Home | History | Annotate | Line # | Download | only in kern
kern_entropy.c revision 1.34
      1 /*	$NetBSD: kern_entropy.c,v 1.34 2022/03/04 21:12:03 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Entropy subsystem
     34  *
     35  *	* Each CPU maintains a per-CPU entropy pool so that gathering
     36  *	  entropy requires no interprocessor synchronization, except
     37  *	  early at boot when we may be scrambling to gather entropy as
     38  *	  soon as possible.
     39  *
     40  *	  - entropy_enter gathers entropy and never drops it on the
     41  *	    floor, at the cost of sometimes having to do cryptography.
     42  *
     43  *	  - entropy_enter_intr gathers entropy or drops it on the
     44  *	    floor, with low latency.  Work to stir the pool or kick the
     45  *	    housekeeping thread is scheduled in soft interrupts.
     46  *
     47  *	* entropy_enter immediately enters into the global pool if it
     48  *	  can transition to full entropy in one swell foop.  Otherwise,
     49  *	  it defers to a housekeeping thread that consolidates entropy,
     50  *	  but only when the CPUs collectively have full entropy, in
     51  *	  order to mitigate iterative-guessing attacks.
     52  *
     53  *	* The entropy housekeeping thread continues to consolidate
     54  *	  entropy even after we think we have full entropy, in case we
     55  *	  are wrong, but is limited to one discretionary consolidation
     56  *	  per minute, and only when new entropy is actually coming in,
     57  *	  to limit performance impact.
     58  *
     59  *	* The entropy epoch is the number that changes when we
     60  *	  transition from partial entropy to full entropy, so that
     61  *	  users can easily determine when to reseed.  This also
     62  *	  facilitates an operator explicitly causing everything to
     63  *	  reseed by sysctl -w kern.entropy.consolidate=1.
     64  *
     65  *	* No entropy estimation based on the sample values, which is a
     66  *	  contradiction in terms and a potential source of side
     67  *	  channels.  It is the responsibility of the driver author to
     68  *	  study how predictable the physical source of input can ever
     69  *	  be, and to furnish a lower bound on the amount of entropy it
     70  *	  has.
     71  *
     72  *	* Entropy depletion is available for testing (or if you're into
     73  *	  that sort of thing), with sysctl -w kern.entropy.depletion=1;
     74  *	  the logic to support it is small, to minimize chance of bugs.
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.34 2022/03/04 21:12:03 andvar Exp $");
     79 
     80 #include <sys/param.h>
     81 #include <sys/types.h>
     82 #include <sys/atomic.h>
     83 #include <sys/compat_stub.h>
     84 #include <sys/condvar.h>
     85 #include <sys/cpu.h>
     86 #include <sys/entropy.h>
     87 #include <sys/errno.h>
     88 #include <sys/evcnt.h>
     89 #include <sys/event.h>
     90 #include <sys/file.h>
     91 #include <sys/intr.h>
     92 #include <sys/kauth.h>
     93 #include <sys/kernel.h>
     94 #include <sys/kmem.h>
     95 #include <sys/kthread.h>
     96 #include <sys/module_hook.h>
     97 #include <sys/mutex.h>
     98 #include <sys/percpu.h>
     99 #include <sys/poll.h>
    100 #include <sys/queue.h>
    101 #include <sys/reboot.h>
    102 #include <sys/rnd.h>		/* legacy kernel API */
    103 #include <sys/rndio.h>		/* userland ioctl interface */
    104 #include <sys/rndsource.h>	/* kernel rndsource driver API */
    105 #include <sys/select.h>
    106 #include <sys/selinfo.h>
    107 #include <sys/sha1.h>		/* for boot seed checksum */
    108 #include <sys/stdint.h>
    109 #include <sys/sysctl.h>
    110 #include <sys/syslog.h>
    111 #include <sys/systm.h>
    112 #include <sys/time.h>
    113 #include <sys/xcall.h>
    114 
    115 #include <lib/libkern/entpool.h>
    116 
    117 #include <machine/limits.h>
    118 
    119 #ifdef __HAVE_CPU_COUNTER
    120 #include <machine/cpu_counter.h>
    121 #endif
    122 
    123 /*
    124  * struct entropy_cpu
    125  *
    126  *	Per-CPU entropy state.  The pool is allocated separately
    127  *	because percpu(9) sometimes moves per-CPU objects around
    128  *	without zeroing them, which would lead to unwanted copies of
    129  *	sensitive secrets.  The evcnt is allocated separately because
    130  *	evcnt(9) assumes it stays put in memory.
    131  */
    132 struct entropy_cpu {
    133 	struct evcnt		*ec_softint_evcnt;
    134 	struct entpool		*ec_pool;
    135 	unsigned		ec_pending;
    136 	bool			ec_locked;
    137 };
    138 
    139 /*
    140  * struct rndsource_cpu
    141  *
    142  *	Per-CPU rndsource state.
    143  */
    144 struct rndsource_cpu {
    145 	unsigned		rc_entropybits;
    146 	unsigned		rc_timesamples;
    147 	unsigned		rc_datasamples;
    148 };
    149 
    150 /*
    151  * entropy_global (a.k.a. E for short in this file)
    152  *
    153  *	Global entropy state.  Writes protected by the global lock.
    154  *	Some fields, marked (A), can be read outside the lock, and are
    155  *	maintained with atomic_load/store_relaxed.
    156  */
    157 struct {
    158 	kmutex_t	lock;		/* covers all global state */
    159 	struct entpool	pool;		/* global pool for extraction */
    160 	unsigned	needed;		/* (A) needed globally */
    161 	unsigned	pending;	/* (A) pending in per-CPU pools */
    162 	unsigned	timestamp;	/* (A) time of last consolidation */
    163 	unsigned	epoch;		/* (A) changes when needed -> 0 */
    164 	kcondvar_t	cv;		/* notifies state changes */
    165 	struct selinfo	selq;		/* notifies needed -> 0 */
    166 	struct lwp	*sourcelock;	/* lock on list of sources */
    167 	kcondvar_t	sourcelock_cv;	/* notifies sourcelock release */
    168 	LIST_HEAD(,krndsource) sources;	/* list of entropy sources */
    169 	enum entropy_stage {
    170 		ENTROPY_COLD = 0, /* single-threaded */
    171 		ENTROPY_WARM,	  /* multi-threaded at boot before CPUs */
    172 		ENTROPY_HOT,	  /* multi-threaded multi-CPU */
    173 	}		stage;
    174 	bool		consolidate;	/* kick thread to consolidate */
    175 	bool		seed_rndsource;	/* true if seed source is attached */
    176 	bool		seeded;		/* true if seed file already loaded */
    177 } entropy_global __cacheline_aligned = {
    178 	/* Fields that must be initialized when the kernel is loaded.  */
    179 	.needed = ENTROPY_CAPACITY*NBBY,
    180 	.epoch = (unsigned)-1,	/* -1 means entropy never consolidated */
    181 	.sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
    182 	.stage = ENTROPY_COLD,
    183 };
    184 
    185 #define	E	(&entropy_global)	/* declutter */
    186 
    187 /* Read-mostly globals */
    188 static struct percpu	*entropy_percpu __read_mostly; /* struct entropy_cpu */
    189 static void		*entropy_sih __read_mostly; /* softint handler */
    190 static struct lwp	*entropy_lwp __read_mostly; /* housekeeping thread */
    191 
    192 int rnd_initial_entropy __read_mostly; /* XXX legacy */
    193 
    194 static struct krndsource seed_rndsource __read_mostly;
    195 
    196 /*
    197  * Event counters
    198  *
    199  *	Must be careful with adding these because they can serve as
    200  *	side channels.
    201  */
    202 static struct evcnt entropy_discretionary_evcnt =
    203     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
    204 EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
    205 static struct evcnt entropy_immediate_evcnt =
    206     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
    207 EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
    208 static struct evcnt entropy_partial_evcnt =
    209     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
    210 EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
    211 static struct evcnt entropy_consolidate_evcnt =
    212     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
    213 EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
    214 static struct evcnt entropy_extract_intr_evcnt =
    215     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract intr");
    216 EVCNT_ATTACH_STATIC(entropy_extract_intr_evcnt);
    217 static struct evcnt entropy_extract_fail_evcnt =
    218     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
    219 EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
    220 static struct evcnt entropy_request_evcnt =
    221     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
    222 EVCNT_ATTACH_STATIC(entropy_request_evcnt);
    223 static struct evcnt entropy_deplete_evcnt =
    224     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
    225 EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
    226 static struct evcnt entropy_notify_evcnt =
    227     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
    228 EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
    229 
    230 /* Sysctl knobs */
    231 static bool	entropy_collection = 1;
    232 static bool	entropy_depletion = 0; /* Silly!  */
    233 
    234 static const struct sysctlnode	*entropy_sysctlroot;
    235 static struct sysctllog		*entropy_sysctllog;
    236 
    237 /* Forward declarations */
    238 static void	entropy_init_cpu(void *, void *, struct cpu_info *);
    239 static void	entropy_fini_cpu(void *, void *, struct cpu_info *);
    240 static void	entropy_account_cpu(struct entropy_cpu *);
    241 static void	entropy_enter(const void *, size_t, unsigned);
    242 static bool	entropy_enter_intr(const void *, size_t, unsigned);
    243 static void	entropy_softintr(void *);
    244 static void	entropy_thread(void *);
    245 static uint32_t	entropy_pending(void);
    246 static void	entropy_pending_cpu(void *, void *, struct cpu_info *);
    247 static void	entropy_do_consolidate(void);
    248 static void	entropy_consolidate_xc(void *, void *);
    249 static void	entropy_notify(void);
    250 static int	sysctl_entropy_consolidate(SYSCTLFN_ARGS);
    251 static int	sysctl_entropy_gather(SYSCTLFN_ARGS);
    252 static void	filt_entropy_read_detach(struct knote *);
    253 static int	filt_entropy_read_event(struct knote *, long);
    254 static void	entropy_request(size_t);
    255 static void	rnd_add_data_1(struct krndsource *, const void *, uint32_t,
    256 		    uint32_t, uint32_t);
    257 static unsigned	rndsource_entropybits(struct krndsource *);
    258 static void	rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
    259 static void	rndsource_to_user(struct krndsource *, rndsource_t *);
    260 static void	rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
    261 static void	rndsource_to_user_est_cpu(void *, void *, struct cpu_info *);
    262 
    263 /*
    264  * entropy_timer()
    265  *
    266  *	Cycle counter, time counter, or anything that changes a wee bit
    267  *	unpredictably.
    268  */
    269 static inline uint32_t
    270 entropy_timer(void)
    271 {
    272 	struct bintime bt;
    273 	uint32_t v;
    274 
    275 	/* If we have a CPU cycle counter, use the low 32 bits.  */
    276 #ifdef __HAVE_CPU_COUNTER
    277 	if (__predict_true(cpu_hascounter()))
    278 		return cpu_counter32();
    279 #endif	/* __HAVE_CPU_COUNTER */
    280 
    281 	/* If we're cold, tough.  Can't binuptime while cold.  */
    282 	if (__predict_false(cold))
    283 		return 0;
    284 
    285 	/* Fold the 128 bits of binuptime into 32 bits.  */
    286 	binuptime(&bt);
    287 	v = bt.frac;
    288 	v ^= bt.frac >> 32;
    289 	v ^= bt.sec;
    290 	v ^= bt.sec >> 32;
    291 	return v;
    292 }
    293 
    294 static void
    295 attach_seed_rndsource(void)
    296 {
    297 
    298 	/*
    299 	 * First called no later than entropy_init, while we are still
    300 	 * single-threaded, so no need for RUN_ONCE.
