Home | History | Annotate | Line # | Download | only in kern
kern_entropy.c revision 1.29
      1 /*	$NetBSD: kern_entropy.c,v 1.29 2021/01/21 17:33:55 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Entropy subsystem
     34  *
     35  *	* Each CPU maintains a per-CPU entropy pool so that gathering
     36  *	  entropy requires no interprocessor synchronization, except
     37  *	  early at boot when we may be scrambling to gather entropy as
     38  *	  soon as possible.
     39  *
     40  *	  - entropy_enter gathers entropy and never drops it on the
     41  *	    floor, at the cost of sometimes having to do cryptography.
     42  *
     43  *	  - entropy_enter_intr gathers entropy or drops it on the
     44  *	    floor, with low latency.  Work to stir the pool or kick the
     45  *	    housekeeping thread is scheduled in soft interrupts.
     46  *
     47  *	* entropy_enter immediately enters into the global pool if it
     48  *	  can transition to full entropy in one swell foop.  Otherwise,
     49  *	  it defers to a housekeeping thread that consolidates entropy,
     50  *	  but only when the CPUs collectively have full entropy, in
     51  *	  order to mitigate iterative-guessing attacks.
     52  *
     53  *	* The entropy housekeeping thread continues to consolidate
     54  *	  entropy even after we think we have full entropy, in case we
     55  *	  are wrong, but is limited to one discretionary consolidation
     56  *	  per minute, and only when new entropy is actually coming in,
     57  *	  to limit performance impact.
     58  *
     59  *	* The entropy epoch is the number that changes when we
     60  *	  transition from partial entropy to full entropy, so that
     61  *	  users can easily determine when to reseed.  This also
     62  *	  facilitates an operator explicitly causing everything to
     63  *	  reseed by sysctl -w kern.entropy.consolidate=1.
     64  *
     65  *	* No entropy estimation based on the sample values, which is a
     66  *	  contradiction in terms and a potential source of side
     67  *	  channels.  It is the responsibility of the driver author to
     68  *	  study how predictable the physical source of input can ever
     69  *	  be, and to furnish a lower bound on the amount of entropy it
     70  *	  has.
     71  *
     72  *	* Entropy depletion is available for testing (or if you're into
     73  *	  that sort of thing), with sysctl -w kern.entropy.depletion=1;
     74  *	  the logic to support it is small, to minimize chance of bugs.
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.29 2021/01/21 17:33:55 riastradh Exp $");
     79 
     80 #include <sys/param.h>
     81 #include <sys/types.h>
     82 #include <sys/atomic.h>
     83 #include <sys/compat_stub.h>
     84 #include <sys/condvar.h>
     85 #include <sys/cpu.h>
     86 #include <sys/entropy.h>
     87 #include <sys/errno.h>
     88 #include <sys/evcnt.h>
     89 #include <sys/event.h>
     90 #include <sys/file.h>
     91 #include <sys/intr.h>
     92 #include <sys/kauth.h>
     93 #include <sys/kernel.h>
     94 #include <sys/kmem.h>
     95 #include <sys/kthread.h>
     96 #include <sys/module_hook.h>
     97 #include <sys/mutex.h>
     98 #include <sys/percpu.h>
     99 #include <sys/poll.h>
    100 #include <sys/queue.h>
    101 #include <sys/rnd.h>		/* legacy kernel API */
    102 #include <sys/rndio.h>		/* userland ioctl interface */
    103 #include <sys/rndsource.h>	/* kernel rndsource driver API */
    104 #include <sys/select.h>
    105 #include <sys/selinfo.h>
    106 #include <sys/sha1.h>		/* for boot seed checksum */
    107 #include <sys/stdint.h>
    108 #include <sys/sysctl.h>
    109 #include <sys/syslog.h>
    110 #include <sys/systm.h>
    111 #include <sys/time.h>
    112 #include <sys/xcall.h>
    113 
    114 #include <lib/libkern/entpool.h>
    115 
    116 #include <machine/limits.h>
    117 
    118 #ifdef __HAVE_CPU_COUNTER
    119 #include <machine/cpu_counter.h>
    120 #endif
    121 
    122 /*
    123  * struct entropy_cpu
    124  *
    125  *	Per-CPU entropy state.  The pool is allocated separately
    126  *	because percpu(9) sometimes moves per-CPU objects around
    127  *	without zeroing them, which would lead to unwanted copies of
    128  *	sensitive secrets.  The evcnt is allocated separately becuase
    129  *	evcnt(9) assumes it stays put in memory.
    130  */
    131 struct entropy_cpu {
    132 	struct evcnt		*ec_softint_evcnt;
    133 	struct entpool		*ec_pool;
    134 	unsigned		ec_pending;
    135 	bool			ec_locked;
    136 };
    137 
    138 /*
    139  * struct rndsource_cpu
    140  *
    141  *	Per-CPU rndsource state.
    142  */
    143 struct rndsource_cpu {
    144 	unsigned		rc_entropybits;
    145 	unsigned		rc_timesamples;
    146 	unsigned		rc_datasamples;
    147 };
    148 
    149 /*
    150  * entropy_global (a.k.a. E for short in this file)
    151  *
    152  *	Global entropy state.  Writes protected by the global lock.
    153  *	Some fields, marked (A), can be read outside the lock, and are
    154  *	maintained with atomic_load/store_relaxed.
    155  */
    156 struct {
    157 	kmutex_t	lock;		/* covers all global state */
    158 	struct entpool	pool;		/* global pool for extraction */
    159 	unsigned	needed;		/* (A) needed globally */
    160 	unsigned	pending;	/* (A) pending in per-CPU pools */
    161 	unsigned	timestamp;	/* (A) time of last consolidation */
    162 	unsigned	epoch;		/* (A) changes when needed -> 0 */
    163 	kcondvar_t	cv;		/* notifies state changes */
    164 	struct selinfo	selq;		/* notifies needed -> 0 */
    165 	struct lwp	*sourcelock;	/* lock on list of sources */
    166 	kcondvar_t	sourcelock_cv;	/* notifies sourcelock release */
    167 	LIST_HEAD(,krndsource) sources;	/* list of entropy sources */
    168 	enum entropy_stage {
    169 		ENTROPY_COLD = 0, /* single-threaded */
    170 		ENTROPY_WARM,	  /* multi-threaded at boot before CPUs */
    171 		ENTROPY_HOT,	  /* multi-threaded multi-CPU */
    172 	}		stage;
    173 	bool		consolidate;	/* kick thread to consolidate */
    174 	bool		seed_rndsource;	/* true if seed source is attached */
    175 	bool		seeded;		/* true if seed file already loaded */
    176 } entropy_global __cacheline_aligned = {
    177 	/* Fields that must be initialized when the kernel is loaded.  */
    178 	.needed = ENTROPY_CAPACITY*NBBY,
    179 	.epoch = (unsigned)-1,	/* -1 means entropy never consolidated */
    180 	.sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
    181 	.stage = ENTROPY_COLD,
    182 };
    183 
    184 #define	E	(&entropy_global)	/* declutter */
    185 
    186 /* Read-mostly globals */
    187 static struct percpu	*entropy_percpu __read_mostly; /* struct entropy_cpu */
    188 static void		*entropy_sih __read_mostly; /* softint handler */
    189 static struct lwp	*entropy_lwp __read_mostly; /* housekeeping thread */
    190 
    191 int rnd_initial_entropy __read_mostly; /* XXX legacy */
    192 
    193 static struct krndsource seed_rndsource __read_mostly;
    194 
    195 /*
    196  * Event counters
    197  *
    198  *	Must be careful with adding these because they can serve as
    199  *	side channels.
    200  */
    201 static struct evcnt entropy_discretionary_evcnt =
    202     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
    203 EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
    204 static struct evcnt entropy_immediate_evcnt =
    205     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
    206 EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
    207 static struct evcnt entropy_partial_evcnt =
    208     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
    209 EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
    210 static struct evcnt entropy_consolidate_evcnt =
    211     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
    212 EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
    213 static struct evcnt entropy_extract_intr_evcnt =
    214     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract intr");
    215 EVCNT_ATTACH_STATIC(entropy_extract_intr_evcnt);
    216 static struct evcnt entropy_extract_fail_evcnt =
    217     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
    218 EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
    219 static struct evcnt entropy_request_evcnt =
    220     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
    221 EVCNT_ATTACH_STATIC(entropy_request_evcnt);
    222 static struct evcnt entropy_deplete_evcnt =
    223     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
    224 EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
    225 static struct evcnt entropy_notify_evcnt =
    226     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
    227 EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
    228 
    229 /* Sysctl knobs */
    230 static bool	entropy_collection = 1;
    231 static bool	entropy_depletion = 0; /* Silly!  */
    232 
    233 static const struct sysctlnode	*entropy_sysctlroot;
    234 static struct sysctllog		*entropy_sysctllog;
    235 
    236 /* Forward declarations */
    237 static void	entropy_init_cpu(void *, void *, struct cpu_info *);
    238 static void	entropy_fini_cpu(void *, void *, struct cpu_info *);
    239 static void	entropy_account_cpu(struct entropy_cpu *);
    240 static void	entropy_enter(const void *, size_t, unsigned);
    241 static bool	entropy_enter_intr(const void *, size_t, unsigned);
    242 static void	entropy_softintr(void *);
    243 static void	entropy_thread(void *);
    244 static uint32_t	entropy_pending(void);
    245 static void	entropy_pending_cpu(void *, void *, struct cpu_info *);
    246 static void	entropy_do_consolidate(void);
    247 static void	entropy_consolidate_xc(void *, void *);
    248 static void	entropy_notify(void);
    249 static int	sysctl_entropy_consolidate(SYSCTLFN_ARGS);
    250 static int	sysctl_entropy_gather(SYSCTLFN_ARGS);
    251 static void	filt_entropy_read_detach(struct knote *);
    252 static int	filt_entropy_read_event(struct knote *, long);
    253 static void	entropy_request(size_t);
    254 static void	rnd_add_data_1(struct krndsource *, const void *, uint32_t,
    255 		    uint32_t, uint32_t);
    256 static unsigned	rndsource_entropybits(struct krndsource *);
    257 static void	rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
    258 static void	rndsource_to_user(struct krndsource *, rndsource_t *);
    259 static void	rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
    260 static void	rndsource_to_user_est_cpu(void *, void *, struct cpu_info *);
    261 
    262 /*
    263  * entropy_timer()
    264  *
    265  *	Cycle counter, time counter, or anything that changes a wee bit
    266  *	unpredictably.
    267  */
    268 static inline uint32_t
    269 entropy_timer(void)
    270 {
    271 	struct bintime bt;
    272 	uint32_t v;
    273 
    274 	/* If we have a CPU cycle counter, use the low 32 bits.  */
    275 #ifdef __HAVE_CPU_COUNTER
    276 	if (__predict_true(cpu_hascounter()))
    277 		return cpu_counter32();
    278 #endif	/* __HAVE_CPU_COUNTER */
    279 
    280 	/* If we're cold, tough.  Can't binuptime while cold.  */
    281 	if (__predict_false(cold))
    282 		return 0;
    283 
    284 	/* Fold the 128 bits of binuptime into 32 bits.  */
    285 	binuptime(&bt);
    286 	v = bt.frac;
    287 	v ^= bt.frac >> 32;
    288 	v ^= bt.sec;
    289 	v ^= bt.sec >> 32;
    290 	return v;
    291 }
    292 
    293 static void
    294 attach_seed_rndsource(void)
    295 {
    296 
    297 	/*
    298 	 * First called no later than entropy_init, while we are still
    299 	 * single-threaded, so no need for RUN_ONCE.
