kern_entropy.c revision 1.62 1 1.62 riastrad /* $NetBSD: kern_entropy.c,v 1.62 2023/06/30 21:42:05 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad /*
33 1.1 riastrad * Entropy subsystem
34 1.1 riastrad *
35 1.1 riastrad * * Each CPU maintains a per-CPU entropy pool so that gathering
36 1.1 riastrad * entropy requires no interprocessor synchronization, except
37 1.1 riastrad * early at boot when we may be scrambling to gather entropy as
38 1.1 riastrad * soon as possible.
39 1.1 riastrad *
40 1.1 riastrad * - entropy_enter gathers entropy and never drops it on the
41 1.1 riastrad * floor, at the cost of sometimes having to do cryptography.
42 1.1 riastrad *
43 1.1 riastrad * - entropy_enter_intr gathers entropy or drops it on the
44 1.1 riastrad * floor, with low latency. Work to stir the pool or kick the
45 1.1 riastrad * housekeeping thread is scheduled in soft interrupts.
46 1.1 riastrad *
47 1.1 riastrad * * entropy_enter immediately enters into the global pool if it
48 1.1 riastrad * can transition to full entropy in one swell foop. Otherwise,
49 1.1 riastrad * it defers to a housekeeping thread that consolidates entropy,
50 1.1 riastrad * but only when the CPUs collectively have full entropy, in
51 1.1 riastrad * order to mitigate iterative-guessing attacks.
52 1.1 riastrad *
53 1.1 riastrad * * The entropy housekeeping thread continues to consolidate
54 1.1 riastrad * entropy even after we think we have full entropy, in case we
55 1.1 riastrad * are wrong, but is limited to one discretionary consolidation
56 1.1 riastrad * per minute, and only when new entropy is actually coming in,
57 1.1 riastrad * to limit performance impact.
58 1.1 riastrad *
59 1.1 riastrad * * The entropy epoch is the number that changes when we
60 1.1 riastrad * transition from partial entropy to full entropy, so that
61 1.1 riastrad * users can easily determine when to reseed. This also
62 1.1 riastrad * facilitates an operator explicitly causing everything to
63 1.13 riastrad * reseed by sysctl -w kern.entropy.consolidate=1.
64 1.1 riastrad *
65 1.1 riastrad * * Entropy depletion is available for testing (or if you're into
66 1.1 riastrad * that sort of thing), with sysctl -w kern.entropy.depletion=1;
67 1.1 riastrad * the logic to support it is small, to minimize chance of bugs.
68 1.1 riastrad */
69 1.1 riastrad
70 1.1 riastrad #include <sys/cdefs.h>
71 1.62 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.62 2023/06/30 21:42:05 riastradh Exp $");
72 1.1 riastrad
73 1.1 riastrad #include <sys/param.h>
74 1.1 riastrad #include <sys/types.h>
75 1.1 riastrad #include <sys/atomic.h>
76 1.1 riastrad #include <sys/compat_stub.h>
77 1.1 riastrad #include <sys/condvar.h>
78 1.1 riastrad #include <sys/cpu.h>
79 1.1 riastrad #include <sys/entropy.h>
80 1.1 riastrad #include <sys/errno.h>
81 1.1 riastrad #include <sys/evcnt.h>
82 1.1 riastrad #include <sys/event.h>
83 1.1 riastrad #include <sys/file.h>
84 1.1 riastrad #include <sys/intr.h>
85 1.1 riastrad #include <sys/kauth.h>
86 1.1 riastrad #include <sys/kernel.h>
87 1.1 riastrad #include <sys/kmem.h>
88 1.1 riastrad #include <sys/kthread.h>
89 1.53 riastrad #include <sys/lwp.h>
90 1.1 riastrad #include <sys/module_hook.h>
91 1.1 riastrad #include <sys/mutex.h>
92 1.1 riastrad #include <sys/percpu.h>
93 1.1 riastrad #include <sys/poll.h>
94 1.53 riastrad #include <sys/proc.h>
95 1.1 riastrad #include <sys/queue.h>
96 1.30 jmcneill #include <sys/reboot.h>
97 1.1 riastrad #include <sys/rnd.h> /* legacy kernel API */
98 1.1 riastrad #include <sys/rndio.h> /* userland ioctl interface */
99 1.1 riastrad #include <sys/rndsource.h> /* kernel rndsource driver API */
100 1.1 riastrad #include <sys/select.h>
101 1.1 riastrad #include <sys/selinfo.h>
102 1.1 riastrad #include <sys/sha1.h> /* for boot seed checksum */
103 1.1 riastrad #include <sys/stdint.h>
104 1.1 riastrad #include <sys/sysctl.h>
105 1.26 riastrad #include <sys/syslog.h>
106 1.1 riastrad #include <sys/systm.h>
107 1.1 riastrad #include <sys/time.h>
108 1.1 riastrad #include <sys/xcall.h>
109 1.1 riastrad
110 1.1 riastrad #include <lib/libkern/entpool.h>
111 1.1 riastrad
112 1.1 riastrad #include <machine/limits.h>
113 1.1 riastrad
114 1.1 riastrad #ifdef __HAVE_CPU_COUNTER
115 1.1 riastrad #include <machine/cpu_counter.h>
116 1.1 riastrad #endif
117 1.1 riastrad
118 1.62 riastrad #define MINENTROPYBYTES ENTROPY_CAPACITY
119 1.62 riastrad #define MINENTROPYBITS (MINENTROPYBYTES*NBBY)
120 1.62 riastrad #define MINSAMPLES (2*MINENTROPYBITS)
121 1.62 riastrad
122 1.1 riastrad /*
123 1.1 riastrad * struct entropy_cpu
124 1.1 riastrad *
125 1.1 riastrad * Per-CPU entropy state. The pool is allocated separately
126 1.1 riastrad * because percpu(9) sometimes moves per-CPU objects around
127 1.1 riastrad * without zeroing them, which would lead to unwanted copies of
128 1.34 andvar * sensitive secrets. The evcnt is allocated separately because
129 1.1 riastrad * evcnt(9) assumes it stays put in memory.
130 1.1 riastrad */
131 1.1 riastrad struct entropy_cpu {
132 1.40 riastrad struct entropy_cpu_evcnt {
133 1.40 riastrad struct evcnt softint;
134 1.40 riastrad struct evcnt intrdrop;
135 1.40 riastrad struct evcnt intrtrunc;
136 1.40 riastrad } *ec_evcnt;
137 1.1 riastrad struct entpool *ec_pool;
138 1.62 riastrad unsigned ec_bitspending;
139 1.62 riastrad unsigned ec_samplespending;
140 1.1 riastrad bool ec_locked;
141 1.1 riastrad };
142 1.1 riastrad
143 1.1 riastrad /*
144 1.43 riastrad * struct entropy_cpu_lock
145 1.43 riastrad *
146 1.43 riastrad * State for locking the per-CPU entropy state.
147 1.43 riastrad */
148 1.43 riastrad struct entropy_cpu_lock {
149 1.43 riastrad int ecl_s;
150 1.43 riastrad uint64_t ecl_ncsw;
151 1.43 riastrad };
152 1.43 riastrad
153 1.43 riastrad /*
154 1.1 riastrad * struct rndsource_cpu
155 1.1 riastrad *
156 1.1 riastrad * Per-CPU rndsource state.
157 1.1 riastrad */
158 1.1 riastrad struct rndsource_cpu {
159 1.28 riastrad unsigned rc_entropybits;
160 1.28 riastrad unsigned rc_timesamples;
161 1.28 riastrad unsigned rc_datasamples;
162 1.62 riastrad rnd_delta_t rc_timedelta;
163 1.1 riastrad };
164 1.1 riastrad
165 1.1 riastrad /*
166 1.1 riastrad * entropy_global (a.k.a. E for short in this file)
167 1.1 riastrad *
168 1.1 riastrad * Global entropy state. Writes protected by the global lock.
169 1.1 riastrad * Some fields, marked (A), can be read outside the lock, and are
170 1.1 riastrad * maintained with atomic_load/store_relaxed.
171 1.1 riastrad */
172 1.1 riastrad struct {
173 1.1 riastrad kmutex_t lock; /* covers all global state */
174 1.1 riastrad struct entpool pool; /* global pool for extraction */
175 1.62 riastrad unsigned bitsneeded; /* (A) needed globally */
176 1.62 riastrad unsigned bitspending; /* pending in per-CPU pools */
177 1.62 riastrad unsigned samplesneeded; /* (A) needed globally */
178 1.62 riastrad unsigned samplespending; /* pending in per-CPU pools */
179 1.1 riastrad unsigned timestamp; /* (A) time of last consolidation */
180 1.1 riastrad unsigned epoch; /* (A) changes when needed -> 0 */
181 1.1 riastrad kcondvar_t cv; /* notifies state changes */
182 1.1 riastrad struct selinfo selq; /* notifies needed -> 0 */
183 1.4 riastrad struct lwp *sourcelock; /* lock on list of sources */
184 1.27 riastrad kcondvar_t sourcelock_cv; /* notifies sourcelock release */
185 1.1 riastrad LIST_HEAD(,krndsource) sources; /* list of entropy sources */
186 1.1 riastrad enum entropy_stage {
187 1.1 riastrad ENTROPY_COLD = 0, /* single-threaded */
188 1.1 riastrad ENTROPY_WARM, /* multi-threaded at boot before CPUs */
189 1.1 riastrad ENTROPY_HOT, /* multi-threaded multi-CPU */
190 1.1 riastrad } stage;
191 1.1 riastrad bool consolidate; /* kick thread to consolidate */
192 1.1 riastrad bool seed_rndsource; /* true if seed source is attached */
193 1.1 riastrad bool seeded; /* true if seed file already loaded */
194 1.1 riastrad } entropy_global __cacheline_aligned = {
195 1.1 riastrad /* Fields that must be initialized when the kernel is loaded. */
196 1.62 riastrad .bitsneeded = MINENTROPYBITS,
197 1.62 riastrad .samplesneeded = MINSAMPLES,
198 1.14 riastrad .epoch = (unsigned)-1, /* -1 means entropy never consolidated */
199 1.1 riastrad .sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
200 1.1 riastrad .stage = ENTROPY_COLD,
201 1.1 riastrad };
202 1.1 riastrad
203 1.1 riastrad #define E (&entropy_global) /* declutter */
204 1.1 riastrad
205 1.1 riastrad /* Read-mostly globals */
206 1.1 riastrad static struct percpu *entropy_percpu __read_mostly; /* struct entropy_cpu */
207 1.1 riastrad static void *entropy_sih __read_mostly; /* softint handler */
208 1.1 riastrad static struct lwp *entropy_lwp __read_mostly; /* housekeeping thread */
209 1.1 riastrad
210 1.1 riastrad static struct krndsource seed_rndsource __read_mostly;
211 1.1 riastrad
212 1.1 riastrad /*
213 1.1 riastrad * Event counters
214 1.1 riastrad *
215 1.1 riastrad * Must be careful with adding these because they can serve as
216 1.1 riastrad * side channels.
217 1.1 riastrad */
218 1.1 riastrad static struct evcnt entropy_discretionary_evcnt =
219 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
220 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
221 1.1 riastrad static struct evcnt entropy_immediate_evcnt =
222 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
223 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
224 1.1 riastrad static struct evcnt entropy_partial_evcnt =
225 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
226 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
227 1.1 riastrad static struct evcnt entropy_consolidate_evcnt =
228 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
229 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
230 1.1 riastrad static struct evcnt entropy_extract_fail_evcnt =
231 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
232 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
233 1.1 riastrad static struct evcnt entropy_request_evcnt =
234 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
235 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_request_evcnt);
236 1.1 riastrad static struct evcnt entropy_deplete_evcnt =
237 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
238 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
239 1.1 riastrad static struct evcnt entropy_notify_evcnt =
240 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
241 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
242 1.1 riastrad
243 1.1 riastrad /* Sysctl knobs */
244 1.17 riastrad static bool entropy_collection = 1;
245 1.17 riastrad static bool entropy_depletion = 0; /* Silly! */
246 1.1 riastrad
247 1.1 riastrad static const struct sysctlnode *entropy_sysctlroot;
248 1.1 riastrad static struct sysctllog *entropy_sysctllog;
249 1.1 riastrad
250 1.1 riastrad /* Forward declarations */
251 1.1 riastrad static void entropy_init_cpu(void *, void *, struct cpu_info *);
252 1.1 riastrad static void entropy_fini_cpu(void *, void *, struct cpu_info *);
253 1.1 riastrad static void entropy_account_cpu(struct entropy_cpu *);
254 1.62 riastrad static void entropy_enter(const void *, size_t, unsigned, bool);
255 1.62 riastrad static bool entropy_enter_intr(const void *, size_t, unsigned, bool);
256 1.1 riastrad static void entropy_softintr(void *);
257 1.1 riastrad static void entropy_thread(void *);
258 1.62 riastrad static bool entropy_pending(void);
259 1.1 riastrad static void entropy_pending_cpu(void *, void *, struct cpu_info *);
260 1.13 riastrad static void entropy_do_consolidate(void);
261 1.13 riastrad static void entropy_consolidate_xc(void *, void *);
262 1.1 riastrad static void entropy_notify(void);
263 1.1 riastrad static int sysctl_entropy_consolidate(SYSCTLFN_ARGS);
264 1.10 riastrad static int sysctl_entropy_gather(SYSCTLFN_ARGS);
265 1.1 riastrad static void filt_entropy_read_detach(struct knote *);
266 1.1 riastrad static int filt_entropy_read_event(struct knote *, long);
267 1.49 riastrad static int entropy_request(size_t, int);
268 1.1 riastrad static void rnd_add_data_1(struct krndsource *, const void *, uint32_t,
269 1.62 riastrad uint32_t, bool, uint32_t);
270 1.1 riastrad static unsigned rndsource_entropybits(struct krndsource *);
271 1.1 riastrad static void rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
272 1.1 riastrad static void rndsource_to_user(struct krndsource *, rndsource_t *);
273 1.1 riastrad static void rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
274 1.28 riastrad static void rndsource_to_user_est_cpu(void *, void *, struct cpu_info *);
275 1.1 riastrad
276 1.1 riastrad /*
277 1.1 riastrad * entropy_timer()
278 1.1 riastrad *
279 1.1 riastrad * Cycle counter, time counter, or anything that changes a wee bit
280 1.1 riastrad * unpredictably.
281 1.1 riastrad */
282 1.1 riastrad static inline uint32_t
283 1.1 riastrad entropy_timer(void)
284 1.1 riastrad {
285 1.1 riastrad struct bintime bt;
286 1.1 riastrad uint32_t v;
287 1.1 riastrad
288 1.1 riastrad /* If we have a CPU cycle counter, use the low 32 bits. */
289 1.1 riastrad #ifdef __HAVE_CPU_COUNTER
290 1.1 riastrad if (__predict_true(cpu_hascounter()))
291 1.1 riastrad return cpu_counter32();
292 1.1 riastrad #endif /* __HAVE_CPU_COUNTER */
293 1.1 riastrad
294 1.1 riastrad /* If we're cold, tough. Can't binuptime while cold. */
295 1.1 riastrad if (__predict_false(cold))
296 1.1 riastrad return 0;
297 1.1 riastrad
298 1.1 riastrad /* Fold the 128 bits of binuptime into 32 bits. */
299 1.1 riastrad binuptime(&bt);
300 1.1 riastrad v = bt.frac;
301 1.1 riastrad v ^= bt.frac >> 32;
302 1.1 riastrad v ^= bt.sec;
303 1.1 riastrad v ^= bt.sec >> 32;
304 1.1 riastrad return v;
305 1.1 riastrad }
306 1.1 riastrad
307 1.1 riastrad static void
308 1.1 riastrad attach_seed_rndsource(void)
309 1.1 riastrad {
310 1.1 riastrad
311 1.1 riastrad /*
312 1.1 riastrad * First called no later than entropy_init, while we are still
313 1.1 riastrad * single-threaded, so no need for RUN_ONCE.
314 1.1 riastrad */
315 1.1 riastrad if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
316 1.1 riastrad return;
317 1.1 riastrad rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
318 1.1 riastrad RND_FLAG_COLLECT_VALUE);
319 1.1 riastrad E->seed_rndsource = true;
320 1.1 riastrad }
321 1.1 riastrad
322 1.1 riastrad /*
323 1.1 riastrad * entropy_init()
324 1.1 riastrad *
325 1.1 riastrad * Initialize the entropy subsystem. Panic on failure.
326 1.1 riastrad *
327 1.1 riastrad * Requires percpu(9) and sysctl(9) to be initialized.