    301 	 */
    302 	if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
    303 		return;
    304 	rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
    305 	    RND_FLAG_COLLECT_VALUE);
    306 	E->seed_rndsource = true;
    307 }
    308 
    309 /*
    310  * entropy_init()
    311  *
    312  *	Initialize the entropy subsystem.  Panic on failure.
    313  *
    314  *	Requires percpu(9) and sysctl(9) to be initialized.
    315  */
    316 static void
    317 entropy_init(void)
    318 {
    319 	uint32_t extra[2];
    320 	struct krndsource *rs;
    321 	unsigned i = 0;
    322 
    323 	KASSERT(E->stage == ENTROPY_COLD);
    324 
    325 	/* Grab some cycle counts early at boot.  */
    326 	extra[i++] = entropy_timer();
    327 
    328 	/* Run the entropy pool cryptography self-test.  */
    329 	if (entpool_selftest() == -1)
    330 		panic("entropy pool crypto self-test failed");
    331 
    332 	/* Create the sysctl directory.  */
    333 	sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
    334 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
    335 	    SYSCTL_DESCR("Entropy (random number sources) options"),
    336 	    NULL, 0, NULL, 0,
    337 	    CTL_KERN, CTL_CREATE, CTL_EOL);
    338 
    339 	/* Create the sysctl knobs.  */
    340 	/* XXX These shouldn't be writable at securelevel>0.  */
    341 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    342 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
    343 	    SYSCTL_DESCR("Automatically collect entropy from hardware"),
    344 	    NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
    345 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    346 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
    347 	    SYSCTL_DESCR("`Deplete' entropy pool when observed"),
    348 	    NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
    349 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    350 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
    351 	    SYSCTL_DESCR("Trigger entropy consolidation now"),
    352 	    sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    353 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    354 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
    355 	    SYSCTL_DESCR("Trigger entropy gathering from sources now"),
    356 	    sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    357 	/* XXX These should maybe not be readable at securelevel>0.  */
    358 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    359 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    360 	    "needed", SYSCTL_DESCR("Systemwide entropy deficit"),
    361 	    NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
    362 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    363 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    364 	    "pending", SYSCTL_DESCR("Entropy pending on CPUs"),
    365 	    NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
    366 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    367 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    368 	    "epoch", SYSCTL_DESCR("Entropy epoch"),
    369 	    NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
    370 
    371 	/* Initialize the global state for multithreaded operation.  */
    372 	mutex_init(&E->lock, MUTEX_DEFAULT, IPL_VM);
    373 	cv_init(&E->cv, "entropy");
    374 	selinit(&E->selq);
    375 	cv_init(&E->sourcelock_cv, "entsrclock");
    376 
    377 	/* Make sure the seed source is attached.  */
    378 	attach_seed_rndsource();
    379 
    380 	/* Note if the bootloader didn't provide a seed.  */
    381 	if (!E->seeded)
    382 		aprint_debug("entropy: no seed from bootloader\n");
    383 
    384 	/* Allocate the per-CPU records for all early entropy sources.  */
    385 	LIST_FOREACH(rs, &E->sources, list)
    386 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
    387 
    388 	/* Enter the boot cycle count to get started.  */
    389 	extra[i++] = entropy_timer();
    390 	KASSERT(i == __arraycount(extra));
    391 	entropy_enter(extra, sizeof extra, 0);
    392 	explicit_memset(extra, 0, sizeof extra);
    393 
    394 	/* We are now ready for multi-threaded operation.  */
    395 	E->stage = ENTROPY_WARM;
    396 }
    397 
    398 /*
    399  * entropy_init_late()
    400  *
    401  *	Late initialization.  Panic on failure.
    402  *
    403  *	Requires CPUs to have been detected and LWPs to have started.
    404  */
    405 static void
    406 entropy_init_late(void)
    407 {
    408 	int error;
    409 
    410 	KASSERT(E->stage == ENTROPY_WARM);
    411 
    412 	/* Allocate and initialize the per-CPU state.  */
    413 	entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
    414 	    entropy_init_cpu, entropy_fini_cpu, NULL);
    415 
    416 	/*
    417 	 * Establish the softint at the highest softint priority level.
    418 	 * Must happen after CPU detection.
    419 	 */
    420 	entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
    421 	    &entropy_softintr, NULL);
    422 	if (entropy_sih == NULL)
    423 		panic("unable to establish entropy softint");
    424 
    425 	/*
    426 	 * Create the entropy housekeeping thread.  Must happen after
    427 	 * lwpinit.
    428 	 */
    429 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
    430 	    entropy_thread, NULL, &entropy_lwp, "entbutler");
    431 	if (error)
    432 		panic("unable to create entropy housekeeping thread: %d",
    433 		    error);
    434 
    435 	/*
    436 	 * Wait until the per-CPU initialization has hit all CPUs
    437 	 * before proceeding to mark the entropy system hot.
    438 	 */
    439 	xc_barrier(XC_HIGHPRI);
    440 	E->stage = ENTROPY_HOT;
    441 }
    442 
    443 /*
    444  * entropy_init_cpu(ptr, cookie, ci)
    445  *
    446  *	percpu(9) constructor for per-CPU entropy pool.
    447  */
    448 static void
    449 entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    450 {
    451 	struct entropy_cpu *ec = ptr;
    452 
    453 	ec->ec_softint_evcnt = kmem_alloc(sizeof(*ec->ec_softint_evcnt),
    454 	    KM_SLEEP);
    455 	ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
    456 	ec->ec_pending = 0;
    457 	ec->ec_locked = false;
    458 
    459 	evcnt_attach_dynamic(ec->ec_softint_evcnt, EVCNT_TYPE_MISC, NULL,
    460 	    ci->ci_cpuname, "entropy softint");
    461 }
    462 
    463 /*
    464  * entropy_fini_cpu(ptr, cookie, ci)
    465  *
    466  *	percpu(9) destructor for per-CPU entropy pool.
    467  */
    468 static void
    469 entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    470 {
    471 	struct entropy_cpu *ec = ptr;
    472 
    473 	/*
    474 	 * Zero any lingering data.  Disclosure of the per-CPU pool
    475 	 * shouldn't retroactively affect the security of any keys
    476 	 * generated, because entpool(9) erases whatever we have just
    477 	 * drawn out of any pool, but better safe than sorry.
    478 	 */
    479 	explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
    480 
    481 	evcnt_detach(ec->ec_softint_evcnt);
    482 
    483 	kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
    484 	kmem_free(ec->ec_softint_evcnt, sizeof(*ec->ec_softint_evcnt));
    485 }
    486 
    487 /*
    488  * entropy_seed(seed)
    489  *
    490  *	Seed the entropy pool with seed.  Meant to be called as early
    491  *	as possible by the bootloader; may be called before or after
    492  *	entropy_init.  Must be called before system reaches userland.
    493  *	Must be called in thread or soft interrupt context, not in hard
    494  *	interrupt context.  Must be called at most once.
    495  *
    496  *	Overwrites the seed in place.  Caller may then free the memory.
    497  */
    498 static void
    499 entropy_seed(rndsave_t *seed)
    500 {
    501 	SHA1_CTX ctx;
    502 	uint8_t digest[SHA1_DIGEST_LENGTH];
    503 	bool seeded;
    504 
    505 	/*
    506 	 * Verify the checksum.  If the checksum fails, take the data
    507 	 * but ignore the entropy estimate -- the file may have been
    508 	 * incompletely written with garbage, which is harmless to add
    509 	 * but may not be as unpredictable as alleged.
    510 	 */
    511 	SHA1Init(&ctx);
    512 	SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
    513 	SHA1Update(&ctx, seed->data, sizeof(seed->data));
    514 	SHA1Final(digest, &ctx);
    515 	CTASSERT(sizeof(seed->digest) == sizeof(digest));
    516 	if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
    517 		printf("entropy: invalid seed checksum\n");
    518 		seed->entropy = 0;
    519 	}
    520 	explicit_memset(&ctx, 0, sizeof ctx);
    521 	explicit_memset(digest, 0, sizeof digest);
    522 
    523 	/*
    524 	 * If the entropy is insensibly large, try byte-swapping.
    525 	 * Otherwise assume the file is corrupted and act as though it
    526 	 * has zero entropy.
    527 	 */
    528 	if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
    529 		seed->entropy = bswap32(seed->entropy);
    530 		if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
    531 			seed->entropy = 0;
    532 	}
    533 
    534 	/* Make sure the seed source is attached.  */
    535 	attach_seed_rndsource();
    536 
    537 	/* Test and set E->seeded.  */
    538 	if (E->stage >= ENTROPY_WARM)
    539 		mutex_enter(&E->lock);
    540 	seeded = E->seeded;
    541 	E->seeded = (seed->entropy > 0);
    542 	if (E->stage >= ENTROPY_WARM)
    543 		mutex_exit(&E->lock);
    544 
    545 	/*
    546 	 * If we've been seeded, may be re-entering the same seed
    547 	 * (e.g., bootloader vs module init, or something).  No harm in
    548 	 * entering it twice, but it contributes no additional entropy.
    549 	 */
    550 	if (seeded) {
    551 		printf("entropy: double-seeded by bootloader\n");
    552 		seed->entropy = 0;
    553 	} else {
    554 		printf("entropy: entering seed from bootloader"
    555 		    " with %u bits of entropy\n", (unsigned)seed->entropy);
    556 	}
    557 
    558 	/* Enter it into the pool and promptly zero it.  */
    559 	rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
    560 	    seed->entropy);
    561 	explicit_memset(seed, 0, sizeof(*seed));
    562 }
    563 
    564 /*
    565  * entropy_bootrequest()
    566  *
    567  *	Request entropy from all sources at boot, once config is
    568  *	complete and interrupts are running.
    569  */
    570 void
    571 entropy_bootrequest(void)
    572 {
    573 
    574 	KASSERT(E->stage >= ENTROPY_WARM);
    575 
    576 	/*
    577 	 * Request enough to satisfy the maximum entropy shortage.
    578 	 * This is harmless overkill if the bootloader provided a seed.
    579 	 */
    580 	mutex_enter(&E->lock);
    581 	entropy_request(ENTROPY_CAPACITY);
    582 	mutex_exit(&E->lock);
    583 }
    584 
    585 /*
    586  * entropy_epoch()
    587  *
    588  *	Returns the current entropy epoch.  If this changes, you should
    589  *	reseed.  If -1, means system entropy has not yet reached full
    590  *	entropy or been explicitly consolidated; never reverts back to
    591  *	-1.  Never zero, so you can always use zero as an uninitialized
    592  *	sentinel value meaning `reseed ASAP'.
