Home | History | Annotate | Line # | Download | only in kern
kern_entropy.c revision 1.62
      1  1.62  riastrad /*	$NetBSD: kern_entropy.c,v 1.62 2023/06/30 21:42:05 riastradh Exp $	*/
      2   1.1  riastrad 
      3   1.1  riastrad /*-
      4   1.1  riastrad  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      5   1.1  riastrad  * All rights reserved.
      6   1.1  riastrad  *
      7   1.1  riastrad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1  riastrad  * by Taylor R. Campbell.
      9   1.1  riastrad  *
     10   1.1  riastrad  * Redistribution and use in source and binary forms, with or without
     11   1.1  riastrad  * modification, are permitted provided that the following conditions
     12   1.1  riastrad  * are met:
     13   1.1  riastrad  * 1. Redistributions of source code must retain the above copyright
     14   1.1  riastrad  *    notice, this list of conditions and the following disclaimer.
     15   1.1  riastrad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1  riastrad  *    notice, this list of conditions and the following disclaimer in the
     17   1.1  riastrad  *    documentation and/or other materials provided with the distribution.
     18   1.1  riastrad  *
     19   1.1  riastrad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1  riastrad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1  riastrad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1  riastrad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1  riastrad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1  riastrad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1  riastrad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1  riastrad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1  riastrad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1  riastrad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1  riastrad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1  riastrad  */
     31   1.1  riastrad 
     32   1.1  riastrad /*
     33   1.1  riastrad  * Entropy subsystem
     34   1.1  riastrad  *
     35   1.1  riastrad  *	* Each CPU maintains a per-CPU entropy pool so that gathering
     36   1.1  riastrad  *	  entropy requires no interprocessor synchronization, except
     37   1.1  riastrad  *	  early at boot when we may be scrambling to gather entropy as
     38   1.1  riastrad  *	  soon as possible.
     39   1.1  riastrad  *
     40   1.1  riastrad  *	  - entropy_enter gathers entropy and never drops it on the
     41   1.1  riastrad  *	    floor, at the cost of sometimes having to do cryptography.
     42   1.1  riastrad  *
     43   1.1  riastrad  *	  - entropy_enter_intr gathers entropy or drops it on the
     44   1.1  riastrad  *	    floor, with low latency.  Work to stir the pool or kick the
     45   1.1  riastrad  *	    housekeeping thread is scheduled in soft interrupts.
     46   1.1  riastrad  *
     47   1.1  riastrad  *	* entropy_enter immediately enters into the global pool if it
     48   1.1  riastrad  *	  can transition to full entropy in one swell foop.  Otherwise,
     49   1.1  riastrad  *	  it defers to a housekeeping thread that consolidates entropy,
     50   1.1  riastrad  *	  but only when the CPUs collectively have full entropy, in
     51   1.1  riastrad  *	  order to mitigate iterative-guessing attacks.
     52   1.1  riastrad  *
     53   1.1  riastrad  *	* The entropy housekeeping thread continues to consolidate
     54   1.1  riastrad  *	  entropy even after we think we have full entropy, in case we
     55   1.1  riastrad  *	  are wrong, but is limited to one discretionary consolidation
     56   1.1  riastrad  *	  per minute, and only when new entropy is actually coming in,
     57   1.1  riastrad  *	  to limit performance impact.
     58   1.1  riastrad  *
     59   1.1  riastrad  *	* The entropy epoch is the number that changes when we
     60   1.1  riastrad  *	  transition from partial entropy to full entropy, so that
     61   1.1  riastrad  *	  users can easily determine when to reseed.  This also
     62   1.1  riastrad  *	  facilitates an operator explicitly causing everything to
     63  1.13  riastrad  *	  reseed by sysctl -w kern.entropy.consolidate=1.
     64   1.1  riastrad  *
     65   1.1  riastrad  *	* Entropy depletion is available for testing (or if you're into
     66   1.1  riastrad  *	  that sort of thing), with sysctl -w kern.entropy.depletion=1;
     67   1.1  riastrad  *	  the logic to support it is small, to minimize chance of bugs.
     68   1.1  riastrad  */
     69   1.1  riastrad 
     70   1.1  riastrad #include <sys/cdefs.h>
     71  1.62  riastrad __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.62 2023/06/30 21:42:05 riastradh Exp $");
     72   1.1  riastrad 
     73   1.1  riastrad #include <sys/param.h>
     74   1.1  riastrad #include <sys/types.h>
     75   1.1  riastrad #include <sys/atomic.h>
     76   1.1  riastrad #include <sys/compat_stub.h>
     77   1.1  riastrad #include <sys/condvar.h>
     78   1.1  riastrad #include <sys/cpu.h>
     79   1.1  riastrad #include <sys/entropy.h>
     80   1.1  riastrad #include <sys/errno.h>
     81   1.1  riastrad #include <sys/evcnt.h>
     82   1.1  riastrad #include <sys/event.h>
     83   1.1  riastrad #include <sys/file.h>
     84   1.1  riastrad #include <sys/intr.h>
     85   1.1  riastrad #include <sys/kauth.h>
     86   1.1  riastrad #include <sys/kernel.h>
     87   1.1  riastrad #include <sys/kmem.h>
     88   1.1  riastrad #include <sys/kthread.h>
     89  1.53  riastrad #include <sys/lwp.h>
     90   1.1  riastrad #include <sys/module_hook.h>
     91   1.1  riastrad #include <sys/mutex.h>
     92   1.1  riastrad #include <sys/percpu.h>
     93   1.1  riastrad #include <sys/poll.h>
     94  1.53  riastrad #include <sys/proc.h>
     95   1.1  riastrad #include <sys/queue.h>
     96  1.30  jmcneill #include <sys/reboot.h>
     97   1.1  riastrad #include <sys/rnd.h>		/* legacy kernel API */
     98   1.1  riastrad #include <sys/rndio.h>		/* userland ioctl interface */
     99   1.1  riastrad #include <sys/rndsource.h>	/* kernel rndsource driver API */
    100   1.1  riastrad #include <sys/select.h>
    101   1.1  riastrad #include <sys/selinfo.h>
    102   1.1  riastrad #include <sys/sha1.h>		/* for boot seed checksum */
    103   1.1  riastrad #include <sys/stdint.h>
    104   1.1  riastrad #include <sys/sysctl.h>
    105  1.26  riastrad #include <sys/syslog.h>
    106   1.1  riastrad #include <sys/systm.h>
    107   1.1  riastrad #include <sys/time.h>
    108   1.1  riastrad #include <sys/xcall.h>
    109   1.1  riastrad 
    110   1.1  riastrad #include <lib/libkern/entpool.h>
    111   1.1  riastrad 
    112   1.1  riastrad #include <machine/limits.h>
    113   1.1  riastrad 
    114   1.1  riastrad #ifdef __HAVE_CPU_COUNTER
    115   1.1  riastrad #include <machine/cpu_counter.h>
    116   1.1  riastrad #endif
    117   1.1  riastrad 
    118  1.62  riastrad #define	MINENTROPYBYTES	ENTROPY_CAPACITY
    119  1.62  riastrad #define	MINENTROPYBITS	(MINENTROPYBYTES*NBBY)
    120  1.62  riastrad #define	MINSAMPLES	(2*MINENTROPYBITS)
    121  1.62  riastrad 
    122   1.1  riastrad /*
    123   1.1  riastrad  * struct entropy_cpu
    124   1.1  riastrad  *
    125   1.1  riastrad  *	Per-CPU entropy state.  The pool is allocated separately
    126   1.1  riastrad  *	because percpu(9) sometimes moves per-CPU objects around
    127   1.1  riastrad  *	without zeroing them, which would lead to unwanted copies of
    128  1.34    andvar  *	sensitive secrets.  The evcnt is allocated separately because
    129   1.1  riastrad  *	evcnt(9) assumes it stays put in memory.
    130   1.1  riastrad  */
    131   1.1  riastrad struct entropy_cpu {
    132  1.40  riastrad 	struct entropy_cpu_evcnt {
    133  1.40  riastrad 		struct evcnt		softint;
    134  1.40  riastrad 		struct evcnt		intrdrop;
    135  1.40  riastrad 		struct evcnt		intrtrunc;
    136  1.40  riastrad 	}			*ec_evcnt;
    137   1.1  riastrad 	struct entpool		*ec_pool;
    138  1.62  riastrad 	unsigned		ec_bitspending;
    139  1.62  riastrad 	unsigned		ec_samplespending;
    140   1.1  riastrad 	bool			ec_locked;
    141   1.1  riastrad };
    142   1.1  riastrad 
    143   1.1  riastrad /*
    144  1.43  riastrad  * struct entropy_cpu_lock
    145  1.43  riastrad  *
    146  1.43  riastrad  *	State for locking the per-CPU entropy state.
    147  1.43  riastrad  */
    148  1.43  riastrad struct entropy_cpu_lock {
    149  1.43  riastrad 	int		ecl_s;
    150  1.43  riastrad 	uint64_t	ecl_ncsw;
    151  1.43  riastrad };
    152  1.43  riastrad 
    153  1.43  riastrad /*
    154   1.1  riastrad  * struct rndsource_cpu
    155   1.1  riastrad  *
    156   1.1  riastrad  *	Per-CPU rndsource state.
    157   1.1  riastrad  */
    158   1.1  riastrad struct rndsource_cpu {
    159  1.28  riastrad 	unsigned		rc_entropybits;
    160  1.28  riastrad 	unsigned		rc_timesamples;
    161  1.28  riastrad 	unsigned		rc_datasamples;
    162  1.62  riastrad 	rnd_delta_t		rc_timedelta;
    163   1.1  riastrad };
    164   1.1  riastrad 
    165   1.1  riastrad /*
    166   1.1  riastrad  * entropy_global (a.k.a. E for short in this file)
    167   1.1  riastrad  *
    168   1.1  riastrad  *	Global entropy state.  Writes protected by the global lock.
    169   1.1  riastrad  *	Some fields, marked (A), can be read outside the lock, and are
    170   1.1  riastrad  *	maintained with atomic_load/store_relaxed.
    171   1.1  riastrad  */
    172   1.1  riastrad struct {
    173   1.1  riastrad 	kmutex_t	lock;		/* covers all global state */
    174   1.1  riastrad 	struct entpool	pool;		/* global pool for extraction */
    175  1.62  riastrad 	unsigned	bitsneeded;	/* (A) needed globally */
    176  1.62  riastrad 	unsigned	bitspending;	/* pending in per-CPU pools */
    177  1.62  riastrad 	unsigned	samplesneeded;	/* (A) needed globally */
    178  1.62  riastrad 	unsigned	samplespending;	/* pending in per-CPU pools */
    179   1.1  riastrad 	unsigned	timestamp;	/* (A) time of last consolidation */
    180   1.1  riastrad 	unsigned	epoch;		/* (A) changes when needed -> 0 */
    181   1.1  riastrad 	kcondvar_t	cv;		/* notifies state changes */
    182   1.1  riastrad 	struct selinfo	selq;		/* notifies needed -> 0 */
    183   1.4  riastrad 	struct lwp	*sourcelock;	/* lock on list of sources */
    184  1.27  riastrad 	kcondvar_t	sourcelock_cv;	/* notifies sourcelock release */
    185   1.1  riastrad 	LIST_HEAD(,krndsource) sources;	/* list of entropy sources */
    186   1.1  riastrad 	enum entropy_stage {
    187   1.1  riastrad 		ENTROPY_COLD = 0, /* single-threaded */
    188   1.1  riastrad 		ENTROPY_WARM,	  /* multi-threaded at boot before CPUs */
    189   1.1  riastrad 		ENTROPY_HOT,	  /* multi-threaded multi-CPU */
    190   1.1  riastrad 	}		stage;
    191   1.1  riastrad 	bool		consolidate;	/* kick thread to consolidate */
    192   1.1  riastrad 	bool		seed_rndsource;	/* true if seed source is attached */
    193   1.1  riastrad 	bool		seeded;		/* true if seed file already loaded */
    194   1.1  riastrad } entropy_global __cacheline_aligned = {
    195   1.1  riastrad 	/* Fields that must be initialized when the kernel is loaded.  */
    196  1.62  riastrad 	.bitsneeded = MINENTROPYBITS,
    197  1.62  riastrad 	.samplesneeded = MINSAMPLES,
    198  1.14  riastrad 	.epoch = (unsigned)-1,	/* -1 means entropy never consolidated */
    199   1.1  riastrad 	.sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
    200   1.1  riastrad 	.stage = ENTROPY_COLD,
    201   1.1  riastrad };
    202   1.1  riastrad 
    203   1.1  riastrad #define	E	(&entropy_global)	/* declutter */
    204   1.1  riastrad 
    205   1.1  riastrad /* Read-mostly globals */
    206   1.1  riastrad static struct percpu	*entropy_percpu __read_mostly; /* struct entropy_cpu */
    207   1.1  riastrad static void		*entropy_sih __read_mostly; /* softint handler */
    208   1.1  riastrad static struct lwp	*entropy_lwp __read_mostly; /* housekeeping thread */
    209   1.1  riastrad 
    210   1.1  riastrad static struct krndsource seed_rndsource __read_mostly;
    211   1.1  riastrad 
    212   1.1  riastrad /*
    213   1.1  riastrad  * Event counters
    214   1.1  riastrad  *
    215   1.1  riastrad  *	Must be careful with adding these because they can serve as
    216   1.1  riastrad  *	side channels.
    217   1.1  riastrad  */
    218   1.1  riastrad static struct evcnt entropy_discretionary_evcnt =
    219   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
    220   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
    221   1.1  riastrad static struct evcnt entropy_immediate_evcnt =
    222   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
    223   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
    224   1.1  riastrad static struct evcnt entropy_partial_evcnt =
    225   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
    226   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
    227   1.1  riastrad static struct evcnt entropy_consolidate_evcnt =
    228   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
    229   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
    230   1.1  riastrad static struct evcnt entropy_extract_fail_evcnt =
    231   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
    232   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
    233   1.1  riastrad static struct evcnt entropy_request_evcnt =
    234   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
    235   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_request_evcnt);
    236   1.1  riastrad static struct evcnt entropy_deplete_evcnt =
    237   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
    238   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
    239   1.1  riastrad static struct evcnt entropy_notify_evcnt =
    240   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
    241   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
    242   1.1  riastrad 
    243   1.1  riastrad /* Sysctl knobs */
    244  1.17  riastrad static bool	entropy_collection = 1;
    245  1.17  riastrad static bool	entropy_depletion = 0; /* Silly!  */
    246   1.1  riastrad 
    247   1.1  riastrad static const struct sysctlnode	*entropy_sysctlroot;
    248   1.1  riastrad static struct sysctllog		*entropy_sysctllog;
    249   1.1  riastrad 
    250   1.1  riastrad /* Forward declarations */
    251   1.1  riastrad static void	entropy_init_cpu(void *, void *, struct cpu_info *);
    252   1.1  riastrad static void	entropy_fini_cpu(void *, void *, struct cpu_info *);
    253   1.1  riastrad static void	entropy_account_cpu(struct entropy_cpu *);
    254  1.62  riastrad static void	entropy_enter(const void *, size_t, unsigned, bool);
    255  1.62  riastrad static bool	entropy_enter_intr(const void *, size_t, unsigned, bool);
    256   1.1  riastrad static void	entropy_softintr(void *);
    257   1.1  riastrad static void	entropy_thread(void *);
    258  1.62  riastrad static bool	entropy_pending(void);
    259   1.1  riastrad static void	entropy_pending_cpu(void *, void *, struct cpu_info *);
    260  1.13  riastrad static void	entropy_do_consolidate(void);
    261  1.13  riastrad static void	entropy_consolidate_xc(void *, void *);
    262   1.1  riastrad static void	entropy_notify(void);
    263   1.1  riastrad static int	sysctl_entropy_consolidate(SYSCTLFN_ARGS);
    264  1.10  riastrad static int	sysctl_entropy_gather(SYSCTLFN_ARGS);
    265   1.1  riastrad static void	filt_entropy_read_detach(struct knote *);
    266   1.1  riastrad static int	filt_entropy_read_event(struct knote *, long);
    267  1.49  riastrad static int	entropy_request(size_t, int);
    268   1.1  riastrad static void	rnd_add_data_1(struct krndsource *, const void *, uint32_t,
    269  1.62  riastrad 		    uint32_t, bool, uint32_t);
    270   1.1  riastrad static unsigned	rndsource_entropybits(struct krndsource *);
    271   1.1  riastrad static void	rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
    272   1.1  riastrad static void	rndsource_to_user(struct krndsource *, rndsource_t *);
    273   1.1  riastrad static void	rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
    274  1.28  riastrad static void	rndsource_to_user_est_cpu(void *, void *, struct cpu_info *);
    275   1.1  riastrad 
    276   1.1  riastrad /*
    277   1.1  riastrad  * entropy_timer()
    278   1.1  riastrad  *
    279   1.1  riastrad  *	Cycle counter, time counter, or anything that changes a wee bit
    280   1.1  riastrad  *	unpredictably.
    281   1.1  riastrad  */
    282   1.1  riastrad static inline uint32_t
    283   1.1  riastrad entropy_timer(void)
    284   1.1  riastrad {
    285   1.1  riastrad 	struct bintime bt;
    286   1.1  riastrad 	uint32_t v;
    287   1.1  riastrad 
    288   1.1  riastrad 	/* If we have a CPU cycle counter, use the low 32 bits.  */
    289   1.1  riastrad #ifdef __HAVE_CPU_COUNTER
    290   1.1  riastrad 	if (__predict_true(cpu_hascounter()))
    291   1.1  riastrad 		return cpu_counter32();
    292   1.1  riastrad #endif	/* __HAVE_CPU_COUNTER */
    293   1.1  riastrad 
    294   1.1  riastrad 	/* If we're cold, tough.  Can't binuptime while cold.  */
    295   1.1  riastrad 	if (__predict_false(cold))
    296   1.1  riastrad 		return 0;
    297   1.1  riastrad 
    298   1.1  riastrad 	/* Fold the 128 bits of binuptime into 32 bits.  */
    299   1.1  riastrad 	binuptime(&bt);
    300   1.1  riastrad 	v = bt.frac;
    301   1.1  riastrad 	v ^= bt.frac >> 32;
    302   1.1  riastrad 	v ^= bt.sec;
    303   1.1  riastrad 	v ^= bt.sec >> 32;
    304   1.1  riastrad 	return v;
    305   1.1  riastrad }
    306   1.1  riastrad 
    307   1.1  riastrad static void
    308   1.1  riastrad attach_seed_rndsource(void)
    309   1.1  riastrad {
    310   1.1  riastrad 
    311   1.1  riastrad 	/*
    312   1.1  riastrad 	 * First called no later than entropy_init, while we are still
    313   1.1  riastrad 	 * single-threaded, so no need for RUN_ONCE.
    314   1.1  riastrad 	 */
    315   1.1  riastrad 	if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
    316   1.1  riastrad 		return;
    317   1.1  riastrad 	rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
    318   1.1  riastrad 	    RND_FLAG_COLLECT_VALUE);
    319   1.1  riastrad 	E->seed_rndsource = true;
    320   1.1  riastrad }
    321   1.1  riastrad 
    322   1.1  riastrad /*
    323   1.1  riastrad  * entropy_init()
    324   1.1  riastrad  *
    325   1.1  riastrad  *	Initialize the entropy subsystem.  Panic on failure.
    326   1.1  riastrad  *
    327   1.1  riastrad  *	Requires percpu(9) and sysctl(9) to be initialized.