328 1.1 riastrad */
329 1.1 riastrad static void
330 1.1 riastrad entropy_init(void)
331 1.1 riastrad {
332 1.1 riastrad uint32_t extra[2];
333 1.1 riastrad struct krndsource *rs;
334 1.1 riastrad unsigned i = 0;
335 1.1 riastrad
336 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD);
337 1.1 riastrad
338 1.1 riastrad /* Grab some cycle counts early at boot. */
339 1.1 riastrad extra[i++] = entropy_timer();
340 1.1 riastrad
341 1.1 riastrad /* Run the entropy pool cryptography self-test. */
342 1.1 riastrad if (entpool_selftest() == -1)
343 1.1 riastrad panic("entropy pool crypto self-test failed");
344 1.1 riastrad
345 1.1 riastrad /* Create the sysctl directory. */
346 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
347 1.1 riastrad CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
348 1.1 riastrad SYSCTL_DESCR("Entropy (random number sources) options"),
349 1.1 riastrad NULL, 0, NULL, 0,
350 1.1 riastrad CTL_KERN, CTL_CREATE, CTL_EOL);
351 1.1 riastrad
352 1.1 riastrad /* Create the sysctl knobs. */
353 1.1 riastrad /* XXX These shouldn't be writable at securelevel>0. */
354 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
355 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
356 1.1 riastrad SYSCTL_DESCR("Automatically collect entropy from hardware"),
357 1.1 riastrad NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
358 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
359 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
360 1.1 riastrad SYSCTL_DESCR("`Deplete' entropy pool when observed"),
361 1.1 riastrad NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
362 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
363 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
364 1.1 riastrad SYSCTL_DESCR("Trigger entropy consolidation now"),
365 1.1 riastrad sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
366 1.10 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
367 1.10 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
368 1.10 riastrad SYSCTL_DESCR("Trigger entropy gathering from sources now"),
369 1.10 riastrad sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
370 1.1 riastrad /* XXX These should maybe not be readable at securelevel>0. */
371 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
372 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
373 1.62 riastrad "needed",
374 1.62 riastrad SYSCTL_DESCR("Systemwide entropy deficit (bits of entropy)"),
375 1.62 riastrad NULL, 0, &E->bitsneeded, 0, CTL_CREATE, CTL_EOL);
376 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
377 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
378 1.62 riastrad "pending",
379 1.62 riastrad SYSCTL_DESCR("Number of bits of entropy pending on CPUs"),
380 1.62 riastrad NULL, 0, &E->bitspending, 0, CTL_CREATE, CTL_EOL);
381 1.62 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
382 1.62 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
383 1.62 riastrad "samplesneeded",
384 1.62 riastrad SYSCTL_DESCR("Systemwide entropy deficit (samples)"),
385 1.62 riastrad NULL, 0, &E->samplesneeded, 0, CTL_CREATE, CTL_EOL);
386 1.62 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
387 1.62 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
388 1.62 riastrad "samplespending",
389 1.62 riastrad SYSCTL_DESCR("Number of samples pending on CPUs"),
390 1.62 riastrad NULL, 0, &E->samplespending, 0, CTL_CREATE, CTL_EOL);
391 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
392 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
393 1.1 riastrad "epoch", SYSCTL_DESCR("Entropy epoch"),
394 1.1 riastrad NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
395 1.1 riastrad
396 1.1 riastrad /* Initialize the global state for multithreaded operation. */
397 1.39 riastrad mutex_init(&E->lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
398 1.1 riastrad cv_init(&E->cv, "entropy");
399 1.1 riastrad selinit(&E->selq);
400 1.27 riastrad cv_init(&E->sourcelock_cv, "entsrclock");
401 1.1 riastrad
402 1.1 riastrad /* Make sure the seed source is attached. */
403 1.1 riastrad attach_seed_rndsource();
404 1.1 riastrad
405 1.1 riastrad /* Note if the bootloader didn't provide a seed. */
406 1.1 riastrad if (!E->seeded)
407 1.29 riastrad aprint_debug("entropy: no seed from bootloader\n");
408 1.1 riastrad
409 1.1 riastrad /* Allocate the per-CPU records for all early entropy sources. */
410 1.1 riastrad LIST_FOREACH(rs, &E->sources, list)
411 1.1 riastrad rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
412 1.1 riastrad
413 1.36 riastrad /* Allocate and initialize the per-CPU state. */
414 1.36 riastrad entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
415 1.36 riastrad entropy_init_cpu, entropy_fini_cpu, NULL);
416 1.36 riastrad
417 1.1 riastrad /* Enter the boot cycle count to get started. */
418 1.1 riastrad extra[i++] = entropy_timer();
419 1.1 riastrad KASSERT(i == __arraycount(extra));
420 1.62 riastrad entropy_enter(extra, sizeof extra, /*nbits*/0, /*count*/false);
421 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
422 1.1 riastrad
423 1.1 riastrad /* We are now ready for multi-threaded operation. */
424 1.1 riastrad E->stage = ENTROPY_WARM;
425 1.1 riastrad }
426 1.1 riastrad
427 1.37 riastrad static void
428 1.37 riastrad entropy_init_late_cpu(void *a, void *b)
429 1.37 riastrad {
430 1.54 riastrad int bound;
431 1.37 riastrad
432 1.54 riastrad /*
433 1.54 riastrad * We're not necessarily in a softint lwp here (xc_broadcast
434 1.54 riastrad * triggers softint on other CPUs, but calls directly on this
435 1.54 riastrad * CPU), so explicitly bind to the current CPU to invoke the
436 1.54 riastrad * softintr -- this lets us have a simpler assertion in
437 1.54 riastrad * entropy_account_cpu. Not necessary to avoid migration
438 1.54 riastrad * because xc_broadcast disables kpreemption anyway, but it
439 1.54 riastrad * doesn't hurt.
440 1.54 riastrad */
441 1.54 riastrad bound = curlwp_bind();
442 1.37 riastrad entropy_softintr(NULL);
443 1.54 riastrad curlwp_bindx(bound);
444 1.37 riastrad }
445 1.37 riastrad
446 1.1 riastrad /*
447 1.1 riastrad * entropy_init_late()
448 1.1 riastrad *
449 1.1 riastrad * Late initialization. Panic on failure.
450 1.1 riastrad *
451 1.1 riastrad * Requires CPUs to have been detected and LWPs to have started.
452 1.1 riastrad */
453 1.1 riastrad static void
454 1.1 riastrad entropy_init_late(void)
455 1.1 riastrad {
456 1.37 riastrad void *sih;
457 1.1 riastrad int error;
458 1.1 riastrad
459 1.1 riastrad KASSERT(E->stage == ENTROPY_WARM);
460 1.1 riastrad
461 1.1 riastrad /*
462 1.1 riastrad * Establish the softint at the highest softint priority level.
463 1.1 riastrad * Must happen after CPU detection.
464 1.1 riastrad */
465 1.37 riastrad sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
466 1.1 riastrad &entropy_softintr, NULL);
467 1.37 riastrad if (sih == NULL)
468 1.1 riastrad panic("unable to establish entropy softint");
469 1.1 riastrad
470 1.1 riastrad /*
471 1.1 riastrad * Create the entropy housekeeping thread. Must happen after
472 1.1 riastrad * lwpinit.
473 1.1 riastrad */
474 1.1 riastrad error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
475 1.1 riastrad entropy_thread, NULL, &entropy_lwp, "entbutler");
476 1.1 riastrad if (error)
477 1.1 riastrad panic("unable to create entropy housekeeping thread: %d",
478 1.1 riastrad error);
479 1.1 riastrad
480 1.1 riastrad /*
481 1.1 riastrad * Wait until the per-CPU initialization has hit all CPUs
482 1.37 riastrad * before proceeding to mark the entropy system hot and
483 1.37 riastrad * enabling use of the softint.
484 1.1 riastrad */
485 1.1 riastrad xc_barrier(XC_HIGHPRI);
486 1.1 riastrad E->stage = ENTROPY_HOT;
487 1.37 riastrad atomic_store_relaxed(&entropy_sih, sih);
488 1.37 riastrad
489 1.37 riastrad /*
490 1.37 riastrad * At this point, entering new samples from interrupt handlers
491 1.37 riastrad * will trigger the softint to process them. But there may be
492 1.37 riastrad * some samples that were entered from interrupt handlers
493 1.37 riastrad * before the softint was available. Make sure we process
494 1.37 riastrad * those samples on all CPUs by running the softint logic on
495 1.37 riastrad * all CPUs.
496 1.37 riastrad */
497 1.37 riastrad xc_wait(xc_broadcast(XC_HIGHPRI, entropy_init_late_cpu, NULL, NULL));
498 1.1 riastrad }
499 1.1 riastrad
500 1.1 riastrad /*
501 1.1 riastrad * entropy_init_cpu(ptr, cookie, ci)
502 1.1 riastrad *
503 1.1 riastrad * percpu(9) constructor for per-CPU entropy pool.
504 1.1 riastrad */
505 1.1 riastrad static void
506 1.1 riastrad entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
507 1.1 riastrad {
508 1.1 riastrad struct entropy_cpu *ec = ptr;
509 1.40 riastrad const char *cpuname;
510 1.1 riastrad
511 1.40 riastrad ec->ec_evcnt = kmem_alloc(sizeof(*ec->ec_evcnt), KM_SLEEP);
512 1.1 riastrad ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
513 1.62 riastrad ec->ec_bitspending = 0;
514 1.62 riastrad ec->ec_samplespending = 0;
515 1.1 riastrad ec->ec_locked = false;
516 1.1 riastrad
517 1.36 riastrad /* XXX ci_cpuname may not be initialized early enough. */
518 1.40 riastrad cpuname = ci->ci_cpuname[0] == '\0' ? "cpu0" : ci->ci_cpuname;
519 1.40 riastrad evcnt_attach_dynamic(&ec->ec_evcnt->softint, EVCNT_TYPE_MISC, NULL,
520 1.40 riastrad cpuname, "entropy softint");
521 1.40 riastrad evcnt_attach_dynamic(&ec->ec_evcnt->intrdrop, EVCNT_TYPE_MISC, NULL,
522 1.40 riastrad cpuname, "entropy intrdrop");
523 1.40 riastrad evcnt_attach_dynamic(&ec->ec_evcnt->intrtrunc, EVCNT_TYPE_MISC, NULL,
524 1.40 riastrad cpuname, "entropy intrtrunc");
525 1.1 riastrad }
526 1.1 riastrad
527 1.1 riastrad /*
528 1.1 riastrad * entropy_fini_cpu(ptr, cookie, ci)
529 1.1 riastrad *
530 1.1 riastrad * percpu(9) destructor for per-CPU entropy pool.
531 1.1 riastrad */
532 1.1 riastrad static void
533 1.1 riastrad entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
534 1.1 riastrad {
535 1.1 riastrad struct entropy_cpu *ec = ptr;
536 1.1 riastrad
537 1.1 riastrad /*
538 1.1 riastrad * Zero any lingering data. Disclosure of the per-CPU pool
539 1.1 riastrad * shouldn't retroactively affect the security of any keys
540 1.1 riastrad * generated, because entpool(9) erases whatever we have just
541 1.1 riastrad * drawn out of any pool, but better safe than sorry.
542 1.1 riastrad */
543 1.1 riastrad explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
544 1.1 riastrad
545 1.40 riastrad evcnt_detach(&ec->ec_evcnt->intrtrunc);
546 1.40 riastrad evcnt_detach(&ec->ec_evcnt->intrdrop);
547 1.40 riastrad evcnt_detach(&ec->ec_evcnt->softint);
548 1.1 riastrad
549 1.1 riastrad kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
550 1.40 riastrad kmem_free(ec->ec_evcnt, sizeof(*ec->ec_evcnt));
551 1.1 riastrad }
552 1.1 riastrad
553 1.1 riastrad /*
554 1.43 riastrad * ec = entropy_cpu_get(&lock)
555 1.43 riastrad * entropy_cpu_put(&lock, ec)
556 1.43 riastrad *
557 1.43 riastrad * Lock and unlock the per-CPU entropy state. This only prevents
558 1.43 riastrad * access on the same CPU -- by hard interrupts, by soft
559 1.43 riastrad * interrupts, or by other threads.
560 1.43 riastrad *
561 1.43 riastrad * Blocks soft interrupts and preemption altogether; doesn't block
562 1.43 riastrad * hard interrupts, but causes samples in hard interrupts to be
563 1.43 riastrad * dropped.
564 1.43 riastrad */
565 1.43 riastrad static struct entropy_cpu *
566 1.43 riastrad entropy_cpu_get(struct entropy_cpu_lock *lock)
567 1.43 riastrad {
568 1.43 riastrad struct entropy_cpu *ec;
569 1.43 riastrad
570 1.43 riastrad ec = percpu_getref(entropy_percpu);
571 1.43 riastrad lock->ecl_s = splsoftserial();
572 1.43 riastrad KASSERT(!ec->ec_locked);
573 1.43 riastrad ec->ec_locked = true;
574 1.43 riastrad lock->ecl_ncsw = curlwp->l_ncsw;
575 1.43 riastrad __insn_barrier();
576 1.43 riastrad
577 1.43 riastrad return ec;
578 1.43 riastrad }
579 1.43 riastrad
580 1.43 riastrad static void
581 1.43 riastrad entropy_cpu_put(struct entropy_cpu_lock *lock, struct entropy_cpu *ec)
582 1.43 riastrad {
583 1.43 riastrad
584 1.43 riastrad KASSERT(ec == percpu_getptr_remote(entropy_percpu, curcpu()));
585 1.43 riastrad KASSERT(ec->ec_locked);
586 1.43 riastrad
587 1.43 riastrad __insn_barrier();
588 1.43 riastrad KASSERT(lock->ecl_ncsw == curlwp->l_ncsw);
589 1.43 riastrad ec->ec_locked = false;
590 1.43 riastrad splx(lock->ecl_s);
591 1.43 riastrad percpu_putref(entropy_percpu);
592 1.43 riastrad }
593 1.43 riastrad
594 1.43 riastrad /*
595 1.1 riastrad * entropy_seed(seed)
596 1.1 riastrad *
597 1.1 riastrad * Seed the entropy pool with seed. Meant to be called as early
598 1.1 riastrad * as possible by the bootloader; may be called before or after
599 1.1 riastrad * entropy_init. Must be called before system reaches userland.
600 1.1 riastrad * Must be called in thread or soft interrupt context, not in hard
601 1.1 riastrad * interrupt context. Must be called at most once.
602 1.1 riastrad *
603 1.1 riastrad * Overwrites the seed in place. Caller may then free the memory.
604 1.1 riastrad */
605 1.1 riastrad static void
606 1.1 riastrad entropy_seed(rndsave_t *seed)
607 1.1 riastrad {
608 1.1 riastrad SHA1_CTX ctx;
609 1.1 riastrad uint8_t digest[SHA1_DIGEST_LENGTH];
610 1.1 riastrad bool seeded;
611 1.1 riastrad
612 1.1 riastrad /*
613 1.1 riastrad * Verify the checksum. If the checksum fails, take the data
614 1.1 riastrad * but ignore the entropy estimate -- the file may have been
615 1.1 riastrad * incompletely written with garbage, which is harmless to add
616 1.1 riastrad * but may not be as unpredictable as alleged.
617 1.1 riastrad */
618 1.1 riastrad SHA1Init(&ctx);
619 1.1 riastrad SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
620 1.1 riastrad SHA1Update(&ctx, seed->data, sizeof(seed->data));
621 1.1 riastrad SHA1Final(digest, &ctx);
622 1.1 riastrad CTASSERT(sizeof(seed->digest) == sizeof(digest));
623 1.1 riastrad if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
624 1.1 riastrad printf("entropy: invalid seed checksum\n");
625 1.1 riastrad seed->entropy = 0;
626 1.1 riastrad }
627 1.2 riastrad explicit_memset(&ctx, 0, sizeof ctx);
628 1.1 riastrad explicit_memset(digest, 0, sizeof digest);
629 1.1 riastrad
630 1.2 riastrad /*
631 1.2 riastrad * If the entropy is insensibly large, try byte-swapping.
632 1.2 riastrad * Otherwise assume the file is corrupted and act as though it
633 1.2 riastrad * has zero entropy.
634 1.2 riastrad */
635 1.2 riastrad if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
636 1.2 riastrad seed->entropy = bswap32(seed->entropy);
637 1.2 riastrad if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
638 1.2 riastrad seed->entropy = 0;
639 1.2 riastrad }
640 1.2 riastrad
641 1.1 riastrad /* Make sure the seed source is attached. */
642 1.1 riastrad attach_seed_rndsource();
643 1.1 riastrad
644 1.1 riastrad /* Test and set E->seeded. */
645 1.1 riastrad if (E->stage >= ENTROPY_WARM)
646 1.1 riastrad mutex_enter(&E->lock);
647 1.1 riastrad seeded = E->seeded;
648 1.11 riastrad E->seeded = (seed->entropy > 0);
649 1.1 riastrad if (E->stage >= ENTROPY_WARM)
650 1.1 riastrad mutex_exit(&E->lock);
651 1.1 riastrad
652 1.1 riastrad /*
653 1.1 riastrad * If we've been seeded, may be re-entering the same seed
654 1.1 riastrad * (e.g., bootloader vs module init, or something). No harm in
655 1.1 riastrad * entering it twice, but it contributes no additional entropy.
656 1.1 riastrad */
657 1.1 riastrad if (seeded) {
658 1.1 riastrad printf("entropy: double-seeded by bootloader\n");
659 1.1 riastrad seed->entropy = 0;
660 1.1 riastrad } else {
661 1.11 riastrad printf("entropy: entering seed from bootloader"
662 1.11 riastrad " with %u bits of entropy\n", (unsigned)seed->entropy);
663 1.1 riastrad }
664 1.1 riastrad
665 1.1 riastrad /* Enter it into the pool and promptly zero it. */
666 1.1 riastrad rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
667 1.1 riastrad seed->entropy);
668 1.1 riastrad explicit_memset(seed, 0, sizeof(*seed));
669 1.1 riastrad }
670 1.1 riastrad
671 1.1 riastrad /*
672 1.1 riastrad * entropy_bootrequest()
673 1.1 riastrad *
674 1.1 riastrad * Request entropy from all sources at boot, once config is
675 1.1 riastrad * complete and interrupts are running.
676 1.1 riastrad */
677 1.1 riastrad void
678 1.1 riastrad entropy_bootrequest(void)
679 1.1 riastrad {
680 1.49 riastrad int error;
681 1.1 riastrad
682 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
683 1.1 riastrad
684 1.1 riastrad /*
685 1.1 riastrad * Request enough to satisfy the maximum entropy shortage.
686 1.1 riastrad * This is harmless overkill if the bootloader provided a seed.
687 1.1 riastrad */
688 1.1 riastrad mutex_enter(&E->lock);
689 1.62 riastrad error = entropy_request(MINENTROPYBYTES, ENTROPY_WAIT);
690 1.49 riastrad KASSERT(error == 0);
691 1.1 riastrad mutex_exit(&E->lock);
692 1.1 riastrad }
693 1.1 riastrad
694 1.1 riastrad /*
695 1.1 riastrad * entropy_epoch()
696 1.1 riastrad *
697 1.1 riastrad * Returns the current entropy epoch. If this changes, you should
698 1.14 riastrad * reseed. If -1, means system entropy has not yet reached full
699 1.14 riastrad * entropy or been explicitly consolidated; never reverts back to
700 1.14 riastrad * -1. Never zero, so you can always use zero as an uninitialized
701 1.14 riastrad * sentinel value meaning `reseed ASAP'.
