand.  Must precede rnd_attach_source.
   1614   1.1  riastrad  */
   1615   1.1  riastrad void
   1616   1.1  riastrad rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
   1617   1.1  riastrad     void *getarg)
   1618   1.1  riastrad {
   1619   1.1  riastrad 
   1620   1.1  riastrad 	rs->get = get;
   1621   1.1  riastrad 	rs->getarg = getarg;
   1622   1.1  riastrad }
   1623   1.1  riastrad 
   1624   1.1  riastrad /*
   1625   1.1  riastrad  * rnd_attach_source(rs, name, type, flags)
   1626   1.1  riastrad  *
   1627   1.1  riastrad  *	Attach the entropy source rs.  Must be done after
   1628   1.1  riastrad  *	rndsource_setcb, if any, and before any calls to rnd_add_data.
   1629   1.1  riastrad  */
   1630   1.1  riastrad void
   1631   1.1  riastrad rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
   1632   1.1  riastrad     uint32_t flags)
   1633   1.1  riastrad {
   1634   1.1  riastrad 	uint32_t extra[4];
   1635   1.1  riastrad 	unsigned i = 0;
   1636   1.1  riastrad 
   1637  1.59  riastrad 	KASSERTMSG(name[0] != '\0', "rndsource must have nonempty name");
   1638  1.59  riastrad 
   1639   1.1  riastrad 	/* Grab cycle counter to mix extra into the pool.  */
   1640   1.1  riastrad 	extra[i++] = entropy_timer();
   1641   1.1  riastrad 
   1642   1.1  riastrad 	/*
   1643   1.1  riastrad 	 * Apply some standard flags:
   1644   1.1  riastrad 	 *
   1645   1.1  riastrad 	 * - We do not bother with network devices by default, for
   1646   1.1  riastrad 	 *   hysterical raisins (perhaps: because it is often the case
   1647   1.1  riastrad 	 *   that an adversary can influence network packet timings).
   1648   1.1  riastrad 	 */
   1649   1.1  riastrad 	switch (type) {
   1650   1.1  riastrad 	case RND_TYPE_NET:
   1651   1.1  riastrad 		flags |= RND_FLAG_NO_COLLECT;
   1652   1.1  riastrad 		break;
   1653   1.1  riastrad 	}
   1654   1.1  riastrad 
   1655   1.1  riastrad 	/* Sanity-check the callback if RND_FLAG_HASCB is set.  */
   1656   1.1  riastrad 	KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
   1657   1.1  riastrad 
   1658   1.1  riastrad 	/* Initialize the random source.  */
   1659   1.1  riastrad 	memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
   1660   1.1  riastrad 	strlcpy(rs->name, name, sizeof(rs->name));
   1661  1.28  riastrad 	memset(&rs->time_delta, 0, sizeof(rs->time_delta));
   1662  1.28  riastrad 	memset(&rs->value_delta, 0, sizeof(rs->value_delta));
   1663   1.9  riastrad 	rs->total = 0;
   1664   1.1  riastrad 	rs->type = type;
   1665   1.1  riastrad 	rs->flags = flags;
   1666   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1667   1.1  riastrad 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
   1668   1.1  riastrad 	extra[i++] = entropy_timer();
   1669   1.1  riastrad 
   1670   1.1  riastrad 	/* Wire it into the global list of random sources.  */
   1671   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1672   1.1  riastrad 		mutex_enter(&E->lock);
   1673   1.1  riastrad 	LIST_INSERT_HEAD(&E->sources, rs, list);
   1674   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1675   1.1  riastrad 		mutex_exit(&E->lock);
   1676   1.1  riastrad 	extra[i++] = entropy_timer();
   1677   1.1  riastrad 
   1678   1.1  riastrad 	/* Request that it provide entropy ASAP, if we can.  */
   1679   1.1  riastrad 	if (ISSET(flags, RND_FLAG_HASCB))
   1680   1.1  riastrad 		(*rs->get)(ENTROPY_CAPACITY, rs->getarg);
   1681   1.1  riastrad 	extra[i++] = entropy_timer();
   1682   1.1  riastrad 
   1683   1.1  riastrad 	/* Mix the extra into the pool.  */
   1684   1.1  riastrad 	KASSERT(i == __arraycount(extra));
   1685   1.1  riastrad 	entropy_enter(extra, sizeof extra, 0);
   1686   1.1  riastrad 	explicit_memset(extra, 0, sizeof extra);
   1687   1.1  riastrad }
   1688   1.1  riastrad 
   1689   1.1  riastrad /*
   1690   1.1  riastrad  * rnd_detach_source(rs)
   1691   1.1  riastrad  *
   1692   1.1  riastrad  *	Detach the entropy source rs.  May sleep waiting for users to
   1693   1.1  riastrad  *	drain.  Further use is not allowed.
   1694   1.1  riastrad  */
   1695   1.1  riastrad void
   1696   1.1  riastrad rnd_detach_source(struct krndsource *rs)
   1697   1.1  riastrad {
   1698   1.1  riastrad 
   1699   1.1  riastrad 	/*
   1700   1.1  riastrad 	 * If we're cold (shouldn't happen, but hey), just remove it
   1701   1.1  riastrad 	 * from the list -- there's nothing allocated.
   1702   1.1  riastrad 	 */
   1703   1.1  riastrad 	if (E->stage == ENTROPY_COLD) {
   1704   1.1  riastrad 		LIST_REMOVE(rs, list);
   1705   1.1  riastrad 		return;
   1706   1.1  riastrad 	}
   1707   1.1  riastrad 
   1708   1.1  riastrad 	/* We may have to wait for entropy_request.  */
   1709   1.1  riastrad 	ASSERT_SLEEPABLE();
   1710   1.1  riastrad 
   1711   1.4  riastrad 	/* Wait until the source list is not in use, and remove it.  */
   1712   1.1  riastrad 	mutex_enter(&E->lock);
   1713   1.4  riastrad 	while (E->sourcelock)
   1714  1.27  riastrad 		cv_wait(&E->sourcelock_cv, &E->lock);
   1715   1.1  riastrad 	LIST_REMOVE(rs, list);
   1716   1.1  riastrad 	mutex_exit(&E->lock);
   1717   1.1  riastrad 
   1718   1.1  riastrad 	/* Free the per-CPU data.  */
   1719   1.1  riastrad 	percpu_free(rs->state, sizeof(struct rndsource_cpu));
   1720   1.1  riastrad }
   1721   1.1  riastrad 
   1722   1.1  riastrad /*
   1723  1.49  riastrad  * rnd_lock_sources(flags)
   1724  1.49  riastrad  *
   1725  1.49  riastrad  *	Lock the list of entropy sources.  Caller must hold the global
   1726  1.49  riastrad  *	entropy lock.  If successful, no rndsource will go away until
   1727  1.49  riastrad  *	rnd_unlock_sources even while the caller releases the global
   1728  1.49  riastrad  *	entropy lock.
