Home | History | Annotate | Line # | Download | only in kern
kern_entropy.c revision 1.62
      1 /*	$NetBSD: kern_entropy.c,v 1.62 2023/06/30 21:42:05 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Entropy subsystem
     34  *
     35  *	* Each CPU maintains a per-CPU entropy pool so that gathering
     36  *	  entropy requires no interprocessor synchronization, except
     37  *	  early at boot when we may be scrambling to gather entropy as
     38  *	  soon as possible.
     39  *
     40  *	  - entropy_enter gathers entropy and never drops it on the
     41  *	    floor, at the cost of sometimes having to do cryptography.
     42  *
     43  *	  - entropy_enter_intr gathers entropy or drops it on the
     44  *	    floor, with low latency.  Work to stir the pool or kick the
     45  *	    housekeeping thread is scheduled in soft interrupts.
     46  *
     47  *	* entropy_enter immediately enters into the global pool if it
     48  *	  can transition to full entropy in one swell foop.  Otherwise,
     49  *	  it defers to a housekeeping thread that consolidates entropy,
     50  *	  but only when the CPUs collectively have full entropy, in
     51  *	  order to mitigate iterative-guessing attacks.
     52  *
     53  *	* The entropy housekeeping thread continues to consolidate
     54  *	  entropy even after we think we have full entropy, in case we
     55  *	  are wrong, but is limited to one discretionary consolidation
     56  *	  per minute, and only when new entropy is actually coming in,
     57  *	  to limit performance impact.
     58  *
     59  *	* The entropy epoch is the number that changes when we
     60  *	  transition from partial entropy to full entropy, so that
     61  *	  users can easily determine when to reseed.  This also
     62  *	  facilitates an operator explicitly causing everything to
     63  *	  reseed by sysctl -w kern.entropy.consolidate=1.
     64  *
     65  *	* Entropy depletion is available for testing (or if you're into
     66  *	  that sort of thing), with sysctl -w kern.entropy.depletion=1;
     67  *	  the logic to support it is small, to minimize chance of bugs.
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.62 2023/06/30 21:42:05 riastradh Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/types.h>
     75 #include <sys/atomic.h>
     76 #include <sys/compat_stub.h>
     77 #include <sys/condvar.h>
     78 #include <sys/cpu.h>
     79 #include <sys/entropy.h>
     80 #include <sys/errno.h>
     81 #include <sys/evcnt.h>
     82 #include <sys/event.h>
     83 #include <sys/file.h>
     84 #include <sys/intr.h>
     85 #include <sys/kauth.h>
     86 #include <sys/kernel.h>
     87 #include <sys/kmem.h>
     88 #include <sys/kthread.h>
     89 #include <sys/lwp.h>
     90 #include <sys/module_hook.h>
     91 #include <sys/mutex.h>
     92 #include <sys/percpu.h>
     93 #include <sys/poll.h>
     94 #include <sys/proc.h>
     95 #include <sys/queue.h>
     96 #include <sys/reboot.h>
     97 #include <sys/rnd.h>		/* legacy kernel API */
     98 #include <sys/rndio.h>		/* userland ioctl interface */
     99 #include <sys/rndsource.h>	/* kernel rndsource driver API */
    100 #include <sys/select.h>
    101 #include <sys/selinfo.h>
    102 #include <sys/sha1.h>		/* for boot seed checksum */
    103 #include <sys/stdint.h>
    104 #include <sys/sysctl.h>
    105 #include <sys/syslog.h>
    106 #include <sys/systm.h>
    107 #include <sys/time.h>
    108 #include <sys/xcall.h>
    109 
    110 #include <lib/libkern/entpool.h>
    111 
    112 #include <machine/limits.h>
    113 
    114 #ifdef __HAVE_CPU_COUNTER
    115 #include <machine/cpu_counter.h>
    116 #endif
    117 
    118 #define	MINENTROPYBYTES	ENTROPY_CAPACITY
    119 #define	MINENTROPYBITS	(MINENTROPYBYTES*NBBY)
    120 #define	MINSAMPLES	(2*MINENTROPYBITS)
    121 
    122 /*
    123  * struct entropy_cpu
    124  *
    125  *	Per-CPU entropy state.  The pool is allocated separately
    126  *	because percpu(9) sometimes moves per-CPU objects around
    127  *	without zeroing them, which would lead to unwanted copies of
    128  *	sensitive secrets.  The evcnt is allocated separately because
    129  *	evcnt(9) assumes it stays put in memory.
    130  */
    131 struct entropy_cpu {
    132 	struct entropy_cpu_evcnt {
    133 		struct evcnt		softint;
    134 		struct evcnt		intrdrop;
    135 		struct evcnt		intrtrunc;
    136 	}			*ec_evcnt;
    137 	struct entpool		*ec_pool;
    138 	unsigned		ec_bitspending;
    139 	unsigned		ec_samplespending;
    140 	bool			ec_locked;
    141 };
    142 
    143 /*
    144  * struct entropy_cpu_lock
    145  *
    146  *	State for locking the per-CPU entropy state.
    147  */
    148 struct entropy_cpu_lock {
    149 	int		ecl_s;
    150 	uint64_t	ecl_ncsw;
    151 };
    152 
    153 /*
    154  * struct rndsource_cpu
    155  *
    156  *	Per-CPU rndsource state.
    157  */
    158 struct rndsource_cpu {
    159 	unsigned		rc_entropybits;
    160 	unsigned		rc_timesamples;
    161 	unsigned		rc_datasamples;
    162 	rnd_delta_t		rc_timedelta;
    163 };
    164 
    165 /*
    166  * entropy_global (a.k.a. E for short in this file)
    167  *
    168  *	Global entropy state.  Writes protected by the global lock.
    169  *	Some fields, marked (A), can be read outside the lock, and are
    170  *	maintained with atomic_load/store_relaxed.
    171  */
    172 struct {
    173 	kmutex_t	lock;		/* covers all global state */
    174 	struct entpool	pool;		/* global pool for extraction */
    175 	unsigned	bitsneeded;	/* (A) needed globally */
    176 	unsigned	bitspending;	/* pending in per-CPU pools */
    177 	unsigned	samplesneeded;	/* (A) needed globally */
    178 	unsigned	samplespending;	/* pending in per-CPU pools */
    179 	unsigned	timestamp;	/* (A) time of last consolidation */
    180 	unsigned	epoch;		/* (A) changes when needed -> 0 */
    181 	kcondvar_t	cv;		/* notifies state changes */
    182 	struct selinfo	selq;		/* notifies needed -> 0 */
    183 	struct lwp	*sourcelock;	/* lock on list of sources */
    184 	kcondvar_t	sourcelock_cv;	/* notifies sourcelock release */
    185 	LIST_HEAD(,krndsource) sources;	/* list of entropy sources */
    186 	enum entropy_stage {
    187 		ENTROPY_COLD = 0, /* single-threaded */
    188 		ENTROPY_WARM,	  /* multi-threaded at boot before CPUs */
    189 		ENTROPY_HOT,	  /* multi-threaded multi-CPU */
    190 	}		stage;
    191 	bool		consolidate;	/* kick thread to consolidate */
    192 	bool		seed_rndsource;	/* true if seed source is attached */
    193 	bool		seeded;		/* true if seed file already loaded */
    194 } entropy_global __cacheline_aligned = {
    195 	/* Fields that must be initialized when the kernel is loaded.  */
    196 	.bitsneeded = MINENTROPYBITS,
    197 	.samplesneeded = MINSAMPLES,
    198 	.epoch = (unsigned)-1,	/* -1 means entropy never consolidated */
    199 	.sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
    200 	.stage = ENTROPY_COLD,
    201 };
    202 
    203 #define	E	(&entropy_global)	/* declutter */
    204 
    205 /* Read-mostly globals */
    206 static struct percpu	*entropy_percpu __read_mostly; /* struct entropy_cpu */
    207 static void		*entropy_sih __read_mostly; /* softint handler */
    208 static struct lwp	*entropy_lwp __read_mostly; /* housekeeping thread */
    209 
    210 static struct krndsource seed_rndsource __read_mostly;
    211 
    212 /*
    213  * Event counters
    214  *
    215  *	Must be careful with adding these because they can serve as
    216  *	side channels.
    217  */
    218 static struct evcnt entropy_discretionary_evcnt =
    219     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
    220 EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
    221 static struct evcnt entropy_immediate_evcnt =
    222     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
    223 EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
    224 static struct evcnt entropy_partial_evcnt =
    225     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
    226 EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
    227 static struct evcnt entropy_consolidate_evcnt =
    228     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
    229 EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
    230 static struct evcnt entropy_extract_fail_evcnt =
    231     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
    232 EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
    233 static struct evcnt entropy_request_evcnt =
    234     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
    235 EVCNT_ATTACH_STATIC(entropy_request_evcnt);
    236 static struct evcnt entropy_deplete_evcnt =
    237     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
    238 EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
    239 static struct evcnt entropy_notify_evcnt =
    240     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
    241 EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
    242 
    243 /* Sysctl knobs */
    244 static bool	entropy_collection = 1;
    245 static bool	entropy_depletion = 0; /* Silly!  */
    246 
    247 static const struct sysctlnode	*entropy_sysctlroot;
    248 static struct sysctllog		*entropy_sysctllog;
    249 
    250 /* Forward declarations */
    251 static void	entropy_init_cpu(void *, void *, struct cpu_info *);
    252 static void	entropy_fini_cpu(void *, void *, struct cpu_info *);
    253 static void	entropy_account_cpu(struct entropy_cpu *);
    254 static void	entropy_enter(const void *, size_t, unsigned, bool);
    255 static bool	entropy_enter_intr(const void *, size_t, unsigned, bool);
    256 static void	entropy_softintr(void *);
    257 static void	entropy_thread(void *);
    258 static bool	entropy_pending(void);
    259 static void	entropy_pending_cpu(void *, void *, struct cpu_info *);
    260 static void	entropy_do_consolidate(void);
    261 static void	entropy_consolidate_xc(void *, void *);
    262 static void	entropy_notify(void);
    263 static int	sysctl_entropy_consolidate(SYSCTLFN_ARGS);
    264 static int	sysctl_entropy_gather(SYSCTLFN_ARGS);
    265 static void	filt_entropy_read_detach(struct knote *);
    266 static int	filt_entropy_read_event(struct knote *, long);
    267 static int	entropy_request(size_t, int);
    268 static void	rnd_add_data_1(struct krndsource *, const void *, uint32_t,
    269 		    uint32_t, bool, uint32_t);
    270 static unsigned	rndsource_entropybits(struct krndsource *);
    271 static void	rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
    272 static void	rndsource_to_user(struct krndsource *, rndsource_t *);
    273 static void	rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
    274 static void	rndsource_to_user_est_cpu(void *, void *, struct cpu_info *);
    275 
    276 /*
    277  * entropy_timer()
    278  *
    279  *	Cycle counter, time counter, or anything that changes a wee bit
    280  *	unpredictably.
    281  */
    282 static inline uint32_t
    283 entropy_timer(void)
    284 {
    285 	struct bintime bt;
    286 	uint32_t v;
    287 
    288 	/* If we have a CPU cycle counter, use the low 32 bits.  */
    289 #ifdef __HAVE_CPU_COUNTER
    290 	if (__predict_true(cpu_hascounter()))
    291 		return cpu_counter32();
    292 #endif	/* __HAVE_CPU_COUNTER */
    293 
    294 	/* If we're cold, tough.  Can't binuptime while cold.  */
    295 	if (__predict_false(cold))
    296 		return 0;
    297 
    298 	/* Fold the 128 bits of binuptime into 32 bits.  */
    299 	binuptime(&bt);
    300 	v = bt.frac;
    301 	v ^= bt.frac >> 32;
    302 	v ^= bt.sec;
    303 	v ^= bt.sec >> 32;
    304 	return v;
    305 }
    306 
    307 static void
    308 attach_seed_rndsource(void)
    309 {
    310 
    311 	/*
    312 	 * First called no later than entropy_init, while we are still
    313 	 * single-threaded, so no need for RUN_ONCE.
    314 	 */
    315 	if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
    316 		return;
    317 	rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
    318 	    RND_FLAG_COLLECT_VALUE);
    319 	E->seed_rndsource = true;
    320 }
    321 
    322 /*
    323  * entropy_init()
    324  *
    325  *	Initialize the entropy subsystem.  Panic on failure.
    326  *
    327  *	Requires percpu(9) and sysctl(9) to be initialized.
