kern_entropy.c revision 1.1 1 /* $NetBSD: kern_entropy.c,v 1.1 2020/04/30 03:28:18 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Entropy subsystem
34 *
35 * * Each CPU maintains a per-CPU entropy pool so that gathering
36 * entropy requires no interprocessor synchronization, except
37 * early at boot when we may be scrambling to gather entropy as
38 * soon as possible.
39 *
40 * - entropy_enter gathers entropy and never drops it on the
41 * floor, at the cost of sometimes having to do cryptography.
42 *
43 * - entropy_enter_intr gathers entropy or drops it on the
44 * floor, with low latency. Work to stir the pool or kick the
45 * housekeeping thread is scheduled in soft interrupts.
46 *
47 * * entropy_enter immediately enters into the global pool if it
48 * can transition to full entropy in one swell foop. Otherwise,
49 * it defers to a housekeeping thread that consolidates entropy,
50 * but only when the CPUs collectively have full entropy, in
51 * order to mitigate iterative-guessing attacks.
52 *
53 * * The entropy housekeeping thread continues to consolidate
54 * entropy even after we think we have full entropy, in case we
55 * are wrong, but is limited to one discretionary consolidation
56 * per minute, and only when new entropy is actually coming in,
57 * to limit performance impact.
58 *
59 * * The entropy epoch is the number that changes when we
60 * transition from partial entropy to full entropy, so that
61 * users can easily determine when to reseed. This also
62 * facilitates an operator explicitly causing everything to
63 * reseed by sysctl -w kern.entropy.consolidate=1, e.g. if they
64 * just flipped a coin 256 times and wrote `echo tthhhhhthh... >
65 * /dev/random'.
66 *
67 * * No entropy estimation based on the sample values, which is a
68 * contradiction in terms and a potential source of side
69 * channels. It is the responsibility of the driver author to
70 * study how predictable the physical source of input can ever
71 * be, and to furnish a lower bound on the amount of entropy it
72 * has.
73 *
74 * * Entropy depletion is available for testing (or if you're into
75 * that sort of thing), with sysctl -w kern.entropy.depletion=1;
76 * the logic to support it is small, to minimize chance of bugs.
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.1 2020/04/30 03:28:18 riastradh Exp $");
81
82 #include <sys/param.h>
83 #include <sys/types.h>
84 #include <sys/atomic.h>
85 #include <sys/compat_stub.h>
86 #include <sys/condvar.h>
87 #include <sys/cpu.h>
88 #include <sys/entropy.h>
89 #include <sys/errno.h>
90 #include <sys/evcnt.h>
91 #include <sys/event.h>
92 #include <sys/file.h>
93 #include <sys/intr.h>
94 #include <sys/kauth.h>
95 #include <sys/kernel.h>
96 #include <sys/kmem.h>
97 #include <sys/kthread.h>
98 #include <sys/module_hook.h>
99 #include <sys/mutex.h>
100 #include <sys/percpu.h>
101 #include <sys/poll.h>
102 #include <sys/queue.h>
103 #include <sys/rnd.h> /* legacy kernel API */
104 #include <sys/rndio.h> /* userland ioctl interface */
105 #include <sys/rndsource.h> /* kernel rndsource driver API */
106 #include <sys/select.h>
107 #include <sys/selinfo.h>
108 #include <sys/sha1.h> /* for boot seed checksum */
109 #include <sys/stdint.h>
110 #include <sys/sysctl.h>
111 #include <sys/systm.h>
112 #include <sys/time.h>
113 #include <sys/xcall.h>
114
115 #include <lib/libkern/entpool.h>
116
117 #include <machine/limits.h>
118
119 #ifdef __HAVE_CPU_COUNTER
120 #include <machine/cpu_counter.h>
121 #endif
122
123 /*
124 * struct entropy_cpu
125 *
126 * Per-CPU entropy state. The pool is allocated separately
127 * because percpu(9) sometimes moves per-CPU objects around
128 * without zeroing them, which would lead to unwanted copies of
129 * sensitive secrets. The evcnt is allocated separately becuase
130 * evcnt(9) assumes it stays put in memory.
131 */
132 struct entropy_cpu {
133 struct evcnt *ec_softint_evcnt;
134 struct entpool *ec_pool;
135 unsigned ec_pending;
136 bool ec_locked;
137 };
138
139 /*
140 * struct rndsource_cpu
141 *
142 * Per-CPU rndsource state.
143 */
144 struct rndsource_cpu {
145 unsigned rc_nbits; /* bits of entropy added */
146 };
147
148 /*
149 * entropy_global (a.k.a. E for short in this file)
150 *
151 * Global entropy state. Writes protected by the global lock.
152 * Some fields, marked (A), can be read outside the lock, and are
153 * maintained with atomic_load/store_relaxed.
154 */
155 struct {
156 kmutex_t lock; /* covers all global state */
157 struct entpool pool; /* global pool for extraction */
158 unsigned needed; /* (A) needed globally */
159 unsigned pending; /* (A) pending in per-CPU pools */
160 unsigned timestamp; /* (A) time of last consolidation */
161 unsigned epoch; /* (A) changes when needed -> 0 */
162 kcondvar_t cv; /* notifies state changes */
163 struct selinfo selq; /* notifies needed -> 0 */
164 LIST_HEAD(,krndsource) sources; /* list of entropy sources */
165 enum entropy_stage {
166 ENTROPY_COLD = 0, /* single-threaded */
167 ENTROPY_WARM, /* multi-threaded at boot before CPUs */
168 ENTROPY_HOT, /* multi-threaded multi-CPU */
169 } stage;
170 bool requesting; /* busy requesting from sources */
171 bool consolidate; /* kick thread to consolidate */
172 bool seed_rndsource; /* true if seed source is attached */
173 bool seeded; /* true if seed file already loaded */
174 } entropy_global __cacheline_aligned = {
175 /* Fields that must be initialized when the kernel is loaded. */
176 .needed = ENTROPY_CAPACITY*NBBY,
177 .epoch = (unsigned)-1, /* -1 means not yet full entropy */
178 .sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
179 .stage = ENTROPY_COLD,
180 };
181
182 #define E (&entropy_global) /* declutter */
183
184 /* Read-mostly globals */
185 static struct percpu *entropy_percpu __read_mostly; /* struct entropy_cpu */
186 static void *entropy_sih __read_mostly; /* softint handler */
187 static struct lwp *entropy_lwp __read_mostly; /* housekeeping thread */
188
189 int rnd_initial_entropy __read_mostly; /* XXX legacy */
190
191 static struct krndsource seed_rndsource __read_mostly;
192
193 /*
194 * Event counters
195 *
196 * Must be careful with adding these because they can serve as
197 * side channels.
198 */
199 static struct evcnt entropy_discretionary_evcnt =
200 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
201 EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
202 static struct evcnt entropy_immediate_evcnt =
203 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
204 EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
205 static struct evcnt entropy_partial_evcnt =
206 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
207 EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
208 static struct evcnt entropy_consolidate_evcnt =
209 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
210 EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
211 static struct evcnt entropy_extract_intr_evcnt =
212 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract intr");
213 EVCNT_ATTACH_STATIC(entropy_extract_intr_evcnt);
214 static struct evcnt entropy_extract_fail_evcnt =
215 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
216 EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
217 static struct evcnt entropy_request_evcnt =
218 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
219 EVCNT_ATTACH_STATIC(entropy_request_evcnt);
220 static struct evcnt entropy_deplete_evcnt =
221 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
222 EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
223 static struct evcnt entropy_notify_evcnt =
224 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
225 EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
226
227 /* Sysctl knobs */
228 bool entropy_collection = 1;
229 bool entropy_depletion = 0; /* Silly! */
230
231 static const struct sysctlnode *entropy_sysctlroot;
232 static struct sysctllog *entropy_sysctllog;
233
234 /* Forward declarations */
235 static void entropy_init_cpu(void *, void *, struct cpu_info *);
236 static void entropy_fini_cpu(void *, void *, struct cpu_info *);
237 static void entropy_account_cpu(struct entropy_cpu *);
238 static void entropy_enter(const void *, size_t, unsigned);
239 static bool entropy_enter_intr(const void *, size_t, unsigned);
240 static void entropy_softintr(void *);
241 static void entropy_thread(void *);
242 static uint32_t entropy_pending(void);
243 static void entropy_pending_cpu(void *, void *, struct cpu_info *);
244 static void entropy_consolidate(void);
245 static void entropy_gather_xc(void *, void *);
246 static void entropy_notify(void);
247 static int sysctl_entropy_consolidate(SYSCTLFN_ARGS);
248 static void filt_entropy_read_detach(struct knote *);
249 static int filt_entropy_read_event(struct knote *, long);
250 static void entropy_request(size_t);
251 static void rnd_add_data_1(struct krndsource *, const void *, uint32_t,
252 uint32_t);
253 static unsigned rndsource_entropybits(struct krndsource *);
254 static void rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
255 static void rndsource_to_user(struct krndsource *, rndsource_t *);
256 static void rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
257
258 /*
259 * curcpu_available()
260 *
261 * True if we can inspect the current CPU. Early on this may not
262 * work. XXX On most if not all ports, this should work earlier.