    300 	 */
    301 	if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
    302 		return;
    303 	rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
    304 	    RND_FLAG_COLLECT_VALUE);
    305 	E->seed_rndsource = true;
    306 }
    307 
    308 /*
    309  * entropy_init()
    310  *
    311  *	Initialize the entropy subsystem.  Panic on failure.
    312  *
    313  *	Requires percpu(9) and sysctl(9) to be initialized.
    314  */
    315 static void
    316 entropy_init(void)
    317 {
    318 	uint32_t extra[2];
    319 	struct krndsource *rs;
    320 	unsigned i = 0;
    321 
    322 	KASSERT(E->stage == ENTROPY_COLD);
    323 
    324 	/* Grab some cycle counts early at boot.  */
    325 	extra[i++] = entropy_timer();
    326 
    327 	/* Run the entropy pool cryptography self-test.  */
    328 	if (entpool_selftest() == -1)
    329 		panic("entropy pool crypto self-test failed");
    330 
    331 	/* Create the sysctl directory.  */
    332 	sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
    333 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
    334 	    SYSCTL_DESCR("Entropy (random number sources) options"),
    335 	    NULL, 0, NULL, 0,
    336 	    CTL_KERN, CTL_CREATE, CTL_EOL);
    337 
    338 	/* Create the sysctl knobs.  */
    339 	/* XXX These shouldn't be writable at securelevel>0.  */
    340 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    341 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
    342 	    SYSCTL_DESCR("Automatically collect entropy from hardware"),
    343 	    NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
    344 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    345 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
    346 	    SYSCTL_DESCR("`Deplete' entropy pool when observed"),
    347 	    NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
    348 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    349 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
    350 	    SYSCTL_DESCR("Trigger entropy consolidation now"),
    351 	    sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    352 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    353 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
    354 	    SYSCTL_DESCR("Trigger entropy gathering from sources now"),
    355 	    sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    356 	/* XXX These should maybe not be readable at securelevel>0.  */
    357 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    358 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    359 	    "needed", SYSCTL_DESCR("Systemwide entropy deficit"),
    360 	    NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
    361 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    362 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    363 	    "pending", SYSCTL_DESCR("Entropy pending on CPUs"),
    364 	    NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
    365 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    366 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    367 	    "epoch", SYSCTL_DESCR("Entropy epoch"),
    368 	    NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
    369 
    370 	/* Initialize the global state for multithreaded operation.  */
    371 	mutex_init(&E->lock, MUTEX_DEFAULT, IPL_VM);
    372 	cv_init(&E->cv, "entropy");
    373 	selinit(&E->selq);
    374 	cv_init(&E->sourcelock_cv, "entsrclock");
    375 
    376 	/* Make sure the seed source is attached.  */
    377 	attach_seed_rndsource();
    378 
    379 	/* Note if the bootloader didn't provide a seed.  */
    380 	if (!E->seeded)
    381 		aprint_debug("entropy: no seed from bootloader\n");
    382 
    383 	/* Allocate the per-CPU records for all early entropy sources.  */
    384 	LIST_FOREACH(rs, &E->sources, list)
    385 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
    386 
    387 	/* Enter the boot cycle count to get started.  */
    388 	extra[i++] = entropy_timer();
    389 	KASSERT(i == __arraycount(extra));
    390 	entropy_enter(extra, sizeof extra, 0);
    391 	explicit_memset(extra, 0, sizeof extra);
    392 
    393 	/* We are now ready for multi-threaded operation.  */
    394 	E->stage = ENTROPY_WARM;
    395 }
    396 
    397 /*
    398  * entropy_init_late()
    399  *
    400  *	Late initialization.  Panic on failure.
    401  *
    402  *	Requires CPUs to have been detected and LWPs to have started.
    403  */
    404 static void
    405 entropy_init_late(void)
    406 {
    407 	int error;
    408 
    409 	KASSERT(E->stage == ENTROPY_WARM);
    410 
    411 	/* Allocate and initialize the per-CPU state.  */
    412 	entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
    413 	    entropy_init_cpu, entropy_fini_cpu, NULL);
    414 
    415 	/*
    416 	 * Establish the softint at the highest softint priority level.
    417 	 * Must happen after CPU detection.
    418 	 */
    419 	entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
    420 	    &entropy_softintr, NULL);
    421 	if (entropy_sih == NULL)
    422 		panic("unable to establish entropy softint");
    423 
    424 	/*
    425 	 * Create the entropy housekeeping thread.  Must happen after
    426 	 * lwpinit.
    427 	 */
    428 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
    429 	    entropy_thread, NULL, &entropy_lwp, "entbutler");
    430 	if (error)
    431 		panic("unable to create entropy housekeeping thread: %d",
    432 		    error);
    433 
    434 	/*
    435 	 * Wait until the per-CPU initialization has hit all CPUs
    436 	 * before proceeding to mark the entropy system hot.
    437 	 */
    438 	xc_barrier(XC_HIGHPRI);
    439 	E->stage = ENTROPY_HOT;
    440 }
    441 
    442 /*
    443  * entropy_init_cpu(ptr, cookie, ci)
    444  *
    445  *	percpu(9) constructor for per-CPU entropy pool.
    446  */
    447 static void
    448 entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    449 {
    450 	struct entropy_cpu *ec = ptr;
    451 
    452 	ec->ec_softint_evcnt = kmem_alloc(sizeof(*ec->ec_softint_evcnt),
    453 	    KM_SLEEP);
    454 	ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
    455 	ec->ec_pending = 0;
    456 	ec->ec_locked = false;
    457 
    458 	evcnt_attach_dynamic(ec->ec_softint_evcnt, EVCNT_TYPE_MISC, NULL,
    459 	    ci->ci_cpuname, "entropy softint");
    460 }
    461 
    462 /*
    463  * entropy_fini_cpu(ptr, cookie, ci)
    464  *
    465  *	percpu(9) destructor for per-CPU entropy pool.
    466  */
    467 static void
    468 entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    469 {
    470 	struct entropy_cpu *ec = ptr;
    471 
    472 	/*
    473 	 * Zero any lingering data.  Disclosure of the per-CPU pool
    474 	 * shouldn't retroactively affect the security of any keys
    475 	 * generated, because entpool(9) erases whatever we have just
    476 	 * drawn out of any pool, but better safe than sorry.
    477 	 */
    478 	explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
    479 
    480 	evcnt_detach(ec->ec_softint_evcnt);
    481 
    482 	kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
    483 	kmem_free(ec->ec_softint_evcnt, sizeof(*ec->ec_softint_evcnt));
    484 }
    485 
    486 /*
    487  * entropy_seed(seed)
    488  *
    489  *	Seed the entropy pool with seed.  Meant to be called as early
    490  *	as possible by the bootloader; may be called before or after
    491  *	entropy_init.  Must be called before system reaches userland.
    492  *	Must be called in thread or soft interrupt context, not in hard
    493  *	interrupt context.  Must be called at most once.
    494  *
    495  *	Overwrites the seed in place.  Caller may then free the memory.
    496  */
    497 static void
    498 entropy_seed(rndsave_t *seed)
    499 {
    500 	SHA1_CTX ctx;
    501 	uint8_t digest[SHA1_DIGEST_LENGTH];
    502 	bool seeded;
    503 
    504 	/*
    505 	 * Verify the checksum.  If the checksum fails, take the data
    506 	 * but ignore the entropy estimate -- the file may have been
    507 	 * incompletely written with garbage, which is harmless to add
    508 	 * but may not be as unpredictable as alleged.
    509 	 */
    510 	SHA1Init(&ctx);
    511 	SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
    512 	SHA1Update(&ctx, seed->data, sizeof(seed->data));
    513 	SHA1Final(digest, &ctx);
    514 	CTASSERT(sizeof(seed->digest) == sizeof(digest));
    515 	if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
    516 		printf("entropy: invalid seed checksum\n");
    517 		seed->entropy = 0;
    518 	}
    519 	explicit_memset(&ctx, 0, sizeof ctx);
    520 	explicit_memset(digest, 0, sizeof digest);
    521 
    522 	/*
    523 	 * If the entropy is insensibly large, try byte-swapping.
    524 	 * Otherwise assume the file is corrupted and act as though it
    525 	 * has zero entropy.
    526 	 */
    527 	if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
    528 		seed->entropy = bswap32(seed->entropy);
    529 		if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
    530 			seed->entropy = 0;
    531 	}
    532 
    533 	/* Make sure the seed source is attached.  */
    534 	attach_seed_rndsource();
    535 
    536 	/* Test and set E->seeded.  */
    537 	if (E->stage >= ENTROPY_WARM)
    538 		mutex_enter(&E->lock);
    539 	seeded = E->seeded;
    540 	E->seeded = (seed->entropy > 0);
    541 	if (E->stage >= ENTROPY_WARM)
    542 		mutex_exit(&E->lock);
    543 
    544 	/*
    545 	 * If we've been seeded, may be re-entering the same seed
    546 	 * (e.g., bootloader vs module init, or something).  No harm in
    547 	 * entering it twice, but it contributes no additional entropy.
    548 	 */
    549 	if (seeded) {
    550 		printf("entropy: double-seeded by bootloader\n");
    551 		seed->entropy = 0;
    552 	} else {
    553 		printf("entropy: entering seed from bootloader"
    554 		    " with %u bits of entropy\n", (unsigned)seed->entropy);
    555 	}
    556 
    557 	/* Enter it into the pool and promptly zero it.  */
    558 	rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
    559 	    seed->entropy);
    560 	explicit_memset(seed, 0, sizeof(*seed));
    561 }
    562 
    563 /*
    564  * entropy_bootrequest()
    565  *
    566  *	Request entropy from all sources at boot, once config is
    567  *	complete and interrupts are running.
    568  */
    569 void
    570 entropy_bootrequest(void)
    571 {
    572 
    573 	KASSERT(E->stage >= ENTROPY_WARM);
    574 
    575 	/*
    576 	 * Request enough to satisfy the maximum entropy shortage.
    577 	 * This is harmless overkill if the bootloader provided a seed.
    578 	 */
    579 	mutex_enter(&E->lock);
    580 	entropy_request(ENTROPY_CAPACITY);
    581 	mutex_exit(&E->lock);
    582 }
    583 
    584 /*
    585  * entropy_epoch()
    586  *
    587  *	Returns the current entropy epoch.  If this changes, you should
    588  *	reseed.  If -1, means system entropy has not yet reached full
    589  *	entropy or been explicitly consolidated; never reverts back to
    590  *	-1.  Never zero, so you can always use zero as an uninitialized
    591  *	sentinel value meaning `reseed ASAP'.
