kern_entropy.c revision 1.16 1 /* $NetBSD: kern_entropy.c,v 1.16 2020/05/08 00:54:44 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Entropy subsystem
34 *
35 * * Each CPU maintains a per-CPU entropy pool so that gathering
36 * entropy requires no interprocessor synchronization, except
37 * early at boot when we may be scrambling to gather entropy as
38 * soon as possible.
39 *
40 * - entropy_enter gathers entropy and never drops it on the
41 * floor, at the cost of sometimes having to do cryptography.
42 *
43 * - entropy_enter_intr gathers entropy or drops it on the
44 * floor, with low latency. Work to stir the pool or kick the
45 * housekeeping thread is scheduled in soft interrupts.
46 *
47 * * entropy_enter immediately enters into the global pool if it
48 * can transition to full entropy in one swell foop. Otherwise,
49 * it defers to a housekeeping thread that consolidates entropy,
50 * but only when the CPUs collectively have full entropy, in
51 * order to mitigate iterative-guessing attacks.
52 *
53 * * The entropy housekeeping thread continues to consolidate
54 * entropy even after we think we have full entropy, in case we
55 * are wrong, but is limited to one discretionary consolidation
56 * per minute, and only when new entropy is actually coming in,
57 * to limit performance impact.
58 *
59 * * The entropy epoch is the number that changes when we
60 * transition from partial entropy to full entropy, so that
61 * users can easily determine when to reseed. This also
62 * facilitates an operator explicitly causing everything to
63 * reseed by sysctl -w kern.entropy.consolidate=1.
64 *
65 * * No entropy estimation based on the sample values, which is a
66 * contradiction in terms and a potential source of side
67 * channels. It is the responsibility of the driver author to
68 * study how predictable the physical source of input can ever
69 * be, and to furnish a lower bound on the amount of entropy it
70 * has.
71 *
72 * * Entropy depletion is available for testing (or if you're into
73 * that sort of thing), with sysctl -w kern.entropy.depletion=1;
74 * the logic to support it is small, to minimize chance of bugs.
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.16 2020/05/08 00:54:44 riastradh Exp $");
79
80 #include <sys/param.h>
81 #include <sys/types.h>
82 #include <sys/atomic.h>
83 #include <sys/compat_stub.h>
84 #include <sys/condvar.h>
85 #include <sys/cpu.h>
86 #include <sys/entropy.h>
87 #include <sys/errno.h>
88 #include <sys/evcnt.h>
89 #include <sys/event.h>
90 #include <sys/file.h>
91 #include <sys/intr.h>
92 #include <sys/kauth.h>
93 #include <sys/kernel.h>
94 #include <sys/kmem.h>
95 #include <sys/kthread.h>
96 #include <sys/module_hook.h>
97 #include <sys/mutex.h>
98 #include <sys/percpu.h>
99 #include <sys/poll.h>
100 #include <sys/queue.h>
101 #include <sys/rnd.h> /* legacy kernel API */
102 #include <sys/rndio.h> /* userland ioctl interface */
103 #include <sys/rndsource.h> /* kernel rndsource driver API */
104 #include <sys/select.h>
105 #include <sys/selinfo.h>
106 #include <sys/sha1.h> /* for boot seed checksum */
107 #include <sys/stdint.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110 #include <sys/time.h>
111 #include <sys/xcall.h>
112
113 #include <lib/libkern/entpool.h>
114
115 #include <machine/limits.h>
116
117 #ifdef __HAVE_CPU_COUNTER
118 #include <machine/cpu_counter.h>
119 #endif
120
121 /*
122 * struct entropy_cpu
123 *
124 * Per-CPU entropy state. The pool is allocated separately
125 * because percpu(9) sometimes moves per-CPU objects around
126 * without zeroing them, which would lead to unwanted copies of
127 * sensitive secrets. The evcnt is allocated separately becuase
128 * evcnt(9) assumes it stays put in memory.
129 */
130 struct entropy_cpu {
131 struct evcnt *ec_softint_evcnt;
132 struct entpool *ec_pool;
133 unsigned ec_pending;
134 bool ec_locked;
135 };
136
137 /*
138 * struct rndsource_cpu
139 *
140 * Per-CPU rndsource state.
141 */
142 struct rndsource_cpu {
143 unsigned rc_nbits; /* bits of entropy added */
144 };
145
146 /*
147 * entropy_global (a.k.a. E for short in this file)
148 *
149 * Global entropy state. Writes protected by the global lock.
150 * Some fields, marked (A), can be read outside the lock, and are
151 * maintained with atomic_load/store_relaxed.
152 */
153 struct {
154 kmutex_t lock; /* covers all global state */
155 struct entpool pool; /* global pool for extraction */
156 unsigned needed; /* (A) needed globally */
157 unsigned pending; /* (A) pending in per-CPU pools */
158 unsigned timestamp; /* (A) time of last consolidation */
159 unsigned epoch; /* (A) changes when needed -> 0 */
160 kcondvar_t cv; /* notifies state changes */
161 struct selinfo selq; /* notifies needed -> 0 */
162 struct lwp *sourcelock; /* lock on list of sources */
163 LIST_HEAD(,krndsource) sources; /* list of entropy sources */
164 enum entropy_stage {
165 ENTROPY_COLD = 0, /* single-threaded */
166 ENTROPY_WARM, /* multi-threaded at boot before CPUs */
167 ENTROPY_HOT, /* multi-threaded multi-CPU */
168 } stage;
169 bool consolidate; /* kick thread to consolidate */
170 bool seed_rndsource; /* true if seed source is attached */
171 bool seeded; /* true if seed file already loaded */
172 } entropy_global __cacheline_aligned = {
173 /* Fields that must be initialized when the kernel is loaded. */
174 .needed = ENTROPY_CAPACITY*NBBY,
175 .epoch = (unsigned)-1, /* -1 means entropy never consolidated */
176 .sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
177 .stage = ENTROPY_COLD,
178 };
179
180 #define E (&entropy_global) /* declutter */
181
182 /* Read-mostly globals */
183 static struct percpu *entropy_percpu __read_mostly; /* struct entropy_cpu */
184 static void *entropy_sih __read_mostly; /* softint handler */
185 static struct lwp *entropy_lwp __read_mostly; /* housekeeping thread */
186
187 int rnd_initial_entropy __read_mostly; /* XXX legacy */
188
189 static struct krndsource seed_rndsource __read_mostly;
190
191 /*
192 * Event counters
193 *
194 * Must be careful with adding these because they can serve as
195 * side channels.
196 */
197 static struct evcnt entropy_discretionary_evcnt =
198 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
199 EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
200 static struct evcnt entropy_immediate_evcnt =
201 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
202 EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
203 static struct evcnt entropy_partial_evcnt =
204 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
205 EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
206 static struct evcnt entropy_consolidate_evcnt =
207 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
208 EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
209 static struct evcnt entropy_extract_intr_evcnt =
210 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract intr");
211 EVCNT_ATTACH_STATIC(entropy_extract_intr_evcnt);
212 static struct evcnt entropy_extract_fail_evcnt =
213 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
214 EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
215 static struct evcnt entropy_request_evcnt =
216 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
217 EVCNT_ATTACH_STATIC(entropy_request_evcnt);
218 static struct evcnt entropy_deplete_evcnt =
219 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
220 EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
221 static struct evcnt entropy_notify_evcnt =
222 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
223 EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
224
225 /* Sysctl knobs */
226 bool entropy_collection = 1;
227 bool entropy_depletion = 0; /* Silly! */
228
229 static const struct sysctlnode *entropy_sysctlroot;
230 static struct sysctllog *entropy_sysctllog;
231
232 /* Forward declarations */
233 static void entropy_init_cpu(void *, void *, struct cpu_info *);
234 static void entropy_fini_cpu(void *, void *, struct cpu_info *);
235 static void entropy_account_cpu(struct entropy_cpu *);
236 static void entropy_enter(const void *, size_t, unsigned);
237 static bool entropy_enter_intr(const void *, size_t, unsigned);
238 static void entropy_softintr(void *);
239 static void entropy_thread(void *);
240 static uint32_t entropy_pending(void);
241 static void entropy_pending_cpu(void *, void *, struct cpu_info *);
242 static void entropy_do_consolidate(void);
243 static void entropy_consolidate_xc(void *, void *);
244 static void entropy_notify(void);
245 static int sysctl_entropy_consolidate(SYSCTLFN_ARGS);
246 static int sysctl_entropy_gather(SYSCTLFN_ARGS);
247 static void filt_entropy_read_detach(struct knote *);
248 static int filt_entropy_read_event(struct knote *, long);
249 static void entropy_request(size_t);
250 static void rnd_add_data_1(struct krndsource *, const void *, uint32_t,
251 uint32_t);
252 static unsigned rndsource_entropybits(struct krndsource *);
253 static void rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
254 static void rndsource_to_user(struct krndsource *, rndsource_t *);
255 static void rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
256
257 /*
258 * entropy_timer()
259 *
260 * Cycle counter, time counter, or anything that changes a wee bit
261 * unpredictably.