263 */
264 static inline bool
265 curcpu_available(void)
266 {
267
268 return __predict_true(!cold);
269 }
270
271 /*
272 * entropy_timer()
273 *
274 * Cycle counter, time counter, or anything that changes a wee bit
275 * unpredictably.
276 */
277 static inline uint32_t
278 entropy_timer(void)
279 {
280 struct bintime bt;
281 uint32_t v;
282
283 /* Very early on, cpu_counter32() may not be available. */
284 if (!curcpu_available())
285 return 0;
286
287 /* If we have a CPU cycle counter, use the low 32 bits. */
288 #ifdef __HAVE_CPU_COUNTER
289 if (__predict_true(cpu_hascounter()))
290 return cpu_counter32();
291 #endif /* __HAVE_CPU_COUNTER */
292
293 /* If we're cold, tough. Can't binuptime while cold. */
294 if (__predict_false(cold))
295 return 0;
296
297 /* Fold the 128 bits of binuptime into 32 bits. */
298 binuptime(&bt);
299 v = bt.frac;
300 v ^= bt.frac >> 32;
301 v ^= bt.sec;
302 v ^= bt.sec >> 32;
303 return v;
304 }
305
306 static void
307 attach_seed_rndsource(void)
308 {
309
310 /*
311 * First called no later than entropy_init, while we are still
312 * single-threaded, so no need for RUN_ONCE.
313 */
314 if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
315 return;
316 rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
317 RND_FLAG_COLLECT_VALUE);
318 E->seed_rndsource = true;
319 }
320
321 /*
322 * entropy_init()
323 *
324 * Initialize the entropy subsystem. Panic on failure.
325 *
326 * Requires percpu(9) and sysctl(9) to be initialized.
327 */
328 static void
329 entropy_init(void)
330 {
331 uint32_t extra[2];
332 struct krndsource *rs;
333 unsigned i = 0;
334
335 KASSERT(E->stage == ENTROPY_COLD);
336
337 /* Grab some cycle counts early at boot. */
338 extra[i++] = entropy_timer();
339
340 /* Run the entropy pool cryptography self-test. */
341 if (entpool_selftest() == -1)
342 panic("entropy pool crypto self-test failed");
343
344 /* Create the sysctl directory. */
345 sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
346 CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
347 SYSCTL_DESCR("Entropy (random number sources) options"),
348 NULL, 0, NULL, 0,
349 CTL_KERN, CTL_CREATE, CTL_EOL);
350
351 /* Create the sysctl knobs. */
352 /* XXX These shouldn't be writable at securelevel>0. */
353 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
354 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
355 SYSCTL_DESCR("Automatically collect entropy from hardware"),
356 NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
357 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
358 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
359 SYSCTL_DESCR("`Deplete' entropy pool when observed"),
360 NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
361 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
362 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
363 SYSCTL_DESCR("Trigger entropy consolidation now"),
364 sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
365 /* XXX These should maybe not be readable at securelevel>0. */
366 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
367 CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
368 "needed", SYSCTL_DESCR("Systemwide entropy deficit"),
369 NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
370 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
371 CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
372 "pending", SYSCTL_DESCR("Entropy pending on CPUs"),
373 NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
374 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
375 CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
376 "epoch", SYSCTL_DESCR("Entropy epoch"),
377 NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
378
379 /* Initialize the global state for multithreaded operation. */
380 mutex_init(&E->lock, MUTEX_DEFAULT, IPL_VM);
381 cv_init(&E->cv, "entropy");
382 selinit(&E->selq);
383
384 /* Make sure the seed source is attached. */
385 attach_seed_rndsource();
386
387 /* Note if the bootloader didn't provide a seed. */
388 if (!E->seeded)
389 printf("entropy: no seed from bootloader\n");
390
391 /* Allocate the per-CPU records for all early entropy sources. */
392 LIST_FOREACH(rs, &E->sources, list)
393 rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
394
395 /* Enter the boot cycle count to get started. */
396 extra[i++] = entropy_timer();
397 KASSERT(i == __arraycount(extra));
398 entropy_enter(extra, sizeof extra, 0);
399 explicit_memset(extra, 0, sizeof extra);
400
401 /* We are now ready for multi-threaded operation. */
402 E->stage = ENTROPY_WARM;
403 }
404
405 /*
406 * entropy_init_late()
407 *
408 * Late initialization. Panic on failure.
409 *
410 * Requires CPUs to have been detected and LWPs to have started.
411 */
412 static void
413 entropy_init_late(void)
414 {
415 int error;
416
417 KASSERT(E->stage == ENTROPY_WARM);
418
419 /* Allocate and initialize the per-CPU state. */
420 entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
421 entropy_init_cpu, entropy_fini_cpu, NULL);
422
423 /*
424 * Establish the softint at the highest softint priority level.
425 * Must happen after CPU detection.
426 */
427 entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
428 &entropy_softintr, NULL);
429 if (entropy_sih == NULL)
430 panic("unable to establish entropy softint");
431
432 /*
433 * Create the entropy housekeeping thread. Must happen after
434 * lwpinit.
435 */
436 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
437 entropy_thread, NULL, &entropy_lwp, "entbutler");
438 if (error)
439 panic("unable to create entropy housekeeping thread: %d",
440 error);
441
442 /*
443 * Wait until the per-CPU initialization has hit all CPUs
444 * before proceeding to mark the entropy system hot.
445 */
446 xc_barrier(XC_HIGHPRI);
447 E->stage = ENTROPY_HOT;
448 }
449
450 /*
451 * entropy_init_cpu(ptr, cookie, ci)
452 *
453 * percpu(9) constructor for per-CPU entropy pool.
454 */
455 static void
456 entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
457 {
458 struct entropy_cpu *ec = ptr;
459
460 ec->ec_softint_evcnt = kmem_alloc(sizeof(*ec->ec_softint_evcnt),
461 KM_SLEEP);
462 ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
463 ec->ec_pending = 0;
464 ec->ec_locked = false;
465
466 evcnt_attach_dynamic(ec->ec_softint_evcnt, EVCNT_TYPE_MISC, NULL,
467 ci->ci_cpuname, "entropy softint");
468 }
469
470 /*
471 * entropy_fini_cpu(ptr, cookie, ci)
472 *
473 * percpu(9) destructor for per-CPU entropy pool.
474 */
475 static void
476 entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
477 {
478 struct entropy_cpu *ec = ptr;
479
480 /*
481 * Zero any lingering data. Disclosure of the per-CPU pool
482 * shouldn't retroactively affect the security of any keys
483 * generated, because entpool(9) erases whatever we have just
484 * drawn out of any pool, but better safe than sorry.
485 */
486 explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
487
488 evcnt_detach(ec->ec_softint_evcnt);
489
490 kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
491 kmem_free(ec->ec_softint_evcnt, sizeof(*ec->ec_softint_evcnt));
492 }
493
494 /*
495 * entropy_seed(seed)
496 *
497 * Seed the entropy pool with seed. Meant to be called as early
498 * as possible by the bootloader; may be called before or after
499 * entropy_init. Must be called before system reaches userland.
500 * Must be called in thread or soft interrupt context, not in hard
501 * interrupt context. Must be called at most once.
502 *
503 * Overwrites the seed in place. Caller may then free the memory.
504 */
505 static void
506 entropy_seed(rndsave_t *seed)
507 {
508 SHA1_CTX ctx;
509 uint8_t digest[SHA1_DIGEST_LENGTH];
510 bool seeded;
511
512 /*
513 * Verify the checksum. If the checksum fails, take the data
514 * but ignore the entropy estimate -- the file may have been
515 * incompletely written with garbage, which is harmless to add
516 * but may not be as unpredictable as alleged.
517 *
518 * XXX There is a byte order dependency here...