    328   1.1  riastrad  */
    329   1.1  riastrad static void
    330   1.1  riastrad entropy_init(void)
    331   1.1  riastrad {
    332   1.1  riastrad 	uint32_t extra[2];
    333   1.1  riastrad 	struct krndsource *rs;
    334   1.1  riastrad 	unsigned i = 0;
    335   1.1  riastrad 
    336   1.1  riastrad 	KASSERT(E->stage == ENTROPY_COLD);
    337   1.1  riastrad 
    338   1.1  riastrad 	/* Grab some cycle counts early at boot.  */
    339   1.1  riastrad 	extra[i++] = entropy_timer();
    340   1.1  riastrad 
    341   1.1  riastrad 	/* Run the entropy pool cryptography self-test.  */
    342   1.1  riastrad 	if (entpool_selftest() == -1)
    343   1.1  riastrad 		panic("entropy pool crypto self-test failed");
    344   1.1  riastrad 
    345   1.1  riastrad 	/* Create the sysctl directory.  */
    346   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
    347   1.1  riastrad 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
    348   1.1  riastrad 	    SYSCTL_DESCR("Entropy (random number sources) options"),
    349   1.1  riastrad 	    NULL, 0, NULL, 0,
    350   1.1  riastrad 	    CTL_KERN, CTL_CREATE, CTL_EOL);
    351   1.1  riastrad 
    352   1.1  riastrad 	/* Create the sysctl knobs.  */
    353   1.1  riastrad 	/* XXX These shouldn't be writable at securelevel>0.  */
    354   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    355   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
    356   1.1  riastrad 	    SYSCTL_DESCR("Automatically collect entropy from hardware"),
    357   1.1  riastrad 	    NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
    358   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    359   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
    360   1.1  riastrad 	    SYSCTL_DESCR("`Deplete' entropy pool when observed"),
    361   1.1  riastrad 	    NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
    362   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    363   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
    364   1.1  riastrad 	    SYSCTL_DESCR("Trigger entropy consolidation now"),
    365   1.1  riastrad 	    sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    366  1.10  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    367  1.10  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
    368  1.10  riastrad 	    SYSCTL_DESCR("Trigger entropy gathering from sources now"),
    369  1.10  riastrad 	    sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    370   1.1  riastrad 	/* XXX These should maybe not be readable at securelevel>0.  */
    371   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    372   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    373  1.62  riastrad 	    "needed",
    374  1.62  riastrad 	    SYSCTL_DESCR("Systemwide entropy deficit (bits of entropy)"),
    375  1.62  riastrad 	    NULL, 0, &E->bitsneeded, 0, CTL_CREATE, CTL_EOL);
    376   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    377   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    378  1.62  riastrad 	    "pending",
    379  1.62  riastrad 	    SYSCTL_DESCR("Number of bits of entropy pending on CPUs"),
    380  1.62  riastrad 	    NULL, 0, &E->bitspending, 0, CTL_CREATE, CTL_EOL);
    381  1.62  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    382  1.62  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    383  1.62  riastrad 	    "samplesneeded",
    384  1.62  riastrad 	    SYSCTL_DESCR("Systemwide entropy deficit (samples)"),
    385  1.62  riastrad 	    NULL, 0, &E->samplesneeded, 0, CTL_CREATE, CTL_EOL);
    386  1.62  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    387  1.62  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    388  1.62  riastrad 	    "samplespending",
    389  1.62  riastrad 	    SYSCTL_DESCR("Number of samples pending on CPUs"),
    390  1.62  riastrad 	    NULL, 0, &E->samplespending, 0, CTL_CREATE, CTL_EOL);
    391   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    392   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    393   1.1  riastrad 	    "epoch", SYSCTL_DESCR("Entropy epoch"),
    394   1.1  riastrad 	    NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
    395   1.1  riastrad 
    396   1.1  riastrad 	/* Initialize the global state for multithreaded operation.  */
    397  1.39  riastrad 	mutex_init(&E->lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
    398   1.1  riastrad 	cv_init(&E->cv, "entropy");
    399   1.1  riastrad 	selinit(&E->selq);
    400  1.27  riastrad 	cv_init(&E->sourcelock_cv, "entsrclock");
    401   1.1  riastrad 
    402   1.1  riastrad 	/* Make sure the seed source is attached.  */
    403   1.1  riastrad 	attach_seed_rndsource();
    404   1.1  riastrad 
    405   1.1  riastrad 	/* Note if the bootloader didn't provide a seed.  */
    406   1.1  riastrad 	if (!E->seeded)
    407  1.29  riastrad 		aprint_debug("entropy: no seed from bootloader\n");
    408   1.1  riastrad 
    409   1.1  riastrad 	/* Allocate the per-CPU records for all early entropy sources.  */
    410   1.1  riastrad 	LIST_FOREACH(rs, &E->sources, list)
    411   1.1  riastrad 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
    412   1.1  riastrad 
    413  1.36  riastrad 	/* Allocate and initialize the per-CPU state.  */
    414  1.36  riastrad 	entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
    415  1.36  riastrad 	    entropy_init_cpu, entropy_fini_cpu, NULL);
    416  1.36  riastrad 
    417   1.1  riastrad 	/* Enter the boot cycle count to get started.  */
    418   1.1  riastrad 	extra[i++] = entropy_timer();
    419   1.1  riastrad 	KASSERT(i == __arraycount(extra));
    420  1.62  riastrad 	entropy_enter(extra, sizeof extra, /*nbits*/0, /*count*/false);
    421   1.1  riastrad 	explicit_memset(extra, 0, sizeof extra);
    422   1.1  riastrad 
    423   1.1  riastrad 	/* We are now ready for multi-threaded operation.  */
    424   1.1  riastrad 	E->stage = ENTROPY_WARM;
    425   1.1  riastrad }
    426   1.1  riastrad 
    427  1.37  riastrad static void
    428  1.37  riastrad entropy_init_late_cpu(void *a, void *b)
    429  1.37  riastrad {
    430  1.54  riastrad 	int bound;
    431  1.37  riastrad 
    432  1.54  riastrad 	/*
    433  1.54  riastrad 	 * We're not necessarily in a softint lwp here (xc_broadcast
    434  1.54  riastrad 	 * triggers softint on other CPUs, but calls directly on this
    435  1.54  riastrad 	 * CPU), so explicitly bind to the current CPU to invoke the
    436  1.54  riastrad 	 * softintr -- this lets us have a simpler assertion in
    437  1.54  riastrad 	 * entropy_account_cpu.  Not necessary to avoid migration
    438  1.54  riastrad 	 * because xc_broadcast disables kpreemption anyway, but it
    439  1.54  riastrad 	 * doesn't hurt.
    440  1.54  riastrad 	 */
    441  1.54  riastrad 	bound = curlwp_bind();
    442  1.37  riastrad 	entropy_softintr(NULL);
    443  1.54  riastrad 	curlwp_bindx(bound);
    444  1.37  riastrad }
    445  1.37  riastrad 
    446   1.1  riastrad /*
    447   1.1  riastrad  * entropy_init_late()
    448   1.1  riastrad  *
    449   1.1  riastrad  *	Late initialization.  Panic on failure.
    450   1.1  riastrad  *
    451   1.1  riastrad  *	Requires CPUs to have been detected and LWPs to have started.
    452   1.1  riastrad  */
    453   1.1  riastrad static void
    454   1.1  riastrad entropy_init_late(void)
    455   1.1  riastrad {
    456  1.37  riastrad 	void *sih;
    457   1.1  riastrad 	int error;
    458   1.1  riastrad 
    459   1.1  riastrad 	KASSERT(E->stage == ENTROPY_WARM);
    460   1.1  riastrad 
    461   1.1  riastrad 	/*
    462   1.1  riastrad 	 * Establish the softint at the highest softint priority level.
    463   1.1  riastrad 	 * Must happen after CPU detection.
    464   1.1  riastrad 	 */
    465  1.37  riastrad 	sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
    466   1.1  riastrad 	    &entropy_softintr, NULL);
    467  1.37  riastrad 	if (sih == NULL)
    468   1.1  riastrad 		panic("unable to establish entropy softint");
    469   1.1  riastrad 
    470   1.1  riastrad 	/*
    471   1.1  riastrad 	 * Create the entropy housekeeping thread.  Must happen after
    472   1.1  riastrad 	 * lwpinit.
    473   1.1  riastrad 	 */
    474   1.1  riastrad 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
    475   1.1  riastrad 	    entropy_thread, NULL, &entropy_lwp, "entbutler");
    476   1.1  riastrad 	if (error)
    477   1.1  riastrad 		panic("unable to create entropy housekeeping thread: %d",
    478   1.1  riastrad 		    error);
    479   1.1  riastrad 
    480   1.1  riastrad 	/*
    481   1.1  riastrad 	 * Wait until the per-CPU initialization has hit all CPUs
    482  1.37  riastrad 	 * before proceeding to mark the entropy system hot and
    483  1.37  riastrad 	 * enabling use of the softint.
    484   1.1  riastrad 	 */
    485   1.1  riastrad 	xc_barrier(XC_HIGHPRI);
    486   1.1  riastrad 	E->stage = ENTROPY_HOT;
    487  1.37  riastrad 	atomic_store_relaxed(&entropy_sih, sih);
    488  1.37  riastrad 
    489  1.37  riastrad 	/*
    490  1.37  riastrad 	 * At this point, entering new samples from interrupt handlers
    491  1.37  riastrad 	 * will trigger the softint to process them.  But there may be
    492  1.37  riastrad 	 * some samples that were entered from interrupt handlers
    493  1.37  riastrad 	 * before the softint was available.  Make sure we process
    494  1.37  riastrad 	 * those samples on all CPUs by running the softint logic on
    495  1.37  riastrad 	 * all CPUs.
    496  1.37  riastrad 	 */
    497  1.37  riastrad 	xc_wait(xc_broadcast(XC_HIGHPRI, entropy_init_late_cpu, NULL, NULL));
    498   1.1  riastrad }
    499   1.1  riastrad 
    500   1.1  riastrad /*
    501   1.1  riastrad  * entropy_init_cpu(ptr, cookie, ci)
    502   1.1  riastrad  *
    503   1.1  riastrad  *	percpu(9) constructor for per-CPU entropy pool.
    504   1.1  riastrad  */
    505   1.1  riastrad static void
    506   1.1  riastrad entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    507   1.1  riastrad {
    508   1.1  riastrad 	struct entropy_cpu *ec = ptr;
    509  1.40  riastrad 	const char *cpuname;
    510   1.1  riastrad 
    511  1.40  riastrad 	ec->ec_evcnt = kmem_alloc(sizeof(*ec->ec_evcnt), KM_SLEEP);
    512   1.1  riastrad 	ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
    513  1.62  riastrad 	ec->ec_bitspending = 0;
    514  1.62  riastrad 	ec->ec_samplespending = 0;
    515   1.1  riastrad 	ec->ec_locked = false;
    516   1.1  riastrad 
    517  1.36  riastrad 	/* XXX ci_cpuname may not be initialized early enough.  */
    518  1.40  riastrad 	cpuname = ci->ci_cpuname[0] == '\0' ? "cpu0" : ci->ci_cpuname;
    519  1.40  riastrad 	evcnt_attach_dynamic(&ec->ec_evcnt->softint, EVCNT_TYPE_MISC, NULL,
    520  1.40  riastrad 	    cpuname, "entropy softint");
    521  1.40  riastrad 	evcnt_attach_dynamic(&ec->ec_evcnt->intrdrop, EVCNT_TYPE_MISC, NULL,
    522  1.40  riastrad 	    cpuname, "entropy intrdrop");
    523  1.40  riastrad 	evcnt_attach_dynamic(&ec->ec_evcnt->intrtrunc, EVCNT_TYPE_MISC, NULL,
    524  1.40  riastrad 	    cpuname, "entropy intrtrunc");
    525   1.1  riastrad }
    526   1.1  riastrad 
    527   1.1  riastrad /*
    528   1.1  riastrad  * entropy_fini_cpu(ptr, cookie, ci)
    529   1.1  riastrad  *
    530   1.1  riastrad  *	percpu(9) destructor for per-CPU entropy pool.
    531   1.1  riastrad  */
    532   1.1  riastrad static void
    533   1.1  riastrad entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    534   1.1  riastrad {
    535   1.1  riastrad 	struct entropy_cpu *ec = ptr;
    536   1.1  riastrad 
    537   1.1  riastrad 	/*
    538   1.1  riastrad 	 * Zero any lingering data.  Disclosure of the per-CPU pool
    539   1.1  riastrad 	 * shouldn't retroactively affect the security of any keys
    540   1.1  riastrad 	 * generated, because entpool(9) erases whatever we have just
    541   1.1  riastrad 	 * drawn out of any pool, but better safe than sorry.
    542   1.1  riastrad 	 */
    543   1.1  riastrad 	explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
    544   1.1  riastrad 
    545  1.40  riastrad 	evcnt_detach(&ec->ec_evcnt->intrtrunc);
    546  1.40  riastrad 	evcnt_detach(&ec->ec_evcnt->intrdrop);
    547  1.40  riastrad 	evcnt_detach(&ec->ec_evcnt->softint);
    548   1.1  riastrad 
    549   1.1  riastrad 	kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
    550  1.40  riastrad 	kmem_free(ec->ec_evcnt, sizeof(*ec->ec_evcnt));
    551   1.1  riastrad }
    552   1.1  riastrad 
    553   1.1  riastrad /*
    554  1.43  riastrad  * ec = entropy_cpu_get(&lock)
    555  1.43  riastrad  * entropy_cpu_put(&lock, ec)
    556  1.43  riastrad  *
    557  1.43  riastrad  *	Lock and unlock the per-CPU entropy state.  This only prevents
    558  1.43  riastrad  *	access on the same CPU -- by hard interrupts, by soft
    559  1.43  riastrad  *	interrupts, or by other threads.
    560  1.43  riastrad  *
    561  1.43  riastrad  *	Blocks soft interrupts and preemption altogether; doesn't block
    562  1.43  riastrad  *	hard interrupts, but causes samples in hard interrupts to be
    563  1.43  riastrad  *	dropped.
    564  1.43  riastrad  */
    565  1.43  riastrad static struct entropy_cpu *
    566  1.43  riastrad entropy_cpu_get(struct entropy_cpu_lock *lock)
    567  1.43  riastrad {
    568  1.43  riastrad 	struct entropy_cpu *ec;
    569  1.43  riastrad 
    570  1.43  riastrad 	ec = percpu_getref(entropy_percpu);
    571  1.43  riastrad 	lock->ecl_s = splsoftserial();
    572  1.43  riastrad 	KASSERT(!ec->ec_locked);
    573  1.43  riastrad 	ec->ec_locked = true;
    574  1.43  riastrad 	lock->ecl_ncsw = curlwp->l_ncsw;
    575  1.43  riastrad 	__insn_barrier();
    576  1.43  riastrad 
    577  1.43  riastrad 	return ec;
    578  1.43  riastrad }
    579  1.43  riastrad 
    580  1.43  riastrad static void
    581  1.43  riastrad entropy_cpu_put(struct entropy_cpu_lock *lock, struct entropy_cpu *ec)
    582  1.43  riastrad {
    583  1.43  riastrad 
    584  1.43  riastrad 	KASSERT(ec == percpu_getptr_remote(entropy_percpu, curcpu()));
    585  1.43  riastrad 	KASSERT(ec->ec_locked);
    586  1.43  riastrad 
    587  1.43  riastrad 	__insn_barrier();
    588  1.43  riastrad 	KASSERT(lock->ecl_ncsw == curlwp->l_ncsw);
    589  1.43  riastrad 	ec->ec_locked = false;
    590  1.43  riastrad 	splx(lock->ecl_s);
    591  1.43  riastrad 	percpu_putref(entropy_percpu);
    592  1.43  riastrad }
    593  1.43  riastrad 
    594  1.43  riastrad /*
    595   1.1  riastrad  * entropy_seed(seed)
    596   1.1  riastrad  *
    597   1.1  riastrad  *	Seed the entropy pool with seed.  Meant to be called as early
    598   1.1  riastrad  *	as possible by the bootloader; may be called before or after
    599   1.1  riastrad  *	entropy_init.  Must be called before system reaches userland.
    600   1.1  riastrad  *	Must be called in thread or soft interrupt context, not in hard
    601   1.1  riastrad  *	interrupt context.  Must be called at most once.
    602   1.1  riastrad  *
    603   1.1  riastrad  *	Overwrites the seed in place.  Caller may then free the memory.
    604   1.1  riastrad  */
    605   1.1  riastrad static void
    606   1.1  riastrad entropy_seed(rndsave_t *seed)
    607   1.1  riastrad {
    608   1.1  riastrad 	SHA1_CTX ctx;
    609   1.1  riastrad 	uint8_t digest[SHA1_DIGEST_LENGTH];
    610   1.1  riastrad 	bool seeded;
    611   1.1  riastrad 
    612   1.1  riastrad 	/*
    613   1.1  riastrad 	 * Verify the checksum.  If the checksum fails, take the data
    614   1.1  riastrad 	 * but ignore the entropy estimate -- the file may have been
    615   1.1  riastrad 	 * incompletely written with garbage, which is harmless to add
    616   1.1  riastrad 	 * but may not be as unpredictable as alleged.
    617   1.1  riastrad 	 */
    618   1.1  riastrad 	SHA1Init(&ctx);
    619   1.1  riastrad 	SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
    620   1.1  riastrad 	SHA1Update(&ctx, seed->data, sizeof(seed->data));
    621   1.1  riastrad 	SHA1Final(digest, &ctx);
    622   1.1  riastrad 	CTASSERT(sizeof(seed->digest) == sizeof(digest));
    623   1.1  riastrad 	if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
    624   1.1  riastrad 		printf("entropy: invalid seed checksum\n");
    625   1.1  riastrad 		seed->entropy = 0;
    626   1.1  riastrad 	}
    627   1.2  riastrad 	explicit_memset(&ctx, 0, sizeof ctx);
    628   1.1  riastrad 	explicit_memset(digest, 0, sizeof digest);
    629   1.1  riastrad 
    630   1.2  riastrad 	/*
    631   1.2  riastrad 	 * If the entropy is insensibly large, try byte-swapping.
    632   1.2  riastrad 	 * Otherwise assume the file is corrupted and act as though it
    633   1.2  riastrad 	 * has zero entropy.
    634   1.2  riastrad 	 */
    635   1.2  riastrad 	if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
    636   1.2  riastrad 		seed->entropy = bswap32(seed->entropy);
    637   1.2  riastrad 		if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
    638   1.2  riastrad 			seed->entropy = 0;
    639   1.2  riastrad 	}
    640   1.2  riastrad 
    641   1.1  riastrad 	/* Make sure the seed source is attached.  */
    642   1.1  riastrad 	attach_seed_rndsource();
    643   1.1  riastrad 
    644   1.1  riastrad 	/* Test and set E->seeded.  */
    645   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
    646   1.1  riastrad 		mutex_enter(&E->lock);
    647   1.1  riastrad 	seeded = E->seeded;
    648  1.11  riastrad 	E->seeded = (seed->entropy > 0);
    649   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
    650   1.1  riastrad 		mutex_exit(&E->lock);
    651   1.1  riastrad 
    652   1.1  riastrad 	/*
    653   1.1  riastrad 	 * If we've been seeded, may be re-entering the same seed
    654   1.1  riastrad 	 * (e.g., bootloader vs module init, or something).  No harm in
    655   1.1  riastrad 	 * entering it twice, but it contributes no additional entropy.
    656   1.1  riastrad 	 */
    657   1.1  riastrad 	if (seeded) {
    658   1.1  riastrad 		printf("entropy: double-seeded by bootloader\n");
    659   1.1  riastrad 		seed->entropy = 0;
    660   1.1  riastrad 	} else {
    661  1.11  riastrad 		printf("entropy: entering seed from bootloader"
    662  1.11  riastrad 		    " with %u bits of entropy\n", (unsigned)seed->entropy);
    663   1.1  riastrad 	}
    664   1.1  riastrad 
    665   1.1  riastrad 	/* Enter it into the pool and promptly zero it.  */
    666   1.1  riastrad 	rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
    667   1.1  riastrad 	    seed->entropy);
    668   1.1  riastrad 	explicit_memset(seed, 0, sizeof(*seed));
    669   1.1  riastrad }
    670   1.1  riastrad 
    671   1.1  riastrad /*
    672   1.1  riastrad  * entropy_bootrequest()
    673   1.1  riastrad  *
    674   1.1  riastrad  *	Request entropy from all sources at boot, once config is
    675   1.1  riastrad  *	complete and interrupts are running.
    676   1.1  riastrad  */
    677   1.1  riastrad void
    678   1.1  riastrad entropy_bootrequest(void)
    679   1.1  riastrad {
    680  1.49  riastrad 	int error;
    681   1.1  riastrad 
    682   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
    683   1.1  riastrad 
    684   1.1  riastrad 	/*
    685   1.1  riastrad 	 * Request enough to satisfy the maximum entropy shortage.
    686   1.1  riastrad 	 * This is harmless overkill if the bootloader provided a seed.