   1729   1.4  riastrad  *
   1730  1.49  riastrad  *	If flags & ENTROPY_WAIT, wait for concurrent access to finish.
   1731  1.49  riastrad  *	If flags & ENTROPY_SIG, allow interruption by signal.
   1732   1.4  riastrad  */
   1733  1.49  riastrad static int __attribute__((warn_unused_result))
   1734  1.49  riastrad rnd_lock_sources(int flags)
   1735   1.4  riastrad {
   1736   1.4  riastrad 	int error;
   1737   1.4  riastrad 
   1738  1.51  riastrad 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1739   1.4  riastrad 
   1740   1.4  riastrad 	while (E->sourcelock) {
   1741  1.51  riastrad 		KASSERT(E->stage >= ENTROPY_WARM);
   1742  1.49  riastrad 		if (!ISSET(flags, ENTROPY_WAIT))
   1743  1.49  riastrad 			return EWOULDBLOCK;
   1744  1.49  riastrad 		if (ISSET(flags, ENTROPY_SIG)) {
   1745  1.49  riastrad 			error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
   1746  1.49  riastrad 			if (error)
   1747  1.49  riastrad 				return error;
   1748  1.49  riastrad 		} else {
   1749  1.49  riastrad 			cv_wait(&E->sourcelock_cv, &E->lock);
   1750  1.49  riastrad 		}
   1751   1.4  riastrad 	}
   1752   1.4  riastrad 
   1753   1.4  riastrad 	E->sourcelock = curlwp;
   1754   1.4  riastrad 	return 0;
   1755   1.4  riastrad }
   1756   1.4  riastrad 
   1757   1.4  riastrad /*
   1758   1.4  riastrad  * rnd_unlock_sources()
   1759   1.4  riastrad  *
   1760  1.49  riastrad  *	Unlock the list of sources after rnd_lock_sources.  Caller must
   1761  1.49  riastrad  *	hold the global entropy lock.
   1762   1.4  riastrad  */
   1763   1.4  riastrad static void
   1764   1.4  riastrad rnd_unlock_sources(void)
   1765   1.4  riastrad {
   1766   1.4  riastrad 
   1767   1.4  riastrad 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1768   1.4  riastrad 
   1769  1.16  riastrad 	KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
   1770  1.16  riastrad 	    curlwp, E->sourcelock);
   1771   1.4  riastrad 	E->sourcelock = NULL;
   1772   1.4  riastrad 	if (E->stage >= ENTROPY_WARM)
   1773  1.27  riastrad 		cv_signal(&E->sourcelock_cv);
   1774   1.4  riastrad }
   1775   1.4  riastrad 
   1776   1.4  riastrad /*
   1777   1.4  riastrad  * rnd_sources_locked()
   1778   1.4  riastrad  *
   1779   1.4  riastrad  *	True if we hold the list of rndsources locked, for diagnostic
   1780   1.4  riastrad  *	assertions.
   1781   1.4  riastrad  */
   1782   1.7  riastrad static bool __diagused
   1783   1.4  riastrad rnd_sources_locked(void)
   1784   1.4  riastrad {
   1785   1.4  riastrad 
   1786  1.16  riastrad 	return E->sourcelock == curlwp;
   1787   1.4  riastrad }
   1788   1.4  riastrad 
   1789   1.4  riastrad /*
   1790  1.49  riastrad  * entropy_request(nbytes, flags)
   1791   1.1  riastrad  *
   1792   1.1  riastrad  *	Request nbytes bytes of entropy from all sources in the system.
   1793   1.1  riastrad  *	OK if we overdo it.  Caller must hold the global entropy lock;
   1794   1.1  riastrad  *	will release and re-acquire it.
   1795  1.49  riastrad  *
   1796  1.49  riastrad  *	If flags & ENTROPY_WAIT, wait for concurrent access to finish.
   1797  1.49  riastrad  *	If flags & ENTROPY_SIG, allow interruption by signal.
   1798   1.1  riastrad  */
   1799  1.49  riastrad static int
   1800  1.49  riastrad entropy_request(size_t nbytes, int flags)
   1801   1.1  riastrad {
   1802   1.4  riastrad 	struct krndsource *rs;
   1803  1.49  riastrad 	int error;
   1804   1.1  riastrad 
   1805   1.1  riastrad 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1806  1.49  riastrad 	if (flags & ENTROPY_WAIT)
   1807  1.49  riastrad 		ASSERT_SLEEPABLE();
   1808   1.1  riastrad 
   1809   1.1  riastrad 	/*
   1810  1.49  riastrad 	 * Lock the list of entropy sources to block rnd_detach_source
   1811  1.49  riastrad 	 * until we're done, and to serialize calls to the entropy
   1812  1.49  riastrad 	 * callbacks as guaranteed to drivers.
   1813   1.1  riastrad 	 */
   1814  1.49  riastrad 	error = rnd_lock_sources(flags);
   1815  1.49  riastrad 	if (error)
   1816  1.49  riastrad 		return error;
   1817   1.1  riastrad 	entropy_request_evcnt.ev_count++;
   1818   1.1  riastrad 
   1819   1.1  riastrad 	/* Clamp to the maximum reasonable request.  */
   1820   1.1  riastrad 	nbytes = MIN(nbytes, ENTROPY_CAPACITY);
   1821   1.1  riastrad 
   1822   1.1  riastrad 	/* Walk the list of sources.  */
   1823   1.4  riastrad 	LIST_FOREACH(rs, &E->sources, list) {
   1824   1.1  riastrad 		/* Skip sources without callbacks.  */
   1825   1.1  riastrad 		if (!ISSET(rs->flags, RND_FLAG_HASCB))
   1826   1.1  riastrad 			continue;
   1827   1.1  riastrad 
   1828  1.22  riastrad 		/*
   1829  1.22  riastrad 		 * Skip sources that are disabled altogether -- we
   1830  1.22  riastrad 		 * would just ignore their samples anyway.