519 */
520 SHA1Init(&ctx);
521 SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
522 SHA1Update(&ctx, seed->data, sizeof(seed->data));
523 SHA1Final(digest, &ctx);
524 CTASSERT(sizeof(seed->digest) == sizeof(digest));
525 if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
526 printf("entropy: invalid seed checksum\n");
527 seed->entropy = 0;
528 }
529 explicit_memset(&ctx, 0, sizeof &ctx);
530 explicit_memset(digest, 0, sizeof digest);
531
532 /* Make sure the seed source is attached. */
533 attach_seed_rndsource();
534
535 /* Test and set E->seeded. */
536 if (E->stage >= ENTROPY_WARM)
537 mutex_enter(&E->lock);
538 seeded = E->seeded;
539 E->seeded = true;
540 if (E->stage >= ENTROPY_WARM)
541 mutex_exit(&E->lock);
542
543 /*
544 * If we've been seeded, may be re-entering the same seed
545 * (e.g., bootloader vs module init, or something). No harm in
546 * entering it twice, but it contributes no additional entropy.
547 */
548 if (seeded) {
549 printf("entropy: double-seeded by bootloader\n");
550 seed->entropy = 0;
551 } else {
552 printf("entropy: entering seed from bootloader\n");
553 }
554
555 /* Enter it into the pool and promptly zero it. */
556 rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
557 seed->entropy);
558 explicit_memset(seed, 0, sizeof(*seed));
559 }
560
561 /*
562 * entropy_bootrequest()
563 *
564 * Request entropy from all sources at boot, once config is
565 * complete and interrupts are running.
566 */
567 void
568 entropy_bootrequest(void)
569 {
570
571 KASSERT(E->stage >= ENTROPY_WARM);
572
573 /*
574 * Request enough to satisfy the maximum entropy shortage.
575 * This is harmless overkill if the bootloader provided a seed.
576 */
577 mutex_enter(&E->lock);
578 entropy_request(ENTROPY_CAPACITY);
579 mutex_exit(&E->lock);
580 }
581
582 /*
583 * entropy_epoch()
584 *
585 * Returns the current entropy epoch. If this changes, you should
586 * reseed. If -1, means the system has not yet reached full
587 * entropy; never reverts back to -1 after full entropy has been
588 * reached. Never zero, so you can always use zero as an
589 * uninitialized sentinel value meaning `reseed ASAP'.
590 *
591 * Usage model:
592 *
593 * struct foo {
594 * struct crypto_prng prng;
595 * unsigned epoch;
596 * } *foo;
597 *
598 * unsigned epoch = entropy_epoch();
599 * if (__predict_false(epoch != foo->epoch)) {
600 * uint8_t seed[32];
601 * if (entropy_extract(seed, sizeof seed, 0) != 0)
602 * warn("no entropy");
603 * crypto_prng_reseed(&foo->prng, seed, sizeof seed);
604 * foo->epoch = epoch;
605 * }
606 */
607 unsigned
608 entropy_epoch(void)
609 {
610
611 /*
612 * Unsigned int, so no need for seqlock for an atomic read, but
613 * make sure we read it afresh each time.
614 */
615 return atomic_load_relaxed(&E->epoch);
616 }
617
618 /*
619 * entropy_account_cpu(ec)
620 *
621 * Consider whether to consolidate entropy into the global pool
622 * after we just added some into the current CPU's pending pool.
623 *
624 * - If this CPU can provide enough entropy now, do so.
625 *
626 * - If this and whatever else is available on other CPUs can
627 * provide enough entropy, kick the consolidation thread.
628 *
629 * - Otherwise, do as little as possible, except maybe consolidate
630 * entropy at most once a minute.
631 *
632 * Caller must be bound to a CPU and therefore have exclusive
633 * access to ec. Will acquire and release the global lock.
634 */
635 static void
636 entropy_account_cpu(struct entropy_cpu *ec)
637 {
638 unsigned diff;
639
640 KASSERT(E->stage == ENTROPY_HOT);
641
642 /*
643 * If there's no entropy needed, and entropy has been
644 * consolidated in the last minute, do nothing.
645 */
646 if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
647 __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
648 __predict_true((time_uptime - E->timestamp) <= 60))
649 return;
650
651 /* If there's nothing pending, stop here. */
652 if (ec->ec_pending == 0)
653 return;
654
655 /* Consider consolidation, under the lock. */
656 mutex_enter(&E->lock);
657 if (E->needed != 0 && E->needed <= ec->ec_pending) {
658 /*
659 * If we have not yet attained full entropy but we can
660 * now, do so. This way we disseminate entropy
661 * promptly when it becomes available early at boot;
662 * otherwise we leave it to the entropy consolidation
663 * thread, which is rate-limited to mitigate side
664 * channels and abuse.
665 */
666 uint8_t buf[ENTPOOL_CAPACITY];
667
668 /* Transfer from the local pool to the global pool. */
669 entpool_extract(ec->ec_pool, buf, sizeof buf);
670 entpool_enter(&E->pool, buf, sizeof buf);
671 atomic_store_relaxed(&ec->ec_pending, 0);
672 atomic_store_relaxed(&E->needed, 0);
673
674 /* Notify waiters that we now have full entropy. */
675 entropy_notify();
676 entropy_immediate_evcnt.ev_count++;
677 } else if (ec->ec_pending) {
678 /* Record how much we can add to the global pool. */
679 diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
680 E->pending += diff;
681 atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
682
683 /*
684 * This should have made a difference unless we were
685 * already saturated.
686 */
687 KASSERT(diff || E->pending == ENTROPY_CAPACITY*NBBY);
688 KASSERT(E->pending);
689
690 if (E->needed <= E->pending) {
691 /*
692 * Enough entropy between all the per-CPU
693 * pools. Wake up the housekeeping thread.
694 *
695 * If we don't need any entropy, this doesn't
696 * mean much, but it is the only time we ever
697 * gather additional entropy in case the
698 * accounting has been overly optimistic. This
699 * happens at most once a minute, so there's
700 * negligible performance cost.
701 */
702 E->consolidate = true;
703 cv_broadcast(&E->cv);
704 if (E->needed == 0)
705 entropy_discretionary_evcnt.ev_count++;
706 } else {
707 /* Can't get full entropy. Keep gathering. */
708 entropy_partial_evcnt.ev_count++;
709 }
710 }
711 mutex_exit(&E->lock);
712 }
713
714 /*
715 * entropy_enter_early(buf, len, nbits)
716 *
717 * Do entropy bookkeeping globally, before we have established
718 * per-CPU pools. Enter directly into the global pool in the hope
719 * that we enter enough before the first entropy_extract to thwart
720 * iterative-guessing attacks; entropy_extract will warn if not.
721 */
722 static void
723 entropy_enter_early(const void *buf, size_t len, unsigned nbits)
724 {
725 bool notify = false;
726
727 if (E->stage >= ENTROPY_WARM)
728 mutex_enter(&E->lock);
729
730 /* Enter it into the pool. */
731 entpool_enter(&E->pool, buf, len);
732
733 /*
734 * Decide whether to notify reseed -- we will do so if either:
735 * (a) we transition from partial entropy to full entropy, or
736 * (b) we get a batch of full entropy all at once.
737 */
738 notify |= (E->needed && E->needed <= nbits);
739 notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
740
741 /* Subtract from the needed count and notify if appropriate. */
742 E->needed -= MIN(E->needed, nbits);
743 if (notify) {
744 entropy_notify();
745 entropy_immediate_evcnt.ev_count++;
746 }
747
748 if (E->stage >= ENTROPY_WARM)
749 mutex_exit(&E->lock);
750 }
751
752 /*
753 * entropy_enter(buf, len, nbits)
754 *
755 * Enter len bytes of data from buf into the system's entropy
756 * pool, stirring as necessary when the internal buffer fills up.
757 * nbits is a lower bound on the number of bits of entropy in the
758 * process that led to this sample.
759 */
760 static void
761 entropy_enter(const void *buf, size_t len, unsigned nbits)
762 {
763 struct entropy_cpu *ec;
764 uint32_t pending;
765 int s;
766
767 KASSERTMSG(!curcpu_available() || !cpu_intr_p(),
768 "use entropy_enter_intr from interrupt context");
769 KASSERTMSG(howmany(nbits, NBBY) <= len,
770 "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
771
772 /* If it's too early after boot, just use entropy_enter_early. */
773 if (__predict_false(E->stage < ENTROPY_HOT)) {
774 entropy_enter_early(buf, len, nbits);
775 return;
776 }
777
778 /*
779 * Acquire the per-CPU state, blocking soft interrupts and
780 * causing hard interrupts to drop samples on the floor.