    592  *
    593  *	Usage model:
    594  *
    595  *		struct foo {
    596  *			struct crypto_prng prng;
    597  *			unsigned epoch;
    598  *		} *foo;
    599  *
    600  *		unsigned epoch = entropy_epoch();
    601  *		if (__predict_false(epoch != foo->epoch)) {
    602  *			uint8_t seed[32];
    603  *			if (entropy_extract(seed, sizeof seed, 0) != 0)
    604  *				warn("no entropy");
    605  *			crypto_prng_reseed(&foo->prng, seed, sizeof seed);
    606  *			foo->epoch = epoch;
    607  *		}
    608  */
    609 unsigned
    610 entropy_epoch(void)
    611 {
    612 
    613 	/*
    614 	 * Unsigned int, so no need for seqlock for an atomic read, but
    615 	 * make sure we read it afresh each time.
    616 	 */
    617 	return atomic_load_relaxed(&E->epoch);
    618 }
    619 
    620 /*
    621  * entropy_ready()
    622  *
    623  *	True if the entropy pool has full entropy.
    624  */
    625 bool
    626 entropy_ready(void)
    627 {
    628 
    629 	return atomic_load_relaxed(&E->needed) == 0;
    630 }
    631 
    632 /*
    633  * entropy_account_cpu(ec)
    634  *
    635  *	Consider whether to consolidate entropy into the global pool
    636  *	after we just added some into the current CPU's pending pool.
    637  *
    638  *	- If this CPU can provide enough entropy now, do so.
    639  *
    640  *	- If this and whatever else is available on other CPUs can
    641  *	  provide enough entropy, kick the consolidation thread.
    642  *
    643  *	- Otherwise, do as little as possible, except maybe consolidate
    644  *	  entropy at most once a minute.
    645  *
    646  *	Caller must be bound to a CPU and therefore have exclusive
    647  *	access to ec.  Will acquire and release the global lock.
    648  */
    649 static void
    650 entropy_account_cpu(struct entropy_cpu *ec)
    651 {
    652 	unsigned diff;
    653 
    654 	KASSERT(E->stage == ENTROPY_HOT);
    655 
    656 	/*
    657 	 * If there's no entropy needed, and entropy has been
    658 	 * consolidated in the last minute, do nothing.
    659 	 */
    660 	if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
    661 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
    662 	    __predict_true((time_uptime - E->timestamp) <= 60))
    663 		return;
    664 
    665 	/* If there's nothing pending, stop here.  */
    666 	if (ec->ec_pending == 0)
    667 		return;
    668 
    669 	/* Consider consolidation, under the lock.  */
    670 	mutex_enter(&E->lock);
    671 	if (E->needed != 0 && E->needed <= ec->ec_pending) {
    672 		/*
    673 		 * If we have not yet attained full entropy but we can
    674 		 * now, do so.  This way we disseminate entropy
    675 		 * promptly when it becomes available early at boot;
    676 		 * otherwise we leave it to the entropy consolidation
    677 		 * thread, which is rate-limited to mitigate side
    678 		 * channels and abuse.
    679 		 */
    680 		uint8_t buf[ENTPOOL_CAPACITY];
    681 
    682 		/* Transfer from the local pool to the global pool.  */
    683 		entpool_extract(ec->ec_pool, buf, sizeof buf);
    684 		entpool_enter(&E->pool, buf, sizeof buf);
    685 		atomic_store_relaxed(&ec->ec_pending, 0);
    686 		atomic_store_relaxed(&E->needed, 0);
    687 
    688 		/* Notify waiters that we now have full entropy.  */
    689 		entropy_notify();
    690 		entropy_immediate_evcnt.ev_count++;
    691 	} else {
    692 		/* Record how much we can add to the global pool.  */
    693 		diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
    694 		E->pending += diff;
    695 		atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
    696 
    697 		/*
    698 		 * This should have made a difference unless we were
    699 		 * already saturated.
    700 		 */
    701 		KASSERT(diff || E->pending == ENTROPY_CAPACITY*NBBY);
    702 		KASSERT(E->pending);
    703 
    704 		if (E->needed <= E->pending) {
    705 			/*
    706 			 * Enough entropy between all the per-CPU
    707 			 * pools.  Wake up the housekeeping thread.
    708 			 *
    709 			 * If we don't need any entropy, this doesn't
    710 			 * mean much, but it is the only time we ever
    711 			 * gather additional entropy in case the
    712 			 * accounting has been overly optimistic.  This
    713 			 * happens at most once a minute, so there's
    714 			 * negligible performance cost.
    715 			 */
    716 			E->consolidate = true;
    717 			cv_broadcast(&E->cv);
    718 			if (E->needed == 0)
    719 				entropy_discretionary_evcnt.ev_count++;
    720 		} else {
    721 			/* Can't get full entropy.  Keep gathering.  */
    722 			entropy_partial_evcnt.ev_count++;
    723 		}
    724 	}
    725 	mutex_exit(&E->lock);
    726 }
    727 
    728 /*
    729  * entropy_enter_early(buf, len, nbits)
    730  *
    731  *	Do entropy bookkeeping globally, before we have established
    732  *	per-CPU pools.  Enter directly into the global pool in the hope
    733  *	that we enter enough before the first entropy_extract to thwart
    734  *	iterative-guessing attacks; entropy_extract will warn if not.
    735  */
    736 static void
    737 entropy_enter_early(const void *buf, size_t len, unsigned nbits)
    738 {
    739 	bool notify = false;
    740 
    741 	if (E->stage >= ENTROPY_WARM)
    742 		mutex_enter(&E->lock);
    743 
    744 	/* Enter it into the pool.  */
    745 	entpool_enter(&E->pool, buf, len);
    746 
    747 	/*
    748 	 * Decide whether to notify reseed -- we will do so if either:
    749 	 * (a) we transition from partial entropy to full entropy, or
    750 	 * (b) we get a batch of full entropy all at once.
    751 	 */
    752 	notify |= (E->needed && E->needed <= nbits);
    753 	notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
    754 
    755 	/* Subtract from the needed count and notify if appropriate.  */
    756 	E->needed -= MIN(E->needed, nbits);
    757 	if (notify) {
    758 		entropy_notify();
    759 		entropy_immediate_evcnt.ev_count++;
    760 	}
    761 
    762 	if (E->stage >= ENTROPY_WARM)
    763 		mutex_exit(&E->lock);
    764 }
    765 
    766 /*
    767  * entropy_enter(buf, len, nbits)
    768  *
    769  *	Enter len bytes of data from buf into the system's entropy
    770  *	pool, stirring as necessary when the internal buffer fills up.
    771  *	nbits is a lower bound on the number of bits of entropy in the
    772  *	process that led to this sample.
    773  */
    774 static void
    775 entropy_enter(const void *buf, size_t len, unsigned nbits)
    776 {
    777 	struct entropy_cpu *ec;
    778 	uint32_t pending;
    779 	int s;
    780 
    781 	KASSERTMSG(!cpu_intr_p(),
    782 	    "use entropy_enter_intr from interrupt context");
    783 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    784 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    785 
    786 	/* If it's too early after boot, just use entropy_enter_early.  */
    787 	if (__predict_false(E->stage < ENTROPY_HOT)) {
    788 		entropy_enter_early(buf, len, nbits);
    789 		return;
    790 	}
    791 
    792 	/*
    793 	 * Acquire the per-CPU state, blocking soft interrupts and
    794 	 * causing hard interrupts to drop samples on the floor.
    795 	 */
    796 	ec = percpu_getref(entropy_percpu);
    797 	s = splsoftserial();
    798 	KASSERT(!ec->ec_locked);
    799 	ec->ec_locked = true;
    800 	__insn_barrier();
    801 
    802 	/* Enter into the per-CPU pool.  */
    803 	entpool_enter(ec->ec_pool, buf, len);
    804 
    805 	/* Count up what we can add.  */
    806 	pending = ec->ec_pending;
    807 	pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
    808 	atomic_store_relaxed(&ec->ec_pending, pending);
    809 
    810 	/* Consolidate globally if appropriate based on what we added.  */
    811 	entropy_account_cpu(ec);
    812 
    813 	/* Release the per-CPU state.  */
    814 	KASSERT(ec->ec_locked);
    815 	__insn_barrier();
    816 	ec->ec_locked = false;
    817 	splx(s);
    818 	percpu_putref(entropy_percpu);
    819 }
    820 
    821 /*
    822  * entropy_enter_intr(buf, len, nbits)
    823  *
    824  *	Enter up to len bytes of data from buf into the system's
    825  *	entropy pool without stirring.  nbits is a lower bound on the
    826  *	number of bits of entropy in the process that led to this
    827  *	sample.  If the sample could be entered completely, assume
    828  *	nbits of entropy pending; otherwise assume none, since we don't
    829  *	know whether some parts of the sample are constant, for
    830  *	instance.  Schedule a softint to stir the entropy pool if
    831  *	needed.  Return true if used fully, false if truncated at all.
    832  *
    833  *	Using this in thread context will work, but you might as well
    834  *	use entropy_enter in that case.
    835  */
    836 static bool
    837 entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
    838 {
    839 	struct entropy_cpu *ec;
    840 	bool fullyused = false;
    841 	uint32_t pending;
    842 
    843 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    844 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    845 
    846 	/* If it's too early after boot, just use entropy_enter_early.  */
    847 	if (__predict_false(E->stage < ENTROPY_HOT)) {
    848 		entropy_enter_early(buf, len, nbits);
    849 		return true;
    850 	}
    851 
    852 	/*
    853 	 * Acquire the per-CPU state.  If someone is in the middle of
    854 	 * using it, drop the sample.  Otherwise, take the lock so that
    855 	 * higher-priority interrupts will drop their samples.
    856 	 */
    857 	ec = percpu_getref(entropy_percpu);
    858 	if (ec->ec_locked)
    859 		goto out0;
    860 	ec->ec_locked = true;
    861 	__insn_barrier();
    862 
    863 	/*
    864 	 * Enter as much as we can into the per-CPU pool.  If it was
    865 	 * truncated, schedule a softint to stir the pool and stop.
    866 	 */
    867 	if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
    868 		softint_schedule(entropy_sih);
    869 		goto out1;
    870 	}
    871 	fullyused = true;
    872 
    873 	/* Count up what we can contribute.  */
    874 	pending = ec->ec_pending;
    875 	pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
    876 	atomic_store_relaxed(&ec->ec_pending, pending);
    877 
    878 	/* Schedule a softint if we added anything and it matters.  */
    879 	if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
    880 		atomic_load_relaxed(&entropy_depletion)) &&
    881 	    nbits != 0)
    882 		softint_schedule(entropy_sih);
    883 
    884 out1:	/* Release the per-CPU state.  */
    885 	KASSERT(ec->ec_locked);
    886 	__insn_barrier();
    887 	ec->ec_locked = false;
    888 out0:	percpu_putref(entropy_percpu);
    889 
    890 	return fullyused;
    891 }
    892 
    893 /*
    894  * entropy_softintr(cookie)
    895  *
    896  *	Soft interrupt handler for entering entropy.  Takes care of
    897  *	stirring the local CPU's entropy pool if it filled up during
    898  *	hard interrupts, and promptly crediting entropy from the local
    899  *	CPU's entropy pool to the global entropy pool if needed.
    900  */
    901 static void
    902 entropy_softintr(void *cookie)
    903 {
    904 	struct entropy_cpu *ec;
    905 
    906 	/*
    907 	 * Acquire the per-CPU state.  Other users can lock this only
    908 	 * while soft interrupts are blocked.  Cause hard interrupts to
    909 	 * drop samples on the floor.