    328  */
    329 static void
    330 entropy_init(void)
    331 {
    332 	uint32_t extra[2];
    333 	struct krndsource *rs;
    334 	unsigned i = 0;
    335 
    336 	KASSERT(E->stage == ENTROPY_COLD);
    337 
    338 	/* Grab some cycle counts early at boot.  */
    339 	extra[i++] = entropy_timer();
    340 
    341 	/* Run the entropy pool cryptography self-test.  */
    342 	if (entpool_selftest() == -1)
    343 		panic("entropy pool crypto self-test failed");
    344 
    345 	/* Create the sysctl directory.  */
    346 	sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
    347 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
    348 	    SYSCTL_DESCR("Entropy (random number sources) options"),
    349 	    NULL, 0, NULL, 0,
    350 	    CTL_KERN, CTL_CREATE, CTL_EOL);
    351 
    352 	/* Create the sysctl knobs.  */
    353 	/* XXX These shouldn't be writable at securelevel>0.  */
    354 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    355 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
    356 	    SYSCTL_DESCR("Automatically collect entropy from hardware"),
    357 	    NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
    358 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    359 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
    360 	    SYSCTL_DESCR("`Deplete' entropy pool when observed"),
    361 	    NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
    362 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    363 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
    364 	    SYSCTL_DESCR("Trigger entropy consolidation now"),
    365 	    sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    366 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    367 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
    368 	    SYSCTL_DESCR("Trigger entropy gathering from sources now"),
    369 	    sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    370 	/* XXX These should maybe not be readable at securelevel>0.  */
    371 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    372 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    373 	    "needed",
    374 	    SYSCTL_DESCR("Systemwide entropy deficit (bits of entropy)"),
    375 	    NULL, 0, &E->bitsneeded, 0, CTL_CREATE, CTL_EOL);
    376 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    377 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    378 	    "pending",
    379 	    SYSCTL_DESCR("Number of bits of entropy pending on CPUs"),
    380 	    NULL, 0, &E->bitspending, 0, CTL_CREATE, CTL_EOL);
    381 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    382 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    383 	    "samplesneeded",
    384 	    SYSCTL_DESCR("Systemwide entropy deficit (samples)"),
    385 	    NULL, 0, &E->samplesneeded, 0, CTL_CREATE, CTL_EOL);
    386 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    387 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    388 	    "samplespending",
    389 	    SYSCTL_DESCR("Number of samples pending on CPUs"),
    390 	    NULL, 0, &E->samplespending, 0, CTL_CREATE, CTL_EOL);
    391 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
    392 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
    393 	    "epoch", SYSCTL_DESCR("Entropy epoch"),
    394 	    NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
    395 
    396 	/* Initialize the global state for multithreaded operation.  */
    397 	mutex_init(&E->lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
    398 	cv_init(&E->cv, "entropy");
    399 	selinit(&E->selq);
    400 	cv_init(&E->sourcelock_cv, "entsrclock");
    401 
    402 	/* Make sure the seed source is attached.  */
    403 	attach_seed_rndsource();
    404 
    405 	/* Note if the bootloader didn't provide a seed.  */
    406 	if (!E->seeded)
    407 		aprint_debug("entropy: no seed from bootloader\n");
    408 
    409 	/* Allocate the per-CPU records for all early entropy sources.  */
    410 	LIST_FOREACH(rs, &E->sources, list)
    411 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
    412 
    413 	/* Allocate and initialize the per-CPU state.  */
    414 	entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
    415 	    entropy_init_cpu, entropy_fini_cpu, NULL);
    416 
    417 	/* Enter the boot cycle count to get started.  */
    418 	extra[i++] = entropy_timer();
    419 	KASSERT(i == __arraycount(extra));
    420 	entropy_enter(extra, sizeof extra, /*nbits*/0, /*count*/false);
    421 	explicit_memset(extra, 0, sizeof extra);
    422 
    423 	/* We are now ready for multi-threaded operation.  */
    424 	E->stage = ENTROPY_WARM;
    425 }
    426 
    427 static void
    428 entropy_init_late_cpu(void *a, void *b)
    429 {
    430 	int bound;
    431 
    432 	/*
    433 	 * We're not necessarily in a softint lwp here (xc_broadcast
    434 	 * triggers softint on other CPUs, but calls directly on this
    435 	 * CPU), so explicitly bind to the current CPU to invoke the
    436 	 * softintr -- this lets us have a simpler assertion in
    437 	 * entropy_account_cpu.  Not necessary to avoid migration
    438 	 * because xc_broadcast disables kpreemption anyway, but it
    439 	 * doesn't hurt.
    440 	 */
    441 	bound = curlwp_bind();
    442 	entropy_softintr(NULL);
    443 	curlwp_bindx(bound);
    444 }
    445 
    446 /*
    447  * entropy_init_late()
    448  *
    449  *	Late initialization.  Panic on failure.
    450  *
    451  *	Requires CPUs to have been detected and LWPs to have started.
    452  */
    453 static void
    454 entropy_init_late(void)
    455 {
    456 	void *sih;
    457 	int error;
    458 
    459 	KASSERT(E->stage == ENTROPY_WARM);
    460 
    461 	/*
    462 	 * Establish the softint at the highest softint priority level.
    463 	 * Must happen after CPU detection.
    464 	 */
    465 	sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
    466 	    &entropy_softintr, NULL);
    467 	if (sih == NULL)
    468 		panic("unable to establish entropy softint");
    469 
    470 	/*
    471 	 * Create the entropy housekeeping thread.  Must happen after
    472 	 * lwpinit.
    473 	 */
    474 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
    475 	    entropy_thread, NULL, &entropy_lwp, "entbutler");
    476 	if (error)
    477 		panic("unable to create entropy housekeeping thread: %d",
    478 		    error);
    479 
    480 	/*
    481 	 * Wait until the per-CPU initialization has hit all CPUs
    482 	 * before proceeding to mark the entropy system hot and
    483 	 * enabling use of the softint.
    484 	 */
    485 	xc_barrier(XC_HIGHPRI);
    486 	E->stage = ENTROPY_HOT;
    487 	atomic_store_relaxed(&entropy_sih, sih);
    488 
    489 	/*
    490 	 * At this point, entering new samples from interrupt handlers
    491 	 * will trigger the softint to process them.  But there may be
    492 	 * some samples that were entered from interrupt handlers
    493 	 * before the softint was available.  Make sure we process
    494 	 * those samples on all CPUs by running the softint logic on
    495 	 * all CPUs.
    496 	 */
    497 	xc_wait(xc_broadcast(XC_HIGHPRI, entropy_init_late_cpu, NULL, NULL));
    498 }
    499 
    500 /*
    501  * entropy_init_cpu(ptr, cookie, ci)
    502  *
    503  *	percpu(9) constructor for per-CPU entropy pool.
    504  */
    505 static void
    506 entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    507 {
    508 	struct entropy_cpu *ec = ptr;
    509 	const char *cpuname;
    510 
    511 	ec->ec_evcnt = kmem_alloc(sizeof(*ec->ec_evcnt), KM_SLEEP);
    512 	ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
    513 	ec->ec_bitspending = 0;
    514 	ec->ec_samplespending = 0;
    515 	ec->ec_locked = false;
    516 
    517 	/* XXX ci_cpuname may not be initialized early enough.  */
    518 	cpuname = ci->ci_cpuname[0] == '\0' ? "cpu0" : ci->ci_cpuname;
    519 	evcnt_attach_dynamic(&ec->ec_evcnt->softint, EVCNT_TYPE_MISC, NULL,
    520 	    cpuname, "entropy softint");
    521 	evcnt_attach_dynamic(&ec->ec_evcnt->intrdrop, EVCNT_TYPE_MISC, NULL,
    522 	    cpuname, "entropy intrdrop");
    523 	evcnt_attach_dynamic(&ec->ec_evcnt->intrtrunc, EVCNT_TYPE_MISC, NULL,
    524 	    cpuname, "entropy intrtrunc");
    525 }
    526 
    527 /*
    528  * entropy_fini_cpu(ptr, cookie, ci)
    529  *
    530  *	percpu(9) destructor for per-CPU entropy pool.
    531  */
    532 static void
    533 entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
    534 {
    535 	struct entropy_cpu *ec = ptr;
    536 
    537 	/*
    538 	 * Zero any lingering data.  Disclosure of the per-CPU pool
    539 	 * shouldn't retroactively affect the security of any keys
    540 	 * generated, because entpool(9) erases whatever we have just
    541 	 * drawn out of any pool, but better safe than sorry.
    542 	 */
    543 	explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
    544 
    545 	evcnt_detach(&ec->ec_evcnt->intrtrunc);
    546 	evcnt_detach(&ec->ec_evcnt->intrdrop);
    547 	evcnt_detach(&ec->ec_evcnt->softint);
    548 
    549 	kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
    550 	kmem_free(ec->ec_evcnt, sizeof(*ec->ec_evcnt));
    551 }
    552 
    553 /*
    554  * ec = entropy_cpu_get(&lock)
    555  * entropy_cpu_put(&lock, ec)
    556  *
    557  *	Lock and unlock the per-CPU entropy state.  This only prevents
    558  *	access on the same CPU -- by hard interrupts, by soft
    559  *	interrupts, or by other threads.
    560  *
    561  *	Blocks soft interrupts and preemption altogether; doesn't block
    562  *	hard interrupts, but causes samples in hard interrupts to be
    563  *	dropped.
    564  */
    565 static struct entropy_cpu *
    566 entropy_cpu_get(struct entropy_cpu_lock *lock)
    567 {
    568 	struct entropy_cpu *ec;
    569 
    570 	ec = percpu_getref(entropy_percpu);
    571 	lock->ecl_s = splsoftserial();
    572 	KASSERT(!ec->ec_locked);
    573 	ec->ec_locked = true;
    574 	lock->ecl_ncsw = curlwp->l_ncsw;
    575 	__insn_barrier();
    576 
    577 	return ec;
    578 }
    579 
    580 static void
    581 entropy_cpu_put(struct entropy_cpu_lock *lock, struct entropy_cpu *ec)
    582 {
    583 
    584 	KASSERT(ec == percpu_getptr_remote(entropy_percpu, curcpu()));
    585 	KASSERT(ec->ec_locked);
    586 
    587 	__insn_barrier();
    588 	KASSERT(lock->ecl_ncsw == curlwp->l_ncsw);
    589 	ec->ec_locked = false;
    590 	splx(lock->ecl_s);
    591 	percpu_putref(entropy_percpu);
    592 }
    593 
    594 /*
    595  * entropy_seed(seed)
    596  *
    597  *	Seed the entropy pool with seed.  Meant to be called as early
    598  *	as possible by the bootloader; may be called before or after
    599  *	entropy_init.  Must be called before system reaches userland.
    600  *	Must be called in thread or soft interrupt context, not in hard
    601  *	interrupt context.  Must be called at most once.
    602  *
    603  *	Overwrites the seed in place.  Caller may then free the memory.
    604  */
    605 static void
    606 entropy_seed(rndsave_t *seed)
    607 {
    608 	SHA1_CTX ctx;
    609 	uint8_t digest[SHA1_DIGEST_LENGTH];
    610 	bool seeded;
    611 
    612 	/*
    613 	 * Verify the checksum.  If the checksum fails, take the data
    614 	 * but ignore the entropy estimate -- the file may have been
    615 	 * incompletely written with garbage, which is harmless to add
    616 	 * but may not be as unpredictable as alleged.
    617 	 */
    618 	SHA1Init(&ctx);
    619 	SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
    620 	SHA1Update(&ctx, seed->data, sizeof(seed->data));
    621 	SHA1Final(digest, &ctx);
    622 	CTASSERT(sizeof(seed->digest) == sizeof(digest));
    623 	if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
    624 		printf("entropy: invalid seed checksum\n");
    625 		seed->entropy = 0;
    626 	}
    627 	explicit_memset(&ctx, 0, sizeof ctx);
    628 	explicit_memset(digest, 0, sizeof digest);
    629 
    630 	/*
    631 	 * If the entropy is insensibly large, try byte-swapping.
    632 	 * Otherwise assume the file is corrupted and act as though it
    633 	 * has zero entropy.
    634 	 */
    635 	if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
    636 		seed->entropy = bswap32(seed->entropy);
    637 		if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
    638 			seed->entropy = 0;
    639 	}
    640 
    641 	/* Make sure the seed source is attached.  */
    642 	attach_seed_rndsource();
    643 
    644 	/* Test and set E->seeded.  */
    645 	if (E->stage >= ENTROPY_WARM)
    646 		mutex_enter(&E->lock);
    647 	seeded = E->seeded;
    648 	E->seeded = (seed->entropy > 0);
    649 	if (E->stage >= ENTROPY_WARM)
    650 		mutex_exit(&E->lock);
    651 
    652 	/*
    653 	 * If we've been seeded, may be re-entering the same seed
    654 	 * (e.g., bootloader vs module init, or something).  No harm in
    655 	 * entering it twice, but it contributes no additional entropy.
    656 	 */
    657 	if (seeded) {
    658 		printf("entropy: double-seeded by bootloader\n");
    659 		seed->entropy = 0;
    660 	} else {
    661 		printf("entropy: entering seed from bootloader"
    662 		    " with %u bits of entropy\n", (unsigned)seed->entropy);
    663 	}
    664 
    665 	/* Enter it into the pool and promptly zero it.  */
    666 	rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
    667 	    seed->entropy);
    668 	explicit_memset(seed, 0, sizeof(*seed));
    669 }
    670 
    671 /*
    672  * entropy_bootrequest()
    673  *
    674  *	Request entropy from all sources at boot, once config is
    675  *	complete and interrupts are running.
    676  */
    677 void
    678 entropy_bootrequest(void)
    679 {
    680 	int error;
    681 
    682 	KASSERT(E->stage >= ENTROPY_WARM);
    683 
    684 	/*
    685 	 * Request enough to satisfy the maximum entropy shortage.
    686 	 * This is harmless overkill if the bootloader provided a seed.
    687 	 */
    688 	mutex_enter(&E->lock);
    689 	error = entropy_request(MINENTROPYBYTES, ENTROPY_WAIT);
    690 	KASSERT(error == 0);
    691 	mutex_exit(&E->lock);
    692 }
    693 
    694 /*
    695  * entropy_epoch()
    696  *
    697  *	Returns the current entropy epoch.  If this changes, you should
    698  *	reseed.  If -1, means system entropy has not yet reached full
    699  *	entropy or been explicitly consolidated; never reverts back to
    700  *	-1.  Never zero, so you can always use zero as an uninitialized
    701  *	sentinel value meaning `reseed ASAP'.