   1831  1.22  riastrad 		 */
   1832  1.22  riastrad 		if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
   1833  1.22  riastrad 			continue;
   1834  1.22  riastrad 
   1835   1.1  riastrad 		/* Drop the lock while we call the callback.  */
   1836   1.1  riastrad 		if (E->stage >= ENTROPY_WARM)
   1837   1.1  riastrad 			mutex_exit(&E->lock);
   1838   1.1  riastrad 		(*rs->get)(nbytes, rs->getarg);
   1839   1.1  riastrad 		if (E->stage >= ENTROPY_WARM)
   1840   1.1  riastrad 			mutex_enter(&E->lock);
   1841   1.1  riastrad 	}
   1842   1.1  riastrad 
   1843  1.49  riastrad 	/* Request done; unlock the list of entropy sources.  */
   1844   1.4  riastrad 	rnd_unlock_sources();
   1845  1.49  riastrad 	return 0;
   1846   1.1  riastrad }
   1847   1.1  riastrad 
   1848   1.1  riastrad /*
   1849   1.1  riastrad  * rnd_add_uint32(rs, value)
   1850   1.1  riastrad  *
   1851   1.1  riastrad  *	Enter 32 bits of data from an entropy source into the pool.
   1852   1.1  riastrad  *
   1853   1.1  riastrad  *	If rs is NULL, may not be called from interrupt context.
   1854   1.1  riastrad  *
   1855   1.1  riastrad  *	If rs is non-NULL, may be called from any context.  May drop
   1856   1.1  riastrad  *	data if called from interrupt context.
   1857   1.1  riastrad  */
   1858   1.1  riastrad void
   1859   1.1  riastrad rnd_add_uint32(struct krndsource *rs, uint32_t value)
   1860   1.1  riastrad {
   1861   1.1  riastrad 
   1862   1.1  riastrad 	rnd_add_data(rs, &value, sizeof value, 0);
   1863   1.1  riastrad }
   1864   1.1  riastrad 
   1865   1.1  riastrad void
   1866   1.1  riastrad _rnd_add_uint32(struct krndsource *rs, uint32_t value)
   1867   1.1  riastrad {
   1868   1.1  riastrad 
   1869   1.1  riastrad 	rnd_add_data(rs, &value, sizeof value, 0);
   1870   1.1  riastrad }
   1871   1.1  riastrad 
   1872   1.1  riastrad void
   1873   1.1  riastrad _rnd_add_uint64(struct krndsource *rs, uint64_t value)
   1874   1.1  riastrad {
   1875   1.1  riastrad 
   1876   1.1  riastrad 	rnd_add_data(rs, &value, sizeof value, 0);
   1877   1.1  riastrad }
   1878   1.1  riastrad 
   1879   1.1  riastrad /*
   1880   1.1  riastrad  * rnd_add_data(rs, buf, len, entropybits)
   1881   1.1  riastrad  *
   1882   1.1  riastrad  *	Enter data from an entropy source into the pool, with a
   1883   1.1  riastrad  *	driver's estimate of how much entropy the physical source of
   1884   1.1  riastrad  *	the data has.  If RND_FLAG_NO_ESTIMATE, we ignore the driver's
   1885   1.1  riastrad  *	estimate and treat it as zero.
   1886   1.1  riastrad  *
   1887   1.1  riastrad  *	If rs is NULL, may not be called from interrupt context.
   1888   1.1  riastrad  *
   1889   1.1  riastrad  *	If rs is non-NULL, may be called from any context.  May drop
   1890   1.1  riastrad  *	data if called from interrupt context.
   1891   1.1  riastrad  */
   1892   1.1  riastrad void
   1893   1.1  riastrad rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
   1894   1.1  riastrad     uint32_t entropybits)
   1895   1.1  riastrad {
   1896   1.1  riastrad 	uint32_t extra;
   1897   1.1  riastrad 	uint32_t flags;
   1898   1.1  riastrad 
   1899   1.1  riastrad 	KASSERTMSG(howmany(entropybits, NBBY) <= len,
   1900   1.1  riastrad 	    "%s: impossible entropy rate:"
   1901   1.1  riastrad 	    " %"PRIu32" bits in %"PRIu32"-byte string",
   1902   1.1  riastrad 	    rs ? rs->name : "(anonymous)", entropybits, len);
   1903   1.1  riastrad 
   1904   1.1  riastrad 	/* If there's no rndsource, just enter the data and time now.  */
   1905   1.1  riastrad 	if (rs == NULL) {
   1906   1.1  riastrad 		entropy_enter(buf, len, entropybits);
   1907   1.1  riastrad 		extra = entropy_timer();
   1908   1.1  riastrad 		entropy_enter(&extra, sizeof extra, 0);
   1909   1.1  riastrad 		explicit_memset(&extra, 0, sizeof extra);
   1910   1.1  riastrad 		return;
   1911   1.1  riastrad 	}
   1912   1.1  riastrad 
   1913   1.1  riastrad 	/* Load a snapshot of the flags.  Ioctl may change them under us.  */
   1914   1.1  riastrad 	flags = atomic_load_relaxed(&rs->flags);
   1915   1.1  riastrad 
   1916   1.1  riastrad 	/*
   1917   1.1  riastrad 	 * Skip if:
   1918   1.1  riastrad 	 * - we're not collecting entropy, or
   1919   1.1  riastrad 	 * - the operator doesn't want to collect entropy from this, or
   1920   1.1  riastrad 	 * - neither data nor timings are being collected from this.
   1921   1.1  riastrad 	 */
   1922   1.1  riastrad 	if (!atomic_load_relaxed(&entropy_collection) ||
   1923   1.1  riastrad 	    ISSET(flags, RND_FLAG_NO_COLLECT) ||
   1924   1.1  riastrad 	    !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
   1925   1.1  riastrad 		return;
   1926   1.1  riastrad 
   1927   1.1  riastrad 	/* If asked, ignore the estimate.  */
   1928   1.1  riastrad 	if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
   1929   1.1  riastrad 		entropybits = 0;
   1930   1.1  riastrad 
   1931   1.1  riastrad 	/* If we are collecting data, enter them.  */
   1932   1.1  riastrad 	if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
   1933  1.28  riastrad 		rnd_add_data_1(rs, buf, len, entropybits,
   1934  1.28  riastrad 		    RND_FLAG_COLLECT_VALUE);
   1935   1.1  riastrad 
   1936   1.1  riastrad 	/* If we are collecting timings, enter one.  */
   1937   1.1  riastrad 	if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
   1938   1.1  riastrad 		extra = entropy_timer();
   1939  1.28  riastrad 		rnd_add_data_1(rs, &extra, sizeof extra, 0,
   1940  1.28  riastrad 		    RND_FLAG_COLLECT_TIME);
   1941   1.1  riastrad 	}
   1942   1.1  riastrad }
   1943   1.1  riastrad 
   1944  1.28  riastrad static unsigned
   1945  1.28  riastrad add_sat(unsigned a, unsigned b)
   1946  1.28  riastrad {
   1947  1.28  riastrad 	unsigned c = a + b;
   1948  1.28  riastrad 
   1949  1.28  riastrad 	return (c < a ? UINT_MAX : c);
   1950  1.28  riastrad }
   1951  1.28  riastrad 
   1952   1.1  riastrad /*
   1953  1.28  riastrad  * rnd_add_data_1(rs, buf, len, entropybits, flag)
   1954   1.1  riastrad  *
   1955   1.1  riastrad  *	Internal subroutine to call either entropy_enter_intr, if we're
   1956   1.1  riastrad  *	in interrupt context, or entropy_enter if not, and to count the
   1957   1.1  riastrad  *	entropy in an rndsource.