262 */
263 static inline uint32_t
264 entropy_timer(void)
265 {
266 struct bintime bt;
267 uint32_t v;
268
269 /* If we have a CPU cycle counter, use the low 32 bits. */
270 #ifdef __HAVE_CPU_COUNTER
271 if (__predict_true(cpu_hascounter()))
272 return cpu_counter32();
273 #endif /* __HAVE_CPU_COUNTER */
274
275 /* If we're cold, tough. Can't binuptime while cold. */
276 if (__predict_false(cold))
277 return 0;
278
279 /* Fold the 128 bits of binuptime into 32 bits. */
280 binuptime(&bt);
281 v = bt.frac;
282 v ^= bt.frac >> 32;
283 v ^= bt.sec;
284 v ^= bt.sec >> 32;
285 return v;
286 }
287
288 static void
289 attach_seed_rndsource(void)
290 {
291
292 /*
293 * First called no later than entropy_init, while we are still
294 * single-threaded, so no need for RUN_ONCE.
295 */
296 if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
297 return;
298 rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
299 RND_FLAG_COLLECT_VALUE);
300 E->seed_rndsource = true;
301 }
302
303 /*
304 * entropy_init()
305 *
306 * Initialize the entropy subsystem. Panic on failure.
307 *
308 * Requires percpu(9) and sysctl(9) to be initialized.
309 */
310 static void
311 entropy_init(void)
312 {
313 uint32_t extra[2];
314 struct krndsource *rs;
315 unsigned i = 0;
316
317 KASSERT(E->stage == ENTROPY_COLD);
318
319 /* Grab some cycle counts early at boot. */
320 extra[i++] = entropy_timer();
321
322 /* Run the entropy pool cryptography self-test. */
323 if (entpool_selftest() == -1)
324 panic("entropy pool crypto self-test failed");
325
326 /* Create the sysctl directory. */
327 sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
328 CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
329 SYSCTL_DESCR("Entropy (random number sources) options"),
330 NULL, 0, NULL, 0,
331 CTL_KERN, CTL_CREATE, CTL_EOL);
332
333 /* Create the sysctl knobs. */
334 /* XXX These shouldn't be writable at securelevel>0. */
335 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
336 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
337 SYSCTL_DESCR("Automatically collect entropy from hardware"),
338 NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
339 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
340 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
341 SYSCTL_DESCR("`Deplete' entropy pool when observed"),
342 NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
343 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
344 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
345 SYSCTL_DESCR("Trigger entropy consolidation now"),
346 sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
347 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
348 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
349 SYSCTL_DESCR("Trigger entropy gathering from sources now"),
350 sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
351 /* XXX These should maybe not be readable at securelevel>0. */
352 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
353 CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
354 "needed", SYSCTL_DESCR("Systemwide entropy deficit"),
355 NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
356 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
357 CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
358 "pending", SYSCTL_DESCR("Entropy pending on CPUs"),
359 NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
360 sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
361 CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
362 "epoch", SYSCTL_DESCR("Entropy epoch"),
363 NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
364
365 /* Initialize the global state for multithreaded operation. */
366 mutex_init(&E->lock, MUTEX_DEFAULT, IPL_VM);
367 cv_init(&E->cv, "entropy");
368 selinit(&E->selq);
369
370 /* Make sure the seed source is attached. */
371 attach_seed_rndsource();
372
373 /* Note if the bootloader didn't provide a seed. */
374 if (!E->seeded)
375 printf("entropy: no seed from bootloader\n");
376
377 /* Allocate the per-CPU records for all early entropy sources. */
378 LIST_FOREACH(rs, &E->sources, list)
379 rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
380
381 /* Enter the boot cycle count to get started. */
382 extra[i++] = entropy_timer();
383 KASSERT(i == __arraycount(extra));
384 entropy_enter(extra, sizeof extra, 0);
385 explicit_memset(extra, 0, sizeof extra);
386
387 /* We are now ready for multi-threaded operation. */
388 E->stage = ENTROPY_WARM;
389 }
390
391 /*
392 * entropy_init_late()
393 *
394 * Late initialization. Panic on failure.
395 *
396 * Requires CPUs to have been detected and LWPs to have started.
397 */
398 static void
399 entropy_init_late(void)
400 {
401 int error;
402
403 KASSERT(E->stage == ENTROPY_WARM);
404
405 /* Allocate and initialize the per-CPU state. */
406 entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
407 entropy_init_cpu, entropy_fini_cpu, NULL);
408
409 /*
410 * Establish the softint at the highest softint priority level.
411 * Must happen after CPU detection.
412 */
413 entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
414 &entropy_softintr, NULL);
415 if (entropy_sih == NULL)
416 panic("unable to establish entropy softint");
417
418 /*
419 * Create the entropy housekeeping thread. Must happen after
420 * lwpinit.
421 */
422 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
423 entropy_thread, NULL, &entropy_lwp, "entbutler");
424 if (error)
425 panic("unable to create entropy housekeeping thread: %d",
426 error);
427
428 /*
429 * Wait until the per-CPU initialization has hit all CPUs
430 * before proceeding to mark the entropy system hot.
431 */
432 xc_barrier(XC_HIGHPRI);
433 E->stage = ENTROPY_HOT;
434 }
435
436 /*
437 * entropy_init_cpu(ptr, cookie, ci)
438 *
439 * percpu(9) constructor for per-CPU entropy pool.
440 */
441 static void
442 entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
443 {
444 struct entropy_cpu *ec = ptr;
445
446 ec->ec_softint_evcnt = kmem_alloc(sizeof(*ec->ec_softint_evcnt),
447 KM_SLEEP);
448 ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
449 ec->ec_pending = 0;
450 ec->ec_locked = false;
451
452 evcnt_attach_dynamic(ec->ec_softint_evcnt, EVCNT_TYPE_MISC, NULL,
453 ci->ci_cpuname, "entropy softint");
454 }
455
456 /*
457 * entropy_fini_cpu(ptr, cookie, ci)
458 *
459 * percpu(9) destructor for per-CPU entropy pool.
460 */
461 static void
462 entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
463 {
464 struct entropy_cpu *ec = ptr;
465
466 /*
467 * Zero any lingering data. Disclosure of the per-CPU pool
468 * shouldn't retroactively affect the security of any keys
469 * generated, because entpool(9) erases whatever we have just
470 * drawn out of any pool, but better safe than sorry.
471 */
472 explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
473
474 evcnt_detach(ec->ec_softint_evcnt);
475
476 kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
477 kmem_free(ec->ec_softint_evcnt, sizeof(*ec->ec_softint_evcnt));
478 }
479
480 /*
481 * entropy_seed(seed)
482 *
483 * Seed the entropy pool with seed. Meant to be called as early
484 * as possible by the bootloader; may be called before or after
485 * entropy_init. Must be called before system reaches userland.
486 * Must be called in thread or soft interrupt context, not in hard
487 * interrupt context. Must be called at most once.
488 *
489 * Overwrites the seed in place. Caller may then free the memory.
490 */
491 static void
492 entropy_seed(rndsave_t *seed)
493 {
494 SHA1_CTX ctx;
495 uint8_t digest[SHA1_DIGEST_LENGTH];
496 bool seeded;
497
498 /*
499 * Verify the checksum. If the checksum fails, take the data
500 * but ignore the entropy estimate -- the file may have been
501 * incompletely written with garbage, which is harmless to add
502 * but may not be as unpredictable as alleged.
503 */
504 SHA1Init(&ctx);
505 SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
506 SHA1Update(&ctx, seed->data, sizeof(seed->data));
507 SHA1Final(digest, &ctx);
508 CTASSERT(sizeof(seed->digest) == sizeof(digest));
509 if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
510 printf("entropy: invalid seed checksum\n");
511 seed->entropy = 0;
512 }
513 explicit_memset(&ctx, 0, sizeof ctx);
514 explicit_memset(digest, 0, sizeof digest);
515
516 /*
517 * If the entropy is insensibly large, try byte-swapping.
518 * Otherwise assume the file is corrupted and act as though it
519 * has zero entropy.
520 */
521 if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
522 seed->entropy = bswap32(seed->entropy);
523 if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
524 seed->entropy = 0;
525 }
526
527 /* Make sure the seed source is attached. */
528 attach_seed_rndsource();
529
530 /* Test and set E->seeded. */
531 if (E->stage >= ENTROPY_WARM)
532 mutex_enter(&E->lock);
533 seeded = E->seeded;
534 E->seeded = (seed->entropy > 0);
535 if (E->stage >= ENTROPY_WARM)
536 mutex_exit(&E->lock);
537
538 /*
539 * If we've been seeded, may be re-entering the same seed
540 * (e.g., bootloader vs module init, or something). No harm in
541 * entering it twice, but it contributes no additional entropy.
542 */
543 if (seeded) {
544 printf("entropy: double-seeded by bootloader\n");
545 seed->entropy = 0;
546 } else {
547 printf("entropy: entering seed from bootloader"
548 " with %u bits of entropy\n", (unsigned)seed->entropy);
549 }
550
551 /* Enter it into the pool and promptly zero it. */
552 rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
553 seed->entropy);
554 explicit_memset(seed, 0, sizeof(*seed));
555 }
556
557 /*
558 * entropy_bootrequest()
559 *
560 * Request entropy from all sources at boot, once config is
561 * complete and interrupts are running.