    702  *
    703  *	Usage model:
    704  *
    705  *		struct foo {
    706  *			struct crypto_prng prng;
    707  *			unsigned epoch;
    708  *		} *foo;
    709  *
    710  *		unsigned epoch = entropy_epoch();
    711  *		if (__predict_false(epoch != foo->epoch)) {
    712  *			uint8_t seed[32];
    713  *			if (entropy_extract(seed, sizeof seed, 0) != 0)
    714  *				warn("no entropy");
    715  *			crypto_prng_reseed(&foo->prng, seed, sizeof seed);
    716  *			foo->epoch = epoch;
    717  *		}
    718  */
    719 unsigned
    720 entropy_epoch(void)
    721 {
    722 
    723 	/*
    724 	 * Unsigned int, so no need for seqlock for an atomic read, but
    725 	 * make sure we read it afresh each time.
    726 	 */
    727 	return atomic_load_relaxed(&E->epoch);
    728 }
    729 
    730 /*
    731  * entropy_ready()
    732  *
    733  *	True if the entropy pool has full entropy.
    734  */
    735 bool
    736 entropy_ready(void)
    737 {
    738 
    739 	return atomic_load_relaxed(&E->bitsneeded) == 0;
    740 }
    741 
    742 /*
    743  * entropy_account_cpu(ec)
    744  *
    745  *	Consider whether to consolidate entropy into the global pool
    746  *	after we just added some into the current CPU's pending pool.
    747  *
    748  *	- If this CPU can provide enough entropy now, do so.
    749  *
    750  *	- If this and whatever else is available on other CPUs can
    751  *	  provide enough entropy, kick the consolidation thread.
    752  *
    753  *	- Otherwise, do as little as possible, except maybe consolidate
    754  *	  entropy at most once a minute.
    755  *
    756  *	Caller must be bound to a CPU and therefore have exclusive
    757  *	access to ec.  Will acquire and release the global lock.
    758  */
    759 static void
    760 entropy_account_cpu(struct entropy_cpu *ec)
    761 {
    762 	struct entropy_cpu_lock lock;
    763 	struct entropy_cpu *ec0;
    764 	unsigned bitsdiff, samplesdiff;
    765 
    766 	KASSERT(E->stage >= ENTROPY_WARM);
    767 	KASSERT(curlwp->l_pflag & LP_BOUND);
    768 
    769 	/*
    770 	 * If there's no entropy needed, and entropy has been
    771 	 * consolidated in the last minute, do nothing.
    772 	 */
    773 	if (__predict_true(atomic_load_relaxed(&E->bitsneeded) == 0) &&
    774 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
    775 	    __predict_true((time_uptime - E->timestamp) <= 60))
    776 		return;
    777 
    778 	/*
    779 	 * Consider consolidation, under the global lock and with the
    780 	 * per-CPU state locked.
    781 	 */
    782 	mutex_enter(&E->lock);
    783 	ec0 = entropy_cpu_get(&lock);
    784 	KASSERT(ec0 == ec);
    785 
    786 	if (ec->ec_bitspending == 0 && ec->ec_samplespending == 0) {
    787 		/* Raced with consolidation xcall.  Nothing to do.  */
    788 	} else if (E->bitsneeded != 0 && E->bitsneeded <= ec->ec_bitspending) {
    789 		/*
    790 		 * If we have not yet attained full entropy but we can
    791 		 * now, do so.  This way we disseminate entropy
    792 		 * promptly when it becomes available early at boot;
    793 		 * otherwise we leave it to the entropy consolidation
    794 		 * thread, which is rate-limited to mitigate side
    795 		 * channels and abuse.
    796 		 */
    797 		uint8_t buf[ENTPOOL_CAPACITY];
    798 
    799 		/* Transfer from the local pool to the global pool.  */
    800 		entpool_extract(ec->ec_pool, buf, sizeof buf);
    801 		entpool_enter(&E->pool, buf, sizeof buf);
    802 		atomic_store_relaxed(&ec->ec_bitspending, 0);
    803 		atomic_store_relaxed(&ec->ec_samplespending, 0);
    804 		atomic_store_relaxed(&E->bitsneeded, 0);
    805 		atomic_store_relaxed(&E->samplesneeded, 0);
    806 
    807 		/* Notify waiters that we now have full entropy.  */
    808 		entropy_notify();
    809 		entropy_immediate_evcnt.ev_count++;
    810 	} else {
    811 		/* Determine how much we can add to the global pool.  */
    812 		KASSERTMSG(E->bitspending <= MINENTROPYBITS,
    813 		    "E->bitspending=%u", E->bitspending);
    814 		bitsdiff = MIN(ec->ec_bitspending,
    815 		    MINENTROPYBITS - E->bitspending);
    816 		KASSERTMSG(E->samplespending <= MINSAMPLES,
    817 		    "E->samplespending=%u", E->samplespending);
    818 		samplesdiff = MIN(ec->ec_samplespending,
    819 		    MINSAMPLES - E->samplespending);
    820 
    821 		/*
    822 		 * This should make a difference unless we are already
    823 		 * saturated.
    824 		 */
    825 		KASSERTMSG((bitsdiff || samplesdiff ||
    826 			E->bitspending == MINENTROPYBITS ||
    827 			E->samplespending == MINSAMPLES),
    828 		    "bitsdiff=%u E->bitspending=%u ec->ec_bitspending=%u"
    829 		    "samplesdiff=%u E->samplespending=%u"
    830 		    " ec->ec_samplespending=%u"
    831 		    " minentropybits=%u minsamples=%u",
    832 		    bitsdiff, E->bitspending, ec->ec_bitspending,
    833 		    samplesdiff, E->samplespending, ec->ec_samplespending,
    834 		    (unsigned)MINENTROPYBITS, (unsigned)MINSAMPLES);
    835 
    836 		/* Add to the global, subtract from the local.  */
    837 		E->bitspending += bitsdiff;
    838 		KASSERTMSG(E->bitspending <= MINENTROPYBITS,
    839 		    "E->bitspending=%u", E->bitspending);
    840 		atomic_store_relaxed(&ec->ec_bitspending,
    841 		    ec->ec_bitspending - bitsdiff);
    842 
    843 		E->samplespending += samplesdiff;
    844 		KASSERTMSG(E->samplespending <= MINSAMPLES,
    845 		    "E->samplespending=%u", E->samplespending);
    846 		atomic_store_relaxed(&ec->ec_samplespending,
    847 		    ec->ec_samplespending - samplesdiff);
    848 
    849 		/* One or the other must have gone up from zero.  */
    850 		KASSERT(E->bitspending || E->samplespending);
    851 
    852 		if (E->bitsneeded <= E->bitspending ||
    853 		    E->samplesneeded <= E->samplespending) {
    854 			/*
    855 			 * Enough bits or at least samples between all
    856 			 * the per-CPU pools.  Leave a note for the
    857 			 * housekeeping thread to consolidate entropy
    858 			 * next time it wakes up -- and wake it up if
    859 			 * this is the first time, to speed things up.
    860 			 *
    861 			 * If we don't need any entropy, this doesn't
    862 			 * mean much, but it is the only time we ever
    863 			 * gather additional entropy in case the
    864 			 * accounting has been overly optimistic.  This
    865 			 * happens at most once a minute, so there's
    866 			 * negligible performance cost.
    867 			 */
    868 			E->consolidate = true;
    869 			if (E->epoch == (unsigned)-1)
    870 				cv_broadcast(&E->cv);
    871 			if (E->bitsneeded == 0)
    872 				entropy_discretionary_evcnt.ev_count++;
    873 		} else {
    874 			/* Can't get full entropy.  Keep gathering.  */
    875 			entropy_partial_evcnt.ev_count++;
    876 		}
    877 	}
    878 
    879 	entropy_cpu_put(&lock, ec);
    880 	mutex_exit(&E->lock);
    881 }
    882 
    883 /*
    884  * entropy_enter_early(buf, len, nbits)
    885  *
    886  *	Do entropy bookkeeping globally, before we have established
    887  *	per-CPU pools.  Enter directly into the global pool in the hope
    888  *	that we enter enough before the first entropy_extract to thwart
    889  *	iterative-guessing attacks; entropy_extract will warn if not.
    890  */
    891 static void
    892 entropy_enter_early(const void *buf, size_t len, unsigned nbits)
    893 {
    894 	bool notify = false;
    895 
    896 	KASSERT(E->stage == ENTROPY_COLD);
    897 
    898 	/* Enter it into the pool.  */
    899 	entpool_enter(&E->pool, buf, len);
    900 
    901 	/*
    902 	 * Decide whether to notify reseed -- we will do so if either:
    903 	 * (a) we transition from partial entropy to full entropy, or
    904 	 * (b) we get a batch of full entropy all at once.
    905 	 */
    906 	notify |= (E->bitsneeded && E->bitsneeded <= nbits);
    907 	notify |= (nbits >= MINENTROPYBITS);
    908 
    909 	/*
    910 	 * Subtract from the needed count and notify if appropriate.
    911 	 * We don't count samples here because entropy_timer might
    912 	 * still be returning zero at this point if there's no CPU
    913 	 * cycle counter.
    914 	 */
    915 	E->bitsneeded -= MIN(E->bitsneeded, nbits);
    916 	if (notify) {
    917 		entropy_notify();
    918 		entropy_immediate_evcnt.ev_count++;
    919 	}
    920 }
    921 
    922 /*
    923  * entropy_enter(buf, len, nbits, count)
    924  *
    925  *	Enter len bytes of data from buf into the system's entropy
    926  *	pool, stirring as necessary when the internal buffer fills up.
    927  *	nbits is a lower bound on the number of bits of entropy in the
    928  *	process that led to this sample.
    929  */
    930 static void
    931 entropy_enter(const void *buf, size_t len, unsigned nbits, bool count)
    932 {
    933 	struct entropy_cpu_lock lock;
    934 	struct entropy_cpu *ec;
    935 	unsigned bitspending, samplespending;
    936 	int bound;
    937 
    938 	KASSERTMSG(!cpu_intr_p(),
    939 	    "use entropy_enter_intr from interrupt context");
    940 	KASSERTMSG(howmany(nbits, NBBY) <= len,
    941 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
    942 
    943 	/* If it's too early after boot, just use entropy_enter_early.  */
    944 	if (__predict_false(E->stage == ENTROPY_COLD)) {
    945 		entropy_enter_early(buf, len, nbits);
    946 		return;
    947 	}
    948 
    949 	/*
    950 	 * Bind ourselves to the current CPU so we don't switch CPUs
    951 	 * between entering data into the current CPU's pool (and
    952 	 * updating the pending count) and transferring it to the
    953 	 * global pool in entropy_account_cpu.
    954 	 */
    955 	bound = curlwp_bind();
    956 
    957 	/*
    958 	 * With the per-CPU state locked, enter into the per-CPU pool
    959 	 * and count up what we can add.
    960 	 *
    961 	 * We don't count samples while cold because entropy_timer
    962 	 * might still be returning zero if there's no CPU cycle
    963 	 * counter.
    964 	 */
    965 	ec = entropy_cpu_get(&lock);
    966 	entpool_enter(ec->ec_pool, buf, len);
    967 	bitspending = ec->ec_bitspending;
    968 	bitspending += MIN(MINENTROPYBITS - bitspending, nbits);
    969 	atomic_store_relaxed(&ec->ec_bitspending, bitspending);
    970 	samplespending = ec->ec_samplespending;
    971 	if (__predict_true(count)) {
    972 		samplespending += MIN(MINSAMPLES - samplespending, 1);
    973 		atomic_store_relaxed(&ec->ec_samplespending, samplespending);
    974 	}
    975 	entropy_cpu_put(&lock, ec);
    976 
    977 	/* Consolidate globally if appropriate based on what we added.  */
    978 	if (bitspending > 0 || samplespending >= MINSAMPLES)
    979 		entropy_account_cpu(ec);
    980 
    981 	curlwp_bindx(bound);
    982 }
    983 
    984 /*
    985  * entropy_enter_intr(buf, len, nbits, count)
    986  *
    987  *	Enter up to len bytes of data from buf into the system's
    988  *	entropy pool without stirring.  nbits is a lower bound on the
    989  *	number of bits of entropy in the process that led to this
    990  *	sample.  If the sample could be entered completely, assume
    991  *	nbits of entropy pending; otherwise assume none, since we don't
    992  *	know whether some parts of the sample are constant, for
    993  *	instance.  Schedule a softint to stir the entropy pool if
    994  *	needed.  Return true if used fully, false if truncated at all.
    995  *
    996  *	Using this in thread context will work, but you might as well
    997  *	use entropy_enter in that case.
    998  */
    999 static bool
   1000 entropy_enter_intr(const void *buf, size_t len, unsigned nbits, bool count)
   1001 {
   1002 	struct entropy_cpu *ec;
   1003 	bool fullyused = false;
   1004 	uint32_t bitspending, samplespending;
   1005 	void *sih;
   1006 
   1007 	KASSERT(cpu_intr_p());
   1008 	KASSERTMSG(howmany(nbits, NBBY) <= len,
   1009 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
   1010 
   1011 	/* If it's too early after boot, just use entropy_enter_early.  */
   1012 	if (__predict_false(E->stage == ENTROPY_COLD)) {
   1013 		entropy_enter_early(buf, len, nbits);
   1014 		return true;
   1015 	}
   1016 
   1017 	/*
   1018 	 * Acquire the per-CPU state.  If someone is in the middle of
   1019 	 * using it, drop the sample.  Otherwise, take the lock so that
   1020 	 * higher-priority interrupts will drop their samples.
