Home | History | Annotate | Line # | Download | only in kern
kern_entropy.c revision 1.67
      1  1.67  riastrad /*	$NetBSD: kern_entropy.c,v 1.67 2024/08/26 13:46:03 riastradh Exp $	*/
      2   1.1  riastrad 
      3   1.1  riastrad /*-
      4   1.1  riastrad  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      5   1.1  riastrad  * All rights reserved.
      6   1.1  riastrad  *
      7   1.1  riastrad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1  riastrad  * by Taylor R. Campbell.
      9   1.1  riastrad  *
     10   1.1  riastrad  * Redistribution and use in source and binary forms, with or without
     11   1.1  riastrad  * modification, are permitted provided that the following conditions
     12   1.1  riastrad  * are met:
     13   1.1  riastrad  * 1. Redistributions of source code must retain the above copyright
     14   1.1  riastrad  *    notice, this list of conditions and the following disclaimer.
     15   1.1  riastrad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1  riastrad  *    notice, this list of conditions and the following disclaimer in the
     17   1.1  riastrad  *    documentation and/or other materials provided with the distribution.
     18   1.1  riastrad  *
     19   1.1  riastrad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.1  riastrad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1  riastrad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1  riastrad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.1  riastrad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1  riastrad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1  riastrad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1  riastrad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1  riastrad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1  riastrad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1  riastrad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1  riastrad  */
     31   1.1  riastrad 
     32   1.1  riastrad /*
     33   1.1  riastrad  * Entropy subsystem
     34   1.1  riastrad  *
     35   1.1  riastrad  *	* Each CPU maintains a per-CPU entropy pool so that gathering
     36   1.1  riastrad  *	  entropy requires no interprocessor synchronization, except
     37   1.1  riastrad  *	  early at boot when we may be scrambling to gather entropy as
     38   1.1  riastrad  *	  soon as possible.
     39   1.1  riastrad  *
     40   1.1  riastrad  *	  - entropy_enter gathers entropy and never drops it on the
     41   1.1  riastrad  *	    floor, at the cost of sometimes having to do cryptography.
     42   1.1  riastrad  *
     43   1.1  riastrad  *	  - entropy_enter_intr gathers entropy or drops it on the
     44   1.1  riastrad  *	    floor, with low latency.  Work to stir the pool or kick the
     45   1.1  riastrad  *	    housekeeping thread is scheduled in soft interrupts.
     46   1.1  riastrad  *
     47   1.1  riastrad  *	* entropy_enter immediately enters into the global pool if it
     48   1.1  riastrad  *	  can transition to full entropy in one swell foop.  Otherwise,
     49   1.1  riastrad  *	  it defers to a housekeeping thread that consolidates entropy,
     50   1.1  riastrad  *	  but only when the CPUs collectively have full entropy, in
     51   1.1  riastrad  *	  order to mitigate iterative-guessing attacks.
     52   1.1  riastrad  *
     53   1.1  riastrad  *	* The entropy housekeeping thread continues to consolidate
     54   1.1  riastrad  *	  entropy even after we think we have full entropy, in case we
     55   1.1  riastrad  *	  are wrong, but is limited to one discretionary consolidation
     56   1.1  riastrad  *	  per minute, and only when new entropy is actually coming in,
     57   1.1  riastrad  *	  to limit performance impact.
     58   1.1  riastrad  *
     59   1.1  riastrad  *	* The entropy epoch is the number that changes when we
     60   1.1  riastrad  *	  transition from partial entropy to full entropy, so that
     61   1.1  riastrad  *	  users can easily determine when to reseed.  This also
     62   1.1  riastrad  *	  facilitates an operator explicitly causing everything to
     63  1.13  riastrad  *	  reseed by sysctl -w kern.entropy.consolidate=1.
     64   1.1  riastrad  *
     65   1.1  riastrad  *	* Entropy depletion is available for testing (or if you're into
     66   1.1  riastrad  *	  that sort of thing), with sysctl -w kern.entropy.depletion=1;
     67   1.1  riastrad  *	  the logic to support it is small, to minimize chance of bugs.
     68  1.63  riastrad  *
     69  1.63  riastrad  *	* While cold, a single global entropy pool is available for
     70  1.63  riastrad  *	  entering and extracting, serialized through splhigh/splx.
     71  1.63  riastrad  *	  The per-CPU entropy pool data structures are initialized in
     72  1.63  riastrad  *	  entropy_init and entropy_init_late (separated mainly for
     73  1.63  riastrad  *	  hysterical raisins at this point), but are not used until the
     74  1.63  riastrad  *	  system is warm, at which point access to the global entropy
     75  1.63  riastrad  *	  pool is limited to thread and softint context and serialized
     76  1.63  riastrad  *	  by E->lock.
     77   1.1  riastrad  */
     78   1.1  riastrad 
     79   1.1  riastrad #include <sys/cdefs.h>
     80  1.67  riastrad __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.67 2024/08/26 13:46:03 riastradh Exp $");
     81   1.1  riastrad 
     82   1.1  riastrad #include <sys/param.h>
     83   1.1  riastrad #include <sys/types.h>
     84   1.1  riastrad #include <sys/atomic.h>
     85   1.1  riastrad #include <sys/compat_stub.h>
     86   1.1  riastrad #include <sys/condvar.h>
     87   1.1  riastrad #include <sys/cpu.h>
     88   1.1  riastrad #include <sys/entropy.h>
     89   1.1  riastrad #include <sys/errno.h>
     90   1.1  riastrad #include <sys/evcnt.h>
     91   1.1  riastrad #include <sys/event.h>
     92   1.1  riastrad #include <sys/file.h>
     93   1.1  riastrad #include <sys/intr.h>
     94   1.1  riastrad #include <sys/kauth.h>
     95   1.1  riastrad #include <sys/kernel.h>
     96   1.1  riastrad #include <sys/kmem.h>
     97   1.1  riastrad #include <sys/kthread.h>
     98  1.53  riastrad #include <sys/lwp.h>
     99   1.1  riastrad #include <sys/module_hook.h>
    100   1.1  riastrad #include <sys/mutex.h>
    101   1.1  riastrad #include <sys/percpu.h>
    102   1.1  riastrad #include <sys/poll.h>
    103  1.53  riastrad #include <sys/proc.h>
    104   1.1  riastrad #include <sys/queue.h>
    105  1.30  jmcneill #include <sys/reboot.h>
    106   1.1  riastrad #include <sys/rnd.h>		/* legacy kernel API */
    107   1.1  riastrad #include <sys/rndio.h>		/* userland ioctl interface */
    108   1.1  riastrad #include <sys/rndsource.h>	/* kernel rndsource driver API */
    109   1.1  riastrad #include <sys/select.h>
    110   1.1  riastrad #include <sys/selinfo.h>
    111   1.1  riastrad #include <sys/sha1.h>		/* for boot seed checksum */
    112   1.1  riastrad #include <sys/stdint.h>
    113   1.1  riastrad #include <sys/sysctl.h>
    114  1.26  riastrad #include <sys/syslog.h>
    115   1.1  riastrad #include <sys/systm.h>
    116   1.1  riastrad #include <sys/time.h>
    117   1.1  riastrad #include <sys/xcall.h>
    118   1.1  riastrad 
    119   1.1  riastrad #include <lib/libkern/entpool.h>
    120   1.1  riastrad 
    121   1.1  riastrad #include <machine/limits.h>
    122   1.1  riastrad 
    123   1.1  riastrad #ifdef __HAVE_CPU_COUNTER
    124   1.1  riastrad #include <machine/cpu_counter.h>
    125   1.1  riastrad #endif
    126   1.1  riastrad 
    127  1.62  riastrad #define	MINENTROPYBYTES	ENTROPY_CAPACITY
    128  1.62  riastrad #define	MINENTROPYBITS	(MINENTROPYBYTES*NBBY)
    129  1.62  riastrad #define	MINSAMPLES	(2*MINENTROPYBITS)
    130  1.62  riastrad 
    131   1.1  riastrad /*
    132   1.1  riastrad  * struct entropy_cpu
    133   1.1  riastrad  *
    134   1.1  riastrad  *	Per-CPU entropy state.  The pool is allocated separately
    135   1.1  riastrad  *	because percpu(9) sometimes moves per-CPU objects around
    136   1.1  riastrad  *	without zeroing them, which would lead to unwanted copies of
    137  1.34    andvar  *	sensitive secrets.  The evcnt is allocated separately because
    138   1.1  riastrad  *	evcnt(9) assumes it stays put in memory.
    139   1.1  riastrad  */
    140   1.1  riastrad struct entropy_cpu {
    141  1.40  riastrad 	struct entropy_cpu_evcnt {
    142  1.40  riastrad 		struct evcnt		softint;
    143  1.40  riastrad 		struct evcnt		intrdrop;
    144  1.40  riastrad 		struct evcnt		intrtrunc;
    145  1.40  riastrad 	}			*ec_evcnt;
    146   1.1  riastrad 	struct entpool		*ec_pool;
    147  1.62  riastrad 	unsigned		ec_bitspending;
    148  1.62  riastrad 	unsigned		ec_samplespending;
    149   1.1  riastrad 	bool			ec_locked;
    150   1.1  riastrad };
    151   1.1  riastrad 
    152   1.1  riastrad /*
    153  1.43  riastrad  * struct entropy_cpu_lock
    154  1.43  riastrad  *
    155  1.43  riastrad  *	State for locking the per-CPU entropy state.
    156  1.43  riastrad  */
    157  1.43  riastrad struct entropy_cpu_lock {
    158  1.43  riastrad 	int		ecl_s;
    159  1.66        ad 	long		ecl_pctr;
    160  1.43  riastrad };
    161  1.43  riastrad 
    162  1.43  riastrad /*
    163   1.1  riastrad  * struct rndsource_cpu
    164   1.1  riastrad  *
    165   1.1  riastrad  *	Per-CPU rndsource state.
    166   1.1  riastrad  */
    167   1.1  riastrad struct rndsource_cpu {
    168  1.28  riastrad 	unsigned		rc_entropybits;
    169  1.28  riastrad 	unsigned		rc_timesamples;
    170  1.28  riastrad 	unsigned		rc_datasamples;
    171  1.62  riastrad 	rnd_delta_t		rc_timedelta;
    172   1.1  riastrad };
    173   1.1  riastrad 
    174   1.1  riastrad /*
    175   1.1  riastrad  * entropy_global (a.k.a. E for short in this file)
    176   1.1  riastrad  *
    177   1.1  riastrad  *	Global entropy state.  Writes protected by the global lock.
    178   1.1  riastrad  *	Some fields, marked (A), can be read outside the lock, and are
    179   1.1  riastrad  *	maintained with atomic_load/store_relaxed.
    180   1.1  riastrad  */
    181   1.1  riastrad struct {
    182   1.1  riastrad 	kmutex_t	lock;		/* covers all global state */
    183   1.1  riastrad 	struct entpool	pool;		/* global pool for extraction */
    184  1.62  riastrad 	unsigned	bitsneeded;	/* (A) needed globally */
    185  1.62  riastrad 	unsigned	bitspending;	/* pending in per-CPU pools */
    186  1.62  riastrad 	unsigned	samplesneeded;	/* (A) needed globally */
    187  1.62  riastrad 	unsigned	samplespending;	/* pending in per-CPU pools */
    188   1.1  riastrad 	unsigned	timestamp;	/* (A) time of last consolidation */
    189   1.1  riastrad 	unsigned	epoch;		/* (A) changes when needed -> 0 */
    190   1.1  riastrad 	kcondvar_t	cv;		/* notifies state changes */
    191   1.1  riastrad 	struct selinfo	selq;		/* notifies needed -> 0 */
    192   1.4  riastrad 	struct lwp	*sourcelock;	/* lock on list of sources */
    193  1.27  riastrad 	kcondvar_t	sourcelock_cv;	/* notifies sourcelock release */
    194   1.1  riastrad 	LIST_HEAD(,krndsource) sources;	/* list of entropy sources */
    195   1.1  riastrad 	bool		consolidate;	/* kick thread to consolidate */
    196   1.1  riastrad 	bool		seed_rndsource;	/* true if seed source is attached */
    197   1.1  riastrad 	bool		seeded;		/* true if seed file already loaded */
    198   1.1  riastrad } entropy_global __cacheline_aligned = {
    199   1.1  riastrad 	/* Fields that must be initialized when the kernel is loaded.  */
    200  1.62  riastrad 	.bitsneeded = MINENTROPYBITS,
    201  1.62  riastrad 	.samplesneeded = MINSAMPLES,
    202  1.14  riastrad 	.epoch = (unsigned)-1,	/* -1 means entropy never consolidated */
    203   1.1  riastrad 	.sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
    204   1.1  riastrad };
    205   1.1  riastrad 
    206   1.1  riastrad #define	E	(&entropy_global)	/* declutter */
    207   1.1  riastrad 
    208   1.1  riastrad /* Read-mostly globals */
    209   1.1  riastrad static struct percpu	*entropy_percpu __read_mostly; /* struct entropy_cpu */
    210   1.1  riastrad static void		*entropy_sih __read_mostly; /* softint handler */
    211   1.1  riastrad static struct lwp	*entropy_lwp __read_mostly; /* housekeeping thread */
    212   1.1  riastrad 
    213   1.1  riastrad static struct krndsource seed_rndsource __read_mostly;
    214   1.1  riastrad 
    215   1.1  riastrad /*
    216   1.1  riastrad  * Event counters
    217   1.1  riastrad  *
    218   1.1  riastrad  *	Must be careful with adding these because they can serve as
    219   1.1  riastrad  *	side channels.
    220   1.1  riastrad  */
    221   1.1  riastrad static struct evcnt entropy_discretionary_evcnt =
    222   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
    223   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
    224   1.1  riastrad static struct evcnt entropy_immediate_evcnt =
    225   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
    226   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
    227   1.1  riastrad static struct evcnt entropy_partial_evcnt =
    228   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
    229   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
    230   1.1  riastrad static struct evcnt entropy_consolidate_evcnt =
    231   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
    232   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
    233   1.1  riastrad static struct evcnt entropy_extract_fail_evcnt =
    234   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
    235   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
    236   1.1  riastrad static struct evcnt entropy_request_evcnt =
    237   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
    238   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_request_evcnt);
    239   1.1  riastrad static struct evcnt entropy_deplete_evcnt =
    240   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
    241   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
    242   1.1  riastrad static struct evcnt entropy_notify_evcnt =
    243   1.1  riastrad     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
    244   1.1  riastrad EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
    245   1.1  riastrad 
    246   1.1  riastrad /* Sysctl knobs */
    247  1.17  riastrad static bool	entropy_collection = 1;
    248  1.17  riastrad static bool	entropy_depletion = 0; /* Silly!  */
    249   1.1  riastrad 
    250   1.1  riastrad static const struct sysctlnode	*entropy_sysctlroot;
    251   1.1  riastrad static struct sysctllog		*entropy_sysctllog;
    252   1.1  riastrad 
    253   1.1  riastrad /* Forward declarations */
    254   1.1  riastrad static void	entropy_init_cpu(void *, void *, struct cpu_info *);
    255   1.1  riastrad static void	entropy_fini_cpu(void *, void *, struct cpu_info *);
    256   1.1  riastrad static void	entropy_account_cpu(struct entropy_cpu *);
    257  1.62  riastrad static void	entropy_enter(const void *, size_t, unsigned, bool);
    258  1.62  riastrad static bool	entropy_enter_intr(const void *, size_t, unsigned, bool);
    259   1.1  riastrad static void	entropy_softintr(void *);
    260   1.1  riastrad static void	entropy_thread(void *);
    261  1.62  riastrad static bool	entropy_pending(void);
    262   1.1  riastrad static void	entropy_pending_cpu(void *, void *, struct cpu_info *);
    263  1.13  riastrad static void	entropy_do_consolidate(void);
    264  1.13  riastrad static void	entropy_consolidate_xc(void *, void *);
    265   1.1  riastrad static void	entropy_notify(void);
    266   1.1  riastrad static int	sysctl_entropy_consolidate(SYSCTLFN_ARGS);
    267  1.10  riastrad static int	sysctl_entropy_gather(SYSCTLFN_ARGS);
    268   1.1  riastrad static void	filt_entropy_read_detach(struct knote *);
    269   1.1  riastrad static int	filt_entropy_read_event(struct knote *, long);
    270  1.49  riastrad static int	entropy_request(size_t, int);
    271  1.63  riastrad static void	rnd_add_data_internal(struct krndsource *, const void *,
    272  1.63  riastrad 		    uint32_t, uint32_t, bool);
    273   1.1  riastrad static void	rnd_add_data_1(struct krndsource *, const void *, uint32_t,
    274  1.63  riastrad 		    uint32_t, bool, uint32_t, bool);
    275   1.1  riastrad static unsigned	rndsource_entropybits(struct krndsource *);
    276   1.1  riastrad static void	rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
    277   1.1  riastrad static void	rndsource_to_user(struct krndsource *, rndsource_t *);
    278   1.1  riastrad static void	rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
    279  1.28  riastrad static void	rndsource_to_user_est_cpu(void *, void *, struct cpu_info *);
    280   1.1  riastrad 
    281   1.1  riastrad /*
    282   1.1  riastrad  * entropy_timer()
    283   1.1  riastrad  *
    284   1.1  riastrad  *	Cycle counter, time counter, or anything that changes a wee bit
    285   1.1  riastrad  *	unpredictably.
    286   1.1  riastrad  */
    287   1.1  riastrad static inline uint32_t
    288   1.1  riastrad entropy_timer(void)
    289   1.1  riastrad {
    290   1.1  riastrad 	struct bintime bt;
    291   1.1  riastrad 	uint32_t v;
    292   1.1  riastrad 
    293   1.1  riastrad 	/* If we have a CPU cycle counter, use the low 32 bits.  */
    294   1.1  riastrad #ifdef __HAVE_CPU_COUNTER
    295   1.1  riastrad 	if (__predict_true(cpu_hascounter()))
    296   1.1  riastrad 		return cpu_counter32();
    297   1.1  riastrad #endif	/* __HAVE_CPU_COUNTER */
    298   1.1  riastrad 
    299   1.1  riastrad 	/* If we're cold, tough.  Can't binuptime while cold.  */
    300   1.1  riastrad 	if (__predict_false(cold))
    301   1.1  riastrad 		return 0;
    302   1.1  riastrad 
    303   1.1  riastrad 	/* Fold the 128 bits of binuptime into 32 bits.  */
    304   1.1  riastrad 	binuptime(&bt);
    305   1.1  riastrad 	v = bt.frac;
    306   1.1  riastrad 	v ^= bt.frac >> 32;
    307   1.1  riastrad 	v ^= bt.sec;
    308   1.1  riastrad 	v ^= bt.sec >> 32;
    309   1.1  riastrad 	return v;
    310   1.1  riastrad }
    311   1.1  riastrad 
    312   1.1  riastrad static void
    313   1.1  riastrad attach_seed_rndsource(void)
    314   1.1  riastrad {
    315   1.1  riastrad 
    316  1.63  riastrad 	KASSERT(!cpu_intr_p());
    317  1.63  riastrad 	KASSERT(!cpu_softintr_p());
    318  1.63  riastrad 	KASSERT(cold);
    319  1.63  riastrad 
    320   1.1  riastrad 	/*
    321   1.1  riastrad 	 * First called no later than entropy_init, while we are still
    322   1.1  riastrad 	 * single-threaded, so no need for RUN_ONCE.
    323   1.1  riastrad 	 */
    324  1.63  riastrad 	if (E->seed_rndsource)
    325   1.1  riastrad 		return;
    326  1.63  riastrad 
    327   1.1  riastrad 	rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
    328   1.1  riastrad 	    RND_FLAG_COLLECT_VALUE);
    329   1.1  riastrad 	E->seed_rndsource = true;
    330   1.1  riastrad }
    331   1.1  riastrad 
    332   1.1  riastrad /*
    333   1.1  riastrad  * entropy_init()
    334   1.1  riastrad  *
    335   1.1  riastrad  *	Initialize the entropy subsystem.  Panic on failure.
    336   1.1  riastrad  *
    337  1.63  riastrad  *	Requires percpu(9) and sysctl(9) to be initialized.  Must run
    338  1.63  riastrad  *	while cold.
