Home | History | Annotate | Line # | Download | only in kern
kern_entropy.c revision 1.27
      1 /*	$NetBSD: kern_entropy.c,v 1.27 2021/01/13 23:53:23 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Entropy subsystem
     34  *
     35  *	* Each CPU maintains a per-CPU entropy pool so that gathering
     36  *	  entropy requires no interprocessor synchronization, except
     37  *	  early at boot when we may be scrambling to gather entropy as
     38  *	  soon as possible.
     39  *
     40  *	  - entropy_enter gathers entropy and never drops it on the
     41  *	    floor, at the cost of sometimes having to do cryptography.
     42  *
     43  *	  - entropy_enter_intr gathers entropy or drops it on the
     44  *	    floor, with low latency.  Work to stir the pool or kick the
     45  *	    housekeeping thread is scheduled in soft interrupts.
     46  *
     47  *	* entropy_enter immediately enters into the global pool if it
     48  *	  can transition to full entropy in one swell foop.  Otherwise,
     49  *	  it defers to a housekeeping thread that consolidates entropy,
     50  *	  but only when the CPUs collectively have full entropy, in
     51  *	  order to mitigate iterative-guessing attacks.
     52  *
     53  *	* The entropy housekeeping thread continues to consolidate
     54  *	  entropy even after we think we have full entropy, in case we
     55  *	  are wrong, but is limited to one discretionary consolidation
     56  *	  per minute, and only when new entropy is actually coming in,
     57  *	  to limit performance impact.
     58  *
     59  *	* The entropy epoch is the number that changes when we
     60  *	  transition from partial entropy to full entropy, so that
     61  *	  users can easily determine when to reseed.  This also
     62  *	  facilitates an operator explicitly causing everything to
     63  *	  reseed by sysctl -w kern.entropy.consolidate=1.
     64  *
     65  *	* No entropy estimation based on the sample values, which is a
     66  *	  contradiction in terms and a potential source of side
     67  *	  channels.  It is the responsibility of the driver author to
     68  *	  study how predictable the physical source of input can ever
     69  *	  be, and to furnish a lower bound on the amount of entropy it
     70  *	  has.
     71  *
     72  *	* Entropy depletion is available for testing (or if you're into
     73  *	  that sort of thing), with sysctl -w kern.entropy.depletion=1;
     74  *	  the logic to support it is small, to minimize chance of bugs.
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.27 2021/01/13 23:53:23 riastradh Exp $");
     79 
     80 #include <sys/param.h>
     81 #include <sys/types.h>
     82 #include <sys/atomic.h>
     83 #include <sys/compat_stub.h>
     84 #include <sys/condvar.h>
     85 #include <sys/cpu.h>
     86 #include <sys/entropy.h>
     87 #include <sys/errno.h>
     88 #include <sys/evcnt.h>
     89 #include <sys/event.h>
     90 #include <sys/file.h>
     91 #include <sys/intr.h>
     92 #include <sys/kauth.h>
     93 #include <sys/kernel.h>
     94 #include <sys/kmem.h>
     95 #include <sys/kthread.h>
     96 #include <sys/module_hook.h>
     97 #include <sys/mutex.h>
     98 #include <sys/percpu.h>
     99 #include <sys/poll.h>
    100 #include <sys/queue.h>
    101 #include <sys/rnd.h>		/* legacy kernel API */
    102 #include <sys/rndio.h>		/* userland ioctl interface */
    103 #include <sys/rndsource.h>	/* kernel rndsource driver API */
    104 #include <sys/select.h>
    105 #include <sys/selinfo.h>
    106 #include <sys/sha1.h>		/* for boot seed checksum */
    107 #include <sys/stdint.h>
    108 #include <sys/sysctl.h>
    109 #include <sys/syslog.h>
    110 #include <sys/systm.h>
    111 #include <sys/time.h>
    112 #include <sys/xcall.h>
    113 
    114 #include <lib/libkern/entpool.h>
    115 
    116 #include <machine/limits.h>
    117 
    118 #ifdef __HAVE_CPU_COUNTER
    119 #include <machine/cpu_counter.h>
    120 #endif
    121 
    122 /*
    123  * struct entropy_cpu
    124  *
    125  *	Per-CPU entropy state.  The pool is allocated separately
    126  *	because percpu(9) sometimes moves per-CPU objects around
    127  *	without zeroing them, which would lead to unwanted copies of
    128  *	sensitive secrets.  The evcnt is allocated separately becuase
    129  *	evcnt(9) assumes it stays put in memory.
    130  */
    131 struct entropy_cpu {
    132 	struct evcnt		*ec_softint_evcnt;
    133 	struct entpool		*ec_pool;
    134 	unsigned		ec_pending;
    135 	bool			ec_locked;
    136 };
    137 
    138 /*
    139  * struct rndsource_cpu
    140  *
    141  *	Per-CPU rndsource state.
    142  */
    143 struct rndsource_cpu {
    144 	unsigned		rc_nbits; /* bits of entropy added */
    145 };
    146 
    147 /*
    148  * entropy_global (a.k.a. E for short in this file)
    149  *
    150  *	Global entropy state.  Writes protected by the global lock.
    151  *	Some fields, marked (A), can be read outside the lock, and are
    152  *	maintained with atomic_load/store_relaxed.
    153  */
    154 struct {
    155 	kmutex_t	lock;		/* covers all global state */
    156 	struct entpool	pool;		/* global pool for extraction */
    157 	unsigned	needed;		/* (A) needed globally */
    158 	unsigned	pending;	/* (A) pending in per-CPU pools */
    159 	unsigned	timestamp;	/* (A) time of last consolidation */
    160 	unsigned	epoch;		/* (A) changes when needed -> 0 */
    161 	kcondvar_t	cv;		/* notifies state changes */
    162 	struct selinfo	selq;		/* notifies needed -> 0 */
    163 	struct lwp	*sourcelock;	/* lock on list of sources */
    164 	kcondvar_t	sourcelock_cv;	/* notifies sourcelock release */
    165 	LIST_HEAD(,krndsource) sources;	/* list of entropy sources */
    166 	enum entropy_stage {
    167 		ENTROPY_COLD = 0, /* single-threaded */
    168 		ENTROPY_WARM,	  /* multi-threaded at boot before CPUs */
    169 		ENTROPY_HOT,	  /* multi-threaded multi-CPU */
    170 	}		stage;
    171 	bool		consolidate;	/* kick thread to consolidate */
    172 	bool		seed_rndsource;	/* true if seed source is attached */
    173 	bool		seeded;		/* true if seed file already loaded */
    174 } entropy_global __cacheline_aligned = {
    175 	/* Fields that must be initialized when the kernel is loaded.  */
    176 	.needed = ENTROPY_CAPACITY*NBBY,
    177 	.epoch = (unsigned)-1,	/* -1 means entropy never consolidated */
    178 	.sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
    179 	.stage = ENTROPY_COLD,
    180 };
    181 
    182 #define	E	(&entropy_global)	/* declutter */
    183 
    184 /* Read-mostly globals */
    185 static struct percpu	*entropy_percpu __read_mostly; /* struct entropy_cpu */
    186 static void		*entropy_sih __read_mostly; /* softint handler */
    187 static struct lwp	*entropy_lwp __read_mostly; /* housekeeping thread */
    188 
    189 int rnd_initial_entropy __read_mostly; /* XXX legacy */
    190 
    191 static struct krndsource seed_rndsource __read_mostly;
    192 
    193 /*
    194  * Event counters
    195  *
    196  *	Must be careful with adding these because they can serve as
    197  *	side channels.
    198  */
    199 static struct evcnt entropy_discretionary_evcnt =
    200     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
    201 EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
    202 static struct evcnt entropy_immediate_evcnt =
    203     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
    204 EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
    205 static struct evcnt entropy_partial_evcnt =
    206     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
    207 EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
    208 static struct evcnt entropy_consolidate_evcnt =
    209     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
    210 EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
    211 static struct evcnt entropy_extract_intr_evcnt =
    212     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract intr");
    213 EVCNT_ATTACH_STATIC(entropy_extract_intr_evcnt);
    214 static struct evcnt entropy_extract_fail_evcnt =
    215     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
    216 EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
    217 static struct evcnt entropy_request_evcnt =
    218     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
    219 EVCNT_ATTACH_STATIC(entropy_request_evcnt);
    220 static struct evcnt entropy_deplete_evcnt =
    221     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
    222 EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
    223 static struct evcnt entropy_notify_evcnt =
    224     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
    225 EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
    226 
    227 /* Sysctl knobs */
    228 static bool	entropy_collection = 1;
    229 static bool	entropy_depletion = 0; /* Silly!  */
    230 
    231 static const struct sysctlnode	*entropy_sysctlroot;
    232 static struct sysctllog		*entropy_sysctllog;
    233 
    234 /* Forward declarations */
    235 static void	entropy_init_cpu(void *, void *, struct cpu_info *);
    236 static void	entropy_fini_cpu(void *, void *, struct cpu_info *);
    237 static void	entropy_account_cpu(struct entropy_cpu *);
    238 static void	entropy_enter(const void *, size_t, unsigned);
    239 static bool	entropy_enter_intr(const void *, size_t, unsigned);
    240 static void	entropy_softintr(void *);
    241 static void	entropy_thread(void *);
    242 static uint32_t	entropy_pending(void);
    243 static void	entropy_pending_cpu(void *, void *, struct cpu_info *);
    244 static void	entropy_do_consolidate(void);
    245 static void	entropy_consolidate_xc(void *, void *);
    246 static void	entropy_notify(void);
    247 static int	sysctl_entropy_consolidate(SYSCTLFN_ARGS);
    248 static int	sysctl_entropy_gather(SYSCTLFN_ARGS);
    249 static void	filt_entropy_read_detach(struct knote *);
    250 static int	filt_entropy_read_event(struct knote *, long);
    251 static void	entropy_request(size_t);
    252 static void	rnd_add_data_1(struct krndsource *, const void *, uint32_t,
    253 		    uint32_t);
    254 static unsigned	rndsource_entropybits(struct krndsource *);
    255 static void	rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
    256 static void	rndsource_to_user(struct krndsource *, rndsource_t *);
    257 static void	rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
    258 
    259 /*
    260  * entropy_timer()
    261  *
    262  *	Cycle counter, time counter, or anything that changes a wee bit
    263  *	unpredictably.
    264  */
    265 static inline uint32_t
    266 entropy_timer(void)
    267 {
    268 	struct bintime bt;
    269 	uint32_t v;
    270 
    271 	/* If we have a CPU cycle counter, use the low 32 bits.  */
    272 #ifdef __HAVE_CPU_COUNTER
    273 	if (__predict_true(cpu_hascounter()))
    274 		return cpu_counter32();
    275 #endif	/* __HAVE_CPU_COUNTER */
    276 
    277 	/* If we're cold, tough.  Can't binuptime while cold.  */
    278 	if (__predict_false(cold))
    279 		return 0;
    280 
    281 	/* Fold the 128 bits of binuptime into 32 bits.  */
    282 	binuptime(&bt);
    283 	v = bt.frac;
    284 	v ^= bt.frac >> 32;
    285 	v ^= bt.sec;
    286 	v ^= bt.sec >> 32;
    287 	return v;
    288 }
    289 
    290 static void
    291 attach_seed_rndsource(void)
    292 {
    293 
    294 	/*
    295 	 * First called no later than entropy_init, while we are still
    296 	 * single-threaded, so no need for RUN_ONCE.