562 */
563 void
564 entropy_bootrequest(void)
565 {
566
567 KASSERT(E->stage >= ENTROPY_WARM);
568
569 /*
570 * Request enough to satisfy the maximum entropy shortage.
571 * This is harmless overkill if the bootloader provided a seed.
572 */
573 mutex_enter(&E->lock);
574 entropy_request(ENTROPY_CAPACITY);
575 mutex_exit(&E->lock);
576 }
577
578 /*
579 * entropy_epoch()
580 *
581 * Returns the current entropy epoch. If this changes, you should
582 * reseed. If -1, means system entropy has not yet reached full
583 * entropy or been explicitly consolidated; never reverts back to
584 * -1. Never zero, so you can always use zero as an uninitialized
585 * sentinel value meaning `reseed ASAP'.
586 *
587 * Usage model:
588 *
589 * struct foo {
590 * struct crypto_prng prng;
591 * unsigned epoch;
592 * } *foo;
593 *
594 * unsigned epoch = entropy_epoch();
595 * if (__predict_false(epoch != foo->epoch)) {
596 * uint8_t seed[32];
597 * if (entropy_extract(seed, sizeof seed, 0) != 0)
598 * warn("no entropy");
599 * crypto_prng_reseed(&foo->prng, seed, sizeof seed);
600 * foo->epoch = epoch;
601 * }
602 */
603 unsigned
604 entropy_epoch(void)
605 {
606
607 /*
608 * Unsigned int, so no need for seqlock for an atomic read, but
609 * make sure we read it afresh each time.
610 */
611 return atomic_load_relaxed(&E->epoch);
612 }
613
614 /*
615 * entropy_account_cpu(ec)
616 *
617 * Consider whether to consolidate entropy into the global pool
618 * after we just added some into the current CPU's pending pool.
619 *
620 * - If this CPU can provide enough entropy now, do so.
621 *
622 * - If this and whatever else is available on other CPUs can
623 * provide enough entropy, kick the consolidation thread.
624 *
625 * - Otherwise, do as little as possible, except maybe consolidate
626 * entropy at most once a minute.
627 *
628 * Caller must be bound to a CPU and therefore have exclusive
629 * access to ec. Will acquire and release the global lock.
630 */
631 static void
632 entropy_account_cpu(struct entropy_cpu *ec)
633 {
634 unsigned diff;
635
636 KASSERT(E->stage == ENTROPY_HOT);
637
638 /*
639 * If there's no entropy needed, and entropy has been
640 * consolidated in the last minute, do nothing.
641 */
642 if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
643 __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
644 __predict_true((time_uptime - E->timestamp) <= 60))
645 return;
646
647 /* If there's nothing pending, stop here. */
648 if (ec->ec_pending == 0)
649 return;
650
651 /* Consider consolidation, under the lock. */
652 mutex_enter(&E->lock);
653 if (E->needed != 0 && E->needed <= ec->ec_pending) {
654 /*
655 * If we have not yet attained full entropy but we can
656 * now, do so. This way we disseminate entropy
657 * promptly when it becomes available early at boot;
658 * otherwise we leave it to the entropy consolidation
659 * thread, which is rate-limited to mitigate side
660 * channels and abuse.
661 */
662 uint8_t buf[ENTPOOL_CAPACITY];
663
664 /* Transfer from the local pool to the global pool. */
665 entpool_extract(ec->ec_pool, buf, sizeof buf);
666 entpool_enter(&E->pool, buf, sizeof buf);
667 atomic_store_relaxed(&ec->ec_pending, 0);
668 atomic_store_relaxed(&E->needed, 0);
669
670 /* Notify waiters that we now have full entropy. */
671 entropy_notify();
672 entropy_immediate_evcnt.ev_count++;
673 } else if (ec->ec_pending) {
674 /* Record how much we can add to the global pool. */
675 diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
676 E->pending += diff;
677 atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
678
679 /*
680 * This should have made a difference unless we were
681 * already saturated.
682 */
683 KASSERT(diff || E->pending == ENTROPY_CAPACITY*NBBY);
684 KASSERT(E->pending);
685
686 if (E->needed <= E->pending) {
687 /*
688 * Enough entropy between all the per-CPU
689 * pools. Wake up the housekeeping thread.
690 *
691 * If we don't need any entropy, this doesn't
692 * mean much, but it is the only time we ever
693 * gather additional entropy in case the
694 * accounting has been overly optimistic. This
695 * happens at most once a minute, so there's
696 * negligible performance cost.
697 */
698 E->consolidate = true;
699 cv_broadcast(&E->cv);
700 if (E->needed == 0)
701 entropy_discretionary_evcnt.ev_count++;
702 } else {
703 /* Can't get full entropy. Keep gathering. */
704 entropy_partial_evcnt.ev_count++;
705 }
706 }
707 mutex_exit(&E->lock);
708 }
709
710 /*
711 * entropy_enter_early(buf, len, nbits)
712 *
713 * Do entropy bookkeeping globally, before we have established
714 * per-CPU pools. Enter directly into the global pool in the hope
715 * that we enter enough before the first entropy_extract to thwart
716 * iterative-guessing attacks; entropy_extract will warn if not.
717 */
718 static void
719 entropy_enter_early(const void *buf, size_t len, unsigned nbits)
720 {
721 bool notify = false;
722
723 if (E->stage >= ENTROPY_WARM)
724 mutex_enter(&E->lock);
725
726 /* Enter it into the pool. */
727 entpool_enter(&E->pool, buf, len);
728
729 /*
730 * Decide whether to notify reseed -- we will do so if either:
731 * (a) we transition from partial entropy to full entropy, or
732 * (b) we get a batch of full entropy all at once.
733 */
734 notify |= (E->needed && E->needed <= nbits);
735 notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
736
737 /* Subtract from the needed count and notify if appropriate. */
738 E->needed -= MIN(E->needed, nbits);
739 if (notify) {
740 entropy_notify();
741 entropy_immediate_evcnt.ev_count++;
742 }
743
744 if (E->stage >= ENTROPY_WARM)
745 mutex_exit(&E->lock);
746 }
747
748 /*
749 * entropy_enter(buf, len, nbits)
750 *
751 * Enter len bytes of data from buf into the system's entropy
752 * pool, stirring as necessary when the internal buffer fills up.
753 * nbits is a lower bound on the number of bits of entropy in the
754 * process that led to this sample.
755 */
756 static void
757 entropy_enter(const void *buf, size_t len, unsigned nbits)
758 {
759 struct entropy_cpu *ec;
760 uint32_t pending;
761 int s;
762
763 KASSERTMSG(!cpu_intr_p(),
764 "use entropy_enter_intr from interrupt context");
765 KASSERTMSG(howmany(nbits, NBBY) <= len,
766 "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
767
768 /* If it's too early after boot, just use entropy_enter_early. */
769 if (__predict_false(E->stage < ENTROPY_HOT)) {
770 entropy_enter_early(buf, len, nbits);
771 return;
772 }
773
774 /*
775 * Acquire the per-CPU state, blocking soft interrupts and
776 * causing hard interrupts to drop samples on the floor.
777 */
778 ec = percpu_getref(entropy_percpu);
779 s = splsoftserial();
780 KASSERT(!ec->ec_locked);
781 ec->ec_locked = true;
782 __insn_barrier();
783
784 /* Enter into the per-CPU pool. */
785 entpool_enter(ec->ec_pool, buf, len);
786
787 /* Count up what we can add. */
788 pending = ec->ec_pending;
789 pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
790 atomic_store_relaxed(&ec->ec_pending, pending);
791
792 /* Consolidate globally if appropriate based on what we added. */
793 entropy_account_cpu(ec);
794
795 /* Release the per-CPU state. */
796 KASSERT(ec->ec_locked);
797 __insn_barrier();
798 ec->ec_locked = false;
799 splx(s);
800 percpu_putref(entropy_percpu);
801 }
802
803 /*
804 * entropy_enter_intr(buf, len, nbits)
805 *
806 * Enter up to len bytes of data from buf into the system's
807 * entropy pool without stirring. nbits is a lower bound on the
808 * number of bits of entropy in the process that led to this
809 * sample. If the sample could be entered completely, assume
810 * nbits of entropy pending; otherwise assume none, since we don't
811 * know whether some parts of the sample are constant, for
812 * instance. Schedule a softint to stir the entropy pool if
813 * needed. Return true if used fully, false if truncated at all.
814 *
815 * Using this in thread context will work, but you might as well
816 * use entropy_enter in that case.
817 */
818 static bool
819 entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
820 {
821 struct entropy_cpu *ec;
822 bool fullyused = false;
823 uint32_t pending;
824
825 KASSERTMSG(howmany(nbits, NBBY) <= len,
826 "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
827
828 /* If it's too early after boot, just use entropy_enter_early. */
829 if (__predict_false(E->stage < ENTROPY_HOT)) {
830 entropy_enter_early(buf, len, nbits);
831 return true;
832 }
833
834 /*
835 * Acquire the per-CPU state. If someone is in the middle of
836 * using it, drop the sample. Otherwise, take the lock so that
837 * higher-priority interrupts will drop their samples.