    593  *
    594  *	Usage model:
    595  *
    596  *		struct foo {
    597  *			struct crypto_prng prng;
    598  *			unsigned epoch;
    599  *		} *foo;
    600  *
    601  *		unsigned epoch = entropy_epoch();
    602  *		if (__predict_false(epoch != foo->epoch)) {
    603  *			uint8_t seed[32];
    604  *			if (entropy_extract(seed, sizeof seed, 0) != 0)
    605  *				warn("no entropy");
    606  *			crypto_prng_reseed(&foo->prng, seed, sizeof seed);
    607  *			foo->epoch = epoch;
    608  *		}
    609  */
    610 unsigned
    611 entropy_epoch(void)
    612 {
    613 
    614 	/*
    615 	 * Unsigned int, so no need for seqlock for an atomic read, but
    616 	 * make sure we read it afresh each time.
    617 	 */
    618 	return atomic_load_relaxed(&E->epoch);
    619 }
    620 
    621 /*
    622  * entropy_ready()
    623  *
    624  *	True if the entropy pool has full entropy.
    625  */
    626 bool
    627 entropy_ready(void)
    628 {
    629 
    630 	return atomic_load_relaxed(&E->needed) == 0;
    631 }
    632 
    633 /*
    634  * entropy_account_cpu(ec)
    635  *
    636  *	Consider whether to consolidate entropy into the global pool
    637  *	after we just added some into the current CPU's pending pool.
    638  *
    639  *	- If this CPU can provide enough entropy now, do so.
    640  *
    641  *	- If this and whatever else is available on other CPUs can
    642  *	  provide enough entropy, kick the consolidation thread.
    643  *
    644  *	- Otherwise, do as little as possible, except maybe consolidate
    645  *	  entropy at most once a minute.
    646  *
    647  *	Caller must be bound to a CPU and therefore have exclusive
    648  *	access to ec.  Will acquire and release the global lock.
    649  */
    650 static void
    651 entropy_account_cpu(struct entropy_cpu *ec)
    652 {
    653 	unsigned diff;
    654 
    655 	KASSERT(E->stage == ENTROPY_HOT);
    656 
    657 	/*
    658 	 * If there's no entropy needed, and entropy has been
    659 	 * consolidated in the last minute, do nothing.
    660 	 */
    661 	if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
    662 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
    663 	    __predict_true((time_uptime - E->timestamp) <= 60))
    664 		return;
    665 
    666 	/* If there's nothing pending, stop here.  */
    667 	if (ec->ec_pending == 0)
    668 		return;
    669 
    670 	/* Consider consolidation, under the lock.  */
    671 	mutex_enter(&E->lock);
    672 	if (E->needed != 0 && E->needed <= ec->ec_pending) {
    673 		/*
    674 		 * If we have not yet attained full entropy but we can
    675 		 * now, do so.  This way we disseminate entropy
    676 		 * promptly when it becomes available early at boot;
    677 		 * otherwise we leave it to the entropy consolidation
    678 		 * thread, which is rate-limited to mitigate side
    679 		 * channels and abuse.
    680 		 */
    681 		uint8_t buf[ENTPOOL_CAPACITY];
    682 
    683 		/* Transfer from the local pool to the global pool.  */
    684 		entpool_extract(ec->ec_pool, buf, sizeof buf);
    685 		entpool_enter(&E->pool, buf, sizeof buf);
    686 		atomic_store_relaxed(&ec->ec_pending, 0);
    687 		atomic_store_relaxed(&E->needed, 0);
    688 
    689 		/* Notify waiters that we now have full entropy.  */
    690 		entropy_notify();
    691 		entropy_immediate_evcnt.ev_count++;
    692 	} else {
    693 		/* Record how much we can add to the global pool.  */
    694 		diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
    695 		E->pending += diff;
    696 		atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
    697 
    698 		/*
    699 		 * This should have made a difference unless we were
    700 		 * already saturated.
    701 		 */
    702 		KASSERT(diff || E->pending == ENTROPY_CAPACITY*NBBY);
    703 		KASSERT(E->pending);
    704 
    705 		if (E->needed <= E->pending) {
    706 			/*
    707 			 * Enough entropy between all the per-CPU
    708 			 * pools.  Wake up the housekeeping thread.
    709 			 *
    710 			 * If we don't need any entropy, this doesn't
    711 			 * mean much, but it is the only time we ever
    712 			 * gather additional entropy in case the
    713 			 * accounting has been overly optimistic.  This
    714 			 * happens at most once a minute, so there's
    715 			 * negligible performance cost.
    716 			 */
    717 			E->consolidate = true;
    718 			cv_broadcast(&E->cv);
    719 			if (E->needed == 0)
    720 				entropy_discretionary_evcnt.ev_count++;
    721 		} else {
    722 			/* Can't get full entropy.  Keep gathering.  */
    723 			entropy_partial_evcnt.ev_count++;
    724 		}
    725 	}
    726 	mutex_exit(&E->lock);
    727 }
    728 
    729 /*
    730  * entropy_enter_early(buf, len, nbits)
    731  *
    732  *	Do entropy bookkeeping globally, before we have established
    733  *	per-CPU pools.  Enter directly into the global pool in the hope
    734  *	that we enter enough before the first entropy_extract to thwart
    735  *	iterative-guessing attacks; entropy_extract will warn if not.
    736  */
    737 static void
    738 entropy_enter_early(const void *buf, size_t len, unsigned nbits)
    739 {
    740 	bool notify = false;
    741 
    742 	if (E->stage >= ENTROPY_WARM)
    743 		mutex_enter(&E->lock);
    744 
    745 	/* Enter it into the pool.  */
    746 	entpool_enter(&E->pool, buf, len);
    747 
    748 	/*
    749 	 * Decide whether to notify reseed -- we will do so if either:
    750 	 * (a) we transition from partial entropy to full entropy, or
    751 	 * (b) we get a batch of full entropy all at once.
    752 	 */
    753 	notify |= (E->needed && E->needed <= nbits);
    754 	notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
    755 
    756 	/* Subtract from the needed count and notify if appropriate.  */
    757 	E->needed -= MIN(E->needed, nbits);
    758 	if (notify) {
    759 		entropy_notify();
    760 		entropy_immediate_evcnt.ev_count++;
    761 	}
    762 
    763 	if (E->stage >= ENTROPY_WARM)
    764 		mutex_exit(&E->lock);
    765 }
    766 
    767 /*
    768  * entropy_enter(buf, len, nbits)
    769  *
    770  *	Enter len bytes of data from buf into the system's entropy
    771  *	pool, stirring as necessary when the internal buffer fills up.
    772  *	nbits is a lower bound on the number of bits of entropy in the
    773  *	process that led to this sample.
    774  */
    775 static void
    776 entropy_enter(const void *buf, size_t len, unsigned nbits)
    777 {
    778 	struct entropy_cpu *ec;
    779 	uint32_t pending;
    780 	int s;
    781 
    782 	KASSERTMSG(!cpu_intr_p(),
    783 	    "use entropy_enter_intr from interrupt context");
    784 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    785 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    786 
    787 	/* If it's too early after boot, just use entropy_enter_early.  */
    788 	if (__predict_false(E->stage < ENTROPY_HOT)) {
    789 		entropy_enter_early(buf, len, nbits);
    790 		return;
    791 	}
    792 
    793 	/*
    794 	 * Acquire the per-CPU state, blocking soft interrupts and
    795 	 * causing hard interrupts to drop samples on the floor.
    796 	 */
    797 	ec = percpu_getref(entropy_percpu);
    798 	s = splsoftserial();
    799 	KASSERT(!ec->ec_locked);
    800 	ec->ec_locked = true;
    801 	__insn_barrier();
    802 
    803 	/* Enter into the per-CPU pool.  */
    804 	entpool_enter(ec->ec_pool, buf, len);
    805 
    806 	/* Count up what we can add.  */
    807 	pending = ec->ec_pending;
    808 	pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
    809 	atomic_store_relaxed(&ec->ec_pending, pending);
    810 
    811 	/* Consolidate globally if appropriate based on what we added.  */
    812 	entropy_account_cpu(ec);
    813 
    814 	/* Release the per-CPU state.  */
    815 	KASSERT(ec->ec_locked);
    816 	__insn_barrier();
    817 	ec->ec_locked = false;
    818 	splx(s);
    819 	percpu_putref(entropy_percpu);
    820 }
    821 
    822 /*
    823  * entropy_enter_intr(buf, len, nbits)
    824  *
    825  *	Enter up to len bytes of data from buf into the system's
    826  *	entropy pool without stirring.  nbits is a lower bound on the
    827  *	number of bits of entropy in the process that led to this
    828  *	sample.  If the sample could be entered completely, assume
    829  *	nbits of entropy pending; otherwise assume none, since we don't
    830  *	know whether some parts of the sample are constant, for
    831  *	instance.  Schedule a softint to stir the entropy pool if
    832  *	needed.  Return true if used fully, false if truncated at all.
    833  *
    834  *	Using this in thread context will work, but you might as well
    835  *	use entropy_enter in that case.
    836  */
    837 static bool
    838 entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
    839 {
    840 	struct entropy_cpu *ec;
    841 	bool fullyused = false;
    842 	uint32_t pending;
    843 
    844 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    845 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    846 
    847 	/* If it's too early after boot, just use entropy_enter_early.  */
    848 	if (__predict_false(E->stage < ENTROPY_HOT)) {
    849 		entropy_enter_early(buf, len, nbits);
    850 		return true;
    851 	}
    852 
    853 	/*
    854 	 * Acquire the per-CPU state.  If someone is in the middle of
    855 	 * using it, drop the sample.  Otherwise, take the lock so that
    856 	 * higher-priority interrupts will drop their samples.
    857 	 */
    858 	ec = percpu_getref(entropy_percpu);
    859 	if (ec->ec_locked)
    860 		goto out0;
    861 	ec->ec_locked = true;
    862 	__insn_barrier();
    863 
    864 	/*
    865 	 * Enter as much as we can into the per-CPU pool.  If it was
    866 	 * truncated, schedule a softint to stir the pool and stop.
    867 	 */
    868 	if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
    869 		softint_schedule(entropy_sih);
    870 		goto out1;
    871 	}
    872 	fullyused = true;
    873 
    874 	/* Count up what we can contribute.  */
    875 	pending = ec->ec_pending;
    876 	pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
    877 	atomic_store_relaxed(&ec->ec_pending, pending);
    878 
    879 	/* Schedule a softint if we added anything and it matters.  */
    880 	if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
    881 		atomic_load_relaxed(&entropy_depletion)) &&
    882 	    nbits != 0)
    883 		softint_schedule(entropy_sih);
    884 
    885 out1:	/* Release the per-CPU state.  */
    886 	KASSERT(ec->ec_locked);
    887 	__insn_barrier();
    888 	ec->ec_locked = false;
    889 out0:	percpu_putref(entropy_percpu);
    890 
    891 	return fullyused;
    892 }
    893 
    894 /*
    895  * entropy_softintr(cookie)
    896  *
    897  *	Soft interrupt handler for entering entropy.  Takes care of
    898  *	stirring the local CPU's entropy pool if it filled up during
    899  *	hard interrupts, and promptly crediting entropy from the local
    900  *	CPU's entropy pool to the global entropy pool if needed.
    901  */
    902 static void
    903 entropy_softintr(void *cookie)
    904 {
    905 	struct entropy_cpu *ec;
    906 
    907 	/*
    908 	 * Acquire the per-CPU state.  Other users can lock this only
    909 	 * while soft interrupts are blocked.  Cause hard interrupts to
    910 	 * drop samples on the floor.
