kern_entropy.c revision 1.63 1 1.63 riastrad /* $NetBSD: kern_entropy.c,v 1.63 2023/08/04 07:38:53 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad /*
33 1.1 riastrad * Entropy subsystem
34 1.1 riastrad *
35 1.1 riastrad * * Each CPU maintains a per-CPU entropy pool so that gathering
36 1.1 riastrad * entropy requires no interprocessor synchronization, except
37 1.1 riastrad * early at boot when we may be scrambling to gather entropy as
38 1.1 riastrad * soon as possible.
39 1.1 riastrad *
40 1.1 riastrad * - entropy_enter gathers entropy and never drops it on the
41 1.1 riastrad * floor, at the cost of sometimes having to do cryptography.
42 1.1 riastrad *
43 1.1 riastrad * - entropy_enter_intr gathers entropy or drops it on the
44 1.1 riastrad * floor, with low latency. Work to stir the pool or kick the
45 1.1 riastrad * housekeeping thread is scheduled in soft interrupts.
46 1.1 riastrad *
47 1.1 riastrad * * entropy_enter immediately enters into the global pool if it
48 1.1 riastrad * can transition to full entropy in one swell foop. Otherwise,
49 1.1 riastrad * it defers to a housekeeping thread that consolidates entropy,
50 1.1 riastrad * but only when the CPUs collectively have full entropy, in
51 1.1 riastrad * order to mitigate iterative-guessing attacks.
52 1.1 riastrad *
53 1.1 riastrad * * The entropy housekeeping thread continues to consolidate
54 1.1 riastrad * entropy even after we think we have full entropy, in case we
55 1.1 riastrad * are wrong, but is limited to one discretionary consolidation
56 1.1 riastrad * per minute, and only when new entropy is actually coming in,
57 1.1 riastrad * to limit performance impact.
58 1.1 riastrad *
59 1.1 riastrad * * The entropy epoch is the number that changes when we
60 1.1 riastrad * transition from partial entropy to full entropy, so that
61 1.1 riastrad * users can easily determine when to reseed. This also
62 1.1 riastrad * facilitates an operator explicitly causing everything to
63 1.13 riastrad * reseed by sysctl -w kern.entropy.consolidate=1.
64 1.1 riastrad *
65 1.1 riastrad * * Entropy depletion is available for testing (or if you're into
66 1.1 riastrad * that sort of thing), with sysctl -w kern.entropy.depletion=1;
67 1.1 riastrad * the logic to support it is small, to minimize chance of bugs.
68 1.63 riastrad *
69 1.63 riastrad * * While cold, a single global entropy pool is available for
70 1.63 riastrad * entering and extracting, serialized through splhigh/splx.
71 1.63 riastrad * The per-CPU entropy pool data structures are initialized in
72 1.63 riastrad * entropy_init and entropy_init_late (separated mainly for
73 1.63 riastrad * hysterical raisins at this point), but are not used until the
74 1.63 riastrad * system is warm, at which point access to the global entropy
75 1.63 riastrad * pool is limited to thread and softint context and serialized
76 1.63 riastrad * by E->lock.
77 1.1 riastrad */
78 1.1 riastrad
79 1.1 riastrad #include <sys/cdefs.h>
80 1.63 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.63 2023/08/04 07:38:53 riastradh Exp $");
81 1.1 riastrad
82 1.1 riastrad #include <sys/param.h>
83 1.1 riastrad #include <sys/types.h>
84 1.1 riastrad #include <sys/atomic.h>
85 1.1 riastrad #include <sys/compat_stub.h>
86 1.1 riastrad #include <sys/condvar.h>
87 1.1 riastrad #include <sys/cpu.h>
88 1.1 riastrad #include <sys/entropy.h>
89 1.1 riastrad #include <sys/errno.h>
90 1.1 riastrad #include <sys/evcnt.h>
91 1.1 riastrad #include <sys/event.h>
92 1.1 riastrad #include <sys/file.h>
93 1.1 riastrad #include <sys/intr.h>
94 1.1 riastrad #include <sys/kauth.h>
95 1.1 riastrad #include <sys/kernel.h>
96 1.1 riastrad #include <sys/kmem.h>
97 1.1 riastrad #include <sys/kthread.h>
98 1.53 riastrad #include <sys/lwp.h>
99 1.1 riastrad #include <sys/module_hook.h>
100 1.1 riastrad #include <sys/mutex.h>
101 1.1 riastrad #include <sys/percpu.h>
102 1.1 riastrad #include <sys/poll.h>
103 1.53 riastrad #include <sys/proc.h>
104 1.1 riastrad #include <sys/queue.h>
105 1.30 jmcneill #include <sys/reboot.h>
106 1.1 riastrad #include <sys/rnd.h> /* legacy kernel API */
107 1.1 riastrad #include <sys/rndio.h> /* userland ioctl interface */
108 1.1 riastrad #include <sys/rndsource.h> /* kernel rndsource driver API */
109 1.1 riastrad #include <sys/select.h>
110 1.1 riastrad #include <sys/selinfo.h>
111 1.1 riastrad #include <sys/sha1.h> /* for boot seed checksum */
112 1.1 riastrad #include <sys/stdint.h>
113 1.1 riastrad #include <sys/sysctl.h>
114 1.26 riastrad #include <sys/syslog.h>
115 1.1 riastrad #include <sys/systm.h>
116 1.1 riastrad #include <sys/time.h>
117 1.1 riastrad #include <sys/xcall.h>
118 1.1 riastrad
119 1.1 riastrad #include <lib/libkern/entpool.h>
120 1.1 riastrad
121 1.1 riastrad #include <machine/limits.h>
122 1.1 riastrad
123 1.1 riastrad #ifdef __HAVE_CPU_COUNTER
124 1.1 riastrad #include <machine/cpu_counter.h>
125 1.1 riastrad #endif
126 1.1 riastrad
127 1.62 riastrad #define MINENTROPYBYTES ENTROPY_CAPACITY
128 1.62 riastrad #define MINENTROPYBITS (MINENTROPYBYTES*NBBY)
129 1.62 riastrad #define MINSAMPLES (2*MINENTROPYBITS)
130 1.62 riastrad
131 1.1 riastrad /*
132 1.1 riastrad * struct entropy_cpu
133 1.1 riastrad *
134 1.1 riastrad * Per-CPU entropy state. The pool is allocated separately
135 1.1 riastrad * because percpu(9) sometimes moves per-CPU objects around
136 1.1 riastrad * without zeroing them, which would lead to unwanted copies of
137 1.34 andvar * sensitive secrets. The evcnt is allocated separately because
138 1.1 riastrad * evcnt(9) assumes it stays put in memory.
139 1.1 riastrad */
140 1.1 riastrad struct entropy_cpu {
141 1.40 riastrad struct entropy_cpu_evcnt {
142 1.40 riastrad struct evcnt softint;
143 1.40 riastrad struct evcnt intrdrop;
144 1.40 riastrad struct evcnt intrtrunc;
145 1.40 riastrad } *ec_evcnt;
146 1.1 riastrad struct entpool *ec_pool;
147 1.62 riastrad unsigned ec_bitspending;
148 1.62 riastrad unsigned ec_samplespending;
149 1.1 riastrad bool ec_locked;
150 1.1 riastrad };
151 1.1 riastrad
152 1.1 riastrad /*
153 1.43 riastrad * struct entropy_cpu_lock
154 1.43 riastrad *
155 1.43 riastrad * State for locking the per-CPU entropy state.
156 1.43 riastrad */
157 1.43 riastrad struct entropy_cpu_lock {
158 1.43 riastrad int ecl_s;
159 1.43 riastrad uint64_t ecl_ncsw;
160 1.43 riastrad };
161 1.43 riastrad
162 1.43 riastrad /*
163 1.1 riastrad * struct rndsource_cpu
164 1.1 riastrad *
165 1.1 riastrad * Per-CPU rndsource state.
166 1.1 riastrad */
167 1.1 riastrad struct rndsource_cpu {
168 1.28 riastrad unsigned rc_entropybits;
169 1.28 riastrad unsigned rc_timesamples;
170 1.28 riastrad unsigned rc_datasamples;
171 1.62 riastrad rnd_delta_t rc_timedelta;
172 1.1 riastrad };
173 1.1 riastrad
174 1.1 riastrad /*
175 1.1 riastrad * entropy_global (a.k.a. E for short in this file)
176 1.1 riastrad *
177 1.1 riastrad * Global entropy state. Writes protected by the global lock.
178 1.1 riastrad * Some fields, marked (A), can be read outside the lock, and are
179 1.1 riastrad * maintained with atomic_load/store_relaxed.
180 1.1 riastrad */
181 1.1 riastrad struct {
182 1.1 riastrad kmutex_t lock; /* covers all global state */
183 1.1 riastrad struct entpool pool; /* global pool for extraction */
184 1.62 riastrad unsigned bitsneeded; /* (A) needed globally */
185 1.62 riastrad unsigned bitspending; /* pending in per-CPU pools */
186 1.62 riastrad unsigned samplesneeded; /* (A) needed globally */
187 1.62 riastrad unsigned samplespending; /* pending in per-CPU pools */
188 1.1 riastrad unsigned timestamp; /* (A) time of last consolidation */
189 1.1 riastrad unsigned epoch; /* (A) changes when needed -> 0 */
190 1.1 riastrad kcondvar_t cv; /* notifies state changes */
191 1.1 riastrad struct selinfo selq; /* notifies needed -> 0 */
192 1.4 riastrad struct lwp *sourcelock; /* lock on list of sources */
193 1.27 riastrad kcondvar_t sourcelock_cv; /* notifies sourcelock release */
194 1.1 riastrad LIST_HEAD(,krndsource) sources; /* list of entropy sources */
195 1.1 riastrad bool consolidate; /* kick thread to consolidate */
196 1.1 riastrad bool seed_rndsource; /* true if seed source is attached */
197 1.1 riastrad bool seeded; /* true if seed file already loaded */
198 1.1 riastrad } entropy_global __cacheline_aligned = {
199 1.1 riastrad /* Fields that must be initialized when the kernel is loaded. */
200 1.62 riastrad .bitsneeded = MINENTROPYBITS,
201 1.62 riastrad .samplesneeded = MINSAMPLES,
202 1.14 riastrad .epoch = (unsigned)-1, /* -1 means entropy never consolidated */
203 1.1 riastrad .sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
204 1.1 riastrad };
205 1.1 riastrad
206 1.1 riastrad #define E (&entropy_global) /* declutter */
207 1.1 riastrad
208 1.1 riastrad /* Read-mostly globals */
209 1.1 riastrad static struct percpu *entropy_percpu __read_mostly; /* struct entropy_cpu */
210 1.1 riastrad static void *entropy_sih __read_mostly; /* softint handler */
211 1.1 riastrad static struct lwp *entropy_lwp __read_mostly; /* housekeeping thread */
212 1.1 riastrad
213 1.1 riastrad static struct krndsource seed_rndsource __read_mostly;
214 1.1 riastrad
215 1.1 riastrad /*
216 1.1 riastrad * Event counters
217 1.1 riastrad *
218 1.1 riastrad * Must be careful with adding these because they can serve as
219 1.1 riastrad * side channels.
220 1.1 riastrad */
221 1.1 riastrad static struct evcnt entropy_discretionary_evcnt =
222 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
223 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
224 1.1 riastrad static struct evcnt entropy_immediate_evcnt =
225 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
226 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
227 1.1 riastrad static struct evcnt entropy_partial_evcnt =
228 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
229 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
230 1.1 riastrad static struct evcnt entropy_consolidate_evcnt =
231 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
232 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
233 1.1 riastrad static struct evcnt entropy_extract_fail_evcnt =
234 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
235 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
236 1.1 riastrad static struct evcnt entropy_request_evcnt =
237 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
238 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_request_evcnt);
239 1.1 riastrad static struct evcnt entropy_deplete_evcnt =
240 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
241 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
242 1.1 riastrad static struct evcnt entropy_notify_evcnt =
243 1.1 riastrad EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
244 1.1 riastrad EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
245 1.1 riastrad
246 1.1 riastrad /* Sysctl knobs */
247 1.17 riastrad static bool entropy_collection = 1;
248 1.17 riastrad static bool entropy_depletion = 0; /* Silly! */
249 1.1 riastrad
250 1.1 riastrad static const struct sysctlnode *entropy_sysctlroot;
251 1.1 riastrad static struct sysctllog *entropy_sysctllog;
252 1.1 riastrad
253 1.1 riastrad /* Forward declarations */
254 1.1 riastrad static void entropy_init_cpu(void *, void *, struct cpu_info *);
255 1.1 riastrad static void entropy_fini_cpu(void *, void *, struct cpu_info *);
256 1.1 riastrad static void entropy_account_cpu(struct entropy_cpu *);
257 1.62 riastrad static void entropy_enter(const void *, size_t, unsigned, bool);
258 1.62 riastrad static bool entropy_enter_intr(const void *, size_t, unsigned, bool);
259 1.1 riastrad static void entropy_softintr(void *);
260 1.1 riastrad static void entropy_thread(void *);
261 1.62 riastrad static bool entropy_pending(void);
262 1.1 riastrad static void entropy_pending_cpu(void *, void *, struct cpu_info *);
263 1.13 riastrad static void entropy_do_consolidate(void);
264 1.13 riastrad static void entropy_consolidate_xc(void *, void *);
265 1.1 riastrad static void entropy_notify(void);
266 1.1 riastrad static int sysctl_entropy_consolidate(SYSCTLFN_ARGS);
267 1.10 riastrad static int sysctl_entropy_gather(SYSCTLFN_ARGS);
268 1.1 riastrad static void filt_entropy_read_detach(struct knote *);
269 1.1 riastrad static int filt_entropy_read_event(struct knote *, long);
270 1.49 riastrad static int entropy_request(size_t, int);
271 1.63 riastrad static void rnd_add_data_internal(struct krndsource *, const void *,
272 1.63 riastrad uint32_t, uint32_t, bool);
273 1.1 riastrad static void rnd_add_data_1(struct krndsource *, const void *, uint32_t,
274 1.63 riastrad uint32_t, bool, uint32_t, bool);
275 1.1 riastrad static unsigned rndsource_entropybits(struct krndsource *);
276 1.1 riastrad static void rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
277 1.1 riastrad static void rndsource_to_user(struct krndsource *, rndsource_t *);
278 1.1 riastrad static void rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
279 1.28 riastrad static void rndsource_to_user_est_cpu(void *, void *, struct cpu_info *);
280 1.1 riastrad
281 1.1 riastrad /*
282 1.1 riastrad * entropy_timer()
283 1.1 riastrad *
284 1.1 riastrad * Cycle counter, time counter, or anything that changes a wee bit
285 1.1 riastrad * unpredictably.
286 1.1 riastrad */
287 1.1 riastrad static inline uint32_t
288 1.1 riastrad entropy_timer(void)
289 1.1 riastrad {
290 1.1 riastrad struct bintime bt;
291 1.1 riastrad uint32_t v;
292 1.1 riastrad
293 1.1 riastrad /* If we have a CPU cycle counter, use the low 32 bits. */
294 1.1 riastrad #ifdef __HAVE_CPU_COUNTER
295 1.1 riastrad if (__predict_true(cpu_hascounter()))
296 1.1 riastrad return cpu_counter32();
297 1.1 riastrad #endif /* __HAVE_CPU_COUNTER */
298 1.1 riastrad
299 1.1 riastrad /* If we're cold, tough. Can't binuptime while cold. */
300 1.1 riastrad if (__predict_false(cold))
301 1.1 riastrad return 0;
302 1.1 riastrad
303 1.1 riastrad /* Fold the 128 bits of binuptime into 32 bits. */
304 1.1 riastrad binuptime(&bt);
305 1.1 riastrad v = bt.frac;
306 1.1 riastrad v ^= bt.frac >> 32;
307 1.1 riastrad v ^= bt.sec;
308 1.1 riastrad v ^= bt.sec >> 32;
309 1.1 riastrad return v;
310 1.1 riastrad }
311 1.1 riastrad
312 1.1 riastrad static void
313 1.1 riastrad attach_seed_rndsource(void)
314 1.1 riastrad {
315 1.1 riastrad
316 1.63 riastrad KASSERT(!cpu_intr_p());
317 1.63 riastrad KASSERT(!cpu_softintr_p());
318 1.63 riastrad KASSERT(cold);
319 1.63 riastrad
320 1.1 riastrad /*
321 1.1 riastrad * First called no later than entropy_init, while we are still
322 1.1 riastrad * single-threaded, so no need for RUN_ONCE.
323 1.1 riastrad */
324 1.63 riastrad if (E->seed_rndsource)
325 1.1 riastrad return;
326 1.63 riastrad
327 1.1 riastrad rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
328 1.1 riastrad RND_FLAG_COLLECT_VALUE);
329 1.1 riastrad E->seed_rndsource = true;
330 1.1 riastrad }
331 1.1 riastrad
332 1.1 riastrad /*
333 1.1 riastrad * entropy_init()
334 1.1 riastrad *
335 1.1 riastrad * Initialize the entropy subsystem. Panic on failure.
336 1.1 riastrad *
337 1.63 riastrad * Requires percpu(9) and sysctl(9) to be initialized. Must run
338 1.63 riastrad * while cold.