    339   1.1  riastrad  */
    340   1.1  riastrad static void
    341   1.1  riastrad entropy_init(void)
    342   1.1  riastrad {
    343   1.1  riastrad 	uint32_t extra[2];
    344   1.1  riastrad 	struct krndsource *rs;
    345   1.1  riastrad 	unsigned i = 0;
    346   1.1  riastrad 
    347  1.63  riastrad 	KASSERT(cold);
    348   1.1  riastrad 
    349   1.1  riastrad 	/* Grab some cycle counts early at boot.  */
    350   1.1  riastrad 	extra[i++] = entropy_timer();
    351   1.1  riastrad 
    352   1.1  riastrad 	/* Run the entropy pool cryptography self-test.  */
    353   1.1  riastrad 	if (entpool_selftest() == -1)
    354   1.1  riastrad 		panic("entropy pool crypto self-test failed");
    355   1.1  riastrad 
    356   1.1  riastrad 	/* Create the sysctl directory.  */
    357   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
    358   1.1  riastrad 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
    359   1.1  riastrad 	    SYSCTL_DESCR("Entropy (random number sources) options"),
    360   1.1  riastrad 	    NULL, 0, NULL, 0,
    361   1.1  riastrad 	    CTL_KERN, CTL_CREATE, CTL_EOL);
    362   1.1  riastrad 
    363   1.1  riastrad 	/* Create the sysctl knobs.  */
    364   1.1  riastrad 	/* XXX These shouldn't be writable at securelevel>0.  */
    365   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    366   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
    367   1.1  riastrad 	    SYSCTL_DESCR("Automatically collect entropy from hardware"),
    368   1.1  riastrad 	    NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
    369   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    370   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
    371   1.1  riastrad 	    SYSCTL_DESCR("`Deplete' entropy pool when observed"),
    372   1.1  riastrad 	    NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
    373   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    374   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
    375   1.1  riastrad 	    SYSCTL_DESCR("Trigger entropy consolidation now"),
    376   1.1  riastrad 	    sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    377  1.10  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    378  1.10  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
    379  1.10  riastrad 	    SYSCTL_DESCR("Trigger entropy gathering from sources now"),
    380  1.10  riastrad 	    sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    381   1.1  riastrad 	/* XXX These should maybe not be readable at securelevel>0.  */
    382   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    383   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    384  1.62  riastrad 	    "needed",
    385  1.62  riastrad 	    SYSCTL_DESCR("Systemwide entropy deficit (bits of entropy)"),
    386  1.62  riastrad 	    NULL, 0, &E->bitsneeded, 0, CTL_CREATE, CTL_EOL);
    387   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    388   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    389  1.62  riastrad 	    "pending",
    390  1.62  riastrad 	    SYSCTL_DESCR("Number of bits of entropy pending on CPUs"),
    391  1.62  riastrad 	    NULL, 0, &E->bitspending, 0, CTL_CREATE, CTL_EOL);
    392  1.62  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    393  1.62  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    394  1.62  riastrad 	    "samplesneeded",
    395  1.62  riastrad 	    SYSCTL_DESCR("Systemwide entropy deficit (samples)"),
    396  1.62  riastrad 	    NULL, 0, &E->samplesneeded, 0, CTL_CREATE, CTL_EOL);
    397  1.62  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    398  1.62  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    399  1.62  riastrad 	    "samplespending",
    400  1.62  riastrad 	    SYSCTL_DESCR("Number of samples pending on CPUs"),
    401  1.62  riastrad 	    NULL, 0, &E->samplespending, 0, CTL_CREATE, CTL_EOL);
    402   1.1  riastrad 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    403   1.1  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    404   1.1  riastrad 	    "epoch", SYSCTL_DESCR("Entropy epoch"),
    405   1.1  riastrad 	    NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
    406   1.1  riastrad 
    407   1.1  riastrad 	/* Initialize the global state for multithreaded operation.  */
    408  1.39  riastrad 	mutex_init(&E->lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
    409   1.1  riastrad 	cv_init(&E->cv, "entropy");
    410   1.1  riastrad 	selinit(&E->selq);
    411  1.27  riastrad 	cv_init(&E->sourcelock_cv, "entsrclock");
    412   1.1  riastrad 
    413   1.1  riastrad 	/* Make sure the seed source is attached.  */
    414   1.1  riastrad 	attach_seed_rndsource();
    415   1.1  riastrad 
    416   1.1  riastrad 	/* Note if the bootloader didn't provide a seed.  */
    417   1.1  riastrad 	if (!E->seeded)
    418  1.29  riastrad 		aprint_debug("entropy: no seed from bootloader\n");
    419   1.1  riastrad 
    420   1.1  riastrad 	/* Allocate the per-CPU records for all early entropy sources.  */
    421   1.1  riastrad 	LIST_FOREACH(rs, &E->sources, list)
    422   1.1  riastrad 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
    423   1.1  riastrad 
    424  1.36  riastrad 	/* Allocate and initialize the per-CPU state.  */
    425  1.36  riastrad 	entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
    426  1.36  riastrad 	    entropy_init_cpu, entropy_fini_cpu, NULL);
    427  1.36  riastrad 
    428   1.1  riastrad 	/* Enter the boot cycle count to get started.  */
    429   1.1  riastrad 	extra[i++] = entropy_timer();
    430   1.1  riastrad 	KASSERT(i == __arraycount(extra));
    431  1.62  riastrad 	entropy_enter(extra, sizeof extra, /*nbits*/0, /*count*/false);
    432   1.1  riastrad 	explicit_memset(extra, 0, sizeof extra);
    433  1.37  riastrad }
    434  1.37  riastrad 
    435   1.1  riastrad /*
    436   1.1  riastrad  * entropy_init_late()
    437   1.1  riastrad  *
    438   1.1  riastrad  *	Late initialization.  Panic on failure.
    439   1.1  riastrad  *
    440   1.1  riastrad  *	Requires CPUs to have been detected and LWPs to have started.
    441  1.63  riastrad  *	Must run while cold.
    442   1.1  riastrad  */
    443   1.1  riastrad static void
    444   1.1  riastrad entropy_init_late(void)
    445   1.1  riastrad {
    446   1.1  riastrad 	int error;
    447   1.1  riastrad 
    448  1.63  riastrad 	KASSERT(cold);
    449   1.1  riastrad 
    450   1.1  riastrad 	/*
    451   1.1  riastrad 	 * Establish the softint at the highest softint priority level.
    452   1.1  riastrad 	 * Must happen after CPU detection.
    453   1.1  riastrad 	 */
    454  1.63  riastrad 	entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
    455   1.1  riastrad 	    &entropy_softintr, NULL);
    456  1.63  riastrad 	if (entropy_sih == NULL)
    457   1.1  riastrad 		panic("unable to establish entropy softint");
    458   1.1  riastrad 
    459   1.1  riastrad 	/*
    460   1.1  riastrad 	 * Create the entropy housekeeping thread.  Must happen after
    461   1.1  riastrad 	 * lwpinit.
    462   1.1  riastrad 	 */
    463   1.1  riastrad 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
    464   1.1  riastrad 	    entropy_thread, NULL, &entropy_lwp, "entbutler");
    465   1.1  riastrad 	if (error)
    466   1.1  riastrad 		panic("unable to create entropy housekeeping thread: %d",
    467   1.1  riastrad 		    error);
    468   1.1  riastrad }
    469   1.1  riastrad 
    470   1.1  riastrad /*
    471   1.1  riastrad  * entropy_init_cpu(ptr, cookie, ci)
    472   1.1  riastrad  *
    473   1.1  riastrad  *	percpu(9) constructor for per-CPU entropy pool.
    474   1.1  riastrad  */
    475   1.1  riastrad static void
    476   1.1  riastrad entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    477   1.1  riastrad {
    478   1.1  riastrad 	struct entropy_cpu *ec = ptr;
    479  1.40  riastrad 	const char *cpuname;
    480   1.1  riastrad 
    481  1.40  riastrad 	ec->ec_evcnt = kmem_alloc(sizeof(*ec->ec_evcnt), KM_SLEEP);
    482   1.1  riastrad 	ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
    483  1.62  riastrad 	ec->ec_bitspending = 0;
    484  1.62  riastrad 	ec->ec_samplespending = 0;
    485   1.1  riastrad 	ec->ec_locked = false;
    486   1.1  riastrad 
    487  1.36  riastrad 	/* XXX ci_cpuname may not be initialized early enough.  */
    488  1.40  riastrad 	cpuname = ci->ci_cpuname[0] == '\0' ? "cpu0" : ci->ci_cpuname;
    489  1.40  riastrad 	evcnt_attach_dynamic(&ec->ec_evcnt->softint, EVCNT_TYPE_MISC, NULL,
    490  1.40  riastrad 	    cpuname, "entropy softint");
    491  1.40  riastrad 	evcnt_attach_dynamic(&ec->ec_evcnt->intrdrop, EVCNT_TYPE_MISC, NULL,
    492  1.40  riastrad 	    cpuname, "entropy intrdrop");
    493  1.40  riastrad 	evcnt_attach_dynamic(&ec->ec_evcnt->intrtrunc, EVCNT_TYPE_MISC, NULL,
    494  1.40  riastrad 	    cpuname, "entropy intrtrunc");
    495   1.1  riastrad }
    496   1.1  riastrad 
    497   1.1  riastrad /*
    498   1.1  riastrad  * entropy_fini_cpu(ptr, cookie, ci)
    499   1.1  riastrad  *
    500   1.1  riastrad  *	percpu(9) destructor for per-CPU entropy pool.
    501   1.1  riastrad  */
    502   1.1  riastrad static void
    503   1.1  riastrad entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    504   1.1  riastrad {
    505   1.1  riastrad 	struct entropy_cpu *ec = ptr;
    506   1.1  riastrad 
    507   1.1  riastrad 	/*
    508   1.1  riastrad 	 * Zero any lingering data.  Disclosure of the per-CPU pool
    509   1.1  riastrad 	 * shouldn't retroactively affect the security of any keys
    510   1.1  riastrad 	 * generated, because entpool(9) erases whatever we have just
    511   1.1  riastrad 	 * drawn out of any pool, but better safe than sorry.
    512   1.1  riastrad 	 */
    513   1.1  riastrad 	explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
    514   1.1  riastrad 
    515  1.40  riastrad 	evcnt_detach(&ec->ec_evcnt->intrtrunc);
    516  1.40  riastrad 	evcnt_detach(&ec->ec_evcnt->intrdrop);
    517  1.40  riastrad 	evcnt_detach(&ec->ec_evcnt->softint);
    518   1.1  riastrad 
    519   1.1  riastrad 	kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
    520  1.40  riastrad 	kmem_free(ec->ec_evcnt, sizeof(*ec->ec_evcnt));
    521   1.1  riastrad }
    522   1.1  riastrad 
    523   1.1  riastrad /*
    524  1.43  riastrad  * ec = entropy_cpu_get(&lock)
    525  1.43  riastrad  * entropy_cpu_put(&lock, ec)
    526  1.43  riastrad  *
    527  1.43  riastrad  *	Lock and unlock the per-CPU entropy state.  This only prevents
    528  1.43  riastrad  *	access on the same CPU -- by hard interrupts, by soft
    529  1.43  riastrad  *	interrupts, or by other threads.
    530  1.43  riastrad  *
    531  1.43  riastrad  *	Blocks soft interrupts and preemption altogether; doesn't block
    532  1.43  riastrad  *	hard interrupts, but causes samples in hard interrupts to be
    533  1.43  riastrad  *	dropped.
    534  1.43  riastrad  */
    535  1.43  riastrad static struct entropy_cpu *
    536  1.43  riastrad entropy_cpu_get(struct entropy_cpu_lock *lock)
    537  1.43  riastrad {
    538  1.43  riastrad 	struct entropy_cpu *ec;
    539  1.43  riastrad 
    540  1.43  riastrad 	ec = percpu_getref(entropy_percpu);
    541  1.43  riastrad 	lock->ecl_s = splsoftserial();
    542  1.43  riastrad 	KASSERT(!ec->ec_locked);
    543  1.43  riastrad 	ec->ec_locked = true;
    544  1.66        ad 	lock->ecl_pctr = lwp_pctr();
    545  1.43  riastrad 	__insn_barrier();
    546  1.43  riastrad 
    547  1.43  riastrad 	return ec;
    548  1.43  riastrad }
    549  1.43  riastrad 
    550  1.43  riastrad static void
    551  1.43  riastrad entropy_cpu_put(struct entropy_cpu_lock *lock, struct entropy_cpu *ec)
    552  1.43  riastrad {
    553  1.43  riastrad 
    554  1.43  riastrad 	KASSERT(ec == percpu_getptr_remote(entropy_percpu, curcpu()));
    555  1.43  riastrad 	KASSERT(ec->ec_locked);
    556  1.43  riastrad 
    557  1.43  riastrad 	__insn_barrier();
    558  1.66        ad 	KASSERT(lock->ecl_pctr == lwp_pctr());
    559  1.43  riastrad 	ec->ec_locked = false;
    560  1.43  riastrad 	splx(lock->ecl_s);
    561  1.43  riastrad 	percpu_putref(entropy_percpu);
    562  1.43  riastrad }
    563  1.43  riastrad 
    564  1.43  riastrad /*
    565   1.1  riastrad  * entropy_seed(seed)
    566   1.1  riastrad  *
    567   1.1  riastrad  *	Seed the entropy pool with seed.  Meant to be called as early
    568   1.1  riastrad  *	as possible by the bootloader; may be called before or after
    569   1.1  riastrad  *	entropy_init.  Must be called before system reaches userland.
    570   1.1  riastrad  *	Must be called in thread or soft interrupt context, not in hard
    571   1.1  riastrad  *	interrupt context.  Must be called at most once.
    572   1.1  riastrad  *
    573   1.1  riastrad  *	Overwrites the seed in place.  Caller may then free the memory.
    574   1.1  riastrad  */
    575   1.1  riastrad static void
    576   1.1  riastrad entropy_seed(rndsave_t *seed)
    577   1.1  riastrad {
    578   1.1  riastrad 	SHA1_CTX ctx;
    579   1.1  riastrad 	uint8_t digest[SHA1_DIGEST_LENGTH];
    580   1.1  riastrad 	bool seeded;
    581   1.1  riastrad 
    582  1.63  riastrad 	KASSERT(!cpu_intr_p());
    583  1.63  riastrad 	KASSERT(!cpu_softintr_p());
    584  1.63  riastrad 	KASSERT(cold);
    585  1.63  riastrad 
    586   1.1  riastrad 	/*
    587   1.1  riastrad 	 * Verify the checksum.  If the checksum fails, take the data
    588   1.1  riastrad 	 * but ignore the entropy estimate -- the file may have been
    589   1.1  riastrad 	 * incompletely written with garbage, which is harmless to add
    590   1.1  riastrad 	 * but may not be as unpredictable as alleged.
    591   1.1  riastrad 	 */
    592   1.1  riastrad 	SHA1Init(&ctx);
    593   1.1  riastrad 	SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
    594   1.1  riastrad 	SHA1Update(&ctx, seed->data, sizeof(seed->data));
    595   1.1  riastrad 	SHA1Final(digest, &ctx);
    596   1.1  riastrad 	CTASSERT(sizeof(seed->digest) == sizeof(digest));
    597   1.1  riastrad 	if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
    598   1.1  riastrad 		printf("entropy: invalid seed checksum\n");
    599   1.1  riastrad 		seed->entropy = 0;
    600   1.1  riastrad 	}
    601   1.2  riastrad 	explicit_memset(&ctx, 0, sizeof ctx);
    602   1.1  riastrad 	explicit_memset(digest, 0, sizeof digest);
    603   1.1  riastrad 
    604   1.2  riastrad 	/*
    605   1.2  riastrad 	 * If the entropy is insensibly large, try byte-swapping.
    606   1.2  riastrad 	 * Otherwise assume the file is corrupted and act as though it
    607   1.2  riastrad 	 * has zero entropy.
    608   1.2  riastrad 	 */
    609   1.2  riastrad 	if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
    610   1.2  riastrad 		seed->entropy = bswap32(seed->entropy);
    611   1.2  riastrad 		if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
    612   1.2  riastrad 			seed->entropy = 0;
    613   1.2  riastrad 	}
    614   1.2  riastrad 
    615   1.1  riastrad 	/* Make sure the seed source is attached.  */
    616   1.1  riastrad 	attach_seed_rndsource();
    617   1.1  riastrad 
    618   1.1  riastrad 	/* Test and set E->seeded.  */
    619   1.1  riastrad 	seeded = E->seeded;
    620  1.11  riastrad 	E->seeded = (seed->entropy > 0);
    621   1.1  riastrad 
    622   1.1  riastrad 	/*
    623   1.1  riastrad 	 * If we've been seeded, may be re-entering the same seed
    624   1.1  riastrad 	 * (e.g., bootloader vs module init, or something).  No harm in
    625   1.1  riastrad 	 * entering it twice, but it contributes no additional entropy.
    626   1.1  riastrad 	 */
    627   1.1  riastrad 	if (seeded) {
    628   1.1  riastrad 		printf("entropy: double-seeded by bootloader\n");
    629   1.1  riastrad 		seed->entropy = 0;
    630   1.1  riastrad 	} else {
    631  1.11  riastrad 		printf("entropy: entering seed from bootloader"
    632  1.11  riastrad 		    " with %u bits of entropy\n", (unsigned)seed->entropy);
    633   1.1  riastrad 	}
    634   1.1  riastrad 
    635   1.1  riastrad 	/* Enter it into the pool and promptly zero it.  */
    636   1.1  riastrad 	rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
    637   1.1  riastrad 	    seed->entropy);
    638   1.1  riastrad 	explicit_memset(seed, 0, sizeof(*seed));
    639   1.1  riastrad }
    640   1.1  riastrad 
    641   1.1  riastrad /*
    642   1.1  riastrad  * entropy_bootrequest()
    643   1.1  riastrad  *
    644   1.1  riastrad  *	Request entropy from all sources at boot, once config is
    645  1.63  riastrad  *	complete and interrupts are running but we are still cold.
    646   1.1  riastrad  */
    647   1.1  riastrad void
    648   1.1  riastrad entropy_bootrequest(void)
    649   1.1  riastrad {
    650  1.49  riastrad 	int error;
    651   1.1  riastrad 
    652  1.63  riastrad 	KASSERT(!cpu_intr_p());
    653  1.63  riastrad 	KASSERT(!cpu_softintr_p());
    654  1.63  riastrad 	KASSERT(cold);
    655   1.1  riastrad 
    656   1.1  riastrad 	/*
    657   1.1  riastrad 	 * Request enough to satisfy the maximum entropy shortage.
    658   1.1  riastrad 	 * This is harmless overkill if the bootloader provided a seed.
    659   1.1  riastrad 	 */
    660  1.62  riastrad 	error = entropy_request(MINENTROPYBYTES, ENTROPY_WAIT);
    661  1.63  riastrad 	KASSERTMSG(error == 0, "error=%d", error);
    662   1.1  riastrad }
    663   1.1  riastrad 
    664   1.1  riastrad /*
    665   1.1  riastrad  * entropy_epoch()
    666   1.1  riastrad  *
    667   1.1  riastrad  *	Returns the current entropy epoch.  If this changes, you should
    668  1.14  riastrad  *	reseed.  If -1, means system entropy has not yet reached full
    669  1.14  riastrad  *	entropy or been explicitly consolidated; never reverts back to
    670  1.14  riastrad  *	-1.  Never zero, so you can always use zero as an uninitialized
    671  1.14  riastrad  *	sentinel value meaning `reseed ASAP'.
    672   1.1  riastrad  *
    673   1.1  riastrad  *	Usage model:
    674   1.1  riastrad  *
    675   1.1  riastrad  *		struct foo {
    676   1.1  riastrad  *			struct crypto_prng prng;
    677   1.1  riastrad  *			unsigned epoch;
    678   1.1  riastrad  *		} *foo;
    679   1.1  riastrad  *
    680   1.1  riastrad  *		unsigned epoch = entropy_epoch();
    681   1.1  riastrad  *		if (__predict_false(epoch != foo->epoch)) {
    682   1.1  riastrad  *			uint8_t seed[32];
    683   1.1  riastrad  *			if (entropy_extract(seed, sizeof seed, 0) != 0)
    684   1.1  riastrad  *				warn("no entropy");
    685   1.1  riastrad  *			crypto_prng_reseed(&foo->prng, seed, sizeof seed);
    686   1.1  riastrad  *			foo->epoch = epoch;
    687   1.1  riastrad  *		}
    688   1.1  riastrad  */
    689   1.1  riastrad unsigned
    690   1.1  riastrad entropy_epoch(void)
    691   1.1  riastrad {
    692   1.1  riastrad 
    693   1.1  riastrad 	/*
    694   1.1  riastrad 	 * Unsigned int, so no need for seqlock for an atomic read, but
    695   1.1  riastrad 	 * make sure we read it afresh each time.
    696   1.1  riastrad 	 */
    697   1.1  riastrad 	return atomic_load_relaxed(&E->epoch);
    698   1.1  riastrad }
    699   1.1  riastrad 
    700   1.1  riastrad /*
    701  1.23  riastrad  * entropy_ready()
    702  1.23  riastrad  *
    703  1.23  riastrad  *	True if the entropy pool has full entropy.
    704  1.23  riastrad  */
    705  1.23  riastrad bool
    706  1.23  riastrad entropy_ready(void)
    707  1.23  riastrad {
    708  1.23  riastrad 
    709  1.62  riastrad 	return atomic_load_relaxed(&E->bitsneeded) == 0;
    710  1.23  riastrad }
    711  1.23  riastrad 
    712  1.23  riastrad /*
    713   1.1  riastrad  * entropy_account_cpu(ec)
    714   1.1  riastrad  *
    715   1.1  riastrad  *	Consider whether to consolidate entropy into the global pool
    716   1.1  riastrad  *	after we just added some into the current CPU's pending pool.
    717   1.1  riastrad  *
    718   1.1  riastrad  *	- If this CPU can provide enough entropy now, do so.
    719   1.1  riastrad  *
    720   1.1  riastrad  *	- If this and whatever else is available on other CPUs can
    721   1.1  riastrad  *	  provide enough entropy, kick the consolidation thread.
    722   1.1  riastrad  *
    723   1.1  riastrad  *	- Otherwise, do as little as possible, except maybe consolidate
    724   1.1  riastrad  *	  entropy at most once a minute.
    725   1.1  riastrad  *
    726   1.1  riastrad  *	Caller must be bound to a CPU and therefore have exclusive
    727   1.1  riastrad  *	access to ec.  Will acquire and release the global lock.