   1958   1.1  riastrad  */
   1959   1.1  riastrad static void
   1960   1.1  riastrad rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
   1961  1.28  riastrad     uint32_t entropybits, uint32_t flag)
   1962   1.1  riastrad {
   1963   1.1  riastrad 	bool fullyused;
   1964   1.1  riastrad 
   1965   1.1  riastrad 	/*
   1966   1.1  riastrad 	 * If we're in interrupt context, use entropy_enter_intr and
   1967   1.1  riastrad 	 * take note of whether it consumed the full sample; if not,
   1968   1.1  riastrad 	 * use entropy_enter, which always consumes the full sample.
   1969   1.1  riastrad 	 */
   1970  1.16  riastrad 	if (curlwp && cpu_intr_p()) {
   1971   1.1  riastrad 		fullyused = entropy_enter_intr(buf, len, entropybits);
   1972   1.1  riastrad 	} else {
   1973   1.1  riastrad 		entropy_enter(buf, len, entropybits);
   1974   1.1  riastrad 		fullyused = true;
   1975   1.1  riastrad 	}
   1976   1.1  riastrad 
   1977   1.1  riastrad 	/*
   1978   1.1  riastrad 	 * If we used the full sample, note how many bits were
   1979   1.1  riastrad 	 * contributed from this source.
   1980   1.1  riastrad 	 */
   1981   1.1  riastrad 	if (fullyused) {
   1982  1.37  riastrad 		if (__predict_false(E->stage == ENTROPY_COLD)) {
   1983  1.28  riastrad 			rs->total = add_sat(rs->total, entropybits);
   1984  1.28  riastrad 			switch (flag) {
   1985  1.28  riastrad 			case RND_FLAG_COLLECT_TIME:
   1986  1.28  riastrad 				rs->time_delta.insamples =
   1987  1.28  riastrad 				    add_sat(rs->time_delta.insamples, 1);
   1988  1.28  riastrad 				break;
   1989  1.28  riastrad 			case RND_FLAG_COLLECT_VALUE:
   1990  1.28  riastrad 				rs->value_delta.insamples =
   1991  1.28  riastrad 				    add_sat(rs->value_delta.insamples, 1);
   1992  1.28  riastrad 				break;
   1993  1.28  riastrad 			}
   1994   1.1  riastrad 		} else {
   1995   1.1  riastrad 			struct rndsource_cpu *rc = percpu_getref(rs->state);
   1996   1.1  riastrad 
   1997  1.28  riastrad 			atomic_store_relaxed(&rc->rc_entropybits,
   1998  1.28  riastrad 			    add_sat(rc->rc_entropybits, entropybits));
   1999  1.28  riastrad 			switch (flag) {
   2000  1.28  riastrad 			case RND_FLAG_COLLECT_TIME:
   2001  1.28  riastrad 				atomic_store_relaxed(&rc->rc_timesamples,
   2002  1.28  riastrad 				    add_sat(rc->rc_timesamples, 1));
   2003  1.28  riastrad 				break;
   2004  1.28  riastrad 			case RND_FLAG_COLLECT_VALUE:
   2005  1.28  riastrad 				atomic_store_relaxed(&rc->rc_datasamples,
   2006  1.28  riastrad 				    add_sat(rc->rc_datasamples, 1));
   2007  1.28  riastrad 				break;
   2008  1.28  riastrad 			}
   2009   1.1  riastrad 			percpu_putref(rs->state);
   2010   1.1  riastrad 		}
   2011   1.1  riastrad 	}
   2012   1.1  riastrad }
   2013   1.1  riastrad 
   2014   1.1  riastrad /*
   2015   1.1  riastrad  * rnd_add_data_sync(rs, buf, len, entropybits)
   2016   1.1  riastrad  *
   2017   1.1  riastrad  *	Same as rnd_add_data.  Originally used in rndsource callbacks,
   2018   1.1  riastrad  *	to break an unnecessary cycle; no longer really needed.
   2019   1.1  riastrad  */
   2020   1.1  riastrad void
   2021   1.1  riastrad rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
   2022   1.1  riastrad     uint32_t entropybits)
   2023   1.1  riastrad {
   2024   1.1  riastrad 
   2025   1.1  riastrad 	rnd_add_data(rs, buf, len, entropybits);
   2026   1.1  riastrad }
   2027   1.1  riastrad 
   2028   1.1  riastrad /*
   2029   1.1  riastrad  * rndsource_entropybits(rs)
   2030   1.1  riastrad  *
   2031   1.1  riastrad  *	Return approximately the number of bits of entropy that have
   2032   1.1  riastrad  *	been contributed via rs so far.  Approximate if other CPUs may
   2033   1.1  riastrad  *	be calling rnd_add_data concurrently.
   2034   1.1  riastrad  */
   2035   1.1  riastrad static unsigned
   2036   1.1  riastrad rndsource_entropybits(struct krndsource *rs)
   2037   1.1  riastrad {
   2038   1.1  riastrad 	unsigned nbits = rs->total;
   2039   1.1  riastrad 
   2040   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   2041   1.4  riastrad 	KASSERT(rnd_sources_locked());
   2042   1.1  riastrad 	percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
   2043   1.1  riastrad 	return nbits;
   2044   1.1  riastrad }
   2045   1.1  riastrad 
   2046   1.1  riastrad static void
   2047   1.1  riastrad rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   2048   1.1  riastrad {
   2049   1.1  riastrad 	struct rndsource_cpu *rc = ptr;
   2050   1.1  riastrad 	unsigned *nbitsp = cookie;
   2051   1.1  riastrad 	unsigned cpu_nbits;
   2052   1.1  riastrad 
   2053  1.28  riastrad 	cpu_nbits = atomic_load_relaxed(&rc->rc_entropybits);
   2054   1.1  riastrad 	*nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
   2055   1.1  riastrad }
   2056   1.1  riastrad 
   2057   1.1  riastrad /*
   2058   1.1  riastrad  * rndsource_to_user(rs, urs)
   2059   1.1  riastrad  *
   2060   1.1  riastrad  *	Copy a description of rs out to urs for userland.