339 1.1 riastrad */
340 1.1 riastrad static void
341 1.1 riastrad entropy_init(void)
342 1.1 riastrad {
343 1.1 riastrad uint32_t extra[2];
344 1.1 riastrad struct krndsource *rs;
345 1.1 riastrad unsigned i = 0;
346 1.1 riastrad
347 1.63 riastrad KASSERT(cold);
348 1.1 riastrad
349 1.1 riastrad /* Grab some cycle counts early at boot. */
350 1.1 riastrad extra[i++] = entropy_timer();
351 1.1 riastrad
352 1.1 riastrad /* Run the entropy pool cryptography self-test. */
353 1.1 riastrad if (entpool_selftest() == -1)
354 1.1 riastrad panic("entropy pool crypto self-test failed");
355 1.1 riastrad
356 1.1 riastrad /* Create the sysctl directory. */
357 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
358 1.1 riastrad CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
359 1.1 riastrad SYSCTL_DESCR("Entropy (random number sources) options"),
360 1.1 riastrad NULL, 0, NULL, 0,
361 1.1 riastrad CTL_KERN, CTL_CREATE, CTL_EOL);
362 1.1 riastrad
363 1.1 riastrad /* Create the sysctl knobs. */
364 1.1 riastrad /* XXX These shouldn't be writable at securelevel>0. */
365 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
366 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
367 1.1 riastrad SYSCTL_DESCR("Automatically collect entropy from hardware"),
368 1.1 riastrad NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
369 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
370 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
371 1.1 riastrad SYSCTL_DESCR("`Deplete' entropy pool when observed"),
372 1.1 riastrad NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
373 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
374 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
375 1.1 riastrad SYSCTL_DESCR("Trigger entropy consolidation now"),
376 1.1 riastrad sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
377 1.10 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
378 1.10 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
379 1.10 riastrad SYSCTL_DESCR("Trigger entropy gathering from sources now"),
380 1.10 riastrad sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
381 1.1 riastrad /* XXX These should maybe not be readable at securelevel>0. */
382 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
383 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
384 1.62 riastrad "needed",
385 1.62 riastrad SYSCTL_DESCR("Systemwide entropy deficit (bits of entropy)"),
386 1.62 riastrad NULL, 0, &E->bitsneeded, 0, CTL_CREATE, CTL_EOL);
387 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
388 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
389 1.62 riastrad "pending",
390 1.62 riastrad SYSCTL_DESCR("Number of bits of entropy pending on CPUs"),
391 1.62 riastrad NULL, 0, &E->bitspending, 0, CTL_CREATE, CTL_EOL);
392 1.62 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
393 1.62 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
394 1.62 riastrad "samplesneeded",
395 1.62 riastrad SYSCTL_DESCR("Systemwide entropy deficit (samples)"),
396 1.62 riastrad NULL, 0, &E->samplesneeded, 0, CTL_CREATE, CTL_EOL);
397 1.62 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
398 1.62 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
399 1.62 riastrad "samplespending",
400 1.62 riastrad SYSCTL_DESCR("Number of samples pending on CPUs"),
401 1.62 riastrad NULL, 0, &E->samplespending, 0, CTL_CREATE, CTL_EOL);
402 1.1 riastrad sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
403 1.1 riastrad CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
404 1.1 riastrad "epoch", SYSCTL_DESCR("Entropy epoch"),
405 1.1 riastrad NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
406 1.1 riastrad
407 1.1 riastrad /* Initialize the global state for multithreaded operation. */
408 1.39 riastrad mutex_init(&E->lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
409 1.1 riastrad cv_init(&E->cv, "entropy");
410 1.1 riastrad selinit(&E->selq);
411 1.27 riastrad cv_init(&E->sourcelock_cv, "entsrclock");
412 1.1 riastrad
413 1.1 riastrad /* Make sure the seed source is attached. */
414 1.1 riastrad attach_seed_rndsource();
415 1.1 riastrad
416 1.1 riastrad /* Note if the bootloader didn't provide a seed. */
417 1.1 riastrad if (!E->seeded)
418 1.29 riastrad aprint_debug("entropy: no seed from bootloader\n");
419 1.1 riastrad
420 1.1 riastrad /* Allocate the per-CPU records for all early entropy sources. */
421 1.1 riastrad LIST_FOREACH(rs, &E->sources, list)
422 1.1 riastrad rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
423 1.1 riastrad
424 1.36 riastrad /* Allocate and initialize the per-CPU state. */
425 1.36 riastrad entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
426 1.36 riastrad entropy_init_cpu, entropy_fini_cpu, NULL);
427 1.36 riastrad
428 1.1 riastrad /* Enter the boot cycle count to get started. */
429 1.1 riastrad extra[i++] = entropy_timer();
430 1.1 riastrad KASSERT(i == __arraycount(extra));
431 1.62 riastrad entropy_enter(extra, sizeof extra, /*nbits*/0, /*count*/false);
432 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
433 1.37 riastrad }
434 1.37 riastrad
435 1.1 riastrad /*
436 1.1 riastrad * entropy_init_late()
437 1.1 riastrad *
438 1.1 riastrad * Late initialization. Panic on failure.
439 1.1 riastrad *
440 1.1 riastrad * Requires CPUs to have been detected and LWPs to have started.
441 1.63 riastrad * Must run while cold.
442 1.1 riastrad */
443 1.1 riastrad static void
444 1.1 riastrad entropy_init_late(void)
445 1.1 riastrad {
446 1.1 riastrad int error;
447 1.1 riastrad
448 1.63 riastrad KASSERT(cold);
449 1.1 riastrad
450 1.1 riastrad /*
451 1.1 riastrad * Establish the softint at the highest softint priority level.
452 1.1 riastrad * Must happen after CPU detection.
453 1.1 riastrad */
454 1.63 riastrad entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
455 1.1 riastrad &entropy_softintr, NULL);
456 1.63 riastrad if (entropy_sih == NULL)
457 1.1 riastrad panic("unable to establish entropy softint");
458 1.1 riastrad
459 1.1 riastrad /*
460 1.1 riastrad * Create the entropy housekeeping thread. Must happen after
461 1.1 riastrad * lwpinit.
462 1.1 riastrad */
463 1.1 riastrad error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
464 1.1 riastrad entropy_thread, NULL, &entropy_lwp, "entbutler");
465 1.1 riastrad if (error)
466 1.1 riastrad panic("unable to create entropy housekeeping thread: %d",
467 1.1 riastrad error);
468 1.1 riastrad }
469 1.1 riastrad
470 1.1 riastrad /*
471 1.1 riastrad * entropy_init_cpu(ptr, cookie, ci)
472 1.1 riastrad *
473 1.1 riastrad * percpu(9) constructor for per-CPU entropy pool.
474 1.1 riastrad */
475 1.1 riastrad static void
476 1.1 riastrad entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
477 1.1 riastrad {
478 1.1 riastrad struct entropy_cpu *ec = ptr;
479 1.40 riastrad const char *cpuname;
480 1.1 riastrad
481 1.40 riastrad ec->ec_evcnt = kmem_alloc(sizeof(*ec->ec_evcnt), KM_SLEEP);
482 1.1 riastrad ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
483 1.62 riastrad ec->ec_bitspending = 0;
484 1.62 riastrad ec->ec_samplespending = 0;
485 1.1 riastrad ec->ec_locked = false;
486 1.1 riastrad
487 1.36 riastrad /* XXX ci_cpuname may not be initialized early enough. */
488 1.40 riastrad cpuname = ci->ci_cpuname[0] == '\0' ? "cpu0" : ci->ci_cpuname;
489 1.40 riastrad evcnt_attach_dynamic(&ec->ec_evcnt->softint, EVCNT_TYPE_MISC, NULL,
490 1.40 riastrad cpuname, "entropy softint");
491 1.40 riastrad evcnt_attach_dynamic(&ec->ec_evcnt->intrdrop, EVCNT_TYPE_MISC, NULL,
492 1.40 riastrad cpuname, "entropy intrdrop");
493 1.40 riastrad evcnt_attach_dynamic(&ec->ec_evcnt->intrtrunc, EVCNT_TYPE_MISC, NULL,
494 1.40 riastrad cpuname, "entropy intrtrunc");
495 1.1 riastrad }
496 1.1 riastrad
497 1.1 riastrad /*
498 1.1 riastrad * entropy_fini_cpu(ptr, cookie, ci)
499 1.1 riastrad *
500 1.1 riastrad * percpu(9) destructor for per-CPU entropy pool.
501 1.1 riastrad */
502 1.1 riastrad static void
503 1.1 riastrad entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
504 1.1 riastrad {
505 1.1 riastrad struct entropy_cpu *ec = ptr;
506 1.1 riastrad
507 1.1 riastrad /*
508 1.1 riastrad * Zero any lingering data. Disclosure of the per-CPU pool
509 1.1 riastrad * shouldn't retroactively affect the security of any keys
510 1.1 riastrad * generated, because entpool(9) erases whatever we have just
511 1.1 riastrad * drawn out of any pool, but better safe than sorry.
512 1.1 riastrad */
513 1.1 riastrad explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
514 1.1 riastrad
515 1.40 riastrad evcnt_detach(&ec->ec_evcnt->intrtrunc);
516 1.40 riastrad evcnt_detach(&ec->ec_evcnt->intrdrop);
517 1.40 riastrad evcnt_detach(&ec->ec_evcnt->softint);
518 1.1 riastrad
519 1.1 riastrad kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
520 1.40 riastrad kmem_free(ec->ec_evcnt, sizeof(*ec->ec_evcnt));
521 1.1 riastrad }
522 1.1 riastrad
523 1.1 riastrad /*
524 1.43 riastrad * ec = entropy_cpu_get(&lock)
525 1.43 riastrad * entropy_cpu_put(&lock, ec)
526 1.43 riastrad *
527 1.43 riastrad * Lock and unlock the per-CPU entropy state. This only prevents
528 1.43 riastrad * access on the same CPU -- by hard interrupts, by soft
529 1.43 riastrad * interrupts, or by other threads.
530 1.43 riastrad *
531 1.43 riastrad * Blocks soft interrupts and preemption altogether; doesn't block
532 1.43 riastrad * hard interrupts, but causes samples in hard interrupts to be
533 1.43 riastrad * dropped.
534 1.43 riastrad */
535 1.43 riastrad static struct entropy_cpu *
536 1.43 riastrad entropy_cpu_get(struct entropy_cpu_lock *lock)
537 1.43 riastrad {
538 1.43 riastrad struct entropy_cpu *ec;
539 1.43 riastrad
540 1.43 riastrad ec = percpu_getref(entropy_percpu);
541 1.43 riastrad lock->ecl_s = splsoftserial();
542 1.43 riastrad KASSERT(!ec->ec_locked);
543 1.43 riastrad ec->ec_locked = true;
544 1.43 riastrad lock->ecl_ncsw = curlwp->l_ncsw;
545 1.43 riastrad __insn_barrier();
546 1.43 riastrad
547 1.43 riastrad return ec;
548 1.43 riastrad }
549 1.43 riastrad
550 1.43 riastrad static void
551 1.43 riastrad entropy_cpu_put(struct entropy_cpu_lock *lock, struct entropy_cpu *ec)
552 1.43 riastrad {
553 1.43 riastrad
554 1.43 riastrad KASSERT(ec == percpu_getptr_remote(entropy_percpu, curcpu()));
555 1.43 riastrad KASSERT(ec->ec_locked);
556 1.43 riastrad
557 1.43 riastrad __insn_barrier();
558 1.43 riastrad KASSERT(lock->ecl_ncsw == curlwp->l_ncsw);
559 1.43 riastrad ec->ec_locked = false;
560 1.43 riastrad splx(lock->ecl_s);
561 1.43 riastrad percpu_putref(entropy_percpu);
562 1.43 riastrad }
563 1.43 riastrad
564 1.43 riastrad /*
565 1.1 riastrad * entropy_seed(seed)
566 1.1 riastrad *
567 1.1 riastrad * Seed the entropy pool with seed. Meant to be called as early
568 1.1 riastrad * as possible by the bootloader; may be called before or after
569 1.1 riastrad * entropy_init. Must be called before system reaches userland.
570 1.1 riastrad * Must be called in thread or soft interrupt context, not in hard
571 1.1 riastrad * interrupt context. Must be called at most once.
572 1.1 riastrad *
573 1.1 riastrad * Overwrites the seed in place. Caller may then free the memory.
574 1.1 riastrad */
575 1.1 riastrad static void
576 1.1 riastrad entropy_seed(rndsave_t *seed)
577 1.1 riastrad {
578 1.1 riastrad SHA1_CTX ctx;
579 1.1 riastrad uint8_t digest[SHA1_DIGEST_LENGTH];
580 1.1 riastrad bool seeded;
581 1.1 riastrad
582 1.63 riastrad KASSERT(!cpu_intr_p());
583 1.63 riastrad KASSERT(!cpu_softintr_p());
584 1.63 riastrad KASSERT(cold);
585 1.63 riastrad
586 1.1 riastrad /*
587 1.1 riastrad * Verify the checksum. If the checksum fails, take the data
588 1.1 riastrad * but ignore the entropy estimate -- the file may have been
589 1.1 riastrad * incompletely written with garbage, which is harmless to add
590 1.1 riastrad * but may not be as unpredictable as alleged.
591 1.1 riastrad */
592 1.1 riastrad SHA1Init(&ctx);
593 1.1 riastrad SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
594 1.1 riastrad SHA1Update(&ctx, seed->data, sizeof(seed->data));
595 1.1 riastrad SHA1Final(digest, &ctx);
596 1.1 riastrad CTASSERT(sizeof(seed->digest) == sizeof(digest));
597 1.1 riastrad if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
598 1.1 riastrad printf("entropy: invalid seed checksum\n");
599 1.1 riastrad seed->entropy = 0;
600 1.1 riastrad }
601 1.2 riastrad explicit_memset(&ctx, 0, sizeof ctx);
602 1.1 riastrad explicit_memset(digest, 0, sizeof digest);
603 1.1 riastrad
604 1.2 riastrad /*
605 1.2 riastrad * If the entropy is insensibly large, try byte-swapping.
606 1.2 riastrad * Otherwise assume the file is corrupted and act as though it
607 1.2 riastrad * has zero entropy.
608 1.2 riastrad */
609 1.2 riastrad if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
610 1.2 riastrad seed->entropy = bswap32(seed->entropy);
611 1.2 riastrad if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
612 1.2 riastrad seed->entropy = 0;
613 1.2 riastrad }
614 1.2 riastrad
615 1.1 riastrad /* Make sure the seed source is attached. */
616 1.1 riastrad attach_seed_rndsource();
617 1.1 riastrad
618 1.1 riastrad /* Test and set E->seeded. */
619 1.1 riastrad seeded = E->seeded;
620 1.11 riastrad E->seeded = (seed->entropy > 0);
621 1.1 riastrad
622 1.1 riastrad /*
623 1.1 riastrad * If we've been seeded, may be re-entering the same seed
624 1.1 riastrad * (e.g., bootloader vs module init, or something). No harm in
625 1.1 riastrad * entering it twice, but it contributes no additional entropy.
626 1.1 riastrad */
627 1.1 riastrad if (seeded) {
628 1.1 riastrad printf("entropy: double-seeded by bootloader\n");
629 1.1 riastrad seed->entropy = 0;
630 1.1 riastrad } else {
631 1.11 riastrad printf("entropy: entering seed from bootloader"
632 1.11 riastrad " with %u bits of entropy\n", (unsigned)seed->entropy);
633 1.1 riastrad }
634 1.1 riastrad
635 1.1 riastrad /* Enter it into the pool and promptly zero it. */
636 1.1 riastrad rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
637 1.1 riastrad seed->entropy);
638 1.1 riastrad explicit_memset(seed, 0, sizeof(*seed));
639 1.1 riastrad }
640 1.1 riastrad
641 1.1 riastrad /*
642 1.1 riastrad * entropy_bootrequest()
643 1.1 riastrad *
644 1.1 riastrad * Request entropy from all sources at boot, once config is
645 1.63 riastrad * complete and interrupts are running but we are still cold.
646 1.1 riastrad */
647 1.1 riastrad void
648 1.1 riastrad entropy_bootrequest(void)
649 1.1 riastrad {
650 1.49 riastrad int error;
651 1.1 riastrad
652 1.63 riastrad KASSERT(!cpu_intr_p());
653 1.63 riastrad KASSERT(!cpu_softintr_p());
654 1.63 riastrad KASSERT(cold);
655 1.1 riastrad
656 1.1 riastrad /*
657 1.1 riastrad * Request enough to satisfy the maximum entropy shortage.
658 1.1 riastrad * This is harmless overkill if the bootloader provided a seed.
659 1.1 riastrad */
660 1.62 riastrad error = entropy_request(MINENTROPYBYTES, ENTROPY_WAIT);
661 1.63 riastrad KASSERTMSG(error == 0, "error=%d", error);
662 1.1 riastrad }
663 1.1 riastrad
664 1.1 riastrad /*
665 1.1 riastrad * entropy_epoch()
666 1.1 riastrad *
667 1.1 riastrad * Returns the current entropy epoch. If this changes, you should
668 1.14 riastrad * reseed. If -1, means system entropy has not yet reached full
669 1.14 riastrad * entropy or been explicitly consolidated; never reverts back to
670 1.14 riastrad * -1. Never zero, so you can always use zero as an uninitialized
671 1.14 riastrad * sentinel value meaning `reseed ASAP'.
672 1.1 riastrad *
673 1.1 riastrad * Usage model:
674 1.1 riastrad *
675 1.1 riastrad * struct foo {
676 1.1 riastrad * struct crypto_prng prng;
677 1.1 riastrad * unsigned epoch;
678 1.1 riastrad * } *foo;
679 1.1 riastrad *
680 1.1 riastrad * unsigned epoch = entropy_epoch();
681 1.1 riastrad * if (__predict_false(epoch != foo->epoch)) {
682 1.1 riastrad * uint8_t seed[32];
683 1.1 riastrad * if (entropy_extract(seed, sizeof seed, 0) != 0)
684 1.1 riastrad * warn("no entropy");
685 1.1 riastrad * crypto_prng_reseed(&foo->prng, seed, sizeof seed);
686 1.1 riastrad * foo->epoch = epoch;
687 1.1 riastrad * }
688 1.1 riastrad */
689 1.1 riastrad unsigned
690 1.1 riastrad entropy_epoch(void)
691 1.1 riastrad {
692 1.1 riastrad
693 1.1 riastrad /*
694 1.1 riastrad * Unsigned int, so no need for seqlock for an atomic read, but
695 1.1 riastrad * make sure we read it afresh each time.
696 1.1 riastrad */
697 1.1 riastrad return atomic_load_relaxed(&E->epoch);
698 1.1 riastrad }
699 1.1 riastrad
700 1.1 riastrad /*
701 1.23 riastrad * entropy_ready()
702 1.23 riastrad *
703 1.23 riastrad * True if the entropy pool has full entropy.
704 1.23 riastrad */
705 1.23 riastrad bool
706 1.23 riastrad entropy_ready(void)
707 1.23 riastrad {
708 1.23 riastrad
709 1.62 riastrad return atomic_load_relaxed(&E->bitsneeded) == 0;
710 1.23 riastrad }
711 1.23 riastrad
712 1.23 riastrad /*
713 1.1 riastrad * entropy_account_cpu(ec)
714 1.1 riastrad *
715 1.1 riastrad * Consider whether to consolidate entropy into the global pool
716 1.1 riastrad * after we just added some into the current CPU's pending pool.
717 1.1 riastrad *
718 1.1 riastrad * - If this CPU can provide enough entropy now, do so.
719 1.1 riastrad *
720 1.1 riastrad * - If this and whatever else is available on other CPUs can
721 1.1 riastrad * provide enough entropy, kick the consolidation thread.
722 1.1 riastrad *
723 1.1 riastrad * - Otherwise, do as little as possible, except maybe consolidate
724 1.1 riastrad * entropy at most once a minute.
725 1.1 riastrad *
726 1.1 riastrad * Caller must be bound to a CPU and therefore have exclusive
727 1.1 riastrad * access to ec. Will acquire and release the global lock.