    728   1.1  riastrad  */
    729   1.1  riastrad static void
    730   1.1  riastrad entropy_account_cpu(struct entropy_cpu *ec)
    731   1.1  riastrad {
    732  1.44  riastrad 	struct entropy_cpu_lock lock;
    733  1.44  riastrad 	struct entropy_cpu *ec0;
    734  1.62  riastrad 	unsigned bitsdiff, samplesdiff;
    735   1.1  riastrad 
    736  1.63  riastrad 	KASSERT(!cpu_intr_p());
    737  1.63  riastrad 	KASSERT(!cold);
    738  1.52  riastrad 	KASSERT(curlwp->l_pflag & LP_BOUND);
    739   1.1  riastrad 
    740   1.1  riastrad 	/*
    741   1.1  riastrad 	 * If there's no entropy needed, and entropy has been
    742   1.1  riastrad 	 * consolidated in the last minute, do nothing.
    743   1.1  riastrad 	 */
    744  1.62  riastrad 	if (__predict_true(atomic_load_relaxed(&E->bitsneeded) == 0) &&
    745   1.1  riastrad 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
    746   1.1  riastrad 	    __predict_true((time_uptime - E->timestamp) <= 60))
    747   1.1  riastrad 		return;
    748   1.1  riastrad 
    749  1.44  riastrad 	/*
    750  1.44  riastrad 	 * Consider consolidation, under the global lock and with the
    751  1.44  riastrad 	 * per-CPU state locked.
    752  1.44  riastrad 	 */
    753   1.1  riastrad 	mutex_enter(&E->lock);
    754  1.44  riastrad 	ec0 = entropy_cpu_get(&lock);
    755  1.44  riastrad 	KASSERT(ec0 == ec);
    756  1.62  riastrad 
    757  1.62  riastrad 	if (ec->ec_bitspending == 0 && ec->ec_samplespending == 0) {
    758  1.46  riastrad 		/* Raced with consolidation xcall.  Nothing to do.  */
    759  1.62  riastrad 	} else if (E->bitsneeded != 0 && E->bitsneeded <= ec->ec_bitspending) {
    760   1.1  riastrad 		/*
    761   1.1  riastrad 		 * If we have not yet attained full entropy but we can
    762   1.1  riastrad 		 * now, do so.  This way we disseminate entropy
    763   1.1  riastrad 		 * promptly when it becomes available early at boot;
    764   1.1  riastrad 		 * otherwise we leave it to the entropy consolidation
    765   1.1  riastrad 		 * thread, which is rate-limited to mitigate side
    766   1.1  riastrad 		 * channels and abuse.
    767   1.1  riastrad 		 */
    768   1.1  riastrad 		uint8_t buf[ENTPOOL_CAPACITY];
    769   1.1  riastrad 
    770   1.1  riastrad 		/* Transfer from the local pool to the global pool.  */
    771   1.1  riastrad 		entpool_extract(ec->ec_pool, buf, sizeof buf);
    772   1.1  riastrad 		entpool_enter(&E->pool, buf, sizeof buf);
    773  1.62  riastrad 		atomic_store_relaxed(&ec->ec_bitspending, 0);
    774  1.62  riastrad 		atomic_store_relaxed(&ec->ec_samplespending, 0);
    775  1.62  riastrad 		atomic_store_relaxed(&E->bitsneeded, 0);
    776  1.62  riastrad 		atomic_store_relaxed(&E->samplesneeded, 0);
    777   1.1  riastrad 
    778   1.1  riastrad 		/* Notify waiters that we now have full entropy.  */
    779   1.1  riastrad 		entropy_notify();
    780   1.1  riastrad 		entropy_immediate_evcnt.ev_count++;
    781  1.18  riastrad 	} else {
    782  1.45  riastrad 		/* Determine how much we can add to the global pool.  */
    783  1.62  riastrad 		KASSERTMSG(E->bitspending <= MINENTROPYBITS,
    784  1.62  riastrad 		    "E->bitspending=%u", E->bitspending);
    785  1.62  riastrad 		bitsdiff = MIN(ec->ec_bitspending,
    786  1.62  riastrad 		    MINENTROPYBITS - E->bitspending);
    787  1.62  riastrad 		KASSERTMSG(E->samplespending <= MINSAMPLES,
    788  1.62  riastrad 		    "E->samplespending=%u", E->samplespending);
    789  1.62  riastrad 		samplesdiff = MIN(ec->ec_samplespending,
    790  1.62  riastrad 		    MINSAMPLES - E->samplespending);
    791   1.1  riastrad 
    792   1.1  riastrad 		/*
    793  1.45  riastrad 		 * This should make a difference unless we are already
    794  1.45  riastrad 		 * saturated.
    795   1.1  riastrad 		 */
    796  1.62  riastrad 		KASSERTMSG((bitsdiff || samplesdiff ||
    797  1.62  riastrad 			E->bitspending == MINENTROPYBITS ||
    798  1.62  riastrad 			E->samplespending == MINSAMPLES),
    799  1.62  riastrad 		    "bitsdiff=%u E->bitspending=%u ec->ec_bitspending=%u"
    800  1.62  riastrad 		    "samplesdiff=%u E->samplespending=%u"
    801  1.62  riastrad 		    " ec->ec_samplespending=%u"
    802  1.62  riastrad 		    " minentropybits=%u minsamples=%u",
    803  1.62  riastrad 		    bitsdiff, E->bitspending, ec->ec_bitspending,
    804  1.62  riastrad 		    samplesdiff, E->samplespending, ec->ec_samplespending,
    805  1.62  riastrad 		    (unsigned)MINENTROPYBITS, (unsigned)MINSAMPLES);
    806  1.45  riastrad 
    807  1.45  riastrad 		/* Add to the global, subtract from the local.  */
    808  1.62  riastrad 		E->bitspending += bitsdiff;
    809  1.62  riastrad 		KASSERTMSG(E->bitspending <= MINENTROPYBITS,
    810  1.62  riastrad 		    "E->bitspending=%u", E->bitspending);
    811  1.62  riastrad 		atomic_store_relaxed(&ec->ec_bitspending,
    812  1.62  riastrad 		    ec->ec_bitspending - bitsdiff);
    813  1.62  riastrad 
    814  1.62  riastrad 		E->samplespending += samplesdiff;
    815  1.62  riastrad 		KASSERTMSG(E->samplespending <= MINSAMPLES,
    816  1.62  riastrad 		    "E->samplespending=%u", E->samplespending);
    817  1.62  riastrad 		atomic_store_relaxed(&ec->ec_samplespending,
    818  1.62  riastrad 		    ec->ec_samplespending - samplesdiff);
    819   1.1  riastrad 
    820  1.62  riastrad 		/* One or the other must have gone up from zero.  */
    821  1.62  riastrad 		KASSERT(E->bitspending || E->samplespending);
    822  1.62  riastrad 
    823  1.62  riastrad 		if (E->bitsneeded <= E->bitspending ||
    824  1.62  riastrad 		    E->samplesneeded <= E->samplespending) {
    825   1.1  riastrad 			/*
    826  1.62  riastrad 			 * Enough bits or at least samples between all
    827  1.62  riastrad 			 * the per-CPU pools.  Leave a note for the
    828  1.62  riastrad 			 * housekeeping thread to consolidate entropy
    829  1.62  riastrad 			 * next time it wakes up -- and wake it up if
    830  1.62  riastrad 			 * this is the first time, to speed things up.
    831   1.1  riastrad 			 *
    832   1.1  riastrad 			 * If we don't need any entropy, this doesn't
    833   1.1  riastrad 			 * mean much, but it is the only time we ever
    834   1.1  riastrad 			 * gather additional entropy in case the
    835   1.1  riastrad 			 * accounting has been overly optimistic.  This
    836   1.1  riastrad 			 * happens at most once a minute, so there's
    837   1.1  riastrad 			 * negligible performance cost.
    838   1.1  riastrad 			 */
    839   1.1  riastrad 			E->consolidate = true;
    840  1.62  riastrad 			if (E->epoch == (unsigned)-1)
    841  1.62  riastrad 				cv_broadcast(&E->cv);
    842  1.62  riastrad 			if (E->bitsneeded == 0)
    843   1.1  riastrad 				entropy_discretionary_evcnt.ev_count++;
    844   1.1  riastrad 		} else {
    845   1.1  riastrad 			/* Can't get full entropy.  Keep gathering.  */
    846   1.1  riastrad 			entropy_partial_evcnt.ev_count++;
    847   1.1  riastrad 		}
    848   1.1  riastrad 	}
    849  1.62  riastrad 
    850  1.44  riastrad 	entropy_cpu_put(&lock, ec);
    851   1.1  riastrad 	mutex_exit(&E->lock);
    852   1.1  riastrad }
    853   1.1  riastrad 
    854   1.1  riastrad /*
    855   1.1  riastrad  * entropy_enter_early(buf, len, nbits)
    856   1.1  riastrad  *
    857   1.1  riastrad  *	Do entropy bookkeeping globally, before we have established
    858   1.1  riastrad  *	per-CPU pools.  Enter directly into the global pool in the hope
    859   1.1  riastrad  *	that we enter enough before the first entropy_extract to thwart
    860   1.1  riastrad  *	iterative-guessing attacks; entropy_extract will warn if not.
    861   1.1  riastrad  */
    862   1.1  riastrad static void
    863   1.1  riastrad entropy_enter_early(const void *buf, size_t len, unsigned nbits)
    864   1.1  riastrad {
    865   1.1  riastrad 	bool notify = false;
    866  1.63  riastrad 	int s;
    867  1.63  riastrad 
    868  1.63  riastrad 	KASSERT(cold);
    869   1.1  riastrad 
    870  1.63  riastrad 	/*
    871  1.63  riastrad 	 * We're early at boot before multithreading and multi-CPU
    872  1.63  riastrad 	 * operation, and we don't have softints yet to defer
    873  1.63  riastrad 	 * processing from interrupt context, so we have to enter the
    874  1.63  riastrad 	 * samples directly into the global pool.  But interrupts may
    875  1.63  riastrad 	 * be enabled, and we enter this path from interrupt context,
    876  1.63  riastrad 	 * so block interrupts until we're done.
    877  1.63  riastrad 	 */
    878  1.63  riastrad 	s = splhigh();
    879   1.1  riastrad 
    880   1.1  riastrad 	/* Enter it into the pool.  */
    881   1.1  riastrad 	entpool_enter(&E->pool, buf, len);
    882   1.1  riastrad 
    883   1.1  riastrad 	/*
    884   1.1  riastrad 	 * Decide whether to notify reseed -- we will do so if either:
    885   1.1  riastrad 	 * (a) we transition from partial entropy to full entropy, or
    886   1.1  riastrad 	 * (b) we get a batch of full entropy all at once.
    887  1.63  riastrad 	 * We don't count timing samples because we assume, while cold,
    888  1.63  riastrad 	 * there's not likely to be much jitter yet.
    889   1.1  riastrad 	 */
    890  1.62  riastrad 	notify |= (E->bitsneeded && E->bitsneeded <= nbits);
    891  1.62  riastrad 	notify |= (nbits >= MINENTROPYBITS);
    892   1.1  riastrad 
    893  1.62  riastrad 	/*
    894  1.62  riastrad 	 * Subtract from the needed count and notify if appropriate.
    895  1.62  riastrad 	 * We don't count samples here because entropy_timer might
    896  1.62  riastrad 	 * still be returning zero at this point if there's no CPU
    897  1.62  riastrad 	 * cycle counter.
    898  1.62  riastrad 	 */
    899  1.62  riastrad 	E->bitsneeded -= MIN(E->bitsneeded, nbits);
    900   1.1  riastrad 	if (notify) {
    901   1.1  riastrad 		entropy_notify();
    902   1.1  riastrad 		entropy_immediate_evcnt.ev_count++;
    903   1.1  riastrad 	}
    904  1.63  riastrad 
    905  1.63  riastrad 	splx(s);
    906   1.1  riastrad }
    907   1.1  riastrad 
    908   1.1  riastrad /*
    909  1.62  riastrad  * entropy_enter(buf, len, nbits, count)
    910   1.1  riastrad  *
    911   1.1  riastrad  *	Enter len bytes of data from buf into the system's entropy
    912   1.1  riastrad  *	pool, stirring as necessary when the internal buffer fills up.
    913   1.1  riastrad  *	nbits is a lower bound on the number of bits of entropy in the
    914   1.1  riastrad  *	process that led to this sample.
    915   1.1  riastrad  */
    916   1.1  riastrad static void
    917  1.62  riastrad entropy_enter(const void *buf, size_t len, unsigned nbits, bool count)
    918   1.1  riastrad {
    919  1.43  riastrad 	struct entropy_cpu_lock lock;
    920   1.1  riastrad 	struct entropy_cpu *ec;
    921  1.62  riastrad 	unsigned bitspending, samplespending;
    922  1.52  riastrad 	int bound;
    923   1.1  riastrad 
    924  1.16  riastrad 	KASSERTMSG(!cpu_intr_p(),
    925   1.1  riastrad 	    "use entropy_enter_intr from interrupt context");
    926   1.1  riastrad 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    927   1.1  riastrad 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    928   1.1  riastrad 
    929  1.63  riastrad 	/*
    930  1.63  riastrad 	 * If we're still cold, just use entropy_enter_early to put
    931  1.63  riastrad 	 * samples directly into the global pool.
    932  1.63  riastrad 	 */
    933  1.63  riastrad 	if (__predict_false(cold)) {
    934   1.1  riastrad 		entropy_enter_early(buf, len, nbits);
    935   1.1  riastrad 		return;
    936   1.1  riastrad 	}
    937   1.1  riastrad 
    938   1.1  riastrad 	/*
    939  1.52  riastrad 	 * Bind ourselves to the current CPU so we don't switch CPUs
    940  1.52  riastrad 	 * between entering data into the current CPU's pool (and
    941  1.52  riastrad 	 * updating the pending count) and transferring it to the
    942  1.52  riastrad 	 * global pool in entropy_account_cpu.
    943  1.52  riastrad 	 */
    944  1.52  riastrad 	bound = curlwp_bind();
    945  1.52  riastrad 
    946  1.52  riastrad 	/*
    947  1.43  riastrad 	 * With the per-CPU state locked, enter into the per-CPU pool
    948  1.43  riastrad 	 * and count up what we can add.
    949  1.62  riastrad 	 *
    950  1.62  riastrad 	 * We don't count samples while cold because entropy_timer
    951  1.62  riastrad 	 * might still be returning zero if there's no CPU cycle
    952  1.62  riastrad 	 * counter.
    953   1.1  riastrad 	 */
    954  1.43  riastrad 	ec = entropy_cpu_get(&lock);
    955   1.1  riastrad 	entpool_enter(ec->ec_pool, buf, len);
    956  1.62  riastrad 	bitspending = ec->ec_bitspending;
    957  1.62  riastrad 	bitspending += MIN(MINENTROPYBITS - bitspending, nbits);
    958  1.62  riastrad 	atomic_store_relaxed(&ec->ec_bitspending, bitspending);
    959  1.62  riastrad 	samplespending = ec->ec_samplespending;
    960  1.62  riastrad 	if (__predict_true(count)) {
    961  1.62  riastrad 		samplespending += MIN(MINSAMPLES - samplespending, 1);
    962  1.62  riastrad 		atomic_store_relaxed(&ec->ec_samplespending, samplespending);
    963  1.62  riastrad 	}
    964  1.43  riastrad 	entropy_cpu_put(&lock, ec);
    965  1.42  riastrad 
    966  1.42  riastrad 	/* Consolidate globally if appropriate based on what we added.  */
    967  1.62  riastrad 	if (bitspending > 0 || samplespending >= MINSAMPLES)
    968  1.42  riastrad 		entropy_account_cpu(ec);
    969  1.52  riastrad 
    970  1.52  riastrad 	curlwp_bindx(bound);
    971   1.1  riastrad }
    972   1.1  riastrad 
    973   1.1  riastrad /*
    974  1.62  riastrad  * entropy_enter_intr(buf, len, nbits, count)
    975   1.1  riastrad  *
    976   1.1  riastrad  *	Enter up to len bytes of data from buf into the system's
    977   1.1  riastrad  *	entropy pool without stirring.  nbits is a lower bound on the
    978   1.1  riastrad  *	number of bits of entropy in the process that led to this
    979   1.1  riastrad  *	sample.  If the sample could be entered completely, assume
    980   1.1  riastrad  *	nbits of entropy pending; otherwise assume none, since we don't
    981   1.1  riastrad  *	know whether some parts of the sample are constant, for
    982   1.1  riastrad  *	instance.  Schedule a softint to stir the entropy pool if
    983   1.1  riastrad  *	needed.  Return true if used fully, false if truncated at all.
    984   1.1  riastrad  *
    985  1.63  riastrad  *	Using this in thread or softint context with no spin locks held
    986  1.63  riastrad  *	will work, but you might as well use entropy_enter in that
    987  1.63  riastrad  *	case.
    988   1.1  riastrad  */
    989   1.1  riastrad static bool
    990  1.62  riastrad entropy_enter_intr(const void *buf, size_t len, unsigned nbits, bool count)
    991   1.1  riastrad {
    992   1.1  riastrad 	struct entropy_cpu *ec;
    993   1.1  riastrad 	bool fullyused = false;
    994  1.62  riastrad 	uint32_t bitspending, samplespending;
    995  1.63  riastrad 	int s;
    996   1.1  riastrad 
    997   1.1  riastrad 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    998   1.1  riastrad 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    999   1.1  riastrad 
   1000  1.63  riastrad 	/*
   1001  1.63  riastrad 	 * If we're still cold, just use entropy_enter_early to put
   1002  1.63  riastrad 	 * samples directly into the global pool.
   1003  1.63  riastrad 	 */
   1004  1.63  riastrad 	if (__predict_false(cold)) {
   1005   1.1  riastrad 		entropy_enter_early(buf, len, nbits);
   1006   1.1  riastrad 		return true;
   1007   1.1  riastrad 	}
   1008   1.1  riastrad 
   1009   1.1  riastrad 	/*
   1010  1.63  riastrad 	 * In case we were called in thread or interrupt context with
   1011  1.63  riastrad 	 * interrupts unblocked, block soft interrupts up to
   1012  1.63  riastrad 	 * IPL_SOFTSERIAL.  This way logic that is safe in interrupt
   1013  1.63  riastrad 	 * context or under a spin lock is also safe in less
   1014  1.63  riastrad 	 * restrictive contexts.
   1015  1.63  riastrad 	 */
   1016  1.63  riastrad 	s = splsoftserial();
   1017  1.63  riastrad 
   1018  1.63  riastrad 	/*
   1019   1.1  riastrad 	 * Acquire the per-CPU state.  If someone is in the middle of
   1020   1.1  riastrad 	 * using it, drop the sample.  Otherwise, take the lock so that
   1021   1.1  riastrad 	 * higher-priority interrupts will drop their samples.
   1022   1.1  riastrad 	 */
   1023   1.1  riastrad 	ec = percpu_getref(entropy_percpu);
   1024  1.40  riastrad 	if (ec->ec_locked) {
   1025  1.40  riastrad 		ec->ec_evcnt->intrdrop.ev_count++;
   1026   1.1  riastrad 		goto out0;
   1027  1.40  riastrad 	}
   1028   1.1  riastrad 	ec->ec_locked = true;
   1029   1.1  riastrad 	__insn_barrier();
   1030   1.1  riastrad 
   1031   1.1  riastrad 	/*
   1032   1.1  riastrad 	 * Enter as much as we can into the per-CPU pool.  If it was
   1033   1.1  riastrad 	 * truncated, schedule a softint to stir the pool and stop.
   1034   1.1  riastrad 	 */
   1035   1.1  riastrad 	if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
   1036  1.63  riastrad 		if (__predict_true(!cold))
   1037  1.63  riastrad 			softint_schedule(entropy_sih);
   1038  1.40  riastrad 		ec->ec_evcnt->intrtrunc.ev_count++;
   1039   1.1  riastrad 		goto out1;
   1040   1.1  riastrad 	}
   1041   1.1  riastrad 	fullyused = true;
   1042   1.1  riastrad 
   1043  1.62  riastrad 	/*
   1044  1.62  riastrad 	 * Count up what we can contribute.
   1045  1.62  riastrad 	 *
   1046  1.62  riastrad 	 * We don't count samples while cold because entropy_timer
   1047  1.62  riastrad 	 * might still be returning zero if there's no CPU cycle
   1048  1.62  riastrad 	 * counter.
