1 1.150 msaitoh /* $NetBSD: kern_event.c,v 1.150 2023/09/21 09:31:50 msaitoh Exp $ */ 2 1.49 ad 3 1.49 ad /*- 4 1.129 thorpej * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc. 5 1.49 ad * All rights reserved. 6 1.49 ad * 7 1.64 ad * This code is derived from software contributed to The NetBSD Foundation 8 1.64 ad * by Andrew Doran. 9 1.64 ad * 10 1.49 ad * Redistribution and use in source and binary forms, with or without 11 1.49 ad * modification, are permitted provided that the following conditions 12 1.49 ad * are met: 13 1.49 ad * 1. Redistributions of source code must retain the above copyright 14 1.49 ad * notice, this list of conditions and the following disclaimer. 15 1.49 ad * 2. Redistributions in binary form must reproduce the above copyright 16 1.49 ad * notice, this list of conditions and the following disclaimer in the 17 1.49 ad * documentation and/or other materials provided with the distribution. 18 1.49 ad * 19 1.49 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.49 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.49 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.49 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.49 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.49 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.49 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.49 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.49 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.49 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.49 ad * POSSIBILITY OF SUCH DAMAGE. 30 1.49 ad */ 31 1.28 kardel 32 1.1 lukem /*- 33 1.1 lukem * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org> 34 1.108 christos * Copyright (c) 2009 Apple, Inc 35 1.1 lukem * All rights reserved. 36 1.1 lukem * 37 1.1 lukem * Redistribution and use in source and binary forms, with or without 38 1.1 lukem * modification, are permitted provided that the following conditions 39 1.1 lukem * are met: 40 1.1 lukem * 1. Redistributions of source code must retain the above copyright 41 1.1 lukem * notice, this list of conditions and the following disclaimer. 42 1.1 lukem * 2. Redistributions in binary form must reproduce the above copyright 43 1.1 lukem * notice, this list of conditions and the following disclaimer in the 44 1.1 lukem * documentation and/or other materials provided with the distribution. 45 1.1 lukem * 46 1.1 lukem * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 1.1 lukem * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 1.1 lukem * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 1.1 lukem * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 1.1 lukem * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 1.1 lukem * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 1.1 lukem * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 1.1 lukem * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 1.1 lukem * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 1.1 lukem * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 1.1 lukem * SUCH DAMAGE. 57 1.1 lukem * 58 1.49 ad * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp 59 1.1 lukem */ 60 1.14 jdolecek 61 1.130 thorpej #ifdef _KERNEL_OPT 62 1.129 thorpej #include "opt_ddb.h" 63 1.130 thorpej #endif /* _KERNEL_OPT */ 64 1.129 thorpej 65 1.14 jdolecek #include <sys/cdefs.h> 66 1.150 msaitoh __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.150 2023/09/21 09:31:50 msaitoh Exp $"); 67 1.1 lukem 68 1.1 lukem #include <sys/param.h> 69 1.1 lukem #include <sys/systm.h> 70 1.1 lukem #include <sys/kernel.h> 71 1.86 christos #include <sys/wait.h> 72 1.1 lukem #include <sys/proc.h> 73 1.1 lukem #include <sys/file.h> 74 1.3 jdolecek #include <sys/select.h> 75 1.1 lukem #include <sys/queue.h> 76 1.1 lukem #include <sys/event.h> 77 1.1 lukem #include <sys/eventvar.h> 78 1.1 lukem #include <sys/poll.h> 79 1.49 ad #include <sys/kmem.h> 80 1.1 lukem #include <sys/stat.h> 81 1.3 jdolecek #include <sys/filedesc.h> 82 1.3 jdolecek #include <sys/syscallargs.h> 83 1.27 elad #include <sys/kauth.h> 84 1.40 ad #include <sys/conf.h> 85 1.49 ad #include <sys/atomic.h> 86 1.1 lukem 87 1.49 ad static int kqueue_scan(file_t *, size_t, struct kevent *, 88 1.49 ad const struct timespec *, register_t *, 89 1.49 ad const struct kevent_ops *, struct kevent *, 90 1.49 ad size_t); 91 1.49 ad static int kqueue_ioctl(file_t *, u_long, void *); 92 1.49 ad static int kqueue_fcntl(file_t *, u_int, void *); 93 1.49 ad static int kqueue_poll(file_t *, int); 94 1.49 ad static int kqueue_kqfilter(file_t *, struct knote *); 95 1.49 ad static int kqueue_stat(file_t *, struct stat *); 96 1.49 ad static int kqueue_close(file_t *); 97 1.118 jdolecek static void kqueue_restart(file_t *); 98 1.148 riastrad static int kqueue_fpathconf(file_t *, int, register_t *); 99 1.49 ad static int kqueue_register(struct kqueue *, struct kevent *); 100 1.49 ad static void kqueue_doclose(struct kqueue *, struct klist *, int); 101 1.49 ad 102 1.49 ad static void knote_detach(struct knote *, filedesc_t *fdp, bool); 103 1.49 ad static void knote_enqueue(struct knote *); 104 1.49 ad static void knote_activate(struct knote *); 105 1.133 thorpej static void knote_activate_locked(struct knote *); 106 1.136 thorpej static void knote_deactivate_locked(struct knote *); 107 1.49 ad 108 1.49 ad static void filt_kqdetach(struct knote *); 109 1.49 ad static int filt_kqueue(struct knote *, long hint); 110 1.49 ad static int filt_procattach(struct knote *); 111 1.49 ad static void filt_procdetach(struct knote *); 112 1.49 ad static int filt_proc(struct knote *, long hint); 113 1.49 ad static int filt_fileattach(struct knote *); 114 1.49 ad static void filt_timerexpire(void *x); 115 1.49 ad static int filt_timerattach(struct knote *); 116 1.49 ad static void filt_timerdetach(struct knote *); 117 1.49 ad static int filt_timer(struct knote *, long hint); 118 1.136 thorpej static int filt_timertouch(struct knote *, struct kevent *, long type); 119 1.108 christos static int filt_userattach(struct knote *); 120 1.108 christos static void filt_userdetach(struct knote *); 121 1.108 christos static int filt_user(struct knote *, long hint); 122 1.135 thorpej static int filt_usertouch(struct knote *, struct kevent *, long type); 123 1.1 lukem 124 1.144 thorpej /* 125 1.144 thorpej * Private knote state that should never be exposed outside 126 1.144 thorpej * of kern_event.c 127 1.144 thorpej * 128 1.144 thorpej * Field locking: 129 1.144 thorpej * 130 1.144 thorpej * q kn_kq->kq_lock 131 1.144 thorpej */ 132 1.144 thorpej struct knote_impl { 133 1.144 thorpej struct knote ki_knote; 134 1.144 thorpej unsigned int ki_influx; /* q: in-flux counter */ 135 1.145 thorpej kmutex_t ki_foplock; /* for kn_filterops */ 136 1.144 thorpej }; 137 1.144 thorpej 138 1.144 thorpej #define KIMPL_TO_KNOTE(kip) (&(kip)->ki_knote) 139 1.144 thorpej #define KNOTE_TO_KIMPL(knp) container_of((knp), struct knote_impl, ki_knote) 140 1.144 thorpej 141 1.144 thorpej static inline struct knote * 142 1.144 thorpej knote_alloc(bool sleepok) 143 1.144 thorpej { 144 1.144 thorpej struct knote_impl *ki; 145 1.144 thorpej 146 1.144 thorpej ki = kmem_zalloc(sizeof(*ki), sleepok ? KM_SLEEP : KM_NOSLEEP); 147 1.145 thorpej mutex_init(&ki->ki_foplock, MUTEX_DEFAULT, IPL_NONE); 148 1.144 thorpej 149 1.144 thorpej return KIMPL_TO_KNOTE(ki); 150 1.144 thorpej } 151 1.144 thorpej 152 1.144 thorpej static inline void 153 1.144 thorpej knote_free(struct knote *kn) 154 1.144 thorpej { 155 1.144 thorpej struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 156 1.144 thorpej 157 1.145 thorpej mutex_destroy(&ki->ki_foplock); 158 1.144 thorpej kmem_free(ki, sizeof(*ki)); 159 1.144 thorpej } 160 1.144 thorpej 161 1.145 thorpej static inline void 162 1.145 thorpej knote_foplock_enter(struct knote *kn) 163 1.145 thorpej { 164 1.145 thorpej mutex_enter(&KNOTE_TO_KIMPL(kn)->ki_foplock); 165 1.145 thorpej } 166 1.145 thorpej 167 1.145 thorpej static inline void 168 1.145 thorpej knote_foplock_exit(struct knote *kn) 169 1.145 thorpej { 170 1.145 thorpej mutex_exit(&KNOTE_TO_KIMPL(kn)->ki_foplock); 171 1.145 thorpej } 172 1.145 thorpej 173 1.146 riastrad static inline bool __diagused 174 1.145 thorpej knote_foplock_owned(struct knote *kn) 175 1.145 thorpej { 176 1.145 thorpej return mutex_owned(&KNOTE_TO_KIMPL(kn)->ki_foplock); 177 1.145 thorpej } 178 1.145 thorpej 179 1.21 christos static const struct fileops kqueueops = { 180 1.101 christos .fo_name = "kqueue", 181 1.64 ad .fo_read = (void *)enxio, 182 1.64 ad .fo_write = (void *)enxio, 183 1.64 ad .fo_ioctl = kqueue_ioctl, 184 1.64 ad .fo_fcntl = kqueue_fcntl, 185 1.64 ad .fo_poll = kqueue_poll, 186 1.64 ad .fo_stat = kqueue_stat, 187 1.64 ad .fo_close = kqueue_close, 