702 1.1 riastrad *
703 1.1 riastrad * Usage model:
704 1.1 riastrad *
705 1.1 riastrad * struct foo {
706 1.1 riastrad * struct crypto_prng prng;
707 1.1 riastrad * unsigned epoch;
708 1.1 riastrad * } *foo;
709 1.1 riastrad *
710 1.1 riastrad * unsigned epoch = entropy_epoch();
711 1.1 riastrad * if (__predict_false(epoch != foo->epoch)) {
712 1.1 riastrad * uint8_t seed[32];
713 1.1 riastrad * if (entropy_extract(seed, sizeof seed, 0) != 0)
714 1.1 riastrad * warn("no entropy");
715 1.1 riastrad * crypto_prng_reseed(&foo->prng, seed, sizeof seed);
716 1.1 riastrad * foo->epoch = epoch;
717 1.1 riastrad * }
718 1.1 riastrad */
719 1.1 riastrad unsigned
720 1.1 riastrad entropy_epoch(void)
721 1.1 riastrad {
722 1.1 riastrad
723 1.1 riastrad /*
724 1.1 riastrad * Unsigned int, so no need for seqlock for an atomic read, but
725 1.1 riastrad * make sure we read it afresh each time.
726 1.1 riastrad */
727 1.1 riastrad return atomic_load_relaxed(&E->epoch);
728 1.1 riastrad }
729 1.1 riastrad
730 1.1 riastrad /*
731 1.23 riastrad * entropy_ready()
732 1.23 riastrad *
733 1.23 riastrad * True if the entropy pool has full entropy.
734 1.23 riastrad */
735 1.23 riastrad bool
736 1.23 riastrad entropy_ready(void)
737 1.23 riastrad {
738 1.23 riastrad
739 1.62 riastrad return atomic_load_relaxed(&E->bitsneeded) == 0;
740 1.23 riastrad }
741 1.23 riastrad
742 1.23 riastrad /*
743 1.1 riastrad * entropy_account_cpu(ec)
744 1.1 riastrad *
745 1.1 riastrad * Consider whether to consolidate entropy into the global pool
746 1.1 riastrad * after we just added some into the current CPU's pending pool.
747 1.1 riastrad *
748 1.1 riastrad * - If this CPU can provide enough entropy now, do so.
749 1.1 riastrad *
750 1.1 riastrad * - If this and whatever else is available on other CPUs can
751 1.1 riastrad * provide enough entropy, kick the consolidation thread.
752 1.1 riastrad *
753 1.1 riastrad * - Otherwise, do as little as possible, except maybe consolidate
754 1.1 riastrad * entropy at most once a minute.
755 1.1 riastrad *
756 1.1 riastrad * Caller must be bound to a CPU and therefore have exclusive
757 1.1 riastrad * access to ec. Will acquire and release the global lock.
758 1.1 riastrad */
759 1.1 riastrad static void
760 1.1 riastrad entropy_account_cpu(struct entropy_cpu *ec)
761 1.1 riastrad {
762 1.44 riastrad struct entropy_cpu_lock lock;
763 1.44 riastrad struct entropy_cpu *ec0;
764 1.62 riastrad unsigned bitsdiff, samplesdiff;
765 1.1 riastrad
766 1.37 riastrad KASSERT(E->stage >= ENTROPY_WARM);
767 1.52 riastrad KASSERT(curlwp->l_pflag & LP_BOUND);
768 1.1 riastrad
769 1.1 riastrad /*
770 1.1 riastrad * If there's no entropy needed, and entropy has been
771 1.1 riastrad * consolidated in the last minute, do nothing.
772 1.1 riastrad */
773 1.62 riastrad if (__predict_true(atomic_load_relaxed(&E->bitsneeded) == 0) &&
774 1.1 riastrad __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
775 1.1 riastrad __predict_true((time_uptime - E->timestamp) <= 60))
776 1.1 riastrad return;
777 1.1 riastrad
778 1.44 riastrad /*
779 1.44 riastrad * Consider consolidation, under the global lock and with the
780 1.44 riastrad * per-CPU state locked.
781 1.44 riastrad */
782 1.1 riastrad mutex_enter(&E->lock);
783 1.44 riastrad ec0 = entropy_cpu_get(&lock);
784 1.44 riastrad KASSERT(ec0 == ec);
785 1.62 riastrad
786 1.62 riastrad if (ec->ec_bitspending == 0 && ec->ec_samplespending == 0) {
787 1.46 riastrad /* Raced with consolidation xcall. Nothing to do. */
788 1.62 riastrad } else if (E->bitsneeded != 0 && E->bitsneeded <= ec->ec_bitspending) {
789 1.1 riastrad /*
790 1.1 riastrad * If we have not yet attained full entropy but we can
791 1.1 riastrad * now, do so. This way we disseminate entropy
792 1.1 riastrad * promptly when it becomes available early at boot;
793 1.1 riastrad * otherwise we leave it to the entropy consolidation
794 1.1 riastrad * thread, which is rate-limited to mitigate side
795 1.1 riastrad * channels and abuse.
796 1.1 riastrad */
797 1.1 riastrad uint8_t buf[ENTPOOL_CAPACITY];
798 1.1 riastrad
799 1.1 riastrad /* Transfer from the local pool to the global pool. */
800 1.1 riastrad entpool_extract(ec->ec_pool, buf, sizeof buf);
801 1.1 riastrad entpool_enter(&E->pool, buf, sizeof buf);
802 1.62 riastrad atomic_store_relaxed(&ec->ec_bitspending, 0);
803 1.62 riastrad atomic_store_relaxed(&ec->ec_samplespending, 0);
804 1.62 riastrad atomic_store_relaxed(&E->bitsneeded, 0);
805 1.62 riastrad atomic_store_relaxed(&E->samplesneeded, 0);
806 1.1 riastrad
807 1.1 riastrad /* Notify waiters that we now have full entropy. */
808 1.1 riastrad entropy_notify();
809 1.1 riastrad entropy_immediate_evcnt.ev_count++;
810 1.18 riastrad } else {
811 1.45 riastrad /* Determine how much we can add to the global pool. */
812 1.62 riastrad KASSERTMSG(E->bitspending <= MINENTROPYBITS,
813 1.62 riastrad "E->bitspending=%u", E->bitspending);
814 1.62 riastrad bitsdiff = MIN(ec->ec_bitspending,
815 1.62 riastrad MINENTROPYBITS - E->bitspending);
816 1.62 riastrad KASSERTMSG(E->samplespending <= MINSAMPLES,
817 1.62 riastrad "E->samplespending=%u", E->samplespending);
818 1.62 riastrad samplesdiff = MIN(ec->ec_samplespending,
819 1.62 riastrad MINSAMPLES - E->samplespending);
820 1.1 riastrad
821 1.1 riastrad /*
822 1.45 riastrad * This should make a difference unless we are already
823 1.45 riastrad * saturated.
824 1.1 riastrad */
825 1.62 riastrad KASSERTMSG((bitsdiff || samplesdiff ||
826 1.62 riastrad E->bitspending == MINENTROPYBITS ||
827 1.62 riastrad E->samplespending == MINSAMPLES),
828 1.62 riastrad "bitsdiff=%u E->bitspending=%u ec->ec_bitspending=%u"
829 1.62 riastrad "samplesdiff=%u E->samplespending=%u"
830 1.62 riastrad " ec->ec_samplespending=%u"
831 1.62 riastrad " minentropybits=%u minsamples=%u",
832 1.62 riastrad bitsdiff, E->bitspending, ec->ec_bitspending,
833 1.62 riastrad samplesdiff, E->samplespending, ec->ec_samplespending,
834 1.62 riastrad (unsigned)MINENTROPYBITS, (unsigned)MINSAMPLES);
835 1.45 riastrad
836 1.45 riastrad /* Add to the global, subtract from the local. */
837 1.62 riastrad E->bitspending += bitsdiff;
838 1.62 riastrad KASSERTMSG(E->bitspending <= MINENTROPYBITS,
839 1.62 riastrad "E->bitspending=%u", E->bitspending);
840 1.62 riastrad atomic_store_relaxed(&ec->ec_bitspending,
841 1.62 riastrad ec->ec_bitspending - bitsdiff);
842 1.62 riastrad
843 1.62 riastrad E->samplespending += samplesdiff;
844 1.62 riastrad KASSERTMSG(E->samplespending <= MINSAMPLES,
845 1.62 riastrad "E->samplespending=%u", E->samplespending);
846 1.62 riastrad atomic_store_relaxed(&ec->ec_samplespending,
847 1.62 riastrad ec->ec_samplespending - samplesdiff);
848 1.1 riastrad
849 1.62 riastrad /* One or the other must have gone up from zero. */
850 1.62 riastrad KASSERT(E->bitspending || E->samplespending);
851 1.62 riastrad
852 1.62 riastrad if (E->bitsneeded <= E->bitspending ||
853 1.62 riastrad E->samplesneeded <= E->samplespending) {
854 1.1 riastrad /*
855 1.62 riastrad * Enough bits or at least samples between all
856 1.62 riastrad * the per-CPU pools. Leave a note for the
857 1.62 riastrad * housekeeping thread to consolidate entropy
858 1.62 riastrad * next time it wakes up -- and wake it up if
859 1.62 riastrad * this is the first time, to speed things up.
860 1.1 riastrad *
861 1.1 riastrad * If we don't need any entropy, this doesn't
862 1.1 riastrad * mean much, but it is the only time we ever
863 1.1 riastrad * gather additional entropy in case the
864 1.1 riastrad * accounting has been overly optimistic. This
865 1.1 riastrad * happens at most once a minute, so there's
866 1.1 riastrad * negligible performance cost.
867 1.1 riastrad */
868 1.1 riastrad E->consolidate = true;
869 1.62 riastrad if (E->epoch == (unsigned)-1)
870 1.62 riastrad cv_broadcast(&E->cv);
871 1.62 riastrad if (E->bitsneeded == 0)
872 1.1 riastrad entropy_discretionary_evcnt.ev_count++;
873 1.1 riastrad } else {
874 1.1 riastrad /* Can't get full entropy. Keep gathering. */
875 1.1 riastrad entropy_partial_evcnt.ev_count++;
876 1.1 riastrad }
877 1.1 riastrad }
878 1.62 riastrad
879 1.44 riastrad entropy_cpu_put(&lock, ec);
880 1.1 riastrad mutex_exit(&E->lock);
881 1.1 riastrad }
882 1.1 riastrad
883 1.1 riastrad /*
884 1.1 riastrad * entropy_enter_early(buf, len, nbits)
885 1.1 riastrad *
886 1.1 riastrad * Do entropy bookkeeping globally, before we have established
887 1.1 riastrad * per-CPU pools. Enter directly into the global pool in the hope
888 1.1 riastrad * that we enter enough before the first entropy_extract to thwart
889 1.1 riastrad * iterative-guessing attacks; entropy_extract will warn if not.
890 1.1 riastrad */
891 1.1 riastrad static void
892 1.1 riastrad entropy_enter_early(const void *buf, size_t len, unsigned nbits)
893 1.1 riastrad {
894 1.1 riastrad bool notify = false;
895 1.1 riastrad
896 1.37 riastrad KASSERT(E->stage == ENTROPY_COLD);
897 1.1 riastrad
898 1.1 riastrad /* Enter it into the pool. */
899 1.1 riastrad entpool_enter(&E->pool, buf, len);
900 1.1 riastrad
901 1.1 riastrad /*
902 1.1 riastrad * Decide whether to notify reseed -- we will do so if either:
903 1.1 riastrad * (a) we transition from partial entropy to full entropy, or
904 1.1 riastrad * (b) we get a batch of full entropy all at once.
905 1.1 riastrad */
906 1.62 riastrad notify |= (E->bitsneeded && E->bitsneeded <= nbits);
907 1.62 riastrad notify |= (nbits >= MINENTROPYBITS);
908 1.1 riastrad
909 1.62 riastrad /*
910 1.62 riastrad * Subtract from the needed count and notify if appropriate.
911 1.62 riastrad * We don't count samples here because entropy_timer might
912 1.62 riastrad * still be returning zero at this point if there's no CPU
913 1.62 riastrad * cycle counter.
914 1.62 riastrad */
915 1.62 riastrad E->bitsneeded -= MIN(E->bitsneeded, nbits);
916 1.1 riastrad if (notify) {
917 1.1 riastrad entropy_notify();
918 1.1 riastrad entropy_immediate_evcnt.ev_count++;
919 1.1 riastrad }
920 1.1 riastrad }
921 1.1 riastrad
922 1.1 riastrad /*
923 1.62 riastrad * entropy_enter(buf, len, nbits, count)
924 1.1 riastrad *
925 1.1 riastrad * Enter len bytes of data from buf into the system's entropy
926 1.1 riastrad * pool, stirring as necessary when the internal buffer fills up.
927 1.1 riastrad * nbits is a lower bound on the number of bits of entropy in the
928 1.1 riastrad * process that led to this sample.
929 1.1 riastrad */
930 1.1 riastrad static void
931 1.62 riastrad entropy_enter(const void *buf, size_t len, unsigned nbits, bool count)
932 1.1 riastrad {
933 1.43 riastrad struct entropy_cpu_lock lock;
934 1.1 riastrad struct entropy_cpu *ec;
935 1.62 riastrad unsigned bitspending, samplespending;
936 1.52 riastrad int bound;
937 1.1 riastrad
938 1.16 riastrad KASSERTMSG(!cpu_intr_p(),
939 1.1 riastrad "use entropy_enter_intr from interrupt context");
940 1.1 riastrad KASSERTMSG(howmany(nbits, NBBY) <= len,
941 1.1 riastrad "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
942 1.1 riastrad
943 1.1 riastrad /* If it's too early after boot, just use entropy_enter_early. */
944 1.37 riastrad if (__predict_false(E->stage == ENTROPY_COLD)) {
945 1.1 riastrad entropy_enter_early(buf, len, nbits);
946 1.1 riastrad return;
947 1.1 riastrad }
948 1.1 riastrad
949 1.1 riastrad /*
950 1.52 riastrad * Bind ourselves to the current CPU so we don't switch CPUs
951 1.52 riastrad * between entering data into the current CPU's pool (and
952 1.52 riastrad * updating the pending count) and transferring it to the
953 1.52 riastrad * global pool in entropy_account_cpu.
954 1.52 riastrad */
955 1.52 riastrad bound = curlwp_bind();
956 1.52 riastrad
957 1.52 riastrad /*
958 1.43 riastrad * With the per-CPU state locked, enter into the per-CPU pool
959 1.43 riastrad * and count up what we can add.
960 1.62 riastrad *
961 1.62 riastrad * We don't count samples while cold because entropy_timer
962 1.62 riastrad * might still be returning zero if there's no CPU cycle
963 1.62 riastrad * counter.
964 1.1 riastrad */
965 1.43 riastrad ec = entropy_cpu_get(&lock);
966 1.1 riastrad entpool_enter(ec->ec_pool, buf, len);
967 1.62 riastrad bitspending = ec->ec_bitspending;
968 1.62 riastrad bitspending += MIN(MINENTROPYBITS - bitspending, nbits);
969 1.62 riastrad atomic_store_relaxed(&ec->ec_bitspending, bitspending);
970 1.62 riastrad samplespending = ec->ec_samplespending;
971 1.62 riastrad if (__predict_true(count)) {
972 1.62 riastrad samplespending += MIN(MINSAMPLES - samplespending, 1);
973 1.62 riastrad atomic_store_relaxed(&ec->ec_samplespending, samplespending);
974 1.62 riastrad }
975 1.43 riastrad entropy_cpu_put(&lock, ec);
976 1.42 riastrad
977 1.42 riastrad /* Consolidate globally if appropriate based on what we added. */
978 1.62 riastrad if (bitspending > 0 || samplespending >= MINSAMPLES)
979 1.42 riastrad entropy_account_cpu(ec);
980 1.52 riastrad
981 1.52 riastrad curlwp_bindx(bound);
982 1.1 riastrad }
983 1.1 riastrad
984 1.1 riastrad /*
985 1.62 riastrad * entropy_enter_intr(buf, len, nbits, count)
986 1.1 riastrad *
987 1.1 riastrad * Enter up to len bytes of data from buf into the system's
988 1.1 riastrad * entropy pool without stirring. nbits is a lower bound on the
989 1.1 riastrad * number of bits of entropy in the process that led to this
990 1.1 riastrad * sample. If the sample could be entered completely, assume
991 1.1 riastrad * nbits of entropy pending; otherwise assume none, since we don't
992 1.1 riastrad * know whether some parts of the sample are constant, for
993 1.1 riastrad * instance. Schedule a softint to stir the entropy pool if
994 1.1 riastrad * needed. Return true if used fully, false if truncated at all.
995 1.1 riastrad *
996 1.1 riastrad * Using this in thread context will work, but you might as well
997 1.1 riastrad * use entropy_enter in that case.
998 1.1 riastrad */
999 1.1 riastrad static bool
1000 1.62 riastrad entropy_enter_intr(const void *buf, size_t len, unsigned nbits, bool count)
1001 1.1 riastrad {
1002 1.1 riastrad struct entropy_cpu *ec;
1003 1.1 riastrad bool fullyused = false;
1004 1.62 riastrad uint32_t bitspending, samplespending;
1005 1.37 riastrad void *sih;
1006 1.1 riastrad
1007 1.45 riastrad KASSERT(cpu_intr_p());
1008 1.1 riastrad KASSERTMSG(howmany(nbits, NBBY) <= len,
1009 1.1 riastrad "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
1010 1.1 riastrad
1011 1.1 riastrad /* If it's too early after boot, just use entropy_enter_early. */
1012 1.37 riastrad if (__predict_false(E->stage == ENTROPY_COLD)) {
1013 1.1 riastrad entropy_enter_early(buf, len, nbits);
1014 1.1 riastrad return true;
1015 1.1 riastrad }
1016 1.1 riastrad
1017 1.1 riastrad /*
1018 1.1 riastrad * Acquire the per-CPU state. If someone is in the middle of
1019 1.1 riastrad * using it, drop the sample. Otherwise, take the lock so that
1020 1.1 riastrad * higher-priority interrupts will drop their samples.