   1049  1.62  riastrad 	 */
   1050  1.62  riastrad 	bitspending = ec->ec_bitspending;
   1051  1.62  riastrad 	bitspending += MIN(MINENTROPYBITS - bitspending, nbits);
   1052  1.62  riastrad 	atomic_store_relaxed(&ec->ec_bitspending, bitspending);
   1053  1.62  riastrad 	if (__predict_true(count)) {
   1054  1.62  riastrad 		samplespending = ec->ec_samplespending;
   1055  1.62  riastrad 		samplespending += MIN(MINSAMPLES - samplespending, 1);
   1056  1.62  riastrad 		atomic_store_relaxed(&ec->ec_samplespending, samplespending);
   1057  1.62  riastrad 	}
   1058   1.1  riastrad 
   1059   1.1  riastrad 	/* Schedule a softint if we added anything and it matters.  */
   1060  1.62  riastrad 	if (__predict_false(atomic_load_relaxed(&E->bitsneeded) ||
   1061   1.1  riastrad 		atomic_load_relaxed(&entropy_depletion)) &&
   1062  1.63  riastrad 	    (nbits != 0 || count) &&
   1063  1.63  riastrad 	    __predict_true(!cold))
   1064  1.63  riastrad 		softint_schedule(entropy_sih);
   1065   1.1  riastrad 
   1066   1.1  riastrad out1:	/* Release the per-CPU state.  */
   1067   1.1  riastrad 	KASSERT(ec->ec_locked);
   1068   1.1  riastrad 	__insn_barrier();
   1069   1.1  riastrad 	ec->ec_locked = false;
   1070   1.1  riastrad out0:	percpu_putref(entropy_percpu);
   1071  1.63  riastrad 	splx(s);
   1072   1.1  riastrad 
   1073   1.1  riastrad 	return fullyused;
   1074   1.1  riastrad }
   1075   1.1  riastrad 
   1076   1.1  riastrad /*
   1077   1.1  riastrad  * entropy_softintr(cookie)
   1078   1.1  riastrad  *
   1079   1.1  riastrad  *	Soft interrupt handler for entering entropy.  Takes care of
   1080   1.1  riastrad  *	stirring the local CPU's entropy pool if it filled up during
   1081   1.1  riastrad  *	hard interrupts, and promptly crediting entropy from the local
   1082   1.1  riastrad  *	CPU's entropy pool to the global entropy pool if needed.
   1083   1.1  riastrad  */
   1084   1.1  riastrad static void
   1085   1.1  riastrad entropy_softintr(void *cookie)
   1086   1.1  riastrad {
   1087  1.43  riastrad 	struct entropy_cpu_lock lock;
   1088   1.1  riastrad 	struct entropy_cpu *ec;
   1089  1.62  riastrad 	unsigned bitspending, samplespending;
   1090   1.1  riastrad 
   1091   1.1  riastrad 	/*
   1092  1.43  riastrad 	 * With the per-CPU state locked, stir the pool if necessary
   1093  1.43  riastrad 	 * and determine if there's any pending entropy on this CPU to
   1094  1.43  riastrad 	 * account globally.
   1095   1.1  riastrad 	 */
   1096  1.43  riastrad 	ec = entropy_cpu_get(&lock);
   1097  1.40  riastrad 	ec->ec_evcnt->softint.ev_count++;
   1098   1.1  riastrad 	entpool_stir(ec->ec_pool);
   1099  1.62  riastrad 	bitspending = ec->ec_bitspending;
   1100  1.62  riastrad 	samplespending = ec->ec_samplespending;
   1101  1.43  riastrad 	entropy_cpu_put(&lock, ec);
   1102  1.42  riastrad 
   1103  1.42  riastrad 	/* Consolidate globally if appropriate based on what we added.  */
   1104  1.62  riastrad 	if (bitspending > 0 || samplespending >= MINSAMPLES)
   1105  1.42  riastrad 		entropy_account_cpu(ec);
   1106   1.1  riastrad }
   1107   1.1  riastrad 
   1108   1.1  riastrad /*
   1109   1.1  riastrad  * entropy_thread(cookie)
   1110   1.1  riastrad  *
   1111   1.1  riastrad  *	Handle any asynchronous entropy housekeeping.
   1112   1.1  riastrad  */
   1113   1.1  riastrad static void
   1114   1.1  riastrad entropy_thread(void *cookie)
   1115   1.1  riastrad {
   1116   1.3  riastrad 	bool consolidate;
   1117   1.1  riastrad 
   1118  1.64  riastrad #ifndef _RUMPKERNEL		/* XXX rump starts threads before cold */
   1119  1.63  riastrad 	KASSERT(!cold);
   1120  1.64  riastrad #endif
   1121  1.63  riastrad 
   1122   1.1  riastrad 	for (;;) {
   1123   1.1  riastrad 		/*
   1124   1.3  riastrad 		 * Wait until there's full entropy somewhere among the
   1125   1.3  riastrad 		 * CPUs, as confirmed at most once per minute, or
   1126   1.3  riastrad 		 * someone wants to consolidate.
   1127   1.1  riastrad 		 */
   1128  1.62  riastrad 		if (entropy_pending()) {
   1129   1.3  riastrad 			consolidate = true;
   1130   1.3  riastrad 		} else {
   1131   1.3  riastrad 			mutex_enter(&E->lock);
   1132   1.3  riastrad 			if (!E->consolidate)
   1133   1.3  riastrad 				cv_timedwait(&E->cv, &E->lock, 60*hz);
   1134   1.3  riastrad 			consolidate = E->consolidate;
   1135   1.3  riastrad 			E->consolidate = false;
   1136   1.3  riastrad 			mutex_exit(&E->lock);
   1137   1.1  riastrad 		}
   1138   1.1  riastrad 
   1139   1.3  riastrad 		if (consolidate) {
   1140   1.3  riastrad 			/* Do it.  */
   1141  1.13  riastrad 			entropy_do_consolidate();
   1142   1.1  riastrad 
   1143   1.3  riastrad 			/* Mitigate abuse.  */
   1144   1.3  riastrad 			kpause("entropy", false, hz, NULL);
   1145   1.3  riastrad 		}
   1146   1.1  riastrad 	}
   1147   1.1  riastrad }
   1148   1.1  riastrad 
   1149  1.62  riastrad struct entropy_pending_count {
   1150  1.62  riastrad 	uint32_t bitspending;
   1151  1.62  riastrad 	uint32_t samplespending;
   1152  1.62  riastrad };
   1153  1.62  riastrad 
   1154   1.1  riastrad /*
   1155   1.1  riastrad  * entropy_pending()
   1156   1.1  riastrad  *
   1157  1.62  riastrad  *	True if enough bits or samples are pending on other CPUs to
   1158  1.62  riastrad  *	warrant consolidation.
   1159   1.1  riastrad  */
   1160  1.62  riastrad static bool
   1161   1.1  riastrad entropy_pending(void)
   1162   1.1  riastrad {
   1163  1.62  riastrad 	struct entropy_pending_count count = { 0, 0 }, *C = &count;
   1164   1.1  riastrad 
   1165  1.62  riastrad 	percpu_foreach(entropy_percpu, &entropy_pending_cpu, C);
   1166  1.62  riastrad 	return C->bitspending >= MINENTROPYBITS ||
   1167  1.62  riastrad 	    C->samplespending >= MINSAMPLES;
   1168   1.1  riastrad }
   1169   1.1  riastrad 
   1170   1.1  riastrad static void
   1171   1.1  riastrad entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   1172   1.1  riastrad {
   1173   1.1  riastrad 	struct entropy_cpu *ec = ptr;
   1174  1.62  riastrad 	struct entropy_pending_count *C = cookie;
   1175  1.62  riastrad 	uint32_t cpu_bitspending;
   1176  1.62  riastrad 	uint32_t cpu_samplespending;
   1177  1.62  riastrad 
   1178  1.62  riastrad 	cpu_bitspending = atomic_load_relaxed(&ec->ec_bitspending);
   1179  1.62  riastrad 	cpu_samplespending = atomic_load_relaxed(&ec->ec_samplespending);
   1180  1.62  riastrad 	C->bitspending += MIN(MINENTROPYBITS - C->bitspending,
   1181  1.62  riastrad 	    cpu_bitspending);
   1182  1.62  riastrad 	C->samplespending += MIN(MINSAMPLES - C->samplespending,
   1183  1.62  riastrad 	    cpu_samplespending);
   1184   1.1  riastrad }
   1185   1.1  riastrad 
   1186   1.1  riastrad /*
   1187  1.13  riastrad  * entropy_do_consolidate()
   1188   1.1  riastrad  *
   1189   1.1  riastrad  *	Issue a cross-call to gather entropy on all CPUs and advance
   1190   1.1  riastrad  *	the entropy epoch.
   1191   1.1  riastrad  */
   1192   1.1  riastrad static void
   1193  1.13  riastrad entropy_do_consolidate(void)
   1194   1.1  riastrad {
   1195   1.1  riastrad 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1196   1.1  riastrad 	static struct timeval lasttime; /* serialized by E->lock */
   1197  1.19  riastrad 	struct entpool pool;
   1198  1.19  riastrad 	uint8_t buf[ENTPOOL_CAPACITY];
   1199  1.62  riastrad 	unsigned bitsdiff, samplesdiff;
   1200   1.1  riastrad 	uint64_t ticket;
   1201   1.1  riastrad 
   1202  1.63  riastrad 	KASSERT(!cold);
   1203  1.63  riastrad 	ASSERT_SLEEPABLE();
   1204  1.63  riastrad 
   1205  1.19  riastrad 	/* Gather entropy on all CPUs into a temporary pool.  */
   1206  1.19  riastrad 	memset(&pool, 0, sizeof pool);
   1207  1.19  riastrad 	ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
   1208   1.1  riastrad 	xc_wait(ticket);
   1209   1.1  riastrad 
   1210   1.1  riastrad 	/* Acquire the lock to notify waiters.  */
   1211   1.1  riastrad 	mutex_enter(&E->lock);
   1212   1.1  riastrad 
   1213   1.1  riastrad 	/* Count another consolidation.  */
   1214   1.1  riastrad 	entropy_consolidate_evcnt.ev_count++;
   1215   1.1  riastrad 
   1216   1.1  riastrad 	/* Note when we last consolidated, i.e. now.  */
   1217   1.1  riastrad 	E->timestamp = time_uptime;
   1218   1.1  riastrad 
   1219  1.19  riastrad 	/* Mix what we gathered into the global pool.  */
   1220  1.19  riastrad 	entpool_extract(&pool, buf, sizeof buf);
   1221  1.19  riastrad 	entpool_enter(&E->pool, buf, sizeof buf);
   1222  1.19  riastrad 	explicit_memset(&pool, 0, sizeof pool);
   1223  1.19  riastrad 
   1224   1.1  riastrad 	/* Count the entropy that was gathered.  */
   1225  1.62  riastrad 	bitsdiff = MIN(E->bitsneeded, E->bitspending);
   1226  1.62  riastrad 	atomic_store_relaxed(&E->bitsneeded, E->bitsneeded - bitsdiff);
   1227  1.62  riastrad 	E->bitspending -= bitsdiff;
   1228  1.62  riastrad 	if (__predict_false(E->bitsneeded > 0) && bitsdiff != 0) {
   1229  1.50  riastrad 		if ((boothowto & AB_DEBUG) != 0 &&
   1230  1.50  riastrad 		    ratecheck(&lasttime, &interval)) {
   1231  1.50  riastrad 			printf("WARNING:"
   1232   1.1  riastrad 			    " consolidating less than full entropy\n");
   1233  1.30  jmcneill 		}
   1234   1.1  riastrad 	}
   1235   1.1  riastrad 
   1236  1.62  riastrad 	samplesdiff = MIN(E->samplesneeded, E->samplespending);
   1237  1.62  riastrad 	atomic_store_relaxed(&E->samplesneeded,
   1238  1.62  riastrad 	    E->samplesneeded - samplesdiff);
   1239  1.62  riastrad 	E->samplespending -= samplesdiff;
   1240  1.62  riastrad 
   1241   1.1  riastrad 	/* Advance the epoch and notify waiters.  */
   1242   1.1  riastrad 	entropy_notify();
   1243   1.1  riastrad 
   1244   1.1  riastrad 	/* Release the lock.  */
   1245   1.1  riastrad 	mutex_exit(&E->lock);
   1246   1.1  riastrad }
   1247   1.1  riastrad 
   1248   1.1  riastrad /*
   1249  1.20  riastrad  * entropy_consolidate_xc(vpool, arg2)
   1250   1.1  riastrad  *
   1251   1.1  riastrad  *	Extract output from the local CPU's input pool and enter it
   1252  1.20  riastrad  *	into a temporary pool passed as vpool.
   1253   1.1  riastrad  */
   1254   1.1  riastrad static void
   1255  1.19  riastrad entropy_consolidate_xc(void *vpool, void *arg2 __unused)
   1256   1.1  riastrad {
   1257  1.19  riastrad 	struct entpool *pool = vpool;
   1258  1.43  riastrad 	struct entropy_cpu_lock lock;
   1259   1.1  riastrad 	struct entropy_cpu *ec;
   1260   1.1  riastrad 	uint8_t buf[ENTPOOL_CAPACITY];
   1261   1.1  riastrad 	uint32_t extra[7];
   1262   1.1  riastrad 	unsigned i = 0;
   1263   1.1  riastrad 
   1264   1.1  riastrad 	/* Grab CPU number and cycle counter to mix extra into the pool.  */
   1265   1.1  riastrad 	extra[i++] = cpu_number();
   1266   1.1  riastrad 	extra[i++] = entropy_timer();
   1267   1.1  riastrad 
   1268   1.1  riastrad 	/*
   1269  1.43  riastrad 	 * With the per-CPU state locked, extract from the per-CPU pool
   1270  1.43  riastrad 	 * and count it as no longer pending.
   1271   1.1  riastrad 	 */
   1272  1.43  riastrad 	ec = entropy_cpu_get(&lock);
   1273   1.1  riastrad 	extra[i++] = entropy_timer();
   1274   1.1  riastrad 	entpool_extract(ec->ec_pool, buf, sizeof buf);
   1275  1.62  riastrad 	atomic_store_relaxed(&ec->ec_bitspending, 0);
   1276  1.62  riastrad 	atomic_store_relaxed(&ec->ec_samplespending, 0);
   1277   1.1  riastrad 	extra[i++] = entropy_timer();
   1278  1.43  riastrad 	entropy_cpu_put(&lock, ec);
   1279   1.1  riastrad 	extra[i++] = entropy_timer();
   1280   1.1  riastrad 
   1281   1.1  riastrad 	/*
   1282   1.1  riastrad 	 * Copy over statistics, and enter the per-CPU extract and the
   1283  1.19  riastrad 	 * extra timing into the temporary pool, under the global lock.
   1284   1.1  riastrad 	 */
   1285   1.1  riastrad 	mutex_enter(&E->lock);
   1286   1.1  riastrad 	extra[i++] = entropy_timer();
   1287  1.19  riastrad 	entpool_enter(pool, buf, sizeof buf);
   1288   1.1  riastrad 	explicit_memset(buf, 0, sizeof buf);
   1289   1.1  riastrad 	extra[i++] = entropy_timer();
   1290   1.1  riastrad 	KASSERT(i == __arraycount(extra));
   1291  1.19  riastrad 	entpool_enter(pool, extra, sizeof extra);
   1292   1.1  riastrad 	explicit_memset(extra, 0, sizeof extra);
   1293   1.1  riastrad 	mutex_exit(&E->lock);
   1294   1.1  riastrad }
   1295   1.1  riastrad 
   1296   1.1  riastrad /*
   1297   1.1  riastrad  * entropy_notify()
   1298   1.1  riastrad  *
   1299   1.1  riastrad  *	Caller just contributed entropy to the global pool.  Advance
   1300   1.1  riastrad  *	the entropy epoch and notify waiters.
   1301   1.1  riastrad  *
   1302  1.62  riastrad  *	Caller must hold the global entropy lock.
   1303   1.1  riastrad  */
   1304   1.1  riastrad static void
   1305   1.1  riastrad entropy_notify(void)
   1306   1.1  riastrad {
   1307  1.12  riastrad 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1308  1.12  riastrad 	static struct timeval lasttime; /* serialized by E->lock */
   1309  1.62  riastrad 	static bool ready = false, besteffort = false;
   1310   1.1  riastrad 	unsigned epoch;
   1311   1.1  riastrad 
   1312  1.63  riastrad 	KASSERT(__predict_false(cold) || mutex_owned(&E->lock));
   1313   1.1  riastrad 
   1314   1.1  riastrad 	/*
   1315   1.1  riastrad 	 * If this is the first time, print a message to the console
   1316   1.1  riastrad 	 * that we're ready so operators can compare it to the timing
   1317   1.1  riastrad 	 * of other events.
   1318  1.62  riastrad 	 *
   1319  1.62  riastrad 	 * If we didn't get full entropy from reliable sources, report
   1320  1.62  riastrad 	 * instead that we are running on fumes with best effort.  (If
   1321  1.62  riastrad 	 * we ever do get full entropy after that, print the ready
   1322  1.62  riastrad 	 * message once.)
   1323  1.62  riastrad 	 */
   1324  1.62  riastrad 	if (__predict_false(!ready)) {
   1325  1.62  riastrad 		if (E->bitsneeded == 0) {
   1326  1.62  riastrad 			printf("entropy: ready\n");
   1327  1.62  riastrad 			ready = true;
   1328  1.62  riastrad 		} else if (E->samplesneeded == 0 && !besteffort) {
   1329  1.62  riastrad 			printf("entropy: best effort\n");
   1330  1.62  riastrad 			besteffort = true;
   1331  1.62  riastrad 		}
   1332  1.62  riastrad 	}
   1333   1.1  riastrad 
   1334   1.1  riastrad 	/* Set the epoch; roll over from UINTMAX-1 to 1.  */
   1335  1.12  riastrad 	if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
   1336  1.12  riastrad 	    ratecheck(&lasttime, &interval)) {
   1337  1.12  riastrad 		epoch = E->epoch + 1;
   1338  1.12  riastrad 		if (epoch == 0 || epoch == (unsigned)-1)
   1339  1.12  riastrad 			epoch = 1;
   1340  1.12  riastrad 		atomic_store_relaxed(&E->epoch, epoch);
   1341  1.12  riastrad 	}
   1342  1.41  riastrad 	KASSERT(E->epoch != (unsigned)-1);
   1343   1.1  riastrad 
   1344   1.1  riastrad 	/* Notify waiters.  */
   1345  1.63  riastrad 	if (__predict_true(!cold)) {
   1346   1.1  riastrad 		cv_broadcast(&E->cv);
   1347   1.1  riastrad 		selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
   1348   1.1  riastrad 	}
   1349   1.1  riastrad 
   1350   1.1  riastrad 	/* Count another notification.  */
   1351   1.1  riastrad 	entropy_notify_evcnt.ev_count++;
   1352   1.1  riastrad }
   1353   1.1  riastrad 
   1354   1.1  riastrad /*
   1355  1.13  riastrad  * entropy_consolidate()
   1356  1.13  riastrad  *
   1357  1.67  riastrad  *	Trigger entropy consolidation and wait for it to complete, or
   1358  1.67  riastrad  *	return early if interrupted by a signal.
   1359  1.67  riastrad  */
   1360  1.67  riastrad void
   1361  1.67  riastrad entropy_consolidate(void)
   1362  1.67  riastrad {
   1363  1.67  riastrad 
   1364  1.67  riastrad 	(void)entropy_consolidate_sig();
   1365  1.67  riastrad }
   1366  1.67  riastrad 
   1367  1.67  riastrad /*
   1368  1.67  riastrad  * entropy_consolidate_sig()
   1369  1.67  riastrad  *
   1370  1.67  riastrad  *	Trigger entropy consolidation and wait for it to complete, or
   1371  1.67  riastrad  *	return EINTR if interrupted by a signal.
   1372  1.13  riastrad  *
   1373  1.13  riastrad  *	This should be used sparingly, not periodically -- requiring
   1374  1.13  riastrad  *	conscious intervention by the operator or a clear policy
   1375  1.13  riastrad  *	decision.  Otherwise, the kernel will automatically consolidate
   1376  1.13  riastrad  *	when enough entropy has been gathered into per-CPU pools to
   1377  1.13  riastrad  *	transition to full entropy.
   1378  1.13  riastrad  */
   1379  1.67  riastrad int
   1380  1.67  riastrad entropy_consolidate_sig(void)
   1381  1.13  riastrad {
   1382  1.13  riastrad 	uint64_t ticket;
   1383  1.13  riastrad 	int error;
   1384  1.13  riastrad 
   1385  1.63  riastrad 	KASSERT(!cold);
   1386  1.63  riastrad 	ASSERT_SLEEPABLE();
   1387  1.13  riastrad 
   1388  1.13  riastrad 	mutex_enter(&E->lock);
   1389  1.13  riastrad 	ticket = entropy_consolidate_evcnt.ev_count;
   1390  1.13  riastrad 	E->consolidate = true;
   1391  1.13  riastrad 	cv_broadcast(&E->cv);
   1392  1.13  riastrad 	while (ticket == entropy_consolidate_evcnt.ev_count) {
   1393  1.13  riastrad 		error = cv_wait_sig(&E->cv, &E->lock);
   1394  1.13  riastrad 		if (error)
   1395  1.13  riastrad 			break;
   1396  1.13  riastrad 	}
   1397  1.13  riastrad 	mutex_exit(&E->lock);
   1398  1.67  riastrad 
   1399  1.67  riastrad 	return error;
   1400  1.13  riastrad }
   1401  1.13  riastrad 
   1402  1.13  riastrad /*
   1403   1.1  riastrad  * sysctl -w kern.entropy.consolidate=1
   1404   1.1  riastrad  *
   1405   1.1  riastrad  *	Trigger entropy consolidation and wait for it to complete.
   1406  1.13  riastrad  *	Writable only by superuser.  This, writing to /dev/random, and
   1407  1.13  riastrad  *	ioctl(RNDADDDATA) are the only ways for the system to
   1408  1.13  riastrad  *	consolidate entropy if the operator knows something the kernel
   1409  1.13  riastrad  *	doesn't about how unpredictable the pending entropy pools are.