   1021 	 */
   1022 	ec = percpu_getref(entropy_percpu);
   1023 	if (ec->ec_locked) {
   1024 		ec->ec_evcnt->intrdrop.ev_count++;
   1025 		goto out0;
   1026 	}
   1027 	ec->ec_locked = true;
   1028 	__insn_barrier();
   1029 
   1030 	/*
   1031 	 * Enter as much as we can into the per-CPU pool.  If it was
   1032 	 * truncated, schedule a softint to stir the pool and stop.
   1033 	 */
   1034 	if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
   1035 		sih = atomic_load_relaxed(&entropy_sih);
   1036 		if (__predict_true(sih != NULL))
   1037 			softint_schedule(sih);
   1038 		ec->ec_evcnt->intrtrunc.ev_count++;
   1039 		goto out1;
   1040 	}
   1041 	fullyused = true;
   1042 
   1043 	/*
   1044 	 * Count up what we can contribute.
   1045 	 *
   1046 	 * We don't count samples while cold because entropy_timer
   1047 	 * might still be returning zero if there's no CPU cycle
   1048 	 * counter.
   1049 	 */
   1050 	bitspending = ec->ec_bitspending;
   1051 	bitspending += MIN(MINENTROPYBITS - bitspending, nbits);
   1052 	atomic_store_relaxed(&ec->ec_bitspending, bitspending);
   1053 	if (__predict_true(count)) {
   1054 		samplespending = ec->ec_samplespending;
   1055 		samplespending += MIN(MINSAMPLES - samplespending, 1);
   1056 		atomic_store_relaxed(&ec->ec_samplespending, samplespending);
   1057 	}
   1058 
   1059 	/* Schedule a softint if we added anything and it matters.  */
   1060 	if (__predict_false(atomic_load_relaxed(&E->bitsneeded) ||
   1061 		atomic_load_relaxed(&entropy_depletion)) &&
   1062 	    (nbits != 0 || count)) {
   1063 		sih = atomic_load_relaxed(&entropy_sih);
   1064 		if (__predict_true(sih != NULL))
   1065 			softint_schedule(sih);
   1066 	}
   1067 
   1068 out1:	/* Release the per-CPU state.  */
   1069 	KASSERT(ec->ec_locked);
   1070 	__insn_barrier();
   1071 	ec->ec_locked = false;
   1072 out0:	percpu_putref(entropy_percpu);
   1073 
   1074 	return fullyused;
   1075 }
   1076 
   1077 /*
   1078  * entropy_softintr(cookie)
   1079  *
   1080  *	Soft interrupt handler for entering entropy.  Takes care of
   1081  *	stirring the local CPU's entropy pool if it filled up during
   1082  *	hard interrupts, and promptly crediting entropy from the local
   1083  *	CPU's entropy pool to the global entropy pool if needed.
   1084  */
   1085 static void
   1086 entropy_softintr(void *cookie)
   1087 {
   1088 	struct entropy_cpu_lock lock;
   1089 	struct entropy_cpu *ec;
   1090 	unsigned bitspending, samplespending;
   1091 
   1092 	/*
   1093 	 * With the per-CPU state locked, stir the pool if necessary
   1094 	 * and determine if there's any pending entropy on this CPU to
   1095 	 * account globally.
   1096 	 */
   1097 	ec = entropy_cpu_get(&lock);
   1098 	ec->ec_evcnt->softint.ev_count++;
   1099 	entpool_stir(ec->ec_pool);
   1100 	bitspending = ec->ec_bitspending;
   1101 	samplespending = ec->ec_samplespending;
   1102 	entropy_cpu_put(&lock, ec);
   1103 
   1104 	/* Consolidate globally if appropriate based on what we added.  */
   1105 	if (bitspending > 0 || samplespending >= MINSAMPLES)
   1106 		entropy_account_cpu(ec);
   1107 }
   1108 
   1109 /*
   1110  * entropy_thread(cookie)
   1111  *
   1112  *	Handle any asynchronous entropy housekeeping.
   1113  */
   1114 static void
   1115 entropy_thread(void *cookie)
   1116 {
   1117 	bool consolidate;
   1118 
   1119 	for (;;) {
   1120 		/*
   1121 		 * Wait until there's full entropy somewhere among the
   1122 		 * CPUs, as confirmed at most once per minute, or
   1123 		 * someone wants to consolidate.
   1124 		 */
   1125 		if (entropy_pending()) {
   1126 			consolidate = true;
   1127 		} else {
   1128 			mutex_enter(&E->lock);
   1129 			if (!E->consolidate)
   1130 				cv_timedwait(&E->cv, &E->lock, 60*hz);
   1131 			consolidate = E->consolidate;
   1132 			E->consolidate = false;
   1133 			mutex_exit(&E->lock);
   1134 		}
   1135 
   1136 		if (consolidate) {
   1137 			/* Do it.  */
   1138 			entropy_do_consolidate();
   1139 
   1140 			/* Mitigate abuse.  */
   1141 			kpause("entropy", false, hz, NULL);
   1142 		}
   1143 	}
   1144 }
   1145 
   1146 struct entropy_pending_count {
   1147 	uint32_t bitspending;
   1148 	uint32_t samplespending;
   1149 };
   1150 
   1151 /*
   1152  * entropy_pending()
   1153  *
   1154  *	True if enough bits or samples are pending on other CPUs to
   1155  *	warrant consolidation.
   1156  */
   1157 static bool
   1158 entropy_pending(void)
   1159 {
   1160 	struct entropy_pending_count count = { 0, 0 }, *C = &count;
   1161 
   1162 	percpu_foreach(entropy_percpu, &entropy_pending_cpu, C);
   1163 	return C->bitspending >= MINENTROPYBITS ||
   1164 	    C->samplespending >= MINSAMPLES;
   1165 }
   1166 
   1167 static void
   1168 entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   1169 {
   1170 	struct entropy_cpu *ec = ptr;
   1171 	struct entropy_pending_count *C = cookie;
   1172 	uint32_t cpu_bitspending;
   1173 	uint32_t cpu_samplespending;
   1174 
   1175 	cpu_bitspending = atomic_load_relaxed(&ec->ec_bitspending);
   1176 	cpu_samplespending = atomic_load_relaxed(&ec->ec_samplespending);
   1177 	C->bitspending += MIN(MINENTROPYBITS - C->bitspending,
   1178 	    cpu_bitspending);
   1179 	C->samplespending += MIN(MINSAMPLES - C->samplespending,
   1180 	    cpu_samplespending);
   1181 }
   1182 
   1183 /*
   1184  * entropy_do_consolidate()
   1185  *
   1186  *	Issue a cross-call to gather entropy on all CPUs and advance
   1187  *	the entropy epoch.
   1188  */
   1189 static void
   1190 entropy_do_consolidate(void)
   1191 {
   1192 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1193 	static struct timeval lasttime; /* serialized by E->lock */
   1194 	struct entpool pool;
   1195 	uint8_t buf[ENTPOOL_CAPACITY];
   1196 	unsigned bitsdiff, samplesdiff;
   1197 	uint64_t ticket;
   1198 
   1199 	/* Gather entropy on all CPUs into a temporary pool.  */
   1200 	memset(&pool, 0, sizeof pool);
   1201 	ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
   1202 	xc_wait(ticket);
   1203 
   1204 	/* Acquire the lock to notify waiters.  */
   1205 	mutex_enter(&E->lock);
   1206 
   1207 	/* Count another consolidation.  */
   1208 	entropy_consolidate_evcnt.ev_count++;
   1209 
   1210 	/* Note when we last consolidated, i.e. now.  */
   1211 	E->timestamp = time_uptime;
   1212 
   1213 	/* Mix what we gathered into the global pool.  */
   1214 	entpool_extract(&pool, buf, sizeof buf);
   1215 	entpool_enter(&E->pool, buf, sizeof buf);
   1216 	explicit_memset(&pool, 0, sizeof pool);
   1217 
   1218 	/* Count the entropy that was gathered.  */
   1219 	bitsdiff = MIN(E->bitsneeded, E->bitspending);
   1220 	atomic_store_relaxed(&E->bitsneeded, E->bitsneeded - bitsdiff);
   1221 	E->bitspending -= bitsdiff;
   1222 	if (__predict_false(E->bitsneeded > 0) && bitsdiff != 0) {
   1223 		if ((boothowto & AB_DEBUG) != 0 &&
   1224 		    ratecheck(&lasttime, &interval)) {
   1225 			printf("WARNING:"
   1226 			    " consolidating less than full entropy\n");
   1227 		}
   1228 	}
   1229 
   1230 	samplesdiff = MIN(E->samplesneeded, E->samplespending);
   1231 	atomic_store_relaxed(&E->samplesneeded,
   1232 	    E->samplesneeded - samplesdiff);
   1233 	E->samplespending -= samplesdiff;
   1234 
   1235 	/* Advance the epoch and notify waiters.  */
   1236 	entropy_notify();
   1237 
   1238 	/* Release the lock.  */
   1239 	mutex_exit(&E->lock);
   1240 }
   1241 
   1242 /*
   1243  * entropy_consolidate_xc(vpool, arg2)
   1244  *
   1245  *	Extract output from the local CPU's input pool and enter it
   1246  *	into a temporary pool passed as vpool.
   1247  */
   1248 static void
   1249 entropy_consolidate_xc(void *vpool, void *arg2 __unused)
   1250 {
   1251 	struct entpool *pool = vpool;
   1252 	struct entropy_cpu_lock lock;
   1253 	struct entropy_cpu *ec;
   1254 	uint8_t buf[ENTPOOL_CAPACITY];
   1255 	uint32_t extra[7];
   1256 	unsigned i = 0;
   1257 
   1258 	/* Grab CPU number and cycle counter to mix extra into the pool.  */
   1259 	extra[i++] = cpu_number();
   1260 	extra[i++] = entropy_timer();
   1261 
   1262 	/*
   1263 	 * With the per-CPU state locked, extract from the per-CPU pool
   1264 	 * and count it as no longer pending.
   1265 	 */
   1266 	ec = entropy_cpu_get(&lock);
   1267 	extra[i++] = entropy_timer();
   1268 	entpool_extract(ec->ec_pool, buf, sizeof buf);
   1269 	atomic_store_relaxed(&ec->ec_bitspending, 0);
   1270 	atomic_store_relaxed(&ec->ec_samplespending, 0);
   1271 	extra[i++] = entropy_timer();
   1272 	entropy_cpu_put(&lock, ec);
   1273 	extra[i++] = entropy_timer();
   1274 
   1275 	/*
   1276 	 * Copy over statistics, and enter the per-CPU extract and the
   1277 	 * extra timing into the temporary pool, under the global lock.
   1278 	 */
   1279 	mutex_enter(&E->lock);
   1280 	extra[i++] = entropy_timer();
   1281 	entpool_enter(pool, buf, sizeof buf);
   1282 	explicit_memset(buf, 0, sizeof buf);
   1283 	extra[i++] = entropy_timer();
   1284 	KASSERT(i == __arraycount(extra));
   1285 	entpool_enter(pool, extra, sizeof extra);
   1286 	explicit_memset(extra, 0, sizeof extra);
   1287 	mutex_exit(&E->lock);
   1288 }
   1289 
   1290 /*
   1291  * entropy_notify()
   1292  *
   1293  *	Caller just contributed entropy to the global pool.  Advance
   1294  *	the entropy epoch and notify waiters.
   1295  *
   1296  *	Caller must hold the global entropy lock.
   1297  */
   1298 static void
   1299 entropy_notify(void)
   1300 {
   1301 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1302 	static struct timeval lasttime; /* serialized by E->lock */
   1303 	static bool ready = false, besteffort = false;
   1304 	unsigned epoch;
   1305 
   1306 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1307 
   1308 	/*
   1309 	 * If this is the first time, print a message to the console
   1310 	 * that we're ready so operators can compare it to the timing
   1311 	 * of other events.
   1312 	 *
   1313 	 * If we didn't get full entropy from reliable sources, report
   1314 	 * instead that we are running on fumes with best effort.  (If
   1315 	 * we ever do get full entropy after that, print the ready
   1316 	 * message once.)
   1317 	 */
   1318 	if (__predict_false(!ready)) {
   1319 		if (E->bitsneeded == 0) {
   1320 			printf("entropy: ready\n");
   1321 			ready = true;
   1322 		} else if (E->samplesneeded == 0 && !besteffort) {
   1323 			printf("entropy: best effort\n");
   1324 			besteffort = true;
   1325 		}
   1326 	}
   1327 
   1328 	/* Set the epoch; roll over from UINTMAX-1 to 1.  */
   1329 	if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
   1330 	    ratecheck(&lasttime, &interval)) {
   1331 		epoch = E->epoch + 1;
   1332 		if (epoch == 0 || epoch == (unsigned)-1)
   1333 			epoch = 1;
   1334 		atomic_store_relaxed(&E->epoch, epoch);
   1335 	}
   1336 	KASSERT(E->epoch != (unsigned)-1);
   1337 
   1338 	/* Notify waiters.  */
   1339 	if (E->stage >= ENTROPY_WARM) {
   1340 		cv_broadcast(&E->cv);
   1341 		selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
   1342 	}
   1343 
   1344 	/* Count another notification.  */
   1345 	entropy_notify_evcnt.ev_count++;
   1346 }
   1347 
   1348 /*
   1349  * entropy_consolidate()
   1350  *
   1351  *	Trigger entropy consolidation and wait for it to complete.