    911 	 */
    912 	ec = percpu_getref(entropy_percpu);
    913 	KASSERT(!ec->ec_locked);
    914 	ec->ec_locked = true;
    915 	__insn_barrier();
    916 
    917 	/* Count statistics.  */
    918 	ec->ec_softint_evcnt->ev_count++;
    919 
    920 	/* Stir the pool if necessary.  */
    921 	entpool_stir(ec->ec_pool);
    922 
    923 	/* Consolidate globally if appropriate based on what we added.  */
    924 	entropy_account_cpu(ec);
    925 
    926 	/* Release the per-CPU state.  */
    927 	KASSERT(ec->ec_locked);
    928 	__insn_barrier();
    929 	ec->ec_locked = false;
    930 	percpu_putref(entropy_percpu);
    931 }
    932 
    933 /*
    934  * entropy_thread(cookie)
    935  *
    936  *	Handle any asynchronous entropy housekeeping.
    937  */
    938 static void
    939 entropy_thread(void *cookie)
    940 {
    941 	bool consolidate;
    942 
    943 	for (;;) {
    944 		/*
    945 		 * Wait until there's full entropy somewhere among the
    946 		 * CPUs, as confirmed at most once per minute, or
    947 		 * someone wants to consolidate.
    948 		 */
    949 		if (entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
    950 			consolidate = true;
    951 		} else {
    952 			mutex_enter(&E->lock);
    953 			if (!E->consolidate)
    954 				cv_timedwait(&E->cv, &E->lock, 60*hz);
    955 			consolidate = E->consolidate;
    956 			E->consolidate = false;
    957 			mutex_exit(&E->lock);
    958 		}
    959 
    960 		if (consolidate) {
    961 			/* Do it.  */
    962 			entropy_do_consolidate();
    963 
    964 			/* Mitigate abuse.  */
    965 			kpause("entropy", false, hz, NULL);
    966 		}
    967 	}
    968 }
    969 
    970 /*
    971  * entropy_pending()
    972  *
    973  *	Count up the amount of entropy pending on other CPUs.
    974  */
    975 static uint32_t
    976 entropy_pending(void)
    977 {
    978 	uint32_t pending = 0;
    979 
    980 	percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
    981 	return pending;
    982 }
    983 
    984 static void
    985 entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    986 {
    987 	struct entropy_cpu *ec = ptr;
    988 	uint32_t *pendingp = cookie;
    989 	uint32_t cpu_pending;
    990 
    991 	cpu_pending = atomic_load_relaxed(&ec->ec_pending);
    992 	*pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
    993 }
    994 
    995 /*
    996  * entropy_do_consolidate()
    997  *
    998  *	Issue a cross-call to gather entropy on all CPUs and advance
    999  *	the entropy epoch.
   1000  */
   1001 static void
   1002 entropy_do_consolidate(void)
   1003 {
   1004 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1005 	static struct timeval lasttime; /* serialized by E->lock */
   1006 	struct entpool pool;
   1007 	uint8_t buf[ENTPOOL_CAPACITY];
   1008 	unsigned diff;
   1009 	uint64_t ticket;
   1010 
   1011 	/* Gather entropy on all CPUs into a temporary pool.  */
   1012 	memset(&pool, 0, sizeof pool);
   1013 	ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
   1014 	xc_wait(ticket);
   1015 
   1016 	/* Acquire the lock to notify waiters.  */
   1017 	mutex_enter(&E->lock);
   1018 
   1019 	/* Count another consolidation.  */
   1020 	entropy_consolidate_evcnt.ev_count++;
   1021 
   1022 	/* Note when we last consolidated, i.e. now.  */
   1023 	E->timestamp = time_uptime;
   1024 
   1025 	/* Mix what we gathered into the global pool.  */
   1026 	entpool_extract(&pool, buf, sizeof buf);
   1027 	entpool_enter(&E->pool, buf, sizeof buf);
   1028 	explicit_memset(&pool, 0, sizeof pool);
   1029 
   1030 	/* Count the entropy that was gathered.  */
   1031 	diff = MIN(E->needed, E->pending);
   1032 	atomic_store_relaxed(&E->needed, E->needed - diff);
   1033 	E->pending -= diff;
   1034 	if (__predict_false(E->needed > 0)) {
   1035 		if (ratecheck(&lasttime, &interval) &&
   1036 		    (boothowto & AB_DEBUG) != 0) {
   1037 			printf("entropy: WARNING:"
   1038 			    " consolidating less than full entropy\n");
   1039 		}
   1040 	}
   1041 
   1042 	/* Advance the epoch and notify waiters.  */
   1043 	entropy_notify();
   1044 
   1045 	/* Release the lock.  */
   1046 	mutex_exit(&E->lock);
   1047 }
   1048 
   1049 /*
   1050  * entropy_consolidate_xc(vpool, arg2)
   1051  *
   1052  *	Extract output from the local CPU's input pool and enter it
   1053  *	into a temporary pool passed as vpool.
   1054  */
   1055 static void
   1056 entropy_consolidate_xc(void *vpool, void *arg2 __unused)
   1057 {
   1058 	struct entpool *pool = vpool;
   1059 	struct entropy_cpu *ec;
   1060 	uint8_t buf[ENTPOOL_CAPACITY];
   1061 	uint32_t extra[7];
   1062 	unsigned i = 0;
   1063 	int s;
   1064 
   1065 	/* Grab CPU number and cycle counter to mix extra into the pool.  */
   1066 	extra[i++] = cpu_number();
   1067 	extra[i++] = entropy_timer();
   1068 
   1069 	/*
   1070 	 * Acquire the per-CPU state, blocking soft interrupts and
   1071 	 * discarding entropy in hard interrupts, so that we can
   1072 	 * extract from the per-CPU pool.
   1073 	 */
   1074 	ec = percpu_getref(entropy_percpu);
   1075 	s = splsoftserial();
   1076 	KASSERT(!ec->ec_locked);
   1077 	ec->ec_locked = true;
   1078 	__insn_barrier();
   1079 	extra[i++] = entropy_timer();
   1080 
   1081 	/* Extract the data and count it no longer pending.  */
   1082 	entpool_extract(ec->ec_pool, buf, sizeof buf);
   1083 	atomic_store_relaxed(&ec->ec_pending, 0);
   1084 	extra[i++] = entropy_timer();
   1085 
   1086 	/* Release the per-CPU state.  */
   1087 	KASSERT(ec->ec_locked);
   1088 	__insn_barrier();
   1089 	ec->ec_locked = false;
   1090 	splx(s);
   1091 	percpu_putref(entropy_percpu);
   1092 	extra[i++] = entropy_timer();
   1093 
   1094 	/*
   1095 	 * Copy over statistics, and enter the per-CPU extract and the
   1096 	 * extra timing into the temporary pool, under the global lock.
   1097 	 */
   1098 	mutex_enter(&E->lock);
   1099 	extra[i++] = entropy_timer();
   1100 	entpool_enter(pool, buf, sizeof buf);
   1101 	explicit_memset(buf, 0, sizeof buf);
   1102 	extra[i++] = entropy_timer();
   1103 	KASSERT(i == __arraycount(extra));
   1104 	entpool_enter(pool, extra, sizeof extra);
   1105 	explicit_memset(extra, 0, sizeof extra);
   1106 	mutex_exit(&E->lock);
   1107 }
   1108 
   1109 /*
   1110  * entropy_notify()
   1111  *
   1112  *	Caller just contributed entropy to the global pool.  Advance
   1113  *	the entropy epoch and notify waiters.
   1114  *
   1115  *	Caller must hold the global entropy lock.  Except for the
   1116  *	`sysctl -w kern.entropy.consolidate=1` trigger, the caller must
   1117  *	have just have transitioned from partial entropy to full
   1118  *	entropy -- E->needed should be zero now.
   1119  */
   1120 static void
   1121 entropy_notify(void)
   1122 {
   1123 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1124 	static struct timeval lasttime; /* serialized by E->lock */
   1125 	unsigned epoch;
   1126 
   1127 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1128 
   1129 	/*
   1130 	 * If this is the first time, print a message to the console
   1131 	 * that we're ready so operators can compare it to the timing
   1132 	 * of other events.
   1133 	 */
   1134 	if (__predict_false(!rnd_initial_entropy) && E->needed == 0) {
   1135 		printf("entropy: ready\n");
   1136 		rnd_initial_entropy = 1;
   1137 	}
   1138 
   1139 	/* Set the epoch; roll over from UINTMAX-1 to 1.  */
   1140 	if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
   1141 	    ratecheck(&lasttime, &interval)) {
   1142 		epoch = E->epoch + 1;
   1143 		if (epoch == 0 || epoch == (unsigned)-1)
   1144 			epoch = 1;
   1145 		atomic_store_relaxed(&E->epoch, epoch);
   1146 	}
   1147 
   1148 	/* Notify waiters.  */
   1149 	if (E->stage >= ENTROPY_WARM) {
   1150 		cv_broadcast(&E->cv);
   1151 		selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
   1152 	}
   1153 
   1154 	/* Count another notification.  */
   1155 	entropy_notify_evcnt.ev_count++;
   1156 }
   1157 
   1158 /*
   1159  * entropy_consolidate()
   1160  *
   1161  *	Trigger entropy consolidation and wait for it to complete.
   1162  *
   1163  *	This should be used sparingly, not periodically -- requiring
   1164  *	conscious intervention by the operator or a clear policy
   1165  *	decision.  Otherwise, the kernel will automatically consolidate
   1166  *	when enough entropy has been gathered into per-CPU pools to
   1167  *	transition to full entropy.
   1168  */
   1169 void
   1170 entropy_consolidate(void)
   1171 {
   1172 	uint64_t ticket;
   1173 	int error;
   1174 
   1175 	KASSERT(E->stage == ENTROPY_HOT);
   1176 
   1177 	mutex_enter(&E->lock);
   1178 	ticket = entropy_consolidate_evcnt.ev_count;
   1179 	E->consolidate = true;
   1180 	cv_broadcast(&E->cv);
   1181 	while (ticket == entropy_consolidate_evcnt.ev_count) {
   1182 		error = cv_wait_sig(&E->cv, &E->lock);
   1183 		if (error)
   1184 			break;
   1185 	}
   1186 	mutex_exit(&E->lock);
   1187 }
   1188 
   1189 /*
   1190  * sysctl -w kern.entropy.consolidate=1
   1191  *
   1192  *	Trigger entropy consolidation and wait for it to complete.
   1193  *	Writable only by superuser.  This, writing to /dev/random, and
   1194  *	ioctl(RNDADDDATA) are the only ways for the system to
   1195  *	consolidate entropy if the operator knows something the kernel
   1196  *	doesn't about how unpredictable the pending entropy pools are.
   1197  */
   1198 static int
   1199 sysctl_entropy_consolidate(SYSCTLFN_ARGS)
   1200 {
   1201 	struct sysctlnode node = *rnode;
   1202 	int arg;
   1203 	int error;
   1204 
   1205 	KASSERT(E->stage == ENTROPY_HOT);
   1206 
   1207 	node.sysctl_data = &arg;
   1208 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1209 	if (error || newp == NULL)
   1210 		return error;
   1211 	if (arg)
   1212 		entropy_consolidate();
   1213 
   1214 	return error;
   1215 }
   1216 
   1217 /*
   1218  * sysctl -w kern.entropy.gather=1
   1219  *
   1220  *	Trigger gathering entropy from all on-demand sources, and wait
   1221  *	for synchronous sources (but not asynchronous sources) to
   1222  *	complete.  Writable only by superuser.