   1410   1.1  riastrad  */
   1411   1.1  riastrad static int
   1412   1.1  riastrad sysctl_entropy_consolidate(SYSCTLFN_ARGS)
   1413   1.1  riastrad {
   1414   1.1  riastrad 	struct sysctlnode node = *rnode;
   1415  1.57  riastrad 	int arg = 0;
   1416   1.1  riastrad 	int error;
   1417   1.1  riastrad 
   1418   1.1  riastrad 	node.sysctl_data = &arg;
   1419   1.1  riastrad 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1420   1.1  riastrad 	if (error || newp == NULL)
   1421   1.1  riastrad 		return error;
   1422  1.13  riastrad 	if (arg)
   1423  1.13  riastrad 		entropy_consolidate();
   1424   1.1  riastrad 
   1425   1.1  riastrad 	return error;
   1426   1.1  riastrad }
   1427   1.1  riastrad 
   1428   1.1  riastrad /*
   1429  1.10  riastrad  * sysctl -w kern.entropy.gather=1
   1430  1.10  riastrad  *
   1431  1.10  riastrad  *	Trigger gathering entropy from all on-demand sources, and wait
   1432  1.10  riastrad  *	for synchronous sources (but not asynchronous sources) to
   1433  1.10  riastrad  *	complete.  Writable only by superuser.
   1434  1.10  riastrad  */
   1435  1.10  riastrad static int
   1436  1.10  riastrad sysctl_entropy_gather(SYSCTLFN_ARGS)
   1437  1.10  riastrad {
   1438  1.10  riastrad 	struct sysctlnode node = *rnode;
   1439  1.57  riastrad 	int arg = 0;
   1440  1.10  riastrad 	int error;
   1441  1.10  riastrad 
   1442  1.10  riastrad 	node.sysctl_data = &arg;
   1443  1.10  riastrad 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1444  1.10  riastrad 	if (error || newp == NULL)
   1445  1.10  riastrad 		return error;
   1446  1.10  riastrad 	if (arg) {
   1447  1.10  riastrad 		mutex_enter(&E->lock);
   1448  1.49  riastrad 		error = entropy_request(ENTROPY_CAPACITY,
   1449  1.49  riastrad 		    ENTROPY_WAIT|ENTROPY_SIG);
   1450  1.10  riastrad 		mutex_exit(&E->lock);
   1451  1.10  riastrad 	}
   1452  1.10  riastrad 
   1453  1.10  riastrad 	return 0;
   1454  1.10  riastrad }
   1455  1.10  riastrad 
   1456  1.10  riastrad /*
   1457   1.1  riastrad  * entropy_extract(buf, len, flags)
   1458   1.1  riastrad  *
   1459   1.1  riastrad  *	Extract len bytes from the global entropy pool into buf.
   1460   1.1  riastrad  *
   1461  1.55  riastrad  *	Caller MUST NOT expose these bytes directly -- must use them
   1462  1.55  riastrad  *	ONLY to seed a cryptographic pseudorandom number generator
   1463  1.55  riastrad  *	(`CPRNG'), a.k.a. deterministic random bit generator (`DRBG'),
   1464  1.55  riastrad  *	and then erase them.  entropy_extract does not, on its own,
   1465  1.55  riastrad  *	provide backtracking resistance -- it must be combined with a
   1466  1.55  riastrad  *	PRNG/DRBG that does.
   1467  1.55  riastrad  *
   1468  1.63  riastrad  *	This may be used very early at boot, before even entropy_init
   1469  1.63  riastrad  *	has been called.
   1470  1.63  riastrad  *
   1471  1.55  riastrad  *	You generally shouldn't use this directly -- use cprng(9)
   1472  1.55  riastrad  *	instead.
   1473  1.55  riastrad  *
   1474   1.1  riastrad  *	Flags may have:
   1475   1.1  riastrad  *
   1476   1.1  riastrad  *		ENTROPY_WAIT	Wait for entropy if not available yet.
   1477   1.1  riastrad  *		ENTROPY_SIG	Allow interruption by a signal during wait.
   1478  1.23  riastrad  *		ENTROPY_HARDFAIL Either fill the buffer with full entropy,
   1479  1.23  riastrad  *				or fail without filling it at all.
   1480   1.1  riastrad  *
   1481   1.1  riastrad  *	Return zero on success, or error on failure:
   1482   1.1  riastrad  *
   1483   1.1  riastrad  *		EWOULDBLOCK	No entropy and ENTROPY_WAIT not set.
   1484   1.1  riastrad  *		EINTR/ERESTART	No entropy, ENTROPY_SIG set, and interrupted.
   1485   1.1  riastrad  *
   1486   1.1  riastrad  *	If ENTROPY_WAIT is set, allowed only in thread context.  If
   1487  1.65  riastrad  *	ENTROPY_WAIT is not set, allowed also in softint context -- may
   1488  1.65  riastrad  *	sleep on an adaptive lock up to IPL_SOFTSERIAL.  Forbidden in
   1489  1.65  riastrad  *	hard interrupt context.
   1490   1.1  riastrad  */
   1491   1.1  riastrad int
   1492   1.1  riastrad entropy_extract(void *buf, size_t len, int flags)
   1493   1.1  riastrad {
   1494   1.1  riastrad 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1495   1.1  riastrad 	static struct timeval lasttime; /* serialized by E->lock */
   1496  1.62  riastrad 	bool printed = false;
   1497  1.63  riastrad 	int s = -1/*XXXGCC*/, error;
   1498   1.1  riastrad 
   1499   1.1  riastrad 	if (ISSET(flags, ENTROPY_WAIT)) {
   1500   1.1  riastrad 		ASSERT_SLEEPABLE();
   1501  1.63  riastrad 		KASSERT(!cold);
   1502   1.1  riastrad 	}
   1503   1.1  riastrad 
   1504  1.35  riastrad 	/* Refuse to operate in interrupt context.  */
   1505  1.35  riastrad 	KASSERT(!cpu_intr_p());
   1506  1.35  riastrad 
   1507  1.63  riastrad 	/*
   1508  1.63  riastrad 	 * If we're cold, we are only contending with interrupts on the
   1509  1.63  riastrad 	 * current CPU, so block them.  Otherwise, we are _not_
   1510  1.63  riastrad 	 * contending with interrupts on the current CPU, but we are
   1511  1.63  riastrad 	 * contending with other threads, to exclude them with a mutex.
   1512  1.63  riastrad 	 */
   1513  1.63  riastrad 	if (__predict_false(cold))
   1514  1.63  riastrad 		s = splhigh();
   1515  1.63  riastrad 	else
   1516   1.1  riastrad 		mutex_enter(&E->lock);
   1517   1.1  riastrad 
   1518   1.1  riastrad 	/* Wait until there is enough entropy in the system.  */
   1519   1.1  riastrad 	error = 0;
   1520  1.62  riastrad 	if (E->bitsneeded > 0 && E->samplesneeded == 0) {
   1521  1.62  riastrad 		/*
   1522  1.62  riastrad 		 * We don't have full entropy from reliable sources,
   1523  1.62  riastrad 		 * but we gathered a plausible number of samples from
   1524  1.62  riastrad 		 * other sources such as timers.  Try asking for more
   1525  1.62  riastrad 		 * from any sources we can, but don't worry if it
   1526  1.62  riastrad 		 * fails -- best effort.
   1527  1.62  riastrad 		 */
   1528  1.62  riastrad 		(void)entropy_request(ENTROPY_CAPACITY, flags);
   1529  1.62  riastrad 	} else while (E->bitsneeded > 0 && E->samplesneeded > 0) {
   1530   1.1  riastrad 		/* Ask for more, synchronously if possible.  */
   1531  1.49  riastrad 		error = entropy_request(len, flags);
   1532  1.49  riastrad 		if (error)
   1533  1.49  riastrad 			break;
   1534   1.1  riastrad 
   1535   1.1  riastrad 		/* If we got enough, we're done.  */
   1536  1.62  riastrad 		if (E->bitsneeded == 0 || E->samplesneeded == 0) {
   1537   1.1  riastrad 			KASSERT(error == 0);
   1538   1.1  riastrad 			break;
   1539   1.1  riastrad 		}
   1540   1.1  riastrad 
   1541   1.1  riastrad 		/* If not waiting, stop here.  */
   1542   1.1  riastrad 		if (!ISSET(flags, ENTROPY_WAIT)) {
   1543   1.1  riastrad 			error = EWOULDBLOCK;
   1544   1.1  riastrad 			break;
   1545   1.1  riastrad 		}
   1546   1.1  riastrad 
   1547   1.1  riastrad 		/* Wait for some entropy to come in and try again.  */
   1548  1.63  riastrad 		KASSERT(!cold);
   1549  1.62  riastrad 		if (!printed) {
   1550  1.62  riastrad 			printf("entropy: pid %d (%s) waiting for entropy(7)\n",
   1551  1.62  riastrad 			    curproc->p_pid, curproc->p_comm);
   1552  1.62  riastrad 			printed = true;
   1553  1.62  riastrad 		}
   1554  1.24      gson 
   1555   1.1  riastrad 		if (ISSET(flags, ENTROPY_SIG)) {
   1556  1.62  riastrad 			error = cv_timedwait_sig(&E->cv, &E->lock, hz);
   1557  1.62  riastrad 			if (error && error != EWOULDBLOCK)
   1558   1.1  riastrad 				break;
   1559   1.1  riastrad 		} else {
   1560  1.62  riastrad 			cv_timedwait(&E->cv, &E->lock, hz);
   1561   1.1  riastrad 		}
   1562   1.1  riastrad 	}
   1563   1.1  riastrad 
   1564  1.23  riastrad 	/*
   1565  1.23  riastrad 	 * Count failure -- but fill the buffer nevertheless, unless
   1566  1.23  riastrad 	 * the caller specified ENTROPY_HARDFAIL.
   1567  1.23  riastrad 	 */
   1568  1.23  riastrad 	if (error) {
   1569  1.23  riastrad 		if (ISSET(flags, ENTROPY_HARDFAIL))
   1570  1.23  riastrad 			goto out;
   1571   1.1  riastrad 		entropy_extract_fail_evcnt.ev_count++;
   1572  1.23  riastrad 	}
   1573   1.1  riastrad 
   1574   1.1  riastrad 	/*
   1575  1.62  riastrad 	 * Report a warning if we haven't yet reached full entropy.
   1576   1.1  riastrad 	 * This is the only case where we consider entropy to be
   1577   1.1  riastrad 	 * `depleted' without kern.entropy.depletion enabled -- when we
   1578   1.1  riastrad 	 * only have partial entropy, an adversary may be able to
   1579   1.1  riastrad 	 * narrow the state of the pool down to a small number of
   1580   1.1  riastrad 	 * possibilities; the output then enables them to confirm a
   1581   1.1  riastrad 	 * guess, reducing its entropy from the adversary's perspective
   1582   1.1  riastrad 	 * to zero.
   1583  1.62  riastrad 	 *
   1584  1.62  riastrad 	 * This should only happen if the operator has chosen to
   1585  1.62  riastrad 	 * consolidate, either through sysctl kern.entropy.consolidate
   1586  1.62  riastrad 	 * or by writing less than full entropy to /dev/random as root
   1587  1.62  riastrad 	 * (which /dev/random promises will immediately affect
   1588  1.62  riastrad 	 * subsequent output, for better or worse).
   1589   1.1  riastrad 	 */
   1590  1.62  riastrad 	if (E->bitsneeded > 0 && E->samplesneeded > 0) {
   1591  1.62  riastrad 		if (__predict_false(E->epoch == (unsigned)-1) &&
   1592  1.62  riastrad 		    ratecheck(&lasttime, &interval)) {
   1593  1.50  riastrad 			printf("WARNING:"
   1594  1.50  riastrad 			    " system needs entropy for security;"
   1595  1.50  riastrad 			    " see entropy(7)\n");
   1596  1.62  riastrad 		}
   1597  1.62  riastrad 		atomic_store_relaxed(&E->bitsneeded, MINENTROPYBITS);
   1598  1.62  riastrad 		atomic_store_relaxed(&E->samplesneeded, MINSAMPLES);
   1599   1.1  riastrad 	}
   1600   1.1  riastrad 
   1601   1.1  riastrad 	/* Extract data from the pool, and `deplete' if we're doing that.  */
   1602   1.1  riastrad 	entpool_extract(&E->pool, buf, len);
   1603   1.1  riastrad 	if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
   1604   1.1  riastrad 	    error == 0) {
   1605   1.1  riastrad 		unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
   1606  1.62  riastrad 		unsigned bitsneeded = E->bitsneeded;
   1607  1.62  riastrad 		unsigned samplesneeded = E->samplesneeded;
   1608   1.1  riastrad 
   1609  1.62  riastrad 		bitsneeded += MIN(MINENTROPYBITS - bitsneeded, cost);
   1610  1.62  riastrad 		samplesneeded += MIN(MINSAMPLES - samplesneeded, cost);
   1611  1.62  riastrad 
   1612  1.62  riastrad 		atomic_store_relaxed(&E->bitsneeded, bitsneeded);
   1613  1.62  riastrad 		atomic_store_relaxed(&E->samplesneeded, samplesneeded);
   1614   1.1  riastrad 		entropy_deplete_evcnt.ev_count++;
   1615   1.1  riastrad 	}
   1616   1.1  riastrad 
   1617  1.23  riastrad out:	/* Release the global lock and return the error.  */
   1618  1.63  riastrad 	if (__predict_false(cold))
   1619  1.63  riastrad 		splx(s);
   1620  1.63  riastrad 	else
   1621   1.1  riastrad 		mutex_exit(&E->lock);
   1622   1.1  riastrad 	return error;
   1623   1.1  riastrad }
   1624   1.1  riastrad 
   1625   1.1  riastrad /*
   1626   1.1  riastrad  * entropy_poll(events)
   1627   1.1  riastrad  *
   1628   1.1  riastrad  *	Return the subset of events ready, and if it is not all of
   1629   1.1  riastrad  *	events, record curlwp as waiting for entropy.
   1630   1.1  riastrad  */
   1631   1.1  riastrad int
   1632   1.1  riastrad entropy_poll(int events)
   1633   1.1  riastrad {
   1634   1.1  riastrad 	int revents = 0;
   1635   1.1  riastrad 
   1636  1.63  riastrad 	KASSERT(!cold);
   1637   1.1  riastrad 
   1638   1.1  riastrad 	/* Always ready for writing.  */
   1639   1.1  riastrad 	revents |= events & (POLLOUT|POLLWRNORM);
   1640   1.1  riastrad 
   1641   1.1  riastrad 	/* Narrow it down to reads.  */
   1642   1.1  riastrad 	events &= POLLIN|POLLRDNORM;
   1643   1.1  riastrad 	if (events == 0)
   1644   1.1  riastrad 		return revents;
   1645   1.1  riastrad 
   1646   1.1  riastrad 	/*
   1647   1.1  riastrad 	 * If we have reached full entropy and we're not depleting
   1648   1.1  riastrad 	 * entropy, we are forever ready.
   1649   1.1  riastrad 	 */
   1650  1.62  riastrad 	if (__predict_true(atomic_load_relaxed(&E->bitsneeded) == 0 ||
   1651  1.62  riastrad 		atomic_load_relaxed(&E->samplesneeded) == 0) &&
   1652   1.1  riastrad 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)))
   1653   1.1  riastrad 		return revents | events;
   1654   1.1  riastrad 
   1655   1.1  riastrad 	/*
   1656   1.1  riastrad 	 * Otherwise, check whether we need entropy under the lock.  If
   1657   1.1  riastrad 	 * we don't, we're ready; if we do, add ourselves to the queue.
   1658   1.1  riastrad 	 */
   1659   1.1  riastrad 	mutex_enter(&E->lock);
   1660  1.62  riastrad 	if (E->bitsneeded == 0 || E->samplesneeded == 0)
   1661   1.1  riastrad 		revents |= events;
   1662   1.1  riastrad 	else
   1663   1.1  riastrad 		selrecord(curlwp, &E->selq);
   1664   1.1  riastrad 	mutex_exit(&E->lock);
   1665   1.1  riastrad 
   1666   1.1  riastrad 	return revents;
   1667   1.1  riastrad }
   1668   1.1  riastrad 
   1669   1.1  riastrad /*
   1670   1.1  riastrad  * filt_entropy_read_detach(kn)
   1671   1.1  riastrad  *
   1672   1.1  riastrad  *	struct filterops::f_detach callback for entropy read events:
   1673   1.1  riastrad  *	remove kn from the list of waiters.
   1674   1.1  riastrad  */
   1675   1.1  riastrad static void
   1676   1.1  riastrad filt_entropy_read_detach(struct knote *kn)
   1677   1.1  riastrad {
   1678   1.1  riastrad 
   1679  1.63  riastrad 	KASSERT(!cold);
   1680   1.1  riastrad 
   1681   1.1  riastrad 	mutex_enter(&E->lock);
   1682  1.25   thorpej 	selremove_knote(&E->selq, kn);
   1683   1.1  riastrad 	mutex_exit(&E->lock);
   1684   1.1  riastrad }
   1685   1.1  riastrad 
   1686   1.1  riastrad /*
   1687   1.1  riastrad  * filt_entropy_read_event(kn, hint)
   1688   1.1  riastrad  *
   1689   1.1  riastrad  *	struct filterops::f_event callback for entropy read events:
   1690   1.1  riastrad  *	poll for entropy.  Caller must hold the global entropy lock if
   1691   1.1  riastrad  *	hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
   1692   1.1  riastrad  */
   1693   1.1  riastrad static int
   1694   1.1  riastrad filt_entropy_read_event(struct knote *kn, long hint)
   1695   1.1  riastrad {
   1696   1.1  riastrad 	int ret;
   1697   1.1  riastrad 
   1698  1.63  riastrad 	KASSERT(!cold);
   1699   1.1  riastrad 
   1700   1.1  riastrad 	/* Acquire the lock, if caller is outside entropy subsystem.  */
   1701   1.1  riastrad 	if (hint == NOTE_SUBMIT)
   1702   1.1  riastrad 		KASSERT(mutex_owned(&E->lock));
   1703   1.1  riastrad 	else
   1704   1.1  riastrad 		mutex_enter(&E->lock);
   1705   1.1  riastrad 
   1706   1.1  riastrad 	/*
   1707   1.1  riastrad 	 * If we still need entropy, can't read anything; if not, can
   1708   1.1  riastrad 	 * read arbitrarily much.
   1709   1.1  riastrad 	 */
   1710  1.62  riastrad 	if (E->bitsneeded != 0 && E->samplesneeded != 0) {
   1711   1.1  riastrad 		ret = 0;
   1712   1.1  riastrad 	} else {
   1713   1.1  riastrad 		if (atomic_load_relaxed(&entropy_depletion))
   1714  1.58  riastrad 			kn->kn_data = ENTROPY_CAPACITY; /* bytes */
   1715   1.1  riastrad 		else
   1716   1.1  riastrad 			kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
   1717   1.1  riastrad 		ret = 1;
   1718   1.1  riastrad 	}
   1719   1.1  riastrad 
   1720   1.1  riastrad 	/* Release the lock, if caller is outside entropy subsystem.  */
   1721   1.1  riastrad 	if (hint == NOTE_SUBMIT)
   1722   1.1  riastrad 		KASSERT(mutex_owned(&E->lock));
   1723   1.1  riastrad 	else
   1724   1.1  riastrad 		mutex_exit(&E->lock);
   1725   1.1  riastrad 
   1726   1.1  riastrad 	return ret;
   1727   1.1  riastrad }
   1728   1.1  riastrad 
   1729  1.33   thorpej /* XXX Makes sense only for /dev/u?random.  */
   1730   1.1  riastrad static const struct filterops entropy_read_filtops = {
   1731  1.33   thorpej 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   1732   1.1  riastrad 	.f_attach = NULL,
   1733   1.1  riastrad 	.f_detach = filt_entropy_read_detach,
   1734   1.1  riastrad 	.f_event = filt_entropy_read_event,
   1735   1.1  riastrad };
   1736   1.1  riastrad 
   1737   1.1  riastrad /*
   1738   1.1  riastrad  * entropy_kqfilter(kn)
   1739   1.1  riastrad  *
   1740   1.1  riastrad  *	Register kn to receive entropy event notifications.  May be
   1741   1.1  riastrad  *	EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
   1742   1.1  riastrad  */
   1743   1.1  riastrad int
   1744   1.1  riastrad entropy_kqfilter(struct knote *kn)
   1745   1.1  riastrad {
   1746   1.1  riastrad 
   1747  1.63  riastrad 	KASSERT(!cold);
   1748   1.1  riastrad 
   1749   1.1  riastrad 	switch (kn->kn_filter) {
   1750   1.1  riastrad 	case EVFILT_READ:
   1751   1.1  riastrad 		/* Enter into the global select queue.  */
   1752   1.1  riastrad 		mutex_enter(&E->lock);
   1753   1.1  riastrad 		kn->kn_fop = &entropy_read_filtops;
   1754  1.25   thorpej 		selrecord_knote(&E->selq, kn);
   1755   1.1  riastrad 		mutex_exit(&E->lock);
   1756   1.1  riastrad 		return 0;
   1757   1.1  riastrad 	case EVFILT_WRITE:
   1758   1.1  riastrad 		/* Can always dump entropy into the system.  */
   1759   1.1  riastrad 		kn->kn_fop = &seltrue_filtops;
   1760   1.1  riastrad 		return 0;
   1761   1.1  riastrad 	default:
   1762   1.1  riastrad 		return EINVAL;
   1763   1.1  riastrad 	}
   1764   1.1  riastrad }
   1765   1.1  riastrad 
   1766   1.1  riastrad /*
   1767   1.1  riastrad  * rndsource_setcb(rs, get, getarg)
   1768   1.1  riastrad  *
   1769   1.1  riastrad  *	Set the request callback for the entropy source rs, if it can
   1770   1.1  riastrad  *	provide entropy on demand.  Must precede rnd_attach_source.