781 */
782 ec = percpu_getref(entropy_percpu);
783 s = splsoftserial();
784 KASSERT(!ec->ec_locked);
785 ec->ec_locked = true;
786 __insn_barrier();
787
788 /* Enter into the per-CPU pool. */
789 entpool_enter(ec->ec_pool, buf, len);
790
791 /* Count up what we can add. */
792 pending = ec->ec_pending;
793 pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
794 atomic_store_relaxed(&ec->ec_pending, pending);
795
796 /* Consolidate globally if appropriate based on what we added. */
797 entropy_account_cpu(ec);
798
799 /* Release the per-CPU state. */
800 KASSERT(ec->ec_locked);
801 __insn_barrier();
802 ec->ec_locked = false;
803 splx(s);
804 percpu_putref(entropy_percpu);
805 }
806
807 /*
808 * entropy_enter_intr(buf, len, nbits)
809 *
810 * Enter up to len bytes of data from buf into the system's
811 * entropy pool without stirring. nbits is a lower bound on the
812 * number of bits of entropy in the process that led to this
813 * sample. If the sample could be entered completely, assume
814 * nbits of entropy pending; otherwise assume none, since we don't
815 * know whether some parts of the sample are constant, for
816 * instance. Schedule a softint to stir the entropy pool if
817 * needed. Return true if used fully, false if truncated at all.
818 *
819 * Using this in thread context will work, but you might as well
820 * use entropy_enter in that case.
821 */
822 static bool
823 entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
824 {
825 struct entropy_cpu *ec;
826 bool fullyused = false;
827 uint32_t pending;
828
829 KASSERTMSG(howmany(nbits, NBBY) <= len,
830 "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
831
832 /* If it's too early after boot, just use entropy_enter_early. */
833 if (__predict_false(E->stage < ENTROPY_HOT)) {
834 entropy_enter_early(buf, len, nbits);
835 return true;
836 }
837
838 /*
839 * Acquire the per-CPU state. If someone is in the middle of
840 * using it, drop the sample. Otherwise, take the lock so that
841 * higher-priority interrupts will drop their samples.
842 */
843 ec = percpu_getref(entropy_percpu);
844 if (ec->ec_locked)
845 goto out0;
846 ec->ec_locked = true;
847 __insn_barrier();
848
849 /*
850 * Enter as much as we can into the per-CPU pool. If it was
851 * truncated, schedule a softint to stir the pool and stop.
852 */
853 if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
854 softint_schedule(entropy_sih);
855 goto out1;
856 }
857 fullyused = true;
858
859 /* Count up what we can contribute. */
860 pending = ec->ec_pending;
861 pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
862 atomic_store_relaxed(&ec->ec_pending, pending);
863
864 /* Schedule a softint if we added anything and it matters. */
865 if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
866 atomic_load_relaxed(&entropy_depletion)) &&
867 nbits != 0)
868 softint_schedule(entropy_sih);
869
870 out1: /* Release the per-CPU state. */
871 KASSERT(ec->ec_locked);
872 __insn_barrier();
873 ec->ec_locked = false;
874 out0: percpu_putref(entropy_percpu);
875
876 return fullyused;
877 }
878
879 /*
880 * entropy_softintr(cookie)
881 *
882 * Soft interrupt handler for entering entropy. Takes care of
883 * stirring the local CPU's entropy pool if it filled up during
884 * hard interrupts, and promptly crediting entropy from the local
885 * CPU's entropy pool to the global entropy pool if needed.
886 */
887 static void
888 entropy_softintr(void *cookie)
889 {
890 struct entropy_cpu *ec;
891
892 /*
893 * Acquire the per-CPU state. Other users can lock this only
894 * while soft interrupts are blocked. Cause hard interrupts to
895 * drop samples on the floor.
896 */
897 ec = percpu_getref(entropy_percpu);
898 KASSERT(!ec->ec_locked);
899 ec->ec_locked = true;
900 __insn_barrier();
901
902 /* Count statistics. */
903 ec->ec_softint_evcnt->ev_count++;
904
905 /* Stir the pool if necessary. */
906 entpool_stir(ec->ec_pool);
907
908 /* Consolidate globally if appropriate based on what we added. */
909 entropy_account_cpu(ec);
910
911 /* Release the per-CPU state. */
912 KASSERT(ec->ec_locked);
913 __insn_barrier();
914 ec->ec_locked = false;
915 percpu_putref(entropy_percpu);
916 }
917
918 /*
919 * entropy_thread(cookie)
920 *
921 * Handle any asynchronous entropy housekeeping.
922 */
923 static void
924 entropy_thread(void *cookie)
925 {
926
927 for (;;) {
928 /*
929 * Wait until someone wants to consolidate or there's
930 * full entropy somewhere among the CPUs, as confirmed
931 * at most once per minute.
932 */
933 mutex_enter(&E->lock);
934 for (;;) {
935 if (E->consolidate ||
936 entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
937 E->consolidate = false;
938 break;
939 }
940 cv_timedwait(&E->cv, &E->lock, 60*hz);
941 }
942 mutex_exit(&E->lock);
943
944 /* Do it. */
945 entropy_consolidate();
946
947 /* Mitigate abuse. */
948 kpause("entropy", false, hz, NULL);
949 }
950 }
951
952 /*
953 * entropy_pending()
954 *
955 * Count up the amount of entropy pending on other CPUs.
956 */
957 static uint32_t
958 entropy_pending(void)
959 {
960 uint32_t pending = 0;
961
962 percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
963
964 return pending;
965 }
966
967 static void
968 entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
969 {
970 struct entropy_cpu *ec = ptr;
971 uint32_t *pendingp = cookie;
972 uint32_t cpu_pending;
973
974 cpu_pending = atomic_load_relaxed(&ec->ec_pending);
975 *pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
976 }
977
978 /*
979 * entropy_consolidate()
980 *
981 * Issue a cross-call to gather entropy on all CPUs and advance
982 * the entropy epoch.
983 */
984 static void
985 entropy_consolidate(void)
986 {
987 static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
988 static struct timeval lasttime; /* serialized by E->lock */
989 unsigned diff;
990 uint64_t ticket;
991
992 /* Gather entropy on all CPUs. */
993 ticket = xc_broadcast(0, &entropy_gather_xc, NULL, NULL);
994 xc_wait(ticket);
995
996 /* Acquire the lock to notify waiters. */
997 mutex_enter(&E->lock);
998
999 /* Count another consolidation. */
1000 entropy_consolidate_evcnt.ev_count++;
1001
1002 /* Note when we last consolidated, i.e. now. */
1003 E->timestamp = time_uptime;
1004
1005 /* Count the entropy that was gathered. */
1006 diff = MIN(E->needed, E->pending);
1007 atomic_store_relaxed(&E->needed, E->needed - diff);
1008 E->pending -= diff;
1009 if (__predict_false(E->needed > 0)) {
1010 if (ratecheck(&lasttime, &interval))
1011 printf("entropy: WARNING:"
1012 " consolidating less than full entropy\n");
1013 }
1014
1015 /* Advance the epoch and notify waiters. */
1016 entropy_notify();
1017
1018 /* Release the lock. */
1019 mutex_exit(&E->lock);
1020 }
1021
1022 /*
1023 * entropy_gather_xc(arg1, arg2)
1024 *
1025 * Extract output from the local CPU's input pool and enter it
1026 * into the global pool.
1027 */
1028 static void
1029 entropy_gather_xc(void *arg1 __unused, void *arg2 __unused)
1030 {
1031 struct entropy_cpu *ec;
1032 uint8_t buf[ENTPOOL_CAPACITY];
1033 uint32_t extra[7];
1034 unsigned i = 0;
1035 int s;
1036
1037 /* Grab CPU number and cycle counter to mix extra into the pool. */
1038 extra[i++] = cpu_number();
1039 extra[i++] = entropy_timer();
1040
1041 /*
1042 * Acquire the per-CPU state, blocking soft interrupts and
1043 * discarding entropy in hard interrupts, so that we can
1044 * extract from the per-CPU pool.
1045 */
1046 ec = percpu_getref(entropy_percpu);
1047 s = splsoftserial();
1048 KASSERT(!ec->ec_locked);
1049 ec->ec_locked = true;
1050 __insn_barrier();
1051 extra[i++] = entropy_timer();
1052
1053 /* Extract the data. */
1054 entpool_extract(ec->ec_pool, buf, sizeof buf);
1055 extra[i++] = entropy_timer();
1056
1057 /* Release the per-CPU state. */
1058 KASSERT(ec->ec_locked);
1059 __insn_barrier();
1060 ec->ec_locked = false;
1061 splx(s);
1062 percpu_putref(entropy_percpu);
1063 extra[i++] = entropy_timer();
1064
1065 /*
1066 * Copy over statistics, and enter the per-CPU extract and the
1067 * extra timing into the global pool, under the global lock.