   2061   1.1  riastrad  */
   2062   1.1  riastrad static void
   2063   1.1  riastrad rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
   2064   1.1  riastrad {
   2065   1.1  riastrad 
   2066   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   2067   1.4  riastrad 	KASSERT(rnd_sources_locked());
   2068   1.1  riastrad 
   2069   1.1  riastrad 	/* Avoid kernel memory disclosure.  */
   2070   1.1  riastrad 	memset(urs, 0, sizeof(*urs));
   2071   1.1  riastrad 
   2072   1.1  riastrad 	CTASSERT(sizeof(urs->name) == sizeof(rs->name));
   2073   1.1  riastrad 	strlcpy(urs->name, rs->name, sizeof(urs->name));
   2074   1.1  riastrad 	urs->total = rndsource_entropybits(rs);
   2075   1.1  riastrad 	urs->type = rs->type;
   2076   1.1  riastrad 	urs->flags = atomic_load_relaxed(&rs->flags);
   2077   1.1  riastrad }
   2078   1.1  riastrad 
   2079   1.1  riastrad /*
   2080   1.1  riastrad  * rndsource_to_user_est(rs, urse)
   2081   1.1  riastrad  *
   2082   1.1  riastrad  *	Copy a description of rs and estimation statistics out to urse
   2083   1.1  riastrad  *	for userland.
   2084   1.1  riastrad  */
   2085   1.1  riastrad static void
   2086   1.1  riastrad rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
   2087   1.1  riastrad {
   2088   1.1  riastrad 
   2089   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   2090   1.4  riastrad 	KASSERT(rnd_sources_locked());
   2091   1.1  riastrad 
   2092   1.1  riastrad 	/* Avoid kernel memory disclosure.  */
   2093   1.1  riastrad 	memset(urse, 0, sizeof(*urse));
   2094   1.1  riastrad 
   2095   1.1  riastrad 	/* Copy out the rndsource description.  */
   2096   1.1  riastrad 	rndsource_to_user(rs, &urse->rt);
   2097   1.1  riastrad 
   2098  1.28  riastrad 	/* Gather the statistics.  */
   2099  1.28  riastrad 	urse->dt_samples = rs->time_delta.insamples;
   2100   1.1  riastrad 	urse->dt_total = 0;
   2101  1.28  riastrad 	urse->dv_samples = rs->value_delta.insamples;
   2102  1.28  riastrad 	urse->dv_total = urse->rt.total;
   2103  1.28  riastrad 	percpu_foreach(rs->state, rndsource_to_user_est_cpu, urse);
   2104  1.28  riastrad }
   2105  1.28  riastrad 
   2106  1.28  riastrad static void
   2107  1.28  riastrad rndsource_to_user_est_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   2108  1.28  riastrad {
   2109  1.28  riastrad 	struct rndsource_cpu *rc = ptr;
   2110  1.28  riastrad 	rndsource_est_t *urse = cookie;
   2111  1.28  riastrad 
   2112  1.28  riastrad 	urse->dt_samples = add_sat(urse->dt_samples,
   2113  1.28  riastrad 	    atomic_load_relaxed(&rc->rc_timesamples));
   2114  1.28  riastrad 	urse->dv_samples = add_sat(urse->dv_samples,
   2115  1.28  riastrad 	    atomic_load_relaxed(&rc->rc_datasamples));
   2116   1.1  riastrad }
   2117   1.1  riastrad 
   2118   1.1  riastrad /*
   2119  1.21  riastrad  * entropy_reset_xc(arg1, arg2)
   2120  1.21  riastrad  *
   2121  1.21  riastrad  *	Reset the current CPU's pending entropy to zero.
   2122  1.21  riastrad  */
   2123  1.21  riastrad static void
   2124  1.21  riastrad entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
   2125  1.21  riastrad {
   2126  1.21  riastrad 	uint32_t extra = entropy_timer();
   2127  1.43  riastrad 	struct entropy_cpu_lock lock;
   2128  1.21  riastrad 	struct entropy_cpu *ec;
   2129  1.21  riastrad 
   2130  1.21  riastrad 	/*
   2131  1.43  riastrad 	 * With the per-CPU state locked, zero the pending count and
   2132  1.43  riastrad 	 * enter a cycle count for fun.
   2133  1.21  riastrad 	 */
   2134  1.43  riastrad 	ec = entropy_cpu_get(&lock);
   2135  1.21  riastrad 	ec->ec_pending = 0;
   2136  1.21  riastrad 	entpool_enter(ec->ec_pool, &extra, sizeof extra);
   2137  1.43  riastrad 	entropy_cpu_put(&lock, ec);
   2138  1.21  riastrad }
   2139  1.21  riastrad 
   2140  1.21  riastrad /*
   2141   1.1  riastrad  * entropy_ioctl(cmd, data)
   2142   1.1  riastrad  *
   2143   1.1  riastrad  *	Handle various /dev/random ioctl queries.
   2144   1.1  riastrad  */
   2145   1.1  riastrad int
   2146   1.1  riastrad entropy_ioctl(unsigned long cmd, void *data)
   2147   1.1  riastrad {
   2148   1.1  riastrad 	struct krndsource *rs;
   2149   1.1  riastrad 	bool privileged;
   2150   1.1  riastrad 	int error;
   2151   1.1  riastrad 
   2152   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   2153   1.1  riastrad 
   2154   1.1  riastrad 	/* Verify user's authorization to perform the ioctl.  */
   2155   1.1  riastrad 	switch (cmd) {
   2156   1.1  riastrad 	case RNDGETENTCNT:
   2157   1.1  riastrad 	case RNDGETPOOLSTAT:
   2158   1.1  riastrad 	case RNDGETSRCNUM:
   2159   1.1  riastrad 	case RNDGETSRCNAME:
   2160   1.1  riastrad 	case RNDGETESTNUM:
   2161   1.1  riastrad 	case RNDGETESTNAME:
   2162  1.31  christos 		error = kauth_authorize_device(kauth_cred_get(),
   2163   1.1  riastrad 		    KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
   2164   1.1  riastrad 		break;
   2165   1.1  riastrad 	case RNDCTL:
   2166  1.31  christos 		error = kauth_authorize_device(kauth_cred_get(),
   2167   1.1  riastrad 		    KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
   2168   1.1  riastrad 		break;
   2169   1.1  riastrad 	case RNDADDDATA:
   2170  1.31  christos 		error = kauth_authorize_device(kauth_cred_get(),
   2171   1.1  riastrad 		    KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
   2172   1.1  riastrad 		/* Ascertain whether the user's inputs should be counted.  */
   2173  1.31  christos 		if (kauth_authorize_device(kauth_cred_get(),
   2174   1.1  riastrad 			KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
   2175   1.1  riastrad 			NULL, NULL, NULL, NULL) == 0)
   2176   1.1  riastrad 			privileged = true;
   2177   1.1  riastrad 		break;
   2178   1.1  riastrad 	default: {
   2179   1.1  riastrad 		/*
   2180   1.1  riastrad 		 * XXX Hack to avoid changing module ABI so this can be
   2181   1.1  riastrad 		 * pulled up.  Later, we can just remove the argument.