188 1.64 ad .fo_kqfilter = kqueue_kqfilter, 189 1.118 jdolecek .fo_restart = kqueue_restart, 190 1.148 riastrad .fo_fpathconf = kqueue_fpathconf, 191 1.1 lukem }; 192 1.1 lukem 193 1.145 thorpej static void 194 1.145 thorpej filt_nopdetach(struct knote *kn __unused) 195 1.145 thorpej { 196 1.145 thorpej } 197 1.145 thorpej 198 1.145 thorpej static int 199 1.145 thorpej filt_nopevent(struct knote *kn __unused, long hint __unused) 200 1.145 thorpej { 201 1.145 thorpej return 0; 202 1.145 thorpej } 203 1.145 thorpej 204 1.145 thorpej static const struct filterops nop_fd_filtops = { 205 1.145 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 206 1.145 thorpej .f_attach = NULL, 207 1.145 thorpej .f_detach = filt_nopdetach, 208 1.145 thorpej .f_event = filt_nopevent, 209 1.145 thorpej }; 210 1.145 thorpej 211 1.145 thorpej static const struct filterops nop_filtops = { 212 1.145 thorpej .f_flags = FILTEROP_MPSAFE, 213 1.145 thorpej .f_attach = NULL, 214 1.145 thorpej .f_detach = filt_nopdetach, 215 1.145 thorpej .f_event = filt_nopevent, 216 1.145 thorpej }; 217 1.145 thorpej 218 1.96 maya static const struct filterops kqread_filtops = { 219 1.123 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 220 1.96 maya .f_attach = NULL, 221 1.96 maya .f_detach = filt_kqdetach, 222 1.96 maya .f_event = filt_kqueue, 223 1.96 maya }; 224 1.96 maya 225 1.96 maya static const struct filterops proc_filtops = { 226 1.129 thorpej .f_flags = FILTEROP_MPSAFE, 227 1.96 maya .f_attach = filt_procattach, 228 1.96 maya .f_detach = filt_procdetach, 229 1.96 maya .f_event = filt_proc, 230 1.96 maya }; 231 1.96 maya 232 1.122 thorpej /* 233 1.122 thorpej * file_filtops is not marked MPSAFE because it's going to call 234 1.122 thorpej * fileops::fo_kqfilter(), which might not be. That function, 235 1.122 thorpej * however, will override the knote's filterops, and thus will 236 1.122 thorpej * inherit the MPSAFE-ness of the back-end at that time. 237 1.122 thorpej */ 238 1.96 maya static const struct filterops file_filtops = { 239 1.121 thorpej .f_flags = FILTEROP_ISFD, 240 1.96 maya .f_attach = filt_fileattach, 241 1.96 maya .f_detach = NULL, 242 1.96 maya .f_event = NULL, 243 1.96 maya }; 244 1.96 maya 245 1.96 maya static const struct filterops timer_filtops = { 246 1.125 thorpej .f_flags = FILTEROP_MPSAFE, 247 1.96 maya .f_attach = filt_timerattach, 248 1.96 maya .f_detach = filt_timerdetach, 249 1.96 maya .f_event = filt_timer, 250 1.136 thorpej .f_touch = filt_timertouch, 251 1.96 maya }; 252 1.1 lukem 253 1.108 christos static const struct filterops user_filtops = { 254 1.123 thorpej .f_flags = FILTEROP_MPSAFE, 255 1.108 christos .f_attach = filt_userattach, 256 1.108 christos .f_detach = filt_userdetach, 257 1.108 christos .f_event = filt_user, 258 1.108 christos .f_touch = filt_usertouch, 259 1.108 christos }; 260 1.108 christos 261 1.49 ad static u_int kq_ncallouts = 0; 262 1.8 jdolecek static int kq_calloutmax = (4 * 1024); 263 1.7 thorpej 264 1.1 lukem #define KN_HASHSIZE 64 /* XXX should be tunable */ 265 1.3 jdolecek #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 266 1.1 lukem 267 1.124 thorpej extern const struct filterops fs_filtops; /* vfs_syscalls.c */ 268 1.124 thorpej extern const struct filterops sig_filtops; /* kern_sig.c */ 269 1.1 lukem 270 1.1 lukem /* 271 1.150 msaitoh * Table for all system-defined filters. 272 1.3 jdolecek * These should be listed in the numeric order of the EVFILT_* defines. 273 1.3 jdolecek * If filtops is NULL, the filter isn't implemented in NetBSD. 274 1.3 jdolecek * End of list is when name is NULL. 275 1.93 riastrad * 276 1.49 ad * Note that 'refcnt' is meaningless for built-in filters. 277 1.1 lukem */ 278 1.3 jdolecek struct kfilter { 279 1.49 ad const char *name; /* name of filter */ 280 1.49 ad uint32_t filter; /* id of filter */ 281 1.49 ad unsigned refcnt; /* reference count */ 282 1.3 jdolecek const struct filterops *filtops;/* operations for filter */ 283 1.49 ad size_t namelen; /* length of name string */ 284 1.3 jdolecek }; 285 1.3 jdolecek 286 1.49 ad /* System defined filters */ 287 1.49 ad static struct kfilter sys_kfilters[] = { 288 1.49 ad { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 }, 289 1.49 ad { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, }, 290 1.49 ad { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 }, 291 1.49 ad { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 }, 292 1.49 ad { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 }, 293 1.49 ad { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 }, 294 1.49 ad { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 }, 295 1.102 christos { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 }, 296 1.108 christos { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 }, 297 1.137 thorpej { "EVFILT_EMPTY", EVFILT_EMPTY, 0, &file_filtops, 0 }, 298 1.49 ad { NULL, 0, 0, NULL, 0 }, 299 1.1 lukem }; 300 1.1 lukem 301 1.49 ad /* User defined kfilters */ 302 1.3 jdolecek static struct kfilter *user_kfilters; /* array */ 303 1.3 jdolecek static int user_kfilterc; /* current offset */ 304 1.3 jdolecek static int user_kfiltermaxc; /* max size so far */ 305 1.49 ad static size_t user_kfiltersz; /* size of allocated memory */ 306 1.49 ad 307 1.95 riastrad /* 308 1.95 riastrad * Global Locks. 309 1.95 riastrad * 310 1.95 riastrad * Lock order: 311 1.95 riastrad * 312 1.95 riastrad * kqueue_filter_lock 313 1.95 riastrad * -> kn_kq->kq_fdp->fd_lock 314 1.145 thorpej * -> knote foplock (if taken) 315 1.125 thorpej * -> object lock (e.g., device driver lock, &c.) 316 1.95 riastrad * -> kn_kq->kq_lock 317 1.95 riastrad * 318 1.145 thorpej * Locking rules. ==> indicates the lock is acquired by the backing 319 1.145 thorpej * object, locks prior are acquired before calling filter ops: 320 1.145 thorpej * 321 1.145 thorpej * f_attach: fdp->fd_lock -> knote foplock -> 322 1.145 thorpej * (maybe) KERNEL_LOCK ==> backing object lock 323 1.95 riastrad * 324 1.145 thorpej * f_detach: fdp->fd_lock -> knote foplock -> 325 1.145 thorpej * (maybe) KERNEL_LOCK ==> backing object lock 326 1.145 thorpej * 327 1.145 thorpej * f_event via kevent: fdp->fd_lock -> knote foplock -> 328 1.145 thorpej * (maybe) KERNEL_LOCK ==> backing object lock 329 1.145 thorpej * N.B. NOTE_SUBMIT will never be set in the "hint" argument 330 1.145 thorpej * in this case. 331 1.145 thorpej * 332 1.145 thorpej * f_event via knote (via backing object: Whatever caller guarantees. 333 1.145 thorpej * Typically: 334 1.145 thorpej * f_event(NOTE_SUBMIT): caller has already acquired backing 335 1.145 thorpej * object lock. 336 1.145 thorpej * f_event(!NOTE_SUBMIT): caller has not acquired backing object, 337 1.145 thorpej * lock or has possibly acquired KERNEL_LOCK. Backing object 338 1.145 thorpej * lock may or may not be acquired as-needed. 339 1.145 thorpej * N.B. the knote foplock will **not** be acquired in this case. The 340 1.145 thorpej * caller guarantees that klist_fini() will not be called concurrently 341 1.145 thorpej * with knote(). 342 1.145 thorpej * 343 1.145 thorpej * f_touch: fdp->fd_lock -> kn_kq->kq_lock (spin lock) 344 1.145 thorpej * N.B. knote foplock is **not** acquired in this case and 345 1.145 thorpej * the caller must guarantee that klist_fini() will never 346 1.145 thorpej * be called. kevent_register() restricts filters that 347 1.145 thorpej * provide f_touch to known-safe cases. 348 1.145 thorpej * 349 1.145 thorpej * klist_fini(): Caller must guarantee that no more knotes can 350 1.145 thorpej * be attached to the klist, and must **not** hold the backing 351 1.145 thorpej * object's lock; klist_fini() itself will acquire the foplock 352 1.145 thorpej * of each knote on the klist. 353 1.129 thorpej * 354 1.129 thorpej * Locking rules when detaching knotes: 355 1.129 thorpej * 356 1.129 thorpej * There are some situations where knote submission may require dropping 357 1.129 thorpej * locks (see knote_proc_fork()). In order to support this, it's possible 358 1.129 thorpej * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to 359 1.129 thorpej * be detached while it remains in-flux. Because it will not be detached, 360 1.129 thorpej * locks can be dropped so e.g. memory can be allocated, locks on other 361 1.129 thorpej * data structures can be acquired, etc. During this time, any attempt to 362 1.129 thorpej * detach an in-flux knote must wait until the knote is no longer in-flux. 363 1.129 thorpej * When this happens, the knote is marked for death (KN_WILLDETACH) and the 364 1.129 thorpej * LWP who gets to finish the detach operation is recorded in the knote's 365 1.129 thorpej * 'udata' field (which is no longer required for its original purpose once 366 1.129 thorpej * a knote is so marked). Code paths that lead to knote_detach() must ensure 367 1.129 thorpej * that their LWP is the one tasked with its final demise after waiting for 368 1.129 thorpej * the in-flux status of the knote to clear. Note that once a knote is 369 1.129 thorpej * marked KN_WILLDETACH, no code paths may put it into an in-flux state. 