    910 	 */
    911 	ec = percpu_getref(entropy_percpu);
    912 	KASSERT(!ec->ec_locked);
    913 	ec->ec_locked = true;
    914 	__insn_barrier();
    915 
    916 	/* Count statistics.  */
    917 	ec->ec_softint_evcnt->ev_count++;
    918 
    919 	/* Stir the pool if necessary.  */
    920 	entpool_stir(ec->ec_pool);
    921 
    922 	/* Consolidate globally if appropriate based on what we added.  */
    923 	entropy_account_cpu(ec);
    924 
    925 	/* Release the per-CPU state.  */
    926 	KASSERT(ec->ec_locked);
    927 	__insn_barrier();
    928 	ec->ec_locked = false;
    929 	percpu_putref(entropy_percpu);
    930 }
    931 
    932 /*
    933  * entropy_thread(cookie)
    934  *
    935  *	Handle any asynchronous entropy housekeeping.
    936  */
    937 static void
    938 entropy_thread(void *cookie)
    939 {
    940 	bool consolidate;
    941 
    942 	for (;;) {
    943 		/*
    944 		 * Wait until there's full entropy somewhere among the
    945 		 * CPUs, as confirmed at most once per minute, or
    946 		 * someone wants to consolidate.
    947 		 */
    948 		if (entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
    949 			consolidate = true;
    950 		} else {
    951 			mutex_enter(&E->lock);
    952 			if (!E->consolidate)
    953 				cv_timedwait(&E->cv, &E->lock, 60*hz);
    954 			consolidate = E->consolidate;
    955 			E->consolidate = false;
    956 			mutex_exit(&E->lock);
    957 		}
    958 
    959 		if (consolidate) {
    960 			/* Do it.  */
    961 			entropy_do_consolidate();
    962 
    963 			/* Mitigate abuse.  */
    964 			kpause("entropy", false, hz, NULL);
    965 		}
    966 	}
    967 }
    968 
    969 /*
    970  * entropy_pending()
    971  *
    972  *	Count up the amount of entropy pending on other CPUs.
    973  */
    974 static uint32_t
    975 entropy_pending(void)
    976 {
    977 	uint32_t pending = 0;
    978 
    979 	percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
    980 	return pending;
    981 }
    982 
    983 static void
    984 entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    985 {
    986 	struct entropy_cpu *ec = ptr;
    987 	uint32_t *pendingp = cookie;
    988 	uint32_t cpu_pending;
    989 
    990 	cpu_pending = atomic_load_relaxed(&ec->ec_pending);
    991 	*pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
    992 }
    993 
    994 /*
    995  * entropy_do_consolidate()
    996  *
    997  *	Issue a cross-call to gather entropy on all CPUs and advance
    998  *	the entropy epoch.
    999  */
   1000 static void
   1001 entropy_do_consolidate(void)
   1002 {
   1003 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1004 	static struct timeval lasttime; /* serialized by E->lock */
   1005 	struct entpool pool;
   1006 	uint8_t buf[ENTPOOL_CAPACITY];
   1007 	unsigned diff;
   1008 	uint64_t ticket;
   1009 
   1010 	/* Gather entropy on all CPUs into a temporary pool.  */
   1011 	memset(&pool, 0, sizeof pool);
   1012 	ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
   1013 	xc_wait(ticket);
   1014 
   1015 	/* Acquire the lock to notify waiters.  */
   1016 	mutex_enter(&E->lock);
   1017 
   1018 	/* Count another consolidation.  */
   1019 	entropy_consolidate_evcnt.ev_count++;
   1020 
   1021 	/* Note when we last consolidated, i.e. now.  */
   1022 	E->timestamp = time_uptime;
   1023 
   1024 	/* Mix what we gathered into the global pool.  */
   1025 	entpool_extract(&pool, buf, sizeof buf);
   1026 	entpool_enter(&E->pool, buf, sizeof buf);
   1027 	explicit_memset(&pool, 0, sizeof pool);
   1028 
   1029 	/* Count the entropy that was gathered.  */
   1030 	diff = MIN(E->needed, E->pending);
   1031 	atomic_store_relaxed(&E->needed, E->needed - diff);
   1032 	E->pending -= diff;
   1033 	if (__predict_false(E->needed > 0)) {
   1034 		if (ratecheck(&lasttime, &interval))
   1035 			log(LOG_DEBUG, "entropy: WARNING:"
   1036 			    " consolidating less than full entropy\n");
   1037 	}
   1038 
   1039 	/* Advance the epoch and notify waiters.  */
   1040 	entropy_notify();
   1041 
   1042 	/* Release the lock.  */
   1043 	mutex_exit(&E->lock);
   1044 }
   1045 
   1046 /*
   1047  * entropy_consolidate_xc(vpool, arg2)
   1048  *
   1049  *	Extract output from the local CPU's input pool and enter it
   1050  *	into a temporary pool passed as vpool.
   1051  */
   1052 static void
   1053 entropy_consolidate_xc(void *vpool, void *arg2 __unused)
   1054 {
   1055 	struct entpool *pool = vpool;
   1056 	struct entropy_cpu *ec;
   1057 	uint8_t buf[ENTPOOL_CAPACITY];
   1058 	uint32_t extra[7];
   1059 	unsigned i = 0;
   1060 	int s;
   1061 
   1062 	/* Grab CPU number and cycle counter to mix extra into the pool.  */
   1063 	extra[i++] = cpu_number();
   1064 	extra[i++] = entropy_timer();
   1065 
   1066 	/*
   1067 	 * Acquire the per-CPU state, blocking soft interrupts and
   1068 	 * discarding entropy in hard interrupts, so that we can
   1069 	 * extract from the per-CPU pool.
   1070 	 */
   1071 	ec = percpu_getref(entropy_percpu);
   1072 	s = splsoftserial();
   1073 	KASSERT(!ec->ec_locked);
   1074 	ec->ec_locked = true;
   1075 	__insn_barrier();
   1076 	extra[i++] = entropy_timer();
   1077 
   1078 	/* Extract the data and count it no longer pending.  */
   1079 	entpool_extract(ec->ec_pool, buf, sizeof buf);
   1080 	atomic_store_relaxed(&ec->ec_pending, 0);
   1081 	extra[i++] = entropy_timer();
   1082 
   1083 	/* Release the per-CPU state.  */
   1084 	KASSERT(ec->ec_locked);
   1085 	__insn_barrier();
   1086 	ec->ec_locked = false;
   1087 	splx(s);
   1088 	percpu_putref(entropy_percpu);
   1089 	extra[i++] = entropy_timer();
   1090 
   1091 	/*
   1092 	 * Copy over statistics, and enter the per-CPU extract and the
   1093 	 * extra timing into the temporary pool, under the global lock.
   1094 	 */
   1095 	mutex_enter(&E->lock);
   1096 	extra[i++] = entropy_timer();
   1097 	entpool_enter(pool, buf, sizeof buf);
   1098 	explicit_memset(buf, 0, sizeof buf);
   1099 	extra[i++] = entropy_timer();
   1100 	KASSERT(i == __arraycount(extra));
   1101 	entpool_enter(pool, extra, sizeof extra);
   1102 	explicit_memset(extra, 0, sizeof extra);
   1103 	mutex_exit(&E->lock);
   1104 }
   1105 
   1106 /*
   1107  * entropy_notify()
   1108  *
   1109  *	Caller just contributed entropy to the global pool.  Advance
   1110  *	the entropy epoch and notify waiters.
   1111  *
   1112  *	Caller must hold the global entropy lock.  Except for the
   1113  *	`sysctl -w kern.entropy.consolidate=1` trigger, the caller must
   1114  *	have just have transitioned from partial entropy to full
   1115  *	entropy -- E->needed should be zero now.
   1116  */
   1117 static void
   1118 entropy_notify(void)
   1119 {
   1120 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1121 	static struct timeval lasttime; /* serialized by E->lock */
   1122 	unsigned epoch;
   1123 
   1124 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1125 
   1126 	/*
   1127 	 * If this is the first time, print a message to the console
   1128 	 * that we're ready so operators can compare it to the timing
   1129 	 * of other events.
   1130 	 */
   1131 	if (__predict_false(!rnd_initial_entropy) && E->needed == 0) {
   1132 		printf("entropy: ready\n");
   1133 		rnd_initial_entropy = 1;
   1134 	}
   1135 
   1136 	/* Set the epoch; roll over from UINTMAX-1 to 1.  */
   1137 	if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
   1138 	    ratecheck(&lasttime, &interval)) {
   1139 		epoch = E->epoch + 1;
   1140 		if (epoch == 0 || epoch == (unsigned)-1)
   1141 			epoch = 1;
   1142 		atomic_store_relaxed(&E->epoch, epoch);
   1143 	}
   1144 
   1145 	/* Notify waiters.  */
   1146 	if (E->stage >= ENTROPY_WARM) {
   1147 		cv_broadcast(&E->cv);
   1148 		selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
   1149 	}
   1150 
   1151 	/* Count another notification.  */
   1152 	entropy_notify_evcnt.ev_count++;
   1153 }
   1154 
   1155 /*
   1156  * entropy_consolidate()
   1157  *
   1158  *	Trigger entropy consolidation and wait for it to complete.
   1159  *
   1160  *	This should be used sparingly, not periodically -- requiring
   1161  *	conscious intervention by the operator or a clear policy
   1162  *	decision.  Otherwise, the kernel will automatically consolidate
   1163  *	when enough entropy has been gathered into per-CPU pools to
   1164  *	transition to full entropy.
   1165  */
   1166 void
   1167 entropy_consolidate(void)
   1168 {
   1169 	uint64_t ticket;
   1170 	int error;
   1171 
   1172 	KASSERT(E->stage == ENTROPY_HOT);
   1173 
   1174 	mutex_enter(&E->lock);
   1175 	ticket = entropy_consolidate_evcnt.ev_count;
   1176 	E->consolidate = true;
   1177 	cv_broadcast(&E->cv);
   1178 	while (ticket == entropy_consolidate_evcnt.ev_count) {
   1179 		error = cv_wait_sig(&E->cv, &E->lock);
   1180 		if (error)
   1181 			break;
   1182 	}
   1183 	mutex_exit(&E->lock);
   1184 }
   1185 
   1186 /*
   1187  * sysctl -w kern.entropy.consolidate=1
   1188  *
   1189  *	Trigger entropy consolidation and wait for it to complete.
   1190  *	Writable only by superuser.  This, writing to /dev/random, and
   1191  *	ioctl(RNDADDDATA) are the only ways for the system to
   1192  *	consolidate entropy if the operator knows something the kernel
   1193  *	doesn't about how unpredictable the pending entropy pools are.
   1194  */
   1195 static int
   1196 sysctl_entropy_consolidate(SYSCTLFN_ARGS)
   1197 {
   1198 	struct sysctlnode node = *rnode;
   1199 	int arg;
   1200 	int error;
   1201 
   1202 	KASSERT(E->stage == ENTROPY_HOT);
   1203 
   1204 	node.sysctl_data = &arg;
   1205 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1206 	if (error || newp == NULL)
   1207 		return error;
   1208 	if (arg)
   1209 		entropy_consolidate();
   1210 
   1211 	return error;
   1212 }
   1213 
   1214 /*
   1215  * sysctl -w kern.entropy.gather=1
   1216  *
   1217  *	Trigger gathering entropy from all on-demand sources, and wait
   1218  *	for synchronous sources (but not asynchronous sources) to
   1219  *	complete.  Writable only by superuser.