    297 	 */
    298 	if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
    299 		return;
    300 	rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
    301 	    RND_FLAG_COLLECT_VALUE);
    302 	E->seed_rndsource = true;
    303 }
    304 
    305 /*
    306  * entropy_init()
    307  *
    308  *	Initialize the entropy subsystem.  Panic on failure.
    309  *
    310  *	Requires percpu(9) and sysctl(9) to be initialized.
    311  */
    312 static void
    313 entropy_init(void)
    314 {
    315 	uint32_t extra[2];
    316 	struct krndsource *rs;
    317 	unsigned i = 0;
    318 
    319 	KASSERT(E->stage == ENTROPY_COLD);
    320 
    321 	/* Grab some cycle counts early at boot.  */
    322 	extra[i++] = entropy_timer();
    323 
    324 	/* Run the entropy pool cryptography self-test.  */
    325 	if (entpool_selftest() == -1)
    326 		panic("entropy pool crypto self-test failed");
    327 
    328 	/* Create the sysctl directory.  */
    329 	sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
    330 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
    331 	    SYSCTL_DESCR("Entropy (random number sources) options"),
    332 	    NULL, 0, NULL, 0,
    333 	    CTL_KERN, CTL_CREATE, CTL_EOL);
    334 
    335 	/* Create the sysctl knobs.  */
    336 	/* XXX These shouldn't be writable at securelevel>0.  */
    337 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    338 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
    339 	    SYSCTL_DESCR("Automatically collect entropy from hardware"),
    340 	    NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
    341 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    342 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
    343 	    SYSCTL_DESCR("`Deplete' entropy pool when observed"),
    344 	    NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
    345 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    346 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
    347 	    SYSCTL_DESCR("Trigger entropy consolidation now"),
    348 	    sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    349 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    350 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
    351 	    SYSCTL_DESCR("Trigger entropy gathering from sources now"),
    352 	    sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    353 	/* XXX These should maybe not be readable at securelevel>0.  */
    354 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    355 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    356 	    "needed", SYSCTL_DESCR("Systemwide entropy deficit"),
    357 	    NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
    358 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    359 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    360 	    "pending", SYSCTL_DESCR("Entropy pending on CPUs"),
    361 	    NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
    362 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    363 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    364 	    "epoch", SYSCTL_DESCR("Entropy epoch"),
    365 	    NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
    366 
    367 	/* Initialize the global state for multithreaded operation.  */
    368 	mutex_init(&E->lock, MUTEX_DEFAULT, IPL_VM);
    369 	cv_init(&E->cv, "entropy");
    370 	selinit(&E->selq);
    371 	cv_init(&E->sourcelock_cv, "entsrclock");
    372 
    373 	/* Make sure the seed source is attached.  */
    374 	attach_seed_rndsource();
    375 
    376 	/* Note if the bootloader didn't provide a seed.  */
    377 	if (!E->seeded)
    378 		printf("entropy: no seed from bootloader\n");
    379 
    380 	/* Allocate the per-CPU records for all early entropy sources.  */
    381 	LIST_FOREACH(rs, &E->sources, list)
    382 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
    383 
    384 	/* Enter the boot cycle count to get started.  */
    385 	extra[i++] = entropy_timer();
    386 	KASSERT(i == __arraycount(extra));
    387 	entropy_enter(extra, sizeof extra, 0);
    388 	explicit_memset(extra, 0, sizeof extra);
    389 
    390 	/* We are now ready for multi-threaded operation.  */
    391 	E->stage = ENTROPY_WARM;
    392 }
    393 
    394 /*
    395  * entropy_init_late()
    396  *
    397  *	Late initialization.  Panic on failure.
    398  *
    399  *	Requires CPUs to have been detected and LWPs to have started.
    400  */
    401 static void
    402 entropy_init_late(void)
    403 {
    404 	int error;
    405 
    406 	KASSERT(E->stage == ENTROPY_WARM);
    407 
    408 	/* Allocate and initialize the per-CPU state.  */
    409 	entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
    410 	    entropy_init_cpu, entropy_fini_cpu, NULL);
    411 
    412 	/*
    413 	 * Establish the softint at the highest softint priority level.
    414 	 * Must happen after CPU detection.
    415 	 */
    416 	entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
    417 	    &entropy_softintr, NULL);
    418 	if (entropy_sih == NULL)
    419 		panic("unable to establish entropy softint");
    420 
    421 	/*
    422 	 * Create the entropy housekeeping thread.  Must happen after
    423 	 * lwpinit.
    424 	 */
    425 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
    426 	    entropy_thread, NULL, &entropy_lwp, "entbutler");
    427 	if (error)
    428 		panic("unable to create entropy housekeeping thread: %d",
    429 		    error);
    430 
    431 	/*
    432 	 * Wait until the per-CPU initialization has hit all CPUs
    433 	 * before proceeding to mark the entropy system hot.
    434 	 */
    435 	xc_barrier(XC_HIGHPRI);
    436 	E->stage = ENTROPY_HOT;
    437 }
    438 
    439 /*
    440  * entropy_init_cpu(ptr, cookie, ci)
    441  *
    442  *	percpu(9) constructor for per-CPU entropy pool.
    443  */
    444 static void
    445 entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    446 {
    447 	struct entropy_cpu *ec = ptr;
    448 
    449 	ec->ec_softint_evcnt = kmem_alloc(sizeof(*ec->ec_softint_evcnt),
    450 	    KM_SLEEP);
    451 	ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
    452 	ec->ec_pending = 0;
    453 	ec->ec_locked = false;
    454 
    455 	evcnt_attach_dynamic(ec->ec_softint_evcnt, EVCNT_TYPE_MISC, NULL,
    456 	    ci->ci_cpuname, "entropy softint");
    457 }
    458 
    459 /*
    460  * entropy_fini_cpu(ptr, cookie, ci)
    461  *
    462  *	percpu(9) destructor for per-CPU entropy pool.
    463  */
    464 static void
    465 entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    466 {
    467 	struct entropy_cpu *ec = ptr;
    468 
    469 	/*
    470 	 * Zero any lingering data.  Disclosure of the per-CPU pool
    471 	 * shouldn't retroactively affect the security of any keys
    472 	 * generated, because entpool(9) erases whatever we have just
    473 	 * drawn out of any pool, but better safe than sorry.
    474 	 */
    475 	explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
    476 
    477 	evcnt_detach(ec->ec_softint_evcnt);
    478 
    479 	kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
    480 	kmem_free(ec->ec_softint_evcnt, sizeof(*ec->ec_softint_evcnt));
    481 }
    482 
    483 /*
    484  * entropy_seed(seed)
    485  *
    486  *	Seed the entropy pool with seed.  Meant to be called as early
    487  *	as possible by the bootloader; may be called before or after
    488  *	entropy_init.  Must be called before system reaches userland.
    489  *	Must be called in thread or soft interrupt context, not in hard
    490  *	interrupt context.  Must be called at most once.
    491  *
    492  *	Overwrites the seed in place.  Caller may then free the memory.
    493  */
    494 static void
    495 entropy_seed(rndsave_t *seed)
    496 {
    497 	SHA1_CTX ctx;
    498 	uint8_t digest[SHA1_DIGEST_LENGTH];
    499 	bool seeded;
    500 
    501 	/*
    502 	 * Verify the checksum.  If the checksum fails, take the data
    503 	 * but ignore the entropy estimate -- the file may have been
    504 	 * incompletely written with garbage, which is harmless to add
    505 	 * but may not be as unpredictable as alleged.
    506 	 */
    507 	SHA1Init(&ctx);
    508 	SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
    509 	SHA1Update(&ctx, seed->data, sizeof(seed->data));
    510 	SHA1Final(digest, &ctx);
    511 	CTASSERT(sizeof(seed->digest) == sizeof(digest));
    512 	if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
    513 		printf("entropy: invalid seed checksum\n");
    514 		seed->entropy = 0;
    515 	}
    516 	explicit_memset(&ctx, 0, sizeof ctx);
    517 	explicit_memset(digest, 0, sizeof digest);
    518 
    519 	/*
    520 	 * If the entropy is insensibly large, try byte-swapping.
    521 	 * Otherwise assume the file is corrupted and act as though it
    522 	 * has zero entropy.
    523 	 */
    524 	if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
    525 		seed->entropy = bswap32(seed->entropy);
    526 		if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
    527 			seed->entropy = 0;
    528 	}
    529 
    530 	/* Make sure the seed source is attached.  */
    531 	attach_seed_rndsource();
    532 
    533 	/* Test and set E->seeded.  */
    534 	if (E->stage >= ENTROPY_WARM)
    535 		mutex_enter(&E->lock);
    536 	seeded = E->seeded;
    537 	E->seeded = (seed->entropy > 0);
    538 	if (E->stage >= ENTROPY_WARM)
    539 		mutex_exit(&E->lock);
    540 
    541 	/*
    542 	 * If we've been seeded, may be re-entering the same seed
    543 	 * (e.g., bootloader vs module init, or something).  No harm in
    544 	 * entering it twice, but it contributes no additional entropy.
    545 	 */
    546 	if (seeded) {
    547 		printf("entropy: double-seeded by bootloader\n");
    548 		seed->entropy = 0;
    549 	} else {
    550 		printf("entropy: entering seed from bootloader"
    551 		    " with %u bits of entropy\n", (unsigned)seed->entropy);
    552 	}
    553 
    554 	/* Enter it into the pool and promptly zero it.  */
    555 	rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
    556 	    seed->entropy);
    557 	explicit_memset(seed, 0, sizeof(*seed));
    558 }
    559 
    560 /*
    561  * entropy_bootrequest()
    562  *
    563  *	Request entropy from all sources at boot, once config is
    564  *	complete and interrupts are running.
    565  */
    566 void
    567 entropy_bootrequest(void)
    568 {
    569 
    570 	KASSERT(E->stage >= ENTROPY_WARM);
    571 
    572 	/*
    573 	 * Request enough to satisfy the maximum entropy shortage.
    574 	 * This is harmless overkill if the bootloader provided a seed.
    575 	 */
    576 	mutex_enter(&E->lock);
    577 	entropy_request(ENTROPY_CAPACITY);
    578 	mutex_exit(&E->lock);
    579 }
    580 
    581 /*
    582  * entropy_epoch()
    583  *
    584  *	Returns the current entropy epoch.  If this changes, you should
    585  *	reseed.  If -1, means system entropy has not yet reached full
    586  *	entropy or been explicitly consolidated; never reverts back to
    587  *	-1.  Never zero, so you can always use zero as an uninitialized
    588  *	sentinel value meaning `reseed ASAP'.