370 1.129 thorpej * 371 1.129 thorpej * Once the special circumstances have been handled, the locks are re- 372 1.129 thorpej * acquired in the proper order (object lock -> kq_lock), the knote taken 373 1.129 thorpej * out of flux, and any waiters are notified. Because waiters must have 374 1.129 thorpej * also dropped *their* locks in order to safely block, they must re- 375 1.129 thorpej * validate all of their assumptions; see knote_detach_quiesce(). See also 376 1.129 thorpej * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT) 377 1.129 thorpej * cases. 378 1.129 thorpej * 379 1.129 thorpej * When kqueue_scan() encounters an in-flux knote, the situation is 380 1.129 thorpej * treated like another LWP's list marker. 381 1.129 thorpej * 382 1.129 thorpej * LISTEN WELL: It is important to not hold knotes in flux for an 383 1.129 thorpej * extended period of time! In-flux knotes effectively block any 384 1.129 thorpej * progress of the kqueue_scan() operation. Any code paths that place 385 1.129 thorpej * knotes in-flux should be careful to not block for indefinite periods 386 1.129 thorpej * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but 387 1.129 thorpej * KM_SLEEP is not). 388 1.95 riastrad */ 389 1.49 ad static krwlock_t kqueue_filter_lock; /* lock on filter lists */ 390 1.49 ad 391 1.129 thorpej #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock) 392 1.129 thorpej #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv) 393 1.129 thorpej 394 1.129 thorpej static inline bool 395 1.129 thorpej kn_in_flux(struct knote *kn) 396 1.129 thorpej { 397 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 398 1.144 thorpej return KNOTE_TO_KIMPL(kn)->ki_influx != 0; 399 1.129 thorpej } 400 1.129 thorpej 401 1.129 thorpej static inline bool 402 1.129 thorpej kn_enter_flux(struct knote *kn) 403 1.129 thorpej { 404 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 405 1.129 thorpej 406 1.129 thorpej if (kn->kn_status & KN_WILLDETACH) { 407 1.129 thorpej return false; 408 1.129 thorpej } 409 1.129 thorpej 410 1.144 thorpej struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 411 1.144 thorpej KASSERT(ki->ki_influx < UINT_MAX); 412 1.144 thorpej ki->ki_influx++; 413 1.129 thorpej 414 1.129 thorpej return true; 415 1.129 thorpej } 416 1.129 thorpej 417 1.129 thorpej static inline bool 418 1.129 thorpej kn_leave_flux(struct knote *kn) 419 1.129 thorpej { 420 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 421 1.144 thorpej 422 1.144 thorpej struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 423 1.144 thorpej KASSERT(ki->ki_influx > 0); 424 1.144 thorpej ki->ki_influx--; 425 1.144 thorpej return ki->ki_influx == 0; 426 1.129 thorpej } 427 1.129 thorpej 428 1.129 thorpej static void 429 1.129 thorpej kn_wait_flux(struct knote *kn, bool can_loop) 430 1.129 thorpej { 431 1.144 thorpej struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 432 1.129 thorpej bool loop; 433 1.129 thorpej 434 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 435 1.129 thorpej 436 1.129 thorpej /* 437 1.129 thorpej * It may not be safe for us to touch the knote again after 438 1.129 thorpej * dropping the kq_lock. The caller has let us know in 439 1.129 thorpej * 'can_loop'. 440 1.129 thorpej */ 441 1.144 thorpej for (loop = true; loop && ki->ki_influx != 0; loop = can_loop) { 442 1.129 thorpej KQ_FLUX_WAIT(kn->kn_kq); 443 1.129 thorpej } 444 1.129 thorpej } 445 1.129 thorpej 446 1.129 thorpej #define KNOTE_WILLDETACH(kn) \ 447 1.129 thorpej do { \ 448 1.129 thorpej (kn)->kn_status |= KN_WILLDETACH; \ 449 1.129 thorpej (kn)->kn_kevent.udata = curlwp; \ 450 1.129 thorpej } while (/*CONSTCOND*/0) 451 1.129 thorpej 452 1.129 thorpej /* 453 1.129 thorpej * Wait until the specified knote is in a quiescent state and 454 1.129 thorpej * safe to detach. Returns true if we potentially blocked (and 455 1.129 thorpej * thus dropped our locks). 456 1.129 thorpej */ 457 1.129 thorpej static bool 458 1.129 thorpej knote_detach_quiesce(struct knote *kn) 459 1.129 thorpej { 460 1.129 thorpej struct kqueue *kq = kn->kn_kq; 461 1.129 thorpej filedesc_t *fdp = kq->kq_fdp; 462 1.129 thorpej 463 1.129 thorpej KASSERT(mutex_owned(&fdp->fd_lock)); 464 1.129 thorpej 465 1.129 thorpej mutex_spin_enter(&kq->kq_lock); 466 1.129 thorpej /* 467 1.129 thorpej * There are two cases where we might see KN_WILLDETACH here: 468 1.129 thorpej * 469 1.129 thorpej * 1. Someone else has already started detaching the knote but 470 1.129 thorpej * had to wait for it to settle first. 471 1.129 thorpej * 472 1.129 thorpej * 2. We had to wait for it to settle, and had to come back 473 1.129 thorpej * around after re-acquiring the locks. 474 1.129 thorpej * 475 1.129 thorpej * When KN_WILLDETACH is set, we also set the LWP that claimed 476 1.129 thorpej * the prize of finishing the detach in the 'udata' field of the 477 1.129 thorpej * knote (which will never be used again for its usual purpose 478 1.129 thorpej * once the note is in this state). If it doesn't point to us, 479 1.129 thorpej * we must drop the locks and let them in to finish the job. 480 1.129 thorpej * 481 1.129 thorpej * Otherwise, once we have claimed the knote for ourselves, we 482 1.129 thorpej * can finish waiting for it to settle. The is the only scenario 483 1.129 thorpej * where touching a detaching knote is safe after dropping the 484 1.129 thorpej * locks. 485 1.129 thorpej */ 486 1.129 thorpej if ((kn->kn_status & KN_WILLDETACH) != 0 && 487 1.129 thorpej kn->kn_kevent.udata != curlwp) { 488 1.129 thorpej /* 489 1.129 thorpej * N.B. it is NOT safe for us to touch the knote again 490 1.129 thorpej * after dropping the locks here. The caller must go 491 1.129 thorpej * back around and re-validate everything. However, if 492 1.129 thorpej * the knote is in-flux, we want to block to minimize 493 1.129 thorpej * busy-looping. 494 1.129 thorpej */ 495 1.129 thorpej mutex_exit(&fdp->fd_lock); 496 1.129 thorpej if (kn_in_flux(kn)) { 497 1.129 thorpej kn_wait_flux(kn, false); 498 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 499 1.129 thorpej return true; 500 1.129 thorpej } 501 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 502 1.129 thorpej preempt_point(); 503 1.129 thorpej return true; 504 1.129 thorpej } 505 1.129 thorpej /* 506 1.129 thorpej * If we get here, we know that we will be claiming the 507 1.129 thorpej * detach responsibilies, or that we already have and 508 1.129 thorpej * this is the second attempt after re-validation. 509 1.129 thorpej */ 510 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) == 0 || 511 1.129 thorpej kn->kn_kevent.udata == curlwp); 512 1.129 thorpej /* 513 1.129 thorpej * Similarly, if we get here, either we are just claiming it 514 1.129 thorpej * and may have to wait for it to settle, or if this is the 515 1.129 thorpej * second attempt after re-validation that no other code paths 516 1.129 thorpej * have put it in-flux. 517 1.129 thorpej */ 518 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) == 0 || 519 1.129 thorpej kn_in_flux(kn) == false); 520 1.129 thorpej KNOTE_WILLDETACH(kn); 521 1.129 thorpej if (kn_in_flux(kn)) { 522 1.129 thorpej mutex_exit(&fdp->fd_lock); 523 1.129 thorpej kn_wait_flux(kn, true); 524 1.129 thorpej /* 525 1.129 thorpej * It is safe for us to touch the knote again after 526 1.129 thorpej * dropping the locks, but the caller must still 527 1.129 thorpej * re-validate everything because other aspects of 528 1.129 thorpej * the environment may have changed while we blocked. 529 1.129 thorpej */ 530 1.129 thorpej KASSERT(kn_in_flux(kn) == false); 531 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 532 1.129 thorpej return true; 533 1.129 thorpej } 534 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 535 1.129 thorpej 536 1.129 thorpej return false; 537 1.129 thorpej } 538 1.129 thorpej 539 1.145 thorpej /* 540 1.145 thorpej * Calls into the filterops need to be resilient against things which 541 1.145 thorpej * destroy a klist, e.g. device detach, freeing a vnode, etc., to avoid 542 1.145 thorpej * chasing garbage pointers (to data, or even potentially code in a 543 1.145 thorpej * module about to be unloaded). To that end, we acquire the 544 1.145 thorpej * knote foplock before calling into the filter ops. When a driver 545 1.145 thorpej * (or anything else) is tearing down its klist, klist_fini() enumerates 546 1.145 thorpej * each knote, acquires its foplock, and replaces the filterops with a 547 1.145 thorpej * nop stub, allowing knote detach (when descriptors are closed) to safely 548 1.145 thorpej * proceed. 