   1223  */
   1224 static int
   1225 sysctl_entropy_gather(SYSCTLFN_ARGS)
   1226 {
   1227 	struct sysctlnode node = *rnode;
   1228 	int arg;
   1229 	int error;
   1230 
   1231 	KASSERT(E->stage == ENTROPY_HOT);
   1232 
   1233 	node.sysctl_data = &arg;
   1234 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1235 	if (error || newp == NULL)
   1236 		return error;
   1237 	if (arg) {
   1238 		mutex_enter(&E->lock);
   1239 		entropy_request(ENTROPY_CAPACITY);
   1240 		mutex_exit(&E->lock);
   1241 	}
   1242 
   1243 	return 0;
   1244 }
   1245 
   1246 /*
   1247  * entropy_extract(buf, len, flags)
   1248  *
   1249  *	Extract len bytes from the global entropy pool into buf.
   1250  *
   1251  *	Flags may have:
   1252  *
   1253  *		ENTROPY_WAIT	Wait for entropy if not available yet.
   1254  *		ENTROPY_SIG	Allow interruption by a signal during wait.
   1255  *		ENTROPY_HARDFAIL Either fill the buffer with full entropy,
   1256  *				or fail without filling it at all.
   1257  *
   1258  *	Return zero on success, or error on failure:
   1259  *
   1260  *		EWOULDBLOCK	No entropy and ENTROPY_WAIT not set.
   1261  *		EINTR/ERESTART	No entropy, ENTROPY_SIG set, and interrupted.
   1262  *
   1263  *	If ENTROPY_WAIT is set, allowed only in thread context.  If
   1264  *	ENTROPY_WAIT is not set, allowed up to IPL_VM.  (XXX That's
   1265  *	awfully high...  Do we really need it in hard interrupts?  This
   1266  *	arises from use of cprng_strong(9).)
   1267  */
   1268 int
   1269 entropy_extract(void *buf, size_t len, int flags)
   1270 {
   1271 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1272 	static struct timeval lasttime; /* serialized by E->lock */
   1273 	int error;
   1274 
   1275 	if (ISSET(flags, ENTROPY_WAIT)) {
   1276 		ASSERT_SLEEPABLE();
   1277 		KASSERTMSG(E->stage >= ENTROPY_WARM,
   1278 		    "can't wait for entropy until warm");
   1279 	}
   1280 
   1281 	/* Acquire the global lock to get at the global pool.  */
   1282 	if (E->stage >= ENTROPY_WARM)
   1283 		mutex_enter(&E->lock);
   1284 
   1285 	/* Count up request for entropy in interrupt context.  */
   1286 	if (cpu_intr_p())
   1287 		entropy_extract_intr_evcnt.ev_count++;
   1288 
   1289 	/* Wait until there is enough entropy in the system.  */
   1290 	error = 0;
   1291 	while (E->needed) {
   1292 		/* Ask for more, synchronously if possible.  */
   1293 		entropy_request(len);
   1294 
   1295 		/* If we got enough, we're done.  */
   1296 		if (E->needed == 0) {
   1297 			KASSERT(error == 0);
   1298 			break;
   1299 		}
   1300 
   1301 		/* If not waiting, stop here.  */
   1302 		if (!ISSET(flags, ENTROPY_WAIT)) {
   1303 			error = EWOULDBLOCK;
   1304 			break;
   1305 		}
   1306 
   1307 		/* Wait for some entropy to come in and try again.  */
   1308 		KASSERT(E->stage >= ENTROPY_WARM);
   1309 		printf("entropy: pid %d (%s) blocking due to lack of entropy\n",
   1310 		       curproc->p_pid, curproc->p_comm);
   1311 
   1312 		if (ISSET(flags, ENTROPY_SIG)) {
   1313 			error = cv_wait_sig(&E->cv, &E->lock);
   1314 			if (error)
   1315 				break;
   1316 		} else {
   1317 			cv_wait(&E->cv, &E->lock);
   1318 		}
   1319 	}
   1320 
   1321 	/*
   1322 	 * Count failure -- but fill the buffer nevertheless, unless
   1323 	 * the caller specified ENTROPY_HARDFAIL.
   1324 	 */
   1325 	if (error) {
   1326 		if (ISSET(flags, ENTROPY_HARDFAIL))
   1327 			goto out;
   1328 		entropy_extract_fail_evcnt.ev_count++;
   1329 	}
   1330 
   1331 	/*
   1332 	 * Report a warning if we have never yet reached full entropy.
   1333 	 * This is the only case where we consider entropy to be
   1334 	 * `depleted' without kern.entropy.depletion enabled -- when we
   1335 	 * only have partial entropy, an adversary may be able to
   1336 	 * narrow the state of the pool down to a small number of
   1337 	 * possibilities; the output then enables them to confirm a
   1338 	 * guess, reducing its entropy from the adversary's perspective
   1339 	 * to zero.
   1340 	 */
   1341 	if (__predict_false(E->epoch == (unsigned)-1)) {
   1342 		if (ratecheck(&lasttime, &interval))
   1343 			printf("entropy: WARNING:"
   1344 			    " extracting entropy too early\n");
   1345 		atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
   1346 	}
   1347 
   1348 	/* Extract data from the pool, and `deplete' if we're doing that.  */
   1349 	entpool_extract(&E->pool, buf, len);
   1350 	if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
   1351 	    error == 0) {
   1352 		unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
   1353 
   1354 		atomic_store_relaxed(&E->needed,
   1355 		    E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
   1356 		entropy_deplete_evcnt.ev_count++;
   1357 	}
   1358 
   1359 out:	/* Release the global lock and return the error.  */
   1360 	if (E->stage >= ENTROPY_WARM)
   1361 		mutex_exit(&E->lock);
   1362 	return error;
   1363 }
   1364 
   1365 /*
   1366  * entropy_poll(events)
   1367  *
   1368  *	Return the subset of events ready, and if it is not all of
   1369  *	events, record curlwp as waiting for entropy.
   1370  */
   1371 int
   1372 entropy_poll(int events)
   1373 {
   1374 	int revents = 0;
   1375 
   1376 	KASSERT(E->stage >= ENTROPY_WARM);
   1377 
   1378 	/* Always ready for writing.  */
   1379 	revents |= events & (POLLOUT|POLLWRNORM);
   1380 
   1381 	/* Narrow it down to reads.  */
   1382 	events &= POLLIN|POLLRDNORM;
   1383 	if (events == 0)
   1384 		return revents;
   1385 
   1386 	/*
   1387 	 * If we have reached full entropy and we're not depleting
   1388 	 * entropy, we are forever ready.
   1389 	 */
   1390 	if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
   1391 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)))
   1392 		return revents | events;
   1393 
   1394 	/*
   1395 	 * Otherwise, check whether we need entropy under the lock.  If
   1396 	 * we don't, we're ready; if we do, add ourselves to the queue.
   1397 	 */
   1398 	mutex_enter(&E->lock);
   1399 	if (E->needed == 0)
   1400 		revents |= events;
   1401 	else
   1402 		selrecord(curlwp, &E->selq);
   1403 	mutex_exit(&E->lock);
   1404 
   1405 	return revents;
   1406 }
   1407 
   1408 /*
   1409  * filt_entropy_read_detach(kn)
   1410  *
   1411  *	struct filterops::f_detach callback for entropy read events:
   1412  *	remove kn from the list of waiters.
   1413  */
   1414 static void
   1415 filt_entropy_read_detach(struct knote *kn)
   1416 {
   1417 
   1418 	KASSERT(E->stage >= ENTROPY_WARM);
   1419 
   1420 	mutex_enter(&E->lock);
   1421 	selremove_knote(&E->selq, kn);
   1422 	mutex_exit(&E->lock);
   1423 }
   1424 
   1425 /*
   1426  * filt_entropy_read_event(kn, hint)
   1427  *
   1428  *	struct filterops::f_event callback for entropy read events:
   1429  *	poll for entropy.  Caller must hold the global entropy lock if
   1430  *	hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
   1431  */
   1432 static int
   1433 filt_entropy_read_event(struct knote *kn, long hint)
   1434 {
   1435 	int ret;
   1436 
   1437 	KASSERT(E->stage >= ENTROPY_WARM);
   1438 
   1439 	/* Acquire the lock, if caller is outside entropy subsystem.  */
   1440 	if (hint == NOTE_SUBMIT)
   1441 		KASSERT(mutex_owned(&E->lock));
   1442 	else
   1443 		mutex_enter(&E->lock);
   1444 
   1445 	/*
   1446 	 * If we still need entropy, can't read anything; if not, can
   1447 	 * read arbitrarily much.
   1448 	 */
   1449 	if (E->needed != 0) {
   1450 		ret = 0;
   1451 	} else {
   1452 		if (atomic_load_relaxed(&entropy_depletion))
   1453 			kn->kn_data = ENTROPY_CAPACITY*NBBY;
   1454 		else
   1455 			kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
   1456 		ret = 1;
   1457 	}
   1458 
   1459 	/* Release the lock, if caller is outside entropy subsystem.  */
   1460 	if (hint == NOTE_SUBMIT)
   1461 		KASSERT(mutex_owned(&E->lock));
   1462 	else
   1463 		mutex_exit(&E->lock);
   1464 
   1465 	return ret;
   1466 }
   1467 
   1468 /* XXX Makes sense only for /dev/u?random.  */
   1469 static const struct filterops entropy_read_filtops = {
   1470 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   1471 	.f_attach = NULL,
   1472 	.f_detach = filt_entropy_read_detach,
   1473 	.f_event = filt_entropy_read_event,
   1474 };
   1475 
   1476 /*
   1477  * entropy_kqfilter(kn)
   1478  *
   1479  *	Register kn to receive entropy event notifications.  May be
   1480  *	EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
   1481  */
   1482 int
   1483 entropy_kqfilter(struct knote *kn)
   1484 {
   1485 
   1486 	KASSERT(E->stage >= ENTROPY_WARM);
   1487 
   1488 	switch (kn->kn_filter) {
   1489 	case EVFILT_READ:
   1490 		/* Enter into the global select queue.  */
   1491 		mutex_enter(&E->lock);
   1492 		kn->kn_fop = &entropy_read_filtops;
   1493 		selrecord_knote(&E->selq, kn);
   1494 		mutex_exit(&E->lock);
   1495 		return 0;
   1496 	case EVFILT_WRITE:
   1497 		/* Can always dump entropy into the system.  */
   1498 		kn->kn_fop = &seltrue_filtops;
   1499 		return 0;
   1500 	default:
   1501 		return EINVAL;
   1502 	}
   1503 }
   1504 
   1505 /*
   1506  * rndsource_setcb(rs, get, getarg)
   1507  *
   1508  *	Set the request callback for the entropy source rs, if it can
   1509  *	provide entropy on demand.  Must precede rnd_attach_source.