   2182   1.1  riastrad 		 */
   2183   1.1  riastrad 		static const struct fileops fops = {
   2184   1.1  riastrad 			.fo_ioctl = rnd_system_ioctl,
   2185   1.1  riastrad 		};
   2186   1.1  riastrad 		struct file f = {
   2187   1.1  riastrad 			.f_ops = &fops,
   2188   1.1  riastrad 		};
   2189   1.1  riastrad 		MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
   2190   1.1  riastrad 		    enosys(), error);
   2191   1.1  riastrad #if defined(_LP64)
   2192   1.1  riastrad 		if (error == ENOSYS)
   2193   1.1  riastrad 			MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
   2194   1.1  riastrad 			    enosys(), error);
   2195   1.1  riastrad #endif
   2196   1.1  riastrad 		if (error == ENOSYS)
   2197   1.1  riastrad 			error = ENOTTY;
   2198   1.1  riastrad 		break;
   2199   1.1  riastrad 	}
   2200   1.1  riastrad 	}
   2201   1.1  riastrad 
   2202   1.1  riastrad 	/* If anything went wrong with authorization, stop here.  */
   2203   1.1  riastrad 	if (error)
   2204   1.1  riastrad 		return error;
   2205   1.1  riastrad 
   2206   1.1  riastrad 	/* Dispatch on the command.  */
   2207   1.1  riastrad 	switch (cmd) {
   2208   1.1  riastrad 	case RNDGETENTCNT: {	/* Get current entropy count in bits.  */
   2209   1.1  riastrad 		uint32_t *countp = data;
   2210   1.1  riastrad 
   2211   1.1  riastrad 		mutex_enter(&E->lock);
   2212   1.1  riastrad 		*countp = ENTROPY_CAPACITY*NBBY - E->needed;
   2213   1.1  riastrad 		mutex_exit(&E->lock);
   2214   1.1  riastrad 
   2215   1.1  riastrad 		break;
   2216   1.1  riastrad 	}
   2217   1.1  riastrad 	case RNDGETPOOLSTAT: {	/* Get entropy pool statistics.  */
   2218   1.1  riastrad 		rndpoolstat_t *pstat = data;
   2219   1.1  riastrad 
   2220   1.1  riastrad 		mutex_enter(&E->lock);
   2221   1.1  riastrad 
   2222   1.1  riastrad 		/* parameters */
   2223   1.1  riastrad 		pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
   2224   1.1  riastrad 		pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
   2225   1.1  riastrad 		pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
   2226   1.1  riastrad 
   2227   1.1  riastrad 		/* state */
   2228   1.1  riastrad 		pstat->added = 0; /* XXX total entropy_enter count */
   2229   1.1  riastrad 		pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
   2230   1.1  riastrad 		pstat->removed = 0; /* XXX total entropy_extract count */
   2231   1.1  riastrad 		pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
   2232   1.1  riastrad 		pstat->generated = 0; /* XXX bits of data...fabricated? */
   2233   1.1  riastrad 
   2234   1.1  riastrad 		mutex_exit(&E->lock);
   2235   1.1  riastrad 		break;
   2236   1.1  riastrad 	}
   2237   1.1  riastrad 	case RNDGETSRCNUM: {	/* Get entropy sources by number.  */
   2238   1.1  riastrad 		rndstat_t *stat = data;
   2239   1.1  riastrad 		uint32_t start = 0, i = 0;
   2240   1.1  riastrad 
   2241   1.1  riastrad 		/* Skip if none requested; fail if too many requested.  */
   2242   1.1  riastrad 		if (stat->count == 0)
   2243   1.1  riastrad 			break;
   2244   1.1  riastrad 		if (stat->count > RND_MAXSTATCOUNT)
   2245   1.1  riastrad 			return EINVAL;
   2246   1.1  riastrad 
   2247   1.1  riastrad 		/*
   2248   1.1  riastrad 		 * Under the lock, find the first one, copy out as many
   2249   1.1  riastrad 		 * as requested, and report how many we copied out.
   2250   1.1  riastrad 		 */
   2251   1.1  riastrad 		mutex_enter(&E->lock);
   2252  1.49  riastrad 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2253   1.4  riastrad 		if (error) {
   2254   1.4  riastrad 			mutex_exit(&E->lock);
   2255   1.4  riastrad 			return error;
   2256   1.4  riastrad 		}
   2257   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2258   1.1  riastrad 			if (start++ == stat->start)
   2259   1.1  riastrad 				break;
   2260   1.1  riastrad 		}
   2261   1.1  riastrad 		while (i < stat->count && rs != NULL) {
   2262   1.5  riastrad 			mutex_exit(&E->lock);
   2263   1.1  riastrad 			rndsource_to_user(rs, &stat->source[i++]);
   2264   1.5  riastrad 			mutex_enter(&E->lock);
   2265   1.1  riastrad 			rs = LIST_NEXT(rs, list);
   2266   1.1  riastrad 		}
   2267   1.1  riastrad 		KASSERT(i <= stat->count);
   2268   1.1  riastrad 		stat->count = i;
   2269   1.4  riastrad 		rnd_unlock_sources();
   2270   1.1  riastrad 		mutex_exit(&E->lock);
   2271   1.1  riastrad 		break;
   2272   1.1  riastrad 	}
   2273   1.1  riastrad 	case RNDGETESTNUM: {	/* Get sources and estimates by number.  */
   2274   1.1  riastrad 		rndstat_est_t *estat = data;
   2275   1.1  riastrad 		uint32_t start = 0, i = 0;
   2276   1.1  riastrad 
   2277   1.1  riastrad 		/* Skip if none requested; fail if too many requested.  */
   2278   1.1  riastrad 		if (estat->count == 0)
   2279   1.1  riastrad 			break;
   2280   1.1  riastrad 		if (estat->count > RND_MAXSTATCOUNT)
   2281   1.1  riastrad 			return EINVAL;
   2282   1.1  riastrad 
   2283   1.1  riastrad 		/*
   2284   1.1  riastrad 		 * Under the lock, find the first one, copy out as many
   2285   1.1  riastrad 		 * as requested, and report how many we copied out.