    589  *
    590  *	Usage model:
    591  *
    592  *		struct foo {
    593  *			struct crypto_prng prng;
    594  *			unsigned epoch;
    595  *		} *foo;
    596  *
    597  *		unsigned epoch = entropy_epoch();
    598  *		if (__predict_false(epoch != foo->epoch)) {
    599  *			uint8_t seed[32];
    600  *			if (entropy_extract(seed, sizeof seed, 0) != 0)
    601  *				warn("no entropy");
    602  *			crypto_prng_reseed(&foo->prng, seed, sizeof seed);
    603  *			foo->epoch = epoch;
    604  *		}
    605  */
    606 unsigned
    607 entropy_epoch(void)
    608 {
    609 
    610 	/*
    611 	 * Unsigned int, so no need for seqlock for an atomic read, but
    612 	 * make sure we read it afresh each time.
    613 	 */
    614 	return atomic_load_relaxed(&E->epoch);
    615 }
    616 
    617 /*
    618  * entropy_ready()
    619  *
    620  *	True if the entropy pool has full entropy.
    621  */
    622 bool
    623 entropy_ready(void)
    624 {
    625 
    626 	return atomic_load_relaxed(&E->needed) == 0;
    627 }
    628 
    629 /*
    630  * entropy_account_cpu(ec)
    631  *
    632  *	Consider whether to consolidate entropy into the global pool
    633  *	after we just added some into the current CPU's pending pool.
    634  *
    635  *	- If this CPU can provide enough entropy now, do so.
    636  *
    637  *	- If this and whatever else is available on other CPUs can
    638  *	  provide enough entropy, kick the consolidation thread.
    639  *
    640  *	- Otherwise, do as little as possible, except maybe consolidate
    641  *	  entropy at most once a minute.
    642  *
    643  *	Caller must be bound to a CPU and therefore have exclusive
    644  *	access to ec.  Will acquire and release the global lock.
    645  */
    646 static void
    647 entropy_account_cpu(struct entropy_cpu *ec)
    648 {
    649 	unsigned diff;
    650 
    651 	KASSERT(E->stage == ENTROPY_HOT);
    652 
    653 	/*
    654 	 * If there's no entropy needed, and entropy has been
    655 	 * consolidated in the last minute, do nothing.
    656 	 */
    657 	if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
    658 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
    659 	    __predict_true((time_uptime - E->timestamp) <= 60))
    660 		return;
    661 
    662 	/* If there's nothing pending, stop here.  */
    663 	if (ec->ec_pending == 0)
    664 		return;
    665 
    666 	/* Consider consolidation, under the lock.  */
    667 	mutex_enter(&E->lock);
    668 	if (E->needed != 0 && E->needed <= ec->ec_pending) {
    669 		/*
    670 		 * If we have not yet attained full entropy but we can
    671 		 * now, do so.  This way we disseminate entropy
    672 		 * promptly when it becomes available early at boot;
    673 		 * otherwise we leave it to the entropy consolidation
    674 		 * thread, which is rate-limited to mitigate side
    675 		 * channels and abuse.
    676 		 */
    677 		uint8_t buf[ENTPOOL_CAPACITY];
    678 
    679 		/* Transfer from the local pool to the global pool.  */
    680 		entpool_extract(ec->ec_pool, buf, sizeof buf);
    681 		entpool_enter(&E->pool, buf, sizeof buf);
    682 		atomic_store_relaxed(&ec->ec_pending, 0);
    683 		atomic_store_relaxed(&E->needed, 0);
    684 
    685 		/* Notify waiters that we now have full entropy.  */
    686 		entropy_notify();
    687 		entropy_immediate_evcnt.ev_count++;
    688 	} else {
    689 		/* Record how much we can add to the global pool.  */
    690 		diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
    691 		E->pending += diff;
    692 		atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
    693 
    694 		/*
    695 		 * This should have made a difference unless we were
    696 		 * already saturated.
    697 		 */
    698 		KASSERT(diff || E->pending == ENTROPY_CAPACITY*NBBY);
    699 		KASSERT(E->pending);
    700 
    701 		if (E->needed <= E->pending) {
    702 			/*
    703 			 * Enough entropy between all the per-CPU
    704 			 * pools.  Wake up the housekeeping thread.
    705 			 *
    706 			 * If we don't need any entropy, this doesn't
    707 			 * mean much, but it is the only time we ever
    708 			 * gather additional entropy in case the
    709 			 * accounting has been overly optimistic.  This
    710 			 * happens at most once a minute, so there's
    711 			 * negligible performance cost.
    712 			 */
    713 			E->consolidate = true;
    714 			cv_broadcast(&E->cv);
    715 			if (E->needed == 0)
    716 				entropy_discretionary_evcnt.ev_count++;
    717 		} else {
    718 			/* Can't get full entropy.  Keep gathering.  */
    719 			entropy_partial_evcnt.ev_count++;
    720 		}
    721 	}
    722 	mutex_exit(&E->lock);
    723 }
    724 
    725 /*
    726  * entropy_enter_early(buf, len, nbits)
    727  *
    728  *	Do entropy bookkeeping globally, before we have established
    729  *	per-CPU pools.  Enter directly into the global pool in the hope
    730  *	that we enter enough before the first entropy_extract to thwart
    731  *	iterative-guessing attacks; entropy_extract will warn if not.
    732  */
    733 static void
    734 entropy_enter_early(const void *buf, size_t len, unsigned nbits)
    735 {
    736 	bool notify = false;
    737 
    738 	if (E->stage >= ENTROPY_WARM)
    739 		mutex_enter(&E->lock);
    740 
    741 	/* Enter it into the pool.  */
    742 	entpool_enter(&E->pool, buf, len);
    743 
    744 	/*
    745 	 * Decide whether to notify reseed -- we will do so if either:
    746 	 * (a) we transition from partial entropy to full entropy, or
    747 	 * (b) we get a batch of full entropy all at once.
    748 	 */
    749 	notify |= (E->needed && E->needed <= nbits);
    750 	notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
    751 
    752 	/* Subtract from the needed count and notify if appropriate.  */
    753 	E->needed -= MIN(E->needed, nbits);
    754 	if (notify) {
    755 		entropy_notify();
    756 		entropy_immediate_evcnt.ev_count++;
    757 	}
    758 
    759 	if (E->stage >= ENTROPY_WARM)
    760 		mutex_exit(&E->lock);
    761 }
    762 
    763 /*
    764  * entropy_enter(buf, len, nbits)
    765  *
    766  *	Enter len bytes of data from buf into the system's entropy
    767  *	pool, stirring as necessary when the internal buffer fills up.
    768  *	nbits is a lower bound on the number of bits of entropy in the
    769  *	process that led to this sample.
    770  */
    771 static void
    772 entropy_enter(const void *buf, size_t len, unsigned nbits)
    773 {
    774 	struct entropy_cpu *ec;
    775 	uint32_t pending;
    776 	int s;
    777 
    778 	KASSERTMSG(!cpu_intr_p(),
    779 	    "use entropy_enter_intr from interrupt context");
    780 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    781 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    782 
    783 	/* If it's too early after boot, just use entropy_enter_early.  */
    784 	if (__predict_false(E->stage < ENTROPY_HOT)) {
    785 		entropy_enter_early(buf, len, nbits);
    786 		return;
    787 	}
    788 
    789 	/*
    790 	 * Acquire the per-CPU state, blocking soft interrupts and
    791 	 * causing hard interrupts to drop samples on the floor.
    792 	 */
    793 	ec = percpu_getref(entropy_percpu);
    794 	s = splsoftserial();
    795 	KASSERT(!ec->ec_locked);
    796 	ec->ec_locked = true;
    797 	__insn_barrier();
    798 
    799 	/* Enter into the per-CPU pool.  */
    800 	entpool_enter(ec->ec_pool, buf, len);
    801 
    802 	/* Count up what we can add.  */
    803 	pending = ec->ec_pending;
    804 	pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
    805 	atomic_store_relaxed(&ec->ec_pending, pending);
    806 
    807 	/* Consolidate globally if appropriate based on what we added.  */
    808 	entropy_account_cpu(ec);
    809 
    810 	/* Release the per-CPU state.  */
    811 	KASSERT(ec->ec_locked);
    812 	__insn_barrier();
    813 	ec->ec_locked = false;
    814 	splx(s);
    815 	percpu_putref(entropy_percpu);
    816 }
    817 
    818 /*
    819  * entropy_enter_intr(buf, len, nbits)
    820  *
    821  *	Enter up to len bytes of data from buf into the system's
    822  *	entropy pool without stirring.  nbits is a lower bound on the
    823  *	number of bits of entropy in the process that led to this
    824  *	sample.  If the sample could be entered completely, assume
    825  *	nbits of entropy pending; otherwise assume none, since we don't
    826  *	know whether some parts of the sample are constant, for
    827  *	instance.  Schedule a softint to stir the entropy pool if
    828  *	needed.  Return true if used fully, false if truncated at all.
    829  *
    830  *	Using this in thread context will work, but you might as well
    831  *	use entropy_enter in that case.
    832  */
    833 static bool
    834 entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
    835 {
    836 	struct entropy_cpu *ec;
    837 	bool fullyused = false;
    838 	uint32_t pending;
    839 
    840 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    841 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    842 
    843 	/* If it's too early after boot, just use entropy_enter_early.  */
    844 	if (__predict_false(E->stage < ENTROPY_HOT)) {
    845 		entropy_enter_early(buf, len, nbits);
    846 		return true;
    847 	}
    848 
    849 	/*
    850 	 * Acquire the per-CPU state.  If someone is in the middle of
    851 	 * using it, drop the sample.  Otherwise, take the lock so that
    852 	 * higher-priority interrupts will drop their samples.
    853 	 */
    854 	ec = percpu_getref(entropy_percpu);
    855 	if (ec->ec_locked)
    856 		goto out0;
    857 	ec->ec_locked = true;
    858 	__insn_barrier();
    859 
    860 	/*
    861 	 * Enter as much as we can into the per-CPU pool.  If it was
    862 	 * truncated, schedule a softint to stir the pool and stop.
    863 	 */
    864 	if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
    865 		softint_schedule(entropy_sih);
    866 		goto out1;
    867 	}
    868 	fullyused = true;
    869 
    870 	/* Count up what we can contribute.  */
    871 	pending = ec->ec_pending;
    872 	pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
    873 	atomic_store_relaxed(&ec->ec_pending, pending);
    874 
    875 	/* Schedule a softint if we added anything and it matters.  */
    876 	if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
    877 		atomic_load_relaxed(&entropy_depletion)) &&
    878 	    nbits != 0)
    879 		softint_schedule(entropy_sih);
    880 
    881 out1:	/* Release the per-CPU state.  */
    882 	KASSERT(ec->ec_locked);
    883 	__insn_barrier();
    884 	ec->ec_locked = false;
    885 out0:	percpu_putref(entropy_percpu);
    886 
    887 	return fullyused;
    888 }
    889 
    890 /*
    891  * entropy_softintr(cookie)
    892  *
    893  *	Soft interrupt handler for entering entropy.  Takes care of
    894  *	stirring the local CPU's entropy pool if it filled up during
    895  *	hard interrupts, and promptly crediting entropy from the local
    896  *	CPU's entropy pool to the global entropy pool if needed.