   1510  */
   1511 void
   1512 rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
   1513     void *getarg)
   1514 {
   1515 
   1516 	rs->get = get;
   1517 	rs->getarg = getarg;
   1518 }
   1519 
   1520 /*
   1521  * rnd_attach_source(rs, name, type, flags)
   1522  *
   1523  *	Attach the entropy source rs.  Must be done after
   1524  *	rndsource_setcb, if any, and before any calls to rnd_add_data.
   1525  */
   1526 void
   1527 rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
   1528     uint32_t flags)
   1529 {
   1530 	uint32_t extra[4];
   1531 	unsigned i = 0;
   1532 
   1533 	/* Grab cycle counter to mix extra into the pool.  */
   1534 	extra[i++] = entropy_timer();
   1535 
   1536 	/*
   1537 	 * Apply some standard flags:
   1538 	 *
   1539 	 * - We do not bother with network devices by default, for
   1540 	 *   hysterical raisins (perhaps: because it is often the case
   1541 	 *   that an adversary can influence network packet timings).
   1542 	 */
   1543 	switch (type) {
   1544 	case RND_TYPE_NET:
   1545 		flags |= RND_FLAG_NO_COLLECT;
   1546 		break;
   1547 	}
   1548 
   1549 	/* Sanity-check the callback if RND_FLAG_HASCB is set.  */
   1550 	KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
   1551 
   1552 	/* Initialize the random source.  */
   1553 	memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
   1554 	strlcpy(rs->name, name, sizeof(rs->name));
   1555 	memset(&rs->time_delta, 0, sizeof(rs->time_delta));
   1556 	memset(&rs->value_delta, 0, sizeof(rs->value_delta));
   1557 	rs->total = 0;
   1558 	rs->type = type;
   1559 	rs->flags = flags;
   1560 	if (E->stage >= ENTROPY_WARM)
   1561 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
   1562 	extra[i++] = entropy_timer();
   1563 
   1564 	/* Wire it into the global list of random sources.  */
   1565 	if (E->stage >= ENTROPY_WARM)
   1566 		mutex_enter(&E->lock);
   1567 	LIST_INSERT_HEAD(&E->sources, rs, list);
   1568 	if (E->stage >= ENTROPY_WARM)
   1569 		mutex_exit(&E->lock);
   1570 	extra[i++] = entropy_timer();
   1571 
   1572 	/* Request that it provide entropy ASAP, if we can.  */
   1573 	if (ISSET(flags, RND_FLAG_HASCB))
   1574 		(*rs->get)(ENTROPY_CAPACITY, rs->getarg);
   1575 	extra[i++] = entropy_timer();
   1576 
   1577 	/* Mix the extra into the pool.  */
   1578 	KASSERT(i == __arraycount(extra));
   1579 	entropy_enter(extra, sizeof extra, 0);
   1580 	explicit_memset(extra, 0, sizeof extra);
   1581 }
   1582 
   1583 /*
   1584  * rnd_detach_source(rs)
   1585  *
   1586  *	Detach the entropy source rs.  May sleep waiting for users to
   1587  *	drain.  Further use is not allowed.
   1588  */
   1589 void
   1590 rnd_detach_source(struct krndsource *rs)
   1591 {
   1592 
   1593 	/*
   1594 	 * If we're cold (shouldn't happen, but hey), just remove it
   1595 	 * from the list -- there's nothing allocated.
   1596 	 */
   1597 	if (E->stage == ENTROPY_COLD) {
   1598 		LIST_REMOVE(rs, list);
   1599 		return;
   1600 	}
   1601 
   1602 	/* We may have to wait for entropy_request.  */
   1603 	ASSERT_SLEEPABLE();
   1604 
   1605 	/* Wait until the source list is not in use, and remove it.  */
   1606 	mutex_enter(&E->lock);
   1607 	while (E->sourcelock)
   1608 		cv_wait(&E->sourcelock_cv, &E->lock);
   1609 	LIST_REMOVE(rs, list);
   1610 	mutex_exit(&E->lock);
   1611 
   1612 	/* Free the per-CPU data.  */
   1613 	percpu_free(rs->state, sizeof(struct rndsource_cpu));
   1614 }
   1615 
   1616 /*
   1617  * rnd_lock_sources()
   1618  *
   1619  *	Prevent changes to the list of rndsources while we iterate it.
   1620  *	Interruptible.  Caller must hold the global entropy lock.  If
   1621  *	successful, no rndsource will go away until rnd_unlock_sources
   1622  *	even while the caller releases the global entropy lock.
   1623  */
   1624 static int
   1625 rnd_lock_sources(void)
   1626 {
   1627 	int error;
   1628 
   1629 	KASSERT(mutex_owned(&E->lock));
   1630 
   1631 	while (E->sourcelock) {
   1632 		error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
   1633 		if (error)
   1634 			return error;
   1635 	}
   1636 
   1637 	E->sourcelock = curlwp;
   1638 	return 0;
   1639 }
   1640 
   1641 /*
   1642  * rnd_trylock_sources()
   1643  *
   1644  *	Try to lock the list of sources, but if it's already locked,
   1645  *	fail.  Caller must hold the global entropy lock.  If
   1646  *	successful, no rndsource will go away until rnd_unlock_sources
   1647  *	even while the caller releases the global entropy lock.
   1648  */
   1649 static bool
   1650 rnd_trylock_sources(void)
   1651 {
   1652 
   1653 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1654 
   1655 	if (E->sourcelock)
   1656 		return false;
   1657 	E->sourcelock = curlwp;
   1658 	return true;
   1659 }
   1660 
   1661 /*
   1662  * rnd_unlock_sources()
   1663  *
   1664  *	Unlock the list of sources after rnd_lock_sources or
   1665  *	rnd_trylock_sources.  Caller must hold the global entropy lock.
   1666  */
   1667 static void
   1668 rnd_unlock_sources(void)
   1669 {
   1670 
   1671 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1672 
   1673 	KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
   1674 	    curlwp, E->sourcelock);
   1675 	E->sourcelock = NULL;
   1676 	if (E->stage >= ENTROPY_WARM)
   1677 		cv_signal(&E->sourcelock_cv);
   1678 }
   1679 
   1680 /*
   1681  * rnd_sources_locked()
   1682  *
   1683  *	True if we hold the list of rndsources locked, for diagnostic
   1684  *	assertions.
   1685  */
   1686 static bool __diagused
   1687 rnd_sources_locked(void)
   1688 {
   1689 
   1690 	return E->sourcelock == curlwp;
   1691 }
   1692 
   1693 /*
   1694  * entropy_request(nbytes)
   1695  *
   1696  *	Request nbytes bytes of entropy from all sources in the system.
   1697  *	OK if we overdo it.  Caller must hold the global entropy lock;
   1698  *	will release and re-acquire it.
   1699  */
   1700 static void
   1701 entropy_request(size_t nbytes)
   1702 {
   1703 	struct krndsource *rs;
   1704 
   1705 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1706 
   1707 	/*
   1708 	 * If there is a request in progress, let it proceed.
   1709 	 * Otherwise, note that a request is in progress to avoid
   1710 	 * reentry and to block rnd_detach_source until we're done.
   1711 	 */
   1712 	if (!rnd_trylock_sources())
   1713 		return;
   1714 	entropy_request_evcnt.ev_count++;
   1715 
   1716 	/* Clamp to the maximum reasonable request.  */
   1717 	nbytes = MIN(nbytes, ENTROPY_CAPACITY);
   1718 
   1719 	/* Walk the list of sources.  */
   1720 	LIST_FOREACH(rs, &E->sources, list) {
   1721 		/* Skip sources without callbacks.  */
   1722 		if (!ISSET(rs->flags, RND_FLAG_HASCB))
   1723 			continue;
   1724 
   1725 		/*
   1726 		 * Skip sources that are disabled altogether -- we
   1727 		 * would just ignore their samples anyway.
   1728 		 */
   1729 		if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
   1730 			continue;
   1731 
   1732 		/* Drop the lock while we call the callback.  */
   1733 		if (E->stage >= ENTROPY_WARM)
   1734 			mutex_exit(&E->lock);
   1735 		(*rs->get)(nbytes, rs->getarg);
   1736 		if (E->stage >= ENTROPY_WARM)
   1737 			mutex_enter(&E->lock);
   1738 	}
   1739 
   1740 	/* Notify rnd_detach_source that the request is done.  */
   1741 	rnd_unlock_sources();
   1742 }
   1743 
   1744 /*
   1745  * rnd_add_uint32(rs, value)
   1746  *
   1747  *	Enter 32 bits of data from an entropy source into the pool.
   1748  *
   1749  *	If rs is NULL, may not be called from interrupt context.
   1750  *
   1751  *	If rs is non-NULL, may be called from any context.  May drop
   1752  *	data if called from interrupt context.
   1753  */
   1754 void
   1755 rnd_add_uint32(struct krndsource *rs, uint32_t value)
   1756 {
   1757 
   1758 	rnd_add_data(rs, &value, sizeof value, 0);
   1759 }
   1760 
   1761 void
   1762 _rnd_add_uint32(struct krndsource *rs, uint32_t value)
   1763 {
   1764 
   1765 	rnd_add_data(rs, &value, sizeof value, 0);
   1766 }
   1767 
   1768 void
   1769 _rnd_add_uint64(struct krndsource *rs, uint64_t value)
   1770 {
   1771 
   1772 	rnd_add_data(rs, &value, sizeof value, 0);
   1773 }
   1774 
   1775 /*
   1776  * rnd_add_data(rs, buf, len, entropybits)
   1777  *
   1778  *	Enter data from an entropy source into the pool, with a
   1779  *	driver's estimate of how much entropy the physical source of
   1780  *	the data has.  If RND_FLAG_NO_ESTIMATE, we ignore the driver's
   1781  *	estimate and treat it as zero.
   1782  *
   1783  *	If rs is NULL, may not be called from interrupt context.
   1784  *
   1785  *	If rs is non-NULL, may be called from any context.  May drop
   1786  *	data if called from interrupt context.
   1787  */
   1788 void
   1789 rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
   1790     uint32_t entropybits)
   1791 {
   1792 	uint32_t extra;
   1793 	uint32_t flags;
   1794 
   1795 	KASSERTMSG(howmany(entropybits, NBBY) <= len,
   1796 	    "%s: impossible entropy rate:"
   1797 	    " %"PRIu32" bits in %"PRIu32"-byte string",
   1798 	    rs ? rs->name : "(anonymous)", entropybits, len);
   1799 
   1800 	/* If there's no rndsource, just enter the data and time now.  */
   1801 	if (rs == NULL) {
   1802 		entropy_enter(buf, len, entropybits);
   1803 		extra = entropy_timer();
   1804 		entropy_enter(&extra, sizeof extra, 0);
   1805 		explicit_memset(&extra, 0, sizeof extra);
   1806 		return;
   1807 	}
   1808 
   1809 	/* Load a snapshot of the flags.  Ioctl may change them under us.  */
   1810 	flags = atomic_load_relaxed(&rs->flags);
   1811 
   1812 	/*
   1813 	 * Skip if:
   1814 	 * - we're not collecting entropy, or
   1815 	 * - the operator doesn't want to collect entropy from this, or
   1816 	 * - neither data nor timings are being collected from this.