549 1.145 thorpej */ 550 1.145 thorpej 551 1.122 thorpej static int 552 1.122 thorpej filter_attach(struct knote *kn) 553 1.122 thorpej { 554 1.122 thorpej int rv; 555 1.122 thorpej 556 1.145 thorpej KASSERT(knote_foplock_owned(kn)); 557 1.122 thorpej KASSERT(kn->kn_fop != NULL); 558 1.122 thorpej KASSERT(kn->kn_fop->f_attach != NULL); 559 1.122 thorpej 560 1.122 thorpej /* 561 1.122 thorpej * N.B. that kn->kn_fop may change as the result of calling 562 1.145 thorpej * f_attach(). After f_attach() returns, kn->kn_fop may not 563 1.145 thorpej * be modified by code outside of klist_fini(). 564 1.122 thorpej */ 565 1.122 thorpej if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 566 1.122 thorpej rv = kn->kn_fop->f_attach(kn); 567 1.122 thorpej } else { 568 1.122 thorpej KERNEL_LOCK(1, NULL); 569 1.122 thorpej rv = kn->kn_fop->f_attach(kn); 570 1.122 thorpej KERNEL_UNLOCK_ONE(NULL); 571 1.122 thorpej } 572 1.122 thorpej 573 1.122 thorpej return rv; 574 1.122 thorpej } 575 1.122 thorpej 576 1.122 thorpej static void 577 1.122 thorpej filter_detach(struct knote *kn) 578 1.122 thorpej { 579 1.145 thorpej 580 1.145 thorpej KASSERT(knote_foplock_owned(kn)); 581 1.122 thorpej KASSERT(kn->kn_fop != NULL); 582 1.122 thorpej KASSERT(kn->kn_fop->f_detach != NULL); 583 1.122 thorpej 584 1.122 thorpej if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 585 1.122 thorpej kn->kn_fop->f_detach(kn); 586 1.122 thorpej } else { 587 1.122 thorpej KERNEL_LOCK(1, NULL); 588 1.122 thorpej kn->kn_fop->f_detach(kn); 589 1.122 thorpej KERNEL_UNLOCK_ONE(NULL); 590 1.122 thorpej } 591 1.122 thorpej } 592 1.122 thorpej 593 1.122 thorpej static int 594 1.145 thorpej filter_event(struct knote *kn, long hint, bool submitting) 595 1.122 thorpej { 596 1.122 thorpej int rv; 597 1.122 thorpej 598 1.145 thorpej /* See knote(). */ 599 1.145 thorpej KASSERT(submitting || knote_foplock_owned(kn)); 600 1.122 thorpej KASSERT(kn->kn_fop != NULL); 601 1.122 thorpej KASSERT(kn->kn_fop->f_event != NULL); 602 1.122 thorpej 603 1.122 thorpej if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 604 1.122 thorpej rv = kn->kn_fop->f_event(kn, hint); 605 1.122 thorpej } else { 606 1.122 thorpej KERNEL_LOCK(1, NULL); 607 1.122 thorpej rv = kn->kn_fop->f_event(kn, hint); 608 1.122 thorpej KERNEL_UNLOCK_ONE(NULL); 609 1.122 thorpej } 610 1.122 thorpej 611 1.122 thorpej return rv; 612 1.122 thorpej } 613 1.122 thorpej 614 1.135 thorpej static int 615 1.122 thorpej filter_touch(struct knote *kn, struct kevent *kev, long type) 616 1.122 thorpej { 617 1.145 thorpej 618 1.145 thorpej /* 619 1.145 thorpej * XXX We cannot assert that the knote foplock is held here 620 1.145 thorpej * XXX beause we cannot safely acquire it in all cases 621 1.145 thorpej * XXX where "touch" will be used in kqueue_scan(). We just 622 1.145 thorpej * XXX have to assume that f_touch will always be safe to call, 623 1.145 thorpej * XXX and kqueue_register() allows only the two known-safe 624 1.145 thorpej * XXX users of that op. 625 1.145 thorpej */ 626 1.145 thorpej 627 1.145 thorpej KASSERT(kn->kn_fop != NULL); 628 1.145 thorpej KASSERT(kn->kn_fop->f_touch != NULL); 629 1.145 thorpej 630 1.135 thorpej return kn->kn_fop->f_touch(kn, kev, type); 631 1.122 thorpej } 632 1.122 thorpej 633 1.66 elad static kauth_listener_t kqueue_listener; 634 1.66 elad 635 1.66 elad static int 636 1.66 elad kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 637 1.66 elad void *arg0, void *arg1, void *arg2, void *arg3) 638 1.66 elad { 639 1.66 elad struct proc *p; 640 1.66 elad int result; 641 1.66 elad 642 1.66 elad result = KAUTH_RESULT_DEFER; 643 1.66 elad p = arg0; 644 1.66 elad 645 1.66 elad if (action != KAUTH_PROCESS_KEVENT_FILTER) 646 1.66 elad return result; 647 1.66 elad 648 1.66 elad if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) || 649 1.66 elad ISSET(p->p_flag, PK_SUGID))) 650 1.66 elad return result; 651 1.66 elad 652 1.66 elad result = KAUTH_RESULT_ALLOW; 653 1.66 elad 654 1.66 elad return result; 655 1.66 elad } 656 1.66 elad 657 1.49 ad /* 658 1.49 ad * Initialize the kqueue subsystem. 659 1.49 ad */ 660 1.49 ad void 661 1.49 ad kqueue_init(void) 662 1.49 ad { 663 1.49 ad 664 1.49 ad rw_init(&kqueue_filter_lock); 665 1.66 elad 666 1.66 elad kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 667 1.66 elad kqueue_listener_cb, NULL); 668 1.49 ad } 669 1.3 jdolecek 670 1.3 jdolecek /* 671 1.3 jdolecek * Find kfilter entry by name, or NULL if not found. 672 1.3 jdolecek */ 673 1.49 ad static struct kfilter * 674 1.3 jdolecek kfilter_byname_sys(const char *name) 675 1.3 jdolecek { 676 1.3 jdolecek int i; 677 1.3 jdolecek 678 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock)); 679 1.49 ad 680 1.3 jdolecek for (i = 0; sys_kfilters[i].name != NULL; i++) { 681 1.3 jdolecek if (strcmp(name, sys_kfilters[i].name) == 0) 682 1.49 ad return &sys_kfilters[i]; 683 1.3 jdolecek } 684 1.49 ad return NULL; 685 1.3 jdolecek } 686 1.3 jdolecek 687 1.3 jdolecek static struct kfilter * 688 1.3 jdolecek kfilter_byname_user(const char *name) 689 1.3 jdolecek { 690 1.3 jdolecek int i; 691 1.3 jdolecek 692 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock)); 693 1.49 ad 694 1.31 seanb /* user filter slots have a NULL name if previously deregistered */ 695 1.31 seanb for (i = 0; i < user_kfilterc ; i++) { 696 1.31 seanb if (user_kfilters[i].name != NULL && 697 1.3 jdolecek strcmp(name, user_kfilters[i].name) == 0) 698 1.49 ad return &user_kfilters[i]; 699 1.3 jdolecek } 700 1.49 ad return NULL; 701 1.3 jdolecek } 702 1.3 jdolecek 703 1.49 ad static struct kfilter * 704 1.3 jdolecek kfilter_byname(const char *name) 705 1.3 jdolecek { 706 1.49 ad struct kfilter *kfilter; 707 1.49 ad 708 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock)); 709 1.3 jdolecek 710 1.3 jdolecek if ((kfilter = kfilter_byname_sys(name)) != NULL) 711 1.49 ad return kfilter; 712 1.3 jdolecek 713 1.49 ad return kfilter_byname_user(name); 714 1.3 jdolecek } 715 1.3 jdolecek 716 1.3 jdolecek /* 717 1.3 jdolecek * Find kfilter entry by filter id, or NULL if not found. 718 1.3 jdolecek * Assumes entries are indexed in filter id order, for speed. 719 1.3 jdolecek */ 720 1.49 ad static struct kfilter * 721 1.3 jdolecek kfilter_byfilter(uint32_t filter) 722 1.3 jdolecek { 723 1.49 ad struct kfilter *kfilter; 724 1.49 ad 725 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock)); 726 1.3 jdolecek 727 1.3 jdolecek if (filter < EVFILT_SYSCOUNT) /* it's a system filter */ 728 1.3 jdolecek kfilter = &sys_kfilters[filter]; 729 1.3 jdolecek else if (user_kfilters != NULL && 730 1.3 jdolecek filter < EVFILT_SYSCOUNT + user_kfilterc) 731 1.3 jdolecek /* it's a user filter */ 732 1.3 jdolecek kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT]; 733 1.3 jdolecek else 734 1.3 jdolecek return (NULL); /* out of range */ 735 1.3 jdolecek KASSERT(kfilter->filter == filter); /* sanity check! */ 736 1.3 jdolecek return (kfilter); 737 1.3 jdolecek } 738 1.3 jdolecek 739 1.3 jdolecek /* 740 1.3 jdolecek * Register a new kfilter. Stores the entry in user_kfilters. 741 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 742 1.3 jdolecek * If retfilter != NULL, the new filterid is returned in it. 743 1.3 jdolecek */ 744 1.3 jdolecek int 745 1.3 jdolecek kfilter_register(const char *name, const struct filterops *filtops, 746 1.49 ad int *retfilter) 747 1.1 lukem { 748 1.3 jdolecek struct kfilter *kfilter; 749 1.49 ad size_t len; 750 1.31 seanb int i; 751 1.3 jdolecek 752 1.3 jdolecek if (name == NULL || name[0] == '\0' || filtops == NULL) 753 1.3 jdolecek return (EINVAL); /* invalid args */ 754 1.49 ad 755 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER); 756 1.49 ad if (kfilter_byname(name) != NULL) { 757 1.49 ad rw_exit(&kqueue_filter_lock); 758 1.3 jdolecek return (EEXIST); /* already exists */ 759 1.49 ad } 760 1.49 ad if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) { 761 1.49 ad rw_exit(&kqueue_filter_lock); 762 1.3 jdolecek return (EINVAL); /* too many */ 763 1.49 ad } 764 1.3 jdolecek 765 1.31 seanb for (i = 0; i < user_kfilterc; i++) { 766 1.31 seanb kfilter = &user_kfilters[i]; 767 1.31 seanb if (kfilter->name == NULL) { 768 1.31 seanb /* Previously deregistered slot. Reuse. */ 769 1.31 seanb goto reuse; 770 1.31 seanb } 771 1.31 seanb } 772 1.31 seanb 773 1.3 jdolecek /* check if need to grow user_kfilters */ 774 1.3 jdolecek if (user_kfilterc + 1 > user_kfiltermaxc) { 775 1.49 ad /* Grow in KFILTER_EXTENT chunks. */ 776 1.3 jdolecek user_kfiltermaxc += KFILTER_EXTENT; 777 1.69 dsl len = user_kfiltermaxc * sizeof(*kfilter); 778 1.49 ad kfilter = kmem_alloc(len, KM_SLEEP); 779 1.49 ad memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz); 780 1.49 ad if (user_kfilters != NULL) { 781 1.49 ad memcpy(kfilter, user_kfilters, user_kfiltersz); 782 1.49 ad kmem_free(user_kfilters, user_kfiltersz); 783 1.49 ad } 784 1.49 ad user_kfiltersz = len; 785 1.3 jdolecek user_kfilters = kfilter; 786 1.3 jdolecek } 787 1.31 seanb /* Adding new slot */ 788 1.31 seanb kfilter = &user_kfilters[user_kfilterc++]; 789 1.31 seanb reuse: 790 1.97 christos kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP); 791 1.3 jdolecek 792 1.31 seanb kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT; 793 1.3 jdolecek 794 1.49 ad kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP); 795 1.49 ad memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops)); 796 1.3 jdolecek 797 1.3 jdolecek if (retfilter != NULL) 798 1.31 seanb *retfilter = kfilter->filter; 799 1.49 ad rw_exit(&kqueue_filter_lock); 800 1.49 ad 801 1.3 jdolecek return (0); 802 1.1 lukem } 803 1.1 lukem 804 1.3 jdolecek /* 805 1.3 jdolecek * Unregister a kfilter previously registered with kfilter_register. 