838 */
839 ec = percpu_getref(entropy_percpu);
840 if (ec->ec_locked)
841 goto out0;
842 ec->ec_locked = true;
843 __insn_barrier();
844
845 /*
846 * Enter as much as we can into the per-CPU pool. If it was
847 * truncated, schedule a softint to stir the pool and stop.
848 */
849 if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
850 softint_schedule(entropy_sih);
851 goto out1;
852 }
853 fullyused = true;
854
855 /* Count up what we can contribute. */
856 pending = ec->ec_pending;
857 pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
858 atomic_store_relaxed(&ec->ec_pending, pending);
859
860 /* Schedule a softint if we added anything and it matters. */
861 if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
862 atomic_load_relaxed(&entropy_depletion)) &&
863 nbits != 0)
864 softint_schedule(entropy_sih);
865
866 out1: /* Release the per-CPU state. */
867 KASSERT(ec->ec_locked);
868 __insn_barrier();
869 ec->ec_locked = false;
870 out0: percpu_putref(entropy_percpu);
871
872 return fullyused;
873 }
874
875 /*
876 * entropy_softintr(cookie)
877 *
878 * Soft interrupt handler for entering entropy. Takes care of
879 * stirring the local CPU's entropy pool if it filled up during
880 * hard interrupts, and promptly crediting entropy from the local
881 * CPU's entropy pool to the global entropy pool if needed.
882 */
883 static void
884 entropy_softintr(void *cookie)
885 {
886 struct entropy_cpu *ec;
887
888 /*
889 * Acquire the per-CPU state. Other users can lock this only
890 * while soft interrupts are blocked. Cause hard interrupts to
891 * drop samples on the floor.
892 */
893 ec = percpu_getref(entropy_percpu);
894 KASSERT(!ec->ec_locked);
895 ec->ec_locked = true;
896 __insn_barrier();
897
898 /* Count statistics. */
899 ec->ec_softint_evcnt->ev_count++;
900
901 /* Stir the pool if necessary. */
902 entpool_stir(ec->ec_pool);
903
904 /* Consolidate globally if appropriate based on what we added. */
905 entropy_account_cpu(ec);
906
907 /* Release the per-CPU state. */
908 KASSERT(ec->ec_locked);
909 __insn_barrier();
910 ec->ec_locked = false;
911 percpu_putref(entropy_percpu);
912 }
913
914 /*
915 * entropy_thread(cookie)
916 *
917 * Handle any asynchronous entropy housekeeping.
918 */
919 static void
920 entropy_thread(void *cookie)
921 {
922 bool consolidate;
923
924 for (;;) {
925 /*
926 * Wait until there's full entropy somewhere among the
927 * CPUs, as confirmed at most once per minute, or
928 * someone wants to consolidate.
929 */
930 if (entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
931 consolidate = true;
932 } else {
933 mutex_enter(&E->lock);
934 if (!E->consolidate)
935 cv_timedwait(&E->cv, &E->lock, 60*hz);
936 consolidate = E->consolidate;
937 E->consolidate = false;
938 mutex_exit(&E->lock);
939 }
940
941 if (consolidate) {
942 /* Do it. */
943 entropy_do_consolidate();
944
945 /* Mitigate abuse. */
946 kpause("entropy", false, hz, NULL);
947 }
948 }
949 }
950
951 /*
952 * entropy_pending()
953 *
954 * Count up the amount of entropy pending on other CPUs.
955 */
956 static uint32_t
957 entropy_pending(void)
958 {
959 uint32_t pending = 0;
960
961 percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
962 return pending;
963 }
964
965 static void
966 entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
967 {
968 struct entropy_cpu *ec = ptr;
969 uint32_t *pendingp = cookie;
970 uint32_t cpu_pending;
971
972 cpu_pending = atomic_load_relaxed(&ec->ec_pending);
973 *pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
974 }
975
976 /*
977 * entropy_do_consolidate()
978 *
979 * Issue a cross-call to gather entropy on all CPUs and advance
980 * the entropy epoch.
981 */
982 static void
983 entropy_do_consolidate(void)
984 {
985 static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
986 static struct timeval lasttime; /* serialized by E->lock */
987 unsigned diff;
988 uint64_t ticket;
989
990 /* Gather entropy on all CPUs. */
991 ticket = xc_broadcast(0, &entropy_consolidate_xc, NULL, NULL);
992 xc_wait(ticket);
993
994 /* Acquire the lock to notify waiters. */
995 mutex_enter(&E->lock);
996
997 /* Count another consolidation. */
998 entropy_consolidate_evcnt.ev_count++;
999
1000 /* Note when we last consolidated, i.e. now. */
1001 E->timestamp = time_uptime;
1002
1003 /* Count the entropy that was gathered. */
1004 diff = MIN(E->needed, E->pending);
1005 atomic_store_relaxed(&E->needed, E->needed - diff);
1006 E->pending -= diff;
1007 if (__predict_false(E->needed > 0)) {
1008 if (ratecheck(&lasttime, &interval))
1009 printf("entropy: WARNING:"
1010 " consolidating less than full entropy\n");
1011 }
1012
1013 /* Advance the epoch and notify waiters. */
1014 entropy_notify();
1015
1016 /* Release the lock. */
1017 mutex_exit(&E->lock);
1018 }
1019
1020 /*
1021 * entropy_consolidate_xc(arg1, arg2)
1022 *
1023 * Extract output from the local CPU's input pool and enter it
1024 * into the global pool.
1025 */
1026 static void
1027 entropy_consolidate_xc(void *arg1 __unused, void *arg2 __unused)
1028 {
1029 struct entropy_cpu *ec;
1030 uint8_t buf[ENTPOOL_CAPACITY];
1031 uint32_t extra[7];
1032 unsigned i = 0;
1033 int s;
1034
1035 /* Grab CPU number and cycle counter to mix extra into the pool. */
1036 extra[i++] = cpu_number();
1037 extra[i++] = entropy_timer();
1038
1039 /*
1040 * Acquire the per-CPU state, blocking soft interrupts and
1041 * discarding entropy in hard interrupts, so that we can
1042 * extract from the per-CPU pool.
1043 */
1044 ec = percpu_getref(entropy_percpu);
1045 s = splsoftserial();
1046 KASSERT(!ec->ec_locked);
1047 ec->ec_locked = true;
1048 __insn_barrier();
1049 extra[i++] = entropy_timer();
1050
1051 /* Extract the data and count it no longer pending. */
1052 entpool_extract(ec->ec_pool, buf, sizeof buf);
1053 atomic_store_relaxed(&ec->ec_pending, 0);
1054 extra[i++] = entropy_timer();
1055
1056 /* Release the per-CPU state. */
1057 KASSERT(ec->ec_locked);
1058 __insn_barrier();
1059 ec->ec_locked = false;
1060 splx(s);
1061 percpu_putref(entropy_percpu);
1062 extra[i++] = entropy_timer();
1063
1064 /*
1065 * Copy over statistics, and enter the per-CPU extract and the
1066 * extra timing into the global pool, under the global lock.
1067 */
1068 mutex_enter(&E->lock);
1069 extra[i++] = entropy_timer();
1070 entpool_enter(&E->pool, buf, sizeof buf);
1071 explicit_memset(buf, 0, sizeof buf);
1072 extra[i++] = entropy_timer();
1073 KASSERT(i == __arraycount(extra));
1074 entpool_enter(&E->pool, extra, sizeof extra);
1075 explicit_memset(extra, 0, sizeof extra);
1076 mutex_exit(&E->lock);
1077 }
1078
1079 /*
1080 * entropy_notify()
1081 *
1082 * Caller just contributed entropy to the global pool. Advance
1083 * the entropy epoch and notify waiters.
1084 *
1085 * Caller must hold the global entropy lock. Except for the
1086 * `sysctl -w kern.entropy.consolidate=1` trigger, the caller must
1087 * have just have transitioned from partial entropy to full
1088 * entropy -- E->needed should be zero now.
1089 */
1090 static void
1091 entropy_notify(void)
1092 {
1093 static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1094 static struct timeval lasttime; /* serialized by E->lock */
1095 unsigned epoch;
1096
1097 KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1098
1099 /*
1100 * If this is the first time, print a message to the console
1101 * that we're ready so operators can compare it to the timing
1102 * of other events.
1103 */
1104 if (__predict_false(!rnd_initial_entropy) && E->needed == 0) {
1105 printf("entropy: ready\n");
1106 rnd_initial_entropy = 1;
1107 }
1108
1109 /* Set the epoch; roll over from UINTMAX-1 to 1. */
1110 if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
1111 ratecheck(&lasttime, &interval)) {
1112 epoch = E->epoch + 1;
1113 if (epoch == 0 || epoch == (unsigned)-1)
1114 epoch = 1;
1115 atomic_store_relaxed(&E->epoch, epoch);
1116 }
1117
1118 /* Notify waiters. */
1119 if (E->stage >= ENTROPY_WARM) {
1120 cv_broadcast(&E->cv);
1121 selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
1122 }
1123
1124 /* Count another notification. */
1125 entropy_notify_evcnt.ev_count++;
1126 }
1127
1128 /*
1129 * entropy_consolidate()
1130 *
1131 * Trigger entropy consolidation and wait for it to complete.