   1771   1.1  riastrad  */
   1772   1.1  riastrad void
   1773   1.1  riastrad rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
   1774   1.1  riastrad     void *getarg)
   1775   1.1  riastrad {
   1776   1.1  riastrad 
   1777   1.1  riastrad 	rs->get = get;
   1778   1.1  riastrad 	rs->getarg = getarg;
   1779   1.1  riastrad }
   1780   1.1  riastrad 
   1781   1.1  riastrad /*
   1782   1.1  riastrad  * rnd_attach_source(rs, name, type, flags)
   1783   1.1  riastrad  *
   1784   1.1  riastrad  *	Attach the entropy source rs.  Must be done after
   1785   1.1  riastrad  *	rndsource_setcb, if any, and before any calls to rnd_add_data.
   1786   1.1  riastrad  */
   1787   1.1  riastrad void
   1788   1.1  riastrad rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
   1789   1.1  riastrad     uint32_t flags)
   1790   1.1  riastrad {
   1791   1.1  riastrad 	uint32_t extra[4];
   1792   1.1  riastrad 	unsigned i = 0;
   1793   1.1  riastrad 
   1794  1.59  riastrad 	KASSERTMSG(name[0] != '\0', "rndsource must have nonempty name");
   1795  1.59  riastrad 
   1796   1.1  riastrad 	/* Grab cycle counter to mix extra into the pool.  */
   1797   1.1  riastrad 	extra[i++] = entropy_timer();
   1798   1.1  riastrad 
   1799   1.1  riastrad 	/*
   1800   1.1  riastrad 	 * Apply some standard flags:
   1801   1.1  riastrad 	 *
   1802   1.1  riastrad 	 * - We do not bother with network devices by default, for
   1803   1.1  riastrad 	 *   hysterical raisins (perhaps: because it is often the case
   1804   1.1  riastrad 	 *   that an adversary can influence network packet timings).
   1805   1.1  riastrad 	 */
   1806   1.1  riastrad 	switch (type) {
   1807   1.1  riastrad 	case RND_TYPE_NET:
   1808   1.1  riastrad 		flags |= RND_FLAG_NO_COLLECT;
   1809   1.1  riastrad 		break;
   1810   1.1  riastrad 	}
   1811   1.1  riastrad 
   1812   1.1  riastrad 	/* Sanity-check the callback if RND_FLAG_HASCB is set.  */
   1813   1.1  riastrad 	KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
   1814   1.1  riastrad 
   1815   1.1  riastrad 	/* Initialize the random source.  */
   1816   1.1  riastrad 	memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
   1817   1.1  riastrad 	strlcpy(rs->name, name, sizeof(rs->name));
   1818  1.28  riastrad 	memset(&rs->time_delta, 0, sizeof(rs->time_delta));
   1819  1.28  riastrad 	memset(&rs->value_delta, 0, sizeof(rs->value_delta));
   1820   1.9  riastrad 	rs->total = 0;
   1821   1.1  riastrad 	rs->type = type;
   1822   1.1  riastrad 	rs->flags = flags;
   1823  1.63  riastrad 	if (entropy_percpu != NULL)
   1824   1.1  riastrad 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
   1825   1.1  riastrad 	extra[i++] = entropy_timer();
   1826   1.1  riastrad 
   1827   1.1  riastrad 	/* Wire it into the global list of random sources.  */
   1828  1.63  riastrad 	if (__predict_true(!cold))
   1829   1.1  riastrad 		mutex_enter(&E->lock);
   1830   1.1  riastrad 	LIST_INSERT_HEAD(&E->sources, rs, list);
   1831  1.63  riastrad 	if (__predict_true(!cold))
   1832   1.1  riastrad 		mutex_exit(&E->lock);
   1833   1.1  riastrad 	extra[i++] = entropy_timer();
   1834   1.1  riastrad 
   1835   1.1  riastrad 	/* Request that it provide entropy ASAP, if we can.  */
   1836   1.1  riastrad 	if (ISSET(flags, RND_FLAG_HASCB))
   1837   1.1  riastrad 		(*rs->get)(ENTROPY_CAPACITY, rs->getarg);
   1838   1.1  riastrad 	extra[i++] = entropy_timer();
   1839   1.1  riastrad 
   1840   1.1  riastrad 	/* Mix the extra into the pool.  */
   1841   1.1  riastrad 	KASSERT(i == __arraycount(extra));
   1842  1.63  riastrad 	entropy_enter(extra, sizeof extra, 0, /*count*/__predict_true(!cold));
   1843   1.1  riastrad 	explicit_memset(extra, 0, sizeof extra);
   1844   1.1  riastrad }
   1845   1.1  riastrad 
   1846   1.1  riastrad /*
   1847   1.1  riastrad  * rnd_detach_source(rs)
   1848   1.1  riastrad  *
   1849   1.1  riastrad  *	Detach the entropy source rs.  May sleep waiting for users to
   1850   1.1  riastrad  *	drain.  Further use is not allowed.
   1851   1.1  riastrad  */
   1852   1.1  riastrad void
   1853   1.1  riastrad rnd_detach_source(struct krndsource *rs)
   1854   1.1  riastrad {
   1855   1.1  riastrad 
   1856   1.1  riastrad 	/*
   1857   1.1  riastrad 	 * If we're cold (shouldn't happen, but hey), just remove it
   1858   1.1  riastrad 	 * from the list -- there's nothing allocated.
   1859   1.1  riastrad 	 */
   1860  1.63  riastrad 	if (__predict_false(cold) && entropy_percpu == NULL) {
   1861   1.1  riastrad 		LIST_REMOVE(rs, list);
   1862   1.1  riastrad 		return;
   1863   1.1  riastrad 	}
   1864   1.1  riastrad 
   1865   1.1  riastrad 	/* We may have to wait for entropy_request.  */
   1866   1.1  riastrad 	ASSERT_SLEEPABLE();
   1867   1.1  riastrad 
   1868   1.4  riastrad 	/* Wait until the source list is not in use, and remove it.  */
   1869   1.1  riastrad 	mutex_enter(&E->lock);
   1870   1.4  riastrad 	while (E->sourcelock)
   1871  1.27  riastrad 		cv_wait(&E->sourcelock_cv, &E->lock);
   1872   1.1  riastrad 	LIST_REMOVE(rs, list);
   1873   1.1  riastrad 	mutex_exit(&E->lock);
   1874   1.1  riastrad 
   1875   1.1  riastrad 	/* Free the per-CPU data.  */
   1876   1.1  riastrad 	percpu_free(rs->state, sizeof(struct rndsource_cpu));
   1877   1.1  riastrad }
   1878   1.1  riastrad 
   1879   1.1  riastrad /*
   1880  1.49  riastrad  * rnd_lock_sources(flags)
   1881  1.49  riastrad  *
   1882  1.49  riastrad  *	Lock the list of entropy sources.  Caller must hold the global
   1883  1.49  riastrad  *	entropy lock.  If successful, no rndsource will go away until
   1884  1.49  riastrad  *	rnd_unlock_sources even while the caller releases the global
   1885  1.49  riastrad  *	entropy lock.
   1886   1.4  riastrad  *
   1887  1.63  riastrad  *	May be called very early at boot, before entropy_init.
   1888  1.63  riastrad  *
   1889  1.49  riastrad  *	If flags & ENTROPY_WAIT, wait for concurrent access to finish.
   1890  1.49  riastrad  *	If flags & ENTROPY_SIG, allow interruption by signal.
   1891   1.4  riastrad  */
   1892  1.49  riastrad static int __attribute__((warn_unused_result))
   1893  1.49  riastrad rnd_lock_sources(int flags)
   1894   1.4  riastrad {
   1895   1.4  riastrad 	int error;
   1896   1.4  riastrad 
   1897  1.63  riastrad 	KASSERT(__predict_false(cold) || mutex_owned(&E->lock));
   1898  1.63  riastrad 	KASSERT(!cpu_intr_p());
   1899   1.4  riastrad 
   1900   1.4  riastrad 	while (E->sourcelock) {
   1901  1.63  riastrad 		KASSERT(!cold);
   1902  1.49  riastrad 		if (!ISSET(flags, ENTROPY_WAIT))
   1903  1.49  riastrad 			return EWOULDBLOCK;
   1904  1.49  riastrad 		if (ISSET(flags, ENTROPY_SIG)) {
   1905  1.49  riastrad 			error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
   1906  1.49  riastrad 			if (error)
   1907  1.49  riastrad 				return error;
   1908  1.49  riastrad 		} else {
   1909  1.49  riastrad 			cv_wait(&E->sourcelock_cv, &E->lock);
   1910  1.49  riastrad 		}
   1911   1.4  riastrad 	}
   1912   1.4  riastrad 
   1913   1.4  riastrad 	E->sourcelock = curlwp;
   1914   1.4  riastrad 	return 0;
   1915   1.4  riastrad }
   1916   1.4  riastrad 
   1917   1.4  riastrad /*
   1918   1.4  riastrad  * rnd_unlock_sources()
   1919   1.4  riastrad  *
   1920  1.49  riastrad  *	Unlock the list of sources after rnd_lock_sources.  Caller must
   1921  1.49  riastrad  *	hold the global entropy lock.
   1922  1.63  riastrad  *
   1923  1.63  riastrad  *	May be called very early at boot, before entropy_init.
   1924   1.4  riastrad  */
   1925   1.4  riastrad static void
   1926   1.4  riastrad rnd_unlock_sources(void)
   1927   1.4  riastrad {
   1928   1.4  riastrad 
   1929  1.63  riastrad 	KASSERT(__predict_false(cold) || mutex_owned(&E->lock));
   1930  1.63  riastrad 	KASSERT(!cpu_intr_p());
   1931   1.4  riastrad 
   1932  1.16  riastrad 	KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
   1933  1.16  riastrad 	    curlwp, E->sourcelock);
   1934   1.4  riastrad 	E->sourcelock = NULL;
   1935  1.63  riastrad 	if (__predict_true(!cold))
   1936  1.27  riastrad 		cv_signal(&E->sourcelock_cv);
   1937   1.4  riastrad }
   1938   1.4  riastrad 
   1939   1.4  riastrad /*
   1940   1.4  riastrad  * rnd_sources_locked()
   1941   1.4  riastrad  *
   1942   1.4  riastrad  *	True if we hold the list of rndsources locked, for diagnostic
   1943   1.4  riastrad  *	assertions.
   1944  1.63  riastrad  *
   1945  1.63  riastrad  *	May be called very early at boot, before entropy_init.
   1946   1.4  riastrad  */
   1947   1.7  riastrad static bool __diagused
   1948   1.4  riastrad rnd_sources_locked(void)
   1949   1.4  riastrad {
   1950   1.4  riastrad 
   1951  1.16  riastrad 	return E->sourcelock == curlwp;
   1952   1.4  riastrad }
   1953   1.4  riastrad 
   1954   1.4  riastrad /*
   1955  1.49  riastrad  * entropy_request(nbytes, flags)
   1956   1.1  riastrad  *
   1957   1.1  riastrad  *	Request nbytes bytes of entropy from all sources in the system.
   1958   1.1  riastrad  *	OK if we overdo it.  Caller must hold the global entropy lock;
   1959   1.1  riastrad  *	will release and re-acquire it.
   1960  1.49  riastrad  *
   1961  1.63  riastrad  *	May be called very early at boot, before entropy_init.
   1962  1.63  riastrad  *
   1963  1.49  riastrad  *	If flags & ENTROPY_WAIT, wait for concurrent access to finish.
   1964  1.49  riastrad  *	If flags & ENTROPY_SIG, allow interruption by signal.
   1965   1.1  riastrad  */
   1966  1.49  riastrad static int
   1967  1.49  riastrad entropy_request(size_t nbytes, int flags)
   1968   1.1  riastrad {
   1969   1.4  riastrad 	struct krndsource *rs;
   1970  1.49  riastrad 	int error;
   1971   1.1  riastrad 
   1972  1.63  riastrad 	KASSERT(__predict_false(cold) || mutex_owned(&E->lock));
   1973  1.63  riastrad 	KASSERT(!cpu_intr_p());
   1974  1.63  riastrad 	if ((flags & ENTROPY_WAIT) != 0 && __predict_false(!cold))
   1975  1.49  riastrad 		ASSERT_SLEEPABLE();
   1976   1.1  riastrad 
   1977   1.1  riastrad 	/*
   1978  1.49  riastrad 	 * Lock the list of entropy sources to block rnd_detach_source
   1979  1.49  riastrad 	 * until we're done, and to serialize calls to the entropy
   1980  1.49  riastrad 	 * callbacks as guaranteed to drivers.
   1981   1.1  riastrad 	 */
   1982  1.49  riastrad 	error = rnd_lock_sources(flags);
   1983  1.49  riastrad 	if (error)
   1984  1.49  riastrad 		return error;
   1985   1.1  riastrad 	entropy_request_evcnt.ev_count++;
   1986   1.1  riastrad 
   1987   1.1  riastrad 	/* Clamp to the maximum reasonable request.  */
   1988   1.1  riastrad 	nbytes = MIN(nbytes, ENTROPY_CAPACITY);
   1989   1.1  riastrad 
   1990   1.1  riastrad 	/* Walk the list of sources.  */
   1991   1.4  riastrad 	LIST_FOREACH(rs, &E->sources, list) {
   1992   1.1  riastrad 		/* Skip sources without callbacks.  */
   1993   1.1  riastrad 		if (!ISSET(rs->flags, RND_FLAG_HASCB))
   1994   1.1  riastrad 			continue;
   1995   1.1  riastrad 
   1996  1.22  riastrad 		/*
   1997  1.22  riastrad 		 * Skip sources that are disabled altogether -- we
   1998  1.22  riastrad 		 * would just ignore their samples anyway.
   1999  1.22  riastrad 		 */
   2000  1.22  riastrad 		if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
   2001  1.22  riastrad 			continue;
   2002  1.22  riastrad 
   2003   1.1  riastrad 		/* Drop the lock while we call the callback.  */
   2004  1.63  riastrad 		if (__predict_true(!cold))
   2005   1.1  riastrad 			mutex_exit(&E->lock);
   2006   1.1  riastrad 		(*rs->get)(nbytes, rs->getarg);
   2007  1.63  riastrad 		if (__predict_true(!cold))
   2008   1.1  riastrad 			mutex_enter(&E->lock);
   2009   1.1  riastrad 	}
   2010   1.1  riastrad 
   2011  1.49  riastrad 	/* Request done; unlock the list of entropy sources.  */
   2012   1.4  riastrad 	rnd_unlock_sources();
   2013  1.49  riastrad 	return 0;
   2014   1.1  riastrad }
   2015   1.1  riastrad 
   2016  1.62  riastrad static inline uint32_t
   2017  1.62  riastrad rnd_delta_estimate(rnd_delta_t *d, uint32_t v, int32_t delta)
   2018  1.62  riastrad {
   2019  1.62  riastrad 	int32_t delta2, delta3;
   2020  1.62  riastrad 
   2021  1.62  riastrad 	/*
   2022  1.62  riastrad 	 * Calculate the second and third order differentials
   2023  1.62  riastrad 	 */
   2024  1.62  riastrad 	delta2 = d->dx - delta;
   2025  1.62  riastrad 	if (delta2 < 0)
   2026  1.62  riastrad 		delta2 = -delta2; /* XXX arithmetic overflow */
   2027  1.62  riastrad 
   2028  1.62  riastrad 	delta3 = d->d2x - delta2;
   2029  1.62  riastrad 	if (delta3 < 0)
   2030  1.62  riastrad 		delta3 = -delta3; /* XXX arithmetic overflow */
   2031  1.62  riastrad 
   2032  1.62  riastrad 	d->x = v;
   2033  1.62  riastrad 	d->dx = delta;
   2034  1.62  riastrad 	d->d2x = delta2;
   2035  1.62  riastrad 
   2036  1.62  riastrad 	/*
   2037  1.62  riastrad 	 * If any delta is 0, we got no entropy.  If all are non-zero, we
   2038  1.62  riastrad 	 * might have something.
   2039  1.62  riastrad 	 */
   2040  1.62  riastrad 	if (delta == 0 || delta2 == 0 || delta3 == 0)
   2041  1.62  riastrad 		return 0;
   2042  1.62  riastrad 
   2043  1.62  riastrad 	return 1;
   2044  1.62  riastrad }
   2045  1.62  riastrad 
   2046  1.62  riastrad static inline uint32_t
   2047  1.62  riastrad rnd_dt_estimate(struct krndsource *rs, uint32_t t)
   2048  1.62  riastrad {
   2049  1.62  riastrad 	int32_t delta;
   2050  1.62  riastrad 	uint32_t ret;
   2051  1.62  riastrad 	rnd_delta_t *d;
   2052  1.62  riastrad 	struct rndsource_cpu *rc;
   2053  1.62  riastrad 
   2054  1.62  riastrad 	rc = percpu_getref(rs->state);
   2055  1.62  riastrad 	d = &rc->rc_timedelta;
   2056  1.62  riastrad 
   2057  1.62  riastrad 	if (t < d->x) {
   2058  1.62  riastrad 		delta = UINT32_MAX - d->x + t;
   2059  1.62  riastrad 	} else {
   2060  1.62  riastrad 		delta = d->x - t;
   2061  1.62  riastrad 	}
   2062  1.62  riastrad 
   2063  1.62  riastrad 	if (delta < 0) {
   2064  1.62  riastrad 		delta = -delta;	/* XXX arithmetic overflow */
   2065  1.62  riastrad 	}
   2066  1.62  riastrad 
   2067  1.62  riastrad 	ret = rnd_delta_estimate(d, t, delta);
   2068  1.62  riastrad 
   2069  1.62  riastrad 	KASSERT(d->x == t);
   2070  1.62  riastrad 	KASSERT(d->dx == delta);
   2071  1.62  riastrad 	percpu_putref(rs->state);
   2072  1.62  riastrad 	return ret;
   2073  1.62  riastrad }
   2074  1.62  riastrad 
   2075   1.1  riastrad /*
   2076   1.1  riastrad  * rnd_add_uint32(rs, value)
   2077   1.1  riastrad  *
   2078   1.1  riastrad  *	Enter 32 bits of data from an entropy source into the pool.
   2079   1.1  riastrad  *
   2080  1.63  riastrad  *	May be called from any context or with spin locks held, but may
   2081  1.63  riastrad  *	drop data.
   2082   1.1  riastrad  *
   2083  1.63  riastrad  *	This is meant for cheaply taking samples from devices that
   2084  1.63  riastrad  *	aren't designed to be hardware random number generators.
   2085   1.1  riastrad  */
   2086   1.1  riastrad void
   2087   1.1  riastrad rnd_add_uint32(struct krndsource *rs, uint32_t value)
   2088   1.1  riastrad {
   2089  1.63  riastrad 	bool intr_p = true;
   2090   1.1  riastrad 
   2091  1.63  riastrad 	rnd_add_data_internal(rs, &value, sizeof value, 0, intr_p);
   2092   1.1  riastrad }
   2093   1.1  riastrad 
   2094   1.1  riastrad void
   2095   1.1  riastrad _rnd_add_uint32(struct krndsource *rs, uint32_t value)
   2096   1.1  riastrad {
   2097  1.63  riastrad 	bool intr_p = true;
   2098   1.1  riastrad 
   2099  1.63  riastrad 	rnd_add_data_internal(rs, &value, sizeof value, 0, intr_p);
   2100   1.1  riastrad }
   2101   1.1  riastrad 
   2102   1.1  riastrad void
   2103   1.1  riastrad _rnd_add_uint64(struct krndsource *rs, uint64_t value)
   2104   1.1  riastrad {
   2105  1.63  riastrad 	bool intr_p = true;
   2106   1.1  riastrad 
   2107  1.63  riastrad 	rnd_add_data_internal(rs, &value, sizeof value, 0, intr_p);
   2108   1.1  riastrad }
   2109   1.1  riastrad 
   2110   1.1  riastrad /*
   2111   1.1  riastrad  * rnd_add_data(rs, buf, len, entropybits)
   2112   1.1  riastrad  *
   2113   1.1  riastrad  *	Enter data from an entropy source into the pool, with a
   2114   1.1  riastrad  *	driver's estimate of how much entropy the physical source of
   2115   1.1  riastrad  *	the data has.  If RND_FLAG_NO_ESTIMATE, we ignore the driver's
   2116   1.1  riastrad  *	estimate and treat it as zero.
   2117   1.1  riastrad  *
   2118  1.63  riastrad  *	rs MAY but SHOULD NOT be NULL.  If rs is NULL, MUST NOT be
   2119  1.63  riastrad  *	called from interrupt context or with spin locks held.