   1352  *
   1353  *	This should be used sparingly, not periodically -- requiring
   1354  *	conscious intervention by the operator or a clear policy
   1355  *	decision.  Otherwise, the kernel will automatically consolidate
   1356  *	when enough entropy has been gathered into per-CPU pools to
   1357  *	transition to full entropy.
   1358  */
   1359 void
   1360 entropy_consolidate(void)
   1361 {
   1362 	uint64_t ticket;
   1363 	int error;
   1364 
   1365 	KASSERT(E->stage == ENTROPY_HOT);
   1366 
   1367 	mutex_enter(&E->lock);
   1368 	ticket = entropy_consolidate_evcnt.ev_count;
   1369 	E->consolidate = true;
   1370 	cv_broadcast(&E->cv);
   1371 	while (ticket == entropy_consolidate_evcnt.ev_count) {
   1372 		error = cv_wait_sig(&E->cv, &E->lock);
   1373 		if (error)
   1374 			break;
   1375 	}
   1376 	mutex_exit(&E->lock);
   1377 }
   1378 
   1379 /*
   1380  * sysctl -w kern.entropy.consolidate=1
   1381  *
   1382  *	Trigger entropy consolidation and wait for it to complete.
   1383  *	Writable only by superuser.  This, writing to /dev/random, and
   1384  *	ioctl(RNDADDDATA) are the only ways for the system to
   1385  *	consolidate entropy if the operator knows something the kernel
   1386  *	doesn't about how unpredictable the pending entropy pools are.
   1387  */
   1388 static int
   1389 sysctl_entropy_consolidate(SYSCTLFN_ARGS)
   1390 {
   1391 	struct sysctlnode node = *rnode;
   1392 	int arg = 0;
   1393 	int error;
   1394 
   1395 	KASSERT(E->stage == ENTROPY_HOT);
   1396 
   1397 	node.sysctl_data = &arg;
   1398 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1399 	if (error || newp == NULL)
   1400 		return error;
   1401 	if (arg)
   1402 		entropy_consolidate();
   1403 
   1404 	return error;
   1405 }
   1406 
   1407 /*
   1408  * sysctl -w kern.entropy.gather=1
   1409  *
   1410  *	Trigger gathering entropy from all on-demand sources, and wait
   1411  *	for synchronous sources (but not asynchronous sources) to
   1412  *	complete.  Writable only by superuser.
   1413  */
   1414 static int
   1415 sysctl_entropy_gather(SYSCTLFN_ARGS)
   1416 {
   1417 	struct sysctlnode node = *rnode;
   1418 	int arg = 0;
   1419 	int error;
   1420 
   1421 	KASSERT(E->stage == ENTROPY_HOT);
   1422 
   1423 	node.sysctl_data = &arg;
   1424 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1425 	if (error || newp == NULL)
   1426 		return error;
   1427 	if (arg) {
   1428 		mutex_enter(&E->lock);
   1429 		error = entropy_request(ENTROPY_CAPACITY,
   1430 		    ENTROPY_WAIT|ENTROPY_SIG);
   1431 		mutex_exit(&E->lock);
   1432 	}
   1433 
   1434 	return 0;
   1435 }
   1436 
   1437 /*
   1438  * entropy_extract(buf, len, flags)
   1439  *
   1440  *	Extract len bytes from the global entropy pool into buf.
   1441  *
   1442  *	Caller MUST NOT expose these bytes directly -- must use them
   1443  *	ONLY to seed a cryptographic pseudorandom number generator
   1444  *	(`CPRNG'), a.k.a. deterministic random bit generator (`DRBG'),
   1445  *	and then erase them.  entropy_extract does not, on its own,
   1446  *	provide backtracking resistance -- it must be combined with a
   1447  *	PRNG/DRBG that does.
   1448  *
   1449  *	You generally shouldn't use this directly -- use cprng(9)
   1450  *	instead.
   1451  *
   1452  *	Flags may have:
   1453  *
   1454  *		ENTROPY_WAIT	Wait for entropy if not available yet.
   1455  *		ENTROPY_SIG	Allow interruption by a signal during wait.
   1456  *		ENTROPY_HARDFAIL Either fill the buffer with full entropy,
   1457  *				or fail without filling it at all.
   1458  *
   1459  *	Return zero on success, or error on failure:
   1460  *
   1461  *		EWOULDBLOCK	No entropy and ENTROPY_WAIT not set.
   1462  *		EINTR/ERESTART	No entropy, ENTROPY_SIG set, and interrupted.
   1463  *
   1464  *	If ENTROPY_WAIT is set, allowed only in thread context.  If
   1465  *	ENTROPY_WAIT is not set, allowed also in softint context.
   1466  *	Forbidden in hard interrupt context.
   1467  */
   1468 int
   1469 entropy_extract(void *buf, size_t len, int flags)
   1470 {
   1471 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
   1472 	static struct timeval lasttime; /* serialized by E->lock */
   1473 	bool printed = false;
   1474 	int error;
   1475 
   1476 	if (ISSET(flags, ENTROPY_WAIT)) {
   1477 		ASSERT_SLEEPABLE();
   1478 		KASSERTMSG(E->stage >= ENTROPY_WARM,
   1479 		    "can't wait for entropy until warm");
   1480 	}
   1481 
   1482 	/* Refuse to operate in interrupt context.  */
   1483 	KASSERT(!cpu_intr_p());
   1484 
   1485 	/* Acquire the global lock to get at the global pool.  */
   1486 	if (E->stage >= ENTROPY_WARM)
   1487 		mutex_enter(&E->lock);
   1488 
   1489 	/* Wait until there is enough entropy in the system.  */
   1490 	error = 0;
   1491 	if (E->bitsneeded > 0 && E->samplesneeded == 0) {
   1492 		/*
   1493 		 * We don't have full entropy from reliable sources,
   1494 		 * but we gathered a plausible number of samples from
   1495 		 * other sources such as timers.  Try asking for more
   1496 		 * from any sources we can, but don't worry if it
   1497 		 * fails -- best effort.
   1498 		 */
   1499 		(void)entropy_request(ENTROPY_CAPACITY, flags);
   1500 	} else while (E->bitsneeded > 0 && E->samplesneeded > 0) {
   1501 		/* Ask for more, synchronously if possible.  */
   1502 		error = entropy_request(len, flags);
   1503 		if (error)
   1504 			break;
   1505 
   1506 		/* If we got enough, we're done.  */
   1507 		if (E->bitsneeded == 0 || E->samplesneeded == 0) {
   1508 			KASSERT(error == 0);
   1509 			break;
   1510 		}
   1511 
   1512 		/* If not waiting, stop here.  */
   1513 		if (!ISSET(flags, ENTROPY_WAIT)) {
   1514 			error = EWOULDBLOCK;
   1515 			break;
   1516 		}
   1517 
   1518 		/* Wait for some entropy to come in and try again.  */
   1519 		KASSERT(E->stage >= ENTROPY_WARM);
   1520 		if (!printed) {
   1521 			printf("entropy: pid %d (%s) waiting for entropy(7)\n",
   1522 			    curproc->p_pid, curproc->p_comm);
   1523 			printed = true;
   1524 		}
   1525 
   1526 		if (ISSET(flags, ENTROPY_SIG)) {
   1527 			error = cv_timedwait_sig(&E->cv, &E->lock, hz);
   1528 			if (error && error != EWOULDBLOCK)
   1529 				break;
   1530 		} else {
   1531 			cv_timedwait(&E->cv, &E->lock, hz);
   1532 		}
   1533 	}
   1534 
   1535 	/*
   1536 	 * Count failure -- but fill the buffer nevertheless, unless
   1537 	 * the caller specified ENTROPY_HARDFAIL.
   1538 	 */
   1539 	if (error) {
   1540 		if (ISSET(flags, ENTROPY_HARDFAIL))
   1541 			goto out;
   1542 		entropy_extract_fail_evcnt.ev_count++;
   1543 	}
   1544 
   1545 	/*
   1546 	 * Report a warning if we haven't yet reached full entropy.
   1547 	 * This is the only case where we consider entropy to be
   1548 	 * `depleted' without kern.entropy.depletion enabled -- when we
   1549 	 * only have partial entropy, an adversary may be able to
   1550 	 * narrow the state of the pool down to a small number of
   1551 	 * possibilities; the output then enables them to confirm a
   1552 	 * guess, reducing its entropy from the adversary's perspective
   1553 	 * to zero.
   1554 	 *
   1555 	 * This should only happen if the operator has chosen to
   1556 	 * consolidate, either through sysctl kern.entropy.consolidate
   1557 	 * or by writing less than full entropy to /dev/random as root
   1558 	 * (which /dev/random promises will immediately affect
   1559 	 * subsequent output, for better or worse).
   1560 	 */
   1561 	if (E->bitsneeded > 0 && E->samplesneeded > 0) {
   1562 		if (__predict_false(E->epoch == (unsigned)-1) &&
   1563 		    ratecheck(&lasttime, &interval)) {
   1564 			printf("WARNING:"
   1565 			    " system needs entropy for security;"
   1566 			    " see entropy(7)\n");
   1567 		}
   1568 		atomic_store_relaxed(&E->bitsneeded, MINENTROPYBITS);
   1569 		atomic_store_relaxed(&E->samplesneeded, MINSAMPLES);
   1570 	}
   1571 
   1572 	/* Extract data from the pool, and `deplete' if we're doing that.  */
   1573 	entpool_extract(&E->pool, buf, len);
   1574 	if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
   1575 	    error == 0) {
   1576 		unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
   1577 		unsigned bitsneeded = E->bitsneeded;
   1578 		unsigned samplesneeded = E->samplesneeded;
   1579 
   1580 		bitsneeded += MIN(MINENTROPYBITS - bitsneeded, cost);
   1581 		samplesneeded += MIN(MINSAMPLES - samplesneeded, cost);
   1582 
   1583 		atomic_store_relaxed(&E->bitsneeded, bitsneeded);
   1584 		atomic_store_relaxed(&E->samplesneeded, samplesneeded);
   1585 		entropy_deplete_evcnt.ev_count++;
   1586 	}
   1587 
   1588 out:	/* Release the global lock and return the error.  */
   1589 	if (E->stage >= ENTROPY_WARM)
   1590 		mutex_exit(&E->lock);
   1591 	return error;
   1592 }
   1593 
   1594 /*
   1595  * entropy_poll(events)
   1596  *
   1597  *	Return the subset of events ready, and if it is not all of
   1598  *	events, record curlwp as waiting for entropy.
   1599  */
   1600 int
   1601 entropy_poll(int events)
   1602 {
   1603 	int revents = 0;
   1604 
   1605 	KASSERT(E->stage >= ENTROPY_WARM);
   1606 
   1607 	/* Always ready for writing.  */
   1608 	revents |= events & (POLLOUT|POLLWRNORM);
   1609 
   1610 	/* Narrow it down to reads.  */
   1611 	events &= POLLIN|POLLRDNORM;
   1612 	if (events == 0)
   1613 		return revents;
   1614 
   1615 	/*
   1616 	 * If we have reached full entropy and we're not depleting
   1617 	 * entropy, we are forever ready.
   1618 	 */
   1619 	if (__predict_true(atomic_load_relaxed(&E->bitsneeded) == 0 ||
   1620 		atomic_load_relaxed(&E->samplesneeded) == 0) &&
   1621 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)))
   1622 		return revents | events;
   1623 
   1624 	/*
   1625 	 * Otherwise, check whether we need entropy under the lock.  If
   1626 	 * we don't, we're ready; if we do, add ourselves to the queue.
   1627 	 */
   1628 	mutex_enter(&E->lock);
   1629 	if (E->bitsneeded == 0 || E->samplesneeded == 0)
   1630 		revents |= events;
   1631 	else
   1632 		selrecord(curlwp, &E->selq);
   1633 	mutex_exit(&E->lock);
   1634 
   1635 	return revents;
   1636 }
   1637 
   1638 /*
   1639  * filt_entropy_read_detach(kn)
   1640  *
   1641  *	struct filterops::f_detach callback for entropy read events:
   1642  *	remove kn from the list of waiters.
   1643  */
   1644 static void
   1645 filt_entropy_read_detach(struct knote *kn)
   1646 {
   1647 
   1648 	KASSERT(E->stage >= ENTROPY_WARM);
   1649 
   1650 	mutex_enter(&E->lock);
   1651 	selremove_knote(&E->selq, kn);
   1652 	mutex_exit(&E->lock);
   1653 }
   1654 
   1655 /*
   1656  * filt_entropy_read_event(kn, hint)
   1657  *
   1658  *	struct filterops::f_event callback for entropy read events:
   1659  *	poll for entropy.  Caller must hold the global entropy lock if
   1660  *	hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
   1661  */
   1662 static int
   1663 filt_entropy_read_event(struct knote *kn, long hint)
   1664 {
   1665 	int ret;
   1666 
   1667 	KASSERT(E->stage >= ENTROPY_WARM);
   1668 
   1669 	/* Acquire the lock, if caller is outside entropy subsystem.  */
   1670 	if (hint == NOTE_SUBMIT)
   1671 		KASSERT(mutex_owned(&E->lock));
   1672 	else
   1673 		mutex_enter(&E->lock);
   1674 
   1675 	/*
   1676 	 * If we still need entropy, can't read anything; if not, can
   1677 	 * read arbitrarily much.