728 1.1 riastrad */
729 1.1 riastrad static void
730 1.1 riastrad entropy_account_cpu(struct entropy_cpu *ec)
731 1.1 riastrad {
732 1.44 riastrad struct entropy_cpu_lock lock;
733 1.44 riastrad struct entropy_cpu *ec0;
734 1.62 riastrad unsigned bitsdiff, samplesdiff;
735 1.1 riastrad
736 1.63 riastrad KASSERT(!cpu_intr_p());
737 1.63 riastrad KASSERT(!cold);
738 1.52 riastrad KASSERT(curlwp->l_pflag & LP_BOUND);
739 1.1 riastrad
740 1.1 riastrad /*
741 1.1 riastrad * If there's no entropy needed, and entropy has been
742 1.1 riastrad * consolidated in the last minute, do nothing.
743 1.1 riastrad */
744 1.62 riastrad if (__predict_true(atomic_load_relaxed(&E->bitsneeded) == 0) &&
745 1.1 riastrad __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
746 1.1 riastrad __predict_true((time_uptime - E->timestamp) <= 60))
747 1.1 riastrad return;
748 1.1 riastrad
749 1.44 riastrad /*
750 1.44 riastrad * Consider consolidation, under the global lock and with the
751 1.44 riastrad * per-CPU state locked.
752 1.44 riastrad */
753 1.1 riastrad mutex_enter(&E->lock);
754 1.44 riastrad ec0 = entropy_cpu_get(&lock);
755 1.44 riastrad KASSERT(ec0 == ec);
756 1.62 riastrad
757 1.62 riastrad if (ec->ec_bitspending == 0 && ec->ec_samplespending == 0) {
758 1.46 riastrad /* Raced with consolidation xcall. Nothing to do. */
759 1.62 riastrad } else if (E->bitsneeded != 0 && E->bitsneeded <= ec->ec_bitspending) {
760 1.1 riastrad /*
761 1.1 riastrad * If we have not yet attained full entropy but we can
762 1.1 riastrad * now, do so. This way we disseminate entropy
763 1.1 riastrad * promptly when it becomes available early at boot;
764 1.1 riastrad * otherwise we leave it to the entropy consolidation
765 1.1 riastrad * thread, which is rate-limited to mitigate side
766 1.1 riastrad * channels and abuse.
767 1.1 riastrad */
768 1.1 riastrad uint8_t buf[ENTPOOL_CAPACITY];
769 1.1 riastrad
770 1.1 riastrad /* Transfer from the local pool to the global pool. */
771 1.1 riastrad entpool_extract(ec->ec_pool, buf, sizeof buf);
772 1.1 riastrad entpool_enter(&E->pool, buf, sizeof buf);
773 1.62 riastrad atomic_store_relaxed(&ec->ec_bitspending, 0);
774 1.62 riastrad atomic_store_relaxed(&ec->ec_samplespending, 0);
775 1.62 riastrad atomic_store_relaxed(&E->bitsneeded, 0);
776 1.62 riastrad atomic_store_relaxed(&E->samplesneeded, 0);
777 1.1 riastrad
778 1.1 riastrad /* Notify waiters that we now have full entropy. */
779 1.1 riastrad entropy_notify();
780 1.1 riastrad entropy_immediate_evcnt.ev_count++;
781 1.18 riastrad } else {
782 1.45 riastrad /* Determine how much we can add to the global pool. */
783 1.62 riastrad KASSERTMSG(E->bitspending <= MINENTROPYBITS,
784 1.62 riastrad "E->bitspending=%u", E->bitspending);
785 1.62 riastrad bitsdiff = MIN(ec->ec_bitspending,
786 1.62 riastrad MINENTROPYBITS - E->bitspending);
787 1.62 riastrad KASSERTMSG(E->samplespending <= MINSAMPLES,
788 1.62 riastrad "E->samplespending=%u", E->samplespending);
789 1.62 riastrad samplesdiff = MIN(ec->ec_samplespending,
790 1.62 riastrad MINSAMPLES - E->samplespending);
791 1.1 riastrad
792 1.1 riastrad /*
793 1.45 riastrad * This should make a difference unless we are already
794 1.45 riastrad * saturated.
795 1.1 riastrad */
796 1.62 riastrad KASSERTMSG((bitsdiff || samplesdiff ||
797 1.62 riastrad E->bitspending == MINENTROPYBITS ||
798 1.62 riastrad E->samplespending == MINSAMPLES),
799 1.62 riastrad "bitsdiff=%u E->bitspending=%u ec->ec_bitspending=%u"
800 1.62 riastrad "samplesdiff=%u E->samplespending=%u"
801 1.62 riastrad " ec->ec_samplespending=%u"
802 1.62 riastrad " minentropybits=%u minsamples=%u",
803 1.62 riastrad bitsdiff, E->bitspending, ec->ec_bitspending,
804 1.62 riastrad samplesdiff, E->samplespending, ec->ec_samplespending,
805 1.62 riastrad (unsigned)MINENTROPYBITS, (unsigned)MINSAMPLES);
806 1.45 riastrad
807 1.45 riastrad /* Add to the global, subtract from the local. */
808 1.62 riastrad E->bitspending += bitsdiff;
809 1.62 riastrad KASSERTMSG(E->bitspending <= MINENTROPYBITS,
810 1.62 riastrad "E->bitspending=%u", E->bitspending);
811 1.62 riastrad atomic_store_relaxed(&ec->ec_bitspending,
812 1.62 riastrad ec->ec_bitspending - bitsdiff);
813 1.62 riastrad
814 1.62 riastrad E->samplespending += samplesdiff;
815 1.62 riastrad KASSERTMSG(E->samplespending <= MINSAMPLES,
816 1.62 riastrad "E->samplespending=%u", E->samplespending);
817 1.62 riastrad atomic_store_relaxed(&ec->ec_samplespending,
818 1.62 riastrad ec->ec_samplespending - samplesdiff);
819 1.1 riastrad
820 1.62 riastrad /* One or the other must have gone up from zero. */
821 1.62 riastrad KASSERT(E->bitspending || E->samplespending);
822 1.62 riastrad
823 1.62 riastrad if (E->bitsneeded <= E->bitspending ||
824 1.62 riastrad E->samplesneeded <= E->samplespending) {
825 1.1 riastrad /*
826 1.62 riastrad * Enough bits or at least samples between all
827 1.62 riastrad * the per-CPU pools. Leave a note for the
828 1.62 riastrad * housekeeping thread to consolidate entropy
829 1.62 riastrad * next time it wakes up -- and wake it up if
830 1.62 riastrad * this is the first time, to speed things up.
831 1.1 riastrad *
832 1.1 riastrad * If we don't need any entropy, this doesn't
833 1.1 riastrad * mean much, but it is the only time we ever
834 1.1 riastrad * gather additional entropy in case the
835 1.1 riastrad * accounting has been overly optimistic. This
836 1.1 riastrad * happens at most once a minute, so there's
837 1.1 riastrad * negligible performance cost.
838 1.1 riastrad */
839 1.1 riastrad E->consolidate = true;
840 1.62 riastrad if (E->epoch == (unsigned)-1)
841 1.62 riastrad cv_broadcast(&E->cv);
842 1.62 riastrad if (E->bitsneeded == 0)
843 1.1 riastrad entropy_discretionary_evcnt.ev_count++;
844 1.1 riastrad } else {
845 1.1 riastrad /* Can't get full entropy. Keep gathering. */
846 1.1 riastrad entropy_partial_evcnt.ev_count++;
847 1.1 riastrad }
848 1.1 riastrad }
849 1.62 riastrad
850 1.44 riastrad entropy_cpu_put(&lock, ec);
851 1.1 riastrad mutex_exit(&E->lock);
852 1.1 riastrad }
853 1.1 riastrad
854 1.1 riastrad /*
855 1.1 riastrad * entropy_enter_early(buf, len, nbits)
856 1.1 riastrad *
857 1.1 riastrad * Do entropy bookkeeping globally, before we have established
858 1.1 riastrad * per-CPU pools. Enter directly into the global pool in the hope
859 1.1 riastrad * that we enter enough before the first entropy_extract to thwart
860 1.1 riastrad * iterative-guessing attacks; entropy_extract will warn if not.
861 1.1 riastrad */
862 1.1 riastrad static void
863 1.1 riastrad entropy_enter_early(const void *buf, size_t len, unsigned nbits)
864 1.1 riastrad {
865 1.1 riastrad bool notify = false;
866 1.63 riastrad int s;
867 1.63 riastrad
868 1.63 riastrad KASSERT(cold);
869 1.1 riastrad
870 1.63 riastrad /*
871 1.63 riastrad * We're early at boot before multithreading and multi-CPU
872 1.63 riastrad * operation, and we don't have softints yet to defer
873 1.63 riastrad * processing from interrupt context, so we have to enter the
874 1.63 riastrad * samples directly into the global pool. But interrupts may
875 1.63 riastrad * be enabled, and we enter this path from interrupt context,
876 1.63 riastrad * so block interrupts until we're done.
877 1.63 riastrad */
878 1.63 riastrad s = splhigh();
879 1.1 riastrad
880 1.1 riastrad /* Enter it into the pool. */
881 1.1 riastrad entpool_enter(&E->pool, buf, len);
882 1.1 riastrad
883 1.1 riastrad /*
884 1.1 riastrad * Decide whether to notify reseed -- we will do so if either:
885 1.1 riastrad * (a) we transition from partial entropy to full entropy, or
886 1.1 riastrad * (b) we get a batch of full entropy all at once.
887 1.63 riastrad * We don't count timing samples because we assume, while cold,
888 1.63 riastrad * there's not likely to be much jitter yet.
889 1.1 riastrad */
890 1.62 riastrad notify |= (E->bitsneeded && E->bitsneeded <= nbits);
891 1.62 riastrad notify |= (nbits >= MINENTROPYBITS);
892 1.1 riastrad
893 1.62 riastrad /*
894 1.62 riastrad * Subtract from the needed count and notify if appropriate.
895 1.62 riastrad * We don't count samples here because entropy_timer might
896 1.62 riastrad * still be returning zero at this point if there's no CPU
897 1.62 riastrad * cycle counter.
898 1.62 riastrad */
899 1.62 riastrad E->bitsneeded -= MIN(E->bitsneeded, nbits);
900 1.1 riastrad if (notify) {
901 1.1 riastrad entropy_notify();
902 1.1 riastrad entropy_immediate_evcnt.ev_count++;
903 1.1 riastrad }
904 1.63 riastrad
905 1.63 riastrad splx(s);
906 1.1 riastrad }
907 1.1 riastrad
908 1.1 riastrad /*
909 1.62 riastrad * entropy_enter(buf, len, nbits, count)
910 1.1 riastrad *
911 1.1 riastrad * Enter len bytes of data from buf into the system's entropy
912 1.1 riastrad * pool, stirring as necessary when the internal buffer fills up.
913 1.1 riastrad * nbits is a lower bound on the number of bits of entropy in the
914 1.1 riastrad * process that led to this sample.
915 1.1 riastrad */
916 1.1 riastrad static void
917 1.62 riastrad entropy_enter(const void *buf, size_t len, unsigned nbits, bool count)
918 1.1 riastrad {
919 1.43 riastrad struct entropy_cpu_lock lock;
920 1.1 riastrad struct entropy_cpu *ec;
921 1.62 riastrad unsigned bitspending, samplespending;
922 1.52 riastrad int bound;
923 1.1 riastrad
924 1.16 riastrad KASSERTMSG(!cpu_intr_p(),
925 1.1 riastrad "use entropy_enter_intr from interrupt context");
926 1.1 riastrad KASSERTMSG(howmany(nbits, NBBY) <= len,
927 1.1 riastrad "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
928 1.1 riastrad
929 1.63 riastrad /*
930 1.63 riastrad * If we're still cold, just use entropy_enter_early to put
931 1.63 riastrad * samples directly into the global pool.
932 1.63 riastrad */
933 1.63 riastrad if (__predict_false(cold)) {
934 1.1 riastrad entropy_enter_early(buf, len, nbits);
935 1.1 riastrad return;
936 1.1 riastrad }
937 1.1 riastrad
938 1.1 riastrad /*
939 1.52 riastrad * Bind ourselves to the current CPU so we don't switch CPUs
940 1.52 riastrad * between entering data into the current CPU's pool (and
941 1.52 riastrad * updating the pending count) and transferring it to the
942 1.52 riastrad * global pool in entropy_account_cpu.
943 1.52 riastrad */
944 1.52 riastrad bound = curlwp_bind();
945 1.52 riastrad
946 1.52 riastrad /*
947 1.43 riastrad * With the per-CPU state locked, enter into the per-CPU pool
948 1.43 riastrad * and count up what we can add.
949 1.62 riastrad *
950 1.62 riastrad * We don't count samples while cold because entropy_timer
951 1.62 riastrad * might still be returning zero if there's no CPU cycle
952 1.62 riastrad * counter.
953 1.1 riastrad */
954 1.43 riastrad ec = entropy_cpu_get(&lock);
955 1.1 riastrad entpool_enter(ec->ec_pool, buf, len);
956 1.62 riastrad bitspending = ec->ec_bitspending;
957 1.62 riastrad bitspending += MIN(MINENTROPYBITS - bitspending, nbits);
958 1.62 riastrad atomic_store_relaxed(&ec->ec_bitspending, bitspending);
959 1.62 riastrad samplespending = ec->ec_samplespending;
960 1.62 riastrad if (__predict_true(count)) {
961 1.62 riastrad samplespending += MIN(MINSAMPLES - samplespending, 1);
962 1.62 riastrad atomic_store_relaxed(&ec->ec_samplespending, samplespending);
963 1.62 riastrad }
964 1.43 riastrad entropy_cpu_put(&lock, ec);
965 1.42 riastrad
966 1.42 riastrad /* Consolidate globally if appropriate based on what we added. */
967 1.62 riastrad if (bitspending > 0 || samplespending >= MINSAMPLES)
968 1.42 riastrad entropy_account_cpu(ec);
969 1.52 riastrad
970 1.52 riastrad curlwp_bindx(bound);
971 1.1 riastrad }
972 1.1 riastrad
973 1.1 riastrad /*
974 1.62 riastrad * entropy_enter_intr(buf, len, nbits, count)
975 1.1 riastrad *
976 1.1 riastrad * Enter up to len bytes of data from buf into the system's
977 1.1 riastrad * entropy pool without stirring. nbits is a lower bound on the
978 1.1 riastrad * number of bits of entropy in the process that led to this
979 1.1 riastrad * sample. If the sample could be entered completely, assume
980 1.1 riastrad * nbits of entropy pending; otherwise assume none, since we don't
981 1.1 riastrad * know whether some parts of the sample are constant, for
982 1.1 riastrad * instance. Schedule a softint to stir the entropy pool if
983 1.1 riastrad * needed. Return true if used fully, false if truncated at all.
984 1.1 riastrad *
985 1.63 riastrad * Using this in thread or softint context with no spin locks held
986 1.63 riastrad * will work, but you might as well use entropy_enter in that
987 1.63 riastrad * case.
988 1.1 riastrad */
989 1.1 riastrad static bool
990 1.62 riastrad entropy_enter_intr(const void *buf, size_t len, unsigned nbits, bool count)
991 1.1 riastrad {
992 1.1 riastrad struct entropy_cpu *ec;
993 1.1 riastrad bool fullyused = false;
994 1.62 riastrad uint32_t bitspending, samplespending;
995 1.63 riastrad int s;
996 1.1 riastrad
997 1.1 riastrad KASSERTMSG(howmany(nbits, NBBY) <= len,
998 1.1 riastrad "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
999 1.1 riastrad
1000 1.63 riastrad /*
1001 1.63 riastrad * If we're still cold, just use entropy_enter_early to put
1002 1.63 riastrad * samples directly into the global pool.
1003 1.63 riastrad */
1004 1.63 riastrad if (__predict_false(cold)) {
1005 1.1 riastrad entropy_enter_early(buf, len, nbits);
1006 1.1 riastrad return true;
1007 1.1 riastrad }
1008 1.1 riastrad
1009 1.1 riastrad /*
1010 1.63 riastrad * In case we were called in thread or interrupt context with
1011 1.63 riastrad * interrupts unblocked, block soft interrupts up to
1012 1.63 riastrad * IPL_SOFTSERIAL. This way logic that is safe in interrupt
1013 1.63 riastrad * context or under a spin lock is also safe in less
1014 1.63 riastrad * restrictive contexts.
1015 1.63 riastrad */
1016 1.63 riastrad s = splsoftserial();
1017 1.63 riastrad
1018 1.63 riastrad /*
1019 1.1 riastrad * Acquire the per-CPU state. If someone is in the middle of
1020 1.1 riastrad * using it, drop the sample. Otherwise, take the lock so that
1021 1.1 riastrad * higher-priority interrupts will drop their samples.
1022 1.1 riastrad */
1023 1.1 riastrad ec = percpu_getref(entropy_percpu);
1024 1.40 riastrad if (ec->ec_locked) {
1025 1.40 riastrad ec->ec_evcnt->intrdrop.ev_count++;
1026 1.1 riastrad goto out0;
1027 1.40 riastrad }
1028 1.1 riastrad ec->ec_locked = true;
1029 1.1 riastrad __insn_barrier();
1030 1.1 riastrad
1031 1.1 riastrad /*
1032 1.1 riastrad * Enter as much as we can into the per-CPU pool. If it was
1033 1.1 riastrad * truncated, schedule a softint to stir the pool and stop.
1034 1.1 riastrad */
1035 1.1 riastrad if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
1036 1.63 riastrad if (__predict_true(!cold))
1037 1.63 riastrad softint_schedule(entropy_sih);
1038 1.40 riastrad ec->ec_evcnt->intrtrunc.ev_count++;
1039 1.1 riastrad goto out1;
1040 1.1 riastrad }
1041 1.1 riastrad fullyused = true;
1042 1.1 riastrad
1043 1.62 riastrad /*
1044 1.62 riastrad * Count up what we can contribute.
1045 1.62 riastrad *
1046 1.62 riastrad * We don't count samples while cold because entropy_timer
1047 1.62 riastrad * might still be returning zero if there's no CPU cycle
1048 1.62 riastrad * counter.