   1817 	 */
   1818 	if (!atomic_load_relaxed(&entropy_collection) ||
   1819 	    ISSET(flags, RND_FLAG_NO_COLLECT) ||
   1820 	    !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
   1821 		return;
   1822 
   1823 	/* If asked, ignore the estimate.  */
   1824 	if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
   1825 		entropybits = 0;
   1826 
   1827 	/* If we are collecting data, enter them.  */
   1828 	if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
   1829 		rnd_add_data_1(rs, buf, len, entropybits,
   1830 		    RND_FLAG_COLLECT_VALUE);
   1831 
   1832 	/* If we are collecting timings, enter one.  */
   1833 	if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
   1834 		extra = entropy_timer();
   1835 		rnd_add_data_1(rs, &extra, sizeof extra, 0,
   1836 		    RND_FLAG_COLLECT_TIME);
   1837 	}
   1838 }
   1839 
   1840 static unsigned
   1841 add_sat(unsigned a, unsigned b)
   1842 {
   1843 	unsigned c = a + b;
   1844 
   1845 	return (c < a ? UINT_MAX : c);
   1846 }
   1847 
   1848 /*
   1849  * rnd_add_data_1(rs, buf, len, entropybits, flag)
   1850  *
   1851  *	Internal subroutine to call either entropy_enter_intr, if we're
   1852  *	in interrupt context, or entropy_enter if not, and to count the
   1853  *	entropy in an rndsource.
   1854  */
   1855 static void
   1856 rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
   1857     uint32_t entropybits, uint32_t flag)
   1858 {
   1859 	bool fullyused;
   1860 
   1861 	/*
   1862 	 * If we're in interrupt context, use entropy_enter_intr and
   1863 	 * take note of whether it consumed the full sample; if not,
   1864 	 * use entropy_enter, which always consumes the full sample.
   1865 	 */
   1866 	if (curlwp && cpu_intr_p()) {
   1867 		fullyused = entropy_enter_intr(buf, len, entropybits);
   1868 	} else {
   1869 		entropy_enter(buf, len, entropybits);
   1870 		fullyused = true;
   1871 	}
   1872 
   1873 	/*
   1874 	 * If we used the full sample, note how many bits were
   1875 	 * contributed from this source.
   1876 	 */
   1877 	if (fullyused) {
   1878 		if (E->stage < ENTROPY_HOT) {
   1879 			if (E->stage >= ENTROPY_WARM)
   1880 				mutex_enter(&E->lock);
   1881 			rs->total = add_sat(rs->total, entropybits);
   1882 			switch (flag) {
   1883 			case RND_FLAG_COLLECT_TIME:
   1884 				rs->time_delta.insamples =
   1885 				    add_sat(rs->time_delta.insamples, 1);
   1886 				break;
   1887 			case RND_FLAG_COLLECT_VALUE:
   1888 				rs->value_delta.insamples =
   1889 				    add_sat(rs->value_delta.insamples, 1);
   1890 				break;
   1891 			}
   1892 			if (E->stage >= ENTROPY_WARM)
   1893 				mutex_exit(&E->lock);
   1894 		} else {
   1895 			struct rndsource_cpu *rc = percpu_getref(rs->state);
   1896 
   1897 			atomic_store_relaxed(&rc->rc_entropybits,
   1898 			    add_sat(rc->rc_entropybits, entropybits));
   1899 			switch (flag) {
   1900 			case RND_FLAG_COLLECT_TIME:
   1901 				atomic_store_relaxed(&rc->rc_timesamples,
   1902 				    add_sat(rc->rc_timesamples, 1));
   1903 				break;
   1904 			case RND_FLAG_COLLECT_VALUE:
   1905 				atomic_store_relaxed(&rc->rc_datasamples,
   1906 				    add_sat(rc->rc_datasamples, 1));
   1907 				break;
   1908 			}
   1909 			percpu_putref(rs->state);
   1910 		}
   1911 	}
   1912 }
   1913 
   1914 /*
   1915  * rnd_add_data_sync(rs, buf, len, entropybits)
   1916  *
   1917  *	Same as rnd_add_data.  Originally used in rndsource callbacks,
   1918  *	to break an unnecessary cycle; no longer really needed.
   1919  */
   1920 void
   1921 rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
   1922     uint32_t entropybits)
   1923 {
   1924 
   1925 	rnd_add_data(rs, buf, len, entropybits);
   1926 }
   1927 
   1928 /*
   1929  * rndsource_entropybits(rs)
   1930  *
   1931  *	Return approximately the number of bits of entropy that have
   1932  *	been contributed via rs so far.  Approximate if other CPUs may
   1933  *	be calling rnd_add_data concurrently.
   1934  */
   1935 static unsigned
   1936 rndsource_entropybits(struct krndsource *rs)
   1937 {
   1938 	unsigned nbits = rs->total;
   1939 
   1940 	KASSERT(E->stage >= ENTROPY_WARM);
   1941 	KASSERT(rnd_sources_locked());
   1942 	percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
   1943 	return nbits;
   1944 }
   1945 
   1946 static void
   1947 rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   1948 {
   1949 	struct rndsource_cpu *rc = ptr;
   1950 	unsigned *nbitsp = cookie;
   1951 	unsigned cpu_nbits;
   1952 
   1953 	cpu_nbits = atomic_load_relaxed(&rc->rc_entropybits);
   1954 	*nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
   1955 }
   1956 
   1957 /*
   1958  * rndsource_to_user(rs, urs)
   1959  *
   1960  *	Copy a description of rs out to urs for userland.
   1961  */
   1962 static void
   1963 rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
   1964 {
   1965 
   1966 	KASSERT(E->stage >= ENTROPY_WARM);
   1967 	KASSERT(rnd_sources_locked());
   1968 
   1969 	/* Avoid kernel memory disclosure.  */
   1970 	memset(urs, 0, sizeof(*urs));
   1971 
   1972 	CTASSERT(sizeof(urs->name) == sizeof(rs->name));
   1973 	strlcpy(urs->name, rs->name, sizeof(urs->name));
   1974 	urs->total = rndsource_entropybits(rs);
   1975 	urs->type = rs->type;
   1976 	urs->flags = atomic_load_relaxed(&rs->flags);
   1977 }
   1978 
   1979 /*
   1980  * rndsource_to_user_est(rs, urse)
   1981  *
   1982  *	Copy a description of rs and estimation statistics out to urse
   1983  *	for userland.
   1984  */
   1985 static void
   1986 rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
   1987 {
   1988 
   1989 	KASSERT(E->stage >= ENTROPY_WARM);
   1990 	KASSERT(rnd_sources_locked());
   1991 
   1992 	/* Avoid kernel memory disclosure.  */
   1993 	memset(urse, 0, sizeof(*urse));
   1994 
   1995 	/* Copy out the rndsource description.  */
   1996 	rndsource_to_user(rs, &urse->rt);
   1997 
   1998 	/* Gather the statistics.  */
   1999 	urse->dt_samples = rs->time_delta.insamples;
   2000 	urse->dt_total = 0;
   2001 	urse->dv_samples = rs->value_delta.insamples;
   2002 	urse->dv_total = urse->rt.total;
   2003 	percpu_foreach(rs->state, rndsource_to_user_est_cpu, urse);
   2004 }
   2005 
   2006 static void
   2007 rndsource_to_user_est_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   2008 {
   2009 	struct rndsource_cpu *rc = ptr;
   2010 	rndsource_est_t *urse = cookie;
   2011 
   2012 	urse->dt_samples = add_sat(urse->dt_samples,
   2013 	    atomic_load_relaxed(&rc->rc_timesamples));
   2014 	urse->dv_samples = add_sat(urse->dv_samples,
   2015 	    atomic_load_relaxed(&rc->rc_datasamples));
   2016 }
   2017 
   2018 /*
   2019  * entropy_reset_xc(arg1, arg2)
   2020  *
   2021  *	Reset the current CPU's pending entropy to zero.
   2022  */
   2023 static void
   2024 entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
   2025 {
   2026 	uint32_t extra = entropy_timer();
   2027 	struct entropy_cpu *ec;
   2028 	int s;
   2029 
   2030 	/*
   2031 	 * Acquire the per-CPU state, blocking soft interrupts and
   2032 	 * causing hard interrupts to drop samples on the floor.
   2033 	 */
   2034 	ec = percpu_getref(entropy_percpu);
   2035 	s = splsoftserial();
   2036 	KASSERT(!ec->ec_locked);
   2037 	ec->ec_locked = true;
   2038 	__insn_barrier();
   2039 
   2040 	/* Zero the pending count and enter a cycle count for fun.  */
   2041 	ec->ec_pending = 0;
   2042 	entpool_enter(ec->ec_pool, &extra, sizeof extra);
   2043 
   2044 	/* Release the per-CPU state.  */
   2045 	KASSERT(ec->ec_locked);
   2046 	__insn_barrier();
   2047 	ec->ec_locked = false;
   2048 	splx(s);
   2049 	percpu_putref(entropy_percpu);
   2050 }
   2051 
   2052 /*
   2053  * entropy_ioctl(cmd, data)
   2054  *
   2055  *	Handle various /dev/random ioctl queries.
   2056  */
   2057 int
   2058 entropy_ioctl(unsigned long cmd, void *data)
   2059 {
   2060 	struct krndsource *rs;
   2061 	bool privileged;
   2062 	int error;
   2063 
   2064 	KASSERT(E->stage >= ENTROPY_WARM);
   2065 
   2066 	/* Verify user's authorization to perform the ioctl.  */
   2067 	switch (cmd) {
   2068 	case RNDGETENTCNT:
   2069 	case RNDGETPOOLSTAT:
   2070 	case RNDGETSRCNUM:
   2071 	case RNDGETSRCNAME:
   2072 	case RNDGETESTNUM:
   2073 	case RNDGETESTNAME:
   2074 		error = kauth_authorize_device(kauth_cred_get(),
   2075 		    KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
   2076 		break;
   2077 	case RNDCTL:
   2078 		error = kauth_authorize_device(kauth_cred_get(),
   2079 		    KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
   2080 		break;
   2081 	case RNDADDDATA:
   2082 		error = kauth_authorize_device(kauth_cred_get(),
   2083 		    KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
   2084 		/* Ascertain whether the user's inputs should be counted.  */
   2085 		if (kauth_authorize_device(kauth_cred_get(),
   2086 			KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
   2087 			NULL, NULL, NULL, NULL) == 0)
   2088 			privileged = true;
   2089 		break;
   2090 	default: {
   2091 		/*
   2092 		 * XXX Hack to avoid changing module ABI so this can be
   2093 		 * pulled up.  Later, we can just remove the argument.