   1678 	 */
   1679 	if (E->bitsneeded != 0 && E->samplesneeded != 0) {
   1680 		ret = 0;
   1681 	} else {
   1682 		if (atomic_load_relaxed(&entropy_depletion))
   1683 			kn->kn_data = ENTROPY_CAPACITY; /* bytes */
   1684 		else
   1685 			kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
   1686 		ret = 1;
   1687 	}
   1688 
   1689 	/* Release the lock, if caller is outside entropy subsystem.  */
   1690 	if (hint == NOTE_SUBMIT)
   1691 		KASSERT(mutex_owned(&E->lock));
   1692 	else
   1693 		mutex_exit(&E->lock);
   1694 
   1695 	return ret;
   1696 }
   1697 
   1698 /* XXX Makes sense only for /dev/u?random.  */
   1699 static const struct filterops entropy_read_filtops = {
   1700 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   1701 	.f_attach = NULL,
   1702 	.f_detach = filt_entropy_read_detach,
   1703 	.f_event = filt_entropy_read_event,
   1704 };
   1705 
   1706 /*
   1707  * entropy_kqfilter(kn)
   1708  *
   1709  *	Register kn to receive entropy event notifications.  May be
   1710  *	EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
   1711  */
   1712 int
   1713 entropy_kqfilter(struct knote *kn)
   1714 {
   1715 
   1716 	KASSERT(E->stage >= ENTROPY_WARM);
   1717 
   1718 	switch (kn->kn_filter) {
   1719 	case EVFILT_READ:
   1720 		/* Enter into the global select queue.  */
   1721 		mutex_enter(&E->lock);
   1722 		kn->kn_fop = &entropy_read_filtops;
   1723 		selrecord_knote(&E->selq, kn);
   1724 		mutex_exit(&E->lock);
   1725 		return 0;
   1726 	case EVFILT_WRITE:
   1727 		/* Can always dump entropy into the system.  */
   1728 		kn->kn_fop = &seltrue_filtops;
   1729 		return 0;
   1730 	default:
   1731 		return EINVAL;
   1732 	}
   1733 }
   1734 
   1735 /*
   1736  * rndsource_setcb(rs, get, getarg)
   1737  *
   1738  *	Set the request callback for the entropy source rs, if it can
   1739  *	provide entropy on demand.  Must precede rnd_attach_source.
   1740  */
   1741 void
   1742 rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
   1743     void *getarg)
   1744 {
   1745 
   1746 	rs->get = get;
   1747 	rs->getarg = getarg;
   1748 }
   1749 
   1750 /*
   1751  * rnd_attach_source(rs, name, type, flags)
   1752  *
   1753  *	Attach the entropy source rs.  Must be done after
   1754  *	rndsource_setcb, if any, and before any calls to rnd_add_data.
   1755  */
   1756 void
   1757 rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
   1758     uint32_t flags)
   1759 {
   1760 	uint32_t extra[4];
   1761 	unsigned i = 0;
   1762 
   1763 	KASSERTMSG(name[0] != '\0', "rndsource must have nonempty name");
   1764 
   1765 	/* Grab cycle counter to mix extra into the pool.  */
   1766 	extra[i++] = entropy_timer();
   1767 
   1768 	/*
   1769 	 * Apply some standard flags:
   1770 	 *
   1771 	 * - We do not bother with network devices by default, for
   1772 	 *   hysterical raisins (perhaps: because it is often the case
   1773 	 *   that an adversary can influence network packet timings).
   1774 	 */
   1775 	switch (type) {
   1776 	case RND_TYPE_NET:
   1777 		flags |= RND_FLAG_NO_COLLECT;
   1778 		break;
   1779 	}
   1780 
   1781 	/* Sanity-check the callback if RND_FLAG_HASCB is set.  */
   1782 	KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
   1783 
   1784 	/* Initialize the random source.  */
   1785 	memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
   1786 	strlcpy(rs->name, name, sizeof(rs->name));
   1787 	memset(&rs->time_delta, 0, sizeof(rs->time_delta));
   1788 	memset(&rs->value_delta, 0, sizeof(rs->value_delta));
   1789 	rs->total = 0;
   1790 	rs->type = type;
   1791 	rs->flags = flags;
   1792 	if (E->stage >= ENTROPY_WARM)
   1793 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
   1794 	extra[i++] = entropy_timer();
   1795 
   1796 	/* Wire it into the global list of random sources.  */
   1797 	if (E->stage >= ENTROPY_WARM)
   1798 		mutex_enter(&E->lock);
   1799 	LIST_INSERT_HEAD(&E->sources, rs, list);
   1800 	if (E->stage >= ENTROPY_WARM)
   1801 		mutex_exit(&E->lock);
   1802 	extra[i++] = entropy_timer();
   1803 
   1804 	/* Request that it provide entropy ASAP, if we can.  */
   1805 	if (ISSET(flags, RND_FLAG_HASCB))
   1806 		(*rs->get)(ENTROPY_CAPACITY, rs->getarg);
   1807 	extra[i++] = entropy_timer();
   1808 
   1809 	/* Mix the extra into the pool.  */
   1810 	KASSERT(i == __arraycount(extra));
   1811 	entropy_enter(extra, sizeof extra, 0, /*count*/!cold);
   1812 	explicit_memset(extra, 0, sizeof extra);
   1813 }
   1814 
   1815 /*
   1816  * rnd_detach_source(rs)
   1817  *
   1818  *	Detach the entropy source rs.  May sleep waiting for users to
   1819  *	drain.  Further use is not allowed.
   1820  */
   1821 void
   1822 rnd_detach_source(struct krndsource *rs)
   1823 {
   1824 
   1825 	/*
   1826 	 * If we're cold (shouldn't happen, but hey), just remove it
   1827 	 * from the list -- there's nothing allocated.
   1828 	 */
   1829 	if (E->stage == ENTROPY_COLD) {
   1830 		LIST_REMOVE(rs, list);
   1831 		return;
   1832 	}
   1833 
   1834 	/* We may have to wait for entropy_request.  */
   1835 	ASSERT_SLEEPABLE();
   1836 
   1837 	/* Wait until the source list is not in use, and remove it.  */
   1838 	mutex_enter(&E->lock);
   1839 	while (E->sourcelock)
   1840 		cv_wait(&E->sourcelock_cv, &E->lock);
   1841 	LIST_REMOVE(rs, list);
   1842 	mutex_exit(&E->lock);
   1843 
   1844 	/* Free the per-CPU data.  */
   1845 	percpu_free(rs->state, sizeof(struct rndsource_cpu));
   1846 }
   1847 
   1848 /*
   1849  * rnd_lock_sources(flags)
   1850  *
   1851  *	Lock the list of entropy sources.  Caller must hold the global
   1852  *	entropy lock.  If successful, no rndsource will go away until
   1853  *	rnd_unlock_sources even while the caller releases the global
   1854  *	entropy lock.
   1855  *
   1856  *	If flags & ENTROPY_WAIT, wait for concurrent access to finish.
   1857  *	If flags & ENTROPY_SIG, allow interruption by signal.
   1858  */
   1859 static int __attribute__((warn_unused_result))
   1860 rnd_lock_sources(int flags)
   1861 {
   1862 	int error;
   1863 
   1864 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1865 
   1866 	while (E->sourcelock) {
   1867 		KASSERT(E->stage >= ENTROPY_WARM);
   1868 		if (!ISSET(flags, ENTROPY_WAIT))
   1869 			return EWOULDBLOCK;
   1870 		if (ISSET(flags, ENTROPY_SIG)) {
   1871 			error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
   1872 			if (error)
   1873 				return error;
   1874 		} else {
   1875 			cv_wait(&E->sourcelock_cv, &E->lock);
   1876 		}
   1877 	}
   1878 
   1879 	E->sourcelock = curlwp;
   1880 	return 0;
   1881 }
   1882 
   1883 /*
   1884  * rnd_unlock_sources()
   1885  *
   1886  *	Unlock the list of sources after rnd_lock_sources.  Caller must
   1887  *	hold the global entropy lock.
   1888  */
   1889 static void
   1890 rnd_unlock_sources(void)
   1891 {
   1892 
   1893 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1894 
   1895 	KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
   1896 	    curlwp, E->sourcelock);
   1897 	E->sourcelock = NULL;
   1898 	if (E->stage >= ENTROPY_WARM)
   1899 		cv_signal(&E->sourcelock_cv);
   1900 }
   1901 
   1902 /*
   1903  * rnd_sources_locked()
   1904  *
   1905  *	True if we hold the list of rndsources locked, for diagnostic
   1906  *	assertions.
   1907  */
   1908 static bool __diagused
   1909 rnd_sources_locked(void)
   1910 {
   1911 
   1912 	return E->sourcelock == curlwp;
   1913 }
   1914 
   1915 /*
   1916  * entropy_request(nbytes, flags)
   1917  *
   1918  *	Request nbytes bytes of entropy from all sources in the system.
   1919  *	OK if we overdo it.  Caller must hold the global entropy lock;
   1920  *	will release and re-acquire it.
   1921  *
   1922  *	If flags & ENTROPY_WAIT, wait for concurrent access to finish.
   1923  *	If flags & ENTROPY_SIG, allow interruption by signal.
   1924  */
   1925 static int
   1926 entropy_request(size_t nbytes, int flags)
   1927 {
   1928 	struct krndsource *rs;
   1929 	int error;
   1930 
   1931 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
   1932 	if (flags & ENTROPY_WAIT)
   1933 		ASSERT_SLEEPABLE();
   1934 
   1935 	/*
   1936 	 * Lock the list of entropy sources to block rnd_detach_source
   1937 	 * until we're done, and to serialize calls to the entropy
   1938 	 * callbacks as guaranteed to drivers.
   1939 	 */
   1940 	error = rnd_lock_sources(flags);
   1941 	if (error)
   1942 		return error;
   1943 	entropy_request_evcnt.ev_count++;
   1944 
   1945 	/* Clamp to the maximum reasonable request.  */
   1946 	nbytes = MIN(nbytes, ENTROPY_CAPACITY);
   1947 
   1948 	/* Walk the list of sources.  */
   1949 	LIST_FOREACH(rs, &E->sources, list) {
   1950 		/* Skip sources without callbacks.  */
   1951 		if (!ISSET(rs->flags, RND_FLAG_HASCB))
   1952 			continue;
   1953 
   1954 		/*
   1955 		 * Skip sources that are disabled altogether -- we
   1956 		 * would just ignore their samples anyway.
   1957 		 */
   1958 		if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
   1959 			continue;
   1960 
   1961 		/* Drop the lock while we call the callback.  */
   1962 		if (E->stage >= ENTROPY_WARM)
   1963 			mutex_exit(&E->lock);
   1964 		(*rs->get)(nbytes, rs->getarg);
   1965 		if (E->stage >= ENTROPY_WARM)
   1966 			mutex_enter(&E->lock);
   1967 	}
   1968 
   1969 	/* Request done; unlock the list of entropy sources.  */
   1970 	rnd_unlock_sources();
   1971 	return 0;
   1972 }
   1973 
   1974 static inline uint32_t
   1975 rnd_delta_estimate(rnd_delta_t *d, uint32_t v, int32_t delta)
   1976 {
   1977 	int32_t delta2, delta3;
   1978 
   1979 	/*
   1980 	 * Calculate the second and third order differentials
   1981 	 */
   1982 	delta2 = d->dx - delta;
   1983 	if (delta2 < 0)
   1984 		delta2 = -delta2; /* XXX arithmetic overflow */
   1985 
   1986 	delta3 = d->d2x - delta2;
   1987 	if (delta3 < 0)
   1988 		delta3 = -delta3; /* XXX arithmetic overflow */
   1989 
   1990 	d->x = v;
   1991 	d->dx = delta;
   1992 	d->d2x = delta2;
   1993 
   1994 	/*
   1995 	 * If any delta is 0, we got no entropy.  If all are non-zero, we
   1996 	 * might have something.
   1997 	 */
   1998 	if (delta == 0 || delta2 == 0 || delta3 == 0)
   1999 		return 0;
   2000 
   2001 	return 1;
   2002 }
   2003 
   2004 static inline uint32_t
   2005 rnd_dt_estimate(struct krndsource *rs, uint32_t t)
   2006 {
   2007 	int32_t delta;
   2008 	uint32_t ret;
   2009 	rnd_delta_t *d;
   2010 	struct rndsource_cpu *rc;
   2011 
   2012 	rc = percpu_getref(rs->state);
   2013 	d = &rc->rc_timedelta;
   2014 
   2015 	if (t < d->x) {
   2016 		delta = UINT32_MAX - d->x + t;
   2017 	} else {
   2018 		delta = d->x - t;
   2019 	}
   2020 
   2021 	if (delta < 0) {
   2022 		delta = -delta;	/* XXX arithmetic overflow */
   2023 	}
   2024 
   2025 	ret = rnd_delta_estimate(d, t, delta);
   2026 
   2027 	KASSERT(d->x == t);
   2028 	KASSERT(d->dx == delta);
   2029 	percpu_putref(rs->state);
   2030 	return ret;
   2031 }
   2032 
   2033 /*
   2034  * rnd_add_uint32(rs, value)
   2035  *
   2036  *	Enter 32 bits of data from an entropy source into the pool.