1049 1.62 riastrad */
1050 1.62 riastrad bitspending = ec->ec_bitspending;
1051 1.62 riastrad bitspending += MIN(MINENTROPYBITS - bitspending, nbits);
1052 1.62 riastrad atomic_store_relaxed(&ec->ec_bitspending, bitspending);
1053 1.62 riastrad if (__predict_true(count)) {
1054 1.62 riastrad samplespending = ec->ec_samplespending;
1055 1.62 riastrad samplespending += MIN(MINSAMPLES - samplespending, 1);
1056 1.62 riastrad atomic_store_relaxed(&ec->ec_samplespending, samplespending);
1057 1.62 riastrad }
1058 1.1 riastrad
1059 1.1 riastrad /* Schedule a softint if we added anything and it matters. */
1060 1.62 riastrad if (__predict_false(atomic_load_relaxed(&E->bitsneeded) ||
1061 1.1 riastrad atomic_load_relaxed(&entropy_depletion)) &&
1062 1.63 riastrad (nbits != 0 || count) &&
1063 1.63 riastrad __predict_true(!cold))
1064 1.63 riastrad softint_schedule(entropy_sih);
1065 1.1 riastrad
1066 1.1 riastrad out1: /* Release the per-CPU state. */
1067 1.1 riastrad KASSERT(ec->ec_locked);
1068 1.1 riastrad __insn_barrier();
1069 1.1 riastrad ec->ec_locked = false;
1070 1.1 riastrad out0: percpu_putref(entropy_percpu);
1071 1.63 riastrad splx(s);
1072 1.1 riastrad
1073 1.1 riastrad return fullyused;
1074 1.1 riastrad }
1075 1.1 riastrad
1076 1.1 riastrad /*
1077 1.1 riastrad * entropy_softintr(cookie)
1078 1.1 riastrad *
1079 1.1 riastrad * Soft interrupt handler for entering entropy. Takes care of
1080 1.1 riastrad * stirring the local CPU's entropy pool if it filled up during
1081 1.1 riastrad * hard interrupts, and promptly crediting entropy from the local
1082 1.1 riastrad * CPU's entropy pool to the global entropy pool if needed.
1083 1.1 riastrad */
1084 1.1 riastrad static void
1085 1.1 riastrad entropy_softintr(void *cookie)
1086 1.1 riastrad {
1087 1.43 riastrad struct entropy_cpu_lock lock;
1088 1.1 riastrad struct entropy_cpu *ec;
1089 1.62 riastrad unsigned bitspending, samplespending;
1090 1.1 riastrad
1091 1.1 riastrad /*
1092 1.43 riastrad * With the per-CPU state locked, stir the pool if necessary
1093 1.43 riastrad * and determine if there's any pending entropy on this CPU to
1094 1.43 riastrad * account globally.
1095 1.1 riastrad */
1096 1.43 riastrad ec = entropy_cpu_get(&lock);
1097 1.40 riastrad ec->ec_evcnt->softint.ev_count++;
1098 1.1 riastrad entpool_stir(ec->ec_pool);
1099 1.62 riastrad bitspending = ec->ec_bitspending;
1100 1.62 riastrad samplespending = ec->ec_samplespending;
1101 1.43 riastrad entropy_cpu_put(&lock, ec);
1102 1.42 riastrad
1103 1.42 riastrad /* Consolidate globally if appropriate based on what we added. */
1104 1.62 riastrad if (bitspending > 0 || samplespending >= MINSAMPLES)
1105 1.42 riastrad entropy_account_cpu(ec);
1106 1.1 riastrad }
1107 1.1 riastrad
1108 1.1 riastrad /*
1109 1.1 riastrad * entropy_thread(cookie)
1110 1.1 riastrad *
1111 1.1 riastrad * Handle any asynchronous entropy housekeeping.
1112 1.1 riastrad */
1113 1.1 riastrad static void
1114 1.1 riastrad entropy_thread(void *cookie)
1115 1.1 riastrad {
1116 1.3 riastrad bool consolidate;
1117 1.1 riastrad
1118 1.63 riastrad KASSERT(!cold);
1119 1.63 riastrad
1120 1.1 riastrad for (;;) {
1121 1.1 riastrad /*
1122 1.3 riastrad * Wait until there's full entropy somewhere among the
1123 1.3 riastrad * CPUs, as confirmed at most once per minute, or
1124 1.3 riastrad * someone wants to consolidate.
1125 1.1 riastrad */
1126 1.62 riastrad if (entropy_pending()) {
1127 1.3 riastrad consolidate = true;
1128 1.3 riastrad } else {
1129 1.3 riastrad mutex_enter(&E->lock);
1130 1.3 riastrad if (!E->consolidate)
1131 1.3 riastrad cv_timedwait(&E->cv, &E->lock, 60*hz);
1132 1.3 riastrad consolidate = E->consolidate;
1133 1.3 riastrad E->consolidate = false;
1134 1.3 riastrad mutex_exit(&E->lock);
1135 1.1 riastrad }
1136 1.1 riastrad
1137 1.3 riastrad if (consolidate) {
1138 1.3 riastrad /* Do it. */
1139 1.13 riastrad entropy_do_consolidate();
1140 1.1 riastrad
1141 1.3 riastrad /* Mitigate abuse. */
1142 1.3 riastrad kpause("entropy", false, hz, NULL);
1143 1.3 riastrad }
1144 1.1 riastrad }
1145 1.1 riastrad }
1146 1.1 riastrad
1147 1.62 riastrad struct entropy_pending_count {
1148 1.62 riastrad uint32_t bitspending;
1149 1.62 riastrad uint32_t samplespending;
1150 1.62 riastrad };
1151 1.62 riastrad
1152 1.1 riastrad /*
1153 1.1 riastrad * entropy_pending()
1154 1.1 riastrad *
1155 1.62 riastrad * True if enough bits or samples are pending on other CPUs to
1156 1.62 riastrad * warrant consolidation.
1157 1.1 riastrad */
1158 1.62 riastrad static bool
1159 1.1 riastrad entropy_pending(void)
1160 1.1 riastrad {
1161 1.62 riastrad struct entropy_pending_count count = { 0, 0 }, *C = &count;
1162 1.1 riastrad
1163 1.62 riastrad percpu_foreach(entropy_percpu, &entropy_pending_cpu, C);
1164 1.62 riastrad return C->bitspending >= MINENTROPYBITS ||
1165 1.62 riastrad C->samplespending >= MINSAMPLES;
1166 1.1 riastrad }
1167 1.1 riastrad
1168 1.1 riastrad static void
1169 1.1 riastrad entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
1170 1.1 riastrad {
1171 1.1 riastrad struct entropy_cpu *ec = ptr;
1172 1.62 riastrad struct entropy_pending_count *C = cookie;
1173 1.62 riastrad uint32_t cpu_bitspending;
1174 1.62 riastrad uint32_t cpu_samplespending;
1175 1.62 riastrad
1176 1.62 riastrad cpu_bitspending = atomic_load_relaxed(&ec->ec_bitspending);
1177 1.62 riastrad cpu_samplespending = atomic_load_relaxed(&ec->ec_samplespending);
1178 1.62 riastrad C->bitspending += MIN(MINENTROPYBITS - C->bitspending,
1179 1.62 riastrad cpu_bitspending);
1180 1.62 riastrad C->samplespending += MIN(MINSAMPLES - C->samplespending,
1181 1.62 riastrad cpu_samplespending);
1182 1.1 riastrad }
1183 1.1 riastrad
1184 1.1 riastrad /*
1185 1.13 riastrad * entropy_do_consolidate()
1186 1.1 riastrad *
1187 1.1 riastrad * Issue a cross-call to gather entropy on all CPUs and advance
1188 1.1 riastrad * the entropy epoch.
1189 1.1 riastrad */
1190 1.1 riastrad static void
1191 1.13 riastrad entropy_do_consolidate(void)
1192 1.1 riastrad {
1193 1.1 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1194 1.1 riastrad static struct timeval lasttime; /* serialized by E->lock */
1195 1.19 riastrad struct entpool pool;
1196 1.19 riastrad uint8_t buf[ENTPOOL_CAPACITY];
1197 1.62 riastrad unsigned bitsdiff, samplesdiff;
1198 1.1 riastrad uint64_t ticket;
1199 1.1 riastrad
1200 1.63 riastrad KASSERT(!cold);
1201 1.63 riastrad ASSERT_SLEEPABLE();
1202 1.63 riastrad
1203 1.19 riastrad /* Gather entropy on all CPUs into a temporary pool. */
1204 1.19 riastrad memset(&pool, 0, sizeof pool);
1205 1.19 riastrad ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
1206 1.1 riastrad xc_wait(ticket);
1207 1.1 riastrad
1208 1.1 riastrad /* Acquire the lock to notify waiters. */
1209 1.1 riastrad mutex_enter(&E->lock);
1210 1.1 riastrad
1211 1.1 riastrad /* Count another consolidation. */
1212 1.1 riastrad entropy_consolidate_evcnt.ev_count++;
1213 1.1 riastrad
1214 1.1 riastrad /* Note when we last consolidated, i.e. now. */
1215 1.1 riastrad E->timestamp = time_uptime;
1216 1.1 riastrad
1217 1.19 riastrad /* Mix what we gathered into the global pool. */
1218 1.19 riastrad entpool_extract(&pool, buf, sizeof buf);
1219 1.19 riastrad entpool_enter(&E->pool, buf, sizeof buf);
1220 1.19 riastrad explicit_memset(&pool, 0, sizeof pool);
1221 1.19 riastrad
1222 1.1 riastrad /* Count the entropy that was gathered. */
1223 1.62 riastrad bitsdiff = MIN(E->bitsneeded, E->bitspending);
1224 1.62 riastrad atomic_store_relaxed(&E->bitsneeded, E->bitsneeded - bitsdiff);
1225 1.62 riastrad E->bitspending -= bitsdiff;
1226 1.62 riastrad if (__predict_false(E->bitsneeded > 0) && bitsdiff != 0) {
1227 1.50 riastrad if ((boothowto & AB_DEBUG) != 0 &&
1228 1.50 riastrad ratecheck(&lasttime, &interval)) {
1229 1.50 riastrad printf("WARNING:"
1230 1.1 riastrad " consolidating less than full entropy\n");
1231 1.30 jmcneill }
1232 1.1 riastrad }
1233 1.1 riastrad
1234 1.62 riastrad samplesdiff = MIN(E->samplesneeded, E->samplespending);
1235 1.62 riastrad atomic_store_relaxed(&E->samplesneeded,
1236 1.62 riastrad E->samplesneeded - samplesdiff);
1237 1.62 riastrad E->samplespending -= samplesdiff;
1238 1.62 riastrad
1239 1.1 riastrad /* Advance the epoch and notify waiters. */
1240 1.1 riastrad entropy_notify();
1241 1.1 riastrad
1242 1.1 riastrad /* Release the lock. */
1243 1.1 riastrad mutex_exit(&E->lock);
1244 1.1 riastrad }
1245 1.1 riastrad
1246 1.1 riastrad /*
1247 1.20 riastrad * entropy_consolidate_xc(vpool, arg2)
1248 1.1 riastrad *
1249 1.1 riastrad * Extract output from the local CPU's input pool and enter it
1250 1.20 riastrad * into a temporary pool passed as vpool.
1251 1.1 riastrad */
1252 1.1 riastrad static void
1253 1.19 riastrad entropy_consolidate_xc(void *vpool, void *arg2 __unused)
1254 1.1 riastrad {
1255 1.19 riastrad struct entpool *pool = vpool;
1256 1.43 riastrad struct entropy_cpu_lock lock;
1257 1.1 riastrad struct entropy_cpu *ec;
1258 1.1 riastrad uint8_t buf[ENTPOOL_CAPACITY];
1259 1.1 riastrad uint32_t extra[7];
1260 1.1 riastrad unsigned i = 0;
1261 1.1 riastrad
1262 1.1 riastrad /* Grab CPU number and cycle counter to mix extra into the pool. */
1263 1.1 riastrad extra[i++] = cpu_number();
1264 1.1 riastrad extra[i++] = entropy_timer();
1265 1.1 riastrad
1266 1.1 riastrad /*
1267 1.43 riastrad * With the per-CPU state locked, extract from the per-CPU pool
1268 1.43 riastrad * and count it as no longer pending.
1269 1.1 riastrad */
1270 1.43 riastrad ec = entropy_cpu_get(&lock);
1271 1.1 riastrad extra[i++] = entropy_timer();
1272 1.1 riastrad entpool_extract(ec->ec_pool, buf, sizeof buf);
1273 1.62 riastrad atomic_store_relaxed(&ec->ec_bitspending, 0);
1274 1.62 riastrad atomic_store_relaxed(&ec->ec_samplespending, 0);
1275 1.1 riastrad extra[i++] = entropy_timer();
1276 1.43 riastrad entropy_cpu_put(&lock, ec);
1277 1.1 riastrad extra[i++] = entropy_timer();
1278 1.1 riastrad
1279 1.1 riastrad /*
1280 1.1 riastrad * Copy over statistics, and enter the per-CPU extract and the
1281 1.19 riastrad * extra timing into the temporary pool, under the global lock.
1282 1.1 riastrad */
1283 1.1 riastrad mutex_enter(&E->lock);
1284 1.1 riastrad extra[i++] = entropy_timer();
1285 1.19 riastrad entpool_enter(pool, buf, sizeof buf);
1286 1.1 riastrad explicit_memset(buf, 0, sizeof buf);
1287 1.1 riastrad extra[i++] = entropy_timer();
1288 1.1 riastrad KASSERT(i == __arraycount(extra));
1289 1.19 riastrad entpool_enter(pool, extra, sizeof extra);
1290 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
1291 1.1 riastrad mutex_exit(&E->lock);
1292 1.1 riastrad }
1293 1.1 riastrad
1294 1.1 riastrad /*
1295 1.1 riastrad * entropy_notify()
1296 1.1 riastrad *
1297 1.1 riastrad * Caller just contributed entropy to the global pool. Advance
1298 1.1 riastrad * the entropy epoch and notify waiters.
1299 1.1 riastrad *
1300 1.62 riastrad * Caller must hold the global entropy lock.
1301 1.1 riastrad */
1302 1.1 riastrad static void
1303 1.1 riastrad entropy_notify(void)
1304 1.1 riastrad {
1305 1.12 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1306 1.12 riastrad static struct timeval lasttime; /* serialized by E->lock */
1307 1.62 riastrad static bool ready = false, besteffort = false;
1308 1.1 riastrad unsigned epoch;
1309 1.1 riastrad
1310 1.63 riastrad KASSERT(__predict_false(cold) || mutex_owned(&E->lock));
1311 1.1 riastrad
1312 1.1 riastrad /*
1313 1.1 riastrad * If this is the first time, print a message to the console
1314 1.1 riastrad * that we're ready so operators can compare it to the timing
1315 1.1 riastrad * of other events.
1316 1.62 riastrad *
1317 1.62 riastrad * If we didn't get full entropy from reliable sources, report
1318 1.62 riastrad * instead that we are running on fumes with best effort. (If
1319 1.62 riastrad * we ever do get full entropy after that, print the ready
1320 1.62 riastrad * message once.)
1321 1.62 riastrad */
1322 1.62 riastrad if (__predict_false(!ready)) {
1323 1.62 riastrad if (E->bitsneeded == 0) {
1324 1.62 riastrad printf("entropy: ready\n");
1325 1.62 riastrad ready = true;
1326 1.62 riastrad } else if (E->samplesneeded == 0 && !besteffort) {
1327 1.62 riastrad printf("entropy: best effort\n");
1328 1.62 riastrad besteffort = true;
1329 1.62 riastrad }
1330 1.62 riastrad }
1331 1.1 riastrad
1332 1.1 riastrad /* Set the epoch; roll over from UINTMAX-1 to 1. */
1333 1.12 riastrad if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
1334 1.12 riastrad ratecheck(&lasttime, &interval)) {
1335 1.12 riastrad epoch = E->epoch + 1;
1336 1.12 riastrad if (epoch == 0 || epoch == (unsigned)-1)
1337 1.12 riastrad epoch = 1;
1338 1.12 riastrad atomic_store_relaxed(&E->epoch, epoch);
1339 1.12 riastrad }
1340 1.41 riastrad KASSERT(E->epoch != (unsigned)-1);
1341 1.1 riastrad
1342 1.1 riastrad /* Notify waiters. */
1343 1.63 riastrad if (__predict_true(!cold)) {
1344 1.1 riastrad cv_broadcast(&E->cv);
1345 1.1 riastrad selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
1346 1.1 riastrad }
1347 1.1 riastrad
1348 1.1 riastrad /* Count another notification. */
1349 1.1 riastrad entropy_notify_evcnt.ev_count++;
1350 1.1 riastrad }
1351 1.1 riastrad
1352 1.1 riastrad /*
1353 1.13 riastrad * entropy_consolidate()
1354 1.13 riastrad *
1355 1.13 riastrad * Trigger entropy consolidation and wait for it to complete.
1356 1.13 riastrad *
1357 1.13 riastrad * This should be used sparingly, not periodically -- requiring
1358 1.13 riastrad * conscious intervention by the operator or a clear policy
1359 1.13 riastrad * decision. Otherwise, the kernel will automatically consolidate
1360 1.13 riastrad * when enough entropy has been gathered into per-CPU pools to
1361 1.13 riastrad * transition to full entropy.
1362 1.13 riastrad */
1363 1.13 riastrad void
1364 1.13 riastrad entropy_consolidate(void)
1365 1.13 riastrad {
1366 1.13 riastrad uint64_t ticket;
1367 1.13 riastrad int error;
1368 1.13 riastrad
1369 1.63 riastrad KASSERT(!cold);
1370 1.63 riastrad ASSERT_SLEEPABLE();
1371 1.13 riastrad
1372 1.13 riastrad mutex_enter(&E->lock);
1373 1.13 riastrad ticket = entropy_consolidate_evcnt.ev_count;
1374 1.13 riastrad E->consolidate = true;
1375 1.13 riastrad cv_broadcast(&E->cv);
1376 1.13 riastrad while (ticket == entropy_consolidate_evcnt.ev_count) {
1377 1.13 riastrad error = cv_wait_sig(&E->cv, &E->lock);
1378 1.13 riastrad if (error)
1379 1.13 riastrad break;
1380 1.13 riastrad }
1381 1.13 riastrad mutex_exit(&E->lock);
1382 1.13 riastrad }
1383 1.13 riastrad
1384 1.13 riastrad /*
1385 1.1 riastrad * sysctl -w kern.entropy.consolidate=1
1386 1.1 riastrad *
1387 1.1 riastrad * Trigger entropy consolidation and wait for it to complete.
1388 1.13 riastrad * Writable only by superuser. This, writing to /dev/random, and
1389 1.13 riastrad * ioctl(RNDADDDATA) are the only ways for the system to
1390 1.13 riastrad * consolidate entropy if the operator knows something the kernel
1391 1.13 riastrad * doesn't about how unpredictable the pending entropy pools are.
1392 1.1 riastrad */
1393 1.1 riastrad static int
1394 1.1 riastrad sysctl_entropy_consolidate(SYSCTLFN_ARGS)
1395 1.1 riastrad {
1396 1.1 riastrad struct sysctlnode node = *rnode;
1397 1.57 riastrad int arg = 0;
1398 1.1 riastrad int error;
1399 1.1 riastrad
1400 1.1 riastrad node.sysctl_data = &arg;
1401 1.1 riastrad error = sysctl_lookup(SYSCTLFN_CALL(&node));
1402 1.1 riastrad if (error || newp == NULL)
1403 1.1 riastrad return error;
1404 1.13 riastrad if (arg)
1405 1.13 riastrad entropy_consolidate();
1406 1.1 riastrad
1407 1.1 riastrad return error;
1408 1.1 riastrad }
1409 1.1 riastrad
1410 1.1 riastrad /*
1411 1.10 riastrad * sysctl -w kern.entropy.gather=1
1412 1.10 riastrad *
1413 1.10 riastrad * Trigger gathering entropy from all on-demand sources, and wait
1414 1.10 riastrad * for synchronous sources (but not asynchronous sources) to
1415 1.10 riastrad * complete. Writable only by superuser.