   1220  */
   1221 static int
   1222 sysctl_entropy_gather(SYSCTLFN_ARGS)
   1223 {
   1224 	struct sysctlnode node = *rnode;
   1225 	int arg;
   1226 	int error;
   1227 
   1228 	KASSERT(E->stage == ENTROPY_HOT);
   1229 
   1230 	node.sysctl_data = &arg;
   1231 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1232 	if (error || newp == NULL)
   1233 		return error;
   1234 	if (arg) {
   1235 		mutex_enter(&E->lock);
   1236 		entropy_request(ENTROPY_CAPACITY);
   1237 		mutex_exit(&E->lock);
   1238 	}
   1239 
   1240 	return 0;
   1241 }
   1242 
   1243 /*
   1244  * entropy_extract(buf, len, flags)
   1245  *
   1246  *	Extract len bytes from the global entropy pool into buf.
   1247  *
   1248  *	Flags may have:
   1249  *
   1250  *		ENTROPY_WAIT	Wait for entropy if not available yet.
   1251  *		ENTROPY_SIG	Allow interruption by a signal during wait.
   1252  *		ENTROPY_HARDFAIL Either fill the buffer with full entropy,
   1253  *				or fail without filling it at all.
   1254  *
   1255  *	Return zero on success, or error on failure:
   1256  *
   1257  *		EWOULDBLOCK	No entropy and ENTROPY_WAIT not set.
   1258  *		EINTR/ERESTART	No entropy, ENTROPY_SIG set, and interrupted.
   1259  *
   1260  *	If ENTROPY_WAIT is set, allowed only in thread context.  If
   1261  *	ENTROPY_WAIT is not set, allowed up to IPL_VM.  (XXX That's
   1262  *	awfully high...  Do we really need it in hard interrupts?  This
   1263  *	arises from use of cprng_strong(9).)
   1264  */
   1265 int
   1266 entropy_extract(void *buf, size_t len, int flags)
   1267 {
   1268 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1269 	static struct timeval lasttime; /* serialized by E->lock */
   1270 	int error;
   1271 
   1272 	if (ISSET(flags, ENTROPY_WAIT)) {
   1273 		ASSERT_SLEEPABLE();
   1274 		KASSERTMSG(E->stage >= ENTROPY_WARM,
   1275 		    "can't wait for entropy until warm");
   1276 	}
   1277 
   1278 	/* Acquire the global lock to get at the global pool.  */
   1279 	if (E->stage >= ENTROPY_WARM)
   1280 		mutex_enter(&E->lock);
   1281 
   1282 	/* Count up request for entropy in interrupt context.  */
   1283 	if (cpu_intr_p())
   1284 		entropy_extract_intr_evcnt.ev_count++;
   1285 
   1286 	/* Wait until there is enough entropy in the system.  */
   1287 	error = 0;
   1288 	while (E->needed) {
   1289 		/* Ask for more, synchronously if possible.  */
   1290 		entropy_request(len);
   1291 
   1292 		/* If we got enough, we're done.  */
   1293 		if (E->needed == 0) {
   1294 			KASSERT(error == 0);
   1295 			break;
   1296 		}
   1297 
   1298 		/* If not waiting, stop here.  */
   1299 		if (!ISSET(flags, ENTROPY_WAIT)) {
   1300 			error = EWOULDBLOCK;
   1301 			break;
   1302 		}
   1303 
   1304 		/* Wait for some entropy to come in and try again.  */
   1305 		KASSERT(E->stage >= ENTROPY_WARM);
   1306 		printf("entropy: pid %d (%s) blocking due to lack of entropy\n",
   1307 		       curproc->p_pid, curproc->p_comm);
   1308 
   1309 		if (ISSET(flags, ENTROPY_SIG)) {
   1310 			error = cv_wait_sig(&E->cv, &E->lock);
   1311 			if (error)
   1312 				break;
   1313 		} else {
   1314 			cv_wait(&E->cv, &E->lock);
   1315 		}
   1316 	}
   1317 
   1318 	/*
   1319 	 * Count failure -- but fill the buffer nevertheless, unless
   1320 	 * the caller specified ENTROPY_HARDFAIL.
   1321 	 */
   1322 	if (error) {
   1323 		if (ISSET(flags, ENTROPY_HARDFAIL))
   1324 			goto out;
   1325 		entropy_extract_fail_evcnt.ev_count++;
   1326 	}
   1327 
   1328 	/*
   1329 	 * Report a warning if we have never yet reached full entropy.
   1330 	 * This is the only case where we consider entropy to be
   1331 	 * `depleted' without kern.entropy.depletion enabled -- when we
   1332 	 * only have partial entropy, an adversary may be able to
   1333 	 * narrow the state of the pool down to a small number of
   1334 	 * possibilities; the output then enables them to confirm a
   1335 	 * guess, reducing its entropy from the adversary's perspective
   1336 	 * to zero.
   1337 	 */
   1338 	if (__predict_false(E->epoch == (unsigned)-1)) {
   1339 		if (ratecheck(&lasttime, &interval))
   1340 			printf("entropy: WARNING:"
   1341 			    " extracting entropy too early\n");
   1342 		atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
   1343 	}
   1344 
   1345 	/* Extract data from the pool, and `deplete' if we're doing that.  */
   1346 	entpool_extract(&E->pool, buf, len);
   1347 	if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
   1348 	    error == 0) {
   1349 		unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
   1350 
   1351 		atomic_store_relaxed(&E->needed,
   1352 		    E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
   1353 		entropy_deplete_evcnt.ev_count++;
   1354 	}
   1355 
   1356 out:	/* Release the global lock and return the error.  */
   1357 	if (E->stage >= ENTROPY_WARM)
   1358 		mutex_exit(&E->lock);
   1359 	return error;
   1360 }
   1361 
   1362 /*
   1363  * entropy_poll(events)
   1364  *
   1365  *	Return the subset of events ready, and if it is not all of
   1366  *	events, record curlwp as waiting for entropy.
   1367  */
   1368 int
   1369 entropy_poll(int events)
   1370 {
   1371 	int revents = 0;
   1372 
   1373 	KASSERT(E->stage >= ENTROPY_WARM);
   1374 
   1375 	/* Always ready for writing.  */
   1376 	revents |= events & (POLLOUT|POLLWRNORM);
   1377 
   1378 	/* Narrow it down to reads.  */
   1379 	events &= POLLIN|POLLRDNORM;
   1380 	if (events == 0)
   1381 		return revents;
   1382 
   1383 	/*
   1384 	 * If we have reached full entropy and we're not depleting
   1385 	 * entropy, we are forever ready.
   1386 	 */
   1387 	if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
   1388 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)))
   1389 		return revents | events;
   1390 
   1391 	/*
   1392 	 * Otherwise, check whether we need entropy under the lock.  If
   1393 	 * we don't, we're ready; if we do, add ourselves to the queue.
   1394 	 */
   1395 	mutex_enter(&E->lock);
   1396 	if (E->needed == 0)
   1397 		revents |= events;
   1398 	else
   1399 		selrecord(curlwp, &E->selq);
   1400 	mutex_exit(&E->lock);
   1401 
   1402 	return revents;
   1403 }
   1404 
   1405 /*
   1406  * filt_entropy_read_detach(kn)
   1407  *
   1408  *	struct filterops::f_detach callback for entropy read events:
   1409  *	remove kn from the list of waiters.
   1410  */
   1411 static void
   1412 filt_entropy_read_detach(struct knote *kn)
   1413 {
   1414 
   1415 	KASSERT(E->stage >= ENTROPY_WARM);
   1416 
   1417 	mutex_enter(&E->lock);
   1418 	selremove_knote(&E->selq, kn);
   1419 	mutex_exit(&E->lock);
   1420 }
   1421 
   1422 /*
   1423  * filt_entropy_read_event(kn, hint)
   1424  *
   1425  *	struct filterops::f_event callback for entropy read events:
   1426  *	poll for entropy.  Caller must hold the global entropy lock if
   1427  *	hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
   1428  */
   1429 static int
   1430 filt_entropy_read_event(struct knote *kn, long hint)
   1431 {
   1432 	int ret;
   1433 
   1434 	KASSERT(E->stage >= ENTROPY_WARM);
   1435 
   1436 	/* Acquire the lock, if caller is outside entropy subsystem.  */
   1437 	if (hint == NOTE_SUBMIT)
   1438 		KASSERT(mutex_owned(&E->lock));
   1439 	else
   1440 		mutex_enter(&E->lock);
   1441 
   1442 	/*
   1443 	 * If we still need entropy, can't read anything; if not, can
   1444 	 * read arbitrarily much.
   1445 	 */
   1446 	if (E->needed != 0) {
   1447 		ret = 0;
   1448 	} else {
   1449 		if (atomic_load_relaxed(&entropy_depletion))
   1450 			kn->kn_data = ENTROPY_CAPACITY*NBBY;
   1451 		else
   1452 			kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
   1453 		ret = 1;
   1454 	}
   1455 
   1456 	/* Release the lock, if caller is outside entropy subsystem.  */
   1457 	if (hint == NOTE_SUBMIT)
   1458 		KASSERT(mutex_owned(&E->lock));
   1459 	else
   1460 		mutex_exit(&E->lock);
   1461 
   1462 	return ret;
   1463 }
   1464 
   1465 static const struct filterops entropy_read_filtops = {
   1466 	.f_isfd = 1,		/* XXX Makes sense only for /dev/u?random.  */
   1467 	.f_attach = NULL,
   1468 	.f_detach = filt_entropy_read_detach,
   1469 	.f_event = filt_entropy_read_event,
   1470 };
   1471 
   1472 /*
   1473  * entropy_kqfilter(kn)
   1474  *
   1475  *	Register kn to receive entropy event notifications.  May be
   1476  *	EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
   1477  */
   1478 int
   1479 entropy_kqfilter(struct knote *kn)
   1480 {
   1481 
   1482 	KASSERT(E->stage >= ENTROPY_WARM);
   1483 
   1484 	switch (kn->kn_filter) {
   1485 	case EVFILT_READ:
   1486 		/* Enter into the global select queue.  */
   1487 		mutex_enter(&E->lock);
   1488 		kn->kn_fop = &entropy_read_filtops;
   1489 		selrecord_knote(&E->selq, kn);
   1490 		mutex_exit(&E->lock);
   1491 		return 0;
   1492 	case EVFILT_WRITE:
   1493 		/* Can always dump entropy into the system.  */
   1494 		kn->kn_fop = &seltrue_filtops;
   1495 		return 0;
   1496 	default:
   1497 		return EINVAL;
   1498 	}
   1499 }
   1500 
   1501 /*
   1502  * rndsource_setcb(rs, get, getarg)
   1503  *
   1504  *	Set the request callback for the entropy source rs, if it can
   1505  *	provide entropy on demand.  Must precede rnd_attach_source.