   2286   1.1  riastrad 		 */
   2287   1.1  riastrad 		mutex_enter(&E->lock);
   2288  1.49  riastrad 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2289   1.4  riastrad 		if (error) {
   2290   1.4  riastrad 			mutex_exit(&E->lock);
   2291   1.4  riastrad 			return error;
   2292   1.4  riastrad 		}
   2293   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2294   1.1  riastrad 			if (start++ == estat->start)
   2295   1.1  riastrad 				break;
   2296   1.1  riastrad 		}
   2297   1.1  riastrad 		while (i < estat->count && rs != NULL) {
   2298   1.4  riastrad 			mutex_exit(&E->lock);
   2299   1.1  riastrad 			rndsource_to_user_est(rs, &estat->source[i++]);
   2300   1.4  riastrad 			mutex_enter(&E->lock);
   2301   1.1  riastrad 			rs = LIST_NEXT(rs, list);
   2302   1.1  riastrad 		}
   2303   1.1  riastrad 		KASSERT(i <= estat->count);
   2304   1.1  riastrad 		estat->count = i;
   2305   1.4  riastrad 		rnd_unlock_sources();
   2306   1.1  riastrad 		mutex_exit(&E->lock);
   2307   1.1  riastrad 		break;
   2308   1.1  riastrad 	}
   2309   1.1  riastrad 	case RNDGETSRCNAME: {	/* Get entropy sources by name.  */
   2310   1.1  riastrad 		rndstat_name_t *nstat = data;
   2311   1.1  riastrad 		const size_t n = sizeof(rs->name);
   2312   1.1  riastrad 
   2313   1.1  riastrad 		CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
   2314   1.1  riastrad 
   2315   1.1  riastrad 		/*
   2316   1.1  riastrad 		 * Under the lock, search by name.  If found, copy it
   2317   1.1  riastrad 		 * out; if not found, fail with ENOENT.
   2318   1.1  riastrad 		 */
   2319   1.1  riastrad 		mutex_enter(&E->lock);
   2320  1.49  riastrad 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2321   1.4  riastrad 		if (error) {
   2322   1.4  riastrad 			mutex_exit(&E->lock);
   2323   1.4  riastrad 			return error;
   2324   1.4  riastrad 		}
   2325   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2326   1.1  riastrad 			if (strncmp(rs->name, nstat->name, n) == 0)
   2327   1.1  riastrad 				break;
   2328   1.1  riastrad 		}
   2329   1.4  riastrad 		if (rs != NULL) {
   2330   1.4  riastrad 			mutex_exit(&E->lock);
   2331   1.1  riastrad 			rndsource_to_user(rs, &nstat->source);
   2332   1.4  riastrad 			mutex_enter(&E->lock);
   2333   1.4  riastrad 		} else {
   2334   1.1  riastrad 			error = ENOENT;
   2335   1.4  riastrad 		}
   2336   1.4  riastrad 		rnd_unlock_sources();
   2337   1.1  riastrad 		mutex_exit(&E->lock);
   2338   1.1  riastrad 		break;
   2339   1.1  riastrad 	}
   2340   1.1  riastrad 	case RNDGETESTNAME: {	/* Get sources and estimates by name.  */
   2341   1.1  riastrad 		rndstat_est_name_t *enstat = data;
   2342   1.1  riastrad 		const size_t n = sizeof(rs->name);
   2343   1.1  riastrad 
   2344   1.1  riastrad 		CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
   2345   1.1  riastrad 
   2346   1.1  riastrad 		/*
   2347   1.1  riastrad 		 * Under the lock, search by name.  If found, copy it
   2348   1.1  riastrad 		 * out; if not found, fail with ENOENT.
   2349   1.1  riastrad 		 */
   2350   1.1  riastrad 		mutex_enter(&E->lock);
   2351  1.49  riastrad 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2352   1.4  riastrad 		if (error) {
   2353   1.4  riastrad 			mutex_exit(&E->lock);
   2354   1.4  riastrad 			return error;
   2355   1.4  riastrad 		}
   2356   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2357   1.1  riastrad 			if (strncmp(rs->name, enstat->name, n) == 0)
   2358   1.1  riastrad 				break;
   2359   1.1  riastrad 		}
   2360   1.4  riastrad 		if (rs != NULL) {
   2361   1.4  riastrad 			mutex_exit(&E->lock);
   2362   1.1  riastrad 			rndsource_to_user_est(rs, &enstat->source);
   2363   1.4  riastrad 			mutex_enter(&E->lock);
   2364   1.4  riastrad 		} else {
   2365   1.1  riastrad 			error = ENOENT;
   2366   1.4  riastrad 		}
   2367   1.4  riastrad 		rnd_unlock_sources();
   2368   1.1  riastrad 		mutex_exit(&E->lock);
   2369   1.1  riastrad 		break;
   2370   1.1  riastrad 	}
   2371   1.1  riastrad 	case RNDCTL: {		/* Modify entropy source flags.  */
   2372   1.1  riastrad 		rndctl_t *rndctl = data;
   2373   1.1  riastrad 		const size_t n = sizeof(rs->name);
   2374  1.21  riastrad 		uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2375   1.1  riastrad 		uint32_t flags;
   2376  1.21  riastrad 		bool reset = false, request = false;
   2377   1.1  riastrad 
   2378   1.1  riastrad 		CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
   2379   1.1  riastrad 
   2380   1.1  riastrad 		/* Whitelist the flags that user can change.  */
   2381   1.1  riastrad 		rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2382   1.1  riastrad 
   2383   1.1  riastrad 		/*
   2384   1.1  riastrad 		 * For each matching rndsource, either by type if
   2385   1.1  riastrad 		 * specified or by name if not, set the masked flags.
   2386   1.1  riastrad 		 */
   2387   1.1  riastrad 		mutex_enter(&E->lock);
   2388   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2389   1.1  riastrad 			if (rndctl->type != 0xff) {
   2390   1.1  riastrad 				if (rs->type != rndctl->type)
   2391   1.1  riastrad 					continue;
   2392  1.59  riastrad 			} else if (rndctl->name[0] != '\0') {
   2393   1.1  riastrad 				if (strncmp(rs->name, rndctl->name, n) != 0)
   2394   1.1  riastrad 					continue;
   2395   1.1  riastrad 			}
   2396   1.1  riastrad 			flags = rs->flags & ~rndctl->mask;
   2397   1.1  riastrad 			flags |= rndctl->flags & rndctl->mask;
   2398  1.21  riastrad 			if ((rs->flags & resetflags) == 0 &&
   2399  1.21  riastrad 			    (flags & resetflags) != 0)
   2400  1.21  riastrad 				reset = true;
   2401  1.21  riastrad 			if ((rs->flags ^ flags) & resetflags)
   2402  1.21  riastrad 				request = true;
   2403   1.1  riastrad 			atomic_store_relaxed(&rs->flags, flags);
   2404   1.1  riastrad 		}
   2405   1.1  riastrad 		mutex_exit(&E->lock);
   2406  1.21  riastrad 
   2407  1.21  riastrad 		/*
   2408  1.21  riastrad 		 * If we disabled estimation or collection, nix all the
   2409  1.21  riastrad 		 * pending entropy and set needed to the maximum.