1416 1.10 riastrad */
1417 1.10 riastrad static int
1418 1.10 riastrad sysctl_entropy_gather(SYSCTLFN_ARGS)
1419 1.10 riastrad {
1420 1.10 riastrad struct sysctlnode node = *rnode;
1421 1.57 riastrad int arg = 0;
1422 1.10 riastrad int error;
1423 1.10 riastrad
1424 1.10 riastrad node.sysctl_data = &arg;
1425 1.10 riastrad error = sysctl_lookup(SYSCTLFN_CALL(&node));
1426 1.10 riastrad if (error || newp == NULL)
1427 1.10 riastrad return error;
1428 1.10 riastrad if (arg) {
1429 1.10 riastrad mutex_enter(&E->lock);
1430 1.49 riastrad error = entropy_request(ENTROPY_CAPACITY,
1431 1.49 riastrad ENTROPY_WAIT|ENTROPY_SIG);
1432 1.10 riastrad mutex_exit(&E->lock);
1433 1.10 riastrad }
1434 1.10 riastrad
1435 1.10 riastrad return 0;
1436 1.10 riastrad }
1437 1.10 riastrad
1438 1.10 riastrad /*
1439 1.1 riastrad * entropy_extract(buf, len, flags)
1440 1.1 riastrad *
1441 1.1 riastrad * Extract len bytes from the global entropy pool into buf.
1442 1.1 riastrad *
1443 1.55 riastrad * Caller MUST NOT expose these bytes directly -- must use them
1444 1.55 riastrad * ONLY to seed a cryptographic pseudorandom number generator
1445 1.55 riastrad * (`CPRNG'), a.k.a. deterministic random bit generator (`DRBG'),
1446 1.55 riastrad * and then erase them. entropy_extract does not, on its own,
1447 1.55 riastrad * provide backtracking resistance -- it must be combined with a
1448 1.55 riastrad * PRNG/DRBG that does.
1449 1.55 riastrad *
1450 1.63 riastrad * This may be used very early at boot, before even entropy_init
1451 1.63 riastrad * has been called.
1452 1.63 riastrad *
1453 1.55 riastrad * You generally shouldn't use this directly -- use cprng(9)
1454 1.55 riastrad * instead.
1455 1.55 riastrad *
1456 1.1 riastrad * Flags may have:
1457 1.1 riastrad *
1458 1.1 riastrad * ENTROPY_WAIT Wait for entropy if not available yet.
1459 1.1 riastrad * ENTROPY_SIG Allow interruption by a signal during wait.
1460 1.23 riastrad * ENTROPY_HARDFAIL Either fill the buffer with full entropy,
1461 1.23 riastrad * or fail without filling it at all.
1462 1.1 riastrad *
1463 1.1 riastrad * Return zero on success, or error on failure:
1464 1.1 riastrad *
1465 1.1 riastrad * EWOULDBLOCK No entropy and ENTROPY_WAIT not set.
1466 1.1 riastrad * EINTR/ERESTART No entropy, ENTROPY_SIG set, and interrupted.
1467 1.1 riastrad *
1468 1.1 riastrad * If ENTROPY_WAIT is set, allowed only in thread context. If
1469 1.56 riastrad * ENTROPY_WAIT is not set, allowed also in softint context.
1470 1.56 riastrad * Forbidden in hard interrupt context.
1471 1.1 riastrad */
1472 1.1 riastrad int
1473 1.1 riastrad entropy_extract(void *buf, size_t len, int flags)
1474 1.1 riastrad {
1475 1.1 riastrad static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1476 1.1 riastrad static struct timeval lasttime; /* serialized by E->lock */
1477 1.62 riastrad bool printed = false;
1478 1.63 riastrad int s = -1/*XXXGCC*/, error;
1479 1.1 riastrad
1480 1.1 riastrad if (ISSET(flags, ENTROPY_WAIT)) {
1481 1.1 riastrad ASSERT_SLEEPABLE();
1482 1.63 riastrad KASSERT(!cold);
1483 1.1 riastrad }
1484 1.1 riastrad
1485 1.35 riastrad /* Refuse to operate in interrupt context. */
1486 1.35 riastrad KASSERT(!cpu_intr_p());
1487 1.35 riastrad
1488 1.63 riastrad /*
1489 1.63 riastrad * If we're cold, we are only contending with interrupts on the
1490 1.63 riastrad * current CPU, so block them. Otherwise, we are _not_
1491 1.63 riastrad * contending with interrupts on the current CPU, but we are
1492 1.63 riastrad * contending with other threads, to exclude them with a mutex.
1493 1.63 riastrad */
1494 1.63 riastrad if (__predict_false(cold))
1495 1.63 riastrad s = splhigh();
1496 1.63 riastrad else
1497 1.1 riastrad mutex_enter(&E->lock);
1498 1.1 riastrad
1499 1.1 riastrad /* Wait until there is enough entropy in the system. */
1500 1.1 riastrad error = 0;
1501 1.62 riastrad if (E->bitsneeded > 0 && E->samplesneeded == 0) {
1502 1.62 riastrad /*
1503 1.62 riastrad * We don't have full entropy from reliable sources,
1504 1.62 riastrad * but we gathered a plausible number of samples from
1505 1.62 riastrad * other sources such as timers. Try asking for more
1506 1.62 riastrad * from any sources we can, but don't worry if it
1507 1.62 riastrad * fails -- best effort.
1508 1.62 riastrad */
1509 1.62 riastrad (void)entropy_request(ENTROPY_CAPACITY, flags);
1510 1.62 riastrad } else while (E->bitsneeded > 0 && E->samplesneeded > 0) {
1511 1.1 riastrad /* Ask for more, synchronously if possible. */
1512 1.49 riastrad error = entropy_request(len, flags);
1513 1.49 riastrad if (error)
1514 1.49 riastrad break;
1515 1.1 riastrad
1516 1.1 riastrad /* If we got enough, we're done. */
1517 1.62 riastrad if (E->bitsneeded == 0 || E->samplesneeded == 0) {
1518 1.1 riastrad KASSERT(error == 0);
1519 1.1 riastrad break;
1520 1.1 riastrad }
1521 1.1 riastrad
1522 1.1 riastrad /* If not waiting, stop here. */
1523 1.1 riastrad if (!ISSET(flags, ENTROPY_WAIT)) {
1524 1.1 riastrad error = EWOULDBLOCK;
1525 1.1 riastrad break;
1526 1.1 riastrad }
1527 1.1 riastrad
1528 1.1 riastrad /* Wait for some entropy to come in and try again. */
1529 1.63 riastrad KASSERT(!cold);
1530 1.62 riastrad if (!printed) {
1531 1.62 riastrad printf("entropy: pid %d (%s) waiting for entropy(7)\n",
1532 1.62 riastrad curproc->p_pid, curproc->p_comm);
1533 1.62 riastrad printed = true;
1534 1.62 riastrad }
1535 1.24 gson
1536 1.1 riastrad if (ISSET(flags, ENTROPY_SIG)) {
1537 1.62 riastrad error = cv_timedwait_sig(&E->cv, &E->lock, hz);
1538 1.62 riastrad if (error && error != EWOULDBLOCK)
1539 1.1 riastrad break;
1540 1.1 riastrad } else {
1541 1.62 riastrad cv_timedwait(&E->cv, &E->lock, hz);
1542 1.1 riastrad }
1543 1.1 riastrad }
1544 1.1 riastrad
1545 1.23 riastrad /*
1546 1.23 riastrad * Count failure -- but fill the buffer nevertheless, unless
1547 1.23 riastrad * the caller specified ENTROPY_HARDFAIL.
1548 1.23 riastrad */
1549 1.23 riastrad if (error) {
1550 1.23 riastrad if (ISSET(flags, ENTROPY_HARDFAIL))
1551 1.23 riastrad goto out;
1552 1.1 riastrad entropy_extract_fail_evcnt.ev_count++;
1553 1.23 riastrad }
1554 1.1 riastrad
1555 1.1 riastrad /*
1556 1.62 riastrad * Report a warning if we haven't yet reached full entropy.
1557 1.1 riastrad * This is the only case where we consider entropy to be
1558 1.1 riastrad * `depleted' without kern.entropy.depletion enabled -- when we
1559 1.1 riastrad * only have partial entropy, an adversary may be able to
1560 1.1 riastrad * narrow the state of the pool down to a small number of
1561 1.1 riastrad * possibilities; the output then enables them to confirm a
1562 1.1 riastrad * guess, reducing its entropy from the adversary's perspective
1563 1.1 riastrad * to zero.
1564 1.62 riastrad *
1565 1.62 riastrad * This should only happen if the operator has chosen to
1566 1.62 riastrad * consolidate, either through sysctl kern.entropy.consolidate
1567 1.62 riastrad * or by writing less than full entropy to /dev/random as root
1568 1.62 riastrad * (which /dev/random promises will immediately affect
1569 1.62 riastrad * subsequent output, for better or worse).
1570 1.1 riastrad */
1571 1.62 riastrad if (E->bitsneeded > 0 && E->samplesneeded > 0) {
1572 1.62 riastrad if (__predict_false(E->epoch == (unsigned)-1) &&
1573 1.62 riastrad ratecheck(&lasttime, &interval)) {
1574 1.50 riastrad printf("WARNING:"
1575 1.50 riastrad " system needs entropy for security;"
1576 1.50 riastrad " see entropy(7)\n");
1577 1.62 riastrad }
1578 1.62 riastrad atomic_store_relaxed(&E->bitsneeded, MINENTROPYBITS);
1579 1.62 riastrad atomic_store_relaxed(&E->samplesneeded, MINSAMPLES);
1580 1.1 riastrad }
1581 1.1 riastrad
1582 1.1 riastrad /* Extract data from the pool, and `deplete' if we're doing that. */
1583 1.1 riastrad entpool_extract(&E->pool, buf, len);
1584 1.1 riastrad if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
1585 1.1 riastrad error == 0) {
1586 1.1 riastrad unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
1587 1.62 riastrad unsigned bitsneeded = E->bitsneeded;
1588 1.62 riastrad unsigned samplesneeded = E->samplesneeded;
1589 1.1 riastrad
1590 1.62 riastrad bitsneeded += MIN(MINENTROPYBITS - bitsneeded, cost);
1591 1.62 riastrad samplesneeded += MIN(MINSAMPLES - samplesneeded, cost);
1592 1.62 riastrad
1593 1.62 riastrad atomic_store_relaxed(&E->bitsneeded, bitsneeded);
1594 1.62 riastrad atomic_store_relaxed(&E->samplesneeded, samplesneeded);
1595 1.1 riastrad entropy_deplete_evcnt.ev_count++;
1596 1.1 riastrad }
1597 1.1 riastrad
1598 1.23 riastrad out: /* Release the global lock and return the error. */
1599 1.63 riastrad if (__predict_false(cold))
1600 1.63 riastrad splx(s);
1601 1.63 riastrad else
1602 1.1 riastrad mutex_exit(&E->lock);
1603 1.1 riastrad return error;
1604 1.1 riastrad }
1605 1.1 riastrad
1606 1.1 riastrad /*
1607 1.1 riastrad * entropy_poll(events)
1608 1.1 riastrad *
1609 1.1 riastrad * Return the subset of events ready, and if it is not all of
1610 1.1 riastrad * events, record curlwp as waiting for entropy.
1611 1.1 riastrad */
1612 1.1 riastrad int
1613 1.1 riastrad entropy_poll(int events)
1614 1.1 riastrad {
1615 1.1 riastrad int revents = 0;
1616 1.1 riastrad
1617 1.63 riastrad KASSERT(!cold);
1618 1.1 riastrad
1619 1.1 riastrad /* Always ready for writing. */
1620 1.1 riastrad revents |= events & (POLLOUT|POLLWRNORM);
1621 1.1 riastrad
1622 1.1 riastrad /* Narrow it down to reads. */
1623 1.1 riastrad events &= POLLIN|POLLRDNORM;
1624 1.1 riastrad if (events == 0)
1625 1.1 riastrad return revents;
1626 1.1 riastrad
1627 1.1 riastrad /*
1628 1.1 riastrad * If we have reached full entropy and we're not depleting
1629 1.1 riastrad * entropy, we are forever ready.
1630 1.1 riastrad */
1631 1.62 riastrad if (__predict_true(atomic_load_relaxed(&E->bitsneeded) == 0 ||
1632 1.62 riastrad atomic_load_relaxed(&E->samplesneeded) == 0) &&
1633 1.1 riastrad __predict_true(!atomic_load_relaxed(&entropy_depletion)))
1634 1.1 riastrad return revents | events;
1635 1.1 riastrad
1636 1.1 riastrad /*
1637 1.1 riastrad * Otherwise, check whether we need entropy under the lock. If
1638 1.1 riastrad * we don't, we're ready; if we do, add ourselves to the queue.
1639 1.1 riastrad */
1640 1.1 riastrad mutex_enter(&E->lock);
1641 1.62 riastrad if (E->bitsneeded == 0 || E->samplesneeded == 0)
1642 1.1 riastrad revents |= events;
1643 1.1 riastrad else
1644 1.1 riastrad selrecord(curlwp, &E->selq);
1645 1.1 riastrad mutex_exit(&E->lock);
1646 1.1 riastrad
1647 1.1 riastrad return revents;
1648 1.1 riastrad }
1649 1.1 riastrad
1650 1.1 riastrad /*
1651 1.1 riastrad * filt_entropy_read_detach(kn)
1652 1.1 riastrad *
1653 1.1 riastrad * struct filterops::f_detach callback for entropy read events:
1654 1.1 riastrad * remove kn from the list of waiters.
1655 1.1 riastrad */
1656 1.1 riastrad static void
1657 1.1 riastrad filt_entropy_read_detach(struct knote *kn)
1658 1.1 riastrad {
1659 1.1 riastrad
1660 1.63 riastrad KASSERT(!cold);
1661 1.1 riastrad
1662 1.1 riastrad mutex_enter(&E->lock);
1663 1.25 thorpej selremove_knote(&E->selq, kn);
1664 1.1 riastrad mutex_exit(&E->lock);
1665 1.1 riastrad }
1666 1.1 riastrad
1667 1.1 riastrad /*
1668 1.1 riastrad * filt_entropy_read_event(kn, hint)
1669 1.1 riastrad *
1670 1.1 riastrad * struct filterops::f_event callback for entropy read events:
1671 1.1 riastrad * poll for entropy. Caller must hold the global entropy lock if
1672 1.1 riastrad * hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
1673 1.1 riastrad */
1674 1.1 riastrad static int
1675 1.1 riastrad filt_entropy_read_event(struct knote *kn, long hint)
1676 1.1 riastrad {
1677 1.1 riastrad int ret;
1678 1.1 riastrad
1679 1.63 riastrad KASSERT(!cold);
1680 1.1 riastrad
1681 1.1 riastrad /* Acquire the lock, if caller is outside entropy subsystem. */
1682 1.1 riastrad if (hint == NOTE_SUBMIT)
1683 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1684 1.1 riastrad else
1685 1.1 riastrad mutex_enter(&E->lock);
1686 1.1 riastrad
1687 1.1 riastrad /*
1688 1.1 riastrad * If we still need entropy, can't read anything; if not, can
1689 1.1 riastrad * read arbitrarily much.
1690 1.1 riastrad */
1691 1.62 riastrad if (E->bitsneeded != 0 && E->samplesneeded != 0) {
1692 1.1 riastrad ret = 0;
1693 1.1 riastrad } else {
1694 1.1 riastrad if (atomic_load_relaxed(&entropy_depletion))
1695 1.58 riastrad kn->kn_data = ENTROPY_CAPACITY; /* bytes */
1696 1.1 riastrad else
1697 1.1 riastrad kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
1698 1.1 riastrad ret = 1;
1699 1.1 riastrad }
1700 1.1 riastrad
1701 1.1 riastrad /* Release the lock, if caller is outside entropy subsystem. */
1702 1.1 riastrad if (hint == NOTE_SUBMIT)
1703 1.1 riastrad KASSERT(mutex_owned(&E->lock));
1704 1.1 riastrad else
1705 1.1 riastrad mutex_exit(&E->lock);
1706 1.1 riastrad
1707 1.1 riastrad return ret;
1708 1.1 riastrad }
1709 1.1 riastrad
1710 1.33 thorpej /* XXX Makes sense only for /dev/u?random. */
1711 1.1 riastrad static const struct filterops entropy_read_filtops = {
1712 1.33 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1713 1.1 riastrad .f_attach = NULL,
1714 1.1 riastrad .f_detach = filt_entropy_read_detach,
1715 1.1 riastrad .f_event = filt_entropy_read_event,
1716 1.1 riastrad };
1717 1.1 riastrad
1718 1.1 riastrad /*
1719 1.1 riastrad * entropy_kqfilter(kn)
1720 1.1 riastrad *
1721 1.1 riastrad * Register kn to receive entropy event notifications. May be
1722 1.1 riastrad * EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
1723 1.1 riastrad */
1724 1.1 riastrad int
1725 1.1 riastrad entropy_kqfilter(struct knote *kn)
1726 1.1 riastrad {
1727 1.1 riastrad
1728 1.63 riastrad KASSERT(!cold);
1729 1.1 riastrad
1730 1.1 riastrad switch (kn->kn_filter) {
1731 1.1 riastrad case EVFILT_READ:
1732 1.1 riastrad /* Enter into the global select queue. */
1733 1.1 riastrad mutex_enter(&E->lock);
1734 1.1 riastrad kn->kn_fop = &entropy_read_filtops;
1735 1.25 thorpej selrecord_knote(&E->selq, kn);
1736 1.1 riastrad mutex_exit(&E->lock);
1737 1.1 riastrad return 0;
1738 1.1 riastrad case EVFILT_WRITE:
1739 1.1 riastrad /* Can always dump entropy into the system. */
1740 1.1 riastrad kn->kn_fop = &seltrue_filtops;
1741 1.1 riastrad return 0;
1742 1.1 riastrad default:
1743 1.1 riastrad return EINVAL;
1744 1.1 riastrad }
1745 1.1 riastrad }
1746 1.1 riastrad
1747 1.1 riastrad /*
1748 1.1 riastrad * rndsource_setcb(rs, get, getarg)
1749 1.1 riastrad *
1750 1.1 riastrad * Set the request callback for the entropy source rs, if it can
1751 1.1 riastrad * provide entropy on demand. Must precede rnd_attach_source.