1132 *
1133 * This should be used sparingly, not periodically -- requiring
1134 * conscious intervention by the operator or a clear policy
1135 * decision. Otherwise, the kernel will automatically consolidate
1136 * when enough entropy has been gathered into per-CPU pools to
1137 * transition to full entropy.
1138 */
1139 void
1140 entropy_consolidate(void)
1141 {
1142 uint64_t ticket;
1143 int error;
1144
1145 KASSERT(E->stage == ENTROPY_HOT);
1146
1147 mutex_enter(&E->lock);
1148 ticket = entropy_consolidate_evcnt.ev_count;
1149 E->consolidate = true;
1150 cv_broadcast(&E->cv);
1151 while (ticket == entropy_consolidate_evcnt.ev_count) {
1152 error = cv_wait_sig(&E->cv, &E->lock);
1153 if (error)
1154 break;
1155 }
1156 mutex_exit(&E->lock);
1157 }
1158
1159 /*
1160 * sysctl -w kern.entropy.consolidate=1
1161 *
1162 * Trigger entropy consolidation and wait for it to complete.
1163 * Writable only by superuser. This, writing to /dev/random, and
1164 * ioctl(RNDADDDATA) are the only ways for the system to
1165 * consolidate entropy if the operator knows something the kernel
1166 * doesn't about how unpredictable the pending entropy pools are.
1167 */
1168 static int
1169 sysctl_entropy_consolidate(SYSCTLFN_ARGS)
1170 {
1171 struct sysctlnode node = *rnode;
1172 int arg;
1173 int error;
1174
1175 KASSERT(E->stage == ENTROPY_HOT);
1176
1177 node.sysctl_data = &arg;
1178 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1179 if (error || newp == NULL)
1180 return error;
1181 if (arg)
1182 entropy_consolidate();
1183
1184 return error;
1185 }
1186
1187 /*
1188 * sysctl -w kern.entropy.gather=1
1189 *
1190 * Trigger gathering entropy from all on-demand sources, and wait
1191 * for synchronous sources (but not asynchronous sources) to
1192 * complete. Writable only by superuser.
1193 */
1194 static int
1195 sysctl_entropy_gather(SYSCTLFN_ARGS)
1196 {
1197 struct sysctlnode node = *rnode;
1198 int arg;
1199 int error;
1200
1201 KASSERT(E->stage == ENTROPY_HOT);
1202
1203 node.sysctl_data = &arg;
1204 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1205 if (error || newp == NULL)
1206 return error;
1207 if (arg) {
1208 mutex_enter(&E->lock);
1209 entropy_request(ENTROPY_CAPACITY);
1210 mutex_exit(&E->lock);
1211 }
1212
1213 return 0;
1214 }
1215
1216 /*
1217 * entropy_extract(buf, len, flags)
1218 *
1219 * Extract len bytes from the global entropy pool into buf.
1220 *
1221 * Flags may have:
1222 *
1223 * ENTROPY_WAIT Wait for entropy if not available yet.
1224 * ENTROPY_SIG Allow interruption by a signal during wait.
1225 *
1226 * Return zero on success, or error on failure:
1227 *
1228 * EWOULDBLOCK No entropy and ENTROPY_WAIT not set.
1229 * EINTR/ERESTART No entropy, ENTROPY_SIG set, and interrupted.
1230 *
1231 * If ENTROPY_WAIT is set, allowed only in thread context. If
1232 * ENTROPY_WAIT is not set, allowed up to IPL_VM. (XXX That's
1233 * awfully high... Do we really need it in hard interrupts? This
1234 * arises from use of cprng_strong(9).)
1235 */
1236 int
1237 entropy_extract(void *buf, size_t len, int flags)
1238 {
1239 static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1240 static struct timeval lasttime; /* serialized by E->lock */
1241 int error;
1242
1243 if (ISSET(flags, ENTROPY_WAIT)) {
1244 ASSERT_SLEEPABLE();
1245 KASSERTMSG(E->stage >= ENTROPY_WARM,
1246 "can't wait for entropy until warm");
1247 }
1248
1249 /* Acquire the global lock to get at the global pool. */
1250 if (E->stage >= ENTROPY_WARM)
1251 mutex_enter(&E->lock);
1252
1253 /* Count up request for entropy in interrupt context. */
1254 if (cpu_intr_p())
1255 entropy_extract_intr_evcnt.ev_count++;
1256
1257 /* Wait until there is enough entropy in the system. */
1258 error = 0;
1259 while (E->needed) {
1260 /* Ask for more, synchronously if possible. */
1261 entropy_request(len);
1262
1263 /* If we got enough, we're done. */
1264 if (E->needed == 0) {
1265 KASSERT(error == 0);
1266 break;
1267 }
1268
1269 /* If not waiting, stop here. */
1270 if (!ISSET(flags, ENTROPY_WAIT)) {
1271 error = EWOULDBLOCK;
1272 break;
1273 }
1274
1275 /* Wait for some entropy to come in and try again. */
1276 KASSERT(E->stage >= ENTROPY_WARM);
1277 if (ISSET(flags, ENTROPY_SIG)) {
1278 error = cv_wait_sig(&E->cv, &E->lock);
1279 if (error)
1280 break;
1281 } else {
1282 cv_wait(&E->cv, &E->lock);
1283 }
1284 }
1285
1286 /* Count failure -- but fill the buffer nevertheless. */
1287 if (error)
1288 entropy_extract_fail_evcnt.ev_count++;
1289
1290 /*
1291 * Report a warning if we have never yet reached full entropy.
1292 * This is the only case where we consider entropy to be
1293 * `depleted' without kern.entropy.depletion enabled -- when we
1294 * only have partial entropy, an adversary may be able to
1295 * narrow the state of the pool down to a small number of
1296 * possibilities; the output then enables them to confirm a
1297 * guess, reducing its entropy from the adversary's perspective
1298 * to zero.
1299 */
1300 if (__predict_false(E->epoch == (unsigned)-1)) {
1301 if (ratecheck(&lasttime, &interval))
1302 printf("entropy: WARNING:"
1303 " extracting entropy too early\n");
1304 atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
1305 }
1306
1307 /* Extract data from the pool, and `deplete' if we're doing that. */
1308 entpool_extract(&E->pool, buf, len);
1309 if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
1310 error == 0) {
1311 unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
1312
1313 atomic_store_relaxed(&E->needed,
1314 E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
1315 entropy_deplete_evcnt.ev_count++;
1316 }
1317
1318 /* Release the global lock and return the error. */
1319 if (E->stage >= ENTROPY_WARM)
1320 mutex_exit(&E->lock);
1321 return error;
1322 }
1323
1324 /*
1325 * entropy_poll(events)
1326 *
1327 * Return the subset of events ready, and if it is not all of
1328 * events, record curlwp as waiting for entropy.
1329 */
1330 int
1331 entropy_poll(int events)
1332 {
1333 int revents = 0;
1334
1335 KASSERT(E->stage >= ENTROPY_WARM);
1336
1337 /* Always ready for writing. */
1338 revents |= events & (POLLOUT|POLLWRNORM);
1339
1340 /* Narrow it down to reads. */
1341 events &= POLLIN|POLLRDNORM;
1342 if (events == 0)
1343 return revents;
1344
1345 /*
1346 * If we have reached full entropy and we're not depleting
1347 * entropy, we are forever ready.
1348 */
1349 if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
1350 __predict_true(!atomic_load_relaxed(&entropy_depletion)))
1351 return revents | events;
1352
1353 /*
1354 * Otherwise, check whether we need entropy under the lock. If
1355 * we don't, we're ready; if we do, add ourselves to the queue.
1356 */
1357 mutex_enter(&E->lock);
1358 if (E->needed == 0)
1359 revents |= events;
1360 else
1361 selrecord(curlwp, &E->selq);
1362 mutex_exit(&E->lock);
1363
1364 return revents;
1365 }
1366
1367 /*
1368 * filt_entropy_read_detach(kn)
1369 *
1370 * struct filterops::f_detach callback for entropy read events:
1371 * remove kn from the list of waiters.
1372 */
1373 static void
1374 filt_entropy_read_detach(struct knote *kn)
1375 {
1376
1377 KASSERT(E->stage >= ENTROPY_WARM);
1378
1379 mutex_enter(&E->lock);
1380 SLIST_REMOVE(&E->selq.sel_klist, kn, knote, kn_selnext);
1381 mutex_exit(&E->lock);
1382 }
1383
1384 /*
1385 * filt_entropy_read_event(kn, hint)
1386 *
1387 * struct filterops::f_event callback for entropy read events:
1388 * poll for entropy. Caller must hold the global entropy lock if
1389 * hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
1390 */
1391 static int
1392 filt_entropy_read_event(struct knote *kn, long hint)
1393 {
1394 int ret;
1395
1396 KASSERT(E->stage >= ENTROPY_WARM);
1397
1398 /* Acquire the lock, if caller is outside entropy subsystem. */
1399 if (hint == NOTE_SUBMIT)
1400 KASSERT(mutex_owned(&E->lock));
1401 else
1402 mutex_enter(&E->lock);
1403
1404 /*
1405 * If we still need entropy, can't read anything; if not, can
1406 * read arbitrarily much.