   2037  *
   2038  *	If rs is NULL, may not be called from interrupt context.
   2039  *
   2040  *	If rs is non-NULL, may be called from any context.  May drop
   2041  *	data if called from interrupt context.
   2042  */
   2043 void
   2044 rnd_add_uint32(struct krndsource *rs, uint32_t value)
   2045 {
   2046 
   2047 	rnd_add_data(rs, &value, sizeof value, 0);
   2048 }
   2049 
   2050 void
   2051 _rnd_add_uint32(struct krndsource *rs, uint32_t value)
   2052 {
   2053 
   2054 	rnd_add_data(rs, &value, sizeof value, 0);
   2055 }
   2056 
   2057 void
   2058 _rnd_add_uint64(struct krndsource *rs, uint64_t value)
   2059 {
   2060 
   2061 	rnd_add_data(rs, &value, sizeof value, 0);
   2062 }
   2063 
   2064 /*
   2065  * rnd_add_data(rs, buf, len, entropybits)
   2066  *
   2067  *	Enter data from an entropy source into the pool, with a
   2068  *	driver's estimate of how much entropy the physical source of
   2069  *	the data has.  If RND_FLAG_NO_ESTIMATE, we ignore the driver's
   2070  *	estimate and treat it as zero.
   2071  *
   2072  *	If rs is NULL, may not be called from interrupt context.
   2073  *
   2074  *	If rs is non-NULL, may be called from any context.  May drop
   2075  *	data if called from interrupt context.
   2076  */
   2077 void
   2078 rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
   2079     uint32_t entropybits)
   2080 {
   2081 	uint32_t extra;
   2082 	uint32_t flags;
   2083 
   2084 	KASSERTMSG(howmany(entropybits, NBBY) <= len,
   2085 	    "%s: impossible entropy rate:"
   2086 	    " %"PRIu32" bits in %"PRIu32"-byte string",
   2087 	    rs ? rs->name : "(anonymous)", entropybits, len);
   2088 
   2089 	/* If there's no rndsource, just enter the data and time now.  */
   2090 	if (rs == NULL) {
   2091 		entropy_enter(buf, len, entropybits, /*count*/false);
   2092 		extra = entropy_timer();
   2093 		entropy_enter(&extra, sizeof extra, 0, /*count*/false);
   2094 		explicit_memset(&extra, 0, sizeof extra);
   2095 		return;
   2096 	}
   2097 
   2098 	/*
   2099 	 * Hold up the reset xcall before it zeroes the entropy counts
   2100 	 * on this CPU or globally.  Otherwise, we might leave some
   2101 	 * nonzero entropy attributed to an untrusted source in the
   2102 	 * event of a race with a change to flags.
   2103 	 */
   2104 	kpreempt_disable();
   2105 
   2106 	/* Load a snapshot of the flags.  Ioctl may change them under us.  */
   2107 	flags = atomic_load_relaxed(&rs->flags);
   2108 
   2109 	/*
   2110 	 * Skip if:
   2111 	 * - we're not collecting entropy, or
   2112 	 * - the operator doesn't want to collect entropy from this, or
   2113 	 * - neither data nor timings are being collected from this.
   2114 	 */
   2115 	if (!atomic_load_relaxed(&entropy_collection) ||
   2116 	    ISSET(flags, RND_FLAG_NO_COLLECT) ||
   2117 	    !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
   2118 		goto out;
   2119 
   2120 	/* If asked, ignore the estimate.  */
   2121 	if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
   2122 		entropybits = 0;
   2123 
   2124 	/* If we are collecting data, enter them.  */
   2125 	if (ISSET(flags, RND_FLAG_COLLECT_VALUE)) {
   2126 		rnd_add_data_1(rs, buf, len, entropybits, /*count*/false,
   2127 		    RND_FLAG_COLLECT_VALUE);
   2128 	}
   2129 
   2130 	/* If we are collecting timings, enter one.  */
   2131 	if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
   2132 		bool count;
   2133 
   2134 		/* Sample a timer.  */
   2135 		extra = entropy_timer();
   2136 
   2137 		/* If asked, do entropy estimation on the time.  */
   2138 		if ((flags & (RND_FLAG_ESTIMATE_TIME|RND_FLAG_NO_ESTIMATE)) ==
   2139 		    RND_FLAG_ESTIMATE_TIME && !cold)
   2140 			count = rnd_dt_estimate(rs, extra);
   2141 		else
   2142 			count = false;
   2143 
   2144 		rnd_add_data_1(rs, &extra, sizeof extra, 0, count,
   2145 		    RND_FLAG_COLLECT_TIME);
   2146 	}
   2147 
   2148 out:	/* Allow concurrent changes to flags to finish.  */
   2149 	kpreempt_enable();
   2150 }
   2151 
   2152 static unsigned
   2153 add_sat(unsigned a, unsigned b)
   2154 {
   2155 	unsigned c = a + b;
   2156 
   2157 	return (c < a ? UINT_MAX : c);
   2158 }
   2159 
   2160 /*
   2161  * rnd_add_data_1(rs, buf, len, entropybits, count, flag)
   2162  *
   2163  *	Internal subroutine to call either entropy_enter_intr, if we're
   2164  *	in interrupt context, or entropy_enter if not, and to count the
   2165  *	entropy in an rndsource.
   2166  */
   2167 static void
   2168 rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
   2169     uint32_t entropybits, bool count, uint32_t flag)
   2170 {
   2171 	bool fullyused;
   2172 
   2173 	/*
   2174 	 * If we're in interrupt context, use entropy_enter_intr and
   2175 	 * take note of whether it consumed the full sample; if not,
   2176 	 * use entropy_enter, which always consumes the full sample.
   2177 	 */
   2178 	if (curlwp && cpu_intr_p()) {
   2179 		fullyused = entropy_enter_intr(buf, len, entropybits, count);
   2180 	} else {
   2181 		entropy_enter(buf, len, entropybits, count);
   2182 		fullyused = true;
   2183 	}
   2184 
   2185 	/*
   2186 	 * If we used the full sample, note how many bits were
   2187 	 * contributed from this source.
   2188 	 */
   2189 	if (fullyused) {
   2190 		if (__predict_false(E->stage == ENTROPY_COLD)) {
   2191 			rs->total = add_sat(rs->total, entropybits);
   2192 			switch (flag) {
   2193 			case RND_FLAG_COLLECT_TIME:
   2194 				rs->time_delta.insamples =
   2195 				    add_sat(rs->time_delta.insamples, 1);
   2196 				break;
   2197 			case RND_FLAG_COLLECT_VALUE:
   2198 				rs->value_delta.insamples =
   2199 				    add_sat(rs->value_delta.insamples, 1);
   2200 				break;
   2201 			}
   2202 		} else {
   2203 			struct rndsource_cpu *rc = percpu_getref(rs->state);
   2204 
   2205 			atomic_store_relaxed(&rc->rc_entropybits,
   2206 			    add_sat(rc->rc_entropybits, entropybits));
   2207 			switch (flag) {
   2208 			case RND_FLAG_COLLECT_TIME:
   2209 				atomic_store_relaxed(&rc->rc_timesamples,
   2210 				    add_sat(rc->rc_timesamples, 1));
   2211 				break;
   2212 			case RND_FLAG_COLLECT_VALUE:
   2213 				atomic_store_relaxed(&rc->rc_datasamples,
   2214 				    add_sat(rc->rc_datasamples, 1));
   2215 				break;
   2216 			}
   2217 			percpu_putref(rs->state);
   2218 		}
   2219 	}
   2220 }
   2221 
   2222 /*
   2223  * rnd_add_data_sync(rs, buf, len, entropybits)
   2224  *
   2225  *	Same as rnd_add_data.  Originally used in rndsource callbacks,
   2226  *	to break an unnecessary cycle; no longer really needed.
   2227  */
   2228 void
   2229 rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
   2230     uint32_t entropybits)
   2231 {
   2232 
   2233 	rnd_add_data(rs, buf, len, entropybits);
   2234 }
   2235 
   2236 /*
   2237  * rndsource_entropybits(rs)
   2238  *
   2239  *	Return approximately the number of bits of entropy that have
   2240  *	been contributed via rs so far.  Approximate if other CPUs may
   2241  *	be calling rnd_add_data concurrently.
   2242  */
   2243 static unsigned
   2244 rndsource_entropybits(struct krndsource *rs)
   2245 {
   2246 	unsigned nbits = rs->total;
   2247 
   2248 	KASSERT(E->stage >= ENTROPY_WARM);
   2249 	KASSERT(rnd_sources_locked());
   2250 	percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
   2251 	return nbits;
   2252 }
   2253 
   2254 static void
   2255 rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   2256 {
   2257 	struct rndsource_cpu *rc = ptr;
   2258 	unsigned *nbitsp = cookie;
   2259 	unsigned cpu_nbits;
   2260 
   2261 	cpu_nbits = atomic_load_relaxed(&rc->rc_entropybits);
   2262 	*nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
   2263 }
   2264 
   2265 /*
   2266  * rndsource_to_user(rs, urs)
   2267  *
   2268  *	Copy a description of rs out to urs for userland.
   2269  */
   2270 static void
   2271 rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
   2272 {
   2273 
   2274 	KASSERT(E->stage >= ENTROPY_WARM);
   2275 	KASSERT(rnd_sources_locked());
   2276 
   2277 	/* Avoid kernel memory disclosure.  */
   2278 	memset(urs, 0, sizeof(*urs));
   2279 
   2280 	CTASSERT(sizeof(urs->name) == sizeof(rs->name));
   2281 	strlcpy(urs->name, rs->name, sizeof(urs->name));
   2282 	urs->total = rndsource_entropybits(rs);
   2283 	urs->type = rs->type;
   2284 	urs->flags = atomic_load_relaxed(&rs->flags);
   2285 }
   2286 
   2287 /*
   2288  * rndsource_to_user_est(rs, urse)
   2289  *
   2290  *	Copy a description of rs and estimation statistics out to urse
   2291  *	for userland.
   2292  */
   2293 static void
   2294 rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
   2295 {
   2296 
   2297 	KASSERT(E->stage >= ENTROPY_WARM);
   2298 	KASSERT(rnd_sources_locked());
   2299 
   2300 	/* Avoid kernel memory disclosure.  */
   2301 	memset(urse, 0, sizeof(*urse));
   2302 
   2303 	/* Copy out the rndsource description.  */
   2304 	rndsource_to_user(rs, &urse->rt);
   2305 
   2306 	/* Gather the statistics.  */
   2307 	urse->dt_samples = rs->time_delta.insamples;
   2308 	urse->dt_total = 0;
   2309 	urse->dv_samples = rs->value_delta.insamples;
   2310 	urse->dv_total = urse->rt.total;
   2311 	percpu_foreach(rs->state, rndsource_to_user_est_cpu, urse);
   2312 }
   2313 
   2314 static void
   2315 rndsource_to_user_est_cpu(void *ptr, void *cookie, struct cpu_info *ci)
   2316 {
   2317 	struct rndsource_cpu *rc = ptr;
   2318 	rndsource_est_t *urse = cookie;
   2319 
   2320 	urse->dt_samples = add_sat(urse->dt_samples,
   2321 	    atomic_load_relaxed(&rc->rc_timesamples));
   2322 	urse->dv_samples = add_sat(urse->dv_samples,
   2323 	    atomic_load_relaxed(&rc->rc_datasamples));
   2324 }
   2325 
   2326 /*
   2327  * entropy_reset_xc(arg1, arg2)
   2328  *
   2329  *	Reset the current CPU's pending entropy to zero.
   2330  */
   2331 static void
   2332 entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
   2333 {
   2334 	uint32_t extra = entropy_timer();
   2335 	struct entropy_cpu_lock lock;
   2336 	struct entropy_cpu *ec;
   2337 
   2338 	/*
   2339 	 * With the per-CPU state locked, zero the pending count and
   2340 	 * enter a cycle count for fun.
   2341 	 */
   2342 	ec = entropy_cpu_get(&lock);
   2343 	ec->ec_bitspending = 0;
   2344 	ec->ec_samplespending = 0;
   2345 	entpool_enter(ec->ec_pool, &extra, sizeof extra);
   2346 	entropy_cpu_put(&lock, ec);
   2347 }
   2348 
   2349 /*
   2350  * entropy_ioctl(cmd, data)
   2351  *
   2352  *	Handle various /dev/random ioctl queries.
   2353  */
   2354 int
   2355 entropy_ioctl(unsigned long cmd, void *data)
   2356 {
   2357 	struct krndsource *rs;
   2358 	bool privileged;
   2359 	int error;
   2360 
   2361 	KASSERT(E->stage >= ENTROPY_WARM);
   2362 
   2363 	/* Verify user's authorization to perform the ioctl.  */
   2364 	switch (cmd) {
   2365 	case RNDGETENTCNT:
   2366 	case RNDGETPOOLSTAT:
   2367 	case RNDGETSRCNUM:
   2368 	case RNDGETSRCNAME:
   2369 	case RNDGETESTNUM:
   2370 	case RNDGETESTNAME:
   2371 		error = kauth_authorize_device(kauth_cred_get(),
   2372 		    KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
   2373 		break;
   2374 	case RNDCTL:
   2375 		error = kauth_authorize_device(kauth_cred_get(),
   2376 		    KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
   2377 		break;
   2378 	case RNDADDDATA:
   2379 		error = kauth_authorize_device(kauth_cred_get(),
   2380 		    KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
   2381 		/* Ascertain whether the user's inputs should be counted.  */
   2382 		if (kauth_authorize_device(kauth_cred_get(),
   2383 			KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
   2384 			NULL, NULL, NULL, NULL) == 0)
   2385 			privileged = true;
   2386 		break;
   2387 	default: {
   2388 		/*
   2389 		 * XXX Hack to avoid changing module ABI so this can be
   2390 		 * pulled up.  Later, we can just remove the argument.