    687   1.1  riastrad 	 */
    688   1.1  riastrad 	mutex_enter(&E->lock);
    689  1.62  riastrad 	error = entropy_request(MINENTROPYBYTES, ENTROPY_WAIT);
    690  1.49  riastrad 	KASSERT(error == 0);
    691   1.1  riastrad 	mutex_exit(&E->lock);
    692   1.1  riastrad }
    693   1.1  riastrad 
    694   1.1  riastrad /*
    695   1.1  riastrad  * entropy_epoch()
    696   1.1  riastrad  *
    697   1.1  riastrad  *	Returns the current entropy epoch.  If this changes, you should
    698  1.14  riastrad  *	reseed.  If -1, means system entropy has not yet reached full
    699  1.14  riastrad  *	entropy or been explicitly consolidated; never reverts back to
    700  1.14  riastrad  *	-1.  Never zero, so you can always use zero as an uninitialized
    701  1.14  riastrad  *	sentinel value meaning `reseed ASAP'.
    702   1.1  riastrad  *
    703   1.1  riastrad  *	Usage model:
    704   1.1  riastrad  *
    705   1.1  riastrad  *		struct foo {
    706   1.1  riastrad  *			struct crypto_prng prng;
    707   1.1  riastrad  *			unsigned epoch;
    708   1.1  riastrad  *		} *foo;
    709   1.1  riastrad  *
    710   1.1  riastrad  *		unsigned epoch = entropy_epoch();
    711   1.1  riastrad  *		if (__predict_false(epoch != foo->epoch)) {
    712   1.1  riastrad  *			uint8_t seed[32];
    713   1.1  riastrad  *			if (entropy_extract(seed, sizeof seed, 0) != 0)
    714   1.1  riastrad  *				warn("no entropy");
    715   1.1  riastrad  *			crypto_prng_reseed(&foo->prng, seed, sizeof seed);
    716   1.1  riastrad  *			foo->epoch = epoch;
    717   1.1  riastrad  *		}
    718   1.1  riastrad  */
    719   1.1  riastrad unsigned
    720   1.1  riastrad entropy_epoch(void)
    721   1.1  riastrad {
    722   1.1  riastrad 
    723   1.1  riastrad 	/*
    724   1.1  riastrad 	 * Unsigned int, so no need for seqlock for an atomic read, but
    725   1.1  riastrad 	 * make sure we read it afresh each time.
    726   1.1  riastrad 	 */
    727   1.1  riastrad 	return atomic_load_relaxed(&E->epoch);
    728   1.1  riastrad }
    729   1.1  riastrad 
    730   1.1  riastrad /*
    731  1.23  riastrad  * entropy_ready()
    732  1.23  riastrad  *
    733  1.23  riastrad  *	True if the entropy pool has full entropy.
    734  1.23  riastrad  */
    735  1.23  riastrad bool
    736  1.23  riastrad entropy_ready(void)
    737  1.23  riastrad {
    738  1.23  riastrad 
    739  1.62  riastrad 	return atomic_load_relaxed(&E->bitsneeded) == 0;
    740  1.23  riastrad }
    741  1.23  riastrad 
    742  1.23  riastrad /*
    743   1.1  riastrad  * entropy_account_cpu(ec)
    744   1.1  riastrad  *
    745   1.1  riastrad  *	Consider whether to consolidate entropy into the global pool
    746   1.1  riastrad  *	after we just added some into the current CPU's pending pool.
    747   1.1  riastrad  *
    748   1.1  riastrad  *	- If this CPU can provide enough entropy now, do so.
    749   1.1  riastrad  *
    750   1.1  riastrad  *	- If this and whatever else is available on other CPUs can
    751   1.1  riastrad  *	  provide enough entropy, kick the consolidation thread.
    752   1.1  riastrad  *
    753   1.1  riastrad  *	- Otherwise, do as little as possible, except maybe consolidate
    754   1.1  riastrad  *	  entropy at most once a minute.
    755   1.1  riastrad  *
    756   1.1  riastrad  *	Caller must be bound to a CPU and therefore have exclusive
    757   1.1  riastrad  *	access to ec.  Will acquire and release the global lock.
    758   1.1  riastrad  */
    759   1.1  riastrad static void
    760   1.1  riastrad entropy_account_cpu(struct entropy_cpu *ec)
    761   1.1  riastrad {
    762  1.44  riastrad 	struct entropy_cpu_lock lock;
    763  1.44  riastrad 	struct entropy_cpu *ec0;
    764  1.62  riastrad 	unsigned bitsdiff, samplesdiff;
    765   1.1  riastrad 
    766  1.37  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
    767  1.52  riastrad 	KASSERT(curlwp->l_pflag & LP_BOUND);
    768   1.1  riastrad 
    769   1.1  riastrad 	/*
    770   1.1  riastrad 	 * If there's no entropy needed, and entropy has been
    771   1.1  riastrad 	 * consolidated in the last minute, do nothing.
    772   1.1  riastrad 	 */
    773  1.62  riastrad 	if (__predict_true(atomic_load_relaxed(&E->bitsneeded) == 0) &&
    774   1.1  riastrad 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
    775   1.1  riastrad 	    __predict_true((time_uptime - E->timestamp) <= 60))
    776   1.1  riastrad 		return;
    777   1.1  riastrad 
    778  1.44  riastrad 	/*
    779  1.44  riastrad 	 * Consider consolidation, under the global lock and with the
    780  1.44  riastrad 	 * per-CPU state locked.
    781  1.44  riastrad 	 */
    782   1.1  riastrad 	mutex_enter(&E->lock);
    783  1.44  riastrad 	ec0 = entropy_cpu_get(&lock);
    784  1.44  riastrad 	KASSERT(ec0 == ec);
    785  1.62  riastrad 
    786  1.62  riastrad 	if (ec->ec_bitspending == 0 && ec->ec_samplespending == 0) {
    787  1.46  riastrad 		/* Raced with consolidation xcall.  Nothing to do.  */
    788  1.62  riastrad 	} else if (E->bitsneeded != 0 && E->bitsneeded <= ec->ec_bitspending) {
    789   1.1  riastrad 		/*
    790   1.1  riastrad 		 * If we have not yet attained full entropy but we can
    791   1.1  riastrad 		 * now, do so.  This way we disseminate entropy
    792   1.1  riastrad 		 * promptly when it becomes available early at boot;
    793   1.1  riastrad 		 * otherwise we leave it to the entropy consolidation
    794   1.1  riastrad 		 * thread, which is rate-limited to mitigate side
    795   1.1  riastrad 		 * channels and abuse.
    796   1.1  riastrad 		 */
    797   1.1  riastrad 		uint8_t buf[ENTPOOL_CAPACITY];
    798   1.1  riastrad 
    799   1.1  riastrad 		/* Transfer from the local pool to the global pool.  */
    800   1.1  riastrad 		entpool_extract(ec->ec_pool, buf, sizeof buf);
    801   1.1  riastrad 		entpool_enter(&E->pool, buf, sizeof buf);
    802  1.62  riastrad 		atomic_store_relaxed(&ec->ec_bitspending, 0);
    803  1.62  riastrad 		atomic_store_relaxed(&ec->ec_samplespending, 0);
    804  1.62  riastrad 		atomic_store_relaxed(&E->bitsneeded, 0);
    805  1.62  riastrad 		atomic_store_relaxed(&E->samplesneeded, 0);
    806   1.1  riastrad 
    807   1.1  riastrad 		/* Notify waiters that we now have full entropy.  */
    808   1.1  riastrad 		entropy_notify();
    809   1.1  riastrad 		entropy_immediate_evcnt.ev_count++;
    810  1.18  riastrad 	} else {
    811  1.45  riastrad 		/* Determine how much we can add to the global pool.  */
    812  1.62  riastrad 		KASSERTMSG(E->bitspending <= MINENTROPYBITS,
    813  1.62  riastrad 		    "E->bitspending=%u", E->bitspending);
    814  1.62  riastrad 		bitsdiff = MIN(ec->ec_bitspending,
    815  1.62  riastrad 		    MINENTROPYBITS - E->bitspending);
    816  1.62  riastrad 		KASSERTMSG(E->samplespending <= MINSAMPLES,
    817  1.62  riastrad 		    "E->samplespending=%u", E->samplespending);
    818  1.62  riastrad 		samplesdiff = MIN(ec->ec_samplespending,
    819  1.62  riastrad 		    MINSAMPLES - E->samplespending);
    820   1.1  riastrad 
    821   1.1  riastrad 		/*
    822  1.45  riastrad 		 * This should make a difference unless we are already
    823  1.45  riastrad 		 * saturated.
    824   1.1  riastrad 		 */
    825  1.62  riastrad 		KASSERTMSG((bitsdiff || samplesdiff ||
    826  1.62  riastrad 			E->bitspending == MINENTROPYBITS ||
    827  1.62  riastrad 			E->samplespending == MINSAMPLES),
    828  1.62  riastrad 		    "bitsdiff=%u E->bitspending=%u ec->ec_bitspending=%u"
    829  1.62  riastrad 		    "samplesdiff=%u E->samplespending=%u"
    830  1.62  riastrad 		    " ec->ec_samplespending=%u"
    831  1.62  riastrad 		    " minentropybits=%u minsamples=%u",
    832  1.62  riastrad 		    bitsdiff, E->bitspending, ec->ec_bitspending,
    833  1.62  riastrad 		    samplesdiff, E->samplespending, ec->ec_samplespending,
    834  1.62  riastrad 		    (unsigned)MINENTROPYBITS, (unsigned)MINSAMPLES);
    835  1.45  riastrad 
    836  1.45  riastrad 		/* Add to the global, subtract from the local.  */
    837  1.62  riastrad 		E->bitspending += bitsdiff;
    838  1.62  riastrad 		KASSERTMSG(E->bitspending <= MINENTROPYBITS,
    839  1.62  riastrad 		    "E->bitspending=%u", E->bitspending);
    840  1.62  riastrad 		atomic_store_relaxed(&ec->ec_bitspending,
    841  1.62  riastrad 		    ec->ec_bitspending - bitsdiff);
    842  1.62  riastrad 
    843  1.62  riastrad 		E->samplespending += samplesdiff;
    844  1.62  riastrad 		KASSERTMSG(E->samplespending <= MINSAMPLES,
    845  1.62  riastrad 		    "E->samplespending=%u", E->samplespending);
    846  1.62  riastrad 		atomic_store_relaxed(&ec->ec_samplespending,
    847  1.62  riastrad 		    ec->ec_samplespending - samplesdiff);
    848   1.1  riastrad 
    849  1.62  riastrad 		/* One or the other must have gone up from zero.  */
    850  1.62  riastrad 		KASSERT(E->bitspending || E->samplespending);
    851  1.62  riastrad 
    852  1.62  riastrad 		if (E->bitsneeded <= E->bitspending ||
    853  1.62  riastrad 		    E->samplesneeded <= E->samplespending) {
    854   1.1  riastrad 			/*
    855  1.62  riastrad 			 * Enough bits or at least samples between all
    856  1.62  riastrad 			 * the per-CPU pools.  Leave a note for the
    857  1.62  riastrad 			 * housekeeping thread to consolidate entropy
    858  1.62  riastrad 			 * next time it wakes up -- and wake it up if
    859  1.62  riastrad 			 * this is the first time, to speed things up.
    860   1.1  riastrad 			 *
    861   1.1  riastrad 			 * If we don't need any entropy, this doesn't
    862   1.1  riastrad 			 * mean much, but it is the only time we ever
    863   1.1  riastrad 			 * gather additional entropy in case the
    864   1.1  riastrad 			 * accounting has been overly optimistic.  This
    865   1.1  riastrad 			 * happens at most once a minute, so there's
    866   1.1  riastrad 			 * negligible performance cost.
    867   1.1  riastrad 			 */
    868   1.1  riastrad 			E->consolidate = true;
    869  1.62  riastrad 			if (E->epoch == (unsigned)-1)
    870  1.62  riastrad 				cv_broadcast(&E->cv);
    871  1.62  riastrad 			if (E->bitsneeded == 0)
    872   1.1  riastrad 				entropy_discretionary_evcnt.ev_count++;
    873   1.1  riastrad 		} else {
    874   1.1  riastrad 			/* Can't get full entropy.  Keep gathering.  */
    875   1.1  riastrad 			entropy_partial_evcnt.ev_count++;
    876   1.1  riastrad 		}
    877   1.1  riastrad 	}
    878  1.62  riastrad 
    879  1.44  riastrad 	entropy_cpu_put(&lock, ec);
    880   1.1  riastrad 	mutex_exit(&E->lock);
    881   1.1  riastrad }
    882   1.1  riastrad 
    883   1.1  riastrad /*
    884   1.1  riastrad  * entropy_enter_early(buf, len, nbits)
    885   1.1  riastrad  *
    886   1.1  riastrad  *	Do entropy bookkeeping globally, before we have established
    887   1.1  riastrad  *	per-CPU pools.  Enter directly into the global pool in the hope
    888   1.1  riastrad  *	that we enter enough before the first entropy_extract to thwart
    889   1.1  riastrad  *	iterative-guessing attacks; entropy_extract will warn if not.
    890   1.1  riastrad  */
    891   1.1  riastrad static void
    892   1.1  riastrad entropy_enter_early(const void *buf, size_t len, unsigned nbits)
    893   1.1  riastrad {
    894   1.1  riastrad 	bool notify = false;
    895   1.1  riastrad 
    896  1.37  riastrad 	KASSERT(E->stage == ENTROPY_COLD);
    897   1.1  riastrad 
    898   1.1  riastrad 	/* Enter it into the pool.  */
    899   1.1  riastrad 	entpool_enter(&E->pool, buf, len);
    900   1.1  riastrad 
    901   1.1  riastrad 	/*
    902   1.1  riastrad 	 * Decide whether to notify reseed -- we will do so if either:
    903   1.1  riastrad 	 * (a) we transition from partial entropy to full entropy, or
    904   1.1  riastrad 	 * (b) we get a batch of full entropy all at once.
    905   1.1  riastrad 	 */
    906  1.62  riastrad 	notify |= (E->bitsneeded && E->bitsneeded <= nbits);
    907  1.62  riastrad 	notify |= (nbits >= MINENTROPYBITS);
    908   1.1  riastrad 
    909  1.62  riastrad 	/*
    910  1.62  riastrad 	 * Subtract from the needed count and notify if appropriate.
    911  1.62  riastrad 	 * We don't count samples here because entropy_timer might
    912  1.62  riastrad 	 * still be returning zero at this point if there's no CPU
    913  1.62  riastrad 	 * cycle counter.
    914  1.62  riastrad 	 */
    915  1.62  riastrad 	E->bitsneeded -= MIN(E->bitsneeded, nbits);
    916   1.1  riastrad 	if (notify) {
    917   1.1  riastrad 		entropy_notify();
    918   1.1  riastrad 		entropy_immediate_evcnt.ev_count++;
    919   1.1  riastrad 	}
    920   1.1  riastrad }
    921   1.1  riastrad 
    922   1.1  riastrad /*
    923  1.62  riastrad  * entropy_enter(buf, len, nbits, count)
    924   1.1  riastrad  *
    925   1.1  riastrad  *	Enter len bytes of data from buf into the system's entropy
    926   1.1  riastrad  *	pool, stirring as necessary when the internal buffer fills up.
    927   1.1  riastrad  *	nbits is a lower bound on the number of bits of entropy in the
    928   1.1  riastrad  *	process that led to this sample.
    929   1.1  riastrad  */
    930   1.1  riastrad static void
    931  1.62  riastrad entropy_enter(const void *buf, size_t len, unsigned nbits, bool count)
    932   1.1  riastrad {
    933  1.43  riastrad 	struct entropy_cpu_lock lock;
    934   1.1  riastrad 	struct entropy_cpu *ec;
    935  1.62  riastrad 	unsigned bitspending, samplespending;
    936  1.52  riastrad 	int bound;
    937   1.1  riastrad 
    938  1.16  riastrad 	KASSERTMSG(!cpu_intr_p(),
    939   1.1  riastrad 	    "use entropy_enter_intr from interrupt context");
    940   1.1  riastrad 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    941   1.1  riastrad 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    942   1.1  riastrad 
    943   1.1  riastrad 	/* If it's too early after boot, just use entropy_enter_early.  */
    944  1.37  riastrad 	if (__predict_false(E->stage == ENTROPY_COLD)) {
    945   1.1  riastrad 		entropy_enter_early(buf, len, nbits);
    946   1.1  riastrad 		return;
    947   1.1  riastrad 	}
    948   1.1  riastrad 
    949   1.1  riastrad 	/*
    950  1.52  riastrad 	 * Bind ourselves to the current CPU so we don't switch CPUs
    951  1.52  riastrad 	 * between entering data into the current CPU's pool (and
    952  1.52  riastrad 	 * updating the pending count) and transferring it to the
    953  1.52  riastrad 	 * global pool in entropy_account_cpu.
    954  1.52  riastrad 	 */
    955  1.52  riastrad 	bound = curlwp_bind();
    956  1.52  riastrad 
    957  1.52  riastrad 	/*
    958  1.43  riastrad 	 * With the per-CPU state locked, enter into the per-CPU pool
    959  1.43  riastrad 	 * and count up what we can add.
    960  1.62  riastrad 	 *
    961  1.62  riastrad 	 * We don't count samples while cold because entropy_timer
    962  1.62  riastrad 	 * might still be returning zero if there's no CPU cycle
    963  1.62  riastrad 	 * counter.
    964   1.1  riastrad 	 */
    965  1.43  riastrad 	ec = entropy_cpu_get(&lock);
    966   1.1  riastrad 	entpool_enter(ec->ec_pool, buf, len);
    967  1.62  riastrad 	bitspending = ec->ec_bitspending;
    968  1.62  riastrad 	bitspending += MIN(MINENTROPYBITS - bitspending, nbits);
    969  1.62  riastrad 	atomic_store_relaxed(&ec->ec_bitspending, bitspending);
    970  1.62  riastrad 	samplespending = ec->ec_samplespending;
    971  1.62  riastrad 	if (__predict_true(count)) {
    972  1.62  riastrad 		samplespending += MIN(MINSAMPLES - samplespending, 1);
    973  1.62  riastrad 		atomic_store_relaxed(&ec->ec_samplespending, samplespending);
    974  1.62  riastrad 	}
    975  1.43  riastrad 	entropy_cpu_put(&lock, ec);
    976  1.42  riastrad 
    977  1.42  riastrad 	/* Consolidate globally if appropriate based on what we added.  */
    978  1.62  riastrad 	if (bitspending > 0 || samplespending >= MINSAMPLES)
    979  1.42  riastrad 		entropy_account_cpu(ec);
    980  1.52  riastrad 
    981  1.52  riastrad 	curlwp_bindx(bound);
    982   1.1  riastrad }
    983   1.1  riastrad 
    984   1.1  riastrad /*
    985  1.62  riastrad  * entropy_enter_intr(buf, len, nbits, count)
    986   1.1  riastrad  *
    987   1.1  riastrad  *	Enter up to len bytes of data from buf into the system's
    988   1.1  riastrad  *	entropy pool without stirring.  nbits is a lower bound on the
    989   1.1  riastrad  *	number of bits of entropy in the process that led to this
    990   1.1  riastrad  *	sample.  If the sample could be entered completely, assume
    991   1.1  riastrad  *	nbits of entropy pending; otherwise assume none, since we don't
    992   1.1  riastrad  *	know whether some parts of the sample are constant, for
    993   1.1  riastrad  *	instance.  Schedule a softint to stir the entropy pool if
    994   1.1  riastrad  *	needed.  Return true if used fully, false if truncated at all.
    995   1.1  riastrad  *
    996   1.1  riastrad  *	Using this in thread context will work, but you might as well
    997   1.1  riastrad  *	use entropy_enter in that case.
    998   1.1  riastrad  */
    999   1.1  riastrad static bool
   1000  1.62  riastrad entropy_enter_intr(const void *buf, size_t len, unsigned nbits, bool count)
   1001   1.1  riastrad {
   1002   1.1  riastrad 	struct entropy_cpu *ec;
   1003   1.1  riastrad 	bool fullyused = false;
   1004  1.62  riastrad 	uint32_t bitspending, samplespending;
   1005  1.37  riastrad 	void *sih;
   1006   1.1  riastrad 
   1007  1.45  riastrad 	KASSERT(cpu_intr_p());
   1008   1.1  riastrad 	KASSERTMSG(howmany(nbits, NBBY) <= len,
   1009   1.1  riastrad 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
   1010   1.1  riastrad 
   1011   1.1  riastrad 	/* If it's too early after boot, just use entropy_enter_early.  */
   1012  1.37  riastrad 	if (__predict_false(E->stage == ENTROPY_COLD)) {
   1013   1.1  riastrad 		entropy_enter_early(buf, len, nbits);
   1014   1.1  riastrad 		return true;
   1015   1.1  riastrad 	}
   1016   1.1  riastrad 
   1017   1.1  riastrad 	/*
   1018   1.1  riastrad 	 * Acquire the per-CPU state.  If someone is in the middle of
   1019   1.1  riastrad 	 * using it, drop the sample.  Otherwise, take the lock so that
   1020   1.1  riastrad 	 * higher-priority interrupts will drop their samples.