806 1.3 jdolecek * This retains the filter id, but clears the name and frees filtops (filter 807 1.3 jdolecek * operations), so that the number isn't reused during a boot. 808 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 809 1.3 jdolecek */ 810 1.3 jdolecek int 811 1.3 jdolecek kfilter_unregister(const char *name) 812 1.1 lukem { 813 1.3 jdolecek struct kfilter *kfilter; 814 1.3 jdolecek 815 1.3 jdolecek if (name == NULL || name[0] == '\0') 816 1.3 jdolecek return (EINVAL); /* invalid name */ 817 1.3 jdolecek 818 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER); 819 1.49 ad if (kfilter_byname_sys(name) != NULL) { 820 1.49 ad rw_exit(&kqueue_filter_lock); 821 1.3 jdolecek return (EINVAL); /* can't detach system filters */ 822 1.49 ad } 823 1.1 lukem 824 1.3 jdolecek kfilter = kfilter_byname_user(name); 825 1.49 ad if (kfilter == NULL) { 826 1.49 ad rw_exit(&kqueue_filter_lock); 827 1.3 jdolecek return (ENOENT); 828 1.49 ad } 829 1.49 ad if (kfilter->refcnt != 0) { 830 1.49 ad rw_exit(&kqueue_filter_lock); 831 1.49 ad return (EBUSY); 832 1.49 ad } 833 1.1 lukem 834 1.49 ad /* Cast away const (but we know it's safe. */ 835 1.49 ad kmem_free(__UNCONST(kfilter->name), kfilter->namelen); 836 1.31 seanb kfilter->name = NULL; /* mark as `not implemented' */ 837 1.31 seanb 838 1.3 jdolecek if (kfilter->filtops != NULL) { 839 1.49 ad /* Cast away const (but we know it's safe. */ 840 1.49 ad kmem_free(__UNCONST(kfilter->filtops), 841 1.49 ad sizeof(*kfilter->filtops)); 842 1.3 jdolecek kfilter->filtops = NULL; /* mark as `not implemented' */ 843 1.3 jdolecek } 844 1.49 ad rw_exit(&kqueue_filter_lock); 845 1.49 ad 846 1.1 lukem return (0); 847 1.1 lukem } 848 1.1 lukem 849 1.3 jdolecek 850 1.3 jdolecek /* 851 1.3 jdolecek * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file 852 1.49 ad * descriptors. Calls fileops kqfilter method for given file descriptor. 853 1.3 jdolecek */ 854 1.3 jdolecek static int 855 1.3 jdolecek filt_fileattach(struct knote *kn) 856 1.3 jdolecek { 857 1.49 ad file_t *fp; 858 1.49 ad 859 1.49 ad fp = kn->kn_obj; 860 1.3 jdolecek 861 1.49 ad return (*fp->f_ops->fo_kqfilter)(fp, kn); 862 1.3 jdolecek } 863 1.3 jdolecek 864 1.3 jdolecek /* 865 1.3 jdolecek * Filter detach method for EVFILT_READ on kqueue descriptor. 866 1.3 jdolecek */ 867 1.1 lukem static void 868 1.1 lukem filt_kqdetach(struct knote *kn) 869 1.1 lukem { 870 1.3 jdolecek struct kqueue *kq; 871 1.1 lukem 872 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue; 873 1.49 ad 874 1.49 ad mutex_spin_enter(&kq->kq_lock); 875 1.109 thorpej selremove_knote(&kq->kq_sel, kn); 876 1.49 ad mutex_spin_exit(&kq->kq_lock); 877 1.1 lukem } 878 1.1 lukem 879 1.3 jdolecek /* 880 1.3 jdolecek * Filter event method for EVFILT_READ on kqueue descriptor. 881 1.3 jdolecek */ 882 1.1 lukem /*ARGSUSED*/ 883 1.1 lukem static int 884 1.33 yamt filt_kqueue(struct knote *kn, long hint) 885 1.1 lukem { 886 1.3 jdolecek struct kqueue *kq; 887 1.49 ad int rv; 888 1.49 ad 889 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue; 890 1.1 lukem 891 1.49 ad if (hint != NOTE_SUBMIT) 892 1.49 ad mutex_spin_enter(&kq->kq_lock); 893 1.118 jdolecek kn->kn_data = KQ_COUNT(kq); 894 1.49 ad rv = (kn->kn_data > 0); 895 1.49 ad if (hint != NOTE_SUBMIT) 896 1.49 ad mutex_spin_exit(&kq->kq_lock); 897 1.49 ad 898 1.49 ad return rv; 899 1.1 lukem } 900 1.1 lukem 901 1.3 jdolecek /* 902 1.3 jdolecek * Filter attach method for EVFILT_PROC. 903 1.3 jdolecek */ 904 1.1 lukem static int 905 1.1 lukem filt_procattach(struct knote *kn) 906 1.1 lukem { 907 1.78 pooka struct proc *p; 908 1.1 lukem 909 1.107 ad mutex_enter(&proc_lock); 910 1.129 thorpej p = proc_find(kn->kn_id); 911 1.49 ad if (p == NULL) { 912 1.107 ad mutex_exit(&proc_lock); 913 1.49 ad return ESRCH; 914 1.49 ad } 915 1.3 jdolecek 916 1.3 jdolecek /* 917 1.3 jdolecek * Fail if it's not owned by you, or the last exec gave us 918 1.3 jdolecek * setuid/setgid privs (unless you're root). 919 1.3 jdolecek */ 920 1.57 ad mutex_enter(p->p_lock); 921 1.107 ad mutex_exit(&proc_lock); 922 1.129 thorpej if (kauth_authorize_process(curlwp->l_cred, 923 1.119 christos KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) { 924 1.57 ad mutex_exit(p->p_lock); 925 1.49 ad return EACCES; 926 1.49 ad } 927 1.1 lukem 928 1.49 ad kn->kn_obj = p; 929 1.3 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */ 930 1.1 lukem 931 1.1 lukem /* 932 1.129 thorpej * NOTE_CHILD is only ever generated internally; don't let it 933 1.129 thorpej * leak in from user-space. See knote_proc_fork_track(). 934 1.1 lukem */ 935 1.129 thorpej kn->kn_sfflags &= ~NOTE_CHILD; 936 1.129 thorpej 937 1.140 thorpej klist_insert(&p->p_klist, kn); 938 1.57 ad mutex_exit(p->p_lock); 939 1.1 lukem 940 1.49 ad return 0; 941 1.1 lukem } 942 1.1 lukem 943 1.1 lukem /* 944 1.3 jdolecek * Filter detach method for EVFILT_PROC. 945 1.3 jdolecek * 946 1.1 lukem * The knote may be attached to a different process, which may exit, 947 1.1 lukem * leaving nothing for the knote to be attached to. So when the process 948 1.1 lukem * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 949 1.1 lukem * it will be deleted when read out. However, as part of the knote deletion, 950 1.1 lukem * this routine is called, so a check is needed to avoid actually performing 951 1.3 jdolecek * a detach, because the original process might not exist any more. 952 1.1 lukem */ 953 1.1 lukem static void 954 1.1 lukem filt_procdetach(struct knote *kn) 955 1.1 lukem { 956 1.129 thorpej struct kqueue *kq = kn->kn_kq; 957 1.3 jdolecek struct proc *p; 958 1.1 lukem 959 1.129 thorpej /* 960 1.129 thorpej * We have to synchronize with knote_proc_exit(), but we 961 1.129 thorpej * are forced to acquire the locks in the wrong order here 962 1.129 thorpej * because we can't be sure kn->kn_obj is valid unless 963 1.129 thorpej * KN_DETACHED is not set. 964 1.129 thorpej */ 965 1.129 thorpej again: 966 1.129 thorpej mutex_spin_enter(&kq->kq_lock); 967 1.129 thorpej if ((kn->kn_status & KN_DETACHED) == 0) { 968 1.129 thorpej p = kn->kn_obj; 969 1.129 thorpej if (!mutex_tryenter(p->p_lock)) { 970 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 971 1.129 thorpej preempt_point(); 972 1.129 thorpej goto again; 973 1.129 thorpej } 974 1.129 thorpej kn->kn_status |= KN_DETACHED; 975 1.140 thorpej klist_remove(&p->p_klist, kn); 976 1.129 thorpej mutex_exit(p->p_lock); 977 1.129 thorpej } 978 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 979 1.1 lukem } 980 1.1 lukem 981 1.3 jdolecek /* 982 1.3 jdolecek * Filter event method for EVFILT_PROC. 983 1.129 thorpej * 984 1.129 thorpej * Due to some of the complexities of process locking, we have special 985 1.129 thorpej * entry points for delivering knote submissions. filt_proc() is used 986 1.129 thorpej * only to check for activation from kqueue_register() and kqueue_scan(). 987 1.3 jdolecek */ 988 1.1 lukem static int 989 1.1 lukem filt_proc(struct knote *kn, long hint) 990 1.1 lukem { 991 1.129 thorpej struct kqueue *kq = kn->kn_kq; 992 1.129 thorpej uint32_t fflags; 993 1.129 thorpej 994 1.129 thorpej /* 995 1.129 thorpej * Because we share the same klist with signal knotes, just 996 1.129 thorpej * ensure that we're not being invoked for the proc-related 997 1.129 thorpej * submissions. 