1021 1.1 riastrad */
1022 1.1 riastrad ec = percpu_getref(entropy_percpu);
1023 1.40 riastrad if (ec->ec_locked) {
1024 1.40 riastrad ec->ec_evcnt->intrdrop.ev_count++;
1025 1.1 riastrad goto out0;
1026 1.40 riastrad }
1027 1.1 riastrad ec->ec_locked = true;
1028 1.1 riastrad __insn_barrier();
1029 1.1 riastrad
1030 1.1 riastrad /*
1031 1.1 riastrad * Enter as much as we can into the per-CPU pool. If it was
1032 1.1 riastrad * truncated, schedule a softint to stir the pool and stop.
1033 1.1 riastrad */
1034 1.1 riastrad if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
1035 1.37 riastrad sih = atomic_load_relaxed(&entropy_sih);
1036 1.37 riastrad if (__predict_true(sih != NULL))
1037 1.37 riastrad softint_schedule(sih);
1038 1.40 riastrad ec->ec_evcnt->intrtrunc.ev_count++;
1039 1.1 riastrad goto out1;
1040 1.1 riastrad }
1041 1.1 riastrad fullyused = true;
1042 1.1 riastrad
1043 1.62 riastrad /*
1044 1.62 riastrad * Count up what we can contribute.
1045 1.62 riastrad *
1046 1.62 riastrad * We don't count samples while cold because entropy_timer
1047 1.62 riastrad * might still be returning zero if there's no CPU cycle
1048 1.62 riastrad * counter.
1049 1.62 riastrad */
1050 1.62 riastrad bitspending = ec->ec_bitspending;
1051 1.62 riastrad bitspending += MIN(MINENTROPYBITS - bitspending, nbits);
1052 1.62 riastrad atomic_store_relaxed(&ec->ec_bitspending, bitspending);
1053 1.62 riastrad if (__predict_true(count)) {
1054 1.62 riastrad samplespending = ec->ec_samplespending;
1055 1.62 riastrad samplespending += MIN(MINSAMPLES - samplespending, 1);
1056 1.62 riastrad atomic_store_relaxed(&ec->ec_samplespending, samplespending);
1057 1.62 riastrad }
1058 1.1 riastrad
1059 1.1 riastrad /* Schedule a softint if we added anything and it matters. */
1060 1.62 riastrad if (__predict_false(atomic_load_relaxed(&E->bitsneeded) ||
1061 1.1 riastrad atomic_load_relaxed(&entropy_depletion)) &&
1062 1.62 riastrad (nbits != 0 || count)) {
1063 1.37 riastrad sih = atomic_load_relaxed(&entropy_sih);
1064 1.37 riastrad if (__predict_true(sih != NULL))
1065 1.37 riastrad softint_schedule(sih);
1066 1.37 riastrad }
1067 1.1 riastrad
1068 1.1 riastrad out1: /* Release the per-CPU state. */
1069 1.1 riastrad KASSERT(ec->ec_locked);
1070 1.1 riastrad __insn_barrier();
1071 1.1 riastrad ec->ec_locked = false;
1072 1.1 riastrad out0: percpu_putref(entropy_percpu);
1073 1.1 riastrad
1074 1.1 riastrad return fullyused;
1075 1.1 riastrad }
1076 1.1 riastrad
1077 1.1 riastrad /*
1078 1.1 riastrad * entropy_softintr(cookie)
1079 1.1 riastrad *
1080 1.1 riastrad * Soft interrupt handler for entering entropy. Takes care of
1081 1.1 riastrad * stirring the local CPU's entropy pool if it filled up during
1082 1.1 riastrad * hard interrupts, and promptly crediting entropy from the local
1083 1.1 riastrad * CPU's entropy pool to the global entropy pool if needed.
1084 1.1 riastrad */
1085 1.1 riastrad static void
1086 1.1 riastrad entropy_softintr(void *cookie)
1087 1.1 riastrad {
1088 1.43 riastrad struct entropy_cpu_lock lock;
1089 1.1 riastrad struct entropy_cpu *ec;
1090 1.62 riastrad unsigned bitspending, samplespending;
1091 1.1 riastrad
1092 1.1 riastrad /*
1093 1.43 riastrad * With the per-CPU state locked, stir the pool if necessary
1094 1.43 riastrad * and determine if there's any pending entropy on this CPU to
1095 1.43 riastrad * account globally.
1096 1.1 riastrad */
1097 1.43 riastrad ec = entropy_cpu_get(&lock);
1098 1.40 riastrad ec->ec_evcnt->softint.ev_count++;
1099 1.1 riastrad entpool_stir(ec->ec_pool);
1100 1.62 riastrad bitspending = ec->ec_bitspending;
1101 1.62 riastrad samplespending = ec->ec_samplespending;
1102 1.43 riastrad entropy_cpu_put(&lock, ec);
1103 1.42 riastrad
1104 1.42 riastrad /* Consolidate globally if appropriate based on what we added. */
1105 1.62 riastrad if (bitspending > 0 || samplespending >= MINSAMPLES)
1106 1.42 riastrad entropy_account_cpu(ec);
1107 1.1 riastrad }
1108 1.1 riastrad
1109 1.1 riastrad /*
1110 1.1 riastrad * entropy_thread(cookie)
1111 1.1 riastrad *
1112 1.1 riastrad * Handle any asynchronous entropy housekeeping.
1113 1.1 riastrad */
1114 1.1 riastrad static void
1115 1.1 riastrad entropy_thread(void *cookie)
1116 1.1 riastrad {
1117 1.3 riastrad bool consolidate;
1118 1.1 riastrad
1119 1.1 riastrad for (;;) {
1120 1.1 riastrad /*
1121 1.3 riastrad * Wait until there's full entropy somewhere among the
1122 1.3 riastrad * CPUs, as confirmed at most once per minute, or
1123 1.3 riastrad * someone wants to consolidate.
1124 1.1 riastrad */
1125 1.62 riastrad if (entropy_pending()) {
1126 1.3 riastrad consolidate = true;
1127 1.3 riastrad } else {
1128 1.3 riastrad mutex_enter(&E->lock);
1129 1.3 riastrad if (!E->consolidate)
1130 1.3 riastrad cv_timedwait(&E->cv, &E->lock, 60*hz);
1131 1.3 riastrad consolidate = E->consolidate;
1132 1.3 riastrad E->consolidate = false;
1133 1.3 riastrad mutex_exit(&E->lock);
1134 1.1 riastrad }
1135 1.1 riastrad
1136 1.3 riastrad if (consolidate) {
1137 1.3 riastrad /* Do it. */
1138 1.13 riastrad entropy_do_consolidate();
1139 1.1 riastrad
1140 1.3 riastrad /* Mitigate abuse. */
1141 1.3 riastrad kpause("entropy", false, hz, NULL);
1142 1.3 riastrad }
1143 1.1 riastrad }
1144 1.1 riastrad }
1145 1.1 riastrad
1146 1.62 riastrad struct entropy_pending_count {
1147 1.62 riastrad uint32_t bitspending;
1148 1.62 riastrad uint32_t samplespending;
1149 1.62 riastrad };
1150 1.62 riastrad
1151 1.1 riastrad /*
1152 1.1 riastrad * entropy_pending()
1153 1.1 riastrad *
1154 1.62 riastrad * True if enough bits or samples are pending on other CPUs to
1155 1.62 riastrad * warrant consolidation.
1156 1.1 riastrad */
1157 1.62 riastrad static bool
1158 1.1 riastrad entropy_pending(void)
1159 1.1 riastrad {
1160 1.62 riastrad struct entropy_pending_count count = { 0, 0 }, *C = &count;
1161 1.1 riastrad
1162 1.62 riastrad percpu_foreach(entropy_percpu, &entropy_pending_cpu, C);
1163 1.62 riastrad return C->bitspending >= MINENTROPYBITS ||
1164 1.62 riastrad C->samplespending >= MINSAMPLES;
1165 1.1 riastrad }
1166 1.1 riastrad
1167 1.1 riastrad static void
1168 1.1 riastrad entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
1169 1.1 riastrad {
1170 1.1 riastrad struct entropy_cpu *ec = ptr;
1171 1.62 riastrad struct entropy_pending_count *C = cookie;
1172 1.62 riastrad uint32_t cpu_bitspending;
1173 1.62 riastrad uint32_t cpu_samplespending;
1174 1.62 riastrad
1175 1.62 riastrad cpu_bitspending = atomic_load_relaxed(&ec->ec_bitspending);
1176 1.62 riastrad cpu_samplespending = atomic_load_relaxed(&ec->ec_samplespending);
1177 1.62 riastrad C->bitspending += MIN(MINENTROPYBITS - C->bitspending,
1178 1.62 riastrad cpu_bitspending);
1179 1.62 riastrad C->samplespending += MIN(MINSAMPLES - C->samplespending,
1180 1.62 riastrad cpu_samplespending);
1181 1.1 riastrad }
1182 1.1 riastrad
1183 1.1 riastrad /*
1184 1.13 riastrad * entropy_do_consolidate()
1185 1.1 riastrad *
1186 1.1 riastrad * Issue a cross-call to gather entropy on all CPUs and advance
1187 1.1 riastrad * the entropy epoch.
1188 1.1 riastrad */
1189 1.1 riastrad static void
1190 1.13 riastrad entropy_do_consolidate(void)
1191 1.1 riastrad {
1192 1.1 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1193 1.1 riastrad static struct timeval lasttime; /* serialized by E->lock */
1194 1.19 riastrad struct entpool pool;
1195 1.19 riastrad uint8_t buf[ENTPOOL_CAPACITY];
1196 1.62 riastrad unsigned bitsdiff, samplesdiff;
1197 1.1 riastrad uint64_t ticket;
1198 1.1 riastrad
1199 1.19 riastrad /* Gather entropy on all CPUs into a temporary pool. */
1200 1.19 riastrad memset(&pool, 0, sizeof pool);
1201 1.19 riastrad ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
1202 1.1 riastrad xc_wait(ticket);
1203 1.1 riastrad
1204 1.1 riastrad /* Acquire the lock to notify waiters. */
1205 1.1 riastrad mutex_enter(&E->lock);
1206 1.1 riastrad
1207 1.1 riastrad /* Count another consolidation. */
1208 1.1 riastrad entropy_consolidate_evcnt.ev_count++;
1209 1.1 riastrad
1210 1.1 riastrad /* Note when we last consolidated, i.e. now. */
1211 1.1 riastrad E->timestamp = time_uptime;
1212 1.1 riastrad
1213 1.19 riastrad /* Mix what we gathered into the global pool. */
1214 1.19 riastrad entpool_extract(&pool, buf, sizeof buf);
1215 1.19 riastrad entpool_enter(&E->pool, buf, sizeof buf);
1216 1.19 riastrad explicit_memset(&pool, 0, sizeof pool);
1217 1.19 riastrad
1218 1.1 riastrad /* Count the entropy that was gathered. */
1219 1.62 riastrad bitsdiff = MIN(E->bitsneeded, E->bitspending);
1220 1.62 riastrad atomic_store_relaxed(&E->bitsneeded, E->bitsneeded - bitsdiff);
1221 1.62 riastrad E->bitspending -= bitsdiff;
1222 1.62 riastrad if (__predict_false(E->bitsneeded > 0) && bitsdiff != 0) {
1223 1.50 riastrad if ((boothowto & AB_DEBUG) != 0 &&
1224 1.50 riastrad ratecheck(&lasttime, &interval)) {
1225 1.50 riastrad printf("WARNING:"
1226 1.1 riastrad " consolidating less than full entropy\n");
1227 1.30 jmcneill }
1228 1.1 riastrad }
1229 1.1 riastrad
1230 1.62 riastrad samplesdiff = MIN(E->samplesneeded, E->samplespending);
1231 1.62 riastrad atomic_store_relaxed(&E->samplesneeded,
1232 1.62 riastrad E->samplesneeded - samplesdiff);
1233 1.62 riastrad E->samplespending -= samplesdiff;
1234 1.62 riastrad
1235 1.1 riastrad /* Advance the epoch and notify waiters. */
1236 1.1 riastrad entropy_notify();
1237 1.1 riastrad
1238 1.1 riastrad /* Release the lock. */
1239 1.1 riastrad mutex_exit(&E->lock);
1240 1.1 riastrad }
1241 1.1 riastrad
1242 1.1 riastrad /*
1243 1.20 riastrad * entropy_consolidate_xc(vpool, arg2)
1244 1.1 riastrad *
1245 1.1 riastrad * Extract output from the local CPU's input pool and enter it
1246 1.20 riastrad * into a temporary pool passed as vpool.
1247 1.1 riastrad */
1248 1.1 riastrad static void
1249 1.19 riastrad entropy_consolidate_xc(void *vpool, void *arg2 __unused)
1250 1.1 riastrad {
1251 1.19 riastrad struct entpool *pool = vpool;
1252 1.43 riastrad struct entropy_cpu_lock lock;
1253 1.1 riastrad struct entropy_cpu *ec;
1254 1.1 riastrad uint8_t buf[ENTPOOL_CAPACITY];
1255 1.1 riastrad uint32_t extra[7];
1256 1.1 riastrad unsigned i = 0;
1257 1.1 riastrad
1258 1.1 riastrad /* Grab CPU number and cycle counter to mix extra into the pool. */
1259 1.1 riastrad extra[i++] = cpu_number();
1260 1.1 riastrad extra[i++] = entropy_timer();
1261 1.1 riastrad
1262 1.1 riastrad /*
1263 1.43 riastrad * With the per-CPU state locked, extract from the per-CPU pool
1264 1.43 riastrad * and count it as no longer pending.
1265 1.1 riastrad */
1266 1.43 riastrad ec = entropy_cpu_get(&lock);
1267 1.1 riastrad extra[i++] = entropy_timer();
1268 1.1 riastrad entpool_extract(ec->ec_pool, buf, sizeof buf);
1269 1.62 riastrad atomic_store_relaxed(&ec->ec_bitspending, 0);
1270 1.62 riastrad atomic_store_relaxed(&ec->ec_samplespending, 0);
1271 1.1 riastrad extra[i++] = entropy_timer();
1272 1.43 riastrad entropy_cpu_put(&lock, ec);
1273 1.1 riastrad extra[i++] = entropy_timer();
1274 1.1 riastrad
1275 1.1 riastrad /*
1276 1.1 riastrad * Copy over statistics, and enter the per-CPU extract and the
1277 1.19 riastrad * extra timing into the temporary pool, under the global lock.
1278 1.1 riastrad */
1279 1.1 riastrad mutex_enter(&E->lock);
1280 1.1 riastrad extra[i++] = entropy_timer();
1281 1.19 riastrad entpool_enter(pool, buf, sizeof buf);
1282 1.1 riastrad explicit_memset(buf, 0, sizeof buf);
1283 1.1 riastrad extra[i++] = entropy_timer();
1284 1.1 riastrad KASSERT(i == __arraycount(extra));
1285 1.19 riastrad entpool_enter(pool, extra, sizeof extra);
1286 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
1287 1.1 riastrad mutex_exit(&E->lock);
1288 1.1 riastrad }
1289 1.1 riastrad
1290 1.1 riastrad /*
1291 1.1 riastrad * entropy_notify()
1292 1.1 riastrad *
1293 1.1 riastrad * Caller just contributed entropy to the global pool. Advance
1294 1.1 riastrad * the entropy epoch and notify waiters.
1295 1.1 riastrad *
1296 1.62 riastrad * Caller must hold the global entropy lock.
1297 1.1 riastrad */
1298 1.1 riastrad static void
1299 1.1 riastrad entropy_notify(void)
1300 1.1 riastrad {
1301 1.12 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1302 1.12 riastrad static struct timeval lasttime; /* serialized by E->lock */
1303 1.62 riastrad static bool ready = false, besteffort = false;
1304 1.1 riastrad unsigned epoch;
1305 1.1 riastrad
1306 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1307 1.1 riastrad
1308 1.1 riastrad /*
1309 1.1 riastrad * If this is the first time, print a message to the console
1310 1.1 riastrad * that we're ready so operators can compare it to the timing
1311 1.1 riastrad * of other events.
1312 1.62 riastrad *
1313 1.62 riastrad * If we didn't get full entropy from reliable sources, report
1314 1.62 riastrad * instead that we are running on fumes with best effort. (If
1315 1.62 riastrad * we ever do get full entropy after that, print the ready
1316 1.62 riastrad * message once.)
1317 1.62 riastrad */
1318 1.62 riastrad if (__predict_false(!ready)) {
1319 1.62 riastrad if (E->bitsneeded == 0) {
1320 1.62 riastrad printf("entropy: ready\n");
1321 1.62 riastrad ready = true;
1322 1.62 riastrad } else if (E->samplesneeded == 0 && !besteffort) {
1323 1.62 riastrad printf("entropy: best effort\n");
1324 1.62 riastrad besteffort = true;
1325 1.62 riastrad }
1326 1.62 riastrad }
1327 1.1 riastrad
1328 1.1 riastrad /* Set the epoch; roll over from UINTMAX-1 to 1. */
1329 1.12 riastrad if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
1330 1.12 riastrad ratecheck(&lasttime, &interval)) {
1331 1.12 riastrad epoch = E->epoch + 1;
1332 1.12 riastrad if (epoch == 0 || epoch == (unsigned)-1)
1333 1.12 riastrad epoch = 1;
1334 1.12 riastrad atomic_store_relaxed(&E->epoch, epoch);
1335 1.12 riastrad }
1336 1.41 riastrad KASSERT(E->epoch != (unsigned)-1);
1337 1.1 riastrad
1338 1.1 riastrad /* Notify waiters. */
1339 1.1 riastrad if (E->stage >= ENTROPY_WARM) {
1340 1.1 riastrad cv_broadcast(&E->cv);
1341 1.1 riastrad selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
1342 1.1 riastrad }
1343 1.1 riastrad
1344 1.1 riastrad /* Count another notification. */
1345 1.1 riastrad entropy_notify_evcnt.ev_count++;
1346 1.1 riastrad }
1347 1.1 riastrad
1348 1.1 riastrad /*
1349 1.13 riastrad * entropy_consolidate()
1350 1.13 riastrad *
1351 1.13 riastrad * Trigger entropy consolidation and wait for it to complete.