   1021   1.1  riastrad 	 */
   1022   1.1  riastrad 	ec = percpu_getref(entropy_percpu);
   1023  1.40  riastrad 	if (ec->ec_locked) {
   1024  1.40  riastrad 		ec->ec_evcnt->intrdrop.ev_count++;
   1025   1.1  riastrad 		goto out0;
   1026  1.40  riastrad 	}
   1027   1.1  riastrad 	ec->ec_locked = true;
   1028   1.1  riastrad 	__insn_barrier();
   1029   1.1  riastrad 
   1030   1.1  riastrad 	/*
   1031   1.1  riastrad 	 * Enter as much as we can into the per-CPU pool.  If it was
   1032   1.1  riastrad 	 * truncated, schedule a softint to stir the pool and stop.
   1033   1.1  riastrad 	 */
   1034   1.1  riastrad 	if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
   1035  1.37  riastrad 		sih = atomic_load_relaxed(&entropy_sih);
   1036  1.37  riastrad 		if (__predict_true(sih != NULL))
   1037  1.37  riastrad 			softint_schedule(sih);
   1038  1.40  riastrad 		ec->ec_evcnt->intrtrunc.ev_count++;
   1039   1.1  riastrad 		goto out1;
   1040   1.1  riastrad 	}
   1041   1.1  riastrad 	fullyused = true;
   1042   1.1  riastrad 
   1043  1.62  riastrad 	/*
   1044  1.62  riastrad 	 * Count up what we can contribute.
   1045  1.62  riastrad 	 *
   1046  1.62  riastrad 	 * We don't count samples while cold because entropy_timer
   1047  1.62  riastrad 	 * might still be returning zero if there's no CPU cycle
   1048  1.62  riastrad 	 * counter.
   1049  1.62  riastrad 	 */
   1050  1.62  riastrad 	bitspending = ec->ec_bitspending;
   1051  1.62  riastrad 	bitspending += MIN(MINENTROPYBITS - bitspending, nbits);
   1052  1.62  riastrad 	atomic_store_relaxed(&ec->ec_bitspending, bitspending);
   1053  1.62  riastrad 	if (__predict_true(count)) {
   1054  1.62  riastrad 		samplespending = ec->ec_samplespending;
   1055  1.62  riastrad 		samplespending += MIN(MINSAMPLES - samplespending, 1);
   1056  1.62  riastrad 		atomic_store_relaxed(&ec->ec_samplespending, samplespending);
   1057  1.62  riastrad 	}
   1058   1.1  riastrad 
   1059   1.1  riastrad 	/* Schedule a softint if we added anything and it matters.  */
   1060  1.62  riastrad 	if (__predict_false(atomic_load_relaxed(&E->bitsneeded) ||
   1061   1.1  riastrad 		atomic_load_relaxed(&entropy_depletion)) &&
   1062  1.62  riastrad 	    (nbits != 0 || count)) {
   1063  1.37  riastrad 		sih = atomic_load_relaxed(&entropy_sih);
   1064  1.37  riastrad 		if (__predict_true(sih != NULL))
   1065  1.37  riastrad 			softint_schedule(sih);
   1066  1.37  riastrad 	}
   1067   1.1  riastrad 
   1068   1.1  riastrad out1:	/* Release the per-CPU state.  */
   1069   1.1  riastrad 	KASSERT(ec->ec_locked);
   1070   1.1  riastrad 	__insn_barrier();
   1071   1.1  riastrad 	ec->ec_locked = false;
   1072   1.1  riastrad out0:	percpu_putref(entropy_percpu);
   1073   1.1  riastrad 
   1074   1.1  riastrad 	return fullyused;
   1075   1.1  riastrad }
   1076   1.1  riastrad 
   1077   1.1  riastrad /*
   1078   1.1  riastrad  * entropy_softintr(cookie)
   1079   1.1  riastrad  *
   1080   1.1  riastrad  *	Soft interrupt handler for entering entropy.  Takes care of
   1081   1.1  riastrad  *	stirring the local CPU's entropy pool if it filled up during
   1082   1.1  riastrad  *	hard interrupts, and promptly crediting entropy from the local
   1083   1.1  riastrad  *	CPU's entropy pool to the global entropy pool if needed.
   1084   1.1  riastrad  */
   1085   1.1  riastrad static void
   1086   1.1  riastrad entropy_softintr(void *cookie)
   1087   1.1  riastrad {
   1088  1.43  riastrad 	struct entropy_cpu_lock lock;
   1089   1.1  riastrad 	struct entropy_cpu *ec;
   1090  1.62  riastrad 	unsigned bitspending, samplespending;
   1091   1.1  riastrad 
   1092   1.1  riastrad 	/*
   1093  1.43  riastrad 	 * With the per-CPU state locked, stir the pool if necessary
   1094  1.43  riastrad 	 * and determine if there's any pending entropy on this CPU to
   1095  1.43  riastrad 	 * account globally.
   1096   1.1  riastrad 	 */
   1097  1.43  riastrad 	ec = entropy_cpu_get(&lock);
   1098  1.40  riastrad 	ec->ec_evcnt->softint.ev_count++;
   1099   1.1  riastrad 	entpool_stir(ec->ec_pool);
   1100  1.62  riastrad 	bitspending = ec->ec_bitspending;
   1101  1.62  riastrad 	samplespending = ec->ec_samplespending;
   1102  1.43  riastrad 	entropy_cpu_put(&lock, ec);
   1103  1.42  riastrad 
   1104  1.42  riastrad 	/* Consolidate globally if appropriate based on what we added.  */
   1105  1.62  riastrad 	if (bitspending > 0 || samplespending >= MINSAMPLES)
   1106  1.42  riastrad 		entropy_account_cpu(ec);
   1107   1.1  riastrad }
   1108   1.1  riastrad 
   1109   1.1  riastrad /*
   1110   1.1  riastrad  * entropy_thread(cookie)
   1111   1.1  riastrad  *
   1112   1.1  riastrad  *	Handle any asynchronous entropy housekeeping.
   1113   1.1  riastrad  */
   1114   1.1  riastrad static void
   1115   1.1  riastrad entropy_thread(void *cookie)
   1116   1.1  riastrad {
   1117   1.3  riastrad 	bool consolidate;
   1118   1.1  riastrad 
   1119   1.1  riastrad 	for (;;) {
   1120   1.1  riastrad 		/*
   1121   1.3  riastrad 		 * Wait until there's full entropy somewhere among the
   1122   1.3  riastrad 		 * CPUs, as confirmed at most once per minute, or
   1123   1.3  riastrad 		 * someone wants to consolidate.
   1124   1.1  riastrad 		 */
   1125  1.62  riastrad 		if (entropy_pending()) {
   1126   1.3  riastrad 			consolidate = true;
   1127   1.3  riastrad 		} else {
   1128   1.3  riastrad 			mutex_enter(&E->lock);
   1129   1.3  riastrad 			if (!E->consolidate)
   1130   1.3  riastrad 				cv_timedwait(&E->cv, &E->lock, 60*hz);
   1131   1.3  riastrad 			consolidate = E->consolidate;
   1132   1.3  riastrad 			E->consolidate = false;
   1133   1.3  riastrad 			mutex_exit(&E->lock);
   1134   1.1  riastrad 		}
   1135   1.1  riastrad 
   1136   1.3  riastrad 		if (consolidate) {
   1137   1.3  riastrad 			/* Do it.  */
   1138  1.13  riastrad 			entropy_do_consolidate();
   1139   1.1  riastrad 
   1140   1.3  riastrad 			/* Mitigate abuse.  */
   1141   1.3  riastrad 			kpause("entropy", false, hz, NULL);
   1142   1.3  riastrad 		}
   1143   1.1  riastrad 	}
   1144   1.1  riastrad }
   1145   1.1  riastrad 
   1146  1.62  riastrad struct entropy_pending_count {
   1147  1.62  riastrad 	uint32_t bitspending;
   1148  1.62  riastrad 	uint32_t samplespending;
   1149  1.62  riastrad };
   1150  1.62  riastrad 
   1151   1.1  riastrad /*
   1152   1.1  riastrad  * entropy_pending()
   1153   1.1  riastrad  *
   1154  1.62  riastrad  *	True if enough bits or samples are pending on other CPUs to
   1155  1.62  riastrad  *	warrant consolidation.
   1156   1.1  riastrad  */
   1157  1.62  riastrad static bool
   1158   1.1  riastrad entropy_pending(void)
   1159   1.1  riastrad {
   1160  1.62  riastrad 	struct entropy_pending_count count = { 0, 0 }, *C = &count;
   1161   1.1  riastrad 
   1162  1.62  riastrad 	percpu_foreach(entropy_percpu, &entropy_pending_cpu, C);
   1163  1.62  riastrad 	return C->bitspending >= MINENTROPYBITS ||
   1164  1.62  riastrad 	    C->samplespending >= MINSAMPLES;
   1165   1.1  riastrad }
   1166   1.1  riastrad 
   1167   1.1  riastrad static void
   1168   1.1  riastrad entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   1169   1.1  riastrad {
   1170   1.1  riastrad 	struct entropy_cpu *ec = ptr;
   1171  1.62  riastrad 	struct entropy_pending_count *C = cookie;
   1172  1.62  riastrad 	uint32_t cpu_bitspending;
   1173  1.62  riastrad 	uint32_t cpu_samplespending;
   1174  1.62  riastrad 
   1175  1.62  riastrad 	cpu_bitspending = atomic_load_relaxed(&ec->ec_bitspending);
   1176  1.62  riastrad 	cpu_samplespending = atomic_load_relaxed(&ec->ec_samplespending);
   1177  1.62  riastrad 	C->bitspending += MIN(MINENTROPYBITS - C->bitspending,
   1178  1.62  riastrad 	    cpu_bitspending);
   1179  1.62  riastrad 	C->samplespending += MIN(MINSAMPLES - C->samplespending,
   1180  1.62  riastrad 	    cpu_samplespending);
   1181   1.1  riastrad }
   1182   1.1  riastrad 
   1183   1.1  riastrad /*
   1184  1.13  riastrad  * entropy_do_consolidate()
   1185   1.1  riastrad  *
   1186   1.1  riastrad  *	Issue a cross-call to gather entropy on all CPUs and advance
   1187   1.1  riastrad  *	the entropy epoch.
   1188   1.1  riastrad  */
   1189   1.1  riastrad static void
   1190  1.13  riastrad entropy_do_consolidate(void)
   1191   1.1  riastrad {
   1192   1.1  riastrad 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1193   1.1  riastrad 	static struct timeval lasttime; /* serialized by E->lock */
   1194  1.19  riastrad 	struct entpool pool;
   1195  1.19  riastrad 	uint8_t buf[ENTPOOL_CAPACITY];
   1196  1.62  riastrad 	unsigned bitsdiff, samplesdiff;
   1197   1.1  riastrad 	uint64_t ticket;
   1198   1.1  riastrad 
   1199  1.19  riastrad 	/* Gather entropy on all CPUs into a temporary pool.  */
   1200  1.19  riastrad 	memset(&pool, 0, sizeof pool);
   1201  1.19  riastrad 	ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
   1202   1.1  riastrad 	xc_wait(ticket);
   1203   1.1  riastrad 
   1204   1.1  riastrad 	/* Acquire the lock to notify waiters.  */
   1205   1.1  riastrad 	mutex_enter(&E->lock);
   1206   1.1  riastrad 
   1207   1.1  riastrad 	/* Count another consolidation.  */
   1208   1.1  riastrad 	entropy_consolidate_evcnt.ev_count++;
   1209   1.1  riastrad 
   1210   1.1  riastrad 	/* Note when we last consolidated, i.e. now.  */
   1211   1.1  riastrad 	E->timestamp = time_uptime;
   1212   1.1  riastrad 
   1213  1.19  riastrad 	/* Mix what we gathered into the global pool.  */
   1214  1.19  riastrad 	entpool_extract(&pool, buf, sizeof buf);
   1215  1.19  riastrad 	entpool_enter(&E->pool, buf, sizeof buf);
   1216  1.19  riastrad 	explicit_memset(&pool, 0, sizeof pool);
   1217  1.19  riastrad 
   1218   1.1  riastrad 	/* Count the entropy that was gathered.  */
   1219  1.62  riastrad 	bitsdiff = MIN(E->bitsneeded, E->bitspending);
   1220  1.62  riastrad 	atomic_store_relaxed(&E->bitsneeded, E->bitsneeded - bitsdiff);
   1221  1.62  riastrad 	E->bitspending -= bitsdiff;
   1222  1.62  riastrad 	if (__predict_false(E->bitsneeded > 0) && bitsdiff != 0) {
   1223  1.50  riastrad 		if ((boothowto & AB_DEBUG) != 0 &&
   1224  1.50  riastrad 		    ratecheck(&lasttime, &interval)) {
   1225  1.50  riastrad 			printf("WARNING:"
   1226   1.1  riastrad 			    " consolidating less than full entropy\n");
   1227  1.30  jmcneill 		}
   1228   1.1  riastrad 	}
   1229   1.1  riastrad 
   1230  1.62  riastrad 	samplesdiff = MIN(E->samplesneeded, E->samplespending);
   1231  1.62  riastrad 	atomic_store_relaxed(&E->samplesneeded,
   1232  1.62  riastrad 	    E->samplesneeded - samplesdiff);
   1233  1.62  riastrad 	E->samplespending -= samplesdiff;
   1234  1.62  riastrad 
   1235   1.1  riastrad 	/* Advance the epoch and notify waiters.  */
   1236   1.1  riastrad 	entropy_notify();
   1237   1.1  riastrad 
   1238   1.1  riastrad 	/* Release the lock.  */
   1239   1.1  riastrad 	mutex_exit(&E->lock);
   1240   1.1  riastrad }
   1241   1.1  riastrad 
   1242   1.1  riastrad /*
   1243  1.20  riastrad  * entropy_consolidate_xc(vpool, arg2)
   1244   1.1  riastrad  *
   1245   1.1  riastrad  *	Extract output from the local CPU's input pool and enter it
   1246  1.20  riastrad  *	into a temporary pool passed as vpool.
   1247   1.1  riastrad  */
   1248   1.1  riastrad static void
   1249  1.19  riastrad entropy_consolidate_xc(void *vpool, void *arg2 __unused)
   1250   1.1  riastrad {
   1251  1.19  riastrad 	struct entpool *pool = vpool;
   1252  1.43  riastrad 	struct entropy_cpu_lock lock;
   1253   1.1  riastrad 	struct entropy_cpu *ec;
   1254   1.1  riastrad 	uint8_t buf[ENTPOOL_CAPACITY];
   1255   1.1  riastrad 	uint32_t extra[7];
   1256   1.1  riastrad 	unsigned i = 0;
   1257   1.1  riastrad 
   1258   1.1  riastrad 	/* Grab CPU number and cycle counter to mix extra into the pool.  */
   1259   1.1  riastrad 	extra[i++] = cpu_number();
   1260   1.1  riastrad 	extra[i++] = entropy_timer();
   1261   1.1  riastrad 
   1262   1.1  riastrad 	/*
   1263  1.43  riastrad 	 * With the per-CPU state locked, extract from the per-CPU pool
   1264  1.43  riastrad 	 * and count it as no longer pending.
   1265   1.1  riastrad 	 */
   1266  1.43  riastrad 	ec = entropy_cpu_get(&lock);
   1267   1.1  riastrad 	extra[i++] = entropy_timer();
   1268   1.1  riastrad 	entpool_extract(ec->ec_pool, buf, sizeof buf);
   1269  1.62  riastrad 	atomic_store_relaxed(&ec->ec_bitspending, 0);
   1270  1.62  riastrad 	atomic_store_relaxed(&ec->ec_samplespending, 0);
   1271   1.1  riastrad 	extra[i++] = entropy_timer();
   1272  1.43  riastrad 	entropy_cpu_put(&lock, ec);
   1273   1.1  riastrad 	extra[i++] = entropy_timer();
   1274   1.1  riastrad 
   1275   1.1  riastrad 	/*
   1276   1.1  riastrad 	 * Copy over statistics, and enter the per-CPU extract and the
   1277  1.19  riastrad 	 * extra timing into the temporary pool, under the global lock.
   1278   1.1  riastrad 	 */
   1279   1.1  riastrad 	mutex_enter(&E->lock);
   1280   1.1  riastrad 	extra[i++] = entropy_timer();
   1281  1.19  riastrad 	entpool_enter(pool, buf, sizeof buf);
   1282   1.1  riastrad 	explicit_memset(buf, 0, sizeof buf);
   1283   1.1  riastrad 	extra[i++] = entropy_timer();
   1284   1.1  riastrad 	KASSERT(i == __arraycount(extra));
   1285  1.19  riastrad 	entpool_enter(pool, extra, sizeof extra);
   1286   1.1  riastrad 	explicit_memset(extra, 0, sizeof extra);
   1287   1.1  riastrad 	mutex_exit(&E->lock);
   1288   1.1  riastrad }
   1289   1.1  riastrad 
   1290   1.1  riastrad /*
   1291   1.1  riastrad  * entropy_notify()
   1292   1.1  riastrad  *
   1293   1.1  riastrad  *	Caller just contributed entropy to the global pool.  Advance
   1294   1.1  riastrad  *	the entropy epoch and notify waiters.
   1295   1.1  riastrad  *
   1296  1.62  riastrad  *	Caller must hold the global entropy lock.
   1297   1.1  riastrad  */
   1298   1.1  riastrad static void
   1299   1.1  riastrad entropy_notify(void)
   1300   1.1  riastrad {
   1301  1.12  riastrad 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1302  1.12  riastrad 	static struct timeval lasttime; /* serialized by E->lock */
   1303  1.62  riastrad 	static bool ready = false, besteffort = false;
   1304   1.1  riastrad 	unsigned epoch;
   1305   1.1  riastrad 
   1306   1.1  riastrad 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1307   1.1  riastrad 
   1308   1.1  riastrad 	/*
   1309   1.1  riastrad 	 * If this is the first time, print a message to the console
   1310   1.1  riastrad 	 * that we're ready so operators can compare it to the timing
   1311   1.1  riastrad 	 * of other events.
   1312  1.62  riastrad 	 *
   1313  1.62  riastrad 	 * If we didn't get full entropy from reliable sources, report
   1314  1.62  riastrad 	 * instead that we are running on fumes with best effort.  (If
   1315  1.62  riastrad 	 * we ever do get full entropy after that, print the ready
   1316  1.62  riastrad 	 * message once.)
   1317  1.62  riastrad 	 */
   1318  1.62  riastrad 	if (__predict_false(!ready)) {
   1319  1.62  riastrad 		if (E->bitsneeded == 0) {
   1320  1.62  riastrad 			printf("entropy: ready\n");
   1321  1.62  riastrad 			ready = true;
   1322  1.62  riastrad 		} else if (E->samplesneeded == 0 && !besteffort) {
   1323  1.62  riastrad 			printf("entropy: best effort\n");
   1324  1.62  riastrad 			besteffort = true;
   1325  1.62  riastrad 		}
   1326  1.62  riastrad 	}
   1327   1.1  riastrad 
   1328   1.1  riastrad 	/* Set the epoch; roll over from UINTMAX-1 to 1.  */
   1329  1.12  riastrad 	if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
   1330  1.12  riastrad 	    ratecheck(&lasttime, &interval)) {
   1331  1.12  riastrad 		epoch = E->epoch + 1;
   1332  1.12  riastrad 		if (epoch == 0 || epoch == (unsigned)-1)
   1333  1.12  riastrad 			epoch = 1;
   1334  1.12  riastrad 		atomic_store_relaxed(&E->epoch, epoch);
   1335  1.12  riastrad 	}
   1336  1.41  riastrad 	KASSERT(E->epoch != (unsigned)-1);
   1337   1.1  riastrad 
   1338   1.1  riastrad 	/* Notify waiters.  */
   1339   1.1  riastrad 	if (E->stage >= ENTROPY_WARM) {
   1340   1.1  riastrad 		cv_broadcast(&E->cv);
   1341   1.1  riastrad 		selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
   1342   1.1  riastrad 	}
   1343   1.1  riastrad 
   1344   1.1  riastrad 	/* Count another notification.  */
   1345   1.1  riastrad 	entropy_notify_evcnt.ev_count++;
   1346   1.1  riastrad }
   1347   1.1  riastrad 
   1348   1.1  riastrad /*
   1349  1.13  riastrad  * entropy_consolidate()
   1350  1.13  riastrad  *
   1351  1.13  riastrad  *	Trigger entropy consolidation and wait for it to complete.