    897  */
    898 static void
    899 entropy_softintr(void *cookie)
    900 {
    901 	struct entropy_cpu *ec;
    902 
    903 	/*
    904 	 * Acquire the per-CPU state.  Other users can lock this only
    905 	 * while soft interrupts are blocked.  Cause hard interrupts to
    906 	 * drop samples on the floor.
    907 	 */
    908 	ec = percpu_getref(entropy_percpu);
    909 	KASSERT(!ec->ec_locked);
    910 	ec->ec_locked = true;
    911 	__insn_barrier();
    912 
    913 	/* Count statistics.  */
    914 	ec->ec_softint_evcnt->ev_count++;
    915 
    916 	/* Stir the pool if necessary.  */
    917 	entpool_stir(ec->ec_pool);
    918 
    919 	/* Consolidate globally if appropriate based on what we added.  */
    920 	entropy_account_cpu(ec);
    921 
    922 	/* Release the per-CPU state.  */
    923 	KASSERT(ec->ec_locked);
    924 	__insn_barrier();
    925 	ec->ec_locked = false;
    926 	percpu_putref(entropy_percpu);
    927 }
    928 
    929 /*
    930  * entropy_thread(cookie)
    931  *
    932  *	Handle any asynchronous entropy housekeeping.
    933  */
    934 static void
    935 entropy_thread(void *cookie)
    936 {
    937 	bool consolidate;
    938 
    939 	for (;;) {
    940 		/*
    941 		 * Wait until there's full entropy somewhere among the
    942 		 * CPUs, as confirmed at most once per minute, or
    943 		 * someone wants to consolidate.
    944 		 */
    945 		if (entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
    946 			consolidate = true;
    947 		} else {
    948 			mutex_enter(&E->lock);
    949 			if (!E->consolidate)
    950 				cv_timedwait(&E->cv, &E->lock, 60*hz);
    951 			consolidate = E->consolidate;
    952 			E->consolidate = false;
    953 			mutex_exit(&E->lock);
    954 		}
    955 
    956 		if (consolidate) {
    957 			/* Do it.  */
    958 			entropy_do_consolidate();
    959 
    960 			/* Mitigate abuse.  */
    961 			kpause("entropy", false, hz, NULL);
    962 		}
    963 	}
    964 }
    965 
    966 /*
    967  * entropy_pending()
    968  *
    969  *	Count up the amount of entropy pending on other CPUs.
    970  */
    971 static uint32_t
    972 entropy_pending(void)
    973 {
    974 	uint32_t pending = 0;
    975 
    976 	percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
    977 	return pending;
    978 }
    979 
    980 static void
    981 entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    982 {
    983 	struct entropy_cpu *ec = ptr;
    984 	uint32_t *pendingp = cookie;
    985 	uint32_t cpu_pending;
    986 
    987 	cpu_pending = atomic_load_relaxed(&ec->ec_pending);
    988 	*pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
    989 }
    990 
    991 /*
    992  * entropy_do_consolidate()
    993  *
    994  *	Issue a cross-call to gather entropy on all CPUs and advance
    995  *	the entropy epoch.
    996  */
    997 static void
    998 entropy_do_consolidate(void)
    999 {
   1000 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1001 	static struct timeval lasttime; /* serialized by E->lock */
   1002 	struct entpool pool;
   1003 	uint8_t buf[ENTPOOL_CAPACITY];
   1004 	unsigned diff;
   1005 	uint64_t ticket;
   1006 
   1007 	/* Gather entropy on all CPUs into a temporary pool.  */
   1008 	memset(&pool, 0, sizeof pool);
   1009 	ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
   1010 	xc_wait(ticket);
   1011 
   1012 	/* Acquire the lock to notify waiters.  */
   1013 	mutex_enter(&E->lock);
   1014 
   1015 	/* Count another consolidation.  */
   1016 	entropy_consolidate_evcnt.ev_count++;
   1017 
   1018 	/* Note when we last consolidated, i.e. now.  */
   1019 	E->timestamp = time_uptime;
   1020 
   1021 	/* Mix what we gathered into the global pool.  */
   1022 	entpool_extract(&pool, buf, sizeof buf);
   1023 	entpool_enter(&E->pool, buf, sizeof buf);
   1024 	explicit_memset(&pool, 0, sizeof pool);
   1025 
   1026 	/* Count the entropy that was gathered.  */
   1027 	diff = MIN(E->needed, E->pending);
   1028 	atomic_store_relaxed(&E->needed, E->needed - diff);
   1029 	E->pending -= diff;
   1030 	if (__predict_false(E->needed > 0)) {
   1031 		if (ratecheck(&lasttime, &interval))
   1032 			log(LOG_DEBUG, "entropy: WARNING:"
   1033 			    " consolidating less than full entropy\n");
   1034 	}
   1035 
   1036 	/* Advance the epoch and notify waiters.  */
   1037 	entropy_notify();
   1038 
   1039 	/* Release the lock.  */
   1040 	mutex_exit(&E->lock);
   1041 }
   1042 
   1043 /*
   1044  * entropy_consolidate_xc(vpool, arg2)
   1045  *
   1046  *	Extract output from the local CPU's input pool and enter it
   1047  *	into a temporary pool passed as vpool.
   1048  */
   1049 static void
   1050 entropy_consolidate_xc(void *vpool, void *arg2 __unused)
   1051 {
   1052 	struct entpool *pool = vpool;
   1053 	struct entropy_cpu *ec;
   1054 	uint8_t buf[ENTPOOL_CAPACITY];
   1055 	uint32_t extra[7];
   1056 	unsigned i = 0;
   1057 	int s;
   1058 
   1059 	/* Grab CPU number and cycle counter to mix extra into the pool.  */
   1060 	extra[i++] = cpu_number();
   1061 	extra[i++] = entropy_timer();
   1062 
   1063 	/*
   1064 	 * Acquire the per-CPU state, blocking soft interrupts and
   1065 	 * discarding entropy in hard interrupts, so that we can
   1066 	 * extract from the per-CPU pool.
   1067 	 */
   1068 	ec = percpu_getref(entropy_percpu);
   1069 	s = splsoftserial();
   1070 	KASSERT(!ec->ec_locked);
   1071 	ec->ec_locked = true;
   1072 	__insn_barrier();
   1073 	extra[i++] = entropy_timer();
   1074 
   1075 	/* Extract the data and count it no longer pending.  */
   1076 	entpool_extract(ec->ec_pool, buf, sizeof buf);
   1077 	atomic_store_relaxed(&ec->ec_pending, 0);
   1078 	extra[i++] = entropy_timer();
   1079 
   1080 	/* Release the per-CPU state.  */
   1081 	KASSERT(ec->ec_locked);
   1082 	__insn_barrier();
   1083 	ec->ec_locked = false;
   1084 	splx(s);
   1085 	percpu_putref(entropy_percpu);
   1086 	extra[i++] = entropy_timer();
   1087 
   1088 	/*
   1089 	 * Copy over statistics, and enter the per-CPU extract and the
   1090 	 * extra timing into the temporary pool, under the global lock.
   1091 	 */
   1092 	mutex_enter(&E->lock);
   1093 	extra[i++] = entropy_timer();
   1094 	entpool_enter(pool, buf, sizeof buf);
   1095 	explicit_memset(buf, 0, sizeof buf);
   1096 	extra[i++] = entropy_timer();
   1097 	KASSERT(i == __arraycount(extra));
   1098 	entpool_enter(pool, extra, sizeof extra);
   1099 	explicit_memset(extra, 0, sizeof extra);
   1100 	mutex_exit(&E->lock);
   1101 }
   1102 
   1103 /*
   1104  * entropy_notify()
   1105  *
   1106  *	Caller just contributed entropy to the global pool.  Advance
   1107  *	the entropy epoch and notify waiters.
   1108  *
   1109  *	Caller must hold the global entropy lock.  Except for the
   1110  *	`sysctl -w kern.entropy.consolidate=1` trigger, the caller must
   1111  *	have just have transitioned from partial entropy to full
   1112  *	entropy -- E->needed should be zero now.
   1113  */
   1114 static void
   1115 entropy_notify(void)
   1116 {
   1117 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1118 	static struct timeval lasttime; /* serialized by E->lock */
   1119 	unsigned epoch;
   1120 
   1121 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1122 
   1123 	/*
   1124 	 * If this is the first time, print a message to the console
   1125 	 * that we're ready so operators can compare it to the timing
   1126 	 * of other events.
   1127 	 */
   1128 	if (__predict_false(!rnd_initial_entropy) && E->needed == 0) {
   1129 		printf("entropy: ready\n");
   1130 		rnd_initial_entropy = 1;
   1131 	}
   1132 
   1133 	/* Set the epoch; roll over from UINTMAX-1 to 1.  */
   1134 	if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
   1135 	    ratecheck(&lasttime, &interval)) {
   1136 		epoch = E->epoch + 1;
   1137 		if (epoch == 0 || epoch == (unsigned)-1)
   1138 			epoch = 1;
   1139 		atomic_store_relaxed(&E->epoch, epoch);
   1140 	}
   1141 
   1142 	/* Notify waiters.  */
   1143 	if (E->stage >= ENTROPY_WARM) {
   1144 		cv_broadcast(&E->cv);
   1145 		selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
   1146 	}
   1147 
   1148 	/* Count another notification.  */
   1149 	entropy_notify_evcnt.ev_count++;
   1150 }
   1151 
   1152 /*
   1153  * entropy_consolidate()
   1154  *
   1155  *	Trigger entropy consolidation and wait for it to complete.
   1156  *
   1157  *	This should be used sparingly, not periodically -- requiring
   1158  *	conscious intervention by the operator or a clear policy
   1159  *	decision.  Otherwise, the kernel will automatically consolidate
   1160  *	when enough entropy has been gathered into per-CPU pools to
   1161  *	transition to full entropy.
   1162  */
   1163 void
   1164 entropy_consolidate(void)
   1165 {
   1166 	uint64_t ticket;
   1167 	int error;
   1168 
   1169 	KASSERT(E->stage == ENTROPY_HOT);
   1170 
   1171 	mutex_enter(&E->lock);
   1172 	ticket = entropy_consolidate_evcnt.ev_count;
   1173 	E->consolidate = true;
   1174 	cv_broadcast(&E->cv);
   1175 	while (ticket == entropy_consolidate_evcnt.ev_count) {
   1176 		error = cv_wait_sig(&E->cv, &E->lock);
   1177 		if (error)
   1178 			break;
   1179 	}
   1180 	mutex_exit(&E->lock);
   1181 }
   1182 
   1183 /*
   1184  * sysctl -w kern.entropy.consolidate=1
   1185  *
   1186  *	Trigger entropy consolidation and wait for it to complete.