1752 1.1 riastrad */
1753 1.1 riastrad void
1754 1.1 riastrad rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
1755 1.1 riastrad void *getarg)
1756 1.1 riastrad {
1757 1.1 riastrad
1758 1.1 riastrad rs->get = get;
1759 1.1 riastrad rs->getarg = getarg;
1760 1.1 riastrad }
1761 1.1 riastrad
1762 1.1 riastrad /*
1763 1.1 riastrad * rnd_attach_source(rs, name, type, flags)
1764 1.1 riastrad *
1765 1.1 riastrad * Attach the entropy source rs. Must be done after
1766 1.1 riastrad * rndsource_setcb, if any, and before any calls to rnd_add_data.
1767 1.1 riastrad */
1768 1.1 riastrad void
1769 1.1 riastrad rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
1770 1.1 riastrad uint32_t flags)
1771 1.1 riastrad {
1772 1.1 riastrad uint32_t extra[4];
1773 1.1 riastrad unsigned i = 0;
1774 1.1 riastrad
1775 1.59 riastrad KASSERTMSG(name[0] != '\0', "rndsource must have nonempty name");
1776 1.59 riastrad
1777 1.1 riastrad /* Grab cycle counter to mix extra into the pool. */
1778 1.1 riastrad extra[i++] = entropy_timer();
1779 1.1 riastrad
1780 1.1 riastrad /*
1781 1.1 riastrad * Apply some standard flags:
1782 1.1 riastrad *
1783 1.1 riastrad * - We do not bother with network devices by default, for
1784 1.1 riastrad * hysterical raisins (perhaps: because it is often the case
1785 1.1 riastrad * that an adversary can influence network packet timings).
1786 1.1 riastrad */
1787 1.1 riastrad switch (type) {
1788 1.1 riastrad case RND_TYPE_NET:
1789 1.1 riastrad flags |= RND_FLAG_NO_COLLECT;
1790 1.1 riastrad break;
1791 1.1 riastrad }
1792 1.1 riastrad
1793 1.1 riastrad /* Sanity-check the callback if RND_FLAG_HASCB is set. */
1794 1.1 riastrad KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
1795 1.1 riastrad
1796 1.1 riastrad /* Initialize the random source. */
1797 1.1 riastrad memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
1798 1.1 riastrad strlcpy(rs->name, name, sizeof(rs->name));
1799 1.28 riastrad memset(&rs->time_delta, 0, sizeof(rs->time_delta));
1800 1.28 riastrad memset(&rs->value_delta, 0, sizeof(rs->value_delta));
1801 1.9 riastrad rs->total = 0;
1802 1.1 riastrad rs->type = type;
1803 1.1 riastrad rs->flags = flags;
1804 1.63 riastrad if (entropy_percpu != NULL)
1805 1.1 riastrad rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
1806 1.1 riastrad extra[i++] = entropy_timer();
1807 1.1 riastrad
1808 1.1 riastrad /* Wire it into the global list of random sources. */
1809 1.63 riastrad if (__predict_true(!cold))
1810 1.1 riastrad mutex_enter(&E->lock);
1811 1.1 riastrad LIST_INSERT_HEAD(&E->sources, rs, list);
1812 1.63 riastrad if (__predict_true(!cold))
1813 1.1 riastrad mutex_exit(&E->lock);
1814 1.1 riastrad extra[i++] = entropy_timer();
1815 1.1 riastrad
1816 1.1 riastrad /* Request that it provide entropy ASAP, if we can. */
1817 1.1 riastrad if (ISSET(flags, RND_FLAG_HASCB))
1818 1.1 riastrad (*rs->get)(ENTROPY_CAPACITY, rs->getarg);
1819 1.1 riastrad extra[i++] = entropy_timer();
1820 1.1 riastrad
1821 1.1 riastrad /* Mix the extra into the pool. */
1822 1.1 riastrad KASSERT(i == __arraycount(extra));
1823 1.63 riastrad entropy_enter(extra, sizeof extra, 0, /*count*/__predict_true(!cold));
1824 1.1 riastrad explicit_memset(extra, 0, sizeof extra);
1825 1.1 riastrad }
1826 1.1 riastrad
1827 1.1 riastrad /*
1828 1.1 riastrad * rnd_detach_source(rs)
1829 1.1 riastrad *
1830 1.1 riastrad * Detach the entropy source rs. May sleep waiting for users to
1831 1.1 riastrad * drain. Further use is not allowed.
1832 1.1 riastrad */
1833 1.1 riastrad void
1834 1.1 riastrad rnd_detach_source(struct krndsource *rs)
1835 1.1 riastrad {
1836 1.1 riastrad
1837 1.1 riastrad /*
1838 1.1 riastrad * If we're cold (shouldn't happen, but hey), just remove it
1839 1.1 riastrad * from the list -- there's nothing allocated.
1840 1.1 riastrad */
1841 1.63 riastrad if (__predict_false(cold) && entropy_percpu == NULL) {
1842 1.1 riastrad LIST_REMOVE(rs, list);
1843 1.1 riastrad return;
1844 1.1 riastrad }
1845 1.1 riastrad
1846 1.1 riastrad /* We may have to wait for entropy_request. */
1847 1.1 riastrad ASSERT_SLEEPABLE();
1848 1.1 riastrad
1849 1.4 riastrad /* Wait until the source list is not in use, and remove it. */
1850 1.1 riastrad mutex_enter(&E->lock);
1851 1.4 riastrad while (E->sourcelock)
1852 1.27 riastrad cv_wait(&E->sourcelock_cv, &E->lock);
1853 1.1 riastrad LIST_REMOVE(rs, list);
1854 1.1 riastrad mutex_exit(&E->lock);
1855 1.1 riastrad
1856 1.1 riastrad /* Free the per-CPU data. */
1857 1.1 riastrad percpu_free(rs->state, sizeof(struct rndsource_cpu));
1858 1.1 riastrad }
1859 1.1 riastrad
1860 1.1 riastrad /*
1861 1.49 riastrad * rnd_lock_sources(flags)
1862 1.49 riastrad *
1863 1.49 riastrad * Lock the list of entropy sources. Caller must hold the global
1864 1.49 riastrad * entropy lock. If successful, no rndsource will go away until
1865 1.49 riastrad * rnd_unlock_sources even while the caller releases the global
1866 1.49 riastrad * entropy lock.
1867 1.4 riastrad *
1868 1.63 riastrad * May be called very early at boot, before entropy_init.
1869 1.63 riastrad *
1870 1.49 riastrad * If flags & ENTROPY_WAIT, wait for concurrent access to finish.
1871 1.49 riastrad * If flags & ENTROPY_SIG, allow interruption by signal.
1872 1.4 riastrad */
1873 1.49 riastrad static int __attribute__((warn_unused_result))
1874 1.49 riastrad rnd_lock_sources(int flags)
1875 1.4 riastrad {
1876 1.4 riastrad int error;
1877 1.4 riastrad
1878 1.63 riastrad KASSERT(__predict_false(cold) || mutex_owned(&E->lock));
1879 1.63 riastrad KASSERT(!cpu_intr_p());
1880 1.4 riastrad
1881 1.4 riastrad while (E->sourcelock) {
1882 1.63 riastrad KASSERT(!cold);
1883 1.49 riastrad if (!ISSET(flags, ENTROPY_WAIT))
1884 1.49 riastrad return EWOULDBLOCK;
1885 1.49 riastrad if (ISSET(flags, ENTROPY_SIG)) {
1886 1.49 riastrad error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
1887 1.49 riastrad if (error)
1888 1.49 riastrad return error;
1889 1.49 riastrad } else {
1890 1.49 riastrad cv_wait(&E->sourcelock_cv, &E->lock);
1891 1.49 riastrad }
1892 1.4 riastrad }
1893 1.4 riastrad
1894 1.4 riastrad E->sourcelock = curlwp;
1895 1.4 riastrad return 0;
1896 1.4 riastrad }
1897 1.4 riastrad
1898 1.4 riastrad /*
1899 1.4 riastrad * rnd_unlock_sources()
1900 1.4 riastrad *
1901 1.49 riastrad * Unlock the list of sources after rnd_lock_sources. Caller must
1902 1.49 riastrad * hold the global entropy lock.
1903 1.63 riastrad *
1904 1.63 riastrad * May be called very early at boot, before entropy_init.
1905 1.4 riastrad */
1906 1.4 riastrad static void
1907 1.4 riastrad rnd_unlock_sources(void)
1908 1.4 riastrad {
1909 1.4 riastrad
1910 1.63 riastrad KASSERT(__predict_false(cold) || mutex_owned(&E->lock));
1911 1.63 riastrad KASSERT(!cpu_intr_p());
1912 1.4 riastrad
1913 1.16 riastrad KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
1914 1.16 riastrad curlwp, E->sourcelock);
1915 1.4 riastrad E->sourcelock = NULL;
1916 1.63 riastrad if (__predict_true(!cold))
1917 1.27 riastrad cv_signal(&E->sourcelock_cv);
1918 1.4 riastrad }
1919 1.4 riastrad
1920 1.4 riastrad /*
1921 1.4 riastrad * rnd_sources_locked()
1922 1.4 riastrad *
1923 1.4 riastrad * True if we hold the list of rndsources locked, for diagnostic
1924 1.4 riastrad * assertions.
1925 1.63 riastrad *
1926 1.63 riastrad * May be called very early at boot, before entropy_init.
1927 1.4 riastrad */
1928 1.7 riastrad static bool __diagused
1929 1.4 riastrad rnd_sources_locked(void)
1930 1.4 riastrad {
1931 1.4 riastrad
1932 1.16 riastrad return E->sourcelock == curlwp;
1933 1.4 riastrad }
1934 1.4 riastrad
1935 1.4 riastrad /*
1936 1.49 riastrad * entropy_request(nbytes, flags)
1937 1.1 riastrad *
1938 1.1 riastrad * Request nbytes bytes of entropy from all sources in the system.
1939 1.1 riastrad * OK if we overdo it. Caller must hold the global entropy lock;
1940 1.1 riastrad * will release and re-acquire it.
1941 1.49 riastrad *
1942 1.63 riastrad * May be called very early at boot, before entropy_init.
1943 1.63 riastrad *
1944 1.49 riastrad * If flags & ENTROPY_WAIT, wait for concurrent access to finish.
1945 1.49 riastrad * If flags & ENTROPY_SIG, allow interruption by signal.
1946 1.1 riastrad */
1947 1.49 riastrad static int
1948 1.49 riastrad entropy_request(size_t nbytes, int flags)
1949 1.1 riastrad {
1950 1.4 riastrad struct krndsource *rs;
1951 1.49 riastrad int error;
1952 1.1 riastrad
1953 1.63 riastrad KASSERT(__predict_false(cold) || mutex_owned(&E->lock));
1954 1.63 riastrad KASSERT(!cpu_intr_p());
1955 1.63 riastrad if ((flags & ENTROPY_WAIT) != 0 && __predict_false(!cold))
1956 1.49 riastrad ASSERT_SLEEPABLE();
1957 1.1 riastrad
1958 1.1 riastrad /*
1959 1.49 riastrad * Lock the list of entropy sources to block rnd_detach_source
1960 1.49 riastrad * until we're done, and to serialize calls to the entropy
1961 1.49 riastrad * callbacks as guaranteed to drivers.
1962 1.1 riastrad */
1963 1.49 riastrad error = rnd_lock_sources(flags);
1964 1.49 riastrad if (error)
1965 1.49 riastrad return error;
1966 1.1 riastrad entropy_request_evcnt.ev_count++;
1967 1.1 riastrad
1968 1.1 riastrad /* Clamp to the maximum reasonable request. */
1969 1.1 riastrad nbytes = MIN(nbytes, ENTROPY_CAPACITY);
1970 1.1 riastrad
1971 1.1 riastrad /* Walk the list of sources. */
1972 1.4 riastrad LIST_FOREACH(rs, &E->sources, list) {
1973 1.1 riastrad /* Skip sources without callbacks. */
1974 1.1 riastrad if (!ISSET(rs->flags, RND_FLAG_HASCB))
1975 1.1 riastrad continue;
1976 1.1 riastrad
1977 1.22 riastrad /*
1978 1.22 riastrad * Skip sources that are disabled altogether -- we
1979 1.22 riastrad * would just ignore their samples anyway.
1980 1.22 riastrad */
1981 1.22 riastrad if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
1982 1.22 riastrad continue;
1983 1.22 riastrad
1984 1.1 riastrad /* Drop the lock while we call the callback. */
1985 1.63 riastrad if (__predict_true(!cold))
1986 1.1 riastrad mutex_exit(&E->lock);
1987 1.1 riastrad (*rs->get)(nbytes, rs->getarg);
1988 1.63 riastrad if (__predict_true(!cold))
1989 1.1 riastrad mutex_enter(&E->lock);
1990 1.1 riastrad }
1991 1.1 riastrad
1992 1.49 riastrad /* Request done; unlock the list of entropy sources. */
1993 1.4 riastrad rnd_unlock_sources();
1994 1.49 riastrad return 0;
1995 1.1 riastrad }
1996 1.1 riastrad
1997 1.62 riastrad static inline uint32_t
1998 1.62 riastrad rnd_delta_estimate(rnd_delta_t *d, uint32_t v, int32_t delta)
1999 1.62 riastrad {
2000 1.62 riastrad int32_t delta2, delta3;
2001 1.62 riastrad
2002 1.62 riastrad /*
2003 1.62 riastrad * Calculate the second and third order differentials
2004 1.62 riastrad */
2005 1.62 riastrad delta2 = d->dx - delta;
2006 1.62 riastrad if (delta2 < 0)
2007 1.62 riastrad delta2 = -delta2; /* XXX arithmetic overflow */
2008 1.62 riastrad
2009 1.62 riastrad delta3 = d->d2x - delta2;
2010 1.62 riastrad if (delta3 < 0)
2011 1.62 riastrad delta3 = -delta3; /* XXX arithmetic overflow */
2012 1.62 riastrad
2013 1.62 riastrad d->x = v;
2014 1.62 riastrad d->dx = delta;
2015 1.62 riastrad d->d2x = delta2;
2016 1.62 riastrad
2017 1.62 riastrad /*
2018 1.62 riastrad * If any delta is 0, we got no entropy. If all are non-zero, we
2019 1.62 riastrad * might have something.
2020 1.62 riastrad */
2021 1.62 riastrad if (delta == 0 || delta2 == 0 || delta3 == 0)
2022 1.62 riastrad return 0;
2023 1.62 riastrad
2024 1.62 riastrad return 1;
2025 1.62 riastrad }
2026 1.62 riastrad
2027 1.62 riastrad static inline uint32_t
2028 1.62 riastrad rnd_dt_estimate(struct krndsource *rs, uint32_t t)
2029 1.62 riastrad {
2030 1.62 riastrad int32_t delta;
2031 1.62 riastrad uint32_t ret;
2032 1.62 riastrad rnd_delta_t *d;
2033 1.62 riastrad struct rndsource_cpu *rc;
2034 1.62 riastrad
2035 1.62 riastrad rc = percpu_getref(rs->state);
2036 1.62 riastrad d = &rc->rc_timedelta;
2037 1.62 riastrad
2038 1.62 riastrad if (t < d->x) {
2039 1.62 riastrad delta = UINT32_MAX - d->x + t;
2040 1.62 riastrad } else {
2041 1.62 riastrad delta = d->x - t;
2042 1.62 riastrad }
2043 1.62 riastrad
2044 1.62 riastrad if (delta < 0) {
2045 1.62 riastrad delta = -delta; /* XXX arithmetic overflow */
2046 1.62 riastrad }
2047 1.62 riastrad
2048 1.62 riastrad ret = rnd_delta_estimate(d, t, delta);
2049 1.62 riastrad
2050 1.62 riastrad KASSERT(d->x == t);
2051 1.62 riastrad KASSERT(d->dx == delta);
2052 1.62 riastrad percpu_putref(rs->state);
2053 1.62 riastrad return ret;
2054 1.62 riastrad }
2055 1.62 riastrad
2056 1.1 riastrad /*
2057 1.1 riastrad * rnd_add_uint32(rs, value)
2058 1.1 riastrad *
2059 1.1 riastrad * Enter 32 bits of data from an entropy source into the pool.
2060 1.1 riastrad *
2061 1.63 riastrad * May be called from any context or with spin locks held, but may
2062 1.63 riastrad * drop data.
2063 1.1 riastrad *
2064 1.63 riastrad * This is meant for cheaply taking samples from devices that
2065 1.63 riastrad * aren't designed to be hardware random number generators.
2066 1.1 riastrad */
2067 1.1 riastrad void
2068 1.1 riastrad rnd_add_uint32(struct krndsource *rs, uint32_t value)
2069 1.1 riastrad {
2070 1.63 riastrad bool intr_p = true;
2071 1.1 riastrad
2072 1.63 riastrad rnd_add_data_internal(rs, &value, sizeof value, 0, intr_p);
2073 1.1 riastrad }
2074 1.1 riastrad
2075 1.1 riastrad void
2076 1.1 riastrad _rnd_add_uint32(struct krndsource *rs, uint32_t value)
2077 1.1 riastrad {
2078 1.63 riastrad bool intr_p = true;
2079 1.1 riastrad
2080 1.63 riastrad rnd_add_data_internal(rs, &value, sizeof value, 0, intr_p);
2081 1.1 riastrad }
2082 1.1 riastrad
2083 1.1 riastrad void
2084 1.1 riastrad _rnd_add_uint64(struct krndsource *rs, uint64_t value)
2085 1.1 riastrad {
2086 1.63 riastrad bool intr_p = true;
2087 1.1 riastrad
2088 1.63 riastrad rnd_add_data_internal(rs, &value, sizeof value, 0, intr_p);
2089 1.1 riastrad }
2090 1.1 riastrad
2091 1.1 riastrad /*
2092 1.1 riastrad * rnd_add_data(rs, buf, len, entropybits)
2093 1.1 riastrad *
2094 1.1 riastrad * Enter data from an entropy source into the pool, with a
2095 1.1 riastrad * driver's estimate of how much entropy the physical source of
2096 1.1 riastrad * the data has. If RND_FLAG_NO_ESTIMATE, we ignore the driver's
2097 1.1 riastrad * estimate and treat it as zero.
2098 1.1 riastrad *
2099 1.63 riastrad * rs MAY but SHOULD NOT be NULL. If rs is NULL, MUST NOT be
2100 1.63 riastrad * called from interrupt context or with spin locks held.
2101 1.1 riastrad *
2102 1.63 riastrad * If rs is non-NULL, MAY but SHOULD NOT be called from interrupt
2103 1.63 riastrad * context, in which case act like rnd_add_data_intr -- if the
2104 1.63 riastrad * sample buffer is full, schedule a softint and drop any
2105 1.63 riastrad * additional data on the floor. (This may change later once we
2106 1.63 riastrad * fix drivers that still call this from interrupt context to use
2107 1.63 riastrad * rnd_add_data_intr instead.) MUST NOT be called with spin locks
2108 1.63 riastrad * held if not in hard interrupt context -- i.e., MUST NOT be
2109 1.63 riastrad * called in thread context or softint context with spin locks
2110 1.63 riastrad * held.