998 1.129 thorpej */ 999 1.129 thorpej KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0); 1000 1.129 thorpej 1001 1.129 thorpej mutex_spin_enter(&kq->kq_lock); 1002 1.129 thorpej fflags = kn->kn_fflags; 1003 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 1004 1.1 lukem 1005 1.129 thorpej return fflags != 0; 1006 1.129 thorpej } 1007 1.1 lukem 1008 1.129 thorpej void 1009 1.129 thorpej knote_proc_exec(struct proc *p) 1010 1.129 thorpej { 1011 1.129 thorpej struct knote *kn, *tmpkn; 1012 1.129 thorpej struct kqueue *kq; 1013 1.129 thorpej uint32_t fflags; 1014 1.1 lukem 1015 1.129 thorpej mutex_enter(p->p_lock); 1016 1.83 christos 1017 1.129 thorpej SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) { 1018 1.129 thorpej /* N.B. EVFILT_SIGNAL knotes are on this same list. */ 1019 1.129 thorpej if (kn->kn_fop == &sig_filtops) { 1020 1.129 thorpej continue; 1021 1.129 thorpej } 1022 1.129 thorpej KASSERT(kn->kn_fop == &proc_filtops); 1023 1.49 ad 1024 1.129 thorpej kq = kn->kn_kq; 1025 1.49 ad mutex_spin_enter(&kq->kq_lock); 1026 1.129 thorpej fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC)); 1027 1.129 thorpej if (fflags) { 1028 1.133 thorpej knote_activate_locked(kn); 1029 1.129 thorpej } 1030 1.133 thorpej mutex_spin_exit(&kq->kq_lock); 1031 1.129 thorpej } 1032 1.129 thorpej 1033 1.129 thorpej mutex_exit(p->p_lock); 1034 1.129 thorpej } 1035 1.129 thorpej 1036 1.129 thorpej static int __noinline 1037 1.129 thorpej knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn) 1038 1.129 thorpej { 1039 1.129 thorpej struct kqueue *kq = okn->kn_kq; 1040 1.129 thorpej 1041 1.129 thorpej KASSERT(mutex_owned(&kq->kq_lock)); 1042 1.129 thorpej KASSERT(mutex_owned(p1->p_lock)); 1043 1.129 thorpej 1044 1.129 thorpej /* 1045 1.129 thorpej * We're going to put this knote into flux while we drop 1046 1.129 thorpej * the locks and create and attach a new knote to track the 1047 1.129 thorpej * child. If we are not able to enter flux, then this knote 1048 1.129 thorpej * is about to go away, so skip the notification. 1049 1.129 thorpej */ 1050 1.129 thorpej if (!kn_enter_flux(okn)) { 1051 1.129 thorpej return 0; 1052 1.129 thorpej } 1053 1.129 thorpej 1054 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 1055 1.129 thorpej mutex_exit(p1->p_lock); 1056 1.49 ad 1057 1.129 thorpej /* 1058 1.129 thorpej * We actually have to register *two* new knotes: 1059 1.129 thorpej * 1060 1.129 thorpej * ==> One for the NOTE_CHILD notification. This is a forced 1061 1.129 thorpej * ONESHOT note. 1062 1.129 thorpej * 1063 1.129 thorpej * ==> One to actually track the child process as it subsequently 1064 1.129 thorpej * forks, execs, and, ultimately, exits. 1065 1.129 thorpej * 1066 1.129 thorpej * If we only register a single knote, then it's possible for 1067 1.129 thorpej * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single 1068 1.129 thorpej * notification if the child exits before the tracking process 1069 1.129 thorpej * has received the NOTE_CHILD notification, which applications 1070 1.129 thorpej * aren't expecting (the event's 'data' field would be clobbered, 1071 1.141 andvar * for example). 1072 1.129 thorpej * 1073 1.129 thorpej * To do this, what we have here is an **extremely** stripped-down 1074 1.129 thorpej * version of kqueue_register() that has the following properties: 1075 1.129 thorpej * 1076 1.129 thorpej * ==> Does not block to allocate memory. If we are unable 1077 1.129 thorpej * to allocate memory, we return ENOMEM. 1078 1.129 thorpej * 1079 1.129 thorpej * ==> Does not search for existing knotes; we know there 1080 1.129 thorpej * are not any because this is a new process that isn't 1081 1.129 thorpej * even visible to other processes yet. 1082 1.129 thorpej * 1083 1.129 thorpej * ==> Assumes that the knhash for our kq's descriptor table 1084 1.129 thorpej * already exists (after all, we're already tracking 1085 1.129 thorpej * processes with knotes if we got here). 1086 1.129 thorpej * 1087 1.129 thorpej * ==> Directly attaches the new tracking knote to the child 1088 1.129 thorpej * process. 1089 1.129 thorpej * 1090 1.129 thorpej * The whole point is to do the minimum amount of work while the 1091 1.129 thorpej * knote is held in-flux, and to avoid doing extra work in general 1092 1.129 thorpej * (we already have the new child process; why bother looking it 1093 1.129 thorpej * up again?). 1094 1.129 thorpej */ 1095 1.129 thorpej filedesc_t *fdp = kq->kq_fdp; 1096 1.129 thorpej struct knote *knchild, *kntrack; 1097 1.129 thorpej int error = 0; 1098 1.129 thorpej 1099 1.142 thorpej knchild = knote_alloc(false); 1100 1.142 thorpej kntrack = knote_alloc(false); 1101 1.129 thorpej if (__predict_false(knchild == NULL || kntrack == NULL)) { 1102 1.129 thorpej error = ENOMEM; 1103 1.129 thorpej goto out; 1104 1.129 thorpej } 1105 1.129 thorpej 1106 1.129 thorpej kntrack->kn_obj = p2; 1107 1.129 thorpej kntrack->kn_id = p2->p_pid; 1108 1.129 thorpej kntrack->kn_kq = kq; 1109 1.129 thorpej kntrack->kn_fop = okn->kn_fop; 1110 1.129 thorpej kntrack->kn_kfilter = okn->kn_kfilter; 1111 1.129 thorpej kntrack->kn_sfflags = okn->kn_sfflags; 1112 1.129 thorpej kntrack->kn_sdata = p1->p_pid; 1113 1.129 thorpej 1114 1.129 thorpej kntrack->kn_kevent.ident = p2->p_pid; 1115 1.129 thorpej kntrack->kn_kevent.filter = okn->kn_filter; 1116 1.129 thorpej kntrack->kn_kevent.flags = 1117 1.129 thorpej okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR; 1118 1.129 thorpej kntrack->kn_kevent.fflags = 0; 1119 1.129 thorpej kntrack->kn_kevent.data = 0; 1120 1.129 thorpej kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */ 1121 1.129 thorpej 1122 1.129 thorpej /* 1123 1.129 thorpej * The child note does not need to be attached to the 1124 1.129 thorpej * new proc's klist at all. 1125 1.129 thorpej */ 1126 1.129 thorpej *knchild = *kntrack; 1127 1.129 thorpej knchild->kn_status = KN_DETACHED; 1128 1.129 thorpej knchild->kn_sfflags = 0; 1129 1.129 thorpej knchild->kn_kevent.flags |= EV_ONESHOT; 1130 1.129 thorpej knchild->kn_kevent.fflags = NOTE_CHILD; 1131 1.129 thorpej knchild->kn_kevent.data = p1->p_pid; /* parent */ 1132 1.129 thorpej 1133 1.129 thorpej mutex_enter(&fdp->fd_lock); 1134 1.129 thorpej 1135 1.129 thorpej /* 1136 1.129 thorpej * We need to check to see if the kq is closing, and skip 1137 1.129 thorpej * attaching the knote if so. Normally, this isn't necessary 1138 1.129 thorpej * when coming in the front door because the file descriptor 1139 1.129 thorpej * layer will synchronize this. 1140 1.129 thorpej * 1141 1.129 thorpej * It's safe to test KQ_CLOSING without taking the kq_lock 1142 1.129 thorpej * here because that flag is only ever set when the fd_lock 1143 1.129 thorpej * is also held. 1144 1.129 thorpej */ 1145 1.129 thorpej if (__predict_false(kq->kq_count & KQ_CLOSING)) { 1146 1.129 thorpej mutex_exit(&fdp->fd_lock); 1147 1.129 thorpej goto out; 1148 1.1 lukem } 1149 1.1 lukem 1150 1.129 thorpej /* 1151 1.129 thorpej * We do the "insert into FD table" and "attach to klist" steps 1152 1.129 thorpej * in the opposite order of kqueue_register() here to avoid 1153 1.129 thorpej * having to take p2->p_lock twice. But this is OK because we 1154 1.129 thorpej * hold fd_lock across the entire operation. 1155 1.129 thorpej */ 1156 1.129 thorpej 1157 1.129 thorpej mutex_enter(p2->p_lock); 1158 1.129 thorpej error = kauth_authorize_process(curlwp->l_cred, 1159 1.129 thorpej KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL); 1160 1.129 thorpej if (__predict_false(error != 0)) { 1161 1.129 thorpej mutex_exit(p2->p_lock); 1162 1.129 thorpej mutex_exit(&fdp->fd_lock); 1163 1.129 thorpej error = EACCES; 1164 1.129 thorpej goto out; 1165 1.129 thorpej } 1166 1.140 thorpej klist_insert(&p2->p_klist, kntrack); 1167 1.129 thorpej mutex_exit(p2->p_lock); 1168 1.129 thorpej 1169 1.129 thorpej KASSERT(fdp->fd_knhashmask != 0); 1170 1.129 thorpej KASSERT(fdp->fd_knhash != NULL); 1171 1.129 thorpej struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id, 1172 1.129 thorpej fdp->fd_knhashmask)]; 1173 1.129 thorpej SLIST_INSERT_HEAD(list, kntrack, kn_link); 1174 1.129 thorpej SLIST_INSERT_HEAD(list, knchild, kn_link); 1175 1.129 thorpej 1176 1.129 thorpej /* This adds references for knchild *and* kntrack. */ 1177 1.129 thorpej atomic_add_int(&kntrack->kn_kfilter->refcnt, 2); 1178 1.129 thorpej 1179 1.129 thorpej knote_activate(knchild); 1180 1.129 thorpej 1181 1.129 thorpej kntrack = NULL; 1182 1.129 thorpej knchild = NULL; 1183 1.129 thorpej 1184 1.129 thorpej mutex_exit(&fdp->fd_lock); 1185 1.129 thorpej 1186 1.129 thorpej out: 1187 1.129 thorpej if (__predict_false(knchild != NULL)) { 1188 1.142 thorpej knote_free(knchild); 1189 1.129 thorpej } 1190 1.129 thorpej if (__predict_false(kntrack != NULL)) { 1191 1.142 thorpej knote_free(kntrack); 1192 1.129 thorpej } 1193 1.129 thorpej mutex_enter(p1->p_lock); 1194 1.49 ad mutex_spin_enter(&kq->kq_lock); 1195 1.129 thorpej 1196 1.129 thorpej if (kn_leave_flux(okn)) { 1197 1.129 thorpej KQ_FLUX_WAKEUP(kq); 1198 1.129 thorpej } 