1352 1.13 riastrad *
1353 1.13 riastrad * This should be used sparingly, not periodically -- requiring
1354 1.13 riastrad * conscious intervention by the operator or a clear policy
1355 1.13 riastrad * decision. Otherwise, the kernel will automatically consolidate
1356 1.13 riastrad * when enough entropy has been gathered into per-CPU pools to
1357 1.13 riastrad * transition to full entropy.
1358 1.13 riastrad */
1359 1.13 riastrad void
1360 1.13 riastrad entropy_consolidate(void)
1361 1.13 riastrad {
1362 1.13 riastrad uint64_t ticket;
1363 1.13 riastrad int error;
1364 1.13 riastrad
1365 1.13 riastrad KASSERT(E->stage == ENTROPY_HOT);
1366 1.13 riastrad
1367 1.13 riastrad mutex_enter(&E->lock);
1368 1.13 riastrad ticket = entropy_consolidate_evcnt.ev_count;
1369 1.13 riastrad E->consolidate = true;
1370 1.13 riastrad cv_broadcast(&E->cv);
1371 1.13 riastrad while (ticket == entropy_consolidate_evcnt.ev_count) {
1372 1.13 riastrad error = cv_wait_sig(&E->cv, &E->lock);
1373 1.13 riastrad if (error)
1374 1.13 riastrad break;
1375 1.13 riastrad }
1376 1.13 riastrad mutex_exit(&E->lock);
1377 1.13 riastrad }
1378 1.13 riastrad
1379 1.13 riastrad /*
1380 1.1 riastrad * sysctl -w kern.entropy.consolidate=1
1381 1.1 riastrad *
1382 1.1 riastrad * Trigger entropy consolidation and wait for it to complete.
1383 1.13 riastrad * Writable only by superuser. This, writing to /dev/random, and
1384 1.13 riastrad * ioctl(RNDADDDATA) are the only ways for the system to
1385 1.13 riastrad * consolidate entropy if the operator knows something the kernel
1386 1.13 riastrad * doesn't about how unpredictable the pending entropy pools are.
1387 1.1 riastrad */
1388 1.1 riastrad static int
1389 1.1 riastrad sysctl_entropy_consolidate(SYSCTLFN_ARGS)
1390 1.1 riastrad {
1391 1.1 riastrad struct sysctlnode node = *rnode;
1392 1.57 riastrad int arg = 0;
1393 1.1 riastrad int error;
1394 1.1 riastrad
1395 1.1 riastrad KASSERT(E->stage == ENTROPY_HOT);
1396 1.1 riastrad
1397 1.1 riastrad node.sysctl_data = &arg;
1398 1.1 riastrad error = sysctl_lookup(SYSCTLFN_CALL(&node));
1399 1.1 riastrad if (error || newp == NULL)
1400 1.1 riastrad return error;
1401 1.13 riastrad if (arg)
1402 1.13 riastrad entropy_consolidate();
1403 1.1 riastrad
1404 1.1 riastrad return error;
1405 1.1 riastrad }
1406 1.1 riastrad
1407 1.1 riastrad /*
1408 1.10 riastrad * sysctl -w kern.entropy.gather=1
1409 1.10 riastrad *
1410 1.10 riastrad * Trigger gathering entropy from all on-demand sources, and wait
1411 1.10 riastrad * for synchronous sources (but not asynchronous sources) to
1412 1.10 riastrad * complete. Writable only by superuser.
1413 1.10 riastrad */
1414 1.10 riastrad static int
1415 1.10 riastrad sysctl_entropy_gather(SYSCTLFN_ARGS)
1416 1.10 riastrad {
1417 1.10 riastrad struct sysctlnode node = *rnode;
1418 1.57 riastrad int arg = 0;
1419 1.10 riastrad int error;
1420 1.10 riastrad
1421 1.10 riastrad KASSERT(E->stage == ENTROPY_HOT);
1422 1.10 riastrad
1423 1.10 riastrad node.sysctl_data = &arg;
1424 1.10 riastrad error = sysctl_lookup(SYSCTLFN_CALL(&node));
1425 1.10 riastrad if (error || newp == NULL)
1426 1.10 riastrad return error;
1427 1.10 riastrad if (arg) {
1428 1.10 riastrad mutex_enter(&E->lock);
1429 1.49 riastrad error = entropy_request(ENTROPY_CAPACITY,
1430 1.49 riastrad ENTROPY_WAIT|ENTROPY_SIG);
1431 1.10 riastrad mutex_exit(&E->lock);
1432 1.10 riastrad }
1433 1.10 riastrad
1434 1.10 riastrad return 0;
1435 1.10 riastrad }
1436 1.10 riastrad
1437 1.10 riastrad /*
1438 1.1 riastrad * entropy_extract(buf, len, flags)
1439 1.1 riastrad *
1440 1.1 riastrad * Extract len bytes from the global entropy pool into buf.
1441 1.1 riastrad *
1442 1.55 riastrad * Caller MUST NOT expose these bytes directly -- must use them
1443 1.55 riastrad * ONLY to seed a cryptographic pseudorandom number generator
1444 1.55 riastrad * (`CPRNG'), a.k.a. deterministic random bit generator (`DRBG'),
1445 1.55 riastrad * and then erase them. entropy_extract does not, on its own,
1446 1.55 riastrad * provide backtracking resistance -- it must be combined with a
1447 1.55 riastrad * PRNG/DRBG that does.
1448 1.55 riastrad *
1449 1.55 riastrad * You generally shouldn't use this directly -- use cprng(9)
1450 1.55 riastrad * instead.
1451 1.55 riastrad *
1452 1.1 riastrad * Flags may have:
1453 1.1 riastrad *
1454 1.1 riastrad * ENTROPY_WAIT Wait for entropy if not available yet.
1455 1.1 riastrad * ENTROPY_SIG Allow interruption by a signal during wait.
1456 1.23 riastrad * ENTROPY_HARDFAIL Either fill the buffer with full entropy,
1457 1.23 riastrad * or fail without filling it at all.
1458 1.1 riastrad *
1459 1.1 riastrad * Return zero on success, or error on failure:
1460 1.1 riastrad *
1461 1.1 riastrad * EWOULDBLOCK No entropy and ENTROPY_WAIT not set.
1462 1.1 riastrad * EINTR/ERESTART No entropy, ENTROPY_SIG set, and interrupted.
1463 1.1 riastrad *
1464 1.1 riastrad * If ENTROPY_WAIT is set, allowed only in thread context. If
1465 1.56 riastrad * ENTROPY_WAIT is not set, allowed also in softint context.
1466 1.56 riastrad * Forbidden in hard interrupt context.
1467 1.1 riastrad */
1468 1.1 riastrad int
1469 1.1 riastrad entropy_extract(void *buf, size_t len, int flags)
1470 1.1 riastrad {
1471 1.1 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1472 1.1 riastrad static struct timeval lasttime; /* serialized by E->lock */
1473 1.62 riastrad bool printed = false;
1474 1.1 riastrad int error;
1475 1.1 riastrad
1476 1.1 riastrad if (ISSET(flags, ENTROPY_WAIT)) {
1477 1.1 riastrad ASSERT_SLEEPABLE();
1478 1.1 riastrad KASSERTMSG(E->stage >= ENTROPY_WARM,
1479 1.1 riastrad "can't wait for entropy until warm");
1480 1.1 riastrad }
1481 1.1 riastrad
1482 1.35 riastrad /* Refuse to operate in interrupt context. */
1483 1.35 riastrad KASSERT(!cpu_intr_p());
1484 1.35 riastrad
1485 1.1 riastrad /* Acquire the global lock to get at the global pool. */
1486 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1487 1.1 riastrad mutex_enter(&E->lock);
1488 1.1 riastrad
1489 1.1 riastrad /* Wait until there is enough entropy in the system. */
1490 1.1 riastrad error = 0;
1491 1.62 riastrad if (E->bitsneeded > 0 && E->samplesneeded == 0) {
1492 1.62 riastrad /*
1493 1.62 riastrad * We don't have full entropy from reliable sources,
1494 1.62 riastrad * but we gathered a plausible number of samples from
1495 1.62 riastrad * other sources such as timers. Try asking for more
1496 1.62 riastrad * from any sources we can, but don't worry if it
1497 1.62 riastrad * fails -- best effort.
1498 1.62 riastrad */
1499 1.62 riastrad (void)entropy_request(ENTROPY_CAPACITY, flags);
1500 1.62 riastrad } else while (E->bitsneeded > 0 && E->samplesneeded > 0) {
1501 1.1 riastrad /* Ask for more, synchronously if possible. */
1502 1.49 riastrad error = entropy_request(len, flags);
1503 1.49 riastrad if (error)
1504 1.49 riastrad break;
1505 1.1 riastrad
1506 1.1 riastrad /* If we got enough, we're done. */
1507 1.62 riastrad if (E->bitsneeded == 0 || E->samplesneeded == 0) {
1508 1.1 riastrad KASSERT(error == 0);
1509 1.1 riastrad break;
1510 1.1 riastrad }
1511 1.1 riastrad
1512 1.1 riastrad /* If not waiting, stop here. */
1513 1.1 riastrad if (!ISSET(flags, ENTROPY_WAIT)) {
1514 1.1 riastrad error = EWOULDBLOCK;
1515 1.1 riastrad break;
1516 1.1 riastrad }
1517 1.1 riastrad
1518 1.1 riastrad /* Wait for some entropy to come in and try again. */
1519 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1520 1.62 riastrad if (!printed) {
1521 1.62 riastrad printf("entropy: pid %d (%s) waiting for entropy(7)\n",
1522 1.62 riastrad curproc->p_pid, curproc->p_comm);
1523 1.62 riastrad printed = true;
1524 1.62 riastrad }
1525 1.24 gson
1526 1.1 riastrad if (ISSET(flags, ENTROPY_SIG)) {
1527 1.62 riastrad error = cv_timedwait_sig(&E->cv, &E->lock, hz);
1528 1.62 riastrad if (error && error != EWOULDBLOCK)
1529 1.1 riastrad break;
1530 1.1 riastrad } else {
1531 1.62 riastrad cv_timedwait(&E->cv, &E->lock, hz);
1532 1.1 riastrad }
1533 1.1 riastrad }
1534 1.1 riastrad
1535 1.23 riastrad /*
1536 1.23 riastrad * Count failure -- but fill the buffer nevertheless, unless
1537 1.23 riastrad * the caller specified ENTROPY_HARDFAIL.
1538 1.23 riastrad */
1539 1.23 riastrad if (error) {
1540 1.23 riastrad if (ISSET(flags, ENTROPY_HARDFAIL))
1541 1.23 riastrad goto out;
1542 1.1 riastrad entropy_extract_fail_evcnt.ev_count++;
1543 1.23 riastrad }
1544 1.1 riastrad
1545 1.1 riastrad /*
1546 1.62 riastrad * Report a warning if we haven't yet reached full entropy.
1547 1.1 riastrad * This is the only case where we consider entropy to be
1548 1.1 riastrad * `depleted' without kern.entropy.depletion enabled -- when we
1549 1.1 riastrad * only have partial entropy, an adversary may be able to
1550 1.1 riastrad * narrow the state of the pool down to a small number of
1551 1.1 riastrad * possibilities; the output then enables them to confirm a
1552 1.1 riastrad * guess, reducing its entropy from the adversary's perspective
1553 1.1 riastrad * to zero.
1554 1.62 riastrad *
1555 1.62 riastrad * This should only happen if the operator has chosen to
1556 1.62 riastrad * consolidate, either through sysctl kern.entropy.consolidate
1557 1.62 riastrad * or by writing less than full entropy to /dev/random as root
1558 1.62 riastrad * (which /dev/random promises will immediately affect
1559 1.62 riastrad * subsequent output, for better or worse).
1560 1.1 riastrad */
1561 1.62 riastrad if (E->bitsneeded > 0 && E->samplesneeded > 0) {
1562 1.62 riastrad if (__predict_false(E->epoch == (unsigned)-1) &&
1563 1.62 riastrad ratecheck(&lasttime, &interval)) {
1564 1.50 riastrad printf("WARNING:"
1565 1.50 riastrad " system needs entropy for security;"
1566 1.50 riastrad " see entropy(7)\n");
1567 1.62 riastrad }
1568 1.62 riastrad atomic_store_relaxed(&E->bitsneeded, MINENTROPYBITS);
1569 1.62 riastrad atomic_store_relaxed(&E->samplesneeded, MINSAMPLES);
1570 1.1 riastrad }
1571 1.1 riastrad
1572 1.1 riastrad /* Extract data from the pool, and `deplete' if we're doing that. */
1573 1.1 riastrad entpool_extract(&E->pool, buf, len);
1574 1.1 riastrad if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
1575 1.1 riastrad error == 0) {
1576 1.1 riastrad unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
1577 1.62 riastrad unsigned bitsneeded = E->bitsneeded;
1578 1.62 riastrad unsigned samplesneeded = E->samplesneeded;
1579 1.1 riastrad
1580 1.62 riastrad bitsneeded += MIN(MINENTROPYBITS - bitsneeded, cost);
1581 1.62 riastrad samplesneeded += MIN(MINSAMPLES - samplesneeded, cost);
1582 1.62 riastrad
1583 1.62 riastrad atomic_store_relaxed(&E->bitsneeded, bitsneeded);
1584 1.62 riastrad atomic_store_relaxed(&E->samplesneeded, samplesneeded);
1585 1.1 riastrad entropy_deplete_evcnt.ev_count++;
1586 1.1 riastrad }
1587 1.1 riastrad
1588 1.23 riastrad out: /* Release the global lock and return the error. */
1589 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1590 1.1 riastrad mutex_exit(&E->lock);
1591 1.1 riastrad return error;
1592 1.1 riastrad }
1593 1.1 riastrad
1594 1.1 riastrad /*
1595 1.1 riastrad * entropy_poll(events)
1596 1.1 riastrad *
1597 1.1 riastrad * Return the subset of events ready, and if it is not all of
1598 1.1 riastrad * events, record curlwp as waiting for entropy.
1599 1.1 riastrad */
1600 1.1 riastrad int
1601 1.1 riastrad entropy_poll(int events)
1602 1.1 riastrad {
1603 1.1 riastrad int revents = 0;
1604 1.1 riastrad
1605 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1606 1.1 riastrad
1607 1.1 riastrad /* Always ready for writing. */
1608 1.1 riastrad revents |= events & (POLLOUT|POLLWRNORM);
1609 1.1 riastrad
1610 1.1 riastrad /* Narrow it down to reads. */
1611 1.1 riastrad events &= POLLIN|POLLRDNORM;
1612 1.1 riastrad if (events == 0)
1613 1.1 riastrad return revents;
1614 1.1 riastrad
1615 1.1 riastrad /*
1616 1.1 riastrad * If we have reached full entropy and we're not depleting
1617 1.1 riastrad * entropy, we are forever ready.
1618 1.1 riastrad */
1619 1.62 riastrad if (__predict_true(atomic_load_relaxed(&E->bitsneeded) == 0 ||
1620 1.62 riastrad atomic_load_relaxed(&E->samplesneeded) == 0) &&
1621 1.1 riastrad __predict_true(!atomic_load_relaxed(&entropy_depletion)))
1622 1.1 riastrad return revents | events;
1623 1.1 riastrad
1624 1.1 riastrad /*
1625 1.1 riastrad * Otherwise, check whether we need entropy under the lock. If
1626 1.1 riastrad * we don't, we're ready; if we do, add ourselves to the queue.
1627 1.1 riastrad */
1628 1.1 riastrad mutex_enter(&E->lock);
1629 1.62 riastrad if (E->bitsneeded == 0 || E->samplesneeded == 0)
1630 1.1 riastrad revents |= events;
1631 1.1 riastrad else
1632 1.1 riastrad selrecord(curlwp, &E->selq);
1633 1.1 riastrad mutex_exit(&E->lock);
1634 1.1 riastrad
1635 1.1 riastrad return revents;
1636 1.1 riastrad }
1637 1.1 riastrad
1638 1.1 riastrad /*
1639 1.1 riastrad * filt_entropy_read_detach(kn)
1640 1.1 riastrad *
1641 1.1 riastrad * struct filterops::f_detach callback for entropy read events:
1642 1.1 riastrad * remove kn from the list of waiters.
1643 1.1 riastrad */
1644 1.1 riastrad static void
1645 1.1 riastrad filt_entropy_read_detach(struct knote *kn)
1646 1.1 riastrad {
1647 1.1 riastrad
1648 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1649 1.1 riastrad
1650 1.1 riastrad mutex_enter(&E->lock);
1651 1.25 thorpej selremove_knote(&E->selq, kn);
1652 1.1 riastrad mutex_exit(&E->lock);
1653 1.1 riastrad }
1654 1.1 riastrad
1655 1.1 riastrad /*
1656 1.1 riastrad * filt_entropy_read_event(kn, hint)
1657 1.1 riastrad *
1658 1.1 riastrad * struct filterops::f_event callback for entropy read events:
1659 1.1 riastrad * poll for entropy. Caller must hold the global entropy lock if
1660 1.1 riastrad * hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
1661 1.1 riastrad */
1662 1.1 riastrad static int
1663 1.1 riastrad filt_entropy_read_event(struct knote *kn, long hint)
1664 1.1 riastrad {
1665 1.1 riastrad int ret;
1666 1.1 riastrad
1667 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1668 1.1 riastrad
1669 1.1 riastrad /* Acquire the lock, if caller is outside entropy subsystem. */
1670 1.1 riastrad if (hint == NOTE_SUBMIT)
1671 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1672 1.1 riastrad else
1673 1.1 riastrad mutex_enter(&E->lock);
1674 1.1 riastrad
1675 1.1 riastrad /*
1676 1.1 riastrad * If we still need entropy, can't read anything; if not, can
1677 1.1 riastrad * read arbitrarily much.