2111 1.1 riastrad */
2112 1.1 riastrad void
2113 1.1 riastrad rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
2114 1.1 riastrad uint32_t entropybits)
2115 1.1 riastrad {
2116 1.63 riastrad bool intr_p = cpu_intr_p(); /* XXX make this unconditionally false */
2117 1.1 riastrad
2118 1.63 riastrad /*
2119 1.63 riastrad * Weird legacy exception that we should rip out and replace by
2120 1.63 riastrad * creating new rndsources to attribute entropy to the callers:
2121 1.63 riastrad * If there's no rndsource, just enter the data and time now.
2122 1.63 riastrad */
2123 1.63 riastrad if (rs == NULL) {
2124 1.63 riastrad uint32_t extra;
2125 1.1 riastrad
2126 1.63 riastrad KASSERT(!intr_p);
2127 1.63 riastrad KASSERTMSG(howmany(entropybits, NBBY) <= len,
2128 1.63 riastrad "%s: impossible entropy rate:"
2129 1.63 riastrad " %"PRIu32" bits in %"PRIu32"-byte string",
2130 1.63 riastrad rs ? rs->name : "(anonymous)", entropybits, len);
2131 1.62 riastrad entropy_enter(buf, len, entropybits, /*count*/false);
2132 1.1 riastrad extra = entropy_timer();
2133 1.62 riastrad entropy_enter(&extra, sizeof extra, 0, /*count*/false);
2134 1.1 riastrad explicit_memset(&extra, 0, sizeof extra);
2135 1.1 riastrad return;
2136 1.1 riastrad }
2137 1.1 riastrad
2138 1.63 riastrad rnd_add_data_internal(rs, buf, len, entropybits, intr_p);
2139 1.63 riastrad }
2140 1.63 riastrad
2141 1.63 riastrad /*
2142 1.63 riastrad * rnd_add_data_intr(rs, buf, len, entropybits)
2143 1.63 riastrad *
2144 1.63 riastrad * Try to enter data from an entropy source into the pool, with a
2145 1.63 riastrad * driver's estimate of how much entropy the physical source of
2146 1.63 riastrad * the data has. If RND_FLAG_NO_ESTIMATE, we ignore the driver's
2147 1.63 riastrad * estimate and treat it as zero. If the sample buffer is full,
2148 1.63 riastrad * schedule a softint and drop any additional data on the floor.
2149 1.63 riastrad */
2150 1.63 riastrad void
2151 1.63 riastrad rnd_add_data_intr(struct krndsource *rs, const void *buf, uint32_t len,
2152 1.63 riastrad uint32_t entropybits)
2153 1.63 riastrad {
2154 1.63 riastrad bool intr_p = true;
2155 1.63 riastrad
2156 1.63 riastrad rnd_add_data_internal(rs, buf, len, entropybits, intr_p);
2157 1.63 riastrad }
2158 1.63 riastrad
2159 1.63 riastrad /*
2160 1.63 riastrad * rnd_add_data_internal(rs, buf, len, entropybits, intr_p)
2161 1.63 riastrad *
2162 1.63 riastrad * Internal subroutine to decide whether or not to enter data or
2163 1.63 riastrad * timing for a particular rndsource, and if so, to enter it.
2164 1.63 riastrad *
2165 1.63 riastrad * intr_p is true for callers from interrupt context or spin locks
2166 1.63 riastrad * held, and false for callers from thread or soft interrupt
2167 1.63 riastrad * context and no spin locks held.
2168 1.63 riastrad */
2169 1.63 riastrad static void
2170 1.63 riastrad rnd_add_data_internal(struct krndsource *rs, const void *buf, uint32_t len,
2171 1.63 riastrad uint32_t entropybits, bool intr_p)
2172 1.63 riastrad {
2173 1.63 riastrad uint32_t flags;
2174 1.63 riastrad
2175 1.63 riastrad KASSERTMSG(howmany(entropybits, NBBY) <= len,
2176 1.63 riastrad "%s: impossible entropy rate:"
2177 1.63 riastrad " %"PRIu32" bits in %"PRIu32"-byte string",
2178 1.63 riastrad rs ? rs->name : "(anonymous)", entropybits, len);
2179 1.63 riastrad
2180 1.61 riastrad /*
2181 1.61 riastrad * Hold up the reset xcall before it zeroes the entropy counts
2182 1.61 riastrad * on this CPU or globally. Otherwise, we might leave some
2183 1.61 riastrad * nonzero entropy attributed to an untrusted source in the
2184 1.61 riastrad * event of a race with a change to flags.
2185 1.61 riastrad */
2186 1.61 riastrad kpreempt_disable();
2187 1.61 riastrad
2188 1.1 riastrad /* Load a snapshot of the flags. Ioctl may change them under us. */
2189 1.1 riastrad flags = atomic_load_relaxed(&rs->flags);
2190 1.1 riastrad
2191 1.1 riastrad /*
2192 1.1 riastrad * Skip if:
2193 1.1 riastrad * - we're not collecting entropy, or
2194 1.1 riastrad * - the operator doesn't want to collect entropy from this, or
2195 1.1 riastrad * - neither data nor timings are being collected from this.
2196 1.1 riastrad */
2197 1.1 riastrad if (!atomic_load_relaxed(&entropy_collection) ||
2198 1.1 riastrad ISSET(flags, RND_FLAG_NO_COLLECT) ||
2199 1.1 riastrad !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
2200 1.61 riastrad goto out;
2201 1.1 riastrad
2202 1.1 riastrad /* If asked, ignore the estimate. */
2203 1.1 riastrad if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
2204 1.1 riastrad entropybits = 0;
2205 1.1 riastrad
2206 1.1 riastrad /* If we are collecting data, enter them. */
2207 1.62 riastrad if (ISSET(flags, RND_FLAG_COLLECT_VALUE)) {
2208 1.62 riastrad rnd_add_data_1(rs, buf, len, entropybits, /*count*/false,
2209 1.63 riastrad RND_FLAG_COLLECT_VALUE, intr_p);
2210 1.62 riastrad }
2211 1.1 riastrad
2212 1.1 riastrad /* If we are collecting timings, enter one. */
2213 1.1 riastrad if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
2214 1.63 riastrad uint32_t extra;
2215 1.62 riastrad bool count;
2216 1.62 riastrad
2217 1.62 riastrad /* Sample a timer. */
2218 1.1 riastrad extra = entropy_timer();
2219 1.62 riastrad
2220 1.62 riastrad /* If asked, do entropy estimation on the time. */
2221 1.62 riastrad if ((flags & (RND_FLAG_ESTIMATE_TIME|RND_FLAG_NO_ESTIMATE)) ==
2222 1.63 riastrad RND_FLAG_ESTIMATE_TIME && __predict_true(!cold))
2223 1.62 riastrad count = rnd_dt_estimate(rs, extra);
2224 1.62 riastrad else
2225 1.62 riastrad count = false;
2226 1.62 riastrad
2227 1.62 riastrad rnd_add_data_1(rs, &extra, sizeof extra, 0, count,
2228 1.63 riastrad RND_FLAG_COLLECT_TIME, intr_p);
2229 1.1 riastrad }
2230 1.61 riastrad
2231 1.61 riastrad out: /* Allow concurrent changes to flags to finish. */
2232 1.61 riastrad kpreempt_enable();
2233 1.1 riastrad }
2234 1.1 riastrad
2235 1.28 riastrad static unsigned
2236 1.28 riastrad add_sat(unsigned a, unsigned b)
2237 1.28 riastrad {
2238 1.28 riastrad unsigned c = a + b;
2239 1.28 riastrad
2240 1.28 riastrad return (c < a ? UINT_MAX : c);
2241 1.28 riastrad }
2242 1.28 riastrad
2243 1.1 riastrad /*
2244 1.62 riastrad * rnd_add_data_1(rs, buf, len, entropybits, count, flag)
2245 1.1 riastrad *
2246 1.1 riastrad * Internal subroutine to call either entropy_enter_intr, if we're
2247 1.1 riastrad * in interrupt context, or entropy_enter if not, and to count the
2248 1.1 riastrad * entropy in an rndsource.
2249 1.1 riastrad */
2250 1.1 riastrad static void
2251 1.1 riastrad rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
2252 1.63 riastrad uint32_t entropybits, bool count, uint32_t flag, bool intr_p)
2253 1.1 riastrad {
2254 1.1 riastrad bool fullyused;
2255 1.1 riastrad
2256 1.1 riastrad /*
2257 1.63 riastrad * For the interrupt-like path, use entropy_enter_intr and take
2258 1.63 riastrad * note of whether it consumed the full sample; otherwise, use
2259 1.63 riastrad * entropy_enter, which always consumes the full sample.
2260 1.1 riastrad */
2261 1.63 riastrad if (intr_p) {
2262 1.62 riastrad fullyused = entropy_enter_intr(buf, len, entropybits, count);
2263 1.1 riastrad } else {
2264 1.62 riastrad entropy_enter(buf, len, entropybits, count);
2265 1.1 riastrad fullyused = true;
2266 1.1 riastrad }
2267 1.1 riastrad
2268 1.1 riastrad /*
2269 1.1 riastrad * If we used the full sample, note how many bits were
2270 1.1 riastrad * contributed from this source.
2271 1.1 riastrad */
2272 1.1 riastrad if (fullyused) {
2273 1.63 riastrad if (__predict_false(cold)) {
2274 1.63 riastrad const int s = splhigh();
2275 1.28 riastrad rs->total = add_sat(rs->total, entropybits);
2276 1.28 riastrad switch (flag) {
2277 1.28 riastrad case RND_FLAG_COLLECT_TIME:
2278 1.28 riastrad rs->time_delta.insamples =
2279 1.28 riastrad add_sat(rs->time_delta.insamples, 1);
2280 1.28 riastrad break;
2281 1.28 riastrad case RND_FLAG_COLLECT_VALUE:
2282 1.28 riastrad rs->value_delta.insamples =
2283 1.28 riastrad add_sat(rs->value_delta.insamples, 1);
2284 1.28 riastrad break;
2285 1.28 riastrad }
2286 1.63 riastrad splx(s);
2287 1.1 riastrad } else {
2288 1.1 riastrad struct rndsource_cpu *rc = percpu_getref(rs->state);
2289 1.1 riastrad
2290 1.28 riastrad atomic_store_relaxed(&rc->rc_entropybits,
2291 1.28 riastrad add_sat(rc->rc_entropybits, entropybits));
2292 1.28 riastrad switch (flag) {
2293 1.28 riastrad case RND_FLAG_COLLECT_TIME:
2294 1.28 riastrad atomic_store_relaxed(&rc->rc_timesamples,
2295 1.28 riastrad add_sat(rc->rc_timesamples, 1));
2296 1.28 riastrad break;
2297 1.28 riastrad case RND_FLAG_COLLECT_VALUE:
2298 1.28 riastrad atomic_store_relaxed(&rc->rc_datasamples,
2299 1.28 riastrad add_sat(rc->rc_datasamples, 1));
2300 1.28 riastrad break;
2301 1.28 riastrad }
2302 1.1 riastrad percpu_putref(rs->state);
2303 1.1 riastrad }
2304 1.1 riastrad }
2305 1.1 riastrad }
2306 1.1 riastrad
2307 1.1 riastrad /*
2308 1.1 riastrad * rnd_add_data_sync(rs, buf, len, entropybits)
2309 1.1 riastrad *
2310 1.1 riastrad * Same as rnd_add_data. Originally used in rndsource callbacks,
2311 1.1 riastrad * to break an unnecessary cycle; no longer really needed.
2312 1.1 riastrad */
2313 1.1 riastrad void
2314 1.1 riastrad rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
2315 1.1 riastrad uint32_t entropybits)
2316 1.1 riastrad {
2317 1.1 riastrad
2318 1.1 riastrad rnd_add_data(rs, buf, len, entropybits);
2319 1.1 riastrad }
2320 1.1 riastrad
2321 1.1 riastrad /*
2322 1.1 riastrad * rndsource_entropybits(rs)
2323 1.1 riastrad *
2324 1.1 riastrad * Return approximately the number of bits of entropy that have
2325 1.1 riastrad * been contributed via rs so far. Approximate if other CPUs may
2326 1.1 riastrad * be calling rnd_add_data concurrently.
2327 1.1 riastrad */
2328 1.1 riastrad static unsigned
2329 1.1 riastrad rndsource_entropybits(struct krndsource *rs)
2330 1.1 riastrad {
2331 1.1 riastrad unsigned nbits = rs->total;
2332 1.1 riastrad
2333 1.63 riastrad KASSERT(!cold);
2334 1.4 riastrad KASSERT(rnd_sources_locked());
2335 1.1 riastrad percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
2336 1.1 riastrad return nbits;
2337 1.1 riastrad }
2338 1.1 riastrad
2339 1.1 riastrad static void
2340 1.1 riastrad rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
2341 1.1 riastrad {
2342 1.1 riastrad struct rndsource_cpu *rc = ptr;
2343 1.1 riastrad unsigned *nbitsp = cookie;
2344 1.1 riastrad unsigned cpu_nbits;
2345 1.1 riastrad
2346 1.28 riastrad cpu_nbits = atomic_load_relaxed(&rc->rc_entropybits);
2347 1.1 riastrad *nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
2348 1.1 riastrad }
2349 1.1 riastrad
2350 1.1 riastrad /*
2351 1.1 riastrad * rndsource_to_user(rs, urs)
2352 1.1 riastrad *
2353 1.1 riastrad * Copy a description of rs out to urs for userland.
2354 1.1 riastrad */
2355 1.1 riastrad static void
2356 1.1 riastrad rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
2357 1.1 riastrad {
2358 1.1 riastrad
2359 1.63 riastrad KASSERT(!cold);
2360 1.4 riastrad KASSERT(rnd_sources_locked());
2361 1.1 riastrad
2362 1.1 riastrad /* Avoid kernel memory disclosure. */
2363 1.1 riastrad memset(urs, 0, sizeof(*urs));
2364 1.1 riastrad
2365 1.1 riastrad CTASSERT(sizeof(urs->name) == sizeof(rs->name));
2366 1.1 riastrad strlcpy(urs->name, rs->name, sizeof(urs->name));
2367 1.1 riastrad urs->total = rndsource_entropybits(rs);
2368 1.1 riastrad urs->type = rs->type;
2369 1.1 riastrad urs->flags = atomic_load_relaxed(&rs->flags);
2370 1.1 riastrad }
2371 1.1 riastrad
2372 1.1 riastrad /*
2373 1.1 riastrad * rndsource_to_user_est(rs, urse)
2374 1.1 riastrad *
2375 1.1 riastrad * Copy a description of rs and estimation statistics out to urse
2376 1.1 riastrad * for userland.
2377 1.1 riastrad */
2378 1.1 riastrad static void
2379 1.1 riastrad rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
2380 1.1 riastrad {
2381 1.1 riastrad
2382 1.63 riastrad KASSERT(!cold);
2383 1.4 riastrad KASSERT(rnd_sources_locked());
2384 1.1 riastrad
2385 1.1 riastrad /* Avoid kernel memory disclosure. */
2386 1.1 riastrad memset(urse, 0, sizeof(*urse));
2387 1.1 riastrad
2388 1.1 riastrad /* Copy out the rndsource description. */
2389 1.1 riastrad rndsource_to_user(rs, &urse->rt);
2390 1.1 riastrad
2391 1.28 riastrad /* Gather the statistics. */
2392 1.28 riastrad urse->dt_samples = rs->time_delta.insamples;
2393 1.1 riastrad urse->dt_total = 0;
2394 1.28 riastrad urse->dv_samples = rs->value_delta.insamples;
2395 1.28 riastrad urse->dv_total = urse->rt.total;
2396 1.28 riastrad percpu_foreach(rs->state, rndsource_to_user_est_cpu, urse);
2397 1.28 riastrad }
2398 1.28 riastrad
2399 1.28 riastrad static void
2400 1.28 riastrad rndsource_to_user_est_cpu(void *ptr, void *cookie, struct cpu_info *ci)
2401 1.28 riastrad {
2402 1.28 riastrad struct rndsource_cpu *rc = ptr;
2403 1.28 riastrad rndsource_est_t *urse = cookie;
2404 1.28 riastrad
2405 1.28 riastrad urse->dt_samples = add_sat(urse->dt_samples,
2406 1.28 riastrad atomic_load_relaxed(&rc->rc_timesamples));
2407 1.28 riastrad urse->dv_samples = add_sat(urse->dv_samples,
2408 1.28 riastrad atomic_load_relaxed(&rc->rc_datasamples));
2409 1.1 riastrad }
2410 1.1 riastrad
2411 1.1 riastrad /*
2412 1.21 riastrad * entropy_reset_xc(arg1, arg2)
2413 1.21 riastrad *
2414 1.21 riastrad * Reset the current CPU's pending entropy to zero.
2415 1.21 riastrad */
2416 1.21 riastrad static void
2417 1.21 riastrad entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
2418 1.21 riastrad {
2419 1.21 riastrad uint32_t extra = entropy_timer();
2420 1.43 riastrad struct entropy_cpu_lock lock;
2421 1.21 riastrad struct entropy_cpu *ec;
2422 1.21 riastrad
2423 1.21 riastrad /*
2424 1.43 riastrad * With the per-CPU state locked, zero the pending count and
2425 1.43 riastrad * enter a cycle count for fun.
2426 1.21 riastrad */
2427 1.43 riastrad ec = entropy_cpu_get(&lock);
2428 1.62 riastrad ec->ec_bitspending = 0;
2429 1.62 riastrad ec->ec_samplespending = 0;
2430 1.21 riastrad entpool_enter(ec->ec_pool, &extra, sizeof extra);
2431 1.43 riastrad entropy_cpu_put(&lock, ec);
2432 1.21 riastrad }
2433 1.21 riastrad
2434 1.21 riastrad /*
2435 1.1 riastrad * entropy_ioctl(cmd, data)
2436 1.1 riastrad *
2437 1.1 riastrad * Handle various /dev/random ioctl queries.