   2120   1.1  riastrad  *
   2121  1.63  riastrad  *	If rs is non-NULL, MAY but SHOULD NOT be called from interrupt
   2122  1.63  riastrad  *	context, in which case act like rnd_add_data_intr -- if the
   2123  1.63  riastrad  *	sample buffer is full, schedule a softint and drop any
   2124  1.63  riastrad  *	additional data on the floor.  (This may change later once we
   2125  1.63  riastrad  *	fix drivers that still call this from interrupt context to use
   2126  1.63  riastrad  *	rnd_add_data_intr instead.)  MUST NOT be called with spin locks
   2127  1.63  riastrad  *	held if not in hard interrupt context -- i.e., MUST NOT be
   2128  1.63  riastrad  *	called in thread context or softint context with spin locks
   2129  1.63  riastrad  *	held.
   2130   1.1  riastrad  */
   2131   1.1  riastrad void
   2132   1.1  riastrad rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
   2133   1.1  riastrad     uint32_t entropybits)
   2134   1.1  riastrad {
   2135  1.63  riastrad 	bool intr_p = cpu_intr_p(); /* XXX make this unconditionally false */
   2136   1.1  riastrad 
   2137  1.63  riastrad 	/*
   2138  1.63  riastrad 	 * Weird legacy exception that we should rip out and replace by
   2139  1.63  riastrad 	 * creating new rndsources to attribute entropy to the callers:
   2140  1.63  riastrad 	 * If there's no rndsource, just enter the data and time now.
   2141  1.63  riastrad 	 */
   2142  1.63  riastrad 	if (rs == NULL) {
   2143  1.63  riastrad 		uint32_t extra;
   2144   1.1  riastrad 
   2145  1.63  riastrad 		KASSERT(!intr_p);
   2146  1.63  riastrad 		KASSERTMSG(howmany(entropybits, NBBY) <= len,
   2147  1.63  riastrad 		    "%s: impossible entropy rate:"
   2148  1.63  riastrad 		    " %"PRIu32" bits in %"PRIu32"-byte string",
   2149  1.63  riastrad 		    rs ? rs->name : "(anonymous)", entropybits, len);
   2150  1.62  riastrad 		entropy_enter(buf, len, entropybits, /*count*/false);
   2151   1.1  riastrad 		extra = entropy_timer();
   2152  1.62  riastrad 		entropy_enter(&extra, sizeof extra, 0, /*count*/false);
   2153   1.1  riastrad 		explicit_memset(&extra, 0, sizeof extra);
   2154   1.1  riastrad 		return;
   2155   1.1  riastrad 	}
   2156   1.1  riastrad 
   2157  1.63  riastrad 	rnd_add_data_internal(rs, buf, len, entropybits, intr_p);
   2158  1.63  riastrad }
   2159  1.63  riastrad 
   2160  1.63  riastrad /*
   2161  1.63  riastrad  * rnd_add_data_intr(rs, buf, len, entropybits)
   2162  1.63  riastrad  *
   2163  1.63  riastrad  *	Try to enter data from an entropy source into the pool, with a
   2164  1.63  riastrad  *	driver's estimate of how much entropy the physical source of
   2165  1.63  riastrad  *	the data has.  If RND_FLAG_NO_ESTIMATE, we ignore the driver's
   2166  1.63  riastrad  *	estimate and treat it as zero.  If the sample buffer is full,
   2167  1.63  riastrad  *	schedule a softint and drop any additional data on the floor.
   2168  1.63  riastrad  */
   2169  1.63  riastrad void
   2170  1.63  riastrad rnd_add_data_intr(struct krndsource *rs, const void *buf, uint32_t len,
   2171  1.63  riastrad     uint32_t entropybits)
   2172  1.63  riastrad {
   2173  1.63  riastrad 	bool intr_p = true;
   2174  1.63  riastrad 
   2175  1.63  riastrad 	rnd_add_data_internal(rs, buf, len, entropybits, intr_p);
   2176  1.63  riastrad }
   2177  1.63  riastrad 
   2178  1.63  riastrad /*
   2179  1.63  riastrad  * rnd_add_data_internal(rs, buf, len, entropybits, intr_p)
   2180  1.63  riastrad  *
   2181  1.63  riastrad  *	Internal subroutine to decide whether or not to enter data or
   2182  1.63  riastrad  *	timing for a particular rndsource, and if so, to enter it.
   2183  1.63  riastrad  *
   2184  1.63  riastrad  *	intr_p is true for callers from interrupt context or spin locks
   2185  1.63  riastrad  *	held, and false for callers from thread or soft interrupt
   2186  1.63  riastrad  *	context and no spin locks held.
   2187  1.63  riastrad  */
   2188  1.63  riastrad static void
   2189  1.63  riastrad rnd_add_data_internal(struct krndsource *rs, const void *buf, uint32_t len,
   2190  1.63  riastrad     uint32_t entropybits, bool intr_p)
   2191  1.63  riastrad {
   2192  1.63  riastrad 	uint32_t flags;
   2193  1.63  riastrad 
   2194  1.63  riastrad 	KASSERTMSG(howmany(entropybits, NBBY) <= len,
   2195  1.63  riastrad 	    "%s: impossible entropy rate:"
   2196  1.63  riastrad 	    " %"PRIu32" bits in %"PRIu32"-byte string",
   2197  1.63  riastrad 	    rs ? rs->name : "(anonymous)", entropybits, len);
   2198  1.63  riastrad 
   2199  1.61  riastrad 	/*
   2200  1.61  riastrad 	 * Hold up the reset xcall before it zeroes the entropy counts
   2201  1.61  riastrad 	 * on this CPU or globally.  Otherwise, we might leave some
   2202  1.61  riastrad 	 * nonzero entropy attributed to an untrusted source in the
   2203  1.61  riastrad 	 * event of a race with a change to flags.
   2204  1.61  riastrad 	 */
   2205  1.61  riastrad 	kpreempt_disable();
   2206  1.61  riastrad 
   2207   1.1  riastrad 	/* Load a snapshot of the flags.  Ioctl may change them under us.  */
   2208   1.1  riastrad 	flags = atomic_load_relaxed(&rs->flags);
   2209   1.1  riastrad 
   2210   1.1  riastrad 	/*
   2211   1.1  riastrad 	 * Skip if:
   2212   1.1  riastrad 	 * - we're not collecting entropy, or
   2213   1.1  riastrad 	 * - the operator doesn't want to collect entropy from this, or
   2214   1.1  riastrad 	 * - neither data nor timings are being collected from this.
   2215   1.1  riastrad 	 */
   2216   1.1  riastrad 	if (!atomic_load_relaxed(&entropy_collection) ||
   2217   1.1  riastrad 	    ISSET(flags, RND_FLAG_NO_COLLECT) ||
   2218   1.1  riastrad 	    !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
   2219  1.61  riastrad 		goto out;
   2220   1.1  riastrad 
   2221   1.1  riastrad 	/* If asked, ignore the estimate.  */
   2222   1.1  riastrad 	if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
   2223   1.1  riastrad 		entropybits = 0;
   2224   1.1  riastrad 
   2225   1.1  riastrad 	/* If we are collecting data, enter them.  */
   2226  1.62  riastrad 	if (ISSET(flags, RND_FLAG_COLLECT_VALUE)) {
   2227  1.62  riastrad 		rnd_add_data_1(rs, buf, len, entropybits, /*count*/false,
   2228  1.63  riastrad 		    RND_FLAG_COLLECT_VALUE, intr_p);
   2229  1.62  riastrad 	}
   2230   1.1  riastrad 
   2231   1.1  riastrad 	/* If we are collecting timings, enter one.  */
   2232   1.1  riastrad 	if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
   2233  1.63  riastrad 		uint32_t extra;
   2234  1.62  riastrad 		bool count;
   2235  1.62  riastrad 
   2236  1.62  riastrad 		/* Sample a timer.  */
   2237   1.1  riastrad 		extra = entropy_timer();
   2238  1.62  riastrad 
   2239  1.62  riastrad 		/* If asked, do entropy estimation on the time.  */
   2240  1.62  riastrad 		if ((flags & (RND_FLAG_ESTIMATE_TIME|RND_FLAG_NO_ESTIMATE)) ==
   2241  1.63  riastrad 		    RND_FLAG_ESTIMATE_TIME && __predict_true(!cold))
   2242  1.62  riastrad 			count = rnd_dt_estimate(rs, extra);
   2243  1.62  riastrad 		else
   2244  1.62  riastrad 			count = false;
   2245  1.62  riastrad 
   2246  1.62  riastrad 		rnd_add_data_1(rs, &extra, sizeof extra, 0, count,
   2247  1.63  riastrad 		    RND_FLAG_COLLECT_TIME, intr_p);
   2248   1.1  riastrad 	}
   2249  1.61  riastrad 
   2250  1.61  riastrad out:	/* Allow concurrent changes to flags to finish.  */
   2251  1.61  riastrad 	kpreempt_enable();
   2252   1.1  riastrad }
   2253   1.1  riastrad 
   2254  1.28  riastrad static unsigned
   2255  1.28  riastrad add_sat(unsigned a, unsigned b)
   2256  1.28  riastrad {
   2257  1.28  riastrad 	unsigned c = a + b;
   2258  1.28  riastrad 
   2259  1.28  riastrad 	return (c < a ? UINT_MAX : c);
   2260  1.28  riastrad }
   2261  1.28  riastrad 
   2262   1.1  riastrad /*
   2263  1.62  riastrad  * rnd_add_data_1(rs, buf, len, entropybits, count, flag)
   2264   1.1  riastrad  *
   2265   1.1  riastrad  *	Internal subroutine to call either entropy_enter_intr, if we're
   2266   1.1  riastrad  *	in interrupt context, or entropy_enter if not, and to count the
   2267   1.1  riastrad  *	entropy in an rndsource.
   2268   1.1  riastrad  */
   2269   1.1  riastrad static void
   2270   1.1  riastrad rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
   2271  1.63  riastrad     uint32_t entropybits, bool count, uint32_t flag, bool intr_p)
   2272   1.1  riastrad {
   2273   1.1  riastrad 	bool fullyused;
   2274   1.1  riastrad 
   2275   1.1  riastrad 	/*
   2276  1.63  riastrad 	 * For the interrupt-like path, use entropy_enter_intr and take
   2277  1.63  riastrad 	 * note of whether it consumed the full sample; otherwise, use
   2278  1.63  riastrad 	 * entropy_enter, which always consumes the full sample.
   2279   1.1  riastrad 	 */
   2280  1.63  riastrad 	if (intr_p) {
   2281  1.62  riastrad 		fullyused = entropy_enter_intr(buf, len, entropybits, count);
   2282   1.1  riastrad 	} else {
   2283  1.62  riastrad 		entropy_enter(buf, len, entropybits, count);
   2284   1.1  riastrad 		fullyused = true;
   2285   1.1  riastrad 	}
   2286   1.1  riastrad 
   2287   1.1  riastrad 	/*
   2288   1.1  riastrad 	 * If we used the full sample, note how many bits were
   2289   1.1  riastrad 	 * contributed from this source.
   2290   1.1  riastrad 	 */
   2291   1.1  riastrad 	if (fullyused) {
   2292  1.63  riastrad 		if (__predict_false(cold)) {
   2293  1.63  riastrad 			const int s = splhigh();
   2294  1.28  riastrad 			rs->total = add_sat(rs->total, entropybits);
   2295  1.28  riastrad 			switch (flag) {
   2296  1.28  riastrad 			case RND_FLAG_COLLECT_TIME:
   2297  1.28  riastrad 				rs->time_delta.insamples =
   2298  1.28  riastrad 				    add_sat(rs->time_delta.insamples, 1);
   2299  1.28  riastrad 				break;
   2300  1.28  riastrad 			case RND_FLAG_COLLECT_VALUE:
   2301  1.28  riastrad 				rs->value_delta.insamples =
   2302  1.28  riastrad 				    add_sat(rs->value_delta.insamples, 1);
   2303  1.28  riastrad 				break;
   2304  1.28  riastrad 			}
   2305  1.63  riastrad 			splx(s);
   2306   1.1  riastrad 		} else {
   2307   1.1  riastrad 			struct rndsource_cpu *rc = percpu_getref(rs->state);
   2308   1.1  riastrad 
   2309  1.28  riastrad 			atomic_store_relaxed(&rc->rc_entropybits,
   2310  1.28  riastrad 			    add_sat(rc->rc_entropybits, entropybits));
   2311  1.28  riastrad 			switch (flag) {
   2312  1.28  riastrad 			case RND_FLAG_COLLECT_TIME:
   2313  1.28  riastrad 				atomic_store_relaxed(&rc->rc_timesamples,
   2314  1.28  riastrad 				    add_sat(rc->rc_timesamples, 1));
   2315  1.28  riastrad 				break;
   2316  1.28  riastrad 			case RND_FLAG_COLLECT_VALUE:
   2317  1.28  riastrad 				atomic_store_relaxed(&rc->rc_datasamples,
   2318  1.28  riastrad 				    add_sat(rc->rc_datasamples, 1));
   2319  1.28  riastrad 				break;
   2320  1.28  riastrad 			}
   2321   1.1  riastrad 			percpu_putref(rs->state);
   2322   1.1  riastrad 		}
   2323   1.1  riastrad 	}
   2324   1.1  riastrad }
   2325   1.1  riastrad 
   2326   1.1  riastrad /*
   2327   1.1  riastrad  * rnd_add_data_sync(rs, buf, len, entropybits)
   2328   1.1  riastrad  *
   2329   1.1  riastrad  *	Same as rnd_add_data.  Originally used in rndsource callbacks,
   2330   1.1  riastrad  *	to break an unnecessary cycle; no longer really needed.
   2331   1.1  riastrad  */
   2332   1.1  riastrad void
   2333   1.1  riastrad rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
   2334   1.1  riastrad     uint32_t entropybits)
   2335   1.1  riastrad {
   2336   1.1  riastrad 
   2337   1.1  riastrad 	rnd_add_data(rs, buf, len, entropybits);
   2338   1.1  riastrad }
   2339   1.1  riastrad 
   2340   1.1  riastrad /*
   2341   1.1  riastrad  * rndsource_entropybits(rs)
   2342   1.1  riastrad  *
   2343   1.1  riastrad  *	Return approximately the number of bits of entropy that have
   2344   1.1  riastrad  *	been contributed via rs so far.  Approximate if other CPUs may
   2345   1.1  riastrad  *	be calling rnd_add_data concurrently.
   2346   1.1  riastrad  */
   2347   1.1  riastrad static unsigned
   2348   1.1  riastrad rndsource_entropybits(struct krndsource *rs)
   2349   1.1  riastrad {
   2350   1.1  riastrad 	unsigned nbits = rs->total;
   2351   1.1  riastrad 
   2352  1.63  riastrad 	KASSERT(!cold);
   2353   1.4  riastrad 	KASSERT(rnd_sources_locked());
   2354   1.1  riastrad 	percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
   2355   1.1  riastrad 	return nbits;
   2356   1.1  riastrad }
   2357   1.1  riastrad 
   2358   1.1  riastrad static void
   2359   1.1  riastrad rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   2360   1.1  riastrad {
   2361   1.1  riastrad 	struct rndsource_cpu *rc = ptr;
   2362   1.1  riastrad 	unsigned *nbitsp = cookie;
   2363   1.1  riastrad 	unsigned cpu_nbits;
   2364   1.1  riastrad 
   2365  1.28  riastrad 	cpu_nbits = atomic_load_relaxed(&rc->rc_entropybits);
   2366   1.1  riastrad 	*nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
   2367   1.1  riastrad }
   2368   1.1  riastrad 
   2369   1.1  riastrad /*
   2370   1.1  riastrad  * rndsource_to_user(rs, urs)
   2371   1.1  riastrad  *
   2372   1.1  riastrad  *	Copy a description of rs out to urs for userland.
   2373   1.1  riastrad  */
   2374   1.1  riastrad static void
   2375   1.1  riastrad rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
   2376   1.1  riastrad {
   2377   1.1  riastrad 
   2378  1.63  riastrad 	KASSERT(!cold);
   2379   1.4  riastrad 	KASSERT(rnd_sources_locked());
   2380   1.1  riastrad 
   2381   1.1  riastrad 	/* Avoid kernel memory disclosure.  */
   2382   1.1  riastrad 	memset(urs, 0, sizeof(*urs));
   2383   1.1  riastrad 
   2384   1.1  riastrad 	CTASSERT(sizeof(urs->name) == sizeof(rs->name));
   2385   1.1  riastrad 	strlcpy(urs->name, rs->name, sizeof(urs->name));
   2386   1.1  riastrad 	urs->total = rndsource_entropybits(rs);
   2387   1.1  riastrad 	urs->type = rs->type;
   2388   1.1  riastrad 	urs->flags = atomic_load_relaxed(&rs->flags);
   2389   1.1  riastrad }
   2390   1.1  riastrad 
   2391   1.1  riastrad /*
   2392   1.1  riastrad  * rndsource_to_user_est(rs, urse)
   2393   1.1  riastrad  *
   2394   1.1  riastrad  *	Copy a description of rs and estimation statistics out to urse
   2395   1.1  riastrad  *	for userland.
   2396   1.1  riastrad  */
   2397   1.1  riastrad static void
   2398   1.1  riastrad rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
   2399   1.1  riastrad {
   2400   1.1  riastrad 
   2401  1.63  riastrad 	KASSERT(!cold);
   2402   1.4  riastrad 	KASSERT(rnd_sources_locked());
   2403   1.1  riastrad 
   2404   1.1  riastrad 	/* Avoid kernel memory disclosure.  */
   2405   1.1  riastrad 	memset(urse, 0, sizeof(*urse));
   2406   1.1  riastrad 
   2407   1.1  riastrad 	/* Copy out the rndsource description.  */
   2408   1.1  riastrad 	rndsource_to_user(rs, &urse->rt);
   2409   1.1  riastrad 
   2410  1.28  riastrad 	/* Gather the statistics.  */
   2411  1.28  riastrad 	urse->dt_samples = rs->time_delta.insamples;
   2412   1.1  riastrad 	urse->dt_total = 0;
   2413  1.28  riastrad 	urse->dv_samples = rs->value_delta.insamples;
   2414  1.28  riastrad 	urse->dv_total = urse->rt.total;
   2415  1.28  riastrad 	percpu_foreach(rs->state, rndsource_to_user_est_cpu, urse);
   2416  1.28  riastrad }
   2417  1.28  riastrad 
   2418  1.28  riastrad static void
   2419  1.28  riastrad rndsource_to_user_est_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   2420  1.28  riastrad {
   2421  1.28  riastrad 	struct rndsource_cpu *rc = ptr;
   2422  1.28  riastrad 	rndsource_est_t *urse = cookie;
   2423  1.28  riastrad 
   2424  1.28  riastrad 	urse->dt_samples = add_sat(urse->dt_samples,
   2425  1.28  riastrad 	    atomic_load_relaxed(&rc->rc_timesamples));
   2426  1.28  riastrad 	urse->dv_samples = add_sat(urse->dv_samples,
   2427  1.28  riastrad 	    atomic_load_relaxed(&rc->rc_datasamples));
   2428   1.1  riastrad }
   2429   1.1  riastrad 
   2430   1.1  riastrad /*
   2431  1.21  riastrad  * entropy_reset_xc(arg1, arg2)
   2432  1.21  riastrad  *
   2433  1.21  riastrad  *	Reset the current CPU's pending entropy to zero.
   2434  1.21  riastrad  */
   2435  1.21  riastrad static void
   2436  1.21  riastrad entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
   2437  1.21  riastrad {
   2438  1.21  riastrad 	uint32_t extra = entropy_timer();
   2439  1.43  riastrad 	struct entropy_cpu_lock lock;
   2440  1.21  riastrad 	struct entropy_cpu *ec;
   2441  1.21  riastrad 
   2442  1.21  riastrad 	/*
   2443  1.43  riastrad 	 * With the per-CPU state locked, zero the pending count and
   2444  1.43  riastrad 	 * enter a cycle count for fun.
   2445  1.21  riastrad 	 */
   2446  1.43  riastrad 	ec = entropy_cpu_get(&lock);
   2447  1.62  riastrad 	ec->ec_bitspending = 0;
   2448  1.62  riastrad 	ec->ec_samplespending = 0;
   2449  1.21  riastrad 	entpool_enter(ec->ec_pool, &extra, sizeof extra);
   2450  1.43  riastrad 	entropy_cpu_put(&lock, ec);
   2451  1.21  riastrad }
   2452  1.21  riastrad 
   2453  1.21  riastrad /*
   2454   1.1  riastrad  * entropy_ioctl(cmd, data)
   2455   1.1  riastrad  *
   2456   1.1  riastrad  *	Handle various /dev/random ioctl queries.