1068 */
1069 mutex_enter(&E->lock);
1070 extra[i++] = entropy_timer();
1071 entpool_enter(&E->pool, buf, sizeof buf);
1072 explicit_memset(buf, 0, sizeof buf);
1073 extra[i++] = entropy_timer();
1074 KASSERT(i == __arraycount(extra));
1075 entpool_enter(&E->pool, extra, sizeof extra);
1076 explicit_memset(extra, 0, sizeof extra);
1077 mutex_exit(&E->lock);
1078 }
1079
1080 /*
1081 * entropy_notify()
1082 *
1083 * Caller just contributed entropy to the global pool. Advance
1084 * the entropy epoch and notify waiters.
1085 *
1086 * Caller must hold the global entropy lock. Except for the
1087 * `sysctl -w kern.entropy.consolidate=1` trigger, the caller must
1088 * have just have transitioned from partial entropy to full
1089 * entropy -- E->needed should be zero now.
1090 */
1091 static void
1092 entropy_notify(void)
1093 {
1094 unsigned epoch;
1095
1096 KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1097
1098 /*
1099 * If this is the first time, print a message to the console
1100 * that we're ready so operators can compare it to the timing
1101 * of other events.
1102 */
1103 if (E->epoch == (unsigned)-1)
1104 printf("entropy: ready\n");
1105
1106 /* Set the epoch; roll over from UINTMAX-1 to 1. */
1107 rnd_initial_entropy = 1; /* XXX legacy */
1108 epoch = E->epoch + 1;
1109 if (epoch == 0 || epoch == (unsigned)-1)
1110 epoch = 1;
1111 atomic_store_relaxed(&E->epoch, epoch);
1112
1113 /* Notify waiters. */
1114 if (E->stage >= ENTROPY_WARM) {
1115 cv_broadcast(&E->cv);
1116 selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
1117 }
1118
1119 /* Count another notification. */
1120 entropy_notify_evcnt.ev_count++;
1121 }
1122
1123 /*
1124 * sysctl -w kern.entropy.consolidate=1
1125 *
1126 * Trigger entropy consolidation and wait for it to complete.
1127 * Writable only by superuser. This is the only way for the
1128 * system to consolidate entropy if the operator knows something
1129 * the kernel doesn't about how unpredictable the pending entropy
1130 * pools are.
1131 */
1132 static int
1133 sysctl_entropy_consolidate(SYSCTLFN_ARGS)
1134 {
1135 struct sysctlnode node = *rnode;
1136 uint64_t ticket;
1137 int arg;
1138 int error;
1139
1140 KASSERT(E->stage == ENTROPY_HOT);
1141
1142 node.sysctl_data = &arg;
1143 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1144 if (error || newp == NULL)
1145 return error;
1146 if (arg) {
1147 mutex_enter(&E->lock);
1148 ticket = entropy_consolidate_evcnt.ev_count;
1149 E->consolidate = true;
1150 cv_broadcast(&E->cv);
1151 while (ticket == entropy_consolidate_evcnt.ev_count) {
1152 error = cv_wait_sig(&E->cv, &E->lock);
1153 if (error)
1154 break;
1155 }
1156 mutex_exit(&E->lock);
1157 }
1158
1159 return error;
1160 }
1161
1162 /*
1163 * entropy_extract(buf, len, flags)
1164 *
1165 * Extract len bytes from the global entropy pool into buf.
1166 *
1167 * Flags may have:
1168 *
1169 * ENTROPY_WAIT Wait for entropy if not available yet.
1170 * ENTROPY_SIG Allow interruption by a signal during wait.
1171 *
1172 * Return zero on success, or error on failure:
1173 *
1174 * EWOULDBLOCK No entropy and ENTROPY_WAIT not set.
1175 * EINTR/ERESTART No entropy, ENTROPY_SIG set, and interrupted.
1176 *
1177 * If ENTROPY_WAIT is set, allowed only in thread context. If
1178 * ENTROPY_WAIT is not set, allowed up to IPL_VM. (XXX That's
1179 * awfully high... Do we really need it in hard interrupts? This
1180 * arises from use of cprng_strong(9).)
1181 */
1182 int
1183 entropy_extract(void *buf, size_t len, int flags)
1184 {
1185 static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1186 static struct timeval lasttime; /* serialized by E->lock */
1187 int error;
1188
1189 if (ISSET(flags, ENTROPY_WAIT)) {
1190 ASSERT_SLEEPABLE();
1191 KASSERTMSG(E->stage >= ENTROPY_WARM,
1192 "can't wait for entropy until warm");
1193 }
1194
1195 /* Acquire the global lock to get at the global pool. */
1196 if (E->stage >= ENTROPY_WARM)
1197 mutex_enter(&E->lock);
1198
1199 /* Count up request for entropy in interrupt context. */
1200 if (curcpu_available() && cpu_intr_p())
1201 entropy_extract_intr_evcnt.ev_count++;
1202
1203 /* Wait until there is enough entropy in the system. */
1204 error = 0;
1205 while (E->needed) {
1206 /* Ask for more, synchronously if possible. */
1207 entropy_request(len);
1208
1209 /* If we got enough, we're done. */
1210 if (E->needed == 0) {
1211 KASSERT(error == 0);
1212 break;
1213 }
1214
1215 /* If not waiting, stop here. */
1216 if (!ISSET(flags, ENTROPY_WAIT)) {
1217 error = EWOULDBLOCK;
1218 break;
1219 }
1220
1221 /* Wait for some entropy to come in and try again. */
1222 KASSERT(E->stage >= ENTROPY_WARM);
1223 if (ISSET(flags, ENTROPY_SIG)) {
1224 error = cv_wait_sig(&E->cv, &E->lock);
1225 if (error)
1226 break;
1227 } else {
1228 cv_wait(&E->cv, &E->lock);
1229 }
1230 }
1231
1232 /* Count failure -- but fill the buffer nevertheless. */
1233 if (error)
1234 entropy_extract_fail_evcnt.ev_count++;
1235
1236 /*
1237 * Report a warning if we have never yet reached full entropy.
1238 * This is the only case where we consider entropy to be
1239 * `depleted' without kern.entropy.depletion enabled -- when we
1240 * only have partial entropy, an adversary may be able to
1241 * narrow the state of the pool down to a small number of
1242 * possibilities; the output then enables them to confirm a
1243 * guess, reducing its entropy from the adversary's perspective
1244 * to zero.
1245 */
1246 if (__predict_false(E->epoch == (unsigned)-1)) {
1247 if (ratecheck(&lasttime, &interval))
1248 printf("entropy: WARNING:"
1249 " extracting entropy too early\n");
1250 atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
1251 }
1252
1253 /* Extract data from the pool, and `deplete' if we're doing that. */
1254 entpool_extract(&E->pool, buf, len);
1255 if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
1256 error == 0) {
1257 unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
1258
1259 atomic_store_relaxed(&E->needed,
1260 E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
1261 entropy_deplete_evcnt.ev_count++;
1262 }
1263
1264 /* Release the global lock and return the error. */
1265 if (E->stage >= ENTROPY_WARM)
1266 mutex_exit(&E->lock);
1267 return error;
1268 }
1269
1270 /*
1271 * entropy_poll(events)
1272 *
1273 * Return the subset of events ready, and if it is not all of
1274 * events, record curlwp as waiting for entropy.
1275 */
1276 int
1277 entropy_poll(int events)
1278 {
1279 int revents = 0;
1280
1281 KASSERT(E->stage >= ENTROPY_WARM);
1282
1283 /* Always ready for writing. */
1284 revents |= events & (POLLOUT|POLLWRNORM);
1285
1286 /* Narrow it down to reads. */
1287 events &= POLLIN|POLLRDNORM;
1288 if (events == 0)
1289 return revents;
1290
1291 /*
1292 * If we have reached full entropy and we're not depleting
1293 * entropy, we are forever ready.
1294 */
1295 if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
1296 __predict_true(!atomic_load_relaxed(&entropy_depletion)))
1297 return revents | events;
1298
1299 /*
1300 * Otherwise, check whether we need entropy under the lock. If
1301 * we don't, we're ready; if we do, add ourselves to the queue.
1302 */
1303 mutex_enter(&E->lock);
1304 if (E->needed == 0)
1305 revents |= events;
1306 else
1307 selrecord(curlwp, &E->selq);
1308 mutex_exit(&E->lock);
1309
1310 return revents;
1311 }
1312
1313 /*
1314 * filt_entropy_read_detach(kn)
1315 *
1316 * struct filterops::f_detach callback for entropy read events:
1317 * remove kn from the list of waiters.