   1352  1.13  riastrad  *
   1353  1.13  riastrad  *	This should be used sparingly, not periodically -- requiring
   1354  1.13  riastrad  *	conscious intervention by the operator or a clear policy
   1355  1.13  riastrad  *	decision.  Otherwise, the kernel will automatically consolidate
   1356  1.13  riastrad  *	when enough entropy has been gathered into per-CPU pools to
   1357  1.13  riastrad  *	transition to full entropy.
   1358  1.13  riastrad  */
   1359  1.13  riastrad void
   1360  1.13  riastrad entropy_consolidate(void)
   1361  1.13  riastrad {
   1362  1.13  riastrad 	uint64_t ticket;
   1363  1.13  riastrad 	int error;
   1364  1.13  riastrad 
   1365  1.13  riastrad 	KASSERT(E->stage == ENTROPY_HOT);
   1366  1.13  riastrad 
   1367  1.13  riastrad 	mutex_enter(&E->lock);
   1368  1.13  riastrad 	ticket = entropy_consolidate_evcnt.ev_count;
   1369  1.13  riastrad 	E->consolidate = true;
   1370  1.13  riastrad 	cv_broadcast(&E->cv);
   1371  1.13  riastrad 	while (ticket == entropy_consolidate_evcnt.ev_count) {
   1372  1.13  riastrad 		error = cv_wait_sig(&E->cv, &E->lock);
   1373  1.13  riastrad 		if (error)
   1374  1.13  riastrad 			break;
   1375  1.13  riastrad 	}
   1376  1.13  riastrad 	mutex_exit(&E->lock);
   1377  1.13  riastrad }
   1378  1.13  riastrad 
   1379  1.13  riastrad /*
   1380   1.1  riastrad  * sysctl -w kern.entropy.consolidate=1
   1381   1.1  riastrad  *
   1382   1.1  riastrad  *	Trigger entropy consolidation and wait for it to complete.
   1383  1.13  riastrad  *	Writable only by superuser.  This, writing to /dev/random, and
   1384  1.13  riastrad  *	ioctl(RNDADDDATA) are the only ways for the system to
   1385  1.13  riastrad  *	consolidate entropy if the operator knows something the kernel
   1386  1.13  riastrad  *	doesn't about how unpredictable the pending entropy pools are.
   1387   1.1  riastrad  */
   1388   1.1  riastrad static int
   1389   1.1  riastrad sysctl_entropy_consolidate(SYSCTLFN_ARGS)
   1390   1.1  riastrad {
   1391   1.1  riastrad 	struct sysctlnode node = *rnode;
   1392  1.57  riastrad 	int arg = 0;
   1393   1.1  riastrad 	int error;
   1394   1.1  riastrad 
   1395   1.1  riastrad 	KASSERT(E->stage == ENTROPY_HOT);
   1396   1.1  riastrad 
   1397   1.1  riastrad 	node.sysctl_data = &arg;
   1398   1.1  riastrad 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1399   1.1  riastrad 	if (error || newp == NULL)
   1400   1.1  riastrad 		return error;
   1401  1.13  riastrad 	if (arg)
   1402  1.13  riastrad 		entropy_consolidate();
   1403   1.1  riastrad 
   1404   1.1  riastrad 	return error;
   1405   1.1  riastrad }
   1406   1.1  riastrad 
   1407   1.1  riastrad /*
   1408  1.10  riastrad  * sysctl -w kern.entropy.gather=1
   1409  1.10  riastrad  *
   1410  1.10  riastrad  *	Trigger gathering entropy from all on-demand sources, and wait
   1411  1.10  riastrad  *	for synchronous sources (but not asynchronous sources) to
   1412  1.10  riastrad  *	complete.  Writable only by superuser.
   1413  1.10  riastrad  */
   1414  1.10  riastrad static int
   1415  1.10  riastrad sysctl_entropy_gather(SYSCTLFN_ARGS)
   1416  1.10  riastrad {
   1417  1.10  riastrad 	struct sysctlnode node = *rnode;
   1418  1.57  riastrad 	int arg = 0;
   1419  1.10  riastrad 	int error;
   1420  1.10  riastrad 
   1421  1.10  riastrad 	KASSERT(E->stage == ENTROPY_HOT);
   1422  1.10  riastrad 
   1423  1.10  riastrad 	node.sysctl_data = &arg;
   1424  1.10  riastrad 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1425  1.10  riastrad 	if (error || newp == NULL)
   1426  1.10  riastrad 		return error;
   1427  1.10  riastrad 	if (arg) {
   1428  1.10  riastrad 		mutex_enter(&E->lock);
   1429  1.49  riastrad 		error = entropy_request(ENTROPY_CAPACITY,
   1430  1.49  riastrad 		    ENTROPY_WAIT|ENTROPY_SIG);
   1431  1.10  riastrad 		mutex_exit(&E->lock);
   1432  1.10  riastrad 	}
   1433  1.10  riastrad 
   1434  1.10  riastrad 	return 0;
   1435  1.10  riastrad }
   1436  1.10  riastrad 
   1437  1.10  riastrad /*
   1438   1.1  riastrad  * entropy_extract(buf, len, flags)
   1439   1.1  riastrad  *
   1440   1.1  riastrad  *	Extract len bytes from the global entropy pool into buf.
   1441   1.1  riastrad  *
   1442  1.55  riastrad  *	Caller MUST NOT expose these bytes directly -- must use them
   1443  1.55  riastrad  *	ONLY to seed a cryptographic pseudorandom number generator
   1444  1.55  riastrad  *	(`CPRNG'), a.k.a. deterministic random bit generator (`DRBG'),
   1445  1.55  riastrad  *	and then erase them.  entropy_extract does not, on its own,
   1446  1.55  riastrad  *	provide backtracking resistance -- it must be combined with a
   1447  1.55  riastrad  *	PRNG/DRBG that does.
   1448  1.55  riastrad  *
   1449  1.55  riastrad  *	You generally shouldn't use this directly -- use cprng(9)
   1450  1.55  riastrad  *	instead.
   1451  1.55  riastrad  *
   1452   1.1  riastrad  *	Flags may have:
   1453   1.1  riastrad  *
   1454   1.1  riastrad  *		ENTROPY_WAIT	Wait for entropy if not available yet.
   1455   1.1  riastrad  *		ENTROPY_SIG	Allow interruption by a signal during wait.
   1456  1.23  riastrad  *		ENTROPY_HARDFAIL Either fill the buffer with full entropy,
   1457  1.23  riastrad  *				or fail without filling it at all.
   1458   1.1  riastrad  *
   1459   1.1  riastrad  *	Return zero on success, or error on failure:
   1460   1.1  riastrad  *
   1461   1.1  riastrad  *		EWOULDBLOCK	No entropy and ENTROPY_WAIT not set.
   1462   1.1  riastrad  *		EINTR/ERESTART	No entropy, ENTROPY_SIG set, and interrupted.
   1463   1.1  riastrad  *
   1464   1.1  riastrad  *	If ENTROPY_WAIT is set, allowed only in thread context.  If
   1465  1.56  riastrad  *	ENTROPY_WAIT is not set, allowed also in softint context.
   1466  1.56  riastrad  *	Forbidden in hard interrupt context.
   1467   1.1  riastrad  */
   1468   1.1  riastrad int
   1469   1.1  riastrad entropy_extract(void *buf, size_t len, int flags)
   1470   1.1  riastrad {
   1471   1.1  riastrad 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1472   1.1  riastrad 	static struct timeval lasttime; /* serialized by E->lock */
   1473  1.62  riastrad 	bool printed = false;
   1474   1.1  riastrad 	int error;
   1475   1.1  riastrad 
   1476   1.1  riastrad 	if (ISSET(flags, ENTROPY_WAIT)) {
   1477   1.1  riastrad 		ASSERT_SLEEPABLE();
   1478   1.1  riastrad 		KASSERTMSG(E->stage >= ENTROPY_WARM,
   1479   1.1  riastrad 		    "can't wait for entropy until warm");
   1480   1.1  riastrad 	}
   1481   1.1  riastrad 
   1482  1.35  riastrad 	/* Refuse to operate in interrupt context.  */
   1483  1.35  riastrad 	KASSERT(!cpu_intr_p());
   1484  1.35  riastrad 
   1485   1.1  riastrad 	/* Acquire the global lock to get at the global pool.  */
   1486   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1487   1.1  riastrad 		mutex_enter(&E->lock);
   1488   1.1  riastrad 
   1489   1.1  riastrad 	/* Wait until there is enough entropy in the system.  */
   1490   1.1  riastrad 	error = 0;
   1491  1.62  riastrad 	if (E->bitsneeded > 0 && E->samplesneeded == 0) {
   1492  1.62  riastrad 		/*
   1493  1.62  riastrad 		 * We don't have full entropy from reliable sources,
   1494  1.62  riastrad 		 * but we gathered a plausible number of samples from
   1495  1.62  riastrad 		 * other sources such as timers.  Try asking for more
   1496  1.62  riastrad 		 * from any sources we can, but don't worry if it
   1497  1.62  riastrad 		 * fails -- best effort.
   1498  1.62  riastrad 		 */
   1499  1.62  riastrad 		(void)entropy_request(ENTROPY_CAPACITY, flags);
   1500  1.62  riastrad 	} else while (E->bitsneeded > 0 && E->samplesneeded > 0) {
   1501   1.1  riastrad 		/* Ask for more, synchronously if possible.  */
   1502  1.49  riastrad 		error = entropy_request(len, flags);
   1503  1.49  riastrad 		if (error)
   1504  1.49  riastrad 			break;
   1505   1.1  riastrad 
   1506   1.1  riastrad 		/* If we got enough, we're done.  */
   1507  1.62  riastrad 		if (E->bitsneeded == 0 || E->samplesneeded == 0) {
   1508   1.1  riastrad 			KASSERT(error == 0);
   1509   1.1  riastrad 			break;
   1510   1.1  riastrad 		}
   1511   1.1  riastrad 
   1512   1.1  riastrad 		/* If not waiting, stop here.  */
   1513   1.1  riastrad 		if (!ISSET(flags, ENTROPY_WAIT)) {
   1514   1.1  riastrad 			error = EWOULDBLOCK;
   1515   1.1  riastrad 			break;
   1516   1.1  riastrad 		}
   1517   1.1  riastrad 
   1518   1.1  riastrad 		/* Wait for some entropy to come in and try again.  */
   1519   1.1  riastrad 		KASSERT(E->stage >= ENTROPY_WARM);
   1520  1.62  riastrad 		if (!printed) {
   1521  1.62  riastrad 			printf("entropy: pid %d (%s) waiting for entropy(7)\n",
   1522  1.62  riastrad 			    curproc->p_pid, curproc->p_comm);
   1523  1.62  riastrad 			printed = true;
   1524  1.62  riastrad 		}
   1525  1.24      gson 
   1526   1.1  riastrad 		if (ISSET(flags, ENTROPY_SIG)) {
   1527  1.62  riastrad 			error = cv_timedwait_sig(&E->cv, &E->lock, hz);
   1528  1.62  riastrad 			if (error && error != EWOULDBLOCK)
   1529   1.1  riastrad 				break;
   1530   1.1  riastrad 		} else {
   1531  1.62  riastrad 			cv_timedwait(&E->cv, &E->lock, hz);
   1532   1.1  riastrad 		}
   1533   1.1  riastrad 	}
   1534   1.1  riastrad 
   1535  1.23  riastrad 	/*
   1536  1.23  riastrad 	 * Count failure -- but fill the buffer nevertheless, unless
   1537  1.23  riastrad 	 * the caller specified ENTROPY_HARDFAIL.
   1538  1.23  riastrad 	 */
   1539  1.23  riastrad 	if (error) {
   1540  1.23  riastrad 		if (ISSET(flags, ENTROPY_HARDFAIL))
   1541  1.23  riastrad 			goto out;
   1542   1.1  riastrad 		entropy_extract_fail_evcnt.ev_count++;
   1543  1.23  riastrad 	}
   1544   1.1  riastrad 
   1545   1.1  riastrad 	/*
   1546  1.62  riastrad 	 * Report a warning if we haven't yet reached full entropy.
   1547   1.1  riastrad 	 * This is the only case where we consider entropy to be
   1548   1.1  riastrad 	 * `depleted' without kern.entropy.depletion enabled -- when we
   1549   1.1  riastrad 	 * only have partial entropy, an adversary may be able to
   1550   1.1  riastrad 	 * narrow the state of the pool down to a small number of
   1551   1.1  riastrad 	 * possibilities; the output then enables them to confirm a
   1552   1.1  riastrad 	 * guess, reducing its entropy from the adversary's perspective
   1553   1.1  riastrad 	 * to zero.
   1554  1.62  riastrad 	 *
   1555  1.62  riastrad 	 * This should only happen if the operator has chosen to
   1556  1.62  riastrad 	 * consolidate, either through sysctl kern.entropy.consolidate
   1557  1.62  riastrad 	 * or by writing less than full entropy to /dev/random as root
   1558  1.62  riastrad 	 * (which /dev/random promises will immediately affect
   1559  1.62  riastrad 	 * subsequent output, for better or worse).
   1560   1.1  riastrad 	 */
   1561  1.62  riastrad 	if (E->bitsneeded > 0 && E->samplesneeded > 0) {
   1562  1.62  riastrad 		if (__predict_false(E->epoch == (unsigned)-1) &&
   1563  1.62  riastrad 		    ratecheck(&lasttime, &interval)) {
   1564  1.50  riastrad 			printf("WARNING:"
   1565  1.50  riastrad 			    " system needs entropy for security;"
   1566  1.50  riastrad 			    " see entropy(7)\n");
   1567  1.62  riastrad 		}
   1568  1.62  riastrad 		atomic_store_relaxed(&E->bitsneeded, MINENTROPYBITS);
   1569  1.62  riastrad 		atomic_store_relaxed(&E->samplesneeded, MINSAMPLES);
   1570   1.1  riastrad 	}
   1571   1.1  riastrad 
   1572   1.1  riastrad 	/* Extract data from the pool, and `deplete' if we're doing that.  */
   1573   1.1  riastrad 	entpool_extract(&E->pool, buf, len);
   1574   1.1  riastrad 	if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
   1575   1.1  riastrad 	    error == 0) {
   1576   1.1  riastrad 		unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
   1577  1.62  riastrad 		unsigned bitsneeded = E->bitsneeded;
   1578  1.62  riastrad 		unsigned samplesneeded = E->samplesneeded;
   1579   1.1  riastrad 
   1580  1.62  riastrad 		bitsneeded += MIN(MINENTROPYBITS - bitsneeded, cost);
   1581  1.62  riastrad 		samplesneeded += MIN(MINSAMPLES - samplesneeded, cost);
   1582  1.62  riastrad 
   1583  1.62  riastrad 		atomic_store_relaxed(&E->bitsneeded, bitsneeded);
   1584  1.62  riastrad 		atomic_store_relaxed(&E->samplesneeded, samplesneeded);
   1585   1.1  riastrad 		entropy_deplete_evcnt.ev_count++;
   1586   1.1  riastrad 	}
   1587   1.1  riastrad 
   1588  1.23  riastrad out:	/* Release the global lock and return the error.  */
   1589   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1590   1.1  riastrad 		mutex_exit(&E->lock);
   1591   1.1  riastrad 	return error;
   1592   1.1  riastrad }
   1593   1.1  riastrad 
   1594   1.1  riastrad /*
   1595   1.1  riastrad  * entropy_poll(events)
   1596   1.1  riastrad  *
   1597   1.1  riastrad  *	Return the subset of events ready, and if it is not all of
   1598   1.1  riastrad  *	events, record curlwp as waiting for entropy.
   1599   1.1  riastrad  */
   1600   1.1  riastrad int
   1601   1.1  riastrad entropy_poll(int events)
   1602   1.1  riastrad {
   1603   1.1  riastrad 	int revents = 0;
   1604   1.1  riastrad 
   1605   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1606   1.1  riastrad 
   1607   1.1  riastrad 	/* Always ready for writing.  */
   1608   1.1  riastrad 	revents |= events & (POLLOUT|POLLWRNORM);
   1609   1.1  riastrad 
   1610   1.1  riastrad 	/* Narrow it down to reads.  */
   1611   1.1  riastrad 	events &= POLLIN|POLLRDNORM;
   1612   1.1  riastrad 	if (events == 0)
   1613   1.1  riastrad 		return revents;
   1614   1.1  riastrad 
   1615   1.1  riastrad 	/*
   1616   1.1  riastrad 	 * If we have reached full entropy and we're not depleting
   1617   1.1  riastrad 	 * entropy, we are forever ready.
   1618   1.1  riastrad 	 */
   1619  1.62  riastrad 	if (__predict_true(atomic_load_relaxed(&E->bitsneeded) == 0 ||
   1620  1.62  riastrad 		atomic_load_relaxed(&E->samplesneeded) == 0) &&
   1621   1.1  riastrad 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)))
   1622   1.1  riastrad 		return revents | events;
   1623   1.1  riastrad 
   1624   1.1  riastrad 	/*
   1625   1.1  riastrad 	 * Otherwise, check whether we need entropy under the lock.  If
   1626   1.1  riastrad 	 * we don't, we're ready; if we do, add ourselves to the queue.
   1627   1.1  riastrad 	 */
   1628   1.1  riastrad 	mutex_enter(&E->lock);
   1629  1.62  riastrad 	if (E->bitsneeded == 0 || E->samplesneeded == 0)
   1630   1.1  riastrad 		revents |= events;
   1631   1.1  riastrad 	else
   1632   1.1  riastrad 		selrecord(curlwp, &E->selq);
   1633   1.1  riastrad 	mutex_exit(&E->lock);
   1634   1.1  riastrad 
   1635   1.1  riastrad 	return revents;
   1636   1.1  riastrad }
   1637   1.1  riastrad 
   1638   1.1  riastrad /*
   1639   1.1  riastrad  * filt_entropy_read_detach(kn)
   1640   1.1  riastrad  *
   1641   1.1  riastrad  *	struct filterops::f_detach callback for entropy read events:
   1642   1.1  riastrad  *	remove kn from the list of waiters.
   1643   1.1  riastrad  */
   1644   1.1  riastrad static void
   1645   1.1  riastrad filt_entropy_read_detach(struct knote *kn)
   1646   1.1  riastrad {
   1647   1.1  riastrad 
   1648   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1649   1.1  riastrad 
   1650   1.1  riastrad 	mutex_enter(&E->lock);
   1651  1.25   thorpej 	selremove_knote(&E->selq, kn);
   1652   1.1  riastrad 	mutex_exit(&E->lock);
   1653   1.1  riastrad }
   1654   1.1  riastrad 
   1655   1.1  riastrad /*
   1656   1.1  riastrad  * filt_entropy_read_event(kn, hint)
   1657   1.1  riastrad  *
   1658   1.1  riastrad  *	struct filterops::f_event callback for entropy read events:
   1659   1.1  riastrad  *	poll for entropy.  Caller must hold the global entropy lock if
   1660   1.1  riastrad  *	hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
   1661   1.1  riastrad  */
   1662   1.1  riastrad static int
   1663   1.1  riastrad filt_entropy_read_event(struct knote *kn, long hint)
   1664   1.1  riastrad {
   1665   1.1  riastrad 	int ret;
   1666   1.1  riastrad 
   1667   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1668   1.1  riastrad 
   1669   1.1  riastrad 	/* Acquire the lock, if caller is outside entropy subsystem.  */
   1670   1.1  riastrad 	if (hint == NOTE_SUBMIT)
   1671   1.1  riastrad 		KASSERT(mutex_owned(&E->lock));
   1672   1.1  riastrad 	else
   1673   1.1  riastrad 		mutex_enter(&E->lock);
   1674   1.1  riastrad 
   1675   1.1  riastrad 	/*
   1676   1.1  riastrad 	 * If we still need entropy, can't read anything; if not, can
   1677   1.1  riastrad 	 * read arbitrarily much.