1678 1.1 riastrad */
1679 1.62 riastrad if (E->bitsneeded != 0 && E->samplesneeded != 0) {
1680 1.1 riastrad ret = 0;
1681 1.1 riastrad } else {
1682 1.1 riastrad if (atomic_load_relaxed(&entropy_depletion))
1683 1.58 riastrad kn->kn_data = ENTROPY_CAPACITY; /* bytes */
1684 1.1 riastrad else
1685 1.1 riastrad kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
1686 1.1 riastrad ret = 1;
1687 1.1 riastrad }
1688 1.1 riastrad
1689 1.1 riastrad /* Release the lock, if caller is outside entropy subsystem. */
1690 1.1 riastrad if (hint == NOTE_SUBMIT)
1691 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1692 1.1 riastrad else
1693 1.1 riastrad mutex_exit(&E->lock);
1694 1.1 riastrad
1695 1.1 riastrad return ret;
1696 1.1 riastrad }
1697 1.1 riastrad
1698 1.33 thorpej /* XXX Makes sense only for /dev/u?random. */
1699 1.1 riastrad static const struct filterops entropy_read_filtops = {
1700 1.33 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1701 1.1 riastrad .f_attach = NULL,
1702 1.1 riastrad .f_detach = filt_entropy_read_detach,
1703 1.1 riastrad .f_event = filt_entropy_read_event,
1704 1.1 riastrad };
1705 1.1 riastrad
1706 1.1 riastrad /*
1707 1.1 riastrad * entropy_kqfilter(kn)
1708 1.1 riastrad *
1709 1.1 riastrad * Register kn to receive entropy event notifications. May be
1710 1.1 riastrad * EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
1711 1.1 riastrad */
1712 1.1 riastrad int
1713 1.1 riastrad entropy_kqfilter(struct knote *kn)
1714 1.1 riastrad {
1715 1.1 riastrad
1716 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1717 1.1 riastrad
1718 1.1 riastrad switch (kn->kn_filter) {
1719 1.1 riastrad case EVFILT_READ:
1720 1.1 riastrad /* Enter into the global select queue. */
1721 1.1 riastrad mutex_enter(&E->lock);
1722 1.1 riastrad kn->kn_fop = &entropy_read_filtops;
1723 1.25 thorpej selrecord_knote(&E->selq, kn);
1724 1.1 riastrad mutex_exit(&E->lock);
1725 1.1 riastrad return 0;
1726 1.1 riastrad case EVFILT_WRITE:
1727 1.1 riastrad /* Can always dump entropy into the system. */
1728 1.1 riastrad kn->kn_fop = &seltrue_filtops;
1729 1.1 riastrad return 0;
1730 1.1 riastrad default:
1731 1.1 riastrad return EINVAL;
1732 1.1 riastrad }
1733 1.1 riastrad }
1734 1.1 riastrad
1735 1.1 riastrad /*
1736 1.1 riastrad * rndsource_setcb(rs, get, getarg)
1737 1.1 riastrad *
1738 1.1 riastrad * Set the request callback for the entropy source rs, if it can
1739 1.1 riastrad * provide entropy on demand. Must precede rnd_attach_source.
1740 1.1 riastrad */
1741 1.1 riastrad void
1742 1.1 riastrad rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
1743 1.1 riastrad void *getarg)
1744 1.1 riastrad {
1745 1.1 riastrad
1746 1.1 riastrad rs->get = get;
1747 1.1 riastrad rs->getarg = getarg;
1748 1.1 riastrad }
1749 1.1 riastrad
1750 1.1 riastrad /*
1751 1.1 riastrad * rnd_attach_source(rs, name, type, flags)
1752 1.1 riastrad *
1753 1.1 riastrad * Attach the entropy source rs. Must be done after
1754 1.1 riastrad * rndsource_setcb, if any, and before any calls to rnd_add_data.
1755 1.1 riastrad */
1756 1.1 riastrad void
1757 1.1 riastrad rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
1758 1.1 riastrad uint32_t flags)
1759 1.1 riastrad {
1760 1.1 riastrad uint32_t extra[4];
1761 1.1 riastrad unsigned i = 0;
1762 1.1 riastrad
1763 1.59 riastrad KASSERTMSG(name[0] != '\0', "rndsource must have nonempty name");
1764 1.59 riastrad
1765 1.1 riastrad /* Grab cycle counter to mix extra into the pool. */
1766 1.1 riastrad extra[i++] = entropy_timer();
1767 1.1 riastrad
1768 1.1 riastrad /*
1769 1.1 riastrad * Apply some standard flags:
1770 1.1 riastrad *
1771 1.1 riastrad * - We do not bother with network devices by default, for
1772 1.1 riastrad * hysterical raisins (perhaps: because it is often the case
1773 1.1 riastrad * that an adversary can influence network packet timings).
1774 1.1 riastrad */
1775 1.1 riastrad switch (type) {
1776 1.1 riastrad case RND_TYPE_NET:
1777 1.1 riastrad flags |= RND_FLAG_NO_COLLECT;
1778 1.1 riastrad break;
1779 1.1 riastrad }
1780 1.1 riastrad
1781 1.1 riastrad /* Sanity-check the callback if RND_FLAG_HASCB is set. */
1782 1.1 riastrad KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
1783 1.1 riastrad
1784 1.1 riastrad /* Initialize the random source. */
1785 1.1 riastrad memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
1786 1.1 riastrad strlcpy(rs->name, name, sizeof(rs->name));
1787 1.28 riastrad memset(&rs->time_delta, 0, sizeof(rs->time_delta));
1788 1.28 riastrad memset(&rs->value_delta, 0, sizeof(rs->value_delta));
1789 1.9 riastrad rs->total = 0;
1790 1.1 riastrad rs->type = type;
1791 1.1 riastrad rs->flags = flags;
1792 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1793 1.1 riastrad rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
1794 1.1 riastrad extra[i++] = entropy_timer();
1795 1.1 riastrad
1796 1.1 riastrad /* Wire it into the global list of random sources. */
1797 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1798 1.1 riastrad mutex_enter(&E->lock);
1799 1.1 riastrad LIST_INSERT_HEAD(&E->sources, rs, list);
1800 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1801 1.1 riastrad mutex_exit(&E->lock);
1802 1.1 riastrad extra[i++] = entropy_timer();
1803 1.1 riastrad
1804 1.1 riastrad /* Request that it provide entropy ASAP, if we can. */
1805 1.1 riastrad if (ISSET(flags, RND_FLAG_HASCB))
1806 1.1 riastrad (*rs->get)(ENTROPY_CAPACITY, rs->getarg);
1807 1.1 riastrad extra[i++] = entropy_timer();
1808 1.1 riastrad
1809 1.1 riastrad /* Mix the extra into the pool. */
1810 1.1 riastrad KASSERT(i == __arraycount(extra));
1811 1.62 riastrad entropy_enter(extra, sizeof extra, 0, /*count*/!cold);
1812 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
1813 1.1 riastrad }
1814 1.1 riastrad
1815 1.1 riastrad /*
1816 1.1 riastrad * rnd_detach_source(rs)
1817 1.1 riastrad *
1818 1.1 riastrad * Detach the entropy source rs. May sleep waiting for users to
1819 1.1 riastrad * drain. Further use is not allowed.
1820 1.1 riastrad */
1821 1.1 riastrad void
1822 1.1 riastrad rnd_detach_source(struct krndsource *rs)
1823 1.1 riastrad {
1824 1.1 riastrad
1825 1.1 riastrad /*
1826 1.1 riastrad * If we're cold (shouldn't happen, but hey), just remove it
1827 1.1 riastrad * from the list -- there's nothing allocated.
1828 1.1 riastrad */
1829 1.1 riastrad if (E->stage == ENTROPY_COLD) {
1830 1.1 riastrad LIST_REMOVE(rs, list);
1831 1.1 riastrad return;
1832 1.1 riastrad }
1833 1.1 riastrad
1834 1.1 riastrad /* We may have to wait for entropy_request. */
1835 1.1 riastrad ASSERT_SLEEPABLE();
1836 1.1 riastrad
1837 1.4 riastrad /* Wait until the source list is not in use, and remove it. */
1838 1.1 riastrad mutex_enter(&E->lock);
1839 1.4 riastrad while (E->sourcelock)
1840 1.27 riastrad cv_wait(&E->sourcelock_cv, &E->lock);
1841 1.1 riastrad LIST_REMOVE(rs, list);
1842 1.1 riastrad mutex_exit(&E->lock);
1843 1.1 riastrad
1844 1.1 riastrad /* Free the per-CPU data. */
1845 1.1 riastrad percpu_free(rs->state, sizeof(struct rndsource_cpu));
1846 1.1 riastrad }
1847 1.1 riastrad
1848 1.1 riastrad /*
1849 1.49 riastrad * rnd_lock_sources(flags)
1850 1.49 riastrad *
1851 1.49 riastrad * Lock the list of entropy sources. Caller must hold the global
1852 1.49 riastrad * entropy lock. If successful, no rndsource will go away until
1853 1.49 riastrad * rnd_unlock_sources even while the caller releases the global
1854 1.49 riastrad * entropy lock.
1855 1.4 riastrad *
1856 1.49 riastrad * If flags & ENTROPY_WAIT, wait for concurrent access to finish.
1857 1.49 riastrad * If flags & ENTROPY_SIG, allow interruption by signal.
1858 1.4 riastrad */
1859 1.49 riastrad static int __attribute__((warn_unused_result))
1860 1.49 riastrad rnd_lock_sources(int flags)
1861 1.4 riastrad {
1862 1.4 riastrad int error;
1863 1.4 riastrad
1864 1.51 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1865 1.4 riastrad
1866 1.4 riastrad while (E->sourcelock) {
1867 1.51 riastrad KASSERT(E->stage >= ENTROPY_WARM);
1868 1.49 riastrad if (!ISSET(flags, ENTROPY_WAIT))
1869 1.49 riastrad return EWOULDBLOCK;
1870 1.49 riastrad if (ISSET(flags, ENTROPY_SIG)) {
1871 1.49 riastrad error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
1872 1.49 riastrad if (error)
1873 1.49 riastrad return error;
1874 1.49 riastrad } else {
1875 1.49 riastrad cv_wait(&E->sourcelock_cv, &E->lock);
1876 1.49 riastrad }
1877 1.4 riastrad }
1878 1.4 riastrad
1879 1.4 riastrad E->sourcelock = curlwp;
1880 1.4 riastrad return 0;
1881 1.4 riastrad }
1882 1.4 riastrad
1883 1.4 riastrad /*
1884 1.4 riastrad * rnd_unlock_sources()
1885 1.4 riastrad *
1886 1.49 riastrad * Unlock the list of sources after rnd_lock_sources. Caller must
1887 1.49 riastrad * hold the global entropy lock.
1888 1.4 riastrad */
1889 1.4 riastrad static void
1890 1.4 riastrad rnd_unlock_sources(void)
1891 1.4 riastrad {
1892 1.4 riastrad
1893 1.4 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1894 1.4 riastrad
1895 1.16 riastrad KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
1896 1.16 riastrad curlwp, E->sourcelock);
1897 1.4 riastrad E->sourcelock = NULL;
1898 1.4 riastrad if (E->stage >= ENTROPY_WARM)
1899 1.27 riastrad cv_signal(&E->sourcelock_cv);
1900 1.4 riastrad }
1901 1.4 riastrad
1902 1.4 riastrad /*
1903 1.4 riastrad * rnd_sources_locked()
1904 1.4 riastrad *
1905 1.4 riastrad * True if we hold the list of rndsources locked, for diagnostic
1906 1.4 riastrad * assertions.
1907 1.4 riastrad */
1908 1.7 riastrad static bool __diagused
1909 1.4 riastrad rnd_sources_locked(void)
1910 1.4 riastrad {
1911 1.4 riastrad
1912 1.16 riastrad return E->sourcelock == curlwp;
1913 1.4 riastrad }
1914 1.4 riastrad
1915 1.4 riastrad /*
1916 1.49 riastrad * entropy_request(nbytes, flags)
1917 1.1 riastrad *
1918 1.1 riastrad * Request nbytes bytes of entropy from all sources in the system.
1919 1.1 riastrad * OK if we overdo it. Caller must hold the global entropy lock;
1920 1.1 riastrad * will release and re-acquire it.
1921 1.49 riastrad *
1922 1.49 riastrad * If flags & ENTROPY_WAIT, wait for concurrent access to finish.
1923 1.49 riastrad * If flags & ENTROPY_SIG, allow interruption by signal.
1924 1.1 riastrad */
1925 1.49 riastrad static int
1926 1.49 riastrad entropy_request(size_t nbytes, int flags)
1927 1.1 riastrad {
1928 1.4 riastrad struct krndsource *rs;
1929 1.49 riastrad int error;
1930 1.1 riastrad
1931 1.1 riastrad KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1932 1.49 riastrad if (flags & ENTROPY_WAIT)
1933 1.49 riastrad ASSERT_SLEEPABLE();
1934 1.1 riastrad
1935 1.1 riastrad /*
1936 1.49 riastrad * Lock the list of entropy sources to block rnd_detach_source
1937 1.49 riastrad * until we're done, and to serialize calls to the entropy
1938 1.49 riastrad * callbacks as guaranteed to drivers.
1939 1.1 riastrad */
1940 1.49 riastrad error = rnd_lock_sources(flags);
1941 1.49 riastrad if (error)
1942 1.49 riastrad return error;
1943 1.1 riastrad entropy_request_evcnt.ev_count++;
1944 1.1 riastrad
1945 1.1 riastrad /* Clamp to the maximum reasonable request. */
1946 1.1 riastrad nbytes = MIN(nbytes, ENTROPY_CAPACITY);
1947 1.1 riastrad
1948 1.1 riastrad /* Walk the list of sources. */
1949 1.4 riastrad LIST_FOREACH(rs, &E->sources, list) {
1950 1.1 riastrad /* Skip sources without callbacks. */
1951 1.1 riastrad if (!ISSET(rs->flags, RND_FLAG_HASCB))
1952 1.1 riastrad continue;
1953 1.1 riastrad
1954 1.22 riastrad /*
1955 1.22 riastrad * Skip sources that are disabled altogether -- we
1956 1.22 riastrad * would just ignore their samples anyway.
1957 1.22 riastrad */
1958 1.22 riastrad if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
1959 1.22 riastrad continue;
1960 1.22 riastrad
1961 1.1 riastrad /* Drop the lock while we call the callback. */
1962 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1963 1.1 riastrad mutex_exit(&E->lock);
1964 1.1 riastrad (*rs->get)(nbytes, rs->getarg);
1965 1.1 riastrad if (E->stage >= ENTROPY_WARM)
1966 1.1 riastrad mutex_enter(&E->lock);
1967 1.1 riastrad }
1968 1.1 riastrad
1969 1.49 riastrad /* Request done; unlock the list of entropy sources. */
1970 1.4 riastrad rnd_unlock_sources();
1971 1.49 riastrad return 0;
1972 1.1 riastrad }
1973 1.1 riastrad
1974 1.62 riastrad static inline uint32_t
1975 1.62 riastrad rnd_delta_estimate(rnd_delta_t *d, uint32_t v, int32_t delta)
1976 1.62 riastrad {
1977 1.62 riastrad int32_t delta2, delta3;
1978 1.62 riastrad
1979 1.62 riastrad /*
1980 1.62 riastrad * Calculate the second and third order differentials
1981 1.62 riastrad */
1982 1.62 riastrad delta2 = d->dx - delta;
1983 1.62 riastrad if (delta2 < 0)
1984 1.62 riastrad delta2 = -delta2; /* XXX arithmetic overflow */
1985 1.62 riastrad
1986 1.62 riastrad delta3 = d->d2x - delta2;
1987 1.62 riastrad if (delta3 < 0)
1988 1.62 riastrad delta3 = -delta3; /* XXX arithmetic overflow */
1989 1.62 riastrad
1990 1.62 riastrad d->x = v;
1991 1.62 riastrad d->dx = delta;
1992 1.62 riastrad d->d2x = delta2;
1993 1.62 riastrad
1994 1.62 riastrad /*
1995 1.62 riastrad * If any delta is 0, we got no entropy. If all are non-zero, we
1996 1.62 riastrad * might have something.
1997 1.62 riastrad */
1998 1.62 riastrad if (delta == 0 || delta2 == 0 || delta3 == 0)
1999 1.62 riastrad return 0;
2000 1.62 riastrad
2001 1.62 riastrad return 1;
2002 1.62 riastrad }
2003 1.62 riastrad
2004 1.62 riastrad static inline uint32_t
2005 1.62 riastrad rnd_dt_estimate(struct krndsource *rs, uint32_t t)
2006 1.62 riastrad {
2007 1.62 riastrad int32_t delta;
2008 1.62 riastrad uint32_t ret;
2009 1.62 riastrad rnd_delta_t *d;
2010 1.62 riastrad struct rndsource_cpu *rc;
2011 1.62 riastrad
2012 1.62 riastrad rc = percpu_getref(rs->state);
2013 1.62 riastrad d = &rc->rc_timedelta;
2014 1.62 riastrad
2015 1.62 riastrad if (t < d->x) {
2016 1.62 riastrad delta = UINT32_MAX - d->x + t;
2017 1.62 riastrad } else {
2018 1.62 riastrad delta = d->x - t;
2019 1.62 riastrad }
2020 1.62 riastrad
2021 1.62 riastrad if (delta < 0) {
2022 1.62 riastrad delta = -delta; /* XXX arithmetic overflow */
2023 1.62 riastrad }
2024 1.62 riastrad
2025 1.62 riastrad ret = rnd_delta_estimate(d, t, delta);
2026 1.62 riastrad
2027 1.62 riastrad KASSERT(d->x == t);
2028 1.62 riastrad KASSERT(d->dx == delta);
2029 1.62 riastrad percpu_putref(rs->state);
2030 1.62 riastrad return ret;
2031 1.62 riastrad }
2032 1.62 riastrad
2033 1.1 riastrad /*
2034 1.1 riastrad * rnd_add_uint32(rs, value)
2035 1.1 riastrad *
2036 1.1 riastrad * Enter 32 bits of data from an entropy source into the pool.