1318 */
1319 static void
1320 filt_entropy_read_detach(struct knote *kn)
1321 {
1322
1323 KASSERT(E->stage >= ENTROPY_WARM);
1324
1325 mutex_enter(&E->lock);
1326 SLIST_REMOVE(&E->selq.sel_klist, kn, knote, kn_selnext);
1327 mutex_exit(&E->lock);
1328 }
1329
1330 /*
1331 * filt_entropy_read_event(kn, hint)
1332 *
1333 * struct filterops::f_event callback for entropy read events:
1334 * poll for entropy. Caller must hold the global entropy lock if
1335 * hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
1336 */
1337 static int
1338 filt_entropy_read_event(struct knote *kn, long hint)
1339 {
1340 int ret;
1341
1342 KASSERT(E->stage >= ENTROPY_WARM);
1343
1344 /* Acquire the lock, if caller is outside entropy subsystem. */
1345 if (hint == NOTE_SUBMIT)
1346 KASSERT(mutex_owned(&E->lock));
1347 else
1348 mutex_enter(&E->lock);
1349
1350 /*
1351 * If we still need entropy, can't read anything; if not, can
1352 * read arbitrarily much.
1353 */
1354 if (E->needed != 0) {
1355 ret = 0;
1356 } else {
1357 if (atomic_load_relaxed(&entropy_depletion))
1358 kn->kn_data = ENTROPY_CAPACITY*NBBY;
1359 else
1360 kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
1361 ret = 1;
1362 }
1363
1364 /* Release the lock, if caller is outside entropy subsystem. */
1365 if (hint == NOTE_SUBMIT)
1366 KASSERT(mutex_owned(&E->lock));
1367 else
1368 mutex_exit(&E->lock);
1369
1370 return ret;
1371 }
1372
1373 static const struct filterops entropy_read_filtops = {
1374 .f_isfd = 1, /* XXX Makes sense only for /dev/u?random. */
1375 .f_attach = NULL,
1376 .f_detach = filt_entropy_read_detach,
1377 .f_event = filt_entropy_read_event,
1378 };
1379
1380 /*
1381 * entropy_kqfilter(kn)
1382 *
1383 * Register kn to receive entropy event notifications. May be
1384 * EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
1385 */
1386 int
1387 entropy_kqfilter(struct knote *kn)
1388 {
1389
1390 KASSERT(E->stage >= ENTROPY_WARM);
1391
1392 switch (kn->kn_filter) {
1393 case EVFILT_READ:
1394 /* Enter into the global select queue. */
1395 mutex_enter(&E->lock);
1396 kn->kn_fop = &entropy_read_filtops;
1397 SLIST_INSERT_HEAD(&E->selq.sel_klist, kn, kn_selnext);
1398 mutex_exit(&E->lock);
1399 return 0;
1400 case EVFILT_WRITE:
1401 /* Can always dump entropy into the system. */
1402 kn->kn_fop = &seltrue_filtops;
1403 return 0;
1404 default:
1405 return EINVAL;
1406 }
1407 }
1408
1409 /*
1410 * rndsource_setcb(rs, get, getarg)
1411 *
1412 * Set the request callback for the entropy source rs, if it can
1413 * provide entropy on demand. Must precede rnd_attach_source.
1414 */
1415 void
1416 rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
1417 void *getarg)
1418 {
1419
1420 rs->get = get;
1421 rs->getarg = getarg;
1422 }
1423
1424 /*
1425 * rnd_attach_source(rs, name, type, flags)
1426 *
1427 * Attach the entropy source rs. Must be done after
1428 * rndsource_setcb, if any, and before any calls to rnd_add_data.
1429 */
1430 void
1431 rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
1432 uint32_t flags)
1433 {
1434 uint32_t extra[4];
1435 unsigned i = 0;
1436
1437 /* Grab cycle counter to mix extra into the pool. */
1438 extra[i++] = entropy_timer();
1439
1440 /*
1441 * Apply some standard flags:
1442 *
1443 * - We do not bother with network devices by default, for
1444 * hysterical raisins (perhaps: because it is often the case
1445 * that an adversary can influence network packet timings).
1446 */
1447 switch (type) {
1448 case RND_TYPE_NET:
1449 flags |= RND_FLAG_NO_COLLECT;
1450 break;
1451 }
1452
1453 /* Sanity-check the callback if RND_FLAG_HASCB is set. */
1454 KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
1455
1456 /* Initialize the random source. */
1457 memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
1458 strlcpy(rs->name, name, sizeof(rs->name));
1459 rs->type = type;
1460 rs->flags = flags;
1461 if (E->stage >= ENTROPY_WARM)
1462 rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
1463 extra[i++] = entropy_timer();
1464
1465 /* Wire it into the global list of random sources. */
1466 if (E->stage >= ENTROPY_WARM)
1467 mutex_enter(&E->lock);
1468 LIST_INSERT_HEAD(&E->sources, rs, list);
1469 if (E->stage >= ENTROPY_WARM)
1470 mutex_exit(&E->lock);
1471 extra[i++] = entropy_timer();
1472
1473 /* Request that it provide entropy ASAP, if we can. */
1474 if (ISSET(flags, RND_FLAG_HASCB))
1475 (*rs->get)(ENTROPY_CAPACITY, rs->getarg);
1476 extra[i++] = entropy_timer();
1477
1478 /* Mix the extra into the pool. */
1479 KASSERT(i == __arraycount(extra));
1480 entropy_enter(extra, sizeof extra, 0);
1481 explicit_memset(extra, 0, sizeof extra);
1482 }
1483
1484 /*
1485 * rnd_detach_source(rs)
1486 *
1487 * Detach the entropy source rs. May sleep waiting for users to
1488 * drain. Further use is not allowed.
1489 */
1490 void
1491 rnd_detach_source(struct krndsource *rs)
1492 {
1493
1494 /*
1495 * If we're cold (shouldn't happen, but hey), just remove it
1496 * from the list -- there's nothing allocated.
1497 */
1498 if (E->stage == ENTROPY_COLD) {
1499 LIST_REMOVE(rs, list);
1500 return;
1501 }
1502
1503 /* We may have to wait for entropy_request. */
1504 ASSERT_SLEEPABLE();
1505
1506 /* Remove it from the list and wait for entropy_request. */
1507 mutex_enter(&E->lock);
1508 LIST_REMOVE(rs, list);
1509 while (E->requesting)
1510 cv_wait(&E->cv, &E->lock);
1511 mutex_exit(&E->lock);
1512
1513 /* Free the per-CPU data. */
1514 percpu_free(rs->state, sizeof(struct rndsource_cpu));
1515 }
1516
1517 /*
1518 * entropy_request(nbytes)
1519 *
1520 * Request nbytes bytes of entropy from all sources in the system.
1521 * OK if we overdo it. Caller must hold the global entropy lock;
1522 * will release and re-acquire it.
1523 */
1524 static void
1525 entropy_request(size_t nbytes)
1526 {
1527 struct krndsource *rs, *next;
1528
1529 KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1530
1531 /*
1532 * If there is a request in progress, let it proceed.
1533 * Otherwise, note that a request is in progress to avoid
1534 * reentry and to block rnd_detach_source until we're done.
1535 */
1536 if (E->requesting)
1537 return;
1538 E->requesting = true;
1539 entropy_request_evcnt.ev_count++;
1540
1541 /* Clamp to the maximum reasonable request. */
1542 nbytes = MIN(nbytes, ENTROPY_CAPACITY);
1543
1544 /* Walk the list of sources. */
1545 LIST_FOREACH_SAFE(rs, &E->sources, list, next) {
1546 /* Skip sources without callbacks. */
1547 if (!ISSET(rs->flags, RND_FLAG_HASCB))
1548 continue;
1549
1550 /* Drop the lock while we call the callback. */
1551 if (E->stage >= ENTROPY_WARM)
1552 mutex_exit(&E->lock);
1553 (*rs->get)(nbytes, rs->getarg);
1554 if (E->stage >= ENTROPY_WARM)
1555 mutex_enter(&E->lock);
1556 }
1557
1558 /* Notify rnd_detach_source that the request is done. */
1559 E->requesting = false;
1560 if (E->stage >= ENTROPY_WARM)
1561 cv_broadcast(&E->cv);
1562 }
1563
1564 /*
1565 * rnd_add_uint32(rs, value)
1566 *
1567 * Enter 32 bits of data from an entropy source into the pool.
1568 *
1569 * If rs is NULL, may not be called from interrupt context.