1407 */
1408 if (E->needed != 0) {
1409 ret = 0;
1410 } else {
1411 if (atomic_load_relaxed(&entropy_depletion))
1412 kn->kn_data = ENTROPY_CAPACITY*NBBY;
1413 else
1414 kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
1415 ret = 1;
1416 }
1417
1418 /* Release the lock, if caller is outside entropy subsystem. */
1419 if (hint == NOTE_SUBMIT)
1420 KASSERT(mutex_owned(&E->lock));
1421 else
1422 mutex_exit(&E->lock);
1423
1424 return ret;
1425 }
1426
1427 static const struct filterops entropy_read_filtops = {
1428 .f_isfd = 1, /* XXX Makes sense only for /dev/u?random. */
1429 .f_attach = NULL,
1430 .f_detach = filt_entropy_read_detach,
1431 .f_event = filt_entropy_read_event,
1432 };
1433
1434 /*
1435 * entropy_kqfilter(kn)
1436 *
1437 * Register kn to receive entropy event notifications. May be
1438 * EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
1439 */
1440 int
1441 entropy_kqfilter(struct knote *kn)
1442 {
1443
1444 KASSERT(E->stage >= ENTROPY_WARM);
1445
1446 switch (kn->kn_filter) {
1447 case EVFILT_READ:
1448 /* Enter into the global select queue. */
1449 mutex_enter(&E->lock);
1450 kn->kn_fop = &entropy_read_filtops;
1451 SLIST_INSERT_HEAD(&E->selq.sel_klist, kn, kn_selnext);
1452 mutex_exit(&E->lock);
1453 return 0;
1454 case EVFILT_WRITE:
1455 /* Can always dump entropy into the system. */
1456 kn->kn_fop = &seltrue_filtops;
1457 return 0;
1458 default:
1459 return EINVAL;
1460 }
1461 }
1462
1463 /*
1464 * rndsource_setcb(rs, get, getarg)
1465 *
1466 * Set the request callback for the entropy source rs, if it can
1467 * provide entropy on demand. Must precede rnd_attach_source.
1468 */
1469 void
1470 rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
1471 void *getarg)
1472 {
1473
1474 rs->get = get;
1475 rs->getarg = getarg;
1476 }
1477
1478 /*
1479 * rnd_attach_source(rs, name, type, flags)
1480 *
1481 * Attach the entropy source rs. Must be done after
1482 * rndsource_setcb, if any, and before any calls to rnd_add_data.
1483 */
1484 void
1485 rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
1486 uint32_t flags)
1487 {
1488 uint32_t extra[4];
1489 unsigned i = 0;
1490
1491 /* Grab cycle counter to mix extra into the pool. */
1492 extra[i++] = entropy_timer();
1493
1494 /*
1495 * Apply some standard flags:
1496 *
1497 * - We do not bother with network devices by default, for
1498 * hysterical raisins (perhaps: because it is often the case
1499 * that an adversary can influence network packet timings).
1500 */
1501 switch (type) {
1502 case RND_TYPE_NET:
1503 flags |= RND_FLAG_NO_COLLECT;
1504 break;
1505 }
1506
1507 /* Sanity-check the callback if RND_FLAG_HASCB is set. */
1508 KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
1509
1510 /* Initialize the random source. */
1511 memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
1512 strlcpy(rs->name, name, sizeof(rs->name));
1513 rs->total = 0;
1514 rs->type = type;
1515 rs->flags = flags;
1516 if (E->stage >= ENTROPY_WARM)
1517 rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
1518 extra[i++] = entropy_timer();
1519
1520 /* Wire it into the global list of random sources. */
1521 if (E->stage >= ENTROPY_WARM)
1522 mutex_enter(&E->lock);
1523 LIST_INSERT_HEAD(&E->sources, rs, list);
1524 if (E->stage >= ENTROPY_WARM)
1525 mutex_exit(&E->lock);
1526 extra[i++] = entropy_timer();
1527
1528 /* Request that it provide entropy ASAP, if we can. */
1529 if (ISSET(flags, RND_FLAG_HASCB))
1530 (*rs->get)(ENTROPY_CAPACITY, rs->getarg);
1531 extra[i++] = entropy_timer();
1532
1533 /* Mix the extra into the pool. */
1534 KASSERT(i == __arraycount(extra));
1535 entropy_enter(extra, sizeof extra, 0);
1536 explicit_memset(extra, 0, sizeof extra);
1537 }
1538
1539 /*
1540 * rnd_detach_source(rs)
1541 *
1542 * Detach the entropy source rs. May sleep waiting for users to
1543 * drain. Further use is not allowed.
1544 */
1545 void
1546 rnd_detach_source(struct krndsource *rs)
1547 {
1548
1549 /*
1550 * If we're cold (shouldn't happen, but hey), just remove it
1551 * from the list -- there's nothing allocated.
1552 */
1553 if (E->stage == ENTROPY_COLD) {
1554 LIST_REMOVE(rs, list);
1555 return;
1556 }
1557
1558 /* We may have to wait for entropy_request. */
1559 ASSERT_SLEEPABLE();
1560
1561 /* Wait until the source list is not in use, and remove it. */
1562 mutex_enter(&E->lock);
1563 while (E->sourcelock)
1564 cv_wait(&E->cv, &E->lock);
1565 LIST_REMOVE(rs, list);
1566 mutex_exit(&E->lock);
1567
1568 /* Free the per-CPU data. */
1569 percpu_free(rs->state, sizeof(struct rndsource_cpu));
1570 }
1571
1572 /*
1573 * rnd_lock_sources()
1574 *
1575 * Prevent changes to the list of rndsources while we iterate it.
1576 * Interruptible. Caller must hold the global entropy lock. If
1577 * successful, no rndsource will go away until rnd_unlock_sources
1578 * even while the caller releases the global entropy lock.
1579 */
1580 static int
1581 rnd_lock_sources(void)
1582 {
1583 int error;
1584
1585 KASSERT(mutex_owned(&E->lock));
1586
1587 while (E->sourcelock) {
1588 error = cv_wait_sig(&E->cv, &E->lock);
1589 if (error)
1590 return error;
1591 }
1592
1593 E->sourcelock = curlwp;
1594 return 0;
1595 }
1596
1597 /*
1598 * rnd_trylock_sources()
1599 *
1600 * Try to lock the list of sources, but if it's already locked,
1601 * fail. Caller must hold the global entropy lock. If
1602 * successful, no rndsource will go away until rnd_unlock_sources
1603 * even while the caller releases the global entropy lock.
1604 */
1605 static bool
1606 rnd_trylock_sources(void)
1607 {
1608
1609 KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1610
1611 if (E->sourcelock)
1612 return false;
1613 E->sourcelock = curlwp;
1614 return true;
1615 }
1616
1617 /*
1618 * rnd_unlock_sources()
1619 *
1620 * Unlock the list of sources after rnd_lock_sources or
1621 * rnd_trylock_sources. Caller must hold the global entropy lock.
1622 */
1623 static void
1624 rnd_unlock_sources(void)
1625 {
1626
1627 KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1628
1629 KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
1630 curlwp, E->sourcelock);
1631 E->sourcelock = NULL;
1632 if (E->stage >= ENTROPY_WARM)
1633 cv_broadcast(&E->cv);
1634 }
1635
1636 /*
1637 * rnd_sources_locked()
1638 *
1639 * True if we hold the list of rndsources locked, for diagnostic
1640 * assertions.
1641 */
1642 static bool __diagused
1643 rnd_sources_locked(void)
1644 {
1645
1646 return E->sourcelock == curlwp;
1647 }
1648
1649 /*
1650 * entropy_request(nbytes)
1651 *
1652 * Request nbytes bytes of entropy from all sources in the system.
1653 * OK if we overdo it. Caller must hold the global entropy lock;
1654 * will release and re-acquire it.
1655 */
1656 static void
1657 entropy_request(size_t nbytes)
1658 {
1659 struct krndsource *rs;
1660
1661 KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1662
1663 /*
1664 * If there is a request in progress, let it proceed.
1665 * Otherwise, note that a request is in progress to avoid
1666 * reentry and to block rnd_detach_source until we're done.
1667 */
1668 if (!rnd_trylock_sources())
1669 return;
1670 entropy_request_evcnt.ev_count++;
1671
1672 /* Clamp to the maximum reasonable request. */
1673 nbytes = MIN(nbytes, ENTROPY_CAPACITY);
1674
1675 /* Walk the list of sources. */
1676 LIST_FOREACH(rs, &E->sources, list) {
1677 /* Skip sources without callbacks. */
1678 if (!ISSET(rs->flags, RND_FLAG_HASCB))
1679 continue;
1680
1681 /* Drop the lock while we call the callback. */
1682 if (E->stage >= ENTROPY_WARM)
1683 mutex_exit(&E->lock);
1684 (*rs->get)(nbytes, rs->getarg);
1685 if (E->stage >= ENTROPY_WARM)
1686 mutex_enter(&E->lock);
1687 }
1688
1689 /* Notify rnd_detach_source that the request is done. */
1690 rnd_unlock_sources();
1691 }
1692
1693 /*
1694 * rnd_add_uint32(rs, value)
1695 *
1696 * Enter 32 bits of data from an entropy source into the pool.