   1187  *	Writable only by superuser.  This, writing to /dev/random, and
   1188  *	ioctl(RNDADDDATA) are the only ways for the system to
   1189  *	consolidate entropy if the operator knows something the kernel
   1190  *	doesn't about how unpredictable the pending entropy pools are.
   1191  */
   1192 static int
   1193 sysctl_entropy_consolidate(SYSCTLFN_ARGS)
   1194 {
   1195 	struct sysctlnode node = *rnode;
   1196 	int arg;
   1197 	int error;
   1198 
   1199 	KASSERT(E->stage == ENTROPY_HOT);
   1200 
   1201 	node.sysctl_data = &arg;
   1202 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1203 	if (error || newp == NULL)
   1204 		return error;
   1205 	if (arg)
   1206 		entropy_consolidate();
   1207 
   1208 	return error;
   1209 }
   1210 
   1211 /*
   1212  * sysctl -w kern.entropy.gather=1
   1213  *
   1214  *	Trigger gathering entropy from all on-demand sources, and wait
   1215  *	for synchronous sources (but not asynchronous sources) to
   1216  *	complete.  Writable only by superuser.
   1217  */
   1218 static int
   1219 sysctl_entropy_gather(SYSCTLFN_ARGS)
   1220 {
   1221 	struct sysctlnode node = *rnode;
   1222 	int arg;
   1223 	int error;
   1224 
   1225 	KASSERT(E->stage == ENTROPY_HOT);
   1226 
   1227 	node.sysctl_data = &arg;
   1228 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1229 	if (error || newp == NULL)
   1230 		return error;
   1231 	if (arg) {
   1232 		mutex_enter(&E->lock);
   1233 		entropy_request(ENTROPY_CAPACITY);
   1234 		mutex_exit(&E->lock);
   1235 	}
   1236 
   1237 	return 0;
   1238 }
   1239 
   1240 /*
   1241  * entropy_extract(buf, len, flags)
   1242  *
   1243  *	Extract len bytes from the global entropy pool into buf.
   1244  *
   1245  *	Flags may have:
   1246  *
   1247  *		ENTROPY_WAIT	Wait for entropy if not available yet.
   1248  *		ENTROPY_SIG	Allow interruption by a signal during wait.
   1249  *		ENTROPY_HARDFAIL Either fill the buffer with full entropy,
   1250  *				or fail without filling it at all.
   1251  *
   1252  *	Return zero on success, or error on failure:
   1253  *
   1254  *		EWOULDBLOCK	No entropy and ENTROPY_WAIT not set.
   1255  *		EINTR/ERESTART	No entropy, ENTROPY_SIG set, and interrupted.
   1256  *
   1257  *	If ENTROPY_WAIT is set, allowed only in thread context.  If
   1258  *	ENTROPY_WAIT is not set, allowed up to IPL_VM.  (XXX That's
   1259  *	awfully high...  Do we really need it in hard interrupts?  This
   1260  *	arises from use of cprng_strong(9).)
   1261  */
   1262 int
   1263 entropy_extract(void *buf, size_t len, int flags)
   1264 {
   1265 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1266 	static struct timeval lasttime; /* serialized by E->lock */
   1267 	int error;
   1268 
   1269 	if (ISSET(flags, ENTROPY_WAIT)) {
   1270 		ASSERT_SLEEPABLE();
   1271 		KASSERTMSG(E->stage >= ENTROPY_WARM,
   1272 		    "can't wait for entropy until warm");
   1273 	}
   1274 
   1275 	/* Acquire the global lock to get at the global pool.  */
   1276 	if (E->stage >= ENTROPY_WARM)
   1277 		mutex_enter(&E->lock);
   1278 
   1279 	/* Count up request for entropy in interrupt context.  */
   1280 	if (cpu_intr_p())
   1281 		entropy_extract_intr_evcnt.ev_count++;
   1282 
   1283 	/* Wait until there is enough entropy in the system.  */
   1284 	error = 0;
   1285 	while (E->needed) {
   1286 		/* Ask for more, synchronously if possible.  */
   1287 		entropy_request(len);
   1288 
   1289 		/* If we got enough, we're done.  */
   1290 		if (E->needed == 0) {
   1291 			KASSERT(error == 0);
   1292 			break;
   1293 		}
   1294 
   1295 		/* If not waiting, stop here.  */
   1296 		if (!ISSET(flags, ENTROPY_WAIT)) {
   1297 			error = EWOULDBLOCK;
   1298 			break;
   1299 		}
   1300 
   1301 		/* Wait for some entropy to come in and try again.  */
   1302 		KASSERT(E->stage >= ENTROPY_WARM);
   1303 		printf("entropy: pid %d (%s) blocking due to lack of entropy\n",
   1304 		       curproc->p_pid, curproc->p_comm);
   1305 
   1306 		if (ISSET(flags, ENTROPY_SIG)) {
   1307 			error = cv_wait_sig(&E->cv, &E->lock);
   1308 			if (error)
   1309 				break;
   1310 		} else {
   1311 			cv_wait(&E->cv, &E->lock);
   1312 		}
   1313 	}
   1314 
   1315 	/*
   1316 	 * Count failure -- but fill the buffer nevertheless, unless
   1317 	 * the caller specified ENTROPY_HARDFAIL.
   1318 	 */
   1319 	if (error) {
   1320 		if (ISSET(flags, ENTROPY_HARDFAIL))
   1321 			goto out;
   1322 		entropy_extract_fail_evcnt.ev_count++;
   1323 	}
   1324 
   1325 	/*
   1326 	 * Report a warning if we have never yet reached full entropy.
   1327 	 * This is the only case where we consider entropy to be
   1328 	 * `depleted' without kern.entropy.depletion enabled -- when we
   1329 	 * only have partial entropy, an adversary may be able to
   1330 	 * narrow the state of the pool down to a small number of
   1331 	 * possibilities; the output then enables them to confirm a
   1332 	 * guess, reducing its entropy from the adversary's perspective
   1333 	 * to zero.
   1334 	 */
   1335 	if (__predict_false(E->epoch == (unsigned)-1)) {
   1336 		if (ratecheck(&lasttime, &interval))
   1337 			printf("entropy: WARNING:"
   1338 			    " extracting entropy too early\n");
   1339 		atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
   1340 	}
   1341 
   1342 	/* Extract data from the pool, and `deplete' if we're doing that.  */
   1343 	entpool_extract(&E->pool, buf, len);
   1344 	if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
   1345 	    error == 0) {
   1346 		unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
   1347 
   1348 		atomic_store_relaxed(&E->needed,
   1349 		    E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
   1350 		entropy_deplete_evcnt.ev_count++;
   1351 	}
   1352 
   1353 out:	/* Release the global lock and return the error.  */
   1354 	if (E->stage >= ENTROPY_WARM)
   1355 		mutex_exit(&E->lock);
   1356 	return error;
   1357 }
   1358 
   1359 /*
   1360  * entropy_poll(events)
   1361  *
   1362  *	Return the subset of events ready, and if it is not all of
   1363  *	events, record curlwp as waiting for entropy.
   1364  */
   1365 int
   1366 entropy_poll(int events)
   1367 {
   1368 	int revents = 0;
   1369 
   1370 	KASSERT(E->stage >= ENTROPY_WARM);
   1371 
   1372 	/* Always ready for writing.  */
   1373 	revents |= events & (POLLOUT|POLLWRNORM);
   1374 
   1375 	/* Narrow it down to reads.  */
   1376 	events &= POLLIN|POLLRDNORM;
   1377 	if (events == 0)
   1378 		return revents;
   1379 
   1380 	/*
   1381 	 * If we have reached full entropy and we're not depleting
   1382 	 * entropy, we are forever ready.
   1383 	 */
   1384 	if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
   1385 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)))
   1386 		return revents | events;
   1387 
   1388 	/*
   1389 	 * Otherwise, check whether we need entropy under the lock.  If
   1390 	 * we don't, we're ready; if we do, add ourselves to the queue.
   1391 	 */
   1392 	mutex_enter(&E->lock);
   1393 	if (E->needed == 0)
   1394 		revents |= events;
   1395 	else
   1396 		selrecord(curlwp, &E->selq);
   1397 	mutex_exit(&E->lock);
   1398 
   1399 	return revents;
   1400 }
   1401 
   1402 /*
   1403  * filt_entropy_read_detach(kn)
   1404  *
   1405  *	struct filterops::f_detach callback for entropy read events:
   1406  *	remove kn from the list of waiters.
   1407  */
   1408 static void
   1409 filt_entropy_read_detach(struct knote *kn)
   1410 {
   1411 
   1412 	KASSERT(E->stage >= ENTROPY_WARM);
   1413 
   1414 	mutex_enter(&E->lock);
   1415 	selremove_knote(&E->selq, kn);
   1416 	mutex_exit(&E->lock);
   1417 }
   1418 
   1419 /*
   1420  * filt_entropy_read_event(kn, hint)
   1421  *
   1422  *	struct filterops::f_event callback for entropy read events:
   1423  *	poll for entropy.  Caller must hold the global entropy lock if
   1424  *	hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
   1425  */
   1426 static int
   1427 filt_entropy_read_event(struct knote *kn, long hint)
   1428 {
   1429 	int ret;
   1430 
   1431 	KASSERT(E->stage >= ENTROPY_WARM);
   1432 
   1433 	/* Acquire the lock, if caller is outside entropy subsystem.  */
   1434 	if (hint == NOTE_SUBMIT)
   1435 		KASSERT(mutex_owned(&E->lock));
   1436 	else
   1437 		mutex_enter(&E->lock);
   1438 
   1439 	/*
   1440 	 * If we still need entropy, can't read anything; if not, can
   1441 	 * read arbitrarily much.
   1442 	 */
   1443 	if (E->needed != 0) {
   1444 		ret = 0;
   1445 	} else {
   1446 		if (atomic_load_relaxed(&entropy_depletion))
   1447 			kn->kn_data = ENTROPY_CAPACITY*NBBY;
   1448 		else
   1449 			kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
   1450 		ret = 1;
   1451 	}
   1452 
   1453 	/* Release the lock, if caller is outside entropy subsystem.  */
   1454 	if (hint == NOTE_SUBMIT)
   1455 		KASSERT(mutex_owned(&E->lock));
   1456 	else
   1457 		mutex_exit(&E->lock);
   1458 
   1459 	return ret;
   1460 }
   1461 
   1462 static const struct filterops entropy_read_filtops = {
   1463 	.f_isfd = 1,		/* XXX Makes sense only for /dev/u?random.  */
   1464 	.f_attach = NULL,
   1465 	.f_detach = filt_entropy_read_detach,
   1466 	.f_event = filt_entropy_read_event,
   1467 };
   1468 
   1469 /*
   1470  * entropy_kqfilter(kn)
   1471  *
   1472  *	Register kn to receive entropy event notifications.  May be
   1473  *	EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
   1474  */
   1475 int
   1476 entropy_kqfilter(struct knote *kn)
   1477 {
   1478 
   1479 	KASSERT(E->stage >= ENTROPY_WARM);
   1480 
   1481 	switch (kn->kn_filter) {
   1482 	case EVFILT_READ:
   1483 		/* Enter into the global select queue.  */
   1484 		mutex_enter(&E->lock);
   1485 		kn->kn_fop = &entropy_read_filtops;
   1486 		selrecord_knote(&E->selq, kn);
   1487 		mutex_exit(&E->lock);
   1488 		return 0;
   1489 	case EVFILT_WRITE:
   1490 		/* Can always dump entropy into the system.  */
   1491 		kn->kn_fop = &seltrue_filtops;
   1492 		return 0;
   1493 	default:
   1494 		return EINVAL;
   1495 	}
   1496 }
   1497 
   1498 /*
   1499  * rndsource_setcb(rs, get, getarg)
   1500  *
   1501  *	Set the request callback for the entropy source rs, if it can
   1502  *	provide entropy on demand.  Must precede rnd_attach_source.