1570 *
1571 * If rs is non-NULL, may be called from any context. May drop
1572 * data if called from interrupt context.
1573 */
1574 void
1575 rnd_add_uint32(struct krndsource *rs, uint32_t value)
1576 {
1577
1578 rnd_add_data(rs, &value, sizeof value, 0);
1579 }
1580
1581 void
1582 _rnd_add_uint32(struct krndsource *rs, uint32_t value)
1583 {
1584
1585 rnd_add_data(rs, &value, sizeof value, 0);
1586 }
1587
1588 void
1589 _rnd_add_uint64(struct krndsource *rs, uint64_t value)
1590 {
1591
1592 rnd_add_data(rs, &value, sizeof value, 0);
1593 }
1594
1595 /*
1596 * rnd_add_data(rs, buf, len, entropybits)
1597 *
1598 * Enter data from an entropy source into the pool, with a
1599 * driver's estimate of how much entropy the physical source of
1600 * the data has. If RND_FLAG_NO_ESTIMATE, we ignore the driver's
1601 * estimate and treat it as zero.
1602 *
1603 * If rs is NULL, may not be called from interrupt context.
1604 *
1605 * If rs is non-NULL, may be called from any context. May drop
1606 * data if called from interrupt context.
1607 */
1608 void
1609 rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
1610 uint32_t entropybits)
1611 {
1612 uint32_t extra;
1613 uint32_t flags;
1614
1615 KASSERTMSG(howmany(entropybits, NBBY) <= len,
1616 "%s: impossible entropy rate:"
1617 " %"PRIu32" bits in %"PRIu32"-byte string",
1618 rs ? rs->name : "(anonymous)", entropybits, len);
1619
1620 /* If there's no rndsource, just enter the data and time now. */
1621 if (rs == NULL) {
1622 entropy_enter(buf, len, entropybits);
1623 extra = entropy_timer();
1624 entropy_enter(&extra, sizeof extra, 0);
1625 explicit_memset(&extra, 0, sizeof extra);
1626 return;
1627 }
1628
1629 /* Load a snapshot of the flags. Ioctl may change them under us. */
1630 flags = atomic_load_relaxed(&rs->flags);
1631
1632 /*
1633 * Skip if:
1634 * - we're not collecting entropy, or
1635 * - the operator doesn't want to collect entropy from this, or
1636 * - neither data nor timings are being collected from this.
1637 */
1638 if (!atomic_load_relaxed(&entropy_collection) ||
1639 ISSET(flags, RND_FLAG_NO_COLLECT) ||
1640 !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
1641 return;
1642
1643 /* If asked, ignore the estimate. */
1644 if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
1645 entropybits = 0;
1646
1647 /* If we are collecting data, enter them. */
1648 if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
1649 rnd_add_data_1(rs, buf, len, entropybits);
1650
1651 /* If we are collecting timings, enter one. */
1652 if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
1653 extra = entropy_timer();
1654 rnd_add_data_1(rs, &extra, sizeof extra, 0);
1655 }
1656 }
1657
1658 /*
1659 * rnd_add_data_1(rs, buf, len, entropybits)
1660 *
1661 * Internal subroutine to call either entropy_enter_intr, if we're
1662 * in interrupt context, or entropy_enter if not, and to count the
1663 * entropy in an rndsource.
1664 */
1665 static void
1666 rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
1667 uint32_t entropybits)
1668 {
1669 bool fullyused;
1670
1671 /*
1672 * If we're in interrupt context, use entropy_enter_intr and
1673 * take note of whether it consumed the full sample; if not,
1674 * use entropy_enter, which always consumes the full sample.
1675 */
1676 if (curcpu_available() && cpu_intr_p()) {
1677 fullyused = entropy_enter_intr(buf, len, entropybits);
1678 } else {
1679 entropy_enter(buf, len, entropybits);
1680 fullyused = true;
1681 }
1682
1683 /*
1684 * If we used the full sample, note how many bits were
1685 * contributed from this source.
1686 */
1687 if (fullyused) {
1688 if (E->stage < ENTROPY_HOT) {
1689 if (E->stage >= ENTROPY_WARM)
1690 mutex_enter(&E->lock);
1691 rs->total += MIN(UINT_MAX - rs->total, entropybits);
1692 if (E->stage >= ENTROPY_WARM)
1693 mutex_exit(&E->lock);
1694 } else {
1695 struct rndsource_cpu *rc = percpu_getref(rs->state);
1696 unsigned nbits = rc->rc_nbits;
1697
1698 nbits += MIN(UINT_MAX - nbits, entropybits);
1699 atomic_store_relaxed(&rc->rc_nbits, nbits);
1700 percpu_putref(rs->state);
1701 }
1702 }
1703 }
1704
1705 /*
1706 * rnd_add_data_sync(rs, buf, len, entropybits)
1707 *
1708 * Same as rnd_add_data. Originally used in rndsource callbacks,
1709 * to break an unnecessary cycle; no longer really needed.
1710 */
1711 void
1712 rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
1713 uint32_t entropybits)
1714 {
1715
1716 rnd_add_data(rs, buf, len, entropybits);
1717 }
1718
1719 /*
1720 * rndsource_entropybits(rs)
1721 *
1722 * Return approximately the number of bits of entropy that have
1723 * been contributed via rs so far. Approximate if other CPUs may
1724 * be calling rnd_add_data concurrently.
1725 */
1726 static unsigned
1727 rndsource_entropybits(struct krndsource *rs)
1728 {
1729 unsigned nbits = rs->total;
1730
1731 KASSERT(E->stage >= ENTROPY_WARM);
1732 KASSERT(mutex_owned(&E->lock));
1733 percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
1734 return nbits;
1735 }
1736
1737 static void
1738 rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
1739 {
1740 struct rndsource_cpu *rc = ptr;
1741 unsigned *nbitsp = cookie;
1742 unsigned cpu_nbits;
1743
1744 cpu_nbits = atomic_load_relaxed(&rc->rc_nbits);
1745 *nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
1746 }
1747
1748 /*
1749 * rndsource_to_user(rs, urs)
1750 *
1751 * Copy a description of rs out to urs for userland.
1752 */
1753 static void
1754 rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
1755 {
1756
1757 KASSERT(E->stage >= ENTROPY_WARM);
1758 KASSERT(mutex_owned(&E->lock));
1759
1760 /* Avoid kernel memory disclosure. */
1761 memset(urs, 0, sizeof(*urs));
1762
1763 CTASSERT(sizeof(urs->name) == sizeof(rs->name));
1764 strlcpy(urs->name, rs->name, sizeof(urs->name));
1765 urs->total = rndsource_entropybits(rs);
1766 urs->type = rs->type;
1767 urs->flags = atomic_load_relaxed(&rs->flags);
1768 }
1769
1770 /*
1771 * rndsource_to_user_est(rs, urse)
1772 *
1773 * Copy a description of rs and estimation statistics out to urse
1774 * for userland.
1775 */
1776 static void
1777 rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
1778 {
1779
1780 KASSERT(E->stage >= ENTROPY_WARM);
1781 KASSERT(mutex_owned(&E->lock));
1782
1783 /* Avoid kernel memory disclosure. */
1784 memset(urse, 0, sizeof(*urse));
1785
1786 /* Copy out the rndsource description. */
1787 rndsource_to_user(rs, &urse->rt);
1788
1789 /* Zero out the statistics because we don't do estimation. */
1790 urse->dt_samples = 0;
1791 urse->dt_total = 0;
1792 urse->dv_samples = 0;
1793 urse->dv_total = 0;
1794 }
1795
1796 /*
1797 * entropy_ioctl(cmd, data)
1798 *
1799 * Handle various /dev/random ioctl queries.
1800 */
1801 int
1802 entropy_ioctl(unsigned long cmd, void *data)
1803 {
1804 struct krndsource *rs;
1805 bool privileged;
1806 int error;
1807
1808 KASSERT(E->stage >= ENTROPY_WARM);
1809
1810 /* Verify user's authorization to perform the ioctl. */
1811 switch (cmd) {
1812 case RNDGETENTCNT:
1813 case RNDGETPOOLSTAT:
1814 case RNDGETSRCNUM:
1815 case RNDGETSRCNAME:
1816 case RNDGETESTNUM:
1817 case RNDGETESTNAME:
1818 error = kauth_authorize_device(curlwp->l_cred,
1819 KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
1820 break;
1821 case RNDCTL:
1822 error = kauth_authorize_device(curlwp->l_cred,
1823 KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
1824 break;
1825 case RNDADDDATA:
1826 error = kauth_authorize_device(curlwp->l_cred,
1827 KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
1828 /* Ascertain whether the user's inputs should be counted. */
1829 if (kauth_authorize_device(curlwp->l_cred,
1830 KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
1831 NULL, NULL, NULL, NULL) == 0)
1832 privileged = true;
1833 break;
1834 default: {
1835 /*
1836 * XXX Hack to avoid changing module ABI so this can be
1837 * pulled up. Later, we can just remove the argument.