2438 1.1 riastrad */
2439 1.1 riastrad int
2440 1.1 riastrad entropy_ioctl(unsigned long cmd, void *data)
2441 1.1 riastrad {
2442 1.1 riastrad struct krndsource *rs;
2443 1.1 riastrad bool privileged;
2444 1.1 riastrad int error;
2445 1.1 riastrad
2446 1.63 riastrad KASSERT(!cold);
2447 1.1 riastrad
2448 1.1 riastrad /* Verify user's authorization to perform the ioctl. */
2449 1.1 riastrad switch (cmd) {
2450 1.1 riastrad case RNDGETENTCNT:
2451 1.1 riastrad case RNDGETPOOLSTAT:
2452 1.1 riastrad case RNDGETSRCNUM:
2453 1.1 riastrad case RNDGETSRCNAME:
2454 1.1 riastrad case RNDGETESTNUM:
2455 1.1 riastrad case RNDGETESTNAME:
2456 1.31 christos error = kauth_authorize_device(kauth_cred_get(),
2457 1.1 riastrad KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
2458 1.1 riastrad break;
2459 1.1 riastrad case RNDCTL:
2460 1.31 christos error = kauth_authorize_device(kauth_cred_get(),
2461 1.1 riastrad KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
2462 1.1 riastrad break;
2463 1.1 riastrad case RNDADDDATA:
2464 1.31 christos error = kauth_authorize_device(kauth_cred_get(),
2465 1.1 riastrad KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
2466 1.1 riastrad /* Ascertain whether the user's inputs should be counted. */
2467 1.31 christos if (kauth_authorize_device(kauth_cred_get(),
2468 1.1 riastrad KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
2469 1.1 riastrad NULL, NULL, NULL, NULL) == 0)
2470 1.1 riastrad privileged = true;
2471 1.1 riastrad break;
2472 1.1 riastrad default: {
2473 1.1 riastrad /*
2474 1.1 riastrad * XXX Hack to avoid changing module ABI so this can be
2475 1.1 riastrad * pulled up. Later, we can just remove the argument.
2476 1.1 riastrad */
2477 1.1 riastrad static const struct fileops fops = {
2478 1.1 riastrad .fo_ioctl = rnd_system_ioctl,
2479 1.1 riastrad };
2480 1.1 riastrad struct file f = {
2481 1.1 riastrad .f_ops = &fops,
2482 1.1 riastrad };
2483 1.1 riastrad MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
2484 1.1 riastrad enosys(), error);
2485 1.1 riastrad #if defined(_LP64)
2486 1.1 riastrad if (error == ENOSYS)
2487 1.1 riastrad MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
2488 1.1 riastrad enosys(), error);
2489 1.1 riastrad #endif
2490 1.1 riastrad if (error == ENOSYS)
2491 1.1 riastrad error = ENOTTY;
2492 1.1 riastrad break;
2493 1.1 riastrad }
2494 1.1 riastrad }
2495 1.1 riastrad
2496 1.1 riastrad /* If anything went wrong with authorization, stop here. */
2497 1.1 riastrad if (error)
2498 1.1 riastrad return error;
2499 1.1 riastrad
2500 1.1 riastrad /* Dispatch on the command. */
2501 1.1 riastrad switch (cmd) {
2502 1.1 riastrad case RNDGETENTCNT: { /* Get current entropy count in bits. */
2503 1.1 riastrad uint32_t *countp = data;
2504 1.1 riastrad
2505 1.1 riastrad mutex_enter(&E->lock);
2506 1.62 riastrad *countp = MINENTROPYBITS - E->bitsneeded;
2507 1.1 riastrad mutex_exit(&E->lock);
2508 1.1 riastrad
2509 1.1 riastrad break;
2510 1.1 riastrad }
2511 1.1 riastrad case RNDGETPOOLSTAT: { /* Get entropy pool statistics. */
2512 1.1 riastrad rndpoolstat_t *pstat = data;
2513 1.1 riastrad
2514 1.1 riastrad mutex_enter(&E->lock);
2515 1.1 riastrad
2516 1.1 riastrad /* parameters */
2517 1.1 riastrad pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
2518 1.62 riastrad pstat->threshold = MINENTROPYBITS/NBBY; /* bytes */
2519 1.1 riastrad pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
2520 1.1 riastrad
2521 1.1 riastrad /* state */
2522 1.1 riastrad pstat->added = 0; /* XXX total entropy_enter count */
2523 1.62 riastrad pstat->curentropy = MINENTROPYBITS - E->bitsneeded; /* bits */
2524 1.1 riastrad pstat->removed = 0; /* XXX total entropy_extract count */
2525 1.1 riastrad pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
2526 1.62 riastrad
2527 1.62 riastrad /*
2528 1.62 riastrad * This used to be bits of data fabricated in some
2529 1.62 riastrad * sense; we'll take it to mean number of samples,
2530 1.62 riastrad * excluding the bits of entropy from HWRNG or seed.
2531 1.62 riastrad */
2532 1.62 riastrad pstat->generated = MINSAMPLES - E->samplesneeded;
2533 1.62 riastrad pstat->generated -= MIN(pstat->generated, pstat->curentropy);
2534 1.1 riastrad
2535 1.1 riastrad mutex_exit(&E->lock);
2536 1.1 riastrad break;
2537 1.1 riastrad }
2538 1.1 riastrad case RNDGETSRCNUM: { /* Get entropy sources by number. */
2539 1.1 riastrad rndstat_t *stat = data;
2540 1.1 riastrad uint32_t start = 0, i = 0;
2541 1.1 riastrad
2542 1.1 riastrad /* Skip if none requested; fail if too many requested. */
2543 1.1 riastrad if (stat->count == 0)
2544 1.1 riastrad break;
2545 1.1 riastrad if (stat->count > RND_MAXSTATCOUNT)
2546 1.1 riastrad return EINVAL;
2547 1.1 riastrad
2548 1.1 riastrad /*
2549 1.1 riastrad * Under the lock, find the first one, copy out as many
2550 1.1 riastrad * as requested, and report how many we copied out.
2551 1.1 riastrad */
2552 1.1 riastrad mutex_enter(&E->lock);
2553 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2554 1.4 riastrad if (error) {
2555 1.4 riastrad mutex_exit(&E->lock);
2556 1.4 riastrad return error;
2557 1.4 riastrad }
2558 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2559 1.1 riastrad if (start++ == stat->start)
2560 1.1 riastrad break;
2561 1.1 riastrad }
2562 1.1 riastrad while (i < stat->count && rs != NULL) {
2563 1.5 riastrad mutex_exit(&E->lock);
2564 1.1 riastrad rndsource_to_user(rs, &stat->source[i++]);
2565 1.5 riastrad mutex_enter(&E->lock);
2566 1.1 riastrad rs = LIST_NEXT(rs, list);
2567 1.1 riastrad }
2568 1.1 riastrad KASSERT(i <= stat->count);
2569 1.1 riastrad stat->count = i;
2570 1.4 riastrad rnd_unlock_sources();
2571 1.1 riastrad mutex_exit(&E->lock);
2572 1.1 riastrad break;
2573 1.1 riastrad }
2574 1.1 riastrad case RNDGETESTNUM: { /* Get sources and estimates by number. */
2575 1.1 riastrad rndstat_est_t *estat = data;
2576 1.1 riastrad uint32_t start = 0, i = 0;
2577 1.1 riastrad
2578 1.1 riastrad /* Skip if none requested; fail if too many requested. */
2579 1.1 riastrad if (estat->count == 0)
2580 1.1 riastrad break;
2581 1.1 riastrad if (estat->count > RND_MAXSTATCOUNT)
2582 1.1 riastrad return EINVAL;
2583 1.1 riastrad
2584 1.1 riastrad /*
2585 1.1 riastrad * Under the lock, find the first one, copy out as many
2586 1.1 riastrad * as requested, and report how many we copied out.
2587 1.1 riastrad */
2588 1.1 riastrad mutex_enter(&E->lock);
2589 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2590 1.4 riastrad if (error) {
2591 1.4 riastrad mutex_exit(&E->lock);
2592 1.4 riastrad return error;
2593 1.4 riastrad }
2594 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2595 1.1 riastrad if (start++ == estat->start)
2596 1.1 riastrad break;
2597 1.1 riastrad }
2598 1.1 riastrad while (i < estat->count && rs != NULL) {
2599 1.4 riastrad mutex_exit(&E->lock);
2600 1.1 riastrad rndsource_to_user_est(rs, &estat->source[i++]);
2601 1.4 riastrad mutex_enter(&E->lock);
2602 1.1 riastrad rs = LIST_NEXT(rs, list);
2603 1.1 riastrad }
2604 1.1 riastrad KASSERT(i <= estat->count);
2605 1.1 riastrad estat->count = i;
2606 1.4 riastrad rnd_unlock_sources();
2607 1.1 riastrad mutex_exit(&E->lock);
2608 1.1 riastrad break;
2609 1.1 riastrad }
2610 1.1 riastrad case RNDGETSRCNAME: { /* Get entropy sources by name. */
2611 1.1 riastrad rndstat_name_t *nstat = data;
2612 1.1 riastrad const size_t n = sizeof(rs->name);
2613 1.1 riastrad
2614 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
2615 1.1 riastrad
2616 1.1 riastrad /*
2617 1.1 riastrad * Under the lock, search by name. If found, copy it
2618 1.1 riastrad * out; if not found, fail with ENOENT.
2619 1.1 riastrad */
2620 1.1 riastrad mutex_enter(&E->lock);
2621 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2622 1.4 riastrad if (error) {
2623 1.4 riastrad mutex_exit(&E->lock);
2624 1.4 riastrad return error;
2625 1.4 riastrad }
2626 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2627 1.1 riastrad if (strncmp(rs->name, nstat->name, n) == 0)
2628 1.1 riastrad break;
2629 1.1 riastrad }
2630 1.4 riastrad if (rs != NULL) {
2631 1.4 riastrad mutex_exit(&E->lock);
2632 1.1 riastrad rndsource_to_user(rs, &nstat->source);
2633 1.4 riastrad mutex_enter(&E->lock);
2634 1.4 riastrad } else {
2635 1.1 riastrad error = ENOENT;
2636 1.4 riastrad }
2637 1.4 riastrad rnd_unlock_sources();
2638 1.1 riastrad mutex_exit(&E->lock);
2639 1.1 riastrad break;
2640 1.1 riastrad }
2641 1.1 riastrad case RNDGETESTNAME: { /* Get sources and estimates by name. */
2642 1.1 riastrad rndstat_est_name_t *enstat = data;
2643 1.1 riastrad const size_t n = sizeof(rs->name);
2644 1.1 riastrad
2645 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
2646 1.1 riastrad
2647 1.1 riastrad /*
2648 1.1 riastrad * Under the lock, search by name. If found, copy it
2649 1.1 riastrad * out; if not found, fail with ENOENT.
2650 1.1 riastrad */
2651 1.1 riastrad mutex_enter(&E->lock);
2652 1.49 riastrad error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
2653 1.4 riastrad if (error) {
2654 1.4 riastrad mutex_exit(&E->lock);
2655 1.4 riastrad return error;
2656 1.4 riastrad }
2657 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2658 1.1 riastrad if (strncmp(rs->name, enstat->name, n) == 0)
2659 1.1 riastrad break;
2660 1.1 riastrad }
2661 1.4 riastrad if (rs != NULL) {
2662 1.4 riastrad mutex_exit(&E->lock);
2663 1.1 riastrad rndsource_to_user_est(rs, &enstat->source);
2664 1.4 riastrad mutex_enter(&E->lock);
2665 1.4 riastrad } else {
2666 1.1 riastrad error = ENOENT;
2667 1.4 riastrad }
2668 1.4 riastrad rnd_unlock_sources();
2669 1.1 riastrad mutex_exit(&E->lock);
2670 1.1 riastrad break;
2671 1.1 riastrad }
2672 1.1 riastrad case RNDCTL: { /* Modify entropy source flags. */
2673 1.1 riastrad rndctl_t *rndctl = data;
2674 1.1 riastrad const size_t n = sizeof(rs->name);
2675 1.21 riastrad uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2676 1.1 riastrad uint32_t flags;
2677 1.21 riastrad bool reset = false, request = false;
2678 1.1 riastrad
2679 1.1 riastrad CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
2680 1.1 riastrad
2681 1.1 riastrad /* Whitelist the flags that user can change. */
2682 1.1 riastrad rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2683 1.1 riastrad
2684 1.1 riastrad /*
2685 1.1 riastrad * For each matching rndsource, either by type if
2686 1.1 riastrad * specified or by name if not, set the masked flags.
2687 1.1 riastrad */
2688 1.1 riastrad mutex_enter(&E->lock);
2689 1.1 riastrad LIST_FOREACH(rs, &E->sources, list) {
2690 1.1 riastrad if (rndctl->type != 0xff) {
2691 1.1 riastrad if (rs->type != rndctl->type)
2692 1.1 riastrad continue;
2693 1.59 riastrad } else if (rndctl->name[0] != '\0') {
2694 1.1 riastrad if (strncmp(rs->name, rndctl->name, n) != 0)
2695 1.1 riastrad continue;
2696 1.1 riastrad }
2697 1.1 riastrad flags = rs->flags & ~rndctl->mask;
2698 1.1 riastrad flags |= rndctl->flags & rndctl->mask;
2699 1.21 riastrad if ((rs->flags & resetflags) == 0 &&
2700 1.21 riastrad (flags & resetflags) != 0)
2701 1.21 riastrad reset = true;
2702 1.21 riastrad if ((rs->flags ^ flags) & resetflags)
2703 1.21 riastrad request = true;
2704 1.1 riastrad atomic_store_relaxed(&rs->flags, flags);
2705 1.1 riastrad }
2706 1.1 riastrad mutex_exit(&E->lock);
2707 1.21 riastrad
2708 1.21 riastrad /*
2709 1.21 riastrad * If we disabled estimation or collection, nix all the
2710 1.21 riastrad * pending entropy and set needed to the maximum.
2711 1.21 riastrad */
2712 1.21 riastrad if (reset) {
2713 1.21 riastrad xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
2714 1.21 riastrad mutex_enter(&E->lock);
2715 1.62 riastrad E->bitspending = 0;
2716 1.62 riastrad E->samplespending = 0;
2717 1.62 riastrad atomic_store_relaxed(&E->bitsneeded, MINENTROPYBITS);
2718 1.62 riastrad atomic_store_relaxed(&E->samplesneeded, MINSAMPLES);
2719 1.60 riastrad E->consolidate = false;
2720 1.21 riastrad mutex_exit(&E->lock);
2721 1.21 riastrad }
2722 1.21 riastrad
2723 1.21 riastrad /*
2724 1.21 riastrad * If we changed any of the estimation or collection
2725 1.21 riastrad * flags, request new samples from everyone -- either
2726 1.21 riastrad * to make up for what we just lost, or to get new
2727 1.21 riastrad * samples from what we just added.
2728 1.49 riastrad *
2729 1.49 riastrad * Failing on signal, while waiting for another process
2730 1.49 riastrad * to finish requesting entropy, is OK here even though
2731 1.49 riastrad * we have committed side effects, because this ioctl
2732 1.49 riastrad * command is idempotent, so repeating it is safe.
2733 1.21 riastrad */
2734 1.21 riastrad if (request) {
2735 1.21 riastrad mutex_enter(&E->lock);
2736 1.49 riastrad error = entropy_request(ENTROPY_CAPACITY,
2737 1.49 riastrad ENTROPY_WAIT|ENTROPY_SIG);
2738 1.21 riastrad mutex_exit(&E->lock);
2739 1.21 riastrad }
2740 1.1 riastrad break;
2741 1.1 riastrad }
2742 1.1 riastrad case RNDADDDATA: { /* Enter seed into entropy pool. */
2743 1.1 riastrad rnddata_t *rdata = data;
2744 1.1 riastrad unsigned entropybits = 0;
2745 1.1 riastrad
2746 1.1 riastrad if (!atomic_load_relaxed(&entropy_collection))
2747 1.1 riastrad break; /* thanks but no thanks */
2748 1.1 riastrad if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
2749 1.1 riastrad return EINVAL;
2750 1.1 riastrad
2751 1.1 riastrad /*
2752 1.1 riastrad * This ioctl serves as the userland alternative a
2753 1.1 riastrad * bootloader-provided seed -- typically furnished by
2754 1.1 riastrad * /etc/rc.d/random_seed. We accept the user's entropy
2755 1.1 riastrad * claim only if
2756 1.1 riastrad *
2757 1.1 riastrad * (a) the user is privileged, and
2758 1.1 riastrad * (b) we have not entered a bootloader seed.
2759 1.1 riastrad *
2760 1.1 riastrad * under the assumption that the user may use this to
2761 1.1 riastrad * load a seed from disk that we have already loaded
2762 1.1 riastrad * from the bootloader, so we don't double-count it.
2763 1.1 riastrad */
2764 1.11 riastrad if (privileged && rdata->entropy && rdata->len) {
2765 1.1 riastrad mutex_enter(&E->lock);
2766 1.1 riastrad if (!E->seeded) {
2767 1.1 riastrad entropybits = MIN(rdata->entropy,
2768 1.1 riastrad MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
2769 1.1 riastrad E->seeded = true;
2770 1.1 riastrad }
2771 1.1 riastrad mutex_exit(&E->lock);
2772 1.1 riastrad }
2773 1.1 riastrad
2774 1.13 riastrad /* Enter the data and consolidate entropy. */
2775 1.1 riastrad rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
2776 1.1 riastrad entropybits);
2777 1.13 riastrad entropy_consolidate();
2778 1.1 riastrad break;
2779 1.1 riastrad }
2780 1.1 riastrad default:
2781 1.1 riastrad error = ENOTTY;
2782 1.1 riastrad }
2783 1.1 riastrad
2784 1.1 riastrad /* Return any error that may have come up. */
2785 1.1 riastrad return error;
2786 1.1 riastrad }
2787 1.1 riastrad
2788 1.1 riastrad /* Legacy entry points */
2789 1.1 riastrad
2790 1.1 riastrad void
2791 1.1 riastrad rnd_seed(void *seed, size_t len)
2792 1.1 riastrad {
2793 1.1 riastrad
2794 1.1 riastrad if (len != sizeof(rndsave_t)) {
2795 1.1 riastrad printf("entropy: invalid seed length: %zu,"
2796 1.1 riastrad " expected sizeof(rndsave_t) = %zu\n",
2797 1.1 riastrad len, sizeof(rndsave_t));
2798 1.1 riastrad return;
2799 1.1 riastrad }
2800 1.1 riastrad entropy_seed(seed);
2801 1.1 riastrad }
2802 1.1 riastrad
2803 1.1 riastrad void
2804 1.1 riastrad rnd_init(void)
2805 1.1 riastrad {
2806 1.1 riastrad
2807 1.1 riastrad entropy_init();
2808 1.1 riastrad }
2809 1.1 riastrad
2810 1.1 riastrad void
2811 1.1 riastrad rnd_init_softint(void)
2812 1.1 riastrad {
2813 1.1 riastrad
2814 1.1 riastrad entropy_init_late();
2815 1.38 riastrad entropy_bootrequest();
2816 1.1 riastrad }
2817 1.1 riastrad
2818 1.1 riastrad int
2819 1.1 riastrad rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
2820 1.1 riastrad {
2821 1.1 riastrad
2822 1.1 riastrad return entropy_ioctl(cmd, data);
2823 1.1 riastrad }
2824