1697 *
1698 * If rs is NULL, may not be called from interrupt context.
1699 *
1700 * If rs is non-NULL, may be called from any context. May drop
1701 * data if called from interrupt context.
1702 */
1703 void
1704 rnd_add_uint32(struct krndsource *rs, uint32_t value)
1705 {
1706
1707 rnd_add_data(rs, &value, sizeof value, 0);
1708 }
1709
1710 void
1711 _rnd_add_uint32(struct krndsource *rs, uint32_t value)
1712 {
1713
1714 rnd_add_data(rs, &value, sizeof value, 0);
1715 }
1716
1717 void
1718 _rnd_add_uint64(struct krndsource *rs, uint64_t value)
1719 {
1720
1721 rnd_add_data(rs, &value, sizeof value, 0);
1722 }
1723
1724 /*
1725 * rnd_add_data(rs, buf, len, entropybits)
1726 *
1727 * Enter data from an entropy source into the pool, with a
1728 * driver's estimate of how much entropy the physical source of
1729 * the data has. If RND_FLAG_NO_ESTIMATE, we ignore the driver's
1730 * estimate and treat it as zero.
1731 *
1732 * If rs is NULL, may not be called from interrupt context.
1733 *
1734 * If rs is non-NULL, may be called from any context. May drop
1735 * data if called from interrupt context.
1736 */
1737 void
1738 rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
1739 uint32_t entropybits)
1740 {
1741 uint32_t extra;
1742 uint32_t flags;
1743
1744 KASSERTMSG(howmany(entropybits, NBBY) <= len,
1745 "%s: impossible entropy rate:"
1746 " %"PRIu32" bits in %"PRIu32"-byte string",
1747 rs ? rs->name : "(anonymous)", entropybits, len);
1748
1749 /* If there's no rndsource, just enter the data and time now. */
1750 if (rs == NULL) {
1751 entropy_enter(buf, len, entropybits);
1752 extra = entropy_timer();
1753 entropy_enter(&extra, sizeof extra, 0);
1754 explicit_memset(&extra, 0, sizeof extra);
1755 return;
1756 }
1757
1758 /* Load a snapshot of the flags. Ioctl may change them under us. */
1759 flags = atomic_load_relaxed(&rs->flags);
1760
1761 /*
1762 * Skip if:
1763 * - we're not collecting entropy, or
1764 * - the operator doesn't want to collect entropy from this, or
1765 * - neither data nor timings are being collected from this.
1766 */
1767 if (!atomic_load_relaxed(&entropy_collection) ||
1768 ISSET(flags, RND_FLAG_NO_COLLECT) ||
1769 !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
1770 return;
1771
1772 /* If asked, ignore the estimate. */
1773 if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
1774 entropybits = 0;
1775
1776 /* If we are collecting data, enter them. */
1777 if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
1778 rnd_add_data_1(rs, buf, len, entropybits);
1779
1780 /* If we are collecting timings, enter one. */
1781 if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
1782 extra = entropy_timer();
1783 rnd_add_data_1(rs, &extra, sizeof extra, 0);
1784 }
1785 }
1786
1787 /*
1788 * rnd_add_data_1(rs, buf, len, entropybits)
1789 *
1790 * Internal subroutine to call either entropy_enter_intr, if we're
1791 * in interrupt context, or entropy_enter if not, and to count the
1792 * entropy in an rndsource.
1793 */
1794 static void
1795 rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
1796 uint32_t entropybits)
1797 {
1798 bool fullyused;
1799
1800 /*
1801 * If we're in interrupt context, use entropy_enter_intr and
1802 * take note of whether it consumed the full sample; if not,
1803 * use entropy_enter, which always consumes the full sample.
1804 */
1805 if (curlwp && cpu_intr_p()) {
1806 fullyused = entropy_enter_intr(buf, len, entropybits);
1807 } else {
1808 entropy_enter(buf, len, entropybits);
1809 fullyused = true;
1810 }
1811
1812 /*
1813 * If we used the full sample, note how many bits were
1814 * contributed from this source.
1815 */
1816 if (fullyused) {
1817 if (E->stage < ENTROPY_HOT) {
1818 if (E->stage >= ENTROPY_WARM)
1819 mutex_enter(&E->lock);
1820 rs->total += MIN(UINT_MAX - rs->total, entropybits);
1821 if (E->stage >= ENTROPY_WARM)
1822 mutex_exit(&E->lock);
1823 } else {
1824 struct rndsource_cpu *rc = percpu_getref(rs->state);
1825 unsigned nbits = rc->rc_nbits;
1826
1827 nbits += MIN(UINT_MAX - nbits, entropybits);
1828 atomic_store_relaxed(&rc->rc_nbits, nbits);
1829 percpu_putref(rs->state);
1830 }
1831 }
1832 }
1833
1834 /*
1835 * rnd_add_data_sync(rs, buf, len, entropybits)
1836 *
1837 * Same as rnd_add_data. Originally used in rndsource callbacks,
1838 * to break an unnecessary cycle; no longer really needed.
1839 */
1840 void
1841 rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
1842 uint32_t entropybits)
1843 {
1844
1845 rnd_add_data(rs, buf, len, entropybits);
1846 }
1847
1848 /*
1849 * rndsource_entropybits(rs)
1850 *
1851 * Return approximately the number of bits of entropy that have
1852 * been contributed via rs so far. Approximate if other CPUs may
1853 * be calling rnd_add_data concurrently.
1854 */
1855 static unsigned
1856 rndsource_entropybits(struct krndsource *rs)
1857 {
1858 unsigned nbits = rs->total;
1859
1860 KASSERT(E->stage >= ENTROPY_WARM);
1861 KASSERT(rnd_sources_locked());
1862 percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
1863 return nbits;
1864 }
1865
1866 static void
1867 rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
1868 {
1869 struct rndsource_cpu *rc = ptr;
1870 unsigned *nbitsp = cookie;
1871 unsigned cpu_nbits;
1872
1873 cpu_nbits = atomic_load_relaxed(&rc->rc_nbits);
1874 *nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
1875 }
1876
1877 /*
1878 * rndsource_to_user(rs, urs)
1879 *
1880 * Copy a description of rs out to urs for userland.
1881 */
1882 static void
1883 rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
1884 {
1885
1886 KASSERT(E->stage >= ENTROPY_WARM);
1887 KASSERT(rnd_sources_locked());
1888
1889 /* Avoid kernel memory disclosure. */
1890 memset(urs, 0, sizeof(*urs));
1891
1892 CTASSERT(sizeof(urs->name) == sizeof(rs->name));
1893 strlcpy(urs->name, rs->name, sizeof(urs->name));
1894 urs->total = rndsource_entropybits(rs);
1895 urs->type = rs->type;
1896 urs->flags = atomic_load_relaxed(&rs->flags);
1897 }
1898
1899 /*
1900 * rndsource_to_user_est(rs, urse)
1901 *
1902 * Copy a description of rs and estimation statistics out to urse
1903 * for userland.
1904 */
1905 static void
1906 rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
1907 {
1908
1909 KASSERT(E->stage >= ENTROPY_WARM);
1910 KASSERT(rnd_sources_locked());
1911
1912 /* Avoid kernel memory disclosure. */
1913 memset(urse, 0, sizeof(*urse));
1914
1915 /* Copy out the rndsource description. */
1916 rndsource_to_user(rs, &urse->rt);
1917
1918 /* Zero out the statistics because we don't do estimation. */
1919 urse->dt_samples = 0;
1920 urse->dt_total = 0;
1921 urse->dv_samples = 0;
1922 urse->dv_total = 0;
1923 }
1924
1925 /*
1926 * entropy_ioctl(cmd, data)
1927 *
1928 * Handle various /dev/random ioctl queries.
1929 */
1930 int
1931 entropy_ioctl(unsigned long cmd, void *data)
1932 {
1933 struct krndsource *rs;
1934 bool privileged;
1935 int error;
1936
1937 KASSERT(E->stage >= ENTROPY_WARM);
1938
1939 /* Verify user's authorization to perform the ioctl. */
1940 switch (cmd) {
1941 case RNDGETENTCNT:
1942 case RNDGETPOOLSTAT:
1943 case RNDGETSRCNUM:
1944 case RNDGETSRCNAME:
1945 case RNDGETESTNUM:
1946 case RNDGETESTNAME:
1947 error = kauth_authorize_device(curlwp->l_cred,
1948 KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
1949 break;
1950 case RNDCTL:
1951 error = kauth_authorize_device(curlwp->l_cred,
1952 KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
1953 break;
1954 case RNDADDDATA:
1955 error = kauth_authorize_device(curlwp->l_cred,
1956 KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
1957 /* Ascertain whether the user's inputs should be counted. */
1958 if (kauth_authorize_device(curlwp->l_cred,
1959 KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
1960 NULL, NULL, NULL, NULL) == 0)
1961 privileged = true;
1962 break;
1963 default: {
1964 /*
1965 * XXX Hack to avoid changing module ABI so this can be
1966 * pulled up. Later, we can just remove the argument.