2037 1.1 riastrad *
2038 1.1 riastrad * If rs is NULL, may not be called from interrupt context.
2039 1.1 riastrad *
2040 1.1 riastrad * If rs is non-NULL, may be called from any context. May drop
2041 1.1 riastrad * data if called from interrupt context.
2042 1.1 riastrad */
2043 1.1 riastrad void
2044 1.1 riastrad rnd_add_uint32(struct krndsource *rs, uint32_t value)
2045 1.1 riastrad {
2046 1.1 riastrad
2047 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
2048 1.1 riastrad }
2049 1.1 riastrad
2050 1.1 riastrad void
2051 1.1 riastrad _rnd_add_uint32(struct krndsource *rs, uint32_t value)
2052 1.1 riastrad {
2053 1.1 riastrad
2054 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
2055 1.1 riastrad }
2056 1.1 riastrad
2057 1.1 riastrad void
2058 1.1 riastrad _rnd_add_uint64(struct krndsource *rs, uint64_t value)
2059 1.1 riastrad {
2060 1.1 riastrad
2061 1.1 riastrad rnd_add_data(rs, &value, sizeof value, 0);
2062 1.1 riastrad }
2063 1.1 riastrad
2064 1.1 riastrad /*
2065 1.1 riastrad * rnd_add_data(rs, buf, len, entropybits)
2066 1.1 riastrad *
2067 1.1 riastrad * Enter data from an entropy source into the pool, with a
2068 1.1 riastrad * driver's estimate of how much entropy the physical source of
2069 1.1 riastrad * the data has. If RND_FLAG_NO_ESTIMATE, we ignore the driver's
2070 1.1 riastrad * estimate and treat it as zero.
2071 1.1 riastrad *
2072 1.1 riastrad * If rs is NULL, may not be called from interrupt context.
2073 1.1 riastrad *
2074 1.1 riastrad * If rs is non-NULL, may be called from any context. May drop
2075 1.1 riastrad * data if called from interrupt context.
2076 1.1 riastrad */
2077 1.1 riastrad void
2078 1.1 riastrad rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
2079 1.1 riastrad uint32_t entropybits)
2080 1.1 riastrad {
2081 1.1 riastrad uint32_t extra;
2082 1.1 riastrad uint32_t flags;
2083 1.1 riastrad
2084 1.1 riastrad KASSERTMSG(howmany(entropybits, NBBY) <= len,
2085 1.1 riastrad "%s: impossible entropy rate:"
2086 1.1 riastrad " %"PRIu32" bits in %"PRIu32"-byte string",
2087 1.1 riastrad rs ? rs->name : "(anonymous)", entropybits, len);
2088 1.1 riastrad
2089 1.1 riastrad /* If there's no rndsource, just enter the data and time now. */
2090 1.1 riastrad if (rs == NULL) {
2091 1.62 riastrad entropy_enter(buf, len, entropybits, /*count*/false);
2092 1.1 riastrad extra = entropy_timer();
2093 1.62 riastrad entropy_enter(&extra, sizeof extra, 0, /*count*/false);
2094 1.1 riastrad explicit_memset(&extra, 0, sizeof extra);
2095 1.1 riastrad return;
2096 1.1 riastrad }
2097 1.1 riastrad
2098 1.61 riastrad /*
2099 1.61 riastrad * Hold up the reset xcall before it zeroes the entropy counts
2100 1.61 riastrad * on this CPU or globally. Otherwise, we might leave some
2101 1.61 riastrad * nonzero entropy attributed to an untrusted source in the
2102 1.61 riastrad * event of a race with a change to flags.
2103 1.61 riastrad */
2104 1.61 riastrad kpreempt_disable();
2105 1.61 riastrad
2106 1.1 riastrad /* Load a snapshot of the flags. Ioctl may change them under us. */
2107 1.1 riastrad flags = atomic_load_relaxed(&rs->flags);
2108 1.1 riastrad
2109 1.1 riastrad /*
2110 1.1 riastrad * Skip if:
2111 1.1 riastrad * - we're not collecting entropy, or
2112 1.1 riastrad * - the operator doesn't want to collect entropy from this, or
2113 1.1 riastrad * - neither data nor timings are being collected from this.
2114 1.1 riastrad */
2115 1.1 riastrad if (!atomic_load_relaxed(&entropy_collection) ||
2116 1.1 riastrad ISSET(flags, RND_FLAG_NO_COLLECT) ||
2117 1.1 riastrad !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
2118 1.61 riastrad goto out;
2119 1.1 riastrad
2120 1.1 riastrad /* If asked, ignore the estimate. */
2121 1.1 riastrad if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
2122 1.1 riastrad entropybits = 0;
2123 1.1 riastrad
2124 1.1 riastrad /* If we are collecting data, enter them. */
2125 1.62 riastrad if (ISSET(flags, RND_FLAG_COLLECT_VALUE)) {
2126 1.62 riastrad rnd_add_data_1(rs, buf, len, entropybits, /*count*/false,
2127 1.28 riastrad RND_FLAG_COLLECT_VALUE);
2128 1.62 riastrad }
2129 1.1 riastrad
2130 1.1 riastrad /* If we are collecting timings, enter one. */
2131 1.1 riastrad if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
2132 1.62 riastrad bool count;
2133 1.62 riastrad
2134 1.62 riastrad /* Sample a timer. */
2135 1.1 riastrad extra = entropy_timer();
2136 1.62 riastrad
2137 1.62 riastrad /* If asked, do entropy estimation on the time. */
2138 1.62 riastrad if ((flags & (RND_FLAG_ESTIMATE_TIME|RND_FLAG_NO_ESTIMATE)) ==
2139 1.62 riastrad RND_FLAG_ESTIMATE_TIME && !cold)
2140 1.62 riastrad count = rnd_dt_estimate(rs, extra);
2141 1.62 riastrad else
2142 1.62 riastrad count = false;
2143 1.62 riastrad
2144 1.62 riastrad rnd_add_data_1(rs, &extra, sizeof extra, 0, count,
2145 1.28 riastrad RND_FLAG_COLLECT_TIME);
2146 1.1 riastrad }
2147 1.61 riastrad
2148 1.61 riastrad out: /* Allow concurrent changes to flags to finish. */
2149 1.61 riastrad kpreempt_enable();
2150 1.1 riastrad }
2151 1.1 riastrad
2152 1.28 riastrad static unsigned
2153 1.28 riastrad add_sat(unsigned a, unsigned b)
2154 1.28 riastrad {
2155 1.28 riastrad unsigned c = a + b;
2156 1.28 riastrad
2157 1.28 riastrad return (c < a ? UINT_MAX : c);
2158 1.28 riastrad }
2159 1.28 riastrad
2160 1.1 riastrad /*
2161 1.62 riastrad * rnd_add_data_1(rs, buf, len, entropybits, count, flag)
2162 1.1 riastrad *
2163 1.1 riastrad * Internal subroutine to call either entropy_enter_intr, if we're
2164 1.1 riastrad * in interrupt context, or entropy_enter if not, and to count the
2165 1.1 riastrad * entropy in an rndsource.
2166 1.1 riastrad */
2167 1.1 riastrad static void
2168 1.1 riastrad rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
2169 1.62 riastrad uint32_t entropybits, bool count, uint32_t flag)
2170 1.1 riastrad {
2171 1.1 riastrad bool fullyused;
2172 1.1 riastrad
2173 1.1 riastrad /*
2174 1.1 riastrad * If we're in interrupt context, use entropy_enter_intr and
2175 1.1 riastrad * take note of whether it consumed the full sample; if not,
2176 1.1 riastrad * use entropy_enter, which always consumes the full sample.
2177 1.1 riastrad */
2178 1.16 riastrad if (curlwp && cpu_intr_p()) {
2179 1.62 riastrad fullyused = entropy_enter_intr(buf, len, entropybits, count);
2180 1.1 riastrad } else {
2181 1.62 riastrad entropy_enter(buf, len, entropybits, count);
2182 1.1 riastrad fullyused = true;
2183 1.1 riastrad }
2184 1.1 riastrad
2185 1.1 riastrad /*
2186 1.1 riastrad * If we used the full sample, note how many bits were
2187 1.1 riastrad * contributed from this source.
2188 1.1 riastrad */
2189 1.1 riastrad if (fullyused) {
2190 1.37 riastrad if (__predict_false(E->stage == ENTROPY_COLD)) {
2191 1.28 riastrad rs->total = add_sat(rs->total, entropybits);
2192 1.28 riastrad switch (flag) {
2193 1.28 riastrad case RND_FLAG_COLLECT_TIME:
2194 1.28 riastrad rs->time_delta.insamples =
2195 1.28 riastrad add_sat(rs->time_delta.insamples, 1);
2196 1.28 riastrad break;
2197 1.28 riastrad case RND_FLAG_COLLECT_VALUE:
2198 1.28 riastrad rs->value_delta.insamples =
2199 1.28 riastrad add_sat(rs->value_delta.insamples, 1);
2200 1.28 riastrad break;
2201 1.28 riastrad }
2202 1.1 riastrad } else {
2203 1.1 riastrad struct rndsource_cpu *rc = percpu_getref(rs->state);
2204 1.1 riastrad
2205 1.28 riastrad atomic_store_relaxed(&rc->rc_entropybits,
2206 1.28 riastrad add_sat(rc->rc_entropybits, entropybits));
2207 1.28 riastrad switch (flag) {
2208 1.28 riastrad case RND_FLAG_COLLECT_TIME:
2209 1.28 riastrad atomic_store_relaxed(&rc->rc_timesamples,
2210 1.28 riastrad add_sat(rc->rc_timesamples, 1));
2211 1.28 riastrad break;
2212 1.28 riastrad case RND_FLAG_COLLECT_VALUE:
2213 1.28 riastrad atomic_store_relaxed(&rc->rc_datasamples,
2214 1.28 riastrad add_sat(rc->rc_datasamples, 1));
2215 1.28 riastrad break;
2216 1.28 riastrad }
2217 1.1 riastrad percpu_putref(rs->state);
2218 1.1 riastrad }
2219 1.1 riastrad }
2220 1.1 riastrad }
2221 1.1 riastrad
2222 1.1 riastrad /*
2223 1.1 riastrad * rnd_add_data_sync(rs, buf, len, entropybits)
2224 1.1 riastrad *
2225 1.1 riastrad * Same as rnd_add_data. Originally used in rndsource callbacks,
2226 1.1 riastrad * to break an unnecessary cycle; no longer really needed.
2227 1.1 riastrad */
2228 1.1 riastrad void
2229 1.1 riastrad rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
2230 1.1 riastrad uint32_t entropybits)
2231 1.1 riastrad {
2232 1.1 riastrad
2233 1.1 riastrad rnd_add_data(rs, buf, len, entropybits);
2234 1.1 riastrad }
2235 1.1 riastrad
2236 1.1 riastrad /*
2237 1.1 riastrad * rndsource_entropybits(rs)
2238 1.1 riastrad *
2239 1.1 riastrad * Return approximately the number of bits of entropy that have
2240 1.1 riastrad * been contributed via rs so far. Approximate if other CPUs may
2241 1.1 riastrad * be calling rnd_add_data concurrently.
2242 1.1 riastrad */
2243 1.1 riastrad static unsigned
2244 1.1 riastrad rndsource_entropybits(struct krndsource *rs)
2245 1.1 riastrad {
2246 1.1 riastrad unsigned nbits = rs->total;
2247 1.1 riastrad
2248 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2249 1.4 riastrad KASSERT(rnd_sources_locked());
2250 1.1 riastrad percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
2251 1.1 riastrad return nbits;
2252 1.1 riastrad }
2253 1.1 riastrad
2254 1.1 riastrad static void
2255 1.1 riastrad rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
2256 1.1 riastrad {
2257 1.1 riastrad struct rndsource_cpu *rc = ptr;
2258 1.1 riastrad unsigned *nbitsp = cookie;
2259 1.1 riastrad unsigned cpu_nbits;
2260 1.1 riastrad
2261 1.28 riastrad cpu_nbits = atomic_load_relaxed(&rc->rc_entropybits);
2262 1.1 riastrad *nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
2263 1.1 riastrad }
2264 1.1 riastrad
2265 1.1 riastrad /*
2266 1.1 riastrad * rndsource_to_user(rs, urs)
2267 1.1 riastrad *
2268 1.1 riastrad * Copy a description of rs out to urs for userland.
2269 1.1 riastrad */
2270 1.1 riastrad static void
2271 1.1 riastrad rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
2272 1.1 riastrad {
2273 1.1 riastrad
2274 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2275 1.4 riastrad KASSERT(rnd_sources_locked());
2276 1.1 riastrad
2277 1.1 riastrad /* Avoid kernel memory disclosure. */
2278 1.1 riastrad memset(urs, 0, sizeof(*urs));
2279 1.1 riastrad
2280 1.1 riastrad CTASSERT(sizeof(urs->name) == sizeof(rs->name));
2281 1.1 riastrad strlcpy(urs->name, rs->name, sizeof(urs->name));
2282 1.1 riastrad urs->total = rndsource_entropybits(rs);
2283 1.1 riastrad urs->type = rs->type;
2284 1.1 riastrad urs->flags = atomic_load_relaxed(&rs->flags);
2285 1.1 riastrad }
2286 1.1 riastrad
2287 1.1 riastrad /*
2288 1.1 riastrad * rndsource_to_user_est(rs, urse)
2289 1.1 riastrad *
2290 1.1 riastrad * Copy a description of rs and estimation statistics out to urse
2291 1.1 riastrad * for userland.
2292 1.1 riastrad */
2293 1.1 riastrad static void
2294 1.1 riastrad rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
2295 1.1 riastrad {
2296 1.1 riastrad
2297 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2298 1.4 riastrad KASSERT(rnd_sources_locked());
2299 1.1 riastrad
2300 1.1 riastrad /* Avoid kernel memory disclosure. */
2301 1.1 riastrad memset(urse, 0, sizeof(*urse));
2302 1.1 riastrad
2303 1.1 riastrad /* Copy out the rndsource description. */
2304 1.1 riastrad rndsource_to_user(rs, &urse->rt);
2305 1.1 riastrad
2306 1.28 riastrad /* Gather the statistics. */
2307 1.28 riastrad urse->dt_samples = rs->time_delta.insamples;
2308 1.1 riastrad urse->dt_total = 0;
2309 1.28 riastrad urse->dv_samples = rs->value_delta.insamples;
2310 1.28 riastrad urse->dv_total = urse->rt.total;
2311 1.28 riastrad percpu_foreach(rs->state, rndsource_to_user_est_cpu, urse);
2312 1.28 riastrad }
2313 1.28 riastrad
2314 1.28 riastrad static void
2315 1.28 riastrad rndsource_to_user_est_cpu(void *ptr, void *cookie, struct cpu_info *ci)
2316 1.28 riastrad {
2317 1.28 riastrad struct rndsource_cpu *rc = ptr;
2318 1.28 riastrad rndsource_est_t *urse = cookie;
2319 1.28 riastrad
2320 1.28 riastrad urse->dt_samples = add_sat(urse->dt_samples,
2321 1.28 riastrad atomic_load_relaxed(&rc->rc_timesamples));
2322 1.28 riastrad urse->dv_samples = add_sat(urse->dv_samples,
2323 1.28 riastrad atomic_load_relaxed(&rc->rc_datasamples));
2324 1.1 riastrad }
2325 1.1 riastrad
2326 1.1 riastrad /*
2327 1.21 riastrad * entropy_reset_xc(arg1, arg2)
2328 1.21 riastrad *
2329 1.21 riastrad * Reset the current CPU's pending entropy to zero.
2330 1.21 riastrad */
2331 1.21 riastrad static void
2332 1.21 riastrad entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
2333 1.21 riastrad {
2334 1.21 riastrad uint32_t extra = entropy_timer();
2335 1.43 riastrad struct entropy_cpu_lock lock;
2336 1.21 riastrad struct entropy_cpu *ec;
2337 1.21 riastrad
2338 1.21 riastrad /*
2339 1.43 riastrad * With the per-CPU state locked, zero the pending count and
2340 1.43 riastrad * enter a cycle count for fun.
2341 1.21 riastrad */
2342 1.43 riastrad ec = entropy_cpu_get(&lock);
2343 1.62 riastrad ec->ec_bitspending = 0;
2344 1.62 riastrad ec->ec_samplespending = 0;
2345 1.21 riastrad entpool_enter(ec->ec_pool, &extra, sizeof extra);
2346 1.43 riastrad entropy_cpu_put(&lock, ec);
2347 1.21 riastrad }
2348 1.21 riastrad
2349 1.21 riastrad /*
2350 1.1 riastrad * entropy_ioctl(cmd, data)
2351 1.1 riastrad *
2352 1.1 riastrad * Handle various /dev/random ioctl queries.
2353 1.1 riastrad */
2354 1.1 riastrad int
2355 1.1 riastrad entropy_ioctl(unsigned long cmd, void *data)
2356 1.1 riastrad {
2357 1.1 riastrad struct krndsource *rs;
2358 1.1 riastrad bool privileged;
2359 1.1 riastrad int error;
2360 1.1 riastrad
2361 1.1 riastrad KASSERT(E->stage >= ENTROPY_WARM);
2362 1.1 riastrad
2363 1.1 riastrad /* Verify user's authorization to perform the ioctl. */
2364 1.1 riastrad switch (cmd) {
2365 1.1 riastrad case RNDGETENTCNT:
2366 1.1 riastrad case RNDGETPOOLSTAT:
2367 1.1 riastrad case RNDGETSRCNUM:
2368 1.1 riastrad case RNDGETSRCNAME:
2369 1.1 riastrad case RNDGETESTNUM:
2370 1.1 riastrad case RNDGETESTNAME:
2371 1.31 christos error = kauth_authorize_device(kauth_cred_get(),
2372 1.1 riastrad KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
2373 1.1 riastrad break;
2374 1.1 riastrad case RNDCTL:
2375 1.31 christos error = kauth_authorize_device(kauth_cred_get(),
2376 1.1 riastrad KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
2377 1.1 riastrad break;
2378 1.1 riastrad case RNDADDDATA:
2379 1.31 christos error = kauth_authorize_device(kauth_cred_get(),
2380 1.1 riastrad KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
2381 1.1 riastrad /* Ascertain whether the user's inputs should be counted. */
2382 1.31 christos if (kauth_authorize_device(kauth_cred_get(),
2383 1.1 riastrad KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
2384 1.1 riastrad NULL, NULL, NULL, NULL) == 0)
2385 1.1 riastrad privileged = true;
2386 1.1 riastrad break;
2387 1.1 riastrad default: {
2388 1.1 riastrad /*
2389 1.1 riastrad * XXX Hack to avoid changing module ABI so this can be
2390 1.1 riastrad * pulled up. Later, we can just remove the argument.