   1506  */
   1507 void
   1508 rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
   1509     void *getarg)
   1510 {
   1511 
   1512 	rs->get = get;
   1513 	rs->getarg = getarg;
   1514 }
   1515 
   1516 /*
   1517  * rnd_attach_source(rs, name, type, flags)
   1518  *
   1519  *	Attach the entropy source rs.  Must be done after
   1520  *	rndsource_setcb, if any, and before any calls to rnd_add_data.
   1521  */
   1522 void
   1523 rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
   1524     uint32_t flags)
   1525 {
   1526 	uint32_t extra[4];
   1527 	unsigned i = 0;
   1528 
   1529 	/* Grab cycle counter to mix extra into the pool.  */
   1530 	extra[i++] = entropy_timer();
   1531 
   1532 	/*
   1533 	 * Apply some standard flags:
   1534 	 *
   1535 	 * - We do not bother with network devices by default, for
   1536 	 *   hysterical raisins (perhaps: because it is often the case
   1537 	 *   that an adversary can influence network packet timings).
   1538 	 */
   1539 	switch (type) {
   1540 	case RND_TYPE_NET:
   1541 		flags |= RND_FLAG_NO_COLLECT;
   1542 		break;
   1543 	}
   1544 
   1545 	/* Sanity-check the callback if RND_FLAG_HASCB is set.  */
   1546 	KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
   1547 
   1548 	/* Initialize the random source.  */
   1549 	memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
   1550 	strlcpy(rs->name, name, sizeof(rs->name));
   1551 	memset(&rs->time_delta, 0, sizeof(rs->time_delta));
   1552 	memset(&rs->value_delta, 0, sizeof(rs->value_delta));
   1553 	rs->total = 0;
   1554 	rs->type = type;
   1555 	rs->flags = flags;
   1556 	if (E->stage >= ENTROPY_WARM)
   1557 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
   1558 	extra[i++] = entropy_timer();
   1559 
   1560 	/* Wire it into the global list of random sources.  */
   1561 	if (E->stage >= ENTROPY_WARM)
   1562 		mutex_enter(&E->lock);
   1563 	LIST_INSERT_HEAD(&E->sources, rs, list);
   1564 	if (E->stage >= ENTROPY_WARM)
   1565 		mutex_exit(&E->lock);
   1566 	extra[i++] = entropy_timer();
   1567 
   1568 	/* Request that it provide entropy ASAP, if we can.  */
   1569 	if (ISSET(flags, RND_FLAG_HASCB))
   1570 		(*rs->get)(ENTROPY_CAPACITY, rs->getarg);
   1571 	extra[i++] = entropy_timer();
   1572 
   1573 	/* Mix the extra into the pool.  */
   1574 	KASSERT(i == __arraycount(extra));
   1575 	entropy_enter(extra, sizeof extra, 0);
   1576 	explicit_memset(extra, 0, sizeof extra);
   1577 }
   1578 
   1579 /*
   1580  * rnd_detach_source(rs)
   1581  *
   1582  *	Detach the entropy source rs.  May sleep waiting for users to
   1583  *	drain.  Further use is not allowed.
   1584  */
   1585 void
   1586 rnd_detach_source(struct krndsource *rs)
   1587 {
   1588 
   1589 	/*
   1590 	 * If we're cold (shouldn't happen, but hey), just remove it
   1591 	 * from the list -- there's nothing allocated.
   1592 	 */
   1593 	if (E->stage == ENTROPY_COLD) {
   1594 		LIST_REMOVE(rs, list);
   1595 		return;
   1596 	}
   1597 
   1598 	/* We may have to wait for entropy_request.  */
   1599 	ASSERT_SLEEPABLE();
   1600 
   1601 	/* Wait until the source list is not in use, and remove it.  */
   1602 	mutex_enter(&E->lock);
   1603 	while (E->sourcelock)
   1604 		cv_wait(&E->sourcelock_cv, &E->lock);
   1605 	LIST_REMOVE(rs, list);
   1606 	mutex_exit(&E->lock);
   1607 
   1608 	/* Free the per-CPU data.  */
   1609 	percpu_free(rs->state, sizeof(struct rndsource_cpu));
   1610 }
   1611 
   1612 /*
   1613  * rnd_lock_sources()
   1614  *
   1615  *	Prevent changes to the list of rndsources while we iterate it.
   1616  *	Interruptible.  Caller must hold the global entropy lock.  If
   1617  *	successful, no rndsource will go away until rnd_unlock_sources
   1618  *	even while the caller releases the global entropy lock.
   1619  */
   1620 static int
   1621 rnd_lock_sources(void)
   1622 {
   1623 	int error;
   1624 
   1625 	KASSERT(mutex_owned(&E->lock));
   1626 
   1627 	while (E->sourcelock) {
   1628 		error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
   1629 		if (error)
   1630 			return error;
   1631 	}
   1632 
   1633 	E->sourcelock = curlwp;
   1634 	return 0;
   1635 }
   1636 
   1637 /*
   1638  * rnd_trylock_sources()
   1639  *
   1640  *	Try to lock the list of sources, but if it's already locked,
   1641  *	fail.  Caller must hold the global entropy lock.  If
   1642  *	successful, no rndsource will go away until rnd_unlock_sources
   1643  *	even while the caller releases the global entropy lock.
   1644  */
   1645 static bool
   1646 rnd_trylock_sources(void)
   1647 {
   1648 
   1649 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1650 
   1651 	if (E->sourcelock)
   1652 		return false;
   1653 	E->sourcelock = curlwp;
   1654 	return true;
   1655 }
   1656 
   1657 /*
   1658  * rnd_unlock_sources()
   1659  *
   1660  *	Unlock the list of sources after rnd_lock_sources or
   1661  *	rnd_trylock_sources.  Caller must hold the global entropy lock.
   1662  */
   1663 static void
   1664 rnd_unlock_sources(void)
   1665 {
   1666 
   1667 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1668 
   1669 	KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
   1670 	    curlwp, E->sourcelock);
   1671 	E->sourcelock = NULL;
   1672 	if (E->stage >= ENTROPY_WARM)
   1673 		cv_signal(&E->sourcelock_cv);
   1674 }
   1675 
   1676 /*
   1677  * rnd_sources_locked()
   1678  *
   1679  *	True if we hold the list of rndsources locked, for diagnostic
   1680  *	assertions.
   1681  */
   1682 static bool __diagused
   1683 rnd_sources_locked(void)
   1684 {
   1685 
   1686 	return E->sourcelock == curlwp;
   1687 }
   1688 
   1689 /*
   1690  * entropy_request(nbytes)
   1691  *
   1692  *	Request nbytes bytes of entropy from all sources in the system.
   1693  *	OK if we overdo it.  Caller must hold the global entropy lock;
   1694  *	will release and re-acquire it.
   1695  */
   1696 static void
   1697 entropy_request(size_t nbytes)
   1698 {
   1699 	struct krndsource *rs;
   1700 
   1701 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1702 
   1703 	/*
   1704 	 * If there is a request in progress, let it proceed.
   1705 	 * Otherwise, note that a request is in progress to avoid
   1706 	 * reentry and to block rnd_detach_source until we're done.
   1707 	 */
   1708 	if (!rnd_trylock_sources())
   1709 		return;
   1710 	entropy_request_evcnt.ev_count++;
   1711 
   1712 	/* Clamp to the maximum reasonable request.  */
   1713 	nbytes = MIN(nbytes, ENTROPY_CAPACITY);
   1714 
   1715 	/* Walk the list of sources.  */
   1716 	LIST_FOREACH(rs, &E->sources, list) {
   1717 		/* Skip sources without callbacks.  */
   1718 		if (!ISSET(rs->flags, RND_FLAG_HASCB))
   1719 			continue;
   1720 
   1721 		/*
   1722 		 * Skip sources that are disabled altogether -- we
   1723 		 * would just ignore their samples anyway.
   1724 		 */
   1725 		if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
   1726 			continue;
   1727 
   1728 		/* Drop the lock while we call the callback.  */
   1729 		if (E->stage >= ENTROPY_WARM)
   1730 			mutex_exit(&E->lock);
   1731 		(*rs->get)(nbytes, rs->getarg);
   1732 		if (E->stage >= ENTROPY_WARM)
   1733 			mutex_enter(&E->lock);
   1734 	}
   1735 
   1736 	/* Notify rnd_detach_source that the request is done.  */
   1737 	rnd_unlock_sources();
   1738 }
   1739 
   1740 /*
   1741  * rnd_add_uint32(rs, value)
   1742  *
   1743  *	Enter 32 bits of data from an entropy source into the pool.
   1744  *
   1745  *	If rs is NULL, may not be called from interrupt context.
   1746  *
   1747  *	If rs is non-NULL, may be called from any context.  May drop
   1748  *	data if called from interrupt context.
   1749  */
   1750 void
   1751 rnd_add_uint32(struct krndsource *rs, uint32_t value)
   1752 {
   1753 
   1754 	rnd_add_data(rs, &value, sizeof value, 0);
   1755 }
   1756 
   1757 void
   1758 _rnd_add_uint32(struct krndsource *rs, uint32_t value)
   1759 {
   1760 
   1761 	rnd_add_data(rs, &value, sizeof value, 0);
   1762 }
   1763 
   1764 void
   1765 _rnd_add_uint64(struct krndsource *rs, uint64_t value)
   1766 {
   1767 
   1768 	rnd_add_data(rs, &value, sizeof value, 0);
   1769 }
   1770 
   1771 /*
   1772  * rnd_add_data(rs, buf, len, entropybits)
   1773  *
   1774  *	Enter data from an entropy source into the pool, with a
   1775  *	driver's estimate of how much entropy the physical source of
   1776  *	the data has.  If RND_FLAG_NO_ESTIMATE, we ignore the driver's
   1777  *	estimate and treat it as zero.
   1778  *
   1779  *	If rs is NULL, may not be called from interrupt context.
   1780  *
   1781  *	If rs is non-NULL, may be called from any context.  May drop
   1782  *	data if called from interrupt context.
   1783  */
   1784 void
   1785 rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
   1786     uint32_t entropybits)
   1787 {
   1788 	uint32_t extra;
   1789 	uint32_t flags;
   1790 
   1791 	KASSERTMSG(howmany(entropybits, NBBY) <= len,
   1792 	    "%s: impossible entropy rate:"
   1793 	    " %"PRIu32" bits in %"PRIu32"-byte string",
   1794 	    rs ? rs->name : "(anonymous)", entropybits, len);
   1795 
   1796 	/* If there's no rndsource, just enter the data and time now.  */
   1797 	if (rs == NULL) {
   1798 		entropy_enter(buf, len, entropybits);
   1799 		extra = entropy_timer();
   1800 		entropy_enter(&extra, sizeof extra, 0);
   1801 		explicit_memset(&extra, 0, sizeof extra);
   1802 		return;
   1803 	}
   1804 
   1805 	/* Load a snapshot of the flags.  Ioctl may change them under us.  */
   1806 	flags = atomic_load_relaxed(&rs->flags);
   1807 
   1808 	/*
   1809 	 * Skip if:
   1810 	 * - we're not collecting entropy, or
   1811 	 * - the operator doesn't want to collect entropy from this, or
   1812 	 * - neither data nor timings are being collected from this.