1199 1.129 thorpej 1200 1.129 thorpej return error; 1201 1.129 thorpej } 1202 1.129 thorpej 1203 1.129 thorpej void 1204 1.129 thorpej knote_proc_fork(struct proc *p1, struct proc *p2) 1205 1.129 thorpej { 1206 1.129 thorpej struct knote *kn; 1207 1.129 thorpej struct kqueue *kq; 1208 1.129 thorpej uint32_t fflags; 1209 1.129 thorpej 1210 1.129 thorpej mutex_enter(p1->p_lock); 1211 1.129 thorpej 1212 1.129 thorpej /* 1213 1.129 thorpej * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we 1214 1.129 thorpej * don't want to pre-fetch the next knote; in the event we 1215 1.129 thorpej * have to drop p_lock, we will have put the knote in-flux, 1216 1.129 thorpej * meaning that no one will be able to detach it until we 1217 1.129 thorpej * have taken the knote out of flux. However, that does 1218 1.129 thorpej * NOT stop someone else from detaching the next note in the 1219 1.129 thorpej * list while we have it unlocked. Thus, we want to fetch 1220 1.129 thorpej * the next note in the list only after we have re-acquired 1221 1.129 thorpej * the lock, and using SLIST_FOREACH() will satisfy that. 1222 1.129 thorpej */ 1223 1.129 thorpej SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) { 1224 1.129 thorpej /* N.B. EVFILT_SIGNAL knotes are on this same list. */ 1225 1.129 thorpej if (kn->kn_fop == &sig_filtops) { 1226 1.129 thorpej continue; 1227 1.129 thorpej } 1228 1.129 thorpej KASSERT(kn->kn_fop == &proc_filtops); 1229 1.129 thorpej 1230 1.129 thorpej kq = kn->kn_kq; 1231 1.129 thorpej mutex_spin_enter(&kq->kq_lock); 1232 1.129 thorpej kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK); 1233 1.129 thorpej if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) { 1234 1.129 thorpej /* 1235 1.129 thorpej * This will drop kq_lock and p_lock and 1236 1.129 thorpej * re-acquire them before it returns. 1237 1.129 thorpej */ 1238 1.129 thorpej if (knote_proc_fork_track(p1, p2, kn)) { 1239 1.129 thorpej kn->kn_fflags |= NOTE_TRACKERR; 1240 1.129 thorpej } 1241 1.129 thorpej KASSERT(mutex_owned(p1->p_lock)); 1242 1.129 thorpej KASSERT(mutex_owned(&kq->kq_lock)); 1243 1.129 thorpej } 1244 1.129 thorpej fflags = kn->kn_fflags; 1245 1.129 thorpej if (fflags) { 1246 1.133 thorpej knote_activate_locked(kn); 1247 1.129 thorpej } 1248 1.133 thorpej mutex_spin_exit(&kq->kq_lock); 1249 1.129 thorpej } 1250 1.129 thorpej 1251 1.129 thorpej mutex_exit(p1->p_lock); 1252 1.129 thorpej } 1253 1.129 thorpej 1254 1.129 thorpej void 1255 1.129 thorpej knote_proc_exit(struct proc *p) 1256 1.129 thorpej { 1257 1.129 thorpej struct knote *kn; 1258 1.129 thorpej struct kqueue *kq; 1259 1.129 thorpej 1260 1.129 thorpej KASSERT(mutex_owned(p->p_lock)); 1261 1.129 thorpej 1262 1.129 thorpej while (!SLIST_EMPTY(&p->p_klist)) { 1263 1.129 thorpej kn = SLIST_FIRST(&p->p_klist); 1264 1.129 thorpej kq = kn->kn_kq; 1265 1.129 thorpej 1266 1.129 thorpej KASSERT(kn->kn_obj == p); 1267 1.129 thorpej 1268 1.129 thorpej mutex_spin_enter(&kq->kq_lock); 1269 1.129 thorpej kn->kn_data = P_WAITSTATUS(p); 1270 1.129 thorpej /* 1271 1.129 thorpej * Mark as ONESHOT, so that the knote is g/c'ed 1272 1.129 thorpej * when read. 1273 1.129 thorpej */ 1274 1.129 thorpej kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1275 1.129 thorpej kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT; 1276 1.129 thorpej 1277 1.1 lukem /* 1278 1.129 thorpej * Detach the knote from the process and mark it as such. 1279 1.129 thorpej * N.B. EVFILT_SIGNAL are also on p_klist, but by the 1280 1.129 thorpej * time we get here, all open file descriptors for this 1281 1.129 thorpej * process have been released, meaning that signal knotes 1282 1.129 thorpej * will have already been detached. 1283 1.129 thorpej * 1284 1.129 thorpej * We need to synchronize this with filt_procdetach(). 1285 1.1 lukem */ 1286 1.129 thorpej KASSERT(kn->kn_fop == &proc_filtops); 1287 1.129 thorpej if ((kn->kn_status & KN_DETACHED) == 0) { 1288 1.129 thorpej kn->kn_status |= KN_DETACHED; 1289 1.129 thorpej SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext); 1290 1.129 thorpej } 1291 1.129 thorpej 1292 1.129 thorpej /* 1293 1.129 thorpej * Always activate the knote for NOTE_EXIT regardless 1294 1.129 thorpej * of whether or not the listener cares about it. 1295 1.129 thorpej * This matches historical behavior. 1296 1.129 thorpej */ 1297 1.133 thorpej knote_activate_locked(kn); 1298 1.133 thorpej mutex_spin_exit(&kq->kq_lock); 1299 1.1 lukem } 1300 1.8 jdolecek } 1301 1.8 jdolecek 1302 1.133 thorpej #define FILT_TIMER_NOSCHED ((uintptr_t)-1) 1303 1.133 thorpej 1304 1.8 jdolecek static int 1305 1.134 thorpej filt_timercompute(struct kevent *kev, uintptr_t *tticksp) 1306 1.8 jdolecek { 1307 1.132 thorpej struct timespec ts; 1308 1.134 thorpej uintptr_t tticks; 1309 1.132 thorpej 1310 1.134 thorpej if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) { 1311 1.132 thorpej return EINVAL; 1312 1.132 thorpej } 1313 1.132 thorpej 1314 1.132 thorpej /* 1315 1.132 thorpej * Convert the event 'data' to a timespec, then convert the 1316 1.132 thorpej * timespec to callout ticks. 1317 1.132 thorpej */ 1318 1.134 thorpej switch (kev->fflags & NOTE_TIMER_UNITMASK) { 1319 1.132 thorpej case NOTE_SECONDS: 1320 1.134 thorpej ts.tv_sec = kev->data; 1321 1.132 thorpej ts.tv_nsec = 0; 1322 1.132 thorpej break; 1323 1.132 thorpej 1324 1.132 thorpej case NOTE_MSECONDS: /* == historical value 0 */ 1325 1.134 thorpej ts.tv_sec = kev->data / 1000; 1326 1.134 thorpej ts.tv_nsec = (kev->data % 1000) * 1000000; 1327 1.132 thorpej break; 1328 1.132 thorpej 1329 1.132 thorpej case NOTE_USECONDS: 1330 1.134 thorpej ts.tv_sec = kev->data / 1000000; 1331 1.134 thorpej ts.tv_nsec = (kev->data % 1000000) * 1000; 1332 1.132 thorpej break; 1333 1.132 thorpej 1334 1.132 thorpej case NOTE_NSECONDS: 1335 1.134 thorpej ts.tv_sec = kev->data / 1000000000; 1336 1.134 thorpej ts.tv_nsec = kev->data % 1000000000; 1337 1.132 thorpej break; 1338 1.132 thorpej 1339 1.132 thorpej default: 1340 1.132 thorpej return EINVAL; 1341 1.132 thorpej } 1342 1.132 thorpej 1343 1.134 thorpej if (kev->fflags & NOTE_ABSTIME) { 1344 1.132 thorpej struct timespec deadline = ts; 1345 1.132 thorpej 1346 1.132 thorpej /* 1347 1.132 thorpej * Get current time. 1348 1.132 thorpej * 1349 1.132 thorpej * XXX This is CLOCK_REALTIME. There is no way to 1350 1.132 thorpej * XXX specify CLOCK_MONOTONIC. 1351 1.132 thorpej */ 1352 1.132 thorpej nanotime(&ts); 1353 1.8 jdolecek 1354 1.134 thorpej /* Absolute timers do not repeat. */ 1355 1.134 thorpej kev->data = FILT_TIMER_NOSCHED; 1356 1.134 thorpej 1357 1.132 thorpej /* If we're past the deadline, then the event will fire. */ 1358 1.132 thorpej if (timespeccmp(&deadline, &ts, <=)) { 1359 1.134 thorpej tticks = FILT_TIMER_NOSCHED; 1360 1.134 thorpej goto out; 1361 1.132 thorpej } 1362 1.132 thorpej 1363 1.132 thorpej /* Calculate how much time is left. */ 1364 1.132 thorpej timespecsub(&deadline, &ts, &ts); 1365 1.132 thorpej } else { 1366 1.132 thorpej /* EV_CLEAR automatically set for relative timers. */ 1367 1.134 thorpej kev->flags |= EV_CLEAR; 1368 1.132 thorpej } 1369 1.132 thorpej 1370 1.132 thorpej tticks = tstohz(&ts); 1371 1.8 jdolecek 1372 1.8 jdolecek /* if the supplied value is under our resolution, use 1 tick */ 1373 1.8 jdolecek if (tticks == 0) { 1374 1.134 thorpej if (kev->data == 0) 1375 1.49 ad return EINVAL; 1376 1.8 jdolecek tticks = 1; 1377 1.134 thorpej } else if (tticks > INT_MAX) { 1378 1.134 thorpej return EINVAL; 1379 1.8 jdolecek } 1380 1.8 jdolecek 1381 1.134 thorpej if ((kev->flags & EV_ONESHOT) != 0) { 1382 1.132 thorpej /* Timer does not repeat. */ 1383 1.134 thorpej kev->data = FILT_TIMER_NOSCHED; 1384 1.132 thorpej } else { 1385 1.133 thorpej KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED); 1386 1.134 thorpej kev->data = tticks; 1387 1.134 thorpej } 1388 1.134 thorpej 1389 1.134 thorpej out: 1390 1.134 thorpej *tticksp = tticks; 1391 1.134 thorpej 1392 1.134 thorpej return 0; 1393 1.134 thorpej } 1394 1.134 thorpej 1395 1.134 thorpej static void 1396 1.134 thorpej filt_timerexpire(void *knx) 1397 1.134 thorpej { 1398 1.134 thorpej struct knote *kn = knx; 1399 1.134 thorpej struct kqueue *kq = kn->kn_kq; 1400 1.134 thorpej 1401 1.134 thorpej mutex_spin_enter(&kq->kq_lock); 1402 1.134 thorpej kn->kn_data++; 1403 1.134 thorpej knote_activate_locked(kn); 1404 1.134 thorpej if (kn->kn_sdata != FILT_TIMER_NOSCHED) { 1405 1.147 riastrad KASSERT(kn->kn_sdata > 0); 1406 1.147 riastrad KASSERT(kn->kn_sdata <= INT_MAX); 1407 1.134 thorpej callout_schedule((callout_t *)kn->kn_hook, 1408 1.134 thorpej (int)kn->kn_sdata); 1409 1.134 thorpej } 1410 1.134 thorpej mutex_spin_exit(&kq->kq_lock); 1411 1.134 thorpej } 1412 1.134 thorpej 1413 1.136 thorpej static inline