2391 1.1 riastrad */
2392 1.1 riastrad static const struct fileops fops = {
2393 1.1 riastrad .fo_ioctl = rnd_system_ioctl,
2394 1.1 riastrad };
2395 1.1 riastrad struct file f = {
2396 1.1 riastrad .f_ops = &fops,
2397 1.1 riastrad };
2398 1.1 riastrad MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
2399 1.1 riastrad enosys(), error);
2400 1.1 riastrad #if defined(_LP64)
2401 1.1 riastrad if (error == ENOSYS)
2402 1.1 riastrad MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
2403 1.1 riastrad enosys(), error);
2404 1.1 riastrad #endif
2405 1.1 riastrad if (error == ENOSYS)
2406 1.1 riastrad error = ENOTTY;
2407 1.1 riastrad break;
2408 1.1 riastrad }
2409 1.1 riastrad }
2410 1.1 riastrad
2411 1.1 riastrad /* If anything went wrong with authorization, stop here. */
2412 1.1 riastrad if (error)
2413 1.1 riastrad return error;
2414 1.1 riastrad
2415 1.1 riastrad /* Dispatch on the command. */
2416 1.1 riastrad switch (cmd) {
2417 1.1 riastrad case RNDGETENTCNT: { /* Get current entropy count in bits. */
2418 1.1 riastrad uint32_t *countp = data;
2419 1.1 riastrad
2420 1.1 riastrad mutex_enter(&E->lock);
2421 1.62 riastrad *countp = MINENTROPYBITS - E->bitsneeded;
2422 1.1 riastrad mutex_exit(&E->lock);
2423 1.1 riastrad
2424 1.1 riastrad break;
2425 1.1 riastrad }
2426 1.1 riastrad case RNDGETPOOLSTAT: { /* Get entropy pool statistics. */
2427 1.1 riastrad rndpoolstat_t *pstat = data;
2428 1.1 riastrad
2429 1.1 riastrad mutex_enter(&E->lock);
2430 1.1 riastrad
2431 1.1 riastrad /* parameters */
2432 1.1 riastrad pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
2433 1.62 riastrad pstat->threshold = MINENTROPYBITS/NBBY; /* bytes */
2434 1.1 riastrad pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
2435 1.1 riastrad
2436 1.1 riastrad /* state */
2437 1.1 riastrad pstat->added = 0; /* XXX total entropy_enter count */
2438 1.62 riastrad pstat->curentropy = MINENTROPYBITS - E->bitsneeded; /* bits */
2439 1.1 riastrad pstat->removed = 0; /* XXX total entropy_extract count */
2440 1.1 riastrad pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
2441 1.62 riastrad
2442 1.62 riastrad /*
2443 1.62 riastrad * This used to be bits of data fabricated in some
2444 1.62 riastrad * sense; we'll take it to mean number of samples,
2445 1.62 riastrad * excluding the bits of entropy from HWRNG or seed.
2446 1.62 riastrad */
2447 1.62 riastrad pstat->generated = MINSAMPLES - E->samplesneeded;
2448 1.62 riastrad pstat->generated -= MIN(pstat->generated, pstat->curentropy);
2449 1.1 riastrad
2450 1.1 riastrad mutex_exit(&E->lock);
2451 1.1 riastrad break;
2452 1.1 riastrad }
2453 1.1 riastrad case RNDGETSRCNUM: { /* Get entropy sources by number. */
2454 1.1 riastrad rndstat_t *stat = data;
2455 1.1 riastrad uint32_t start = 0, i = 0;
2456 1.1 riastrad
2457 1.1 riastrad /* Skip if none requested; fail if too many requested. */
2458 1.1 riastrad if (stat->count == 0)
2459 1.1 riastrad break;
2460 1.1 riastrad if (stat->count > RND_MAXSTATCOUNT)
2461 1.1 riastrad return EINVAL;
2462 1.1 riastrad
2463 1.1 riastrad /*
2464 1.1 riastrad * Under the lock, find the first one, copy out as many
2465 1.1 riastrad * as requested, and report how many we copied out.
2466 1.1 riastrad */
2467 1.1 riastrad mutex_enter(&E->lock);
2468 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2469 1.4 riastrad if (error) {
2470 1.4 riastrad mutex_exit(&E->lock);
2471 1.4 riastrad return error;
2472 1.4 riastrad }
2473 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2474 1.1 riastrad if (start++ == stat->start)
2475 1.1 riastrad break;
2476 1.1 riastrad }
2477 1.1 riastrad while (i < stat->count && rs != NULL) {
2478 1.5 riastrad mutex_exit(&E->lock);
2479 1.1 riastrad rndsource_to_user(rs, &stat->source[i++]);
2480 1.5 riastrad mutex_enter(&E->lock);
2481 1.1 riastrad rs = LIST_NEXT(rs, list);
2482 1.1 riastrad }
2483 1.1 riastrad KASSERT(i <= stat->count);
2484 1.1 riastrad stat->count = i;
2485 1.4 riastrad rnd_unlock_sources();
2486 1.1 riastrad mutex_exit(&E->lock);
2487 1.1 riastrad break;
2488 1.1 riastrad }
2489 1.1 riastrad case RNDGETESTNUM: { /* Get sources and estimates by number. */
2490 1.1 riastrad rndstat_est_t *estat = data;
2491 1.1 riastrad uint32_t start = 0, i = 0;
2492 1.1 riastrad
2493 1.1 riastrad /* Skip if none requested; fail if too many requested. */
2494 1.1 riastrad if (estat->count == 0)
2495 1.1 riastrad break;
2496 1.1 riastrad if (estat->count > RND_MAXSTATCOUNT)
2497 1.1 riastrad return EINVAL;
2498 1.1 riastrad
2499 1.1 riastrad /*
2500 1.1 riastrad * Under the lock, find the first one, copy out as many
2501 1.1 riastrad * as requested, and report how many we copied out.
2502 1.1 riastrad */
2503 1.1 riastrad mutex_enter(&E->lock);
2504 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2505 1.4 riastrad if (error) {
2506 1.4 riastrad mutex_exit(&E->lock);
2507 1.4 riastrad return error;
2508 1.4 riastrad }
2509 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2510 1.1 riastrad if (start++ == estat->start)
2511 1.1 riastrad break;
2512 1.1 riastrad }
2513 1.1 riastrad while (i < estat->count && rs != NULL) {
2514 1.4 riastrad mutex_exit(&E->lock);
2515 1.1 riastrad rndsource_to_user_est(rs, &estat->source[i++]);
2516 1.4 riastrad mutex_enter(&E->lock);
2517 1.1 riastrad rs = LIST_NEXT(rs, list);
2518 1.1 riastrad }
2519 1.1 riastrad KASSERT(i <= estat->count);
2520 1.1 riastrad estat->count = i;
2521 1.4 riastrad rnd_unlock_sources();
2522 1.1 riastrad mutex_exit(&E->lock);
2523 1.1 riastrad break;
2524 1.1 riastrad }
2525 1.1 riastrad case RNDGETSRCNAME: { /* Get entropy sources by name. */
2526 1.1 riastrad rndstat_name_t *nstat = data;
2527 1.1 riastrad const size_t n = sizeof(rs->name);
2528 1.1 riastrad
2529 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
2530 1.1 riastrad
2531 1.1 riastrad /*
2532 1.1 riastrad * Under the lock, search by name. If found, copy it
2533 1.1 riastrad * out; if not found, fail with ENOENT.
2534 1.1 riastrad */
2535 1.1 riastrad mutex_enter(&E->lock);
2536 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2537 1.4 riastrad if (error) {
2538 1.4 riastrad mutex_exit(&E->lock);
2539 1.4 riastrad return error;
2540 1.4 riastrad }
2541 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2542 1.1 riastrad if (strncmp(rs->name, nstat->name, n) == 0)
2543 1.1 riastrad break;
2544 1.1 riastrad }
2545 1.4 riastrad if (rs != NULL) {
2546 1.4 riastrad mutex_exit(&E->lock);
2547 1.1 riastrad rndsource_to_user(rs, &nstat->source);
2548 1.4 riastrad mutex_enter(&E->lock);
2549 1.4 riastrad } else {
2550 1.1 riastrad error = ENOENT;
2551 1.4 riastrad }
2552 1.4 riastrad rnd_unlock_sources();
2553 1.1 riastrad mutex_exit(&E->lock);
2554 1.1 riastrad break;
2555 1.1 riastrad }
2556 1.1 riastrad case RNDGETESTNAME: { /* Get sources and estimates by name. */
2557 1.1 riastrad rndstat_est_name_t *enstat = data;
2558 1.1 riastrad const size_t n = sizeof(rs->name);
2559 1.1 riastrad
2560 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
2561 1.1 riastrad
2562 1.1 riastrad /*
2563 1.1 riastrad * Under the lock, search by name. If found, copy it
2564 1.1 riastrad * out; if not found, fail with ENOENT.
2565 1.1 riastrad */
2566 1.1 riastrad mutex_enter(&E->lock);
2567 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2568 1.4 riastrad if (error) {
2569 1.4 riastrad mutex_exit(&E->lock);
2570 1.4 riastrad return error;
2571 1.4 riastrad }
2572 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2573 1.1 riastrad if (strncmp(rs->name, enstat->name, n) == 0)
2574 1.1 riastrad break;
2575 1.1 riastrad }
2576 1.4 riastrad if (rs != NULL) {
2577 1.4 riastrad mutex_exit(&E->lock);
2578 1.1 riastrad rndsource_to_user_est(rs, &enstat->source);
2579 1.4 riastrad mutex_enter(&E->lock);
2580 1.4 riastrad } else {
2581 1.1 riastrad error = ENOENT;
2582 1.4 riastrad }
2583 1.4 riastrad rnd_unlock_sources();
2584 1.1 riastrad mutex_exit(&E->lock);
2585 1.1 riastrad break;
2586 1.1 riastrad }
2587 1.1 riastrad case RNDCTL: { /* Modify entropy source flags. */
2588 1.1 riastrad rndctl_t *rndctl = data;
2589 1.1 riastrad const size_t n = sizeof(rs->name);
2590 1.21 riastrad uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2591 1.1 riastrad uint32_t flags;
2592 1.21 riastrad bool reset = false, request = false;
2593 1.1 riastrad
2594 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
2595 1.1 riastrad
2596 1.1 riastrad /* Whitelist the flags that user can change. */
2597 1.1 riastrad rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2598 1.1 riastrad
2599 1.1 riastrad /*
2600 1.1 riastrad * For each matching rndsource, either by type if
2601 1.1 riastrad * specified or by name if not, set the masked flags.
2602 1.1 riastrad */
2603 1.1 riastrad mutex_enter(&E->lock);
2604 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2605 1.1 riastrad if (rndctl->type != 0xff) {
2606 1.1 riastrad if (rs->type != rndctl->type)
2607 1.1 riastrad continue;
2608 1.59 riastrad } else if (rndctl->name[0] != '\0') {
2609 1.1 riastrad if (strncmp(rs->name, rndctl->name, n) != 0)
2610 1.1 riastrad continue;
2611 1.1 riastrad }
2612 1.1 riastrad flags = rs->flags & ~rndctl->mask;
2613 1.1 riastrad flags |= rndctl->flags & rndctl->mask;
2614 1.21 riastrad if ((rs->flags & resetflags) == 0 &&
2615 1.21 riastrad (flags & resetflags) != 0)
2616 1.21 riastrad reset = true;
2617 1.21 riastrad if ((rs->flags ^ flags) & resetflags)
2618 1.21 riastrad request = true;
2619 1.1 riastrad atomic_store_relaxed(&rs->flags, flags);
2620 1.1 riastrad }
2621 1.1 riastrad mutex_exit(&E->lock);
2622 1.21 riastrad
2623 1.21 riastrad /*
2624 1.21 riastrad * If we disabled estimation or collection, nix all the
2625 1.21 riastrad * pending entropy and set needed to the maximum.
2626 1.21 riastrad */
2627 1.21 riastrad if (reset) {
2628 1.21 riastrad xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
2629 1.21 riastrad mutex_enter(&E->lock);
2630 1.62 riastrad E->bitspending = 0;
2631 1.62 riastrad E->samplespending = 0;
2632 1.62 riastrad atomic_store_relaxed(&E->bitsneeded, MINENTROPYBITS);
2633 1.62 riastrad atomic_store_relaxed(&E->samplesneeded, MINSAMPLES);
2634 1.60 riastrad E->consolidate = false;
2635 1.21 riastrad mutex_exit(&E->lock);
2636 1.21 riastrad }
2637 1.21 riastrad
2638 1.21 riastrad /*
2639 1.21 riastrad * If we changed any of the estimation or collection
2640 1.21 riastrad * flags, request new samples from everyone -- either
2641 1.21 riastrad * to make up for what we just lost, or to get new
2642 1.21 riastrad * samples from what we just added.
2643 1.49 riastrad *
2644 1.49 riastrad * Failing on signal, while waiting for another process
2645 1.49 riastrad * to finish requesting entropy, is OK here even though
2646 1.49 riastrad * we have committed side effects, because this ioctl
2647 1.49 riastrad * command is idempotent, so repeating it is safe.
2648 1.21 riastrad */
2649 1.21 riastrad if (request) {
2650 1.21 riastrad mutex_enter(&E->lock);
2651 1.49 riastrad error = entropy_request(ENTROPY_CAPACITY,
2652 1.49 riastrad ENTROPY_WAIT|ENTROPY_SIG);
2653 1.21 riastrad mutex_exit(&E->lock);
2654 1.21 riastrad }
2655 1.1 riastrad break;
2656 1.1 riastrad }
2657 1.1 riastrad case RNDADDDATA: { /* Enter seed into entropy pool. */
2658 1.1 riastrad rnddata_t *rdata = data;
2659 1.1 riastrad unsigned entropybits = 0;
2660 1.1 riastrad
2661 1.1 riastrad if (!atomic_load_relaxed(&entropy_collection))
2662 1.1 riastrad break; /* thanks but no thanks */
2663 1.1 riastrad if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
2664 1.1 riastrad return EINVAL;
2665 1.1 riastrad
2666 1.1 riastrad /*
2667 1.1 riastrad * This ioctl serves as the userland alternative a
2668 1.1 riastrad * bootloader-provided seed -- typically furnished by
2669 1.1 riastrad * /etc/rc.d/random_seed. We accept the user's entropy
2670 1.1 riastrad * claim only if
2671 1.1 riastrad *
2672 1.1 riastrad * (a) the user is privileged, and
2673 1.1 riastrad * (b) we have not entered a bootloader seed.
2674 1.1 riastrad *
2675 1.1 riastrad * under the assumption that the user may use this to
2676 1.1 riastrad * load a seed from disk that we have already loaded
2677 1.1 riastrad * from the bootloader, so we don't double-count it.
2678 1.1 riastrad */
2679 1.11 riastrad if (privileged && rdata->entropy && rdata->len) {
2680 1.1 riastrad mutex_enter(&E->lock);
2681 1.1 riastrad if (!E->seeded) {
2682 1.1 riastrad entropybits = MIN(rdata->entropy,
2683 1.1 riastrad MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
2684 1.1 riastrad E->seeded = true;
2685 1.1 riastrad }
2686 1.1 riastrad mutex_exit(&E->lock);
2687 1.1 riastrad }
2688 1.1 riastrad
2689 1.13 riastrad /* Enter the data and consolidate entropy. */
2690 1.1 riastrad rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
2691 1.1 riastrad entropybits);
2692 1.13 riastrad entropy_consolidate();
2693 1.1 riastrad break;
2694 1.1 riastrad }
2695 1.1 riastrad default:
2696 1.1 riastrad error = ENOTTY;
2697 1.1 riastrad }
2698 1.1 riastrad
2699 1.1 riastrad /* Return any error that may have come up. */
2700 1.1 riastrad return error;
2701 1.1 riastrad }
2702 1.1 riastrad
2703 1.1 riastrad /* Legacy entry points */
2704 1.1 riastrad
2705 1.1 riastrad void
2706 1.1 riastrad rnd_seed(void *seed, size_t len)
2707 1.1 riastrad {
2708 1.1 riastrad
2709 1.1 riastrad if (len != sizeof(rndsave_t)) {
2710 1.1 riastrad printf("entropy: invalid seed length: %zu,"
2711 1.1 riastrad " expected sizeof(rndsave_t) = %zu\n",
2712 1.1 riastrad len, sizeof(rndsave_t));
2713 1.1 riastrad return;
2714 1.1 riastrad }
2715 1.1 riastrad entropy_seed(seed);
2716 1.1 riastrad }
2717 1.1 riastrad
2718 1.1 riastrad void
2719 1.1 riastrad rnd_init(void)
2720 1.1 riastrad {
2721 1.1 riastrad
2722 1.1 riastrad entropy_init();
2723 1.1 riastrad }
2724 1.1 riastrad
2725 1.1 riastrad void
2726 1.1 riastrad rnd_init_softint(void)
2727 1.1 riastrad {
2728 1.1 riastrad
2729 1.1 riastrad entropy_init_late();
2730 1.38 riastrad entropy_bootrequest();
2731 1.1 riastrad }
2732 1.1 riastrad
2733 1.1 riastrad int
2734 1.1 riastrad rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
2735 1.1 riastrad {
2736 1.1 riastrad
2737 1.1 riastrad return entropy_ioctl(cmd, data);
2738 1.1 riastrad }
2739