   1813 	 */
   1814 	if (!atomic_load_relaxed(&entropy_collection) ||
   1815 	    ISSET(flags, RND_FLAG_NO_COLLECT) ||
   1816 	    !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
   1817 		return;
   1818 
   1819 	/* If asked, ignore the estimate.  */
   1820 	if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
   1821 		entropybits = 0;
   1822 
   1823 	/* If we are collecting data, enter them.  */
   1824 	if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
   1825 		rnd_add_data_1(rs, buf, len, entropybits,
   1826 		    RND_FLAG_COLLECT_VALUE);
   1827 
   1828 	/* If we are collecting timings, enter one.  */
   1829 	if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
   1830 		extra = entropy_timer();
   1831 		rnd_add_data_1(rs, &extra, sizeof extra, 0,
   1832 		    RND_FLAG_COLLECT_TIME);
   1833 	}
   1834 }
   1835 
   1836 static unsigned
   1837 add_sat(unsigned a, unsigned b)
   1838 {
   1839 	unsigned c = a + b;
   1840 
   1841 	return (c < a ? UINT_MAX : c);
   1842 }
   1843 
   1844 /*
   1845  * rnd_add_data_1(rs, buf, len, entropybits, flag)
   1846  *
   1847  *	Internal subroutine to call either entropy_enter_intr, if we're
   1848  *	in interrupt context, or entropy_enter if not, and to count the
   1849  *	entropy in an rndsource.
   1850  */
   1851 static void
   1852 rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
   1853     uint32_t entropybits, uint32_t flag)
   1854 {
   1855 	bool fullyused;
   1856 
   1857 	/*
   1858 	 * If we're in interrupt context, use entropy_enter_intr and
   1859 	 * take note of whether it consumed the full sample; if not,
   1860 	 * use entropy_enter, which always consumes the full sample.
   1861 	 */
   1862 	if (curlwp && cpu_intr_p()) {
   1863 		fullyused = entropy_enter_intr(buf, len, entropybits);
   1864 	} else {
   1865 		entropy_enter(buf, len, entropybits);
   1866 		fullyused = true;
   1867 	}
   1868 
   1869 	/*
   1870 	 * If we used the full sample, note how many bits were
   1871 	 * contributed from this source.
   1872 	 */
   1873 	if (fullyused) {
   1874 		if (E->stage < ENTROPY_HOT) {
   1875 			if (E->stage >= ENTROPY_WARM)
   1876 				mutex_enter(&E->lock);
   1877 			rs->total = add_sat(rs->total, entropybits);
   1878 			switch (flag) {
   1879 			case RND_FLAG_COLLECT_TIME:
   1880 				rs->time_delta.insamples =
   1881 				    add_sat(rs->time_delta.insamples, 1);
   1882 				break;
   1883 			case RND_FLAG_COLLECT_VALUE:
   1884 				rs->value_delta.insamples =
   1885 				    add_sat(rs->value_delta.insamples, 1);
   1886 				break;
   1887 			}
   1888 			if (E->stage >= ENTROPY_WARM)
   1889 				mutex_exit(&E->lock);
   1890 		} else {
   1891 			struct rndsource_cpu *rc = percpu_getref(rs->state);
   1892 
   1893 			atomic_store_relaxed(&rc->rc_entropybits,
   1894 			    add_sat(rc->rc_entropybits, entropybits));
   1895 			switch (flag) {
   1896 			case RND_FLAG_COLLECT_TIME:
   1897 				atomic_store_relaxed(&rc->rc_timesamples,
   1898 				    add_sat(rc->rc_timesamples, 1));
   1899 				break;
   1900 			case RND_FLAG_COLLECT_VALUE:
   1901 				atomic_store_relaxed(&rc->rc_datasamples,
   1902 				    add_sat(rc->rc_datasamples, 1));
   1903 				break;
   1904 			}
   1905 			percpu_putref(rs->state);
   1906 		}
   1907 	}
   1908 }
   1909 
   1910 /*
   1911  * rnd_add_data_sync(rs, buf, len, entropybits)
   1912  *
   1913  *	Same as rnd_add_data.  Originally used in rndsource callbacks,
   1914  *	to break an unnecessary cycle; no longer really needed.
   1915  */
   1916 void
   1917 rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
   1918     uint32_t entropybits)
   1919 {
   1920 
   1921 	rnd_add_data(rs, buf, len, entropybits);
   1922 }
   1923 
   1924 /*
   1925  * rndsource_entropybits(rs)
   1926  *
   1927  *	Return approximately the number of bits of entropy that have
   1928  *	been contributed via rs so far.  Approximate if other CPUs may
   1929  *	be calling rnd_add_data concurrently.
   1930  */
   1931 static unsigned
   1932 rndsource_entropybits(struct krndsource *rs)
   1933 {
   1934 	unsigned nbits = rs->total;
   1935 
   1936 	KASSERT(E->stage >= ENTROPY_WARM);
   1937 	KASSERT(rnd_sources_locked());
   1938 	percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
   1939 	return nbits;
   1940 }
   1941 
   1942 static void
   1943 rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   1944 {
   1945 	struct rndsource_cpu *rc = ptr;
   1946 	unsigned *nbitsp = cookie;
   1947 	unsigned cpu_nbits;
   1948 
   1949 	cpu_nbits = atomic_load_relaxed(&rc->rc_entropybits);
   1950 	*nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
   1951 }
   1952 
   1953 /*
   1954  * rndsource_to_user(rs, urs)
   1955  *
   1956  *	Copy a description of rs out to urs for userland.
   1957  */
   1958 static void
   1959 rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
   1960 {
   1961 
   1962 	KASSERT(E->stage >= ENTROPY_WARM);
   1963 	KASSERT(rnd_sources_locked());
   1964 
   1965 	/* Avoid kernel memory disclosure.  */
   1966 	memset(urs, 0, sizeof(*urs));
   1967 
   1968 	CTASSERT(sizeof(urs->name) == sizeof(rs->name));
   1969 	strlcpy(urs->name, rs->name, sizeof(urs->name));
   1970 	urs->total = rndsource_entropybits(rs);
   1971 	urs->type = rs->type;
   1972 	urs->flags = atomic_load_relaxed(&rs->flags);
   1973 }
   1974 
   1975 /*
   1976  * rndsource_to_user_est(rs, urse)
   1977  *
   1978  *	Copy a description of rs and estimation statistics out to urse
   1979  *	for userland.
   1980  */
   1981 static void
   1982 rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
   1983 {
   1984 
   1985 	KASSERT(E->stage >= ENTROPY_WARM);
   1986 	KASSERT(rnd_sources_locked());
   1987 
   1988 	/* Avoid kernel memory disclosure.  */
   1989 	memset(urse, 0, sizeof(*urse));
   1990 
   1991 	/* Copy out the rndsource description.  */
   1992 	rndsource_to_user(rs, &urse->rt);
   1993 
   1994 	/* Gather the statistics.  */
   1995 	urse->dt_samples = rs->time_delta.insamples;
   1996 	urse->dt_total = 0;
   1997 	urse->dv_samples = rs->value_delta.insamples;
   1998 	urse->dv_total = urse->rt.total;
   1999 	percpu_foreach(rs->state, rndsource_to_user_est_cpu, urse);
   2000 }
   2001 
   2002 static void
   2003 rndsource_to_user_est_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   2004 {
   2005 	struct rndsource_cpu *rc = ptr;
   2006 	rndsource_est_t *urse = cookie;
   2007 
   2008 	urse->dt_samples = add_sat(urse->dt_samples,
   2009 	    atomic_load_relaxed(&rc->rc_timesamples));
   2010 	urse->dv_samples = add_sat(urse->dv_samples,
   2011 	    atomic_load_relaxed(&rc->rc_datasamples));
   2012 }
   2013 
   2014 /*
   2015  * entropy_reset_xc(arg1, arg2)
   2016  *
   2017  *	Reset the current CPU's pending entropy to zero.
   2018  */
   2019 static void
   2020 entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
   2021 {
   2022 	uint32_t extra = entropy_timer();
   2023 	struct entropy_cpu *ec;
   2024 	int s;
   2025 
   2026 	/*
   2027 	 * Acquire the per-CPU state, blocking soft interrupts and
   2028 	 * causing hard interrupts to drop samples on the floor.
   2029 	 */
   2030 	ec = percpu_getref(entropy_percpu);
   2031 	s = splsoftserial();
   2032 	KASSERT(!ec->ec_locked);
   2033 	ec->ec_locked = true;
   2034 	__insn_barrier();
   2035 
   2036 	/* Zero the pending count and enter a cycle count for fun.  */
   2037 	ec->ec_pending = 0;
   2038 	entpool_enter(ec->ec_pool, &extra, sizeof extra);
   2039 
   2040 	/* Release the per-CPU state.  */
   2041 	KASSERT(ec->ec_locked);
   2042 	__insn_barrier();
   2043 	ec->ec_locked = false;
   2044 	splx(s);
   2045 	percpu_putref(entropy_percpu);
   2046 }
   2047 
   2048 /*
   2049  * entropy_ioctl(cmd, data)
   2050  *
   2051  *	Handle various /dev/random ioctl queries.
   2052  */
   2053 int
   2054 entropy_ioctl(unsigned long cmd, void *data)
   2055 {
   2056 	struct krndsource *rs;
   2057 	bool privileged;
   2058 	int error;
   2059 
   2060 	KASSERT(E->stage >= ENTROPY_WARM);
   2061 
   2062 	/* Verify user's authorization to perform the ioctl.  */
   2063 	switch (cmd) {
   2064 	case RNDGETENTCNT:
   2065 	case RNDGETPOOLSTAT:
   2066 	case RNDGETSRCNUM:
   2067 	case RNDGETSRCNAME:
   2068 	case RNDGETESTNUM:
   2069 	case RNDGETESTNAME:
   2070 		error = kauth_authorize_device(curlwp->l_cred,
   2071 		    KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
   2072 		break;
   2073 	case RNDCTL:
   2074 		error = kauth_authorize_device(curlwp->l_cred,
   2075 		    KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
   2076 		break;
   2077 	case RNDADDDATA:
   2078 		error = kauth_authorize_device(curlwp->l_cred,
   2079 		    KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
   2080 		/* Ascertain whether the user's inputs should be counted.  */
   2081 		if (kauth_authorize_device(curlwp->l_cred,
   2082 			KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
   2083 			NULL, NULL, NULL, NULL) == 0)
   2084 			privileged = true;
   2085 		break;
   2086 	default: {
   2087 		/*
   2088 		 * XXX Hack to avoid changing module ABI so this can be
   2089 		 * pulled up.  Later, we can just remove the argument.