   2094 		 */
   2095 		static const struct fileops fops = {
   2096 			.fo_ioctl = rnd_system_ioctl,
   2097 		};
   2098 		struct file f = {
   2099 			.f_ops = &fops,
   2100 		};
   2101 		MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
   2102 		    enosys(), error);
   2103 #if defined(_LP64)
   2104 		if (error == ENOSYS)
   2105 			MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
   2106 			    enosys(), error);
   2107 #endif
   2108 		if (error == ENOSYS)
   2109 			error = ENOTTY;
   2110 		break;
   2111 	}
   2112 	}
   2113 
   2114 	/* If anything went wrong with authorization, stop here.  */
   2115 	if (error)
   2116 		return error;
   2117 
   2118 	/* Dispatch on the command.  */
   2119 	switch (cmd) {
   2120 	case RNDGETENTCNT: {	/* Get current entropy count in bits.  */
   2121 		uint32_t *countp = data;
   2122 
   2123 		mutex_enter(&E->lock);
   2124 		*countp = ENTROPY_CAPACITY*NBBY - E->needed;
   2125 		mutex_exit(&E->lock);
   2126 
   2127 		break;
   2128 	}
   2129 	case RNDGETPOOLSTAT: {	/* Get entropy pool statistics.  */
   2130 		rndpoolstat_t *pstat = data;
   2131 
   2132 		mutex_enter(&E->lock);
   2133 
   2134 		/* parameters */
   2135 		pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
   2136 		pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
   2137 		pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
   2138 
   2139 		/* state */
   2140 		pstat->added = 0; /* XXX total entropy_enter count */
   2141 		pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
   2142 		pstat->removed = 0; /* XXX total entropy_extract count */
   2143 		pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
   2144 		pstat->generated = 0; /* XXX bits of data...fabricated? */
   2145 
   2146 		mutex_exit(&E->lock);
   2147 		break;
   2148 	}
   2149 	case RNDGETSRCNUM: {	/* Get entropy sources by number.  */
   2150 		rndstat_t *stat = data;
   2151 		uint32_t start = 0, i = 0;
   2152 
   2153 		/* Skip if none requested; fail if too many requested.  */
   2154 		if (stat->count == 0)
   2155 			break;
   2156 		if (stat->count > RND_MAXSTATCOUNT)
   2157 			return EINVAL;
   2158 
   2159 		/*
   2160 		 * Under the lock, find the first one, copy out as many
   2161 		 * as requested, and report how many we copied out.
   2162 		 */
   2163 		mutex_enter(&E->lock);
   2164 		error = rnd_lock_sources();
   2165 		if (error) {
   2166 			mutex_exit(&E->lock);
   2167 			return error;
   2168 		}
   2169 		LIST_FOREACH(rs, &E->sources, list) {
   2170 			if (start++ == stat->start)
   2171 				break;
   2172 		}
   2173 		while (i < stat->count && rs != NULL) {
   2174 			mutex_exit(&E->lock);
   2175 			rndsource_to_user(rs, &stat->source[i++]);
   2176 			mutex_enter(&E->lock);
   2177 			rs = LIST_NEXT(rs, list);
   2178 		}
   2179 		KASSERT(i <= stat->count);
   2180 		stat->count = i;
   2181 		rnd_unlock_sources();
   2182 		mutex_exit(&E->lock);
   2183 		break;
   2184 	}
   2185 	case RNDGETESTNUM: {	/* Get sources and estimates by number.  */
   2186 		rndstat_est_t *estat = data;
   2187 		uint32_t start = 0, i = 0;
   2188 
   2189 		/* Skip if none requested; fail if too many requested.  */
   2190 		if (estat->count == 0)
   2191 			break;
   2192 		if (estat->count > RND_MAXSTATCOUNT)
   2193 			return EINVAL;
   2194 
   2195 		/*
   2196 		 * Under the lock, find the first one, copy out as many
   2197 		 * as requested, and report how many we copied out.
   2198 		 */
   2199 		mutex_enter(&E->lock);
   2200 		error = rnd_lock_sources();
   2201 		if (error) {
   2202 			mutex_exit(&E->lock);
   2203 			return error;
   2204 		}
   2205 		LIST_FOREACH(rs, &E->sources, list) {
   2206 			if (start++ == estat->start)
   2207 				break;
   2208 		}
   2209 		while (i < estat->count && rs != NULL) {
   2210 			mutex_exit(&E->lock);
   2211 			rndsource_to_user_est(rs, &estat->source[i++]);
   2212 			mutex_enter(&E->lock);
   2213 			rs = LIST_NEXT(rs, list);
   2214 		}
   2215 		KASSERT(i <= estat->count);
   2216 		estat->count = i;
   2217 		rnd_unlock_sources();
   2218 		mutex_exit(&E->lock);
   2219 		break;
   2220 	}
   2221 	case RNDGETSRCNAME: {	/* Get entropy sources by name.  */
   2222 		rndstat_name_t *nstat = data;
   2223 		const size_t n = sizeof(rs->name);
   2224 
   2225 		CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
   2226 
   2227 		/*
   2228 		 * Under the lock, search by name.  If found, copy it
   2229 		 * out; if not found, fail with ENOENT.
   2230 		 */
   2231 		mutex_enter(&E->lock);
   2232 		error = rnd_lock_sources();
   2233 		if (error) {
   2234 			mutex_exit(&E->lock);
   2235 			return error;
   2236 		}
   2237 		LIST_FOREACH(rs, &E->sources, list) {
   2238 			if (strncmp(rs->name, nstat->name, n) == 0)
   2239 				break;
   2240 		}
   2241 		if (rs != NULL) {
   2242 			mutex_exit(&E->lock);
   2243 			rndsource_to_user(rs, &nstat->source);
   2244 			mutex_enter(&E->lock);
   2245 		} else {
   2246 			error = ENOENT;
   2247 		}
   2248 		rnd_unlock_sources();
   2249 		mutex_exit(&E->lock);
   2250 		break;
   2251 	}
   2252 	case RNDGETESTNAME: {	/* Get sources and estimates by name.  */
   2253 		rndstat_est_name_t *enstat = data;
   2254 		const size_t n = sizeof(rs->name);
   2255 
   2256 		CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
   2257 
   2258 		/*
   2259 		 * Under the lock, search by name.  If found, copy it
   2260 		 * out; if not found, fail with ENOENT.
   2261 		 */
   2262 		mutex_enter(&E->lock);
   2263 		error = rnd_lock_sources();
   2264 		if (error) {
   2265 			mutex_exit(&E->lock);
   2266 			return error;
   2267 		}
   2268 		LIST_FOREACH(rs, &E->sources, list) {
   2269 			if (strncmp(rs->name, enstat->name, n) == 0)
   2270 				break;
   2271 		}
   2272 		if (rs != NULL) {
   2273 			mutex_exit(&E->lock);
   2274 			rndsource_to_user_est(rs, &enstat->source);
   2275 			mutex_enter(&E->lock);
   2276 		} else {
   2277 			error = ENOENT;
   2278 		}
   2279 		rnd_unlock_sources();
   2280 		mutex_exit(&E->lock);
   2281 		break;
   2282 	}
   2283 	case RNDCTL: {		/* Modify entropy source flags.  */
   2284 		rndctl_t *rndctl = data;
   2285 		const size_t n = sizeof(rs->name);
   2286 		uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2287 		uint32_t flags;
   2288 		bool reset = false, request = false;
   2289 
   2290 		CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
   2291 
   2292 		/* Whitelist the flags that user can change.  */
   2293 		rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2294 
   2295 		/*
   2296 		 * For each matching rndsource, either by type if
   2297 		 * specified or by name if not, set the masked flags.
   2298 		 */
   2299 		mutex_enter(&E->lock);
   2300 		LIST_FOREACH(rs, &E->sources, list) {
   2301 			if (rndctl->type != 0xff) {
   2302 				if (rs->type != rndctl->type)
   2303 					continue;
   2304 			} else {
   2305 				if (strncmp(rs->name, rndctl->name, n) != 0)
   2306 					continue;
   2307 			}
   2308 			flags = rs->flags & ~rndctl->mask;
   2309 			flags |= rndctl->flags & rndctl->mask;
   2310 			if ((rs->flags & resetflags) == 0 &&
   2311 			    (flags & resetflags) != 0)
   2312 				reset = true;
   2313 			if ((rs->flags ^ flags) & resetflags)
   2314 				request = true;
   2315 			atomic_store_relaxed(&rs->flags, flags);
   2316 		}
   2317 		mutex_exit(&E->lock);
   2318 
   2319 		/*
   2320 		 * If we disabled estimation or collection, nix all the
   2321 		 * pending entropy and set needed to the maximum.
   2322 		 */
   2323 		if (reset) {
   2324 			xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
   2325 			mutex_enter(&E->lock);
   2326 			E->pending = 0;
   2327 			atomic_store_relaxed(&E->needed,
   2328 			    ENTROPY_CAPACITY*NBBY);
   2329 			mutex_exit(&E->lock);
   2330 		}
   2331 
   2332 		/*
   2333 		 * If we changed any of the estimation or collection
   2334 		 * flags, request new samples from everyone -- either
   2335 		 * to make up for what we just lost, or to get new
   2336 		 * samples from what we just added.
   2337 		 */
   2338 		if (request) {
   2339 			mutex_enter(&E->lock);
   2340 			entropy_request(ENTROPY_CAPACITY);
   2341 			mutex_exit(&E->lock);
   2342 		}
   2343 		break;
   2344 	}
   2345 	case RNDADDDATA: {	/* Enter seed into entropy pool.  */
   2346 		rnddata_t *rdata = data;
   2347 		unsigned entropybits = 0;
   2348 
   2349 		if (!atomic_load_relaxed(&entropy_collection))
   2350 			break;	/* thanks but no thanks */
   2351 		if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
   2352 			return EINVAL;
   2353 
   2354 		/*
   2355 		 * This ioctl serves as the userland alternative a
   2356 		 * bootloader-provided seed -- typically furnished by
   2357 		 * /etc/rc.d/random_seed.  We accept the user's entropy
   2358 		 * claim only if
   2359 		 *
   2360 		 * (a) the user is privileged, and
   2361 		 * (b) we have not entered a bootloader seed.
   2362 		 *
   2363 		 * under the assumption that the user may use this to
   2364 		 * load a seed from disk that we have already loaded
   2365 		 * from the bootloader, so we don't double-count it.
   2366 		 */
   2367 		if (privileged && rdata->entropy && rdata->len) {
   2368 			mutex_enter(&E->lock);
   2369 			if (!E->seeded) {
   2370 				entropybits = MIN(rdata->entropy,
   2371 				    MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
   2372 				E->seeded = true;
   2373 			}
   2374 			mutex_exit(&E->lock);
   2375 		}
   2376 
   2377 		/* Enter the data and consolidate entropy.  */
   2378 		rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
   2379 		    entropybits);
   2380 		entropy_consolidate();
   2381 		break;
   2382 	}
   2383 	default:
   2384 		error = ENOTTY;
   2385 	}
   2386 
   2387 	/* Return any error that may have come up.  */
   2388 	return error;
   2389 }
   2390 
   2391 /* Legacy entry points */
   2392 
   2393 void
   2394 rnd_seed(void *seed, size_t len)
   2395 {
   2396 
   2397 	if (len != sizeof(rndsave_t)) {
   2398 		printf("entropy: invalid seed length: %zu,"
   2399 		    " expected sizeof(rndsave_t) = %zu\n",
   2400 		    len, sizeof(rndsave_t));
   2401 		return;
   2402 	}
   2403 	entropy_seed(seed);
   2404 }
   2405 
   2406 void
   2407 rnd_init(void)
   2408 {
   2409 
   2410 	entropy_init();
   2411 }
   2412 
   2413 void
   2414 rnd_init_softint(void)
   2415 {
   2416 
   2417 	entropy_init_late();
   2418 }
   2419 
   2420 int
   2421 rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
   2422 {
   2423 
   2424 	return entropy_ioctl(cmd, data);
   2425 }
   2426