   1503  */
   1504 void
   1505 rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
   1506     void *getarg)
   1507 {
   1508 
   1509 	rs->get = get;
   1510 	rs->getarg = getarg;
   1511 }
   1512 
   1513 /*
   1514  * rnd_attach_source(rs, name, type, flags)
   1515  *
   1516  *	Attach the entropy source rs.  Must be done after
   1517  *	rndsource_setcb, if any, and before any calls to rnd_add_data.
   1518  */
   1519 void
   1520 rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
   1521     uint32_t flags)
   1522 {
   1523 	uint32_t extra[4];
   1524 	unsigned i = 0;
   1525 
   1526 	/* Grab cycle counter to mix extra into the pool.  */
   1527 	extra[i++] = entropy_timer();
   1528 
   1529 	/*
   1530 	 * Apply some standard flags:
   1531 	 *
   1532 	 * - We do not bother with network devices by default, for
   1533 	 *   hysterical raisins (perhaps: because it is often the case
   1534 	 *   that an adversary can influence network packet timings).
   1535 	 */
   1536 	switch (type) {
   1537 	case RND_TYPE_NET:
   1538 		flags |= RND_FLAG_NO_COLLECT;
   1539 		break;
   1540 	}
   1541 
   1542 	/* Sanity-check the callback if RND_FLAG_HASCB is set.  */
   1543 	KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
   1544 
   1545 	/* Initialize the random source.  */
   1546 	memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
   1547 	strlcpy(rs->name, name, sizeof(rs->name));
   1548 	rs->total = 0;
   1549 	rs->type = type;
   1550 	rs->flags = flags;
   1551 	if (E->stage >= ENTROPY_WARM)
   1552 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
   1553 	extra[i++] = entropy_timer();
   1554 
   1555 	/* Wire it into the global list of random sources.  */
   1556 	if (E->stage >= ENTROPY_WARM)
   1557 		mutex_enter(&E->lock);
   1558 	LIST_INSERT_HEAD(&E->sources, rs, list);
   1559 	if (E->stage >= ENTROPY_WARM)
   1560 		mutex_exit(&E->lock);
   1561 	extra[i++] = entropy_timer();
   1562 
   1563 	/* Request that it provide entropy ASAP, if we can.  */
   1564 	if (ISSET(flags, RND_FLAG_HASCB))
   1565 		(*rs->get)(ENTROPY_CAPACITY, rs->getarg);
   1566 	extra[i++] = entropy_timer();
   1567 
   1568 	/* Mix the extra into the pool.  */
   1569 	KASSERT(i == __arraycount(extra));
   1570 	entropy_enter(extra, sizeof extra, 0);
   1571 	explicit_memset(extra, 0, sizeof extra);
   1572 }
   1573 
   1574 /*
   1575  * rnd_detach_source(rs)
   1576  *
   1577  *	Detach the entropy source rs.  May sleep waiting for users to
   1578  *	drain.  Further use is not allowed.
   1579  */
   1580 void
   1581 rnd_detach_source(struct krndsource *rs)
   1582 {
   1583 
   1584 	/*
   1585 	 * If we're cold (shouldn't happen, but hey), just remove it
   1586 	 * from the list -- there's nothing allocated.
   1587 	 */
   1588 	if (E->stage == ENTROPY_COLD) {
   1589 		LIST_REMOVE(rs, list);
   1590 		return;
   1591 	}
   1592 
   1593 	/* We may have to wait for entropy_request.  */
   1594 	ASSERT_SLEEPABLE();
   1595 
   1596 	/* Wait until the source list is not in use, and remove it.  */
   1597 	mutex_enter(&E->lock);
   1598 	while (E->sourcelock)
   1599 		cv_wait(&E->sourcelock_cv, &E->lock);
   1600 	LIST_REMOVE(rs, list);
   1601 	mutex_exit(&E->lock);
   1602 
   1603 	/* Free the per-CPU data.  */
   1604 	percpu_free(rs->state, sizeof(struct rndsource_cpu));
   1605 }
   1606 
   1607 /*
   1608  * rnd_lock_sources()
   1609  *
   1610  *	Prevent changes to the list of rndsources while we iterate it.
   1611  *	Interruptible.  Caller must hold the global entropy lock.  If
   1612  *	successful, no rndsource will go away until rnd_unlock_sources
   1613  *	even while the caller releases the global entropy lock.
   1614  */
   1615 static int
   1616 rnd_lock_sources(void)
   1617 {
   1618 	int error;
   1619 
   1620 	KASSERT(mutex_owned(&E->lock));
   1621 
   1622 	while (E->sourcelock) {
   1623 		error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
   1624 		if (error)
   1625 			return error;
   1626 	}
   1627 
   1628 	E->sourcelock = curlwp;
   1629 	return 0;
   1630 }
   1631 
   1632 /*
   1633  * rnd_trylock_sources()
   1634  *
   1635  *	Try to lock the list of sources, but if it's already locked,
   1636  *	fail.  Caller must hold the global entropy lock.  If
   1637  *	successful, no rndsource will go away until rnd_unlock_sources
   1638  *	even while the caller releases the global entropy lock.
   1639  */
   1640 static bool
   1641 rnd_trylock_sources(void)
   1642 {
   1643 
   1644 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1645 
   1646 	if (E->sourcelock)
   1647 		return false;
   1648 	E->sourcelock = curlwp;
   1649 	return true;
   1650 }
   1651 
   1652 /*
   1653  * rnd_unlock_sources()
   1654  *
   1655  *	Unlock the list of sources after rnd_lock_sources or
   1656  *	rnd_trylock_sources.  Caller must hold the global entropy lock.
   1657  */
   1658 static void
   1659 rnd_unlock_sources(void)
   1660 {
   1661 
   1662 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1663 
   1664 	KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
   1665 	    curlwp, E->sourcelock);
   1666 	E->sourcelock = NULL;
   1667 	if (E->stage >= ENTROPY_WARM)
   1668 		cv_signal(&E->sourcelock_cv);
   1669 }
   1670 
   1671 /*
   1672  * rnd_sources_locked()
   1673  *
   1674  *	True if we hold the list of rndsources locked, for diagnostic
   1675  *	assertions.
   1676  */
   1677 static bool __diagused
   1678 rnd_sources_locked(void)
   1679 {
   1680 
   1681 	return E->sourcelock == curlwp;
   1682 }
   1683 
   1684 /*
   1685  * entropy_request(nbytes)
   1686  *
   1687  *	Request nbytes bytes of entropy from all sources in the system.
   1688  *	OK if we overdo it.  Caller must hold the global entropy lock;
   1689  *	will release and re-acquire it.
   1690  */
   1691 static void
   1692 entropy_request(size_t nbytes)
   1693 {
   1694 	struct krndsource *rs;
   1695 
   1696 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1697 
   1698 	/*
   1699 	 * If there is a request in progress, let it proceed.
   1700 	 * Otherwise, note that a request is in progress to avoid
   1701 	 * reentry and to block rnd_detach_source until we're done.
   1702 	 */
   1703 	if (!rnd_trylock_sources())
   1704 		return;
   1705 	entropy_request_evcnt.ev_count++;
   1706 
   1707 	/* Clamp to the maximum reasonable request.  */
   1708 	nbytes = MIN(nbytes, ENTROPY_CAPACITY);
   1709 
   1710 	/* Walk the list of sources.  */
   1711 	LIST_FOREACH(rs, &E->sources, list) {
   1712 		/* Skip sources without callbacks.  */
   1713 		if (!ISSET(rs->flags, RND_FLAG_HASCB))
   1714 			continue;
   1715 
   1716 		/*
   1717 		 * Skip sources that are disabled altogether -- we
   1718 		 * would just ignore their samples anyway.
   1719 		 */
   1720 		if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
   1721 			continue;
   1722 
   1723 		/* Drop the lock while we call the callback.  */
   1724 		if (E->stage >= ENTROPY_WARM)
   1725 			mutex_exit(&E->lock);
   1726 		(*rs->get)(nbytes, rs->getarg);
   1727 		if (E->stage >= ENTROPY_WARM)
   1728 			mutex_enter(&E->lock);
   1729 	}
   1730 
   1731 	/* Notify rnd_detach_source that the request is done.  */
   1732 	rnd_unlock_sources();
   1733 }
   1734 
   1735 /*
   1736  * rnd_add_uint32(rs, value)
   1737  *
   1738  *	Enter 32 bits of data from an entropy source into the pool.
   1739  *
   1740  *	If rs is NULL, may not be called from interrupt context.
   1741  *
   1742  *	If rs is non-NULL, may be called from any context.  May drop
   1743  *	data if called from interrupt context.
   1744  */
   1745 void
   1746 rnd_add_uint32(struct krndsource *rs, uint32_t value)
   1747 {
   1748 
   1749 	rnd_add_data(rs, &value, sizeof value, 0);
   1750 }
   1751 
   1752 void
   1753 _rnd_add_uint32(struct krndsource *rs, uint32_t value)
   1754 {
   1755 
   1756 	rnd_add_data(rs, &value, sizeof value, 0);
   1757 }
   1758 
   1759 void
   1760 _rnd_add_uint64(struct krndsource *rs, uint64_t value)
   1761 {
   1762 
   1763 	rnd_add_data(rs, &value, sizeof value, 0);
   1764 }
   1765 
   1766 /*
   1767  * rnd_add_data(rs, buf, len, entropybits)
   1768  *
   1769  *	Enter data from an entropy source into the pool, with a
   1770  *	driver's estimate of how much entropy the physical source of
   1771  *	the data has.  If RND_FLAG_NO_ESTIMATE, we ignore the driver's
   1772  *	estimate and treat it as zero.
   1773  *
   1774  *	If rs is NULL, may not be called from interrupt context.
   1775  *
   1776  *	If rs is non-NULL, may be called from any context.  May drop
   1777  *	data if called from interrupt context.