   2090 		 */
   2091 		static const struct fileops fops = {
   2092 			.fo_ioctl = rnd_system_ioctl,
   2093 		};
   2094 		struct file f = {
   2095 			.f_ops = &fops,
   2096 		};
   2097 		MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
   2098 		    enosys(), error);
   2099 #if defined(_LP64)
   2100 		if (error == ENOSYS)
   2101 			MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
   2102 			    enosys(), error);
   2103 #endif
   2104 		if (error == ENOSYS)
   2105 			error = ENOTTY;
   2106 		break;
   2107 	}
   2108 	}
   2109 
   2110 	/* If anything went wrong with authorization, stop here.  */
   2111 	if (error)
   2112 		return error;
   2113 
   2114 	/* Dispatch on the command.  */
   2115 	switch (cmd) {
   2116 	case RNDGETENTCNT: {	/* Get current entropy count in bits.  */
   2117 		uint32_t *countp = data;
   2118 
   2119 		mutex_enter(&E->lock);
   2120 		*countp = ENTROPY_CAPACITY*NBBY - E->needed;
   2121 		mutex_exit(&E->lock);
   2122 
   2123 		break;
   2124 	}
   2125 	case RNDGETPOOLSTAT: {	/* Get entropy pool statistics.  */
   2126 		rndpoolstat_t *pstat = data;
   2127 
   2128 		mutex_enter(&E->lock);
   2129 
   2130 		/* parameters */
   2131 		pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
   2132 		pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
   2133 		pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
   2134 
   2135 		/* state */
   2136 		pstat->added = 0; /* XXX total entropy_enter count */
   2137 		pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
   2138 		pstat->removed = 0; /* XXX total entropy_extract count */
   2139 		pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
   2140 		pstat->generated = 0; /* XXX bits of data...fabricated? */
   2141 
   2142 		mutex_exit(&E->lock);
   2143 		break;
   2144 	}
   2145 	case RNDGETSRCNUM: {	/* Get entropy sources by number.  */
   2146 		rndstat_t *stat = data;
   2147 		uint32_t start = 0, i = 0;
   2148 
   2149 		/* Skip if none requested; fail if too many requested.  */
   2150 		if (stat->count == 0)
   2151 			break;
   2152 		if (stat->count > RND_MAXSTATCOUNT)
   2153 			return EINVAL;
   2154 
   2155 		/*
   2156 		 * Under the lock, find the first one, copy out as many
   2157 		 * as requested, and report how many we copied out.
   2158 		 */
   2159 		mutex_enter(&E->lock);
   2160 		error = rnd_lock_sources();
   2161 		if (error) {
   2162 			mutex_exit(&E->lock);
   2163 			return error;
   2164 		}
   2165 		LIST_FOREACH(rs, &E->sources, list) {
   2166 			if (start++ == stat->start)
   2167 				break;
   2168 		}
   2169 		while (i < stat->count && rs != NULL) {
   2170 			mutex_exit(&E->lock);
   2171 			rndsource_to_user(rs, &stat->source[i++]);
   2172 			mutex_enter(&E->lock);
   2173 			rs = LIST_NEXT(rs, list);
   2174 		}
   2175 		KASSERT(i <= stat->count);
   2176 		stat->count = i;
   2177 		rnd_unlock_sources();
   2178 		mutex_exit(&E->lock);
   2179 		break;
   2180 	}
   2181 	case RNDGETESTNUM: {	/* Get sources and estimates by number.  */
   2182 		rndstat_est_t *estat = data;
   2183 		uint32_t start = 0, i = 0;
   2184 
   2185 		/* Skip if none requested; fail if too many requested.  */
   2186 		if (estat->count == 0)
   2187 			break;
   2188 		if (estat->count > RND_MAXSTATCOUNT)
   2189 			return EINVAL;
   2190 
   2191 		/*
   2192 		 * Under the lock, find the first one, copy out as many
   2193 		 * as requested, and report how many we copied out.
   2194 		 */
   2195 		mutex_enter(&E->lock);
   2196 		error = rnd_lock_sources();
   2197 		if (error) {
   2198 			mutex_exit(&E->lock);
   2199 			return error;
   2200 		}
   2201 		LIST_FOREACH(rs, &E->sources, list) {
   2202 			if (start++ == estat->start)
   2203 				break;
   2204 		}
   2205 		while (i < estat->count && rs != NULL) {
   2206 			mutex_exit(&E->lock);
   2207 			rndsource_to_user_est(rs, &estat->source[i++]);
   2208 			mutex_enter(&E->lock);
   2209 			rs = LIST_NEXT(rs, list);
   2210 		}
   2211 		KASSERT(i <= estat->count);
   2212 		estat->count = i;
   2213 		rnd_unlock_sources();
   2214 		mutex_exit(&E->lock);
   2215 		break;
   2216 	}
   2217 	case RNDGETSRCNAME: {	/* Get entropy sources by name.  */
   2218 		rndstat_name_t *nstat = data;
   2219 		const size_t n = sizeof(rs->name);
   2220 
   2221 		CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
   2222 
   2223 		/*
   2224 		 * Under the lock, search by name.  If found, copy it
   2225 		 * out; if not found, fail with ENOENT.
   2226 		 */
   2227 		mutex_enter(&E->lock);
   2228 		error = rnd_lock_sources();
   2229 		if (error) {
   2230 			mutex_exit(&E->lock);
   2231 			return error;
   2232 		}
   2233 		LIST_FOREACH(rs, &E->sources, list) {
   2234 			if (strncmp(rs->name, nstat->name, n) == 0)
   2235 				break;
   2236 		}
   2237 		if (rs != NULL) {
   2238 			mutex_exit(&E->lock);
   2239 			rndsource_to_user(rs, &nstat->source);
   2240 			mutex_enter(&E->lock);
   2241 		} else {
   2242 			error = ENOENT;
   2243 		}
   2244 		rnd_unlock_sources();
   2245 		mutex_exit(&E->lock);
   2246 		break;
   2247 	}
   2248 	case RNDGETESTNAME: {	/* Get sources and estimates by name.  */
   2249 		rndstat_est_name_t *enstat = data;
   2250 		const size_t n = sizeof(rs->name);
   2251 
   2252 		CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
   2253 
   2254 		/*
   2255 		 * Under the lock, search by name.  If found, copy it
   2256 		 * out; if not found, fail with ENOENT.
   2257 		 */
   2258 		mutex_enter(&E->lock);
   2259 		error = rnd_lock_sources();
   2260 		if (error) {
   2261 			mutex_exit(&E->lock);
   2262 			return error;
   2263 		}
   2264 		LIST_FOREACH(rs, &E->sources, list) {
   2265 			if (strncmp(rs->name, enstat->name, n) == 0)
   2266 				break;
   2267 		}
   2268 		if (rs != NULL) {
   2269 			mutex_exit(&E->lock);
   2270 			rndsource_to_user_est(rs, &enstat->source);
   2271 			mutex_enter(&E->lock);
   2272 		} else {
   2273 			error = ENOENT;
   2274 		}
   2275 		rnd_unlock_sources();
   2276 		mutex_exit(&E->lock);
   2277 		break;
   2278 	}
   2279 	case RNDCTL: {		/* Modify entropy source flags.  */
   2280 		rndctl_t *rndctl = data;
   2281 		const size_t n = sizeof(rs->name);
   2282 		uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2283 		uint32_t flags;
   2284 		bool reset = false, request = false;
   2285 
   2286 		CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
   2287 
   2288 		/* Whitelist the flags that user can change.  */
   2289 		rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2290 
   2291 		/*
   2292 		 * For each matching rndsource, either by type if
   2293 		 * specified or by name if not, set the masked flags.
   2294 		 */
   2295 		mutex_enter(&E->lock);
   2296 		LIST_FOREACH(rs, &E->sources, list) {
   2297 			if (rndctl->type != 0xff) {
   2298 				if (rs->type != rndctl->type)
   2299 					continue;
   2300 			} else {
   2301 				if (strncmp(rs->name, rndctl->name, n) != 0)
   2302 					continue;
   2303 			}
   2304 			flags = rs->flags & ~rndctl->mask;
   2305 			flags |= rndctl->flags & rndctl->mask;
   2306 			if ((rs->flags & resetflags) == 0 &&
   2307 			    (flags & resetflags) != 0)
   2308 				reset = true;
   2309 			if ((rs->flags ^ flags) & resetflags)
   2310 				request = true;
   2311 			atomic_store_relaxed(&rs->flags, flags);
   2312 		}
   2313 		mutex_exit(&E->lock);
   2314 
   2315 		/*
   2316 		 * If we disabled estimation or collection, nix all the
   2317 		 * pending entropy and set needed to the maximum.
   2318 		 */
   2319 		if (reset) {
   2320 			xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
   2321 			mutex_enter(&E->lock);
   2322 			E->pending = 0;
   2323 			atomic_store_relaxed(&E->needed,
   2324 			    ENTROPY_CAPACITY*NBBY);
   2325 			mutex_exit(&E->lock);
   2326 		}
   2327 
   2328 		/*
   2329 		 * If we changed any of the estimation or collection
   2330 		 * flags, request new samples from everyone -- either
   2331 		 * to make up for what we just lost, or to get new
   2332 		 * samples from what we just added.
   2333 		 */
   2334 		if (request) {
   2335 			mutex_enter(&E->lock);
   2336 			entropy_request(ENTROPY_CAPACITY);
   2337 			mutex_exit(&E->lock);
   2338 		}
   2339 		break;
   2340 	}
   2341 	case RNDADDDATA: {	/* Enter seed into entropy pool.  */
   2342 		rnddata_t *rdata = data;
   2343 		unsigned entropybits = 0;
   2344 
   2345 		if (!atomic_load_relaxed(&entropy_collection))
   2346 			break;	/* thanks but no thanks */
   2347 		if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
   2348 			return EINVAL;
   2349 
   2350 		/*
   2351 		 * This ioctl serves as the userland alternative a
   2352 		 * bootloader-provided seed -- typically furnished by
   2353 		 * /etc/rc.d/random_seed.  We accept the user's entropy
   2354 		 * claim only if
   2355 		 *
   2356 		 * (a) the user is privileged, and
   2357 		 * (b) we have not entered a bootloader seed.
   2358 		 *
   2359 		 * under the assumption that the user may use this to
   2360 		 * load a seed from disk that we have already loaded
   2361 		 * from the bootloader, so we don't double-count it.
   2362 		 */
   2363 		if (privileged && rdata->entropy && rdata->len) {
   2364 			mutex_enter(&E->lock);
   2365 			if (!E->seeded) {
   2366 				entropybits = MIN(rdata->entropy,
   2367 				    MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
   2368 				E->seeded = true;
   2369 			}
   2370 			mutex_exit(&E->lock);
   2371 		}
   2372 
   2373 		/* Enter the data and consolidate entropy.  */
   2374 		rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
   2375 		    entropybits);
   2376 		entropy_consolidate();
   2377 		break;
   2378 	}
   2379 	default:
   2380 		error = ENOTTY;
   2381 	}
   2382 
   2383 	/* Return any error that may have come up.  */
   2384 	return error;
   2385 }
   2386 
   2387 /* Legacy entry points */
   2388 
   2389 void
   2390 rnd_seed(void *seed, size_t len)
   2391 {
   2392 
   2393 	if (len != sizeof(rndsave_t)) {
   2394 		printf("entropy: invalid seed length: %zu,"
   2395 		    " expected sizeof(rndsave_t) = %zu\n",
   2396 		    len, sizeof(rndsave_t));
   2397 		return;
   2398 	}
   2399 	entropy_seed(seed);
   2400 }
   2401 
   2402 void
   2403 rnd_init(void)
   2404 {
   2405 
   2406 	entropy_init();
   2407 }
   2408 
   2409 void
   2410 rnd_init_softint(void)
   2411 {
   2412 
   2413 	entropy_init_late();
   2414 }
   2415 
   2416 int
   2417 rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
   2418 {
   2419 
   2420 	return entropy_ioctl(cmd, data);
   2421 }
   2422