   2391 		 */
   2392 		static const struct fileops fops = {
   2393 			.fo_ioctl = rnd_system_ioctl,
   2394 		};
   2395 		struct file f = {
   2396 			.f_ops = &fops,
   2397 		};
   2398 		MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
   2399 		    enosys(), error);
   2400 #if defined(_LP64)
   2401 		if (error == ENOSYS)
   2402 			MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
   2403 			    enosys(), error);
   2404 #endif
   2405 		if (error == ENOSYS)
   2406 			error = ENOTTY;
   2407 		break;
   2408 	}
   2409 	}
   2410 
   2411 	/* If anything went wrong with authorization, stop here.  */
   2412 	if (error)
   2413 		return error;
   2414 
   2415 	/* Dispatch on the command.  */
   2416 	switch (cmd) {
   2417 	case RNDGETENTCNT: {	/* Get current entropy count in bits.  */
   2418 		uint32_t *countp = data;
   2419 
   2420 		mutex_enter(&E->lock);
   2421 		*countp = MINENTROPYBITS - E->bitsneeded;
   2422 		mutex_exit(&E->lock);
   2423 
   2424 		break;
   2425 	}
   2426 	case RNDGETPOOLSTAT: {	/* Get entropy pool statistics.  */
   2427 		rndpoolstat_t *pstat = data;
   2428 
   2429 		mutex_enter(&E->lock);
   2430 
   2431 		/* parameters */
   2432 		pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
   2433 		pstat->threshold = MINENTROPYBITS/NBBY; /* bytes */
   2434 		pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
   2435 
   2436 		/* state */
   2437 		pstat->added = 0; /* XXX total entropy_enter count */
   2438 		pstat->curentropy = MINENTROPYBITS - E->bitsneeded; /* bits */
   2439 		pstat->removed = 0; /* XXX total entropy_extract count */
   2440 		pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
   2441 
   2442 		/*
   2443 		 * This used to be bits of data fabricated in some
   2444 		 * sense; we'll take it to mean number of samples,
   2445 		 * excluding the bits of entropy from HWRNG or seed.
   2446 		 */
   2447 		pstat->generated = MINSAMPLES - E->samplesneeded;
   2448 		pstat->generated -= MIN(pstat->generated, pstat->curentropy);
   2449 
   2450 		mutex_exit(&E->lock);
   2451 		break;
   2452 	}
   2453 	case RNDGETSRCNUM: {	/* Get entropy sources by number.  */
   2454 		rndstat_t *stat = data;
   2455 		uint32_t start = 0, i = 0;
   2456 
   2457 		/* Skip if none requested; fail if too many requested.  */
   2458 		if (stat->count == 0)
   2459 			break;
   2460 		if (stat->count > RND_MAXSTATCOUNT)
   2461 			return EINVAL;
   2462 
   2463 		/*
   2464 		 * Under the lock, find the first one, copy out as many
   2465 		 * as requested, and report how many we copied out.
   2466 		 */
   2467 		mutex_enter(&E->lock);
   2468 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2469 		if (error) {
   2470 			mutex_exit(&E->lock);
   2471 			return error;
   2472 		}
   2473 		LIST_FOREACH(rs, &E->sources, list) {
   2474 			if (start++ == stat->start)
   2475 				break;
   2476 		}
   2477 		while (i < stat->count && rs != NULL) {
   2478 			mutex_exit(&E->lock);
   2479 			rndsource_to_user(rs, &stat->source[i++]);
   2480 			mutex_enter(&E->lock);
   2481 			rs = LIST_NEXT(rs, list);
   2482 		}
   2483 		KASSERT(i <= stat->count);
   2484 		stat->count = i;
   2485 		rnd_unlock_sources();
   2486 		mutex_exit(&E->lock);
   2487 		break;
   2488 	}
   2489 	case RNDGETESTNUM: {	/* Get sources and estimates by number.  */
   2490 		rndstat_est_t *estat = data;
   2491 		uint32_t start = 0, i = 0;
   2492 
   2493 		/* Skip if none requested; fail if too many requested.  */
   2494 		if (estat->count == 0)
   2495 			break;
   2496 		if (estat->count > RND_MAXSTATCOUNT)
   2497 			return EINVAL;
   2498 
   2499 		/*
   2500 		 * Under the lock, find the first one, copy out as many
   2501 		 * as requested, and report how many we copied out.
   2502 		 */
   2503 		mutex_enter(&E->lock);
   2504 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2505 		if (error) {
   2506 			mutex_exit(&E->lock);
   2507 			return error;
   2508 		}
   2509 		LIST_FOREACH(rs, &E->sources, list) {
   2510 			if (start++ == estat->start)
   2511 				break;
   2512 		}
   2513 		while (i < estat->count && rs != NULL) {
   2514 			mutex_exit(&E->lock);
   2515 			rndsource_to_user_est(rs, &estat->source[i++]);
   2516 			mutex_enter(&E->lock);
   2517 			rs = LIST_NEXT(rs, list);
   2518 		}
   2519 		KASSERT(i <= estat->count);
   2520 		estat->count = i;
   2521 		rnd_unlock_sources();
   2522 		mutex_exit(&E->lock);
   2523 		break;
   2524 	}
   2525 	case RNDGETSRCNAME: {	/* Get entropy sources by name.  */
   2526 		rndstat_name_t *nstat = data;
   2527 		const size_t n = sizeof(rs->name);
   2528 
   2529 		CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
   2530 
   2531 		/*
   2532 		 * Under the lock, search by name.  If found, copy it
   2533 		 * out; if not found, fail with ENOENT.
   2534 		 */
   2535 		mutex_enter(&E->lock);
   2536 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2537 		if (error) {
   2538 			mutex_exit(&E->lock);
   2539 			return error;
   2540 		}
   2541 		LIST_FOREACH(rs, &E->sources, list) {
   2542 			if (strncmp(rs->name, nstat->name, n) == 0)
   2543 				break;
   2544 		}
   2545 		if (rs != NULL) {
   2546 			mutex_exit(&E->lock);
   2547 			rndsource_to_user(rs, &nstat->source);
   2548 			mutex_enter(&E->lock);
   2549 		} else {
   2550 			error = ENOENT;
   2551 		}
   2552 		rnd_unlock_sources();
   2553 		mutex_exit(&E->lock);
   2554 		break;
   2555 	}
   2556 	case RNDGETESTNAME: {	/* Get sources and estimates by name.  */
   2557 		rndstat_est_name_t *enstat = data;
   2558 		const size_t n = sizeof(rs->name);
   2559 
   2560 		CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
   2561 
   2562 		/*
   2563 		 * Under the lock, search by name.  If found, copy it
   2564 		 * out; if not found, fail with ENOENT.
   2565 		 */
   2566 		mutex_enter(&E->lock);
   2567 		error = rnd_lock_sources(ENTROPY_WAIT|ENTROPY_SIG);
   2568 		if (error) {
   2569 			mutex_exit(&E->lock);
   2570 			return error;
   2571 		}
   2572 		LIST_FOREACH(rs, &E->sources, list) {
   2573 			if (strncmp(rs->name, enstat->name, n) == 0)
   2574 				break;
   2575 		}
   2576 		if (rs != NULL) {
   2577 			mutex_exit(&E->lock);
   2578 			rndsource_to_user_est(rs, &enstat->source);
   2579 			mutex_enter(&E->lock);
   2580 		} else {
   2581 			error = ENOENT;
   2582 		}
   2583 		rnd_unlock_sources();
   2584 		mutex_exit(&E->lock);
   2585 		break;
   2586 	}
   2587 	case RNDCTL: {		/* Modify entropy source flags.  */
   2588 		rndctl_t *rndctl = data;
   2589 		const size_t n = sizeof(rs->name);
   2590 		uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2591 		uint32_t flags;
   2592 		bool reset = false, request = false;
   2593 
   2594 		CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
   2595 
   2596 		/* Whitelist the flags that user can change.  */
   2597 		rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
   2598 
   2599 		/*
   2600 		 * For each matching rndsource, either by type if
   2601 		 * specified or by name if not, set the masked flags.
   2602 		 */
   2603 		mutex_enter(&E->lock);
   2604 		LIST_FOREACH(rs, &E->sources, list) {
   2605 			if (rndctl->type != 0xff) {
   2606 				if (rs->type != rndctl->type)
   2607 					continue;
   2608 			} else if (rndctl->name[0] != '\0') {
   2609 				if (strncmp(rs->name, rndctl->name, n) != 0)
   2610 					continue;
   2611 			}
   2612 			flags = rs->flags & ~rndctl->mask;
   2613 			flags |= rndctl->flags & rndctl->mask;
   2614 			if ((rs->flags & resetflags) == 0 &&
   2615 			    (flags & resetflags) != 0)
   2616 				reset = true;
   2617 			if ((rs->flags ^ flags) & resetflags)
   2618 				request = true;
   2619 			atomic_store_relaxed(&rs->flags, flags);
   2620 		}
   2621 		mutex_exit(&E->lock);
   2622 
   2623 		/*
   2624 		 * If we disabled estimation or collection, nix all the
   2625 		 * pending entropy and set needed to the maximum.
   2626 		 */
   2627 		if (reset) {
   2628 			xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
   2629 			mutex_enter(&E->lock);
   2630 			E->bitspending = 0;
   2631 			E->samplespending = 0;
   2632 			atomic_store_relaxed(&E->bitsneeded, MINENTROPYBITS);
   2633 			atomic_store_relaxed(&E->samplesneeded, MINSAMPLES);
   2634 			E->consolidate = false;
   2635 			mutex_exit(&E->lock);
   2636 		}
   2637 
   2638 		/*
   2639 		 * If we changed any of the estimation or collection
   2640 		 * flags, request new samples from everyone -- either
   2641 		 * to make up for what we just lost, or to get new
   2642 		 * samples from what we just added.
   2643 		 *
   2644 		 * Failing on signal, while waiting for another process
   2645 		 * to finish requesting entropy, is OK here even though
   2646 		 * we have committed side effects, because this ioctl
   2647 		 * command is idempotent, so repeating it is safe.
   2648 		 */
   2649 		if (request) {
   2650 			mutex_enter(&E->lock);
   2651 			error = entropy_request(ENTROPY_CAPACITY,
   2652 			    ENTROPY_WAIT|ENTROPY_SIG);
   2653 			mutex_exit(&E->lock);
   2654 		}
   2655 		break;
   2656 	}
   2657 	case RNDADDDATA: {	/* Enter seed into entropy pool.  */
   2658 		rnddata_t *rdata = data;
   2659 		unsigned entropybits = 0;
   2660 
   2661 		if (!atomic_load_relaxed(&entropy_collection))
   2662 			break;	/* thanks but no thanks */
   2663 		if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
   2664 			return EINVAL;
   2665 
   2666 		/*
   2667 		 * This ioctl serves as the userland alternative a
   2668 		 * bootloader-provided seed -- typically furnished by
   2669 		 * /etc/rc.d/random_seed.  We accept the user's entropy
   2670 		 * claim only if
   2671 		 *
   2672 		 * (a) the user is privileged, and
   2673 		 * (b) we have not entered a bootloader seed.
   2674 		 *
   2675 		 * under the assumption that the user may use this to
   2676 		 * load a seed from disk that we have already loaded
   2677 		 * from the bootloader, so we don't double-count it.
   2678 		 */
   2679 		if (privileged && rdata->entropy && rdata->len) {
   2680 			mutex_enter(&E->lock);
   2681 			if (!E->seeded) {
   2682 				entropybits = MIN(rdata->entropy,
   2683 				    MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
   2684 				E->seeded = true;
   2685 			}
   2686 			mutex_exit(&E->lock);
   2687 		}
   2688 
   2689 		/* Enter the data and consolidate entropy.  */
   2690 		rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
   2691 		    entropybits);
   2692 		entropy_consolidate();
   2693 		break;
   2694 	}
   2695 	default:
   2696 		error = ENOTTY;
   2697 	}
   2698 
   2699 	/* Return any error that may have come up.  */
   2700 	return error;
   2701 }
   2702 
   2703 /* Legacy entry points */
   2704 
   2705 void
   2706 rnd_seed(void *seed, size_t len)
   2707 {
   2708 
   2709 	if (len != sizeof(rndsave_t)) {
   2710 		printf("entropy: invalid seed length: %zu,"
   2711 		    " expected sizeof(rndsave_t) = %zu\n",
   2712 		    len, sizeof(rndsave_t));
   2713 		return;
   2714 	}
   2715 	entropy_seed(seed);
   2716 }
   2717 
   2718 void
   2719 rnd_init(void)
   2720 {
   2721 
   2722 	entropy_init();
   2723 }
   2724 
   2725 void
   2726 rnd_init_softint(void)
   2727 {
   2728 
   2729 	entropy_init_late();
   2730 	entropy_bootrequest();
   2731 }
   2732 
   2733 int
   2734 rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
   2735 {
   2736 
   2737 	return entropy_ioctl(cmd, data);
   2738 }
   2739