1838 */
1839 static const struct fileops fops = {
1840 .fo_ioctl = rnd_system_ioctl,
1841 };
1842 struct file f = {
1843 .f_ops = &fops,
1844 };
1845 MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
1846 enosys(), error);
1847 #if defined(_LP64)
1848 if (error == ENOSYS)
1849 MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
1850 enosys(), error);
1851 #endif
1852 if (error == ENOSYS)
1853 error = ENOTTY;
1854 break;
1855 }
1856 }
1857
1858 /* If anything went wrong with authorization, stop here. */
1859 if (error)
1860 return error;
1861
1862 /* Dispatch on the command. */
1863 switch (cmd) {
1864 case RNDGETENTCNT: { /* Get current entropy count in bits. */
1865 uint32_t *countp = data;
1866
1867 mutex_enter(&E->lock);
1868 *countp = ENTROPY_CAPACITY*NBBY - E->needed;
1869 mutex_exit(&E->lock);
1870
1871 break;
1872 }
1873 case RNDGETPOOLSTAT: { /* Get entropy pool statistics. */
1874 rndpoolstat_t *pstat = data;
1875
1876 mutex_enter(&E->lock);
1877
1878 /* parameters */
1879 pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
1880 pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
1881 pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
1882
1883 /* state */
1884 pstat->added = 0; /* XXX total entropy_enter count */
1885 pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
1886 pstat->removed = 0; /* XXX total entropy_extract count */
1887 pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
1888 pstat->generated = 0; /* XXX bits of data...fabricated? */
1889
1890 mutex_exit(&E->lock);
1891 break;
1892 }
1893 case RNDGETSRCNUM: { /* Get entropy sources by number. */
1894 rndstat_t *stat = data;
1895 uint32_t start = 0, i = 0;
1896
1897 /* Skip if none requested; fail if too many requested. */
1898 if (stat->count == 0)
1899 break;
1900 if (stat->count > RND_MAXSTATCOUNT)
1901 return EINVAL;
1902
1903 /*
1904 * Under the lock, find the first one, copy out as many
1905 * as requested, and report how many we copied out.
1906 */
1907 mutex_enter(&E->lock);
1908 LIST_FOREACH(rs, &E->sources, list) {
1909 if (start++ == stat->start)
1910 break;
1911 }
1912 while (i < stat->count && rs != NULL) {
1913 rndsource_to_user(rs, &stat->source[i++]);
1914 rs = LIST_NEXT(rs, list);
1915 }
1916 KASSERT(i <= stat->count);
1917 stat->count = i;
1918 mutex_exit(&E->lock);
1919 break;
1920 }
1921 case RNDGETESTNUM: { /* Get sources and estimates by number. */
1922 rndstat_est_t *estat = data;
1923 uint32_t start = 0, i = 0;
1924
1925 /* Skip if none requested; fail if too many requested. */
1926 if (estat->count == 0)
1927 break;
1928 if (estat->count > RND_MAXSTATCOUNT)
1929 return EINVAL;
1930
1931 /*
1932 * Under the lock, find the first one, copy out as many
1933 * as requested, and report how many we copied out.
1934 */
1935 mutex_enter(&E->lock);
1936 LIST_FOREACH(rs, &E->sources, list) {
1937 if (start++ == estat->start)
1938 break;
1939 }
1940 while (i < estat->count && rs != NULL) {
1941 rndsource_to_user_est(rs, &estat->source[i++]);
1942 rs = LIST_NEXT(rs, list);
1943 }
1944 KASSERT(i <= estat->count);
1945 estat->count = i;
1946 mutex_exit(&E->lock);
1947 break;
1948 }
1949 case RNDGETSRCNAME: { /* Get entropy sources by name. */
1950 rndstat_name_t *nstat = data;
1951 const size_t n = sizeof(rs->name);
1952
1953 CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
1954
1955 /*
1956 * Under the lock, search by name. If found, copy it
1957 * out; if not found, fail with ENOENT.
1958 */
1959 mutex_enter(&E->lock);
1960 LIST_FOREACH(rs, &E->sources, list) {
1961 if (strncmp(rs->name, nstat->name, n) == 0)
1962 break;
1963 }
1964 if (rs != NULL)
1965 rndsource_to_user(rs, &nstat->source);
1966 else
1967 error = ENOENT;
1968 mutex_exit(&E->lock);
1969 break;
1970 }
1971 case RNDGETESTNAME: { /* Get sources and estimates by name. */
1972 rndstat_est_name_t *enstat = data;
1973 const size_t n = sizeof(rs->name);
1974
1975 CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
1976
1977 /*
1978 * Under the lock, search by name. If found, copy it
1979 * out; if not found, fail with ENOENT.
1980 */
1981 mutex_enter(&E->lock);
1982 LIST_FOREACH(rs, &E->sources, list) {
1983 if (strncmp(rs->name, enstat->name, n) == 0)
1984 break;
1985 }
1986 if (rs != NULL)
1987 rndsource_to_user_est(rs, &enstat->source);
1988 else
1989 error = ENOENT;
1990 mutex_exit(&E->lock);
1991 break;
1992 }
1993 case RNDCTL: { /* Modify entropy source flags. */
1994 rndctl_t *rndctl = data;
1995 const size_t n = sizeof(rs->name);
1996 uint32_t flags;
1997
1998 CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
1999
2000 /* Whitelist the flags that user can change. */
2001 rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2002
2003 /*
2004 * For each matching rndsource, either by type if
2005 * specified or by name if not, set the masked flags.
2006 */
2007 mutex_enter(&E->lock);
2008 LIST_FOREACH(rs, &E->sources, list) {
2009 if (rndctl->type != 0xff) {
2010 if (rs->type != rndctl->type)
2011 continue;
2012 } else {
2013 if (strncmp(rs->name, rndctl->name, n) != 0)
2014 continue;
2015 }
2016 flags = rs->flags & ~rndctl->mask;
2017 flags |= rndctl->flags & rndctl->mask;
2018 atomic_store_relaxed(&rs->flags, flags);
2019 }
2020 mutex_exit(&E->lock);
2021 break;
2022 }
2023 case RNDADDDATA: { /* Enter seed into entropy pool. */
2024 rnddata_t *rdata = data;
2025 unsigned entropybits = 0;
2026
2027 if (!atomic_load_relaxed(&entropy_collection))
2028 break; /* thanks but no thanks */
2029 if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
2030 return EINVAL;
2031
2032 /*
2033 * This ioctl serves as the userland alternative a
2034 * bootloader-provided seed -- typically furnished by
2035 * /etc/rc.d/random_seed. We accept the user's entropy
2036 * claim only if
2037 *
2038 * (a) the user is privileged, and
2039 * (b) we have not entered a bootloader seed.
2040 *
2041 * under the assumption that the user may use this to
2042 * load a seed from disk that we have already loaded
2043 * from the bootloader, so we don't double-count it.
2044 */
2045 if (privileged) {
2046 mutex_enter(&E->lock);
2047 if (!E->seeded) {
2048 entropybits = MIN(rdata->entropy,
2049 MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
2050 E->seeded = true;
2051 }
2052 mutex_exit(&E->lock);
2053 }
2054
2055 /* Enter the data. */
2056 rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
2057 entropybits);
2058 break;
2059 }
2060 default:
2061 error = ENOTTY;
2062 }
2063
2064 /* Return any error that may have come up. */
2065 return error;
2066 }
2067
2068 /* Legacy entry points */
2069
2070 void
2071 rnd_seed(void *seed, size_t len)
2072 {
2073
2074 if (len != sizeof(rndsave_t)) {
2075 printf("entropy: invalid seed length: %zu,"
2076 " expected sizeof(rndsave_t) = %zu\n",
2077 len, sizeof(rndsave_t));
2078 return;
2079 }
2080 entropy_seed(seed);
2081 }
2082
2083 void
2084 rnd_init(void)
2085 {
2086
2087 entropy_init();
2088 }
2089
2090 void
2091 rnd_init_softint(void)
2092 {
2093
2094 entropy_init_late();
2095 }
2096
2097 int
2098 rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
2099 {
2100
2101 return entropy_ioctl(cmd, data);
2102 }
2103