   2410  1.21  riastrad 		 */
   2411  1.21  riastrad 		if (reset) {
   2412  1.21  riastrad 			xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
   2413  1.21  riastrad 			mutex_enter(&E->lock);
   2414  1.21  riastrad 			E->pending = 0;
   2415  1.21  riastrad 			atomic_store_relaxed(&E->needed,
   2416  1.21  riastrad 			    ENTROPY_CAPACITY*NBBY);
   2417  1.21  riastrad 			mutex_exit(&E->lock);
   2418  1.21  riastrad 		}
   2419  1.21  riastrad 
   2420  1.21  riastrad 		/*
   2421  1.21  riastrad 		 * If we changed any of the estimation or collection
   2422  1.21  riastrad 		 * flags, request new samples from everyone -- either
   2423  1.21  riastrad 		 * to make up for what we just lost, or to get new
   2424  1.21  riastrad 		 * samples from what we just added.
   2425  1.49  riastrad 		 *
   2426  1.49  riastrad 		 * Failing on signal, while waiting for another process
   2427  1.49  riastrad 		 * to finish requesting entropy, is OK here even though
   2428  1.49  riastrad 		 * we have committed side effects, because this ioctl
   2429  1.49  riastrad 		 * command is idempotent, so repeating it is safe.
   2430  1.21  riastrad 		 */
   2431  1.21  riastrad 		if (request) {
   2432  1.21  riastrad 			mutex_enter(&E->lock);
   2433  1.49  riastrad 			error = entropy_request(ENTROPY_CAPACITY,
   2434  1.49  riastrad 			    ENTROPY_WAIT|ENTROPY_SIG);
   2435  1.21  riastrad 			mutex_exit(&E->lock);
   2436  1.21  riastrad 		}
   2437   1.1  riastrad 		break;
   2438   1.1  riastrad 	}
   2439   1.1  riastrad 	case RNDADDDATA: {	/* Enter seed into entropy pool.  */
   2440   1.1  riastrad 		rnddata_t *rdata = data;
   2441   1.1  riastrad 		unsigned entropybits = 0;
   2442   1.1  riastrad 
   2443   1.1  riastrad 		if (!atomic_load_relaxed(&entropy_collection))
   2444   1.1  riastrad 			break;	/* thanks but no thanks */
   2445   1.1  riastrad 		if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
   2446   1.1  riastrad 			return EINVAL;
   2447   1.1  riastrad 
   2448   1.1  riastrad 		/*
   2449   1.1  riastrad 		 * This ioctl serves as the userland alternative a
   2450   1.1  riastrad 		 * bootloader-provided seed -- typically furnished by
   2451   1.1  riastrad 		 * /etc/rc.d/random_seed.  We accept the user's entropy
   2452   1.1  riastrad 		 * claim only if
   2453   1.1  riastrad 		 *
   2454   1.1  riastrad 		 * (a) the user is privileged, and
   2455   1.1  riastrad 		 * (b) we have not entered a bootloader seed.
   2456   1.1  riastrad 		 *
   2457   1.1  riastrad 		 * under the assumption that the user may use this to
   2458   1.1  riastrad 		 * load a seed from disk that we have already loaded
   2459   1.1  riastrad 		 * from the bootloader, so we don't double-count it.
   2460   1.1  riastrad 		 */
   2461  1.11  riastrad 		if (privileged && rdata->entropy && rdata->len) {
   2462   1.1  riastrad 			mutex_enter(&E->lock);
   2463   1.1  riastrad 			if (!E->seeded) {
   2464   1.1  riastrad 				entropybits = MIN(rdata->entropy,
   2465   1.1  riastrad 				    MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
   2466   1.1  riastrad 				E->seeded = true;
   2467   1.1  riastrad 			}
   2468   1.1  riastrad 			mutex_exit(&E->lock);
   2469   1.1  riastrad 		}
   2470   1.1  riastrad 
   2471  1.13  riastrad 		/* Enter the data and consolidate entropy.  */
   2472   1.1  riastrad 		rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
   2473   1.1  riastrad 		    entropybits);
   2474  1.13  riastrad 		entropy_consolidate();
   2475   1.1  riastrad 		break;
   2476   1.1  riastrad 	}
   2477   1.1  riastrad 	default:
   2478   1.1  riastrad 		error = ENOTTY;
   2479   1.1  riastrad 	}
   2480   1.1  riastrad 
   2481   1.1  riastrad 	/* Return any error that may have come up.  */
   2482   1.1  riastrad 	return error;
   2483   1.1  riastrad }
   2484   1.1  riastrad 
   2485   1.1  riastrad /* Legacy entry points */
   2486   1.1  riastrad 
   2487   1.1  riastrad void
   2488   1.1  riastrad rnd_seed(void *seed, size_t len)
   2489   1.1  riastrad {
   2490   1.1  riastrad 
   2491   1.1  riastrad 	if (len != sizeof(rndsave_t)) {
   2492   1.1  riastrad 		printf("entropy: invalid seed length: %zu,"
   2493   1.1  riastrad 		    " expected sizeof(rndsave_t) = %zu\n",
   2494   1.1  riastrad 		    len, sizeof(rndsave_t));
   2495   1.1  riastrad 		return;
   2496   1.1  riastrad 	}
   2497   1.1  riastrad 	entropy_seed(seed);
   2498   1.1  riastrad }
   2499   1.1  riastrad 
   2500   1.1  riastrad void
   2501   1.1  riastrad rnd_init(void)
   2502   1.1  riastrad {
   2503   1.1  riastrad 
   2504   1.1  riastrad 	entropy_init();
   2505   1.1  riastrad }
   2506   1.1  riastrad 
   2507   1.1  riastrad void
   2508   1.1  riastrad rnd_init_softint(void)
   2509   1.1  riastrad {
   2510   1.1  riastrad 
   2511   1.1  riastrad 	entropy_init_late();
   2512  1.38  riastrad 	entropy_bootrequest();
   2513   1.1  riastrad }
   2514   1.1  riastrad 
   2515   1.1  riastrad int
   2516   1.1  riastrad rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
   2517   1.1  riastrad {
   2518   1.1  riastrad 
   2519   1.1  riastrad 	return entropy_ioctl(cmd, data);
   2520   1.1  riastrad }
   2521