   1678   1.1  riastrad 	 */
   1679  1.62  riastrad 	if (E->bitsneeded != 0 && E->samplesneeded != 0) {
   1680   1.1  riastrad 		ret = 0;
   1681   1.1  riastrad 	} else {
   1682   1.1  riastrad 		if (atomic_load_relaxed(&entropy_depletion))
   1683  1.58  riastrad 			kn->kn_data = ENTROPY_CAPACITY; /* bytes */
   1684   1.1  riastrad 		else
   1685   1.1  riastrad 			kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
   1686   1.1  riastrad 		ret = 1;
   1687   1.1  riastrad 	}
   1688   1.1  riastrad 
   1689   1.1  riastrad 	/* Release the lock, if caller is outside entropy subsystem.  */
   1690   1.1  riastrad 	if (hint == NOTE_SUBMIT)
   1691   1.1  riastrad 		KASSERT(mutex_owned(&E->lock));
   1692   1.1  riastrad 	else
   1693   1.1  riastrad 		mutex_exit(&E->lock);
   1694   1.1  riastrad 
   1695   1.1  riastrad 	return ret;
   1696   1.1  riastrad }
   1697   1.1  riastrad 
   1698  1.33   thorpej /* XXX Makes sense only for /dev/u?random.  */
   1699   1.1  riastrad static const struct filterops entropy_read_filtops = {
   1700  1.33   thorpej 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   1701   1.1  riastrad 	.f_attach = NULL,
   1702   1.1  riastrad 	.f_detach = filt_entropy_read_detach,
   1703   1.1  riastrad 	.f_event = filt_entropy_read_event,
   1704   1.1  riastrad };
   1705   1.1  riastrad 
   1706   1.1  riastrad /*
   1707   1.1  riastrad  * entropy_kqfilter(kn)
   1708   1.1  riastrad  *
   1709   1.1  riastrad  *	Register kn to receive entropy event notifications.  May be
   1710   1.1  riastrad  *	EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
   1711   1.1  riastrad  */
   1712   1.1  riastrad int
   1713   1.1  riastrad entropy_kqfilter(struct knote *kn)
   1714   1.1  riastrad {
   1715   1.1  riastrad 
   1716   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   1717   1.1  riastrad 
   1718   1.1  riastrad 	switch (kn->kn_filter) {
   1719   1.1  riastrad 	case EVFILT_READ:
   1720   1.1  riastrad 		/* Enter into the global select queue.  */
   1721   1.1  riastrad 		mutex_enter(&E->lock);
   1722   1.1  riastrad 		kn->kn_fop = &entropy_read_filtops;
   1723  1.25   thorpej 		selrecord_knote(&E->selq, kn);
   1724   1.1  riastrad 		mutex_exit(&E->lock);
   1725   1.1  riastrad 		return 0;
   1726   1.1  riastrad 	case EVFILT_WRITE:
   1727   1.1  riastrad 		/* Can always dump entropy into the system.  */
   1728   1.1  riastrad 		kn->kn_fop = &seltrue_filtops;
   1729   1.1  riastrad 		return 0;
   1730   1.1  riastrad 	default:
   1731   1.1  riastrad 		return EINVAL;
   1732   1.1  riastrad 	}
   1733   1.1  riastrad }
   1734   1.1  riastrad 
   1735   1.1  riastrad /*
   1736   1.1  riastrad  * rndsource_setcb(rs, get, getarg)
   1737   1.1  riastrad  *
   1738   1.1  riastrad  *	Set the request callback for the entropy source rs, if it can
   1739   1.1  riastrad  *	provide entropy on demand.  Must precede rnd_attach_source.
   1740   1.1  riastrad  */
   1741   1.1  riastrad void
   1742   1.1  riastrad rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
   1743   1.1  riastrad     void *getarg)
   1744   1.1  riastrad {
   1745   1.1  riastrad 
   1746   1.1  riastrad 	rs->get = get;
   1747   1.1  riastrad 	rs->getarg = getarg;
   1748   1.1  riastrad }
   1749   1.1  riastrad 
   1750   1.1  riastrad /*
   1751   1.1  riastrad  * rnd_attach_source(rs, name, type, flags)
   1752   1.1  riastrad  *
   1753   1.1  riastrad  *	Attach the entropy source rs.  Must be done after
   1754   1.1  riastrad  *	rndsource_setcb, if any, and before any calls to rnd_add_data.
   1755   1.1  riastrad  */
   1756   1.1  riastrad void
   1757   1.1  riastrad rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
   1758   1.1  riastrad     uint32_t flags)
   1759   1.1  riastrad {
   1760   1.1  riastrad 	uint32_t extra[4];
   1761   1.1  riastrad 	unsigned i = 0;
   1762   1.1  riastrad 
   1763  1.59  riastrad 	KASSERTMSG(name[0] != '\0', "rndsource must have nonempty name");
   1764  1.59  riastrad 
   1765   1.1  riastrad 	/* Grab cycle counter to mix extra into the pool.  */
   1766   1.1  riastrad 	extra[i++] = entropy_timer();
   1767   1.1  riastrad 
   1768   1.1  riastrad 	/*
   1769   1.1  riastrad 	 * Apply some standard flags:
   1770   1.1  riastrad 	 *
   1771   1.1  riastrad 	 * - We do not bother with network devices by default, for
   1772   1.1  riastrad 	 *   hysterical raisins (perhaps: because it is often the case
   1773   1.1  riastrad 	 *   that an adversary can influence network packet timings).
   1774   1.1  riastrad 	 */
   1775   1.1  riastrad 	switch (type) {
   1776   1.1  riastrad 	case RND_TYPE_NET:
   1777   1.1  riastrad 		flags |= RND_FLAG_NO_COLLECT;
   1778   1.1  riastrad 		break;
   1779   1.1  riastrad 	}
   1780   1.1  riastrad 
   1781   1.1  riastrad 	/* Sanity-check the callback if RND_FLAG_HASCB is set.  */
   1782   1.1  riastrad 	KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
   1783   1.1  riastrad 
   1784   1.1  riastrad 	/* Initialize the random source.  */
   1785   1.1  riastrad 	memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
   1786   1.1  riastrad 	strlcpy(rs->name, name, sizeof(rs->name));
   1787  1.28  riastrad 	memset(&rs->time_delta, 0, sizeof(rs->time_delta));
   1788  1.28  riastrad 	memset(&rs->value_delta, 0, sizeof(rs->value_delta));
   1789   1.9  riastrad 	rs->total = 0;
   1790   1.1  riastrad 	rs->type = type;
   1791   1.1  riastrad 	rs->flags = flags;
   1792   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1793   1.1  riastrad 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
   1794   1.1  riastrad 	extra[i++] = entropy_timer();
   1795   1.1  riastrad 
   1796   1.1  riastrad 	/* Wire it into the global list of random sources.  */
   1797   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1798   1.1  riastrad 		mutex_enter(&E->lock);
   1799   1.1  riastrad 	LIST_INSERT_HEAD(&E->sources, rs, list);
   1800   1.1  riastrad 	if (E->stage >= ENTROPY_WARM)
   1801   1.1  riastrad 		mutex_exit(&E->lock);
   1802   1.1  riastrad 	extra[i++] = entropy_timer();
   1803   1.1  riastrad 
   1804   1.1  riastrad 	/* Request that it provide entropy ASAP, if we can.  */
   1805   1.1  riastrad 	if (ISSET(flags, RND_FLAG_HASCB))
   1806   1.1  riastrad 		(*rs->get)(ENTROPY_CAPACITY, rs->getarg);
   1807   1.1  riastrad 	extra[i++] = entropy_timer();
   1808   1.1  riastrad 
   1809   1.1  riastrad 	/* Mix the extra into the pool.  */
   1810   1.1  riastrad 	KASSERT(i == __arraycount(extra));
   1811  1.62  riastrad 	entropy_enter(extra, sizeof extra, 0, /*count*/!cold);
   1812   1.1  riastrad 	explicit_memset(extra, 0, sizeof extra);
   1813   1.1  riastrad }
   1814   1.1  riastrad 
   1815   1.1  riastrad /*
   1816   1.1  riastrad  * rnd_detach_source(rs)
   1817   1.1  riastrad  *
   1818   1.1  riastrad  *	Detach the entropy source rs.  May sleep waiting for users to
   1819   1.1  riastrad  *	drain.  Further use is not allowed.
   1820   1.1  riastrad  */
   1821   1.1  riastrad void
   1822   1.1  riastrad rnd_detach_source(struct krndsource *rs)
   1823   1.1  riastrad {
   1824   1.1  riastrad 
   1825   1.1  riastrad 	/*
   1826   1.1  riastrad 	 * If we're cold (shouldn't happen, but hey), just remove it
   1827   1.1  riastrad 	 * from the list -- there's nothing allocated.
   1828   1.1  riastrad 	 */
   1829   1.1  riastrad 	if (E->stage == ENTROPY_COLD) {
   1830   1.1  riastrad 		LIST_REMOVE(rs, list);
   1831   1.1  riastrad 		return;
   1832   1.1  riastrad 	}
   1833   1.1  riastrad 
   1834   1.1  riastrad 	/* We may have to wait for entropy_request.  */
   1835   1.1  riastrad 	ASSERT_SLEEPABLE();
   1836   1.1  riastrad 
   1837   1.4  riastrad 	/* Wait until the source list is not in use, and remove it.  */
   1838   1.1  riastrad 	mutex_enter(&E->lock);
   1839   1.4  riastrad 	while (E->sourcelock)
   1840  1.27  riastrad 		cv_wait(&E->sourcelock_cv, &E->lock);
   1841   1.1  riastrad 	LIST_REMOVE(rs, list);
   1842   1.1  riastrad 	mutex_exit(&E->lock);
   1843   1.1  riastrad 
   1844   1.1  riastrad 	/* Free the per-CPU data.  */
   1845   1.1  riastrad 	percpu_free(rs->state, sizeof(struct rndsource_cpu));
   1846   1.1  riastrad }
   1847   1.1  riastrad 
   1848   1.1  riastrad /*
   1849  1.49  riastrad  * rnd_lock_sources(flags)
   1850  1.49  riastrad  *
   1851  1.49  riastrad  *	Lock the list of entropy sources.  Caller must hold the global
   1852  1.49  riastrad  *	entropy lock.  If successful, no rndsource will go away until
   1853  1.49  riastrad  *	rnd_unlock_sources even while the caller releases the global
   1854  1.49  riastrad  *	entropy lock.
   1855   1.4  riastrad  *
   1856  1.49  riastrad  *	If flags & ENTROPY_WAIT, wait for concurrent access to finish.
   1857  1.49  riastrad  *	If flags & ENTROPY_SIG, allow interruption by signal.
   1858   1.4  riastrad  */
   1859  1.49  riastrad static int __attribute__((warn_unused_result))
   1860  1.49  riastrad rnd_lock_sources(int flags)
   1861   1.4  riastrad {
   1862   1.4  riastrad 	int error;
   1863   1.4  riastrad 
   1864  1.51  riastrad 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1865   1.4  riastrad 
   1866   1.4  riastrad 	while (E->sourcelock) {
   1867  1.51  riastrad 		KASSERT(E->stage >= ENTROPY_WARM);
   1868  1.49  riastrad 		if (!ISSET(flags, ENTROPY_WAIT))
   1869  1.49  riastrad 			return EWOULDBLOCK;
   1870  1.49  riastrad 		if (ISSET(flags, ENTROPY_SIG)) {
   1871  1.49  riastrad 			error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
   1872  1.49  riastrad 			if (error)
   1873  1.49  riastrad 				return error;
   1874  1.49  riastrad 		} else {
   1875  1.49  riastrad 			cv_wait(&E->sourcelock_cv, &E->lock);
   1876  1.49  riastrad 		}
   1877   1.4  riastrad 	}
   1878   1.4  riastrad 
   1879   1.4  riastrad 	E->sourcelock = curlwp;
   1880   1.4  riastrad 	return 0;
   1881   1.4  riastrad }
   1882   1.4  riastrad 
   1883   1.4  riastrad /*
   1884   1.4  riastrad  * rnd_unlock_sources()
   1885   1.4  riastrad  *
   1886  1.49  riastrad  *	Unlock the list of sources after rnd_lock_sources.  Caller must
   1887  1.49  riastrad  *	hold the global entropy lock.
   1888   1.4  riastrad  */
   1889   1.4  riastrad static void
   1890   1.4  riastrad rnd_unlock_sources(void)
   1891   1.4  riastrad {
   1892   1.4  riastrad 
   1893   1.4  riastrad 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1894   1.4  riastrad 
   1895  1.16  riastrad 	KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
   1896  1.16  riastrad 	    curlwp, E->sourcelock);
   1897   1.4  riastrad 	E->sourcelock = NULL;
   1898   1.4  riastrad 	if (E->stage >= ENTROPY_WARM)
   1899  1.27  riastrad 		cv_signal(&E->sourcelock_cv);
   1900   1.4  riastrad }
   1901   1.4  riastrad 
   1902   1.4  riastrad /*
   1903   1.4  riastrad  * rnd_sources_locked()
   1904   1.4  riastrad  *
   1905   1.4  riastrad  *	True if we hold the list of rndsources locked, for diagnostic
   1906   1.4  riastrad  *	assertions.
   1907   1.4  riastrad  */
   1908   1.7  riastrad static bool __diagused
   1909   1.4  riastrad rnd_sources_locked(void)
   1910   1.4  riastrad {
   1911   1.4  riastrad 
   1912  1.16  riastrad 	return E->sourcelock == curlwp;
   1913   1.4  riastrad }
   1914   1.4  riastrad 
   1915   1.4  riastrad /*
   1916  1.49  riastrad  * entropy_request(nbytes, flags)
   1917   1.1  riastrad  *
   1918   1.1  riastrad  *	Request nbytes bytes of entropy from all sources in the system.
   1919   1.1  riastrad  *	OK if we overdo it.  Caller must hold the global entropy lock;
   1920   1.1  riastrad  *	will release and re-acquire it.
   1921  1.49  riastrad  *
   1922  1.49  riastrad  *	If flags & ENTROPY_WAIT, wait for concurrent access to finish.
   1923  1.49  riastrad  *	If flags & ENTROPY_SIG, allow interruption by signal.
   1924   1.1  riastrad  */
   1925  1.49  riastrad static int
   1926  1.49  riastrad entropy_request(size_t nbytes, int flags)
   1927   1.1  riastrad {
   1928   1.4  riastrad 	struct krndsource *rs;
   1929  1.49  riastrad 	int error;
   1930   1.1  riastrad 
   1931   1.1  riastrad 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1932  1.49  riastrad 	if (flags & ENTROPY_WAIT)
   1933  1.49  riastrad 		ASSERT_SLEEPABLE();
   1934   1.1  riastrad 
   1935   1.1  riastrad 	/*
   1936  1.49  riastrad 	 * Lock the list of entropy sources to block rnd_detach_source
   1937  1.49  riastrad 	 * until we're done, and to serialize calls to the entropy
   1938  1.49  riastrad 	 * callbacks as guaranteed to drivers.
   1939   1.1  riastrad 	 */
   1940  1.49  riastrad 	error = rnd_lock_sources(flags);
   1941  1.49  riastrad 	if (error)
   1942  1.49  riastrad 		return error;
   1943   1.1  riastrad 	entropy_request_evcnt.ev_count++;
   1944   1.1  riastrad 
   1945   1.1  riastrad 	/* Clamp to the maximum reasonable request.  */
   1946   1.1  riastrad 	nbytes = MIN(nbytes, ENTROPY_CAPACITY);
   1947   1.1  riastrad 
   1948   1.1  riastrad 	/* Walk the list of sources.  */
   1949   1.4  riastrad 	LIST_FOREACH(rs, &E->sources, list) {
   1950   1.1  riastrad 		/* Skip sources without callbacks.  */
   1951   1.1  riastrad 		if (!ISSET(rs->flags, RND_FLAG_HASCB))
   1952   1.1  riastrad 			continue;
   1953   1.1  riastrad 
   1954  1.22  riastrad 		/*
   1955  1.22  riastrad 		 * Skip sources that are disabled altogether -- we
   1956  1.22  riastrad 		 * would just ignore their samples anyway.
   1957  1.22  riastrad 		 */
   1958  1.22  riastrad 		if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
   1959  1.22  riastrad 			continue;
   1960  1.22  riastrad 
   1961   1.1  riastrad 		/* Drop the lock while we call the callback.  */
   1962   1.1  riastrad 		if (E->stage >= ENTROPY_WARM)
   1963   1.1  riastrad 			mutex_exit(&E->lock);
   1964   1.1  riastrad 		(*rs->get)(nbytes, rs->getarg);
   1965   1.1  riastrad 		if (E->stage >= ENTROPY_WARM)
   1966   1.1  riastrad 			mutex_enter(&E->lock);
   1967   1.1  riastrad 	}
   1968   1.1  riastrad 
   1969  1.49  riastrad 	/* Request done; unlock the list of entropy sources.  */
   1970   1.4  riastrad 	rnd_unlock_sources();
   1971  1.49  riastrad 	return 0;
   1972   1.1  riastrad }
   1973   1.1  riastrad 
   1974  1.62  riastrad static inline uint32_t
   1975  1.62  riastrad rnd_delta_estimate(rnd_delta_t *d, uint32_t v, int32_t delta)
   1976  1.62  riastrad {
   1977  1.62  riastrad 	int32_t delta2, delta3;
   1978  1.62  riastrad 
   1979  1.62  riastrad 	/*
   1980  1.62  riastrad 	 * Calculate the second and third order differentials
   1981  1.62  riastrad 	 */
   1982  1.62  riastrad 	delta2 = d->dx - delta;
   1983  1.62  riastrad 	if (delta2 < 0)
   1984  1.62  riastrad 		delta2 = -delta2; /* XXX arithmetic overflow */
   1985  1.62  riastrad 
   1986  1.62  riastrad 	delta3 = d->d2x - delta2;
   1987  1.62  riastrad 	if (delta3 < 0)
   1988  1.62  riastrad 		delta3 = -delta3; /* XXX arithmetic overflow */
   1989  1.62  riastrad 
   1990  1.62  riastrad 	d->x = v;
   1991  1.62  riastrad 	d->dx = delta;
   1992  1.62  riastrad 	d->d2x = delta2;
   1993  1.62  riastrad 
   1994  1.62  riastrad 	/*
   1995  1.62  riastrad 	 * If any delta is 0, we got no entropy.  If all are non-zero, we
   1996  1.62  riastrad 	 * might have something.
   1997  1.62  riastrad 	 */
   1998  1.62  riastrad 	if (delta == 0 || delta2 == 0 || delta3 == 0)
   1999  1.62  riastrad 		return 0;
   2000  1.62  riastrad 
   2001  1.62  riastrad 	return 1;
   2002  1.62  riastrad }
   2003  1.62  riastrad 
   2004  1.62  riastrad static inline uint32_t
   2005  1.62  riastrad rnd_dt_estimate(struct krndsource *rs, uint32_t t)
   2006  1.62  riastrad {
   2007  1.62  riastrad 	int32_t delta;
   2008  1.62  riastrad 	uint32_t ret;
   2009  1.62  riastrad 	rnd_delta_t *d;
   2010  1.62  riastrad 	struct rndsource_cpu *rc;
   2011  1.62  riastrad 
   2012  1.62  riastrad 	rc = percpu_getref(rs->state);
   2013  1.62  riastrad 	d = &rc->rc_timedelta;
   2014  1.62  riastrad 
   2015  1.62  riastrad 	if (t < d->x) {
   2016  1.62  riastrad 		delta = UINT32_MAX - d->x + t;
   2017  1.62  riastrad 	} else {
   2018  1.62  riastrad 		delta = d->x - t;
   2019  1.62  riastrad 	}
   2020  1.62  riastrad 
   2021  1.62  riastrad 	if (delta < 0) {
   2022  1.62  riastrad 		delta = -delta;	/* XXX arithmetic overflow */
   2023  1.62  riastrad 	}
   2024  1.62  riastrad 
   2025  1.62  riastrad 	ret = rnd_delta_estimate(d, t, delta);
   2026  1.62  riastrad 
   2027  1.62  riastrad 	KASSERT(d->x == t);
   2028  1.62  riastrad 	KASSERT(d->dx == delta);
   2029  1.62  riastrad 	percpu_putref(rs->state);
   2030  1.62  riastrad 	return ret;
   2031  1.62  riastrad }
   2032  1.62  riastrad 
   2033   1.1  riastrad /*
   2034   1.1  riastrad  * rnd_add_uint32(rs, value)
   2035   1.1  riastrad  *
   2036   1.1  riastrad  *	Enter 32 bits of data from an entropy source into the pool.