1967 */
1968 static const struct fileops fops = {
1969 .fo_ioctl = rnd_system_ioctl,
1970 };
1971 struct file f = {
1972 .f_ops = &fops,
1973 };
1974 MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
1975 enosys(), error);
1976 #if defined(_LP64)
1977 if (error == ENOSYS)
1978 MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
1979 enosys(), error);
1980 #endif
1981 if (error == ENOSYS)
1982 error = ENOTTY;
1983 break;
1984 }
1985 }
1986
1987 /* If anything went wrong with authorization, stop here. */
1988 if (error)
1989 return error;
1990
1991 /* Dispatch on the command. */
1992 switch (cmd) {
1993 case RNDGETENTCNT: { /* Get current entropy count in bits. */
1994 uint32_t *countp = data;
1995
1996 mutex_enter(&E->lock);
1997 *countp = ENTROPY_CAPACITY*NBBY - E->needed;
1998 mutex_exit(&E->lock);
1999
2000 break;
2001 }
2002 case RNDGETPOOLSTAT: { /* Get entropy pool statistics. */
2003 rndpoolstat_t *pstat = data;
2004
2005 mutex_enter(&E->lock);
2006
2007 /* parameters */
2008 pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
2009 pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
2010 pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
2011
2012 /* state */
2013 pstat->added = 0; /* XXX total entropy_enter count */
2014 pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
2015 pstat->removed = 0; /* XXX total entropy_extract count */
2016 pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
2017 pstat->generated = 0; /* XXX bits of data...fabricated? */
2018
2019 mutex_exit(&E->lock);
2020 break;
2021 }
2022 case RNDGETSRCNUM: { /* Get entropy sources by number. */
2023 rndstat_t *stat = data;
2024 uint32_t start = 0, i = 0;
2025
2026 /* Skip if none requested; fail if too many requested. */
2027 if (stat->count == 0)
2028 break;
2029 if (stat->count > RND_MAXSTATCOUNT)
2030 return EINVAL;
2031
2032 /*
2033 * Under the lock, find the first one, copy out as many
2034 * as requested, and report how many we copied out.
2035 */
2036 mutex_enter(&E->lock);
2037 error = rnd_lock_sources();
2038 if (error) {
2039 mutex_exit(&E->lock);
2040 return error;
2041 }
2042 LIST_FOREACH(rs, &E->sources, list) {
2043 if (start++ == stat->start)
2044 break;
2045 }
2046 while (i < stat->count && rs != NULL) {
2047 mutex_exit(&E->lock);
2048 rndsource_to_user(rs, &stat->source[i++]);
2049 mutex_enter(&E->lock);
2050 rs = LIST_NEXT(rs, list);
2051 }
2052 KASSERT(i <= stat->count);
2053 stat->count = i;
2054 rnd_unlock_sources();
2055 mutex_exit(&E->lock);
2056 break;
2057 }
2058 case RNDGETESTNUM: { /* Get sources and estimates by number. */
2059 rndstat_est_t *estat = data;
2060 uint32_t start = 0, i = 0;
2061
2062 /* Skip if none requested; fail if too many requested. */
2063 if (estat->count == 0)
2064 break;
2065 if (estat->count > RND_MAXSTATCOUNT)
2066 return EINVAL;
2067
2068 /*
2069 * Under the lock, find the first one, copy out as many
2070 * as requested, and report how many we copied out.
2071 */
2072 mutex_enter(&E->lock);
2073 error = rnd_lock_sources();
2074 if (error) {
2075 mutex_exit(&E->lock);
2076 return error;
2077 }
2078 LIST_FOREACH(rs, &E->sources, list) {
2079 if (start++ == estat->start)
2080 break;
2081 }
2082 while (i < estat->count && rs != NULL) {
2083 mutex_exit(&E->lock);
2084 rndsource_to_user_est(rs, &estat->source[i++]);
2085 mutex_enter(&E->lock);
2086 rs = LIST_NEXT(rs, list);
2087 }
2088 KASSERT(i <= estat->count);
2089 estat->count = i;
2090 rnd_unlock_sources();
2091 mutex_exit(&E->lock);
2092 break;
2093 }
2094 case RNDGETSRCNAME: { /* Get entropy sources by name. */
2095 rndstat_name_t *nstat = data;
2096 const size_t n = sizeof(rs->name);
2097
2098 CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
2099
2100 /*
2101 * Under the lock, search by name. If found, copy it
2102 * out; if not found, fail with ENOENT.
2103 */
2104 mutex_enter(&E->lock);
2105 error = rnd_lock_sources();
2106 if (error) {
2107 mutex_exit(&E->lock);
2108 return error;
2109 }
2110 LIST_FOREACH(rs, &E->sources, list) {
2111 if (strncmp(rs->name, nstat->name, n) == 0)
2112 break;
2113 }
2114 if (rs != NULL) {
2115 mutex_exit(&E->lock);
2116 rndsource_to_user(rs, &nstat->source);
2117 mutex_enter(&E->lock);
2118 } else {
2119 error = ENOENT;
2120 }
2121 rnd_unlock_sources();
2122 mutex_exit(&E->lock);
2123 break;
2124 }
2125 case RNDGETESTNAME: { /* Get sources and estimates by name. */
2126 rndstat_est_name_t *enstat = data;
2127 const size_t n = sizeof(rs->name);
2128
2129 CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
2130
2131 /*
2132 * Under the lock, search by name. If found, copy it
2133 * out; if not found, fail with ENOENT.
2134 */
2135 mutex_enter(&E->lock);
2136 error = rnd_lock_sources();
2137 if (error) {
2138 mutex_exit(&E->lock);
2139 return error;
2140 }
2141 LIST_FOREACH(rs, &E->sources, list) {
2142 if (strncmp(rs->name, enstat->name, n) == 0)
2143 break;
2144 }
2145 if (rs != NULL) {
2146 mutex_exit(&E->lock);
2147 rndsource_to_user_est(rs, &enstat->source);
2148 mutex_enter(&E->lock);
2149 } else {
2150 error = ENOENT;
2151 }
2152 rnd_unlock_sources();
2153 mutex_exit(&E->lock);
2154 break;
2155 }
2156 case RNDCTL: { /* Modify entropy source flags. */
2157 rndctl_t *rndctl = data;
2158 const size_t n = sizeof(rs->name);
2159 uint32_t flags;
2160
2161 CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
2162
2163 /* Whitelist the flags that user can change. */
2164 rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2165
2166 /*
2167 * For each matching rndsource, either by type if
2168 * specified or by name if not, set the masked flags.
2169 */
2170 mutex_enter(&E->lock);
2171 LIST_FOREACH(rs, &E->sources, list) {
2172 if (rndctl->type != 0xff) {
2173 if (rs->type != rndctl->type)
2174 continue;
2175 } else {
2176 if (strncmp(rs->name, rndctl->name, n) != 0)
2177 continue;
2178 }
2179 flags = rs->flags & ~rndctl->mask;
2180 flags |= rndctl->flags & rndctl->mask;
2181 atomic_store_relaxed(&rs->flags, flags);
2182 }
2183 mutex_exit(&E->lock);
2184 break;
2185 }
2186 case RNDADDDATA: { /* Enter seed into entropy pool. */
2187 rnddata_t *rdata = data;
2188 unsigned entropybits = 0;
2189
2190 if (!atomic_load_relaxed(&entropy_collection))
2191 break; /* thanks but no thanks */
2192 if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
2193 return EINVAL;
2194
2195 /*
2196 * This ioctl serves as the userland alternative a
2197 * bootloader-provided seed -- typically furnished by
2198 * /etc/rc.d/random_seed. We accept the user's entropy
2199 * claim only if
2200 *
2201 * (a) the user is privileged, and
2202 * (b) we have not entered a bootloader seed.
2203 *
2204 * under the assumption that the user may use this to
2205 * load a seed from disk that we have already loaded
2206 * from the bootloader, so we don't double-count it.
2207 */
2208 if (privileged && rdata->entropy && rdata->len) {
2209 mutex_enter(&E->lock);
2210 if (!E->seeded) {
2211 entropybits = MIN(rdata->entropy,
2212 MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
2213 E->seeded = true;
2214 }
2215 mutex_exit(&E->lock);
2216 }
2217
2218 /* Enter the data and consolidate entropy. */
2219 rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
2220 entropybits);
2221 entropy_consolidate();
2222 break;
2223 }
2224 default:
2225 error = ENOTTY;
2226 }
2227
2228 /* Return any error that may have come up. */
2229 return error;
2230 }
2231
2232 /* Legacy entry points */
2233
2234 void
2235 rnd_seed(void *seed, size_t len)
2236 {
2237
2238 if (len != sizeof(rndsave_t)) {
2239 printf("entropy: invalid seed length: %zu,"
2240 " expected sizeof(rndsave_t) = %zu\n",
2241 len, sizeof(rndsave_t));
2242 return;
2243 }
2244 entropy_seed(seed);
2245 }
2246
2247 void
2248 rnd_init(void)
2249 {
2250
2251 entropy_init();
2252 }
2253
2254 void
2255 rnd_init_softint(void)
2256 {
2257
2258 entropy_init_late();
2259 }
2260
2261 int
2262 rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
2263 {
2264
2265 return entropy_ioctl(cmd, data);
2266 }
2267