   1778  */
   1779 void
   1780 rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
   1781     uint32_t entropybits)
   1782 {
   1783 	uint32_t extra;
   1784 	uint32_t flags;
   1785 
   1786 	KASSERTMSG(howmany(entropybits, NBBY) <= len,
   1787 	    "%s: impossible entropy rate:"
   1788 	    " %"PRIu32" bits in %"PRIu32"-byte string",
   1789 	    rs ? rs->name : "(anonymous)", entropybits, len);
   1790 
   1791 	/* If there's no rndsource, just enter the data and time now.  */
   1792 	if (rs == NULL) {
   1793 		entropy_enter(buf, len, entropybits);
   1794 		extra = entropy_timer();
   1795 		entropy_enter(&extra, sizeof extra, 0);
   1796 		explicit_memset(&extra, 0, sizeof extra);
   1797 		return;
   1798 	}
   1799 
   1800 	/* Load a snapshot of the flags.  Ioctl may change them under us.  */
   1801 	flags = atomic_load_relaxed(&rs->flags);
   1802 
   1803 	/*
   1804 	 * Skip if:
   1805 	 * - we're not collecting entropy, or
   1806 	 * - the operator doesn't want to collect entropy from this, or
   1807 	 * - neither data nor timings are being collected from this.
   1808 	 */
   1809 	if (!atomic_load_relaxed(&entropy_collection) ||
   1810 	    ISSET(flags, RND_FLAG_NO_COLLECT) ||
   1811 	    !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
   1812 		return;
   1813 
   1814 	/* If asked, ignore the estimate.  */
   1815 	if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
   1816 		entropybits = 0;
   1817 
   1818 	/* If we are collecting data, enter them.  */
   1819 	if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
   1820 		rnd_add_data_1(rs, buf, len, entropybits);
   1821 
   1822 	/* If we are collecting timings, enter one.  */
   1823 	if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
   1824 		extra = entropy_timer();
   1825 		rnd_add_data_1(rs, &extra, sizeof extra, 0);
   1826 	}
   1827 }
   1828 
   1829 /*
   1830  * rnd_add_data_1(rs, buf, len, entropybits)
   1831  *
   1832  *	Internal subroutine to call either entropy_enter_intr, if we're
   1833  *	in interrupt context, or entropy_enter if not, and to count the
   1834  *	entropy in an rndsource.
   1835  */
   1836 static void
   1837 rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
   1838     uint32_t entropybits)
   1839 {
   1840 	bool fullyused;
   1841 
   1842 	/*
   1843 	 * If we're in interrupt context, use entropy_enter_intr and
   1844 	 * take note of whether it consumed the full sample; if not,
   1845 	 * use entropy_enter, which always consumes the full sample.
   1846 	 */
   1847 	if (curlwp && cpu_intr_p()) {
   1848 		fullyused = entropy_enter_intr(buf, len, entropybits);
   1849 	} else {
   1850 		entropy_enter(buf, len, entropybits);
   1851 		fullyused = true;
   1852 	}
   1853 
   1854 	/*
   1855 	 * If we used the full sample, note how many bits were
   1856 	 * contributed from this source.
   1857 	 */
   1858 	if (fullyused) {
   1859 		if (E->stage < ENTROPY_HOT) {
   1860 			if (E->stage >= ENTROPY_WARM)
   1861 				mutex_enter(&E->lock);
   1862 			rs->total += MIN(UINT_MAX - rs->total, entropybits);
   1863 			if (E->stage >= ENTROPY_WARM)
   1864 				mutex_exit(&E->lock);
   1865 		} else {
   1866 			struct rndsource_cpu *rc = percpu_getref(rs->state);
   1867 			unsigned nbits = rc->rc_nbits;
   1868 
   1869 			nbits += MIN(UINT_MAX - nbits, entropybits);
   1870 			atomic_store_relaxed(&rc->rc_nbits, nbits);
   1871 			percpu_putref(rs->state);
   1872 		}
   1873 	}
   1874 }
   1875 
   1876 /*
   1877  * rnd_add_data_sync(rs, buf, len, entropybits)
   1878  *
   1879  *	Same as rnd_add_data.  Originally used in rndsource callbacks,
   1880  *	to break an unnecessary cycle; no longer really needed.
   1881  */
   1882 void
   1883 rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
   1884     uint32_t entropybits)
   1885 {
   1886 
   1887 	rnd_add_data(rs, buf, len, entropybits);
   1888 }
   1889 
   1890 /*
   1891  * rndsource_entropybits(rs)
   1892  *
   1893  *	Return approximately the number of bits of entropy that have
   1894  *	been contributed via rs so far.  Approximate if other CPUs may
   1895  *	be calling rnd_add_data concurrently.
   1896  */
   1897 static unsigned
   1898 rndsource_entropybits(struct krndsource *rs)
   1899 {
   1900 	unsigned nbits = rs->total;
   1901 
   1902 	KASSERT(E->stage >= ENTROPY_WARM);
   1903 	KASSERT(rnd_sources_locked());
   1904 	percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
   1905 	return nbits;
   1906 }
   1907 
   1908 static void
   1909 rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   1910 {
   1911 	struct rndsource_cpu *rc = ptr;
   1912 	unsigned *nbitsp = cookie;
   1913 	unsigned cpu_nbits;
   1914 
   1915 	cpu_nbits = atomic_load_relaxed(&rc->rc_nbits);
   1916 	*nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
   1917 }
   1918 
   1919 /*
   1920  * rndsource_to_user(rs, urs)
   1921  *
   1922  *	Copy a description of rs out to urs for userland.
   1923  */
   1924 static void
   1925 rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
   1926 {
   1927 
   1928 	KASSERT(E->stage >= ENTROPY_WARM);
   1929 	KASSERT(rnd_sources_locked());
   1930 
   1931 	/* Avoid kernel memory disclosure.  */
   1932 	memset(urs, 0, sizeof(*urs));
   1933 
   1934 	CTASSERT(sizeof(urs->name) == sizeof(rs->name));
   1935 	strlcpy(urs->name, rs->name, sizeof(urs->name));
   1936 	urs->total = rndsource_entropybits(rs);
   1937 	urs->type = rs->type;
   1938 	urs->flags = atomic_load_relaxed(&rs->flags);
   1939 }
   1940 
   1941 /*
   1942  * rndsource_to_user_est(rs, urse)
   1943  *
   1944  *	Copy a description of rs and estimation statistics out to urse
   1945  *	for userland.
   1946  */
   1947 static void
   1948 rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
   1949 {
   1950 
   1951 	KASSERT(E->stage >= ENTROPY_WARM);
   1952 	KASSERT(rnd_sources_locked());
   1953 
   1954 	/* Avoid kernel memory disclosure.  */
   1955 	memset(urse, 0, sizeof(*urse));
   1956 
   1957 	/* Copy out the rndsource description.  */
   1958 	rndsource_to_user(rs, &urse->rt);
   1959 
   1960 	/* Zero out the statistics because we don't do estimation.  */
   1961 	urse->dt_samples = 0;
   1962 	urse->dt_total = 0;
   1963 	urse->dv_samples = 0;
   1964 	urse->dv_total = 0;
   1965 }
   1966 
   1967 /*
   1968  * entropy_reset_xc(arg1, arg2)
   1969  *
   1970  *	Reset the current CPU's pending entropy to zero.
   1971  */
   1972 static void
   1973 entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
   1974 {
   1975 	uint32_t extra = entropy_timer();
   1976 	struct entropy_cpu *ec;
   1977 	int s;
   1978 
   1979 	/*
   1980 	 * Acquire the per-CPU state, blocking soft interrupts and
   1981 	 * causing hard interrupts to drop samples on the floor.
   1982 	 */
   1983 	ec = percpu_getref(entropy_percpu);
   1984 	s = splsoftserial();
   1985 	KASSERT(!ec->ec_locked);
   1986 	ec->ec_locked = true;
   1987 	__insn_barrier();
   1988 
   1989 	/* Zero the pending count and enter a cycle count for fun.  */
   1990 	ec->ec_pending = 0;
   1991 	entpool_enter(ec->ec_pool, &extra, sizeof extra);
   1992 
   1993 	/* Release the per-CPU state.  */
   1994 	KASSERT(ec->ec_locked);
   1995 	__insn_barrier();
   1996 	ec->ec_locked = false;
   1997 	splx(s);
   1998 	percpu_putref(entropy_percpu);
   1999 }
   2000 
   2001 /*
   2002  * entropy_ioctl(cmd, data)
   2003  *
   2004  *	Handle various /dev/random ioctl queries.
   2005  */
   2006 int
   2007 entropy_ioctl(unsigned long cmd, void *data)
   2008 {
   2009 	struct krndsource *rs;
   2010 	bool privileged;
   2011 	int error;
   2012 
   2013 	KASSERT(E->stage >= ENTROPY_WARM);
   2014 
   2015 	/* Verify user's authorization to perform the ioctl.  */
   2016 	switch (cmd) {
   2017 	case RNDGETENTCNT:
   2018 	case RNDGETPOOLSTAT:
   2019 	case RNDGETSRCNUM:
   2020 	case RNDGETSRCNAME:
   2021 	case RNDGETESTNUM:
   2022 	case RNDGETESTNAME:
   2023 		error = kauth_authorize_device(curlwp->l_cred,
   2024 		    KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
   2025 		break;
   2026 	case RNDCTL:
   2027 		error = kauth_authorize_device(curlwp->l_cred,
   2028 		    KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
   2029 		break;
   2030 	case RNDADDDATA:
   2031 		error = kauth_authorize_device(curlwp->l_cred,
   2032 		    KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
   2033 		/* Ascertain whether the user's inputs should be counted.  */
   2034 		if (kauth_authorize_device(curlwp->l_cred,
   2035 			KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
   2036 			NULL, NULL, NULL, NULL) == 0)
   2037 			privileged = true;
   2038 		break;
   2039 	default: {
   2040 		/*
   2041 		 * XXX Hack to avoid changing module ABI so this can be
   2042 		 * pulled up.  Later, we can just remove the argument.