   2457   1.1  riastrad  */
   2458   1.1  riastrad int
   2459   1.1  riastrad entropy_ioctl(unsigned long cmd, void *data)
   2460   1.1  riastrad {
   2461   1.1  riastrad 	struct krndsource *rs;
   2462   1.1  riastrad 	bool privileged;
   2463   1.1  riastrad 	int error;
   2464   1.1  riastrad 
   2465  1.63  riastrad 	KASSERT(!cold);
   2466   1.1  riastrad 
   2467   1.1  riastrad 	/* Verify user's authorization to perform the ioctl.  */
   2468   1.1  riastrad 	switch (cmd) {
   2469   1.1  riastrad 	case RNDGETENTCNT:
   2470   1.1  riastrad 	case RNDGETPOOLSTAT:
   2471   1.1  riastrad 	case RNDGETSRCNUM:
   2472   1.1  riastrad 	case RNDGETSRCNAME:
   2473   1.1  riastrad 	case RNDGETESTNUM:
   2474   1.1  riastrad 	case RNDGETESTNAME:
   2475  1.31  christos 		error = kauth_authorize_device(kauth_cred_get(),
   2476   1.1  riastrad 		    KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
   2477   1.1  riastrad 		break;
   2478   1.1  riastrad 	case RNDCTL:
   2479  1.31  christos 		error = kauth_authorize_device(kauth_cred_get(),
   2480   1.1  riastrad 		    KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
   2481   1.1  riastrad 		break;
   2482   1.1  riastrad 	case RNDADDDATA:
   2483  1.31  christos 		error = kauth_authorize_device(kauth_cred_get(),
   2484   1.1  riastrad 		    KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
   2485   1.1  riastrad 		/* Ascertain whether the user's inputs should be counted.  */
   2486  1.31  christos 		if (kauth_authorize_device(kauth_cred_get(),
   2487   1.1  riastrad 			KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
   2488   1.1  riastrad 			NULL, NULL, NULL, NULL) == 0)
   2489   1.1  riastrad 			privileged = true;
   2490   1.1  riastrad 		break;
   2491   1.1  riastrad 	default: {
   2492   1.1  riastrad 		/*
   2493   1.1  riastrad 		 * XXX Hack to avoid changing module ABI so this can be
   2494   1.1  riastrad 		 * pulled up.  Later, we can just remove the argument.
   2495   1.1  riastrad 		 */
   2496   1.1  riastrad 		static const struct fileops fops = {
   2497   1.1  riastrad 			.fo_ioctl = rnd_system_ioctl,
   2498   1.1  riastrad 		};
   2499   1.1  riastrad 		struct file f = {
   2500   1.1  riastrad 			.f_ops = &fops,
   2501   1.1  riastrad 		};
   2502   1.1  riastrad 		MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
   2503   1.1  riastrad 		    enosys(), error);
   2504   1.1  riastrad #if defined(_LP64)
   2505   1.1  riastrad 		if (error == ENOSYS)
   2506   1.1  riastrad 			MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
   2507   1.1  riastrad 			    enosys(), error);
   2508   1.1  riastrad #endif
   2509   1.1  riastrad 		if (error == ENOSYS)
   2510   1.1  riastrad 			error = ENOTTY;
   2511   1.1  riastrad 		break;
   2512   1.1  riastrad 	}
   2513   1.1  riastrad 	}
   2514   1.1  riastrad 
   2515   1.1  riastrad 	/* If anything went wrong with authorization, stop here.  */
   2516   1.1  riastrad 	if (error)
   2517   1.1  riastrad 		return error;
   2518   1.1  riastrad 
   2519   1.1  riastrad 	/* Dispatch on the command.  */
   2520   1.1  riastrad 	switch (cmd) {
   2521   1.1  riastrad 	case RNDGETENTCNT: {	/* Get current entropy count in bits.  */
   2522   1.1  riastrad 		uint32_t *countp = data;
   2523   1.1  riastrad 
   2524   1.1  riastrad 		mutex_enter(&E->lock);
   2525  1.62  riastrad 		*countp = MINENTROPYBITS - E->bitsneeded;
   2526   1.1  riastrad 		mutex_exit(&E->lock);
   2527   1.1  riastrad 
   2528   1.1  riastrad 		break;
   2529   1.1  riastrad 	}
   2530   1.1  riastrad 	case RNDGETPOOLSTAT: {	/* Get entropy pool statistics.  */
   2531   1.1  riastrad 		rndpoolstat_t *pstat = data;
   2532   1.1  riastrad 
   2533   1.1  riastrad 		mutex_enter(&E->lock);
   2534   1.1  riastrad 
   2535   1.1  riastrad 		/* parameters */
   2536   1.1  riastrad 		pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
   2537  1.62  riastrad 		pstat->threshold = MINENTROPYBITS/NBBY; /* bytes */
   2538   1.1  riastrad 		pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
   2539   1.1  riastrad 
   2540   1.1  riastrad 		/* state */
   2541   1.1  riastrad 		pstat->added = 0; /* XXX total entropy_enter count */
   2542  1.62  riastrad 		pstat->curentropy = MINENTROPYBITS - E->bitsneeded; /* bits */
   2543   1.1  riastrad 		pstat->removed = 0; /* XXX total entropy_extract count */
   2544   1.1  riastrad 		pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
   2545  1.62  riastrad 
   2546  1.62  riastrad 		/*
   2547  1.62  riastrad 		 * This used to be bits of data fabricated in some
   2548  1.62  riastrad 		 * sense; we'll take it to mean number of samples,
   2549  1.62  riastrad 		 * excluding the bits of entropy from HWRNG or seed.
   2550  1.62  riastrad 		 */
   2551  1.62  riastrad 		pstat->generated = MINSAMPLES - E->samplesneeded;
   2552  1.62  riastrad 		pstat->generated -= MIN(pstat->generated, pstat->curentropy);
   2553   1.1  riastrad 
   2554   1.1  riastrad 		mutex_exit(&E->lock);
   2555   1.1  riastrad 		break;
   2556   1.1  riastrad 	}
   2557   1.1  riastrad 	case RNDGETSRCNUM: {	/* Get entropy sources by number.  */
   2558   1.1  riastrad 		rndstat_t *stat = data;
   2559   1.1  riastrad 		uint32_t start = 0, i = 0;
   2560   1.1  riastrad 
   2561   1.1  riastrad 		/* Skip if none requested; fail if too many requested.  */
   2562   1.1  riastrad 		if (stat->count == 0)
   2563   1.1  riastrad 			break;
   2564   1.1  riastrad 		if (stat->count > RND_MAXSTATCOUNT)
   2565   1.1  riastrad 			return EINVAL;
   2566   1.1  riastrad 
   2567   1.1  riastrad 		/*
   2568   1.1  riastrad 		 * Under the lock, find the first one, copy out as many
   2569   1.1  riastrad 		 * as requested, and report how many we copied out.
   2570   1.1  riastrad 		 */
   2571   1.1  riastrad 		mutex_enter(&E->lock);
   2572  1.49  riastrad 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2573   1.4  riastrad 		if (error) {
   2574   1.4  riastrad 			mutex_exit(&E->lock);
   2575   1.4  riastrad 			return error;
   2576   1.4  riastrad 		}
   2577   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2578   1.1  riastrad 			if (start++ == stat->start)
   2579   1.1  riastrad 				break;
   2580   1.1  riastrad 		}
   2581   1.1  riastrad 		while (i < stat->count && rs != NULL) {
   2582   1.5  riastrad 			mutex_exit(&E->lock);
   2583   1.1  riastrad 			rndsource_to_user(rs, &stat->source[i++]);
   2584   1.5  riastrad 			mutex_enter(&E->lock);
   2585   1.1  riastrad 			rs = LIST_NEXT(rs, list);
   2586   1.1  riastrad 		}
   2587   1.1  riastrad 		KASSERT(i <= stat->count);
   2588   1.1  riastrad 		stat->count = i;
   2589   1.4  riastrad 		rnd_unlock_sources();
   2590   1.1  riastrad 		mutex_exit(&E->lock);
   2591   1.1  riastrad 		break;
   2592   1.1  riastrad 	}
   2593   1.1  riastrad 	case RNDGETESTNUM: {	/* Get sources and estimates by number.  */
   2594   1.1  riastrad 		rndstat_est_t *estat = data;
   2595   1.1  riastrad 		uint32_t start = 0, i = 0;
   2596   1.1  riastrad 
   2597   1.1  riastrad 		/* Skip if none requested; fail if too many requested.  */
   2598   1.1  riastrad 		if (estat->count == 0)
   2599   1.1  riastrad 			break;
   2600   1.1  riastrad 		if (estat->count > RND_MAXSTATCOUNT)
   2601   1.1  riastrad 			return EINVAL;
   2602   1.1  riastrad 
   2603   1.1  riastrad 		/*
   2604   1.1  riastrad 		 * Under the lock, find the first one, copy out as many
   2605   1.1  riastrad 		 * as requested, and report how many we copied out.
   2606   1.1  riastrad 		 */
   2607   1.1  riastrad 		mutex_enter(&E->lock);
   2608  1.49  riastrad 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2609   1.4  riastrad 		if (error) {
   2610   1.4  riastrad 			mutex_exit(&E->lock);
   2611   1.4  riastrad 			return error;
   2612   1.4  riastrad 		}
   2613   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2614   1.1  riastrad 			if (start++ == estat->start)
   2615   1.1  riastrad 				break;
   2616   1.1  riastrad 		}
   2617   1.1  riastrad 		while (i < estat->count && rs != NULL) {
   2618   1.4  riastrad 			mutex_exit(&E->lock);
   2619   1.1  riastrad 			rndsource_to_user_est(rs, &estat->source[i++]);
   2620   1.4  riastrad 			mutex_enter(&E->lock);
   2621   1.1  riastrad 			rs = LIST_NEXT(rs, list);
   2622   1.1  riastrad 		}
   2623   1.1  riastrad 		KASSERT(i <= estat->count);
   2624   1.1  riastrad 		estat->count = i;
   2625   1.4  riastrad 		rnd_unlock_sources();
   2626   1.1  riastrad 		mutex_exit(&E->lock);
   2627   1.1  riastrad 		break;
   2628   1.1  riastrad 	}
   2629   1.1  riastrad 	case RNDGETSRCNAME: {	/* Get entropy sources by name.  */
   2630   1.1  riastrad 		rndstat_name_t *nstat = data;
   2631   1.1  riastrad 		const size_t n = sizeof(rs->name);
   2632   1.1  riastrad 
   2633   1.1  riastrad 		CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
   2634   1.1  riastrad 
   2635   1.1  riastrad 		/*
   2636   1.1  riastrad 		 * Under the lock, search by name.  If found, copy it
   2637   1.1  riastrad 		 * out; if not found, fail with ENOENT.
   2638   1.1  riastrad 		 */
   2639   1.1  riastrad 		mutex_enter(&E->lock);
   2640  1.49  riastrad 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2641   1.4  riastrad 		if (error) {
   2642   1.4  riastrad 			mutex_exit(&E->lock);
   2643   1.4  riastrad 			return error;
   2644   1.4  riastrad 		}
   2645   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2646   1.1  riastrad 			if (strncmp(rs->name, nstat->name, n) == 0)
   2647   1.1  riastrad 				break;
   2648   1.1  riastrad 		}
   2649   1.4  riastrad 		if (rs != NULL) {
   2650   1.4  riastrad 			mutex_exit(&E->lock);
   2651   1.1  riastrad 			rndsource_to_user(rs, &nstat->source);
   2652   1.4  riastrad 			mutex_enter(&E->lock);
   2653   1.4  riastrad 		} else {
   2654   1.1  riastrad 			error = ENOENT;
   2655   1.4  riastrad 		}
   2656   1.4  riastrad 		rnd_unlock_sources();
   2657   1.1  riastrad 		mutex_exit(&E->lock);
   2658   1.1  riastrad 		break;
   2659   1.1  riastrad 	}
   2660   1.1  riastrad 	case RNDGETESTNAME: {	/* Get sources and estimates by name.  */
   2661   1.1  riastrad 		rndstat_est_name_t *enstat = data;
   2662   1.1  riastrad 		const size_t n = sizeof(rs->name);
   2663   1.1  riastrad 
   2664   1.1  riastrad 		CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
   2665   1.1  riastrad 
   2666   1.1  riastrad 		/*
   2667   1.1  riastrad 		 * Under the lock, search by name.  If found, copy it
   2668   1.1  riastrad 		 * out; if not found, fail with ENOENT.
   2669   1.1  riastrad 		 */
   2670   1.1  riastrad 		mutex_enter(&E->lock);
   2671  1.49  riastrad 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2672   1.4  riastrad 		if (error) {
   2673   1.4  riastrad 			mutex_exit(&E->lock);
   2674   1.4  riastrad 			return error;
   2675   1.4  riastrad 		}
   2676   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2677   1.1  riastrad 			if (strncmp(rs->name, enstat->name, n) == 0)
   2678   1.1  riastrad 				break;
   2679   1.1  riastrad 		}
   2680   1.4  riastrad 		if (rs != NULL) {
   2681   1.4  riastrad 			mutex_exit(&E->lock);
   2682   1.1  riastrad 			rndsource_to_user_est(rs, &enstat->source);
   2683   1.4  riastrad 			mutex_enter(&E->lock);
   2684   1.4  riastrad 		} else {
   2685   1.1  riastrad 			error = ENOENT;
   2686   1.4  riastrad 		}
   2687   1.4  riastrad 		rnd_unlock_sources();
   2688   1.1  riastrad 		mutex_exit(&E->lock);
   2689   1.1  riastrad 		break;
   2690   1.1  riastrad 	}
   2691   1.1  riastrad 	case RNDCTL: {		/* Modify entropy source flags.  */
   2692   1.1  riastrad 		rndctl_t *rndctl = data;
   2693   1.1  riastrad 		const size_t n = sizeof(rs->name);
   2694  1.21  riastrad 		uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2695   1.1  riastrad 		uint32_t flags;
   2696  1.21  riastrad 		bool reset = false, request = false;
   2697   1.1  riastrad 
   2698   1.1  riastrad 		CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
   2699   1.1  riastrad 
   2700   1.1  riastrad 		/* Whitelist the flags that user can change.  */
   2701   1.1  riastrad 		rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2702   1.1  riastrad 
   2703   1.1  riastrad 		/*
   2704   1.1  riastrad 		 * For each matching rndsource, either by type if
   2705   1.1  riastrad 		 * specified or by name if not, set the masked flags.
   2706   1.1  riastrad 		 */
   2707   1.1  riastrad 		mutex_enter(&E->lock);
   2708   1.1  riastrad 		LIST_FOREACH(rs, &E->sources, list) {
   2709   1.1  riastrad 			if (rndctl->type != 0xff) {
   2710   1.1  riastrad 				if (rs->type != rndctl->type)
   2711   1.1  riastrad 					continue;
   2712  1.59  riastrad 			} else if (rndctl->name[0] != '\0') {
   2713   1.1  riastrad 				if (strncmp(rs->name, rndctl->name, n) != 0)
   2714   1.1  riastrad 					continue;
   2715   1.1  riastrad 			}
   2716   1.1  riastrad 			flags = rs->flags & ~rndctl->mask;
   2717   1.1  riastrad 			flags |= rndctl->flags & rndctl->mask;
   2718  1.21  riastrad 			if ((rs->flags & resetflags) == 0 &&
   2719  1.21  riastrad 			    (flags & resetflags) != 0)
   2720  1.21  riastrad 				reset = true;
   2721  1.21  riastrad 			if ((rs->flags ^ flags) & resetflags)
   2722  1.21  riastrad 				request = true;
   2723   1.1  riastrad 			atomic_store_relaxed(&rs->flags, flags);
   2724   1.1  riastrad 		}
   2725   1.1  riastrad 		mutex_exit(&E->lock);
   2726  1.21  riastrad 
   2727  1.21  riastrad 		/*
   2728  1.21  riastrad 		 * If we disabled estimation or collection, nix all the
   2729  1.21  riastrad 		 * pending entropy and set needed to the maximum.
   2730  1.21  riastrad 		 */
   2731  1.21  riastrad 		if (reset) {
   2732  1.21  riastrad 			xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
   2733  1.21  riastrad 			mutex_enter(&E->lock);
   2734  1.62  riastrad 			E->bitspending = 0;
   2735  1.62  riastrad 			E->samplespending = 0;
   2736  1.62  riastrad 			atomic_store_relaxed(&E->bitsneeded, MINENTROPYBITS);
   2737  1.62  riastrad 			atomic_store_relaxed(&E->samplesneeded, MINSAMPLES);
   2738  1.60  riastrad 			E->consolidate = false;
   2739  1.21  riastrad 			mutex_exit(&E->lock);
   2740  1.21  riastrad 		}
   2741  1.21  riastrad 
   2742  1.21  riastrad 		/*
   2743  1.21  riastrad 		 * If we changed any of the estimation or collection
   2744  1.21  riastrad 		 * flags, request new samples from everyone -- either
   2745  1.21  riastrad 		 * to make up for what we just lost, or to get new
   2746  1.21  riastrad 		 * samples from what we just added.
   2747  1.49  riastrad 		 *
   2748  1.49  riastrad 		 * Failing on signal, while waiting for another process
   2749  1.49  riastrad 		 * to finish requesting entropy, is OK here even though
   2750  1.49  riastrad 		 * we have committed side effects, because this ioctl
   2751  1.49  riastrad 		 * command is idempotent, so repeating it is safe.
   2752  1.21  riastrad 		 */
   2753  1.21  riastrad 		if (request) {
   2754  1.21  riastrad 			mutex_enter(&E->lock);
   2755  1.49  riastrad 			error = entropy_request(ENTROPY_CAPACITY,
   2756  1.49  riastrad 			    ENTROPY_WAIT|ENTROPY_SIG);
   2757  1.21  riastrad 			mutex_exit(&E->lock);
   2758  1.21  riastrad 		}
   2759   1.1  riastrad 		break;
   2760   1.1  riastrad 	}
   2761   1.1  riastrad 	case RNDADDDATA: {	/* Enter seed into entropy pool.  */
   2762   1.1  riastrad 		rnddata_t *rdata = data;
   2763   1.1  riastrad 		unsigned entropybits = 0;
   2764   1.1  riastrad 
   2765   1.1  riastrad 		if (!atomic_load_relaxed(&entropy_collection))
   2766   1.1  riastrad 			break;	/* thanks but no thanks */
   2767   1.1  riastrad 		if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
   2768   1.1  riastrad 			return EINVAL;
   2769   1.1  riastrad 
   2770   1.1  riastrad 		/*
   2771   1.1  riastrad 		 * This ioctl serves as the userland alternative a
   2772   1.1  riastrad 		 * bootloader-provided seed -- typically furnished by
   2773   1.1  riastrad 		 * /etc/rc.d/random_seed.  We accept the user's entropy
   2774   1.1  riastrad 		 * claim only if
   2775   1.1  riastrad 		 *
   2776   1.1  riastrad 		 * (a) the user is privileged, and
   2777   1.1  riastrad 		 * (b) we have not entered a bootloader seed.
   2778   1.1  riastrad 		 *
   2779   1.1  riastrad 		 * under the assumption that the user may use this to
   2780   1.1  riastrad 		 * load a seed from disk that we have already loaded
   2781   1.1  riastrad 		 * from the bootloader, so we don't double-count it.
   2782   1.1  riastrad 		 */
   2783  1.11  riastrad 		if (privileged && rdata->entropy && rdata->len) {
   2784   1.1  riastrad 			mutex_enter(&E->lock);
   2785   1.1  riastrad 			if (!E->seeded) {
   2786   1.1  riastrad 				entropybits = MIN(rdata->entropy,
   2787   1.1  riastrad 				    MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
   2788   1.1  riastrad 				E->seeded = true;
   2789   1.1  riastrad 			}
   2790   1.1  riastrad 			mutex_exit(&E->lock);
   2791   1.1  riastrad 		}
   2792   1.1  riastrad 
   2793  1.13  riastrad 		/* Enter the data and consolidate entropy.  */
   2794   1.1  riastrad 		rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
   2795   1.1  riastrad 		    entropybits);
   2796  1.13  riastrad 		entropy_consolidate();
   2797   1.1  riastrad 		break;
   2798   1.1  riastrad 	}
   2799   1.1  riastrad 	default:
   2800   1.1  riastrad 		error = ENOTTY;
   2801   1.1  riastrad 	}
   2802   1.1  riastrad 
   2803   1.1  riastrad 	/* Return any error that may have come up.  */
   2804   1.1  riastrad 	return error;
   2805   1.1  riastrad }
   2806   1.1  riastrad 
   2807   1.1  riastrad /* Legacy entry points */
   2808   1.1  riastrad 
   2809   1.1  riastrad void
   2810   1.1  riastrad rnd_seed(void *seed, size_t len)
   2811   1.1  riastrad {
   2812   1.1  riastrad 
   2813   1.1  riastrad 	if (len != sizeof(rndsave_t)) {
   2814   1.1  riastrad 		printf("entropy: invalid seed length: %zu,"
   2815   1.1  riastrad 		    " expected sizeof(rndsave_t) = %zu\n",
   2816   1.1  riastrad 		    len, sizeof(rndsave_t));
   2817   1.1  riastrad 		return;
   2818   1.1  riastrad 	}
   2819   1.1  riastrad 	entropy_seed(seed);
   2820   1.1  riastrad }
   2821   1.1  riastrad 
   2822   1.1  riastrad void
   2823   1.1  riastrad rnd_init(void)
   2824   1.1  riastrad {
   2825   1.1  riastrad 
   2826   1.1  riastrad 	entropy_init();
   2827   1.1  riastrad }
   2828   1.1  riastrad 
   2829   1.1  riastrad void
   2830   1.1  riastrad rnd_init_softint(void)
   2831   1.1  riastrad {
   2832   1.1  riastrad 
   2833   1.1  riastrad 	entropy_init_late();
   2834  1.38  riastrad 	entropy_bootrequest();
   2835   1.1  riastrad }
   2836   1.1  riastrad 
   2837   1.1  riastrad int
   2838   1.1  riastrad rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
   2839   1.1  riastrad {
   2840   1.1  riastrad 
   2841   1.1  riastrad 	return entropy_ioctl(cmd, data);
   2842   1.1  riastrad }
   2843