   2037   1.1  riastrad  *
   2038   1.1  riastrad  *	If rs is NULL, may not be called from interrupt context.
   2039   1.1  riastrad  *
   2040   1.1  riastrad  *	If rs is non-NULL, may be called from any context.  May drop
   2041   1.1  riastrad  *	data if called from interrupt context.
   2042   1.1  riastrad  */
   2043   1.1  riastrad void
   2044   1.1  riastrad rnd_add_uint32(struct krndsource *rs, uint32_t value)
   2045   1.1  riastrad {
   2046   1.1  riastrad 
   2047   1.1  riastrad 	rnd_add_data(rs, &value, sizeof value, 0);
   2048   1.1  riastrad }
   2049   1.1  riastrad 
   2050   1.1  riastrad void
   2051   1.1  riastrad _rnd_add_uint32(struct krndsource *rs, uint32_t value)
   2052   1.1  riastrad {
   2053   1.1  riastrad 
   2054   1.1  riastrad 	rnd_add_data(rs, &value, sizeof value, 0);
   2055   1.1  riastrad }
   2056   1.1  riastrad 
   2057   1.1  riastrad void
   2058   1.1  riastrad _rnd_add_uint64(struct krndsource *rs, uint64_t value)
   2059   1.1  riastrad {
   2060   1.1  riastrad 
   2061   1.1  riastrad 	rnd_add_data(rs, &value, sizeof value, 0);
   2062   1.1  riastrad }
   2063   1.1  riastrad 
   2064   1.1  riastrad /*
   2065   1.1  riastrad  * rnd_add_data(rs, buf, len, entropybits)
   2066   1.1  riastrad  *
   2067   1.1  riastrad  *	Enter data from an entropy source into the pool, with a
   2068   1.1  riastrad  *	driver's estimate of how much entropy the physical source of
   2069   1.1  riastrad  *	the data has.  If RND_FLAG_NO_ESTIMATE, we ignore the driver's
   2070   1.1  riastrad  *	estimate and treat it as zero.
   2071   1.1  riastrad  *
   2072   1.1  riastrad  *	If rs is NULL, may not be called from interrupt context.
   2073   1.1  riastrad  *
   2074   1.1  riastrad  *	If rs is non-NULL, may be called from any context.  May drop
   2075   1.1  riastrad  *	data if called from interrupt context.
   2076   1.1  riastrad  */
   2077   1.1  riastrad void
   2078   1.1  riastrad rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
   2079   1.1  riastrad     uint32_t entropybits)
   2080   1.1  riastrad {
   2081   1.1  riastrad 	uint32_t extra;
   2082   1.1  riastrad 	uint32_t flags;
   2083   1.1  riastrad 
   2084   1.1  riastrad 	KASSERTMSG(howmany(entropybits, NBBY) <= len,
   2085   1.1  riastrad 	    "%s: impossible entropy rate:"
   2086   1.1  riastrad 	    " %"PRIu32" bits in %"PRIu32"-byte string",
   2087   1.1  riastrad 	    rs ? rs->name : "(anonymous)", entropybits, len);
   2088   1.1  riastrad 
   2089   1.1  riastrad 	/* If there's no rndsource, just enter the data and time now.  */
   2090   1.1  riastrad 	if (rs == NULL) {
   2091  1.62  riastrad 		entropy_enter(buf, len, entropybits, /*count*/false);
   2092   1.1  riastrad 		extra = entropy_timer();
   2093  1.62  riastrad 		entropy_enter(&extra, sizeof extra, 0, /*count*/false);
   2094   1.1  riastrad 		explicit_memset(&extra, 0, sizeof extra);
   2095   1.1  riastrad 		return;
   2096   1.1  riastrad 	}
   2097   1.1  riastrad 
   2098  1.61  riastrad 	/*
   2099  1.61  riastrad 	 * Hold up the reset xcall before it zeroes the entropy counts
   2100  1.61  riastrad 	 * on this CPU or globally.  Otherwise, we might leave some
   2101  1.61  riastrad 	 * nonzero entropy attributed to an untrusted source in the
   2102  1.61  riastrad 	 * event of a race with a change to flags.
   2103  1.61  riastrad 	 */
   2104  1.61  riastrad 	kpreempt_disable();
   2105  1.61  riastrad 
   2106   1.1  riastrad 	/* Load a snapshot of the flags.  Ioctl may change them under us.  */
   2107   1.1  riastrad 	flags = atomic_load_relaxed(&rs->flags);
   2108   1.1  riastrad 
   2109   1.1  riastrad 	/*
   2110   1.1  riastrad 	 * Skip if:
   2111   1.1  riastrad 	 * - we're not collecting entropy, or
   2112   1.1  riastrad 	 * - the operator doesn't want to collect entropy from this, or
   2113   1.1  riastrad 	 * - neither data nor timings are being collected from this.
   2114   1.1  riastrad 	 */
   2115   1.1  riastrad 	if (!atomic_load_relaxed(&entropy_collection) ||
   2116   1.1  riastrad 	    ISSET(flags, RND_FLAG_NO_COLLECT) ||
   2117   1.1  riastrad 	    !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
   2118  1.61  riastrad 		goto out;
   2119   1.1  riastrad 
   2120   1.1  riastrad 	/* If asked, ignore the estimate.  */
   2121   1.1  riastrad 	if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
   2122   1.1  riastrad 		entropybits = 0;
   2123   1.1  riastrad 
   2124   1.1  riastrad 	/* If we are collecting data, enter them.  */
   2125  1.62  riastrad 	if (ISSET(flags, RND_FLAG_COLLECT_VALUE)) {
   2126  1.62  riastrad 		rnd_add_data_1(rs, buf, len, entropybits, /*count*/false,
   2127  1.28  riastrad 		    RND_FLAG_COLLECT_VALUE);
   2128  1.62  riastrad 	}
   2129   1.1  riastrad 
   2130   1.1  riastrad 	/* If we are collecting timings, enter one.  */
   2131   1.1  riastrad 	if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
   2132  1.62  riastrad 		bool count;
   2133  1.62  riastrad 
   2134  1.62  riastrad 		/* Sample a timer.  */
   2135   1.1  riastrad 		extra = entropy_timer();
   2136  1.62  riastrad 
   2137  1.62  riastrad 		/* If asked, do entropy estimation on the time.  */
   2138  1.62  riastrad 		if ((flags & (RND_FLAG_ESTIMATE_TIME|RND_FLAG_NO_ESTIMATE)) ==
   2139  1.62  riastrad 		    RND_FLAG_ESTIMATE_TIME && !cold)
   2140  1.62  riastrad 			count = rnd_dt_estimate(rs, extra);
   2141  1.62  riastrad 		else
   2142  1.62  riastrad 			count = false;
   2143  1.62  riastrad 
   2144  1.62  riastrad 		rnd_add_data_1(rs, &extra, sizeof extra, 0, count,
   2145  1.28  riastrad 		    RND_FLAG_COLLECT_TIME);
   2146   1.1  riastrad 	}
   2147  1.61  riastrad 
   2148  1.61  riastrad out:	/* Allow concurrent changes to flags to finish.  */
   2149  1.61  riastrad 	kpreempt_enable();
   2150   1.1  riastrad }
   2151   1.1  riastrad 
   2152  1.28  riastrad static unsigned
   2153  1.28  riastrad add_sat(unsigned a, unsigned b)
   2154  1.28  riastrad {
   2155  1.28  riastrad 	unsigned c = a + b;
   2156  1.28  riastrad 
   2157  1.28  riastrad 	return (c < a ? UINT_MAX : c);
   2158  1.28  riastrad }
   2159  1.28  riastrad 
   2160   1.1  riastrad /*
   2161  1.62  riastrad  * rnd_add_data_1(rs, buf, len, entropybits, count, flag)
   2162   1.1  riastrad  *
   2163   1.1  riastrad  *	Internal subroutine to call either entropy_enter_intr, if we're
   2164   1.1  riastrad  *	in interrupt context, or entropy_enter if not, and to count the
   2165   1.1  riastrad  *	entropy in an rndsource.
   2166   1.1  riastrad  */
   2167   1.1  riastrad static void
   2168   1.1  riastrad rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
   2169  1.62  riastrad     uint32_t entropybits, bool count, uint32_t flag)
   2170   1.1  riastrad {
   2171   1.1  riastrad 	bool fullyused;
   2172   1.1  riastrad 
   2173   1.1  riastrad 	/*
   2174   1.1  riastrad 	 * If we're in interrupt context, use entropy_enter_intr and
   2175   1.1  riastrad 	 * take note of whether it consumed the full sample; if not,
   2176   1.1  riastrad 	 * use entropy_enter, which always consumes the full sample.
   2177   1.1  riastrad 	 */
   2178  1.16  riastrad 	if (curlwp && cpu_intr_p()) {
   2179  1.62  riastrad 		fullyused = entropy_enter_intr(buf, len, entropybits, count);
   2180   1.1  riastrad 	} else {
   2181  1.62  riastrad 		entropy_enter(buf, len, entropybits, count);
   2182   1.1  riastrad 		fullyused = true;
   2183   1.1  riastrad 	}
   2184   1.1  riastrad 
   2185   1.1  riastrad 	/*
   2186   1.1  riastrad 	 * If we used the full sample, note how many bits were
   2187   1.1  riastrad 	 * contributed from this source.
   2188   1.1  riastrad 	 */
   2189   1.1  riastrad 	if (fullyused) {
   2190  1.37  riastrad 		if (__predict_false(E->stage == ENTROPY_COLD)) {
   2191  1.28  riastrad 			rs->total = add_sat(rs->total, entropybits);
   2192  1.28  riastrad 			switch (flag) {
   2193  1.28  riastrad 			case RND_FLAG_COLLECT_TIME:
   2194  1.28  riastrad 				rs->time_delta.insamples =
   2195  1.28  riastrad 				    add_sat(rs->time_delta.insamples, 1);
   2196  1.28  riastrad 				break;
   2197  1.28  riastrad 			case RND_FLAG_COLLECT_VALUE:
   2198  1.28  riastrad 				rs->value_delta.insamples =
   2199  1.28  riastrad 				    add_sat(rs->value_delta.insamples, 1);
   2200  1.28  riastrad 				break;
   2201  1.28  riastrad 			}
   2202   1.1  riastrad 		} else {
   2203   1.1  riastrad 			struct rndsource_cpu *rc = percpu_getref(rs->state);
   2204   1.1  riastrad 
   2205  1.28  riastrad 			atomic_store_relaxed(&rc->rc_entropybits,
   2206  1.28  riastrad 			    add_sat(rc->rc_entropybits, entropybits));
   2207  1.28  riastrad 			switch (flag) {
   2208  1.28  riastrad 			case RND_FLAG_COLLECT_TIME:
   2209  1.28  riastrad 				atomic_store_relaxed(&rc->rc_timesamples,
   2210  1.28  riastrad 				    add_sat(rc->rc_timesamples, 1));
   2211  1.28  riastrad 				break;
   2212  1.28  riastrad 			case RND_FLAG_COLLECT_VALUE:
   2213  1.28  riastrad 				atomic_store_relaxed(&rc->rc_datasamples,
   2214  1.28  riastrad 				    add_sat(rc->rc_datasamples, 1));
   2215  1.28  riastrad 				break;
   2216  1.28  riastrad 			}
   2217   1.1  riastrad 			percpu_putref(rs->state);
   2218   1.1  riastrad 		}
   2219   1.1  riastrad 	}
   2220   1.1  riastrad }
   2221   1.1  riastrad 
   2222   1.1  riastrad /*
   2223   1.1  riastrad  * rnd_add_data_sync(rs, buf, len, entropybits)
   2224   1.1  riastrad  *
   2225   1.1  riastrad  *	Same as rnd_add_data.  Originally used in rndsource callbacks,
   2226   1.1  riastrad  *	to break an unnecessary cycle; no longer really needed.
   2227   1.1  riastrad  */
   2228   1.1  riastrad void
   2229   1.1  riastrad rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
   2230   1.1  riastrad     uint32_t entropybits)
   2231   1.1  riastrad {
   2232   1.1  riastrad 
   2233   1.1  riastrad 	rnd_add_data(rs, buf, len, entropybits);
   2234   1.1  riastrad }
   2235   1.1  riastrad 
   2236   1.1  riastrad /*
   2237   1.1  riastrad  * rndsource_entropybits(rs)
   2238   1.1  riastrad  *
   2239   1.1  riastrad  *	Return approximately the number of bits of entropy that have
   2240   1.1  riastrad  *	been contributed via rs so far.  Approximate if other CPUs may
   2241   1.1  riastrad  *	be calling rnd_add_data concurrently.
   2242   1.1  riastrad  */
   2243   1.1  riastrad static unsigned
   2244   1.1  riastrad rndsource_entropybits(struct krndsource *rs)
   2245   1.1  riastrad {
   2246   1.1  riastrad 	unsigned nbits = rs->total;
   2247   1.1  riastrad 
   2248   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   2249   1.4  riastrad 	KASSERT(rnd_sources_locked());
   2250   1.1  riastrad 	percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
   2251   1.1  riastrad 	return nbits;
   2252   1.1  riastrad }
   2253   1.1  riastrad 
   2254   1.1  riastrad static void
   2255   1.1  riastrad rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   2256   1.1  riastrad {
   2257   1.1  riastrad 	struct rndsource_cpu *rc = ptr;
   2258   1.1  riastrad 	unsigned *nbitsp = cookie;
   2259   1.1  riastrad 	unsigned cpu_nbits;
   2260   1.1  riastrad 
   2261  1.28  riastrad 	cpu_nbits = atomic_load_relaxed(&rc->rc_entropybits);
   2262   1.1  riastrad 	*nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
   2263   1.1  riastrad }
   2264   1.1  riastrad 
   2265   1.1  riastrad /*
   2266   1.1  riastrad  * rndsource_to_user(rs, urs)
   2267   1.1  riastrad  *
   2268   1.1  riastrad  *	Copy a description of rs out to urs for userland.
   2269   1.1  riastrad  */
   2270   1.1  riastrad static void
   2271   1.1  riastrad rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
   2272   1.1  riastrad {
   2273   1.1  riastrad 
   2274   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   2275   1.4  riastrad 	KASSERT(rnd_sources_locked());
   2276   1.1  riastrad 
   2277   1.1  riastrad 	/* Avoid kernel memory disclosure.  */
   2278   1.1  riastrad 	memset(urs, 0, sizeof(*urs));
   2279   1.1  riastrad 
   2280   1.1  riastrad 	CTASSERT(sizeof(urs->name) == sizeof(rs->name));
   2281   1.1  riastrad 	strlcpy(urs->name, rs->name, sizeof(urs->name));
   2282   1.1  riastrad 	urs->total = rndsource_entropybits(rs);
   2283   1.1  riastrad 	urs->type = rs->type;
   2284   1.1  riastrad 	urs->flags = atomic_load_relaxed(&rs->flags);
   2285   1.1  riastrad }
   2286   1.1  riastrad 
   2287   1.1  riastrad /*
   2288   1.1  riastrad  * rndsource_to_user_est(rs, urse)
   2289   1.1  riastrad  *
   2290   1.1  riastrad  *	Copy a description of rs and estimation statistics out to urse
   2291   1.1  riastrad  *	for userland.
   2292   1.1  riastrad  */
   2293   1.1  riastrad static void
   2294   1.1  riastrad rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
   2295   1.1  riastrad {
   2296   1.1  riastrad 
   2297   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   2298   1.4  riastrad 	KASSERT(rnd_sources_locked());
   2299   1.1  riastrad 
   2300   1.1  riastrad 	/* Avoid kernel memory disclosure.  */
   2301   1.1  riastrad 	memset(urse, 0, sizeof(*urse));
   2302   1.1  riastrad 
   2303   1.1  riastrad 	/* Copy out the rndsource description.  */
   2304   1.1  riastrad 	rndsource_to_user(rs, &urse->rt);
   2305   1.1  riastrad 
   2306  1.28  riastrad 	/* Gather the statistics.  */
   2307  1.28  riastrad 	urse->dt_samples = rs->time_delta.insamples;
   2308   1.1  riastrad 	urse->dt_total = 0;
   2309  1.28  riastrad 	urse->dv_samples = rs->value_delta.insamples;
   2310  1.28  riastrad 	urse->dv_total = urse->rt.total;
   2311  1.28  riastrad 	percpu_foreach(rs->state, rndsource_to_user_est_cpu, urse);
   2312  1.28  riastrad }
   2313  1.28  riastrad 
   2314  1.28  riastrad static void
   2315  1.28  riastrad rndsource_to_user_est_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   2316  1.28  riastrad {
   2317  1.28  riastrad 	struct rndsource_cpu *rc = ptr;
   2318  1.28  riastrad 	rndsource_est_t *urse = cookie;
   2319  1.28  riastrad 
   2320  1.28  riastrad 	urse->dt_samples = add_sat(urse->dt_samples,
   2321  1.28  riastrad 	    atomic_load_relaxed(&rc->rc_timesamples));
   2322  1.28  riastrad 	urse->dv_samples = add_sat(urse->dv_samples,
   2323  1.28  riastrad 	    atomic_load_relaxed(&rc->rc_datasamples));
   2324   1.1  riastrad }
   2325   1.1  riastrad 
   2326   1.1  riastrad /*
   2327  1.21  riastrad  * entropy_reset_xc(arg1, arg2)
   2328  1.21  riastrad  *
   2329  1.21  riastrad  *	Reset the current CPU's pending entropy to zero.
   2330  1.21  riastrad  */
   2331  1.21  riastrad static void
   2332  1.21  riastrad entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
   2333  1.21  riastrad {
   2334  1.21  riastrad 	uint32_t extra = entropy_timer();
   2335  1.43  riastrad 	struct entropy_cpu_lock lock;
   2336  1.21  riastrad 	struct entropy_cpu *ec;
   2337  1.21  riastrad 
   2338  1.21  riastrad 	/*
   2339  1.43  riastrad 	 * With the per-CPU state locked, zero the pending count and
   2340  1.43  riastrad 	 * enter a cycle count for fun.
   2341  1.21  riastrad 	 */
   2342  1.43  riastrad 	ec = entropy_cpu_get(&lock);
   2343  1.62  riastrad 	ec->ec_bitspending = 0;
   2344  1.62  riastrad 	ec->ec_samplespending = 0;
   2345  1.21  riastrad 	entpool_enter(ec->ec_pool, &extra, sizeof extra);
   2346  1.43  riastrad 	entropy_cpu_put(&lock, ec);
   2347  1.21  riastrad }
   2348  1.21  riastrad 
   2349  1.21  riastrad /*
   2350   1.1  riastrad  * entropy_ioctl(cmd, data)
   2351   1.1  riastrad  *
   2352   1.1  riastrad  *	Handle various /dev/random ioctl queries.
   2353   1.1  riastrad  */
   2354   1.1  riastrad int
   2355   1.1  riastrad entropy_ioctl(unsigned long cmd, void *data)
   2356   1.1  riastrad {
   2357   1.1  riastrad 	struct krndsource *rs;
   2358   1.1  riastrad 	bool privileged;
   2359   1.1  riastrad 	int error;
   2360   1.1  riastrad 
   2361   1.1  riastrad 	KASSERT(E->stage >= ENTROPY_WARM);
   2362   1.1  riastrad 
   2363   1.1  riastrad 	/* Verify user's authorization to perform the ioctl.  */
   2364   1.1  riastrad 	switch (cmd) {
   2365   1.1  riastrad 	case RNDGETENTCNT:
   2366   1.1  riastrad 	case RNDGETPOOLSTAT:
   2367   1.1  riastrad 	case RNDGETSRCNUM:
   2368   1.1  riastrad 	case RNDGETSRCNAME:
   2369   1.1  riastrad 	case RNDGETESTNUM:
   2370   1.1  riastrad 	case RNDGETESTNAME:
   2371  1.31  christos 		error = kauth_authorize_device(kauth_cred_get(),
   2372   1.1  riastrad 		    KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
   2373   1.1  riastrad 		break;
   2374   1.1  riastrad 	case RNDCTL:
   2375  1.31  christos 		error = kauth_authorize_device(kauth_cred_get(),
   2376   1.1  riastrad 		    KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
   2377   1.1  riastrad 		break;
   2378   1.1  riastrad 	case RNDADDDATA:
   2379  1.31  christos 		error = kauth_authorize_device(kauth_cred_get(),
   2380   1.1  riastrad 		    KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
   2381   1.1  riastrad 		/* Ascertain whether the user's inputs should be counted.  */
   2382  1.31  christos 		if (kauth_authorize_device(kauth_cred_get(),
   2383   1.1  riastrad 			KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
   2384   1.1  riastrad 			NULL, NULL, NULL, NULL) == 0)
   2385   1.1  riastrad 			privileged = true;
   2386   1.1  riastrad 		break;
   2387   1.1  riastrad 	default: {
   2388   1.1  riastrad 		/*
   2389   1.1  riastrad 		 * XXX Hack to avoid changing module ABI so this can be
   2390   1.1  riastrad 		 * pulled up.  Later, we can just remove the argument.