   2043 		 */
   2044 		static const struct fileops fops = {
   2045 			.fo_ioctl = rnd_system_ioctl,
   2046 		};
   2047 		struct file f = {
   2048 			.f_ops = &fops,
   2049 		};
   2050 		MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
   2051 		    enosys(), error);
   2052 #if defined(_LP64)
   2053 		if (error == ENOSYS)
   2054 			MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
   2055 			    enosys(), error);
   2056 #endif
   2057 		if (error == ENOSYS)
   2058 			error = ENOTTY;
   2059 		break;
   2060 	}
   2061 	}
   2062 
   2063 	/* If anything went wrong with authorization, stop here.  */
   2064 	if (error)
   2065 		return error;
   2066 
   2067 	/* Dispatch on the command.  */
   2068 	switch (cmd) {
   2069 	case RNDGETENTCNT: {	/* Get current entropy count in bits.  */
   2070 		uint32_t *countp = data;
   2071 
   2072 		mutex_enter(&E->lock);
   2073 		*countp = ENTROPY_CAPACITY*NBBY - E->needed;
   2074 		mutex_exit(&E->lock);
   2075 
   2076 		break;
   2077 	}
   2078 	case RNDGETPOOLSTAT: {	/* Get entropy pool statistics.  */
   2079 		rndpoolstat_t *pstat = data;
   2080 
   2081 		mutex_enter(&E->lock);
   2082 
   2083 		/* parameters */
   2084 		pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
   2085 		pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
   2086 		pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
   2087 
   2088 		/* state */
   2089 		pstat->added = 0; /* XXX total entropy_enter count */
   2090 		pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
   2091 		pstat->removed = 0; /* XXX total entropy_extract count */
   2092 		pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
   2093 		pstat->generated = 0; /* XXX bits of data...fabricated? */
   2094 
   2095 		mutex_exit(&E->lock);
   2096 		break;
   2097 	}
   2098 	case RNDGETSRCNUM: {	/* Get entropy sources by number.  */
   2099 		rndstat_t *stat = data;
   2100 		uint32_t start = 0, i = 0;
   2101 
   2102 		/* Skip if none requested; fail if too many requested.  */
   2103 		if (stat->count == 0)
   2104 			break;
   2105 		if (stat->count > RND_MAXSTATCOUNT)
   2106 			return EINVAL;
   2107 
   2108 		/*
   2109 		 * Under the lock, find the first one, copy out as many
   2110 		 * as requested, and report how many we copied out.
   2111 		 */
   2112 		mutex_enter(&E->lock);
   2113 		error = rnd_lock_sources();
   2114 		if (error) {
   2115 			mutex_exit(&E->lock);
   2116 			return error;
   2117 		}
   2118 		LIST_FOREACH(rs, &E->sources, list) {
   2119 			if (start++ == stat->start)
   2120 				break;
   2121 		}
   2122 		while (i < stat->count && rs != NULL) {
   2123 			mutex_exit(&E->lock);
   2124 			rndsource_to_user(rs, &stat->source[i++]);
   2125 			mutex_enter(&E->lock);
   2126 			rs = LIST_NEXT(rs, list);
   2127 		}
   2128 		KASSERT(i <= stat->count);
   2129 		stat->count = i;
   2130 		rnd_unlock_sources();
   2131 		mutex_exit(&E->lock);
   2132 		break;
   2133 	}
   2134 	case RNDGETESTNUM: {	/* Get sources and estimates by number.  */
   2135 		rndstat_est_t *estat = data;
   2136 		uint32_t start = 0, i = 0;
   2137 
   2138 		/* Skip if none requested; fail if too many requested.  */
   2139 		if (estat->count == 0)
   2140 			break;
   2141 		if (estat->count > RND_MAXSTATCOUNT)
   2142 			return EINVAL;
   2143 
   2144 		/*
   2145 		 * Under the lock, find the first one, copy out as many
   2146 		 * as requested, and report how many we copied out.
   2147 		 */
   2148 		mutex_enter(&E->lock);
   2149 		error = rnd_lock_sources();
   2150 		if (error) {
   2151 			mutex_exit(&E->lock);
   2152 			return error;
   2153 		}
   2154 		LIST_FOREACH(rs, &E->sources, list) {
   2155 			if (start++ == estat->start)
   2156 				break;
   2157 		}
   2158 		while (i < estat->count && rs != NULL) {
   2159 			mutex_exit(&E->lock);
   2160 			rndsource_to_user_est(rs, &estat->source[i++]);
   2161 			mutex_enter(&E->lock);
   2162 			rs = LIST_NEXT(rs, list);
   2163 		}
   2164 		KASSERT(i <= estat->count);
   2165 		estat->count = i;
   2166 		rnd_unlock_sources();
   2167 		mutex_exit(&E->lock);
   2168 		break;
   2169 	}
   2170 	case RNDGETSRCNAME: {	/* Get entropy sources by name.  */
   2171 		rndstat_name_t *nstat = data;
   2172 		const size_t n = sizeof(rs->name);
   2173 
   2174 		CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
   2175 
   2176 		/*
   2177 		 * Under the lock, search by name.  If found, copy it
   2178 		 * out; if not found, fail with ENOENT.
   2179 		 */
   2180 		mutex_enter(&E->lock);
   2181 		error = rnd_lock_sources();
   2182 		if (error) {
   2183 			mutex_exit(&E->lock);
   2184 			return error;
   2185 		}
   2186 		LIST_FOREACH(rs, &E->sources, list) {
   2187 			if (strncmp(rs->name, nstat->name, n) == 0)
   2188 				break;
   2189 		}
   2190 		if (rs != NULL) {
   2191 			mutex_exit(&E->lock);
   2192 			rndsource_to_user(rs, &nstat->source);
   2193 			mutex_enter(&E->lock);
   2194 		} else {
   2195 			error = ENOENT;
   2196 		}
   2197 		rnd_unlock_sources();
   2198 		mutex_exit(&E->lock);
   2199 		break;
   2200 	}
   2201 	case RNDGETESTNAME: {	/* Get sources and estimates by name.  */
   2202 		rndstat_est_name_t *enstat = data;
   2203 		const size_t n = sizeof(rs->name);
   2204 
   2205 		CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
   2206 
   2207 		/*
   2208 		 * Under the lock, search by name.  If found, copy it
   2209 		 * out; if not found, fail with ENOENT.
   2210 		 */
   2211 		mutex_enter(&E->lock);
   2212 		error = rnd_lock_sources();
   2213 		if (error) {
   2214 			mutex_exit(&E->lock);
   2215 			return error;
   2216 		}
   2217 		LIST_FOREACH(rs, &E->sources, list) {
   2218 			if (strncmp(rs->name, enstat->name, n) == 0)
   2219 				break;
   2220 		}
   2221 		if (rs != NULL) {
   2222 			mutex_exit(&E->lock);
   2223 			rndsource_to_user_est(rs, &enstat->source);
   2224 			mutex_enter(&E->lock);
   2225 		} else {
   2226 			error = ENOENT;
   2227 		}
   2228 		rnd_unlock_sources();
   2229 		mutex_exit(&E->lock);
   2230 		break;
   2231 	}
   2232 	case RNDCTL: {		/* Modify entropy source flags.  */
   2233 		rndctl_t *rndctl = data;
   2234 		const size_t n = sizeof(rs->name);
   2235 		uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2236 		uint32_t flags;
   2237 		bool reset = false, request = false;
   2238 
   2239 		CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
   2240 
   2241 		/* Whitelist the flags that user can change.  */
   2242 		rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2243 
   2244 		/*
   2245 		 * For each matching rndsource, either by type if
   2246 		 * specified or by name if not, set the masked flags.
   2247 		 */
   2248 		mutex_enter(&E->lock);
   2249 		LIST_FOREACH(rs, &E->sources, list) {
   2250 			if (rndctl->type != 0xff) {
   2251 				if (rs->type != rndctl->type)
   2252 					continue;
   2253 			} else {
   2254 				if (strncmp(rs->name, rndctl->name, n) != 0)
   2255 					continue;
   2256 			}
   2257 			flags = rs->flags & ~rndctl->mask;
   2258 			flags |= rndctl->flags & rndctl->mask;
   2259 			if ((rs->flags & resetflags) == 0 &&
   2260 			    (flags & resetflags) != 0)
   2261 				reset = true;
   2262 			if ((rs->flags ^ flags) & resetflags)
   2263 				request = true;
   2264 			atomic_store_relaxed(&rs->flags, flags);
   2265 		}
   2266 		mutex_exit(&E->lock);
   2267 
   2268 		/*
   2269 		 * If we disabled estimation or collection, nix all the
   2270 		 * pending entropy and set needed to the maximum.
   2271 		 */
   2272 		if (reset) {
   2273 			xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
   2274 			mutex_enter(&E->lock);
   2275 			E->pending = 0;
   2276 			atomic_store_relaxed(&E->needed,
   2277 			    ENTROPY_CAPACITY*NBBY);
   2278 			mutex_exit(&E->lock);
   2279 		}
   2280 
   2281 		/*
   2282 		 * If we changed any of the estimation or collection
   2283 		 * flags, request new samples from everyone -- either
   2284 		 * to make up for what we just lost, or to get new
   2285 		 * samples from what we just added.
   2286 		 */
   2287 		if (request) {
   2288 			mutex_enter(&E->lock);
   2289 			entropy_request(ENTROPY_CAPACITY);
   2290 			mutex_exit(&E->lock);
   2291 		}
   2292 		break;
   2293 	}
   2294 	case RNDADDDATA: {	/* Enter seed into entropy pool.  */
   2295 		rnddata_t *rdata = data;
   2296 		unsigned entropybits = 0;
   2297 
   2298 		if (!atomic_load_relaxed(&entropy_collection))
   2299 			break;	/* thanks but no thanks */
   2300 		if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
   2301 			return EINVAL;
   2302 
   2303 		/*
   2304 		 * This ioctl serves as the userland alternative a
   2305 		 * bootloader-provided seed -- typically furnished by
   2306 		 * /etc/rc.d/random_seed.  We accept the user's entropy
   2307 		 * claim only if
   2308 		 *
   2309 		 * (a) the user is privileged, and
   2310 		 * (b) we have not entered a bootloader seed.
   2311 		 *
   2312 		 * under the assumption that the user may use this to
   2313 		 * load a seed from disk that we have already loaded
   2314 		 * from the bootloader, so we don't double-count it.
   2315 		 */
   2316 		if (privileged && rdata->entropy && rdata->len) {
   2317 			mutex_enter(&E->lock);
   2318 			if (!E->seeded) {
   2319 				entropybits = MIN(rdata->entropy,
   2320 				    MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
   2321 				E->seeded = true;
   2322 			}
   2323 			mutex_exit(&E->lock);
   2324 		}
   2325 
   2326 		/* Enter the data and consolidate entropy.  */
   2327 		rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
   2328 		    entropybits);
   2329 		entropy_consolidate();
   2330 		break;
   2331 	}
   2332 	default:
   2333 		error = ENOTTY;
   2334 	}
   2335 
   2336 	/* Return any error that may have come up.  */
   2337 	return error;
   2338 }
   2339 
   2340 /* Legacy entry points */
   2341 
   2342 void
   2343 rnd_seed(void *seed, size_t len)
   2344 {
   2345 
   2346 	if (len != sizeof(rndsave_t)) {
   2347 		printf("entropy: invalid seed length: %zu,"
   2348 		    " expected sizeof(rndsave_t) = %zu\n",
   2349 		    len, sizeof(rndsave_t));
   2350 		return;
   2351 	}
   2352 	entropy_seed(seed);
   2353 }
   2354 
   2355 void
   2356 rnd_init(void)
   2357 {
   2358 
   2359 	entropy_init();
   2360 }
   2361 
   2362 void
   2363 rnd_init_softint(void)
   2364 {
   2365 
   2366 	entropy_init_late();
   2367 }
   2368 
   2369 int
   2370 rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
   2371 {
   2372 
   2373 	return entropy_ioctl(cmd, data);
   2374 }
   2375