   2391   1.1  riastrad 		 */
   2392   1.1  riastrad 		static const struct fileops fops = {
   2393   1.1  riastrad 			.fo_ioctl = rnd_system_ioctl,
   2394   1.1  riastrad 		};
   2395   1.1  riastrad 		struct file f = {
   2396   1.1  riastrad 			.f_ops = &fops,
   2397   1.1  riastrad 		};
   2398   1.1  riastrad 		MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
   2399   1.1  riastrad 		    enosys(), error);
   2400   1.1  riastrad #if defined(_LP64)
   2401   1.1  riastrad 		if (error == ENOSYS)
   2402   1.1  riastrad 			MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
   2403   1.1  riastrad 			    enosys(), error);
   2404   1.1  riastrad #endif
   2405   1.1  riastrad 		if (error == ENOSYS)
   2406   1.1  riastrad 			error = ENOTTY;
   2407   1.1  riastrad 		break;
   2408   1.1  riastrad 	}
   2409   1.1  riastrad 	}
   2410   1.1  riastrad 
   2411   1.1  riastrad 	/* If anything went wrong with authorization, stop here.  */
   2412   1.1  riastrad 	if (error)
   2413   1.1  riastrad 		return error;
   2414   1.1  riastrad 
   2415   1.1  riastrad 	/* Dispatch on the command.  */
   2416   1.1  riastrad 	switch (cmd) {
   2417   1.1  riastrad 	case RNDGETENTCNT: {	/* Get current entropy count in bits.  */
   2418   1.1  riastrad 		uint32_t *countp = data;
   2419   1.1  riastrad 
   2420   1.1  riastrad 		mutex_enter(&E->lock);
   2421  1.62  riastrad 		*countp = MINENTROPYBITS - E->bitsneeded;
   2422   1.1  riastrad 		mutex_exit(&E->lock);
   2423   1.1  riastrad 
   2424   1.1  riastrad 		break;
   2425   1.1  riastrad 	}
   2426   1.1  riastrad 	case RNDGETPOOLSTAT: {	/* Get entropy pool statistics.  */
   2427   1.1  riastrad 		rndpoolstat_t *pstat = data;
   2428   1.1  riastrad 
   2429   1.1  riastrad 		mutex_enter(&E->lock);
   2430   1.1  riastrad 
   2431   1.1  riastrad 		/* parameters */
   2432   1.1  riastrad 		pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
   2433  1.62  riastrad 		pstat->threshold = MINENTROPYBITS/NBBY; /* bytes */
   2434   1.1  riastrad 		pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
   2435   1.1  riastrad 
   2436   1.1  riastrad 		/* state */
   2437   1.1  riastrad 		pstat->added = 0; /* XXX total entropy_enter count */
   2438  1.62  riastrad 		pstat->curentropy = MINENTROPYBITS - E->bitsneeded; /* bits */
   2439   1.1  riastrad 		pstat->removed = 0; /* XXX total entropy_extract count */
   2440   1.1  riastrad 		pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
   2441  1.62  riastrad 
   2442  1.62  riastrad 		/*
   2443  1.62  riastrad 		 * This used to be bits of data fabricated in some
   2444  1.62  riastrad 		 * sense; we'll take it to mean number of samples,
   2445  1.62  riastrad 		 * excluding the bits of entropy from HWRNG or seed.
   2446  1.62  riastrad 		 */
   2447  1.62  riastrad 		pstat->generated = MINSAMPLES - E->samplesneeded;
   2448  1.62  riastrad 		pstat->generated -= MIN(pstat->generated, pstat->curentropy);
   2449   1.1  riastrad 
   2450   1.1  riastrad 		mutex_exit(&E->lock);
   2451   1.1  riastrad 		break;
   2452   1.1  riastrad 	}
   2453   1.1  riastrad 	case RNDGETSRCNUM: {	/* Get entropy sources by number.  */
   2454   1.1  riastrad 		rndstat_t *stat = data;
   2455   1.1  riastrad 		uint32_t start = 0, i = 0;
   2456   1.1  riastrad 
   2457   1.1  riastrad 		/* Skip if none requested; fail if too many requested.  */
   2458   1.1  riastrad 		if (stat->count == 0)
   2459   1.1  riastrad 			break;
   2460   1.1  riastrad 		if (stat->count > RND_MAXSTATCOUNT)
   2461   1.1  riastrad 			return EINVAL;
   2462   1.1  riastrad 
   2463   1.1  riastrad 		/*
   2464   1.1  riastrad 		 * Under the lock, find the first one, copy out as many
   2465   1.1  riastrad 		 * as requested, and report how many we copied out.
   2466   1.1  riastrad 		 */
   2467   1.1  riastrad 		mutex_enter(&E->lock);
   2468  1.49  riastrad 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2469   1.4  riastrad 		if (error) {
   2470   1.4  riastrad 			mutex_exit(&E->lock);
   2471   1.4  riastrad 			return error;
   2472   1.4  riastrad 		}
   2473   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2474   1.1  riastrad 			if (start++ == stat->start)
   2475   1.1  riastrad 				break;
   2476   1.1  riastrad 		}
   2477   1.1  riastrad 		while (i < stat->count && rs != NULL) {
   2478   1.5  riastrad 			mutex_exit(&E->lock);
   2479   1.1  riastrad 			rndsource_to_user(rs, &stat->source[i++]);
   2480   1.5  riastrad 			mutex_enter(&E->lock);
   2481   1.1  riastrad 			rs = LIST_NEXT(rs, list);
   2482   1.1  riastrad 		}
   2483   1.1  riastrad 		KASSERT(i <= stat->count);
   2484   1.1  riastrad 		stat->count = i;
   2485   1.4  riastrad 		rnd_unlock_sources();
   2486   1.1  riastrad 		mutex_exit(&E->lock);
   2487   1.1  riastrad 		break;
   2488   1.1  riastrad 	}
   2489   1.1  riastrad 	case RNDGETESTNUM: {	/* Get sources and estimates by number.  */
   2490   1.1  riastrad 		rndstat_est_t *estat = data;
   2491   1.1  riastrad 		uint32_t start = 0, i = 0;
   2492   1.1  riastrad 
   2493   1.1  riastrad 		/* Skip if none requested; fail if too many requested.  */
   2494   1.1  riastrad 		if (estat->count == 0)
   2495   1.1  riastrad 			break;
   2496   1.1  riastrad 		if (estat->count > RND_MAXSTATCOUNT)
   2497   1.1  riastrad 			return EINVAL;
   2498   1.1  riastrad 
   2499   1.1  riastrad 		/*
   2500   1.1  riastrad 		 * Under the lock, find the first one, copy out as many
   2501   1.1  riastrad 		 * as requested, and report how many we copied out.
   2502   1.1  riastrad 		 */
   2503   1.1  riastrad 		mutex_enter(&E->lock);
   2504  1.49  riastrad 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2505   1.4  riastrad 		if (error) {
   2506   1.4  riastrad 			mutex_exit(&E->lock);
   2507   1.4  riastrad 			return error;
   2508   1.4  riastrad 		}
   2509   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2510   1.1  riastrad 			if (start++ == estat->start)
   2511   1.1  riastrad 				break;
   2512   1.1  riastrad 		}
   2513   1.1  riastrad 		while (i < estat->count && rs != NULL) {
   2514   1.4  riastrad 			mutex_exit(&E->lock);
   2515   1.1  riastrad 			rndsource_to_user_est(rs, &estat->source[i++]);
   2516   1.4  riastrad 			mutex_enter(&E->lock);
   2517   1.1  riastrad 			rs = LIST_NEXT(rs, list);
   2518   1.1  riastrad 		}
   2519   1.1  riastrad 		KASSERT(i <= estat->count);
   2520   1.1  riastrad 		estat->count = i;
   2521   1.4  riastrad 		rnd_unlock_sources();
   2522   1.1  riastrad 		mutex_exit(&E->lock);
   2523   1.1  riastrad 		break;
   2524   1.1  riastrad 	}
   2525   1.1  riastrad 	case RNDGETSRCNAME: {	/* Get entropy sources by name.  */
   2526   1.1  riastrad 		rndstat_name_t *nstat = data;
   2527   1.1  riastrad 		const size_t n = sizeof(rs->name);
   2528   1.1  riastrad 
   2529   1.1  riastrad 		CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
   2530   1.1  riastrad 
   2531   1.1  riastrad 		/*
   2532   1.1  riastrad 		 * Under the lock, search by name.  If found, copy it
   2533   1.1  riastrad 		 * out; if not found, fail with ENOENT.
   2534   1.1  riastrad 		 */
   2535   1.1  riastrad 		mutex_enter(&E->lock);
   2536  1.49  riastrad 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2537   1.4  riastrad 		if (error) {
   2538   1.4  riastrad 			mutex_exit(&E->lock);
   2539   1.4  riastrad 			return error;
   2540   1.4  riastrad 		}
   2541   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2542   1.1  riastrad 			if (strncmp(rs->name, nstat->name, n) == 0)
   2543   1.1  riastrad 				break;
   2544   1.1  riastrad 		}
   2545   1.4  riastrad 		if (rs != NULL) {
   2546   1.4  riastrad 			mutex_exit(&E->lock);
   2547   1.1  riastrad 			rndsource_to_user(rs, &nstat->source);
   2548   1.4  riastrad 			mutex_enter(&E->lock);
   2549   1.4  riastrad 		} else {
   2550   1.1  riastrad 			error = ENOENT;
   2551   1.4  riastrad 		}
   2552   1.4  riastrad 		rnd_unlock_sources();
   2553   1.1  riastrad 		mutex_exit(&E->lock);
   2554   1.1  riastrad 		break;
   2555   1.1  riastrad 	}
   2556   1.1  riastrad 	case RNDGETESTNAME: {	/* Get sources and estimates by name.  */
   2557   1.1  riastrad 		rndstat_est_name_t *enstat = data;
   2558   1.1  riastrad 		const size_t n = sizeof(rs->name);
   2559   1.1  riastrad 
   2560   1.1  riastrad 		CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
   2561   1.1  riastrad 
   2562   1.1  riastrad 		/*
   2563   1.1  riastrad 		 * Under the lock, search by name.  If found, copy it
   2564   1.1  riastrad 		 * out; if not found, fail with ENOENT.
   2565   1.1  riastrad 		 */
   2566   1.1  riastrad 		mutex_enter(&E->lock);
   2567  1.49  riastrad 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2568   1.4  riastrad 		if (error) {
   2569   1.4  riastrad 			mutex_exit(&E->lock);
   2570   1.4  riastrad 			return error;
   2571   1.4  riastrad 		}
   2572   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2573   1.1  riastrad 			if (strncmp(rs->name, enstat->name, n) == 0)
   2574   1.1  riastrad 				break;
   2575   1.1  riastrad 		}
   2576   1.4  riastrad 		if (rs != NULL) {
   2577   1.4  riastrad 			mutex_exit(&E->lock);
   2578   1.1  riastrad 			rndsource_to_user_est(rs, &enstat->source);
   2579   1.4  riastrad 			mutex_enter(&E->lock);
   2580   1.4  riastrad 		} else {
   2581   1.1  riastrad 			error = ENOENT;
   2582   1.4  riastrad 		}
   2583   1.4  riastrad 		rnd_unlock_sources();
   2584   1.1  riastrad 		mutex_exit(&E->lock);
   2585   1.1  riastrad 		break;
   2586   1.1  riastrad 	}
   2587   1.1  riastrad 	case RNDCTL: {		/* Modify entropy source flags.  */
   2588   1.1  riastrad 		rndctl_t *rndctl = data;
   2589   1.1  riastrad 		const size_t n = sizeof(rs->name);
   2590  1.21  riastrad 		uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2591   1.1  riastrad 		uint32_t flags;
   2592  1.21  riastrad 		bool reset = false, request = false;
   2593   1.1  riastrad 
   2594   1.1  riastrad 		CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
   2595   1.1  riastrad 
   2596   1.1  riastrad 		/* Whitelist the flags that user can change.  */
   2597   1.1  riastrad 		rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2598   1.1  riastrad 
   2599   1.1  riastrad 		/*
   2600   1.1  riastrad 		 * For each matching rndsource, either by type if
   2601   1.1  riastrad 		 * specified or by name if not, set the masked flags.
   2602   1.1  riastrad 		 */
   2603   1.1  riastrad 		mutex_enter(&E->lock);
   2604   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2605   1.1  riastrad 			if (rndctl->type != 0xff) {
   2606   1.1  riastrad 				if (rs->type != rndctl->type)
   2607   1.1  riastrad 					continue;
   2608  1.59  riastrad 			} else if (rndctl->name[0] != '\0') {
   2609   1.1  riastrad 				if (strncmp(rs->name, rndctl->name, n) != 0)
   2610   1.1  riastrad 					continue;
   2611   1.1  riastrad 			}
   2612   1.1  riastrad 			flags = rs->flags & ~rndctl->mask;
   2613   1.1  riastrad 			flags |= rndctl->flags & rndctl->mask;
   2614  1.21  riastrad 			if ((rs->flags & resetflags) == 0 &&
   2615  1.21  riastrad 			    (flags & resetflags) != 0)
   2616  1.21  riastrad 				reset = true;
   2617  1.21  riastrad 			if ((rs->flags ^ flags) & resetflags)
   2618  1.21  riastrad 				request = true;
   2619   1.1  riastrad 			atomic_store_relaxed(&rs->flags, flags);
   2620   1.1  riastrad 		}
   2621   1.1  riastrad 		mutex_exit(&E->lock);
   2622  1.21  riastrad 
   2623  1.21  riastrad 		/*
   2624  1.21  riastrad 		 * If we disabled estimation or collection, nix all the
   2625  1.21  riastrad 		 * pending entropy and set needed to the maximum.
   2626  1.21  riastrad 		 */
   2627  1.21  riastrad 		if (reset) {
   2628  1.21  riastrad 			xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
   2629  1.21  riastrad 			mutex_enter(&E->lock);
   2630  1.62  riastrad 			E->bitspending = 0;
   2631  1.62  riastrad 			E->samplespending = 0;
   2632  1.62  riastrad 			atomic_store_relaxed(&E->bitsneeded, MINENTROPYBITS);
   2633  1.62  riastrad 			atomic_store_relaxed(&E->samplesneeded, MINSAMPLES);
   2634  1.60  riastrad 			E->consolidate = false;
   2635  1.21  riastrad 			mutex_exit(&E->lock);
   2636  1.21  riastrad 		}
   2637  1.21  riastrad 
   2638  1.21  riastrad 		/*
   2639  1.21  riastrad 		 * If we changed any of the estimation or collection
   2640  1.21  riastrad 		 * flags, request new samples from everyone -- either
   2641  1.21  riastrad 		 * to make up for what we just lost, or to get new
   2642  1.21  riastrad 		 * samples from what we just added.
   2643  1.49  riastrad 		 *
   2644  1.49  riastrad 		 * Failing on signal, while waiting for another process
   2645  1.49  riastrad 		 * to finish requesting entropy, is OK here even though
   2646  1.49  riastrad 		 * we have committed side effects, because this ioctl
   2647  1.49  riastrad 		 * command is idempotent, so repeating it is safe.
   2648  1.21  riastrad 		 */
   2649  1.21  riastrad 		if (request) {
   2650  1.21  riastrad 			mutex_enter(&E->lock);
   2651  1.49  riastrad 			error = entropy_request(ENTROPY_CAPACITY,
   2652  1.49  riastrad 			    ENTROPY_WAIT|ENTROPY_SIG);
   2653  1.21  riastrad 			mutex_exit(&E->lock);
   2654  1.21  riastrad 		}
   2655   1.1  riastrad 		break;
   2656   1.1  riastrad 	}
   2657   1.1  riastrad 	case RNDADDDATA: {	/* Enter seed into entropy pool.  */
   2658   1.1  riastrad 		rnddata_t *rdata = data;
   2659   1.1  riastrad 		unsigned entropybits = 0;
   2660   1.1  riastrad 
   2661   1.1  riastrad 		if (!atomic_load_relaxed(&entropy_collection))
   2662   1.1  riastrad 			break;	/* thanks but no thanks */
   2663   1.1  riastrad 		if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
   2664   1.1  riastrad 			return EINVAL;
   2665   1.1  riastrad 
   2666   1.1  riastrad 		/*
   2667   1.1  riastrad 		 * This ioctl serves as the userland alternative a
   2668   1.1  riastrad 		 * bootloader-provided seed -- typically furnished by
   2669   1.1  riastrad 		 * /etc/rc.d/random_seed.  We accept the user's entropy
   2670   1.1  riastrad 		 * claim only if
   2671   1.1  riastrad 		 *
   2672   1.1  riastrad 		 * (a) the user is privileged, and
   2673   1.1  riastrad 		 * (b) we have not entered a bootloader seed.
   2674   1.1  riastrad 		 *
   2675   1.1  riastrad 		 * under the assumption that the user may use this to
   2676   1.1  riastrad 		 * load a seed from disk that we have already loaded
   2677   1.1  riastrad 		 * from the bootloader, so we don't double-count it.
   2678   1.1  riastrad 		 */
   2679  1.11  riastrad 		if (privileged && rdata->entropy && rdata->len) {
   2680   1.1  riastrad 			mutex_enter(&E->lock);
   2681   1.1  riastrad 			if (!E->seeded) {
   2682   1.1  riastrad 				entropybits = MIN(rdata->entropy,
   2683   1.1  riastrad 				    MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
   2684   1.1  riastrad 				E->seeded = true;
   2685   1.1  riastrad 			}
   2686   1.1  riastrad 			mutex_exit(&E->lock);
   2687   1.1  riastrad 		}
   2688   1.1  riastrad 
   2689  1.13  riastrad 		/* Enter the data and consolidate entropy.  */
   2690   1.1  riastrad 		rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
   2691   1.1  riastrad 		    entropybits);
   2692  1.13  riastrad 		entropy_consolidate();
   2693   1.1  riastrad 		break;
   2694   1.1  riastrad 	}
   2695   1.1  riastrad 	default:
   2696   1.1  riastrad 		error = ENOTTY;
   2697   1.1  riastrad 	}
   2698   1.1  riastrad 
   2699   1.1  riastrad 	/* Return any error that may have come up.  */
   2700   1.1  riastrad 	return error;
   2701   1.1  riastrad }
   2702   1.1  riastrad 
   2703   1.1  riastrad /* Legacy entry points */
   2704   1.1  riastrad 
   2705   1.1  riastrad void
   2706   1.1  riastrad rnd_seed(void *seed, size_t len)
   2707   1.1  riastrad {
   2708   1.1  riastrad 
   2709   1.1  riastrad 	if (len != sizeof(rndsave_t)) {
   2710   1.1  riastrad 		printf("entropy: invalid seed length: %zu,"
   2711   1.1  riastrad 		    " expected sizeof(rndsave_t) = %zu\n",
   2712   1.1  riastrad 		    len, sizeof(rndsave_t));
   2713   1.1  riastrad 		return;
   2714   1.1  riastrad 	}
   2715   1.1  riastrad 	entropy_seed(seed);
   2716   1.1  riastrad }
   2717   1.1  riastrad 
   2718   1.1  riastrad void
   2719   1.1  riastrad rnd_init(void)
   2720   1.1  riastrad {
   2721   1.1  riastrad 
   2722   1.1  riastrad 	entropy_init();
   2723   1.1  riastrad }
   2724   1.1  riastrad 
   2725   1.1  riastrad void
   2726   1.1  riastrad rnd_init_softint(void)
   2727   1.1  riastrad {
   2728   1.1  riastrad 
   2729   1.1  riastrad 	entropy_init_late();
   2730  1.38  riastrad 	entropy_bootrequest();
   2731   1.1  riastrad }
   2732   1.1  riastrad 
   2733   1.1  riastrad int
   2734   1.1  riastrad rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
   2735   1.1  riastrad {
   2736   1.1  riastrad 
   2737   1.1  riastrad 	return entropy_ioctl(cmd, data);
   2738   1.1  riastrad }
   2739