void 1414 1.136 thorpej filt_timerstart(struct knote *kn, uintptr_t tticks) 1415 1.136 thorpej { 1416 1.136 thorpej callout_t *calloutp = kn->kn_hook; 1417 1.136 thorpej 1418 1.136 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 1419 1.136 thorpej KASSERT(!callout_pending(calloutp)); 1420 1.136 thorpej 1421 1.136 thorpej if (__predict_false(tticks == FILT_TIMER_NOSCHED)) { 1422 1.136 thorpej kn->kn_data = 1; 1423 1.136 thorpej } else { 1424 1.136 thorpej KASSERT(tticks <= INT_MAX); 1425 1.136 thorpej callout_reset(calloutp, (int)tticks, filt_timerexpire, kn); 1426 1.136 thorpej } 1427 1.136 thorpej } 1428 1.136 thorpej 1429 1.134 thorpej static int 1430 1.134 thorpej filt_timerattach(struct knote *kn) 1431 1.134 thorpej { 1432 1.134 thorpej callout_t *calloutp; 1433 1.134 thorpej struct kqueue *kq; 1434 1.134 thorpej uintptr_t tticks; 1435 1.134 thorpej int error; 1436 1.134 thorpej 1437 1.134 thorpej struct kevent kev = { 1438 1.134 thorpej .flags = kn->kn_flags, 1439 1.134 thorpej .fflags = kn->kn_sfflags, 1440 1.134 thorpej .data = kn->kn_sdata, 1441 1.134 thorpej }; 1442 1.134 thorpej 1443 1.134 thorpej error = filt_timercompute(&kev, &tticks); 1444 1.134 thorpej if (error) { 1445 1.134 thorpej return error; 1446 1.132 thorpej } 1447 1.132 thorpej 1448 1.49 ad if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax || 1449 1.49 ad (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) { 1450 1.49 ad atomic_dec_uint(&kq_ncallouts); 1451 1.49 ad return ENOMEM; 1452 1.49 ad } 1453 1.54 ad callout_init(calloutp, CALLOUT_MPSAFE); 1454 1.49 ad 1455 1.49 ad kq = kn->kn_kq; 1456 1.49 ad mutex_spin_enter(&kq->kq_lock); 1457 1.134 thorpej 1458 1.134 thorpej kn->kn_sdata = kev.data; 1459 1.134 thorpej kn->kn_flags = kev.flags; 1460 1.134 thorpej KASSERT(kn->kn_sfflags == kev.fflags); 1461 1.49 ad kn->kn_hook = calloutp; 1462 1.134 thorpej 1463 1.136 thorpej filt_timerstart(kn, tticks); 1464 1.134 thorpej 1465 1.49 ad mutex_spin_exit(&kq->kq_lock); 1466 1.49 ad 1467 1.8 jdolecek return (0); 1468 1.8 jdolecek } 1469 1.8 jdolecek 1470 1.8 jdolecek static void 1471 1.8 jdolecek filt_timerdetach(struct knote *kn) 1472 1.8 jdolecek { 1473 1.39 ad callout_t *calloutp; 1474 1.103 christos struct kqueue *kq = kn->kn_kq; 1475 1.103 christos 1476 1.133 thorpej /* prevent rescheduling when we expire */ 1477 1.103 christos mutex_spin_enter(&kq->kq_lock); 1478 1.133 thorpej kn->kn_sdata = FILT_TIMER_NOSCHED; 1479 1.103 christos mutex_spin_exit(&kq->kq_lock); 1480 1.8 jdolecek 1481 1.39 ad calloutp = (callout_t *)kn->kn_hook; 1482 1.125 thorpej 1483 1.125 thorpej /* 1484 1.125 thorpej * Attempt to stop the callout. This will block if it's 1485 1.125 thorpej * already running. 1486 1.125 thorpej */ 1487 1.55 ad callout_halt(calloutp, NULL); 1488 1.125 thorpej 1489 1.39 ad callout_destroy(calloutp); 1490 1.49 ad kmem_free(calloutp, sizeof(*calloutp)); 1491 1.49 ad atomic_dec_uint(&kq_ncallouts); 1492 1.8 jdolecek } 1493 1.8 jdolecek 1494 1.8 jdolecek static int 1495 1.136 thorpej filt_timertouch(struct knote *kn, struct kevent *kev, long type) 1496 1.136 thorpej { 1497 1.136 thorpej struct kqueue *kq = kn->kn_kq; 1498 1.136 thorpej callout_t *calloutp; 1499 1.136 thorpej uintptr_t tticks; 1500 1.136 thorpej int error; 1501 1.136 thorpej 1502 1.136 thorpej KASSERT(mutex_owned(&kq->kq_lock)); 1503 1.136 thorpej 1504 1.136 thorpej switch (type) { 1505 1.136 thorpej case EVENT_REGISTER: 1506 1.136 thorpej /* Only relevant for EV_ADD. */ 1507 1.136 thorpej if ((kev->flags & EV_ADD) == 0) { 1508 1.136 thorpej return 0; 1509 1.136 thorpej } 1510 1.136 thorpej 1511 1.136 thorpej /* 1512 1.136 thorpej * Stop the timer, under the assumption that if 1513 1.136 thorpej * an application is re-configuring the timer, 1514 1.136 thorpej * they no longer care about the old one. We 1515 1.136 thorpej * can safely drop the kq_lock while we wait 1516 1.136 thorpej * because fdp->fd_lock will be held throughout, 1517 1.136 thorpej * ensuring that no one can sneak in with an 1518 1.136 thorpej * EV_DELETE or close the kq. 1519 1.136 thorpej */ 1520 1.136 thorpej KASSERT(mutex_owned(&kq->kq_fdp->fd_lock)); 1521 1.136 thorpej 1522 1.136 thorpej calloutp = kn->kn_hook; 1523 1.136 thorpej callout_halt(calloutp, &kq->kq_lock); 1524 1.136 thorpej KASSERT(mutex_owned(&kq->kq_lock)); 1525 1.136 thorpej knote_deactivate_locked(kn); 1526 1.136 thorpej kn->kn_data = 0; 1527 1.136 thorpej 1528 1.136 thorpej error = filt_timercompute(kev, &tticks); 1529 1.136 thorpej if (error) { 1530 1.136 thorpej return error; 1531 1.136 thorpej } 1532 1.136 thorpej kn->kn_sdata = kev->data; 1533 1.136 thorpej kn->kn_flags = kev->flags; 1534 1.136 thorpej kn->kn_sfflags = kev->fflags; 1535 1.136 thorpej filt_timerstart(kn, tticks); 1536 1.136 thorpej break; 1537 1.136 thorpej 1538 1.136 thorpej case EVENT_PROCESS: 1539 1.136 thorpej *kev = kn->kn_kevent; 1540 1.136 thorpej break; 1541 1.136 thorpej 1542 1.136 thorpej default: 1543 1.136 thorpej panic("%s: invalid type (%ld)", __func__, type); 1544 1.136 thorpej } 1545 1.136 thorpej 1546 1.136 thorpej return 0; 1547 1.136 thorpej } 1548 1.136 thorpej 1549 1.136 thorpej static int 1550 1.33 yamt filt_timer(struct knote *kn, long hint) 1551 1.8 jdolecek { 1552 1.133 thorpej struct kqueue *kq = kn->kn_kq; 1553 1.49 ad int rv; 1554 1.49 ad 1555 1.133 thorpej mutex_spin_enter(&kq->kq_lock); 1556 1.49 ad rv = (kn->kn_data != 0); 1557 1.133 thorpej mutex_spin_exit(&kq->kq_lock); 1558 1.49 ad 1559 1.49 ad return rv; 1560 1.1 lukem } 1561 1.1 lukem 1562 1.108 christos static int 1563 1.108 christos filt_userattach(struct knote *kn) 1564 1.108 christos { 1565 1.108 christos struct kqueue *kq = kn->kn_kq; 1566 1.108 christos 1567 1.108 christos /* 1568 1.108 christos * EVFILT_USER knotes are not attached to anything in the kernel. 1569 1.108 christos */ 1570 1.108 christos mutex_spin_enter(&kq->kq_lock); 1571 1.108 christos kn->kn_hook = NULL; 1572 1.108 christos if (kn->kn_fflags & NOTE_TRIGGER) 1573 1.108 christos kn->kn_hookid = 1; 1574 1.108 christos else 1575 1.108 christos kn->kn_hookid = 0; 1576 1.108 christos mutex_spin_exit(&kq->kq_lock); 1577 1.108 christos return (0); 1578 1.108 christos } 1579 1.108 christos 1580 1.108 christos static void 1581 1.108 christos filt_userdetach(struct knote *kn) 1582 1.108 christos { 1583 1.108 christos 1584 1.108 christos /* 1585 1.108 christos * EVFILT_USER knotes are not attached to anything in the kernel. 1586 1.108 christos */ 1587 1.108 christos } 1588 1.108 christos 1589 1.108 christos static int 1590 1.108 christos filt_user(struct knote *kn, long hint) 1591 1.108 christos { 1592 1.108 christos struct kqueue *kq = kn->kn_kq; 1593 1.108 christos int hookid; 1594 1.108 christos 1595 1.108 christos mutex_spin_enter(&kq->kq_lock); 1596 1.108 christos hookid = kn->kn_hookid; 1597 1.108 christos mutex_spin_exit(&kq->kq_lock); 1598 1.108 christos 1599 1.108 christos return hookid; 1600 1.108 christos } 1601 1.108 christos 1602 1.135 thorpej static int 1603 1.108 christos filt_usertouch(struct knote *kn, struct kevent *kev, long type) 1604 1.108 christos { 1605 1.108 christos int ffctrl; 1606 1.108 christos 1607 1.117 skrll KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 1608 1.116 jdolecek 1609 1.108 christos switch (type) { 1610 1.108 christos case EVENT_REGISTER: 1611 1.108 christos if (kev->fflags & NOTE_TRIGGER) 1612 1.108 christos kn->kn_hookid = 1; 1613 1.108 christos 1614 1.108 christos ffctrl = kev->fflags & NOTE_FFCTRLMASK; 1615 1.108 christos kev->fflags &= NOTE_FFLAGSMASK; 1616 1.108 christos switch (ffctrl) { 1617 1.108 christos case NOTE_FFNOP: 1618 1.108 christos break; 1619 1.108 christos 1620 1.108 christos case NOTE_FFAND: 1621 1.108 christos kn->kn_sfflags &= kev->fflags; 1622 1.108 christos break; 1623 1.108 christos 1624 1.108 christos case NOTE_FFOR: 1625 1.108 christos kn->kn_sfflags |= kev->fflags; 1626 1.108 christos break; 1627 1.108 christos 1628 1.108 christos case NOTE_FFCOPY: 1629 1.108 christos kn->kn_sfflags = kev->fflags; 1630 1.108 christos break; 1631 1.108 christos 1632 1.108 christos default: 1633 1.108 christos /* XXX Return error? */ 1634 1.108 christos break; 1635 1.108 christos } 1636 1.108 christos kn->kn_sdata = kev->data; 1637 1.108 christos if (kev->flags & EV_CLEAR) { 1638 1.108 christos kn->kn_hookid = 0; 1639 1.108 christos kn->kn_data = 0; 1640 1.108 christos kn->kn_fflags = 0; 1641 1.108 christos } 1642 1.108 christos break; 1643 1.108 christos 1644 1.108 christos case EVENT_PROCESS: 1645 1.108 christos *kev = kn->kn_kevent; 1646 1.108 christos kev->fflags = kn->kn_sfflags; 1647 1.108 christos kev->data = kn->kn_sdata; 1648 1.108 christos if (kn->kn_flags & EV_CLEAR) { 1649 1.108 christos kn->kn_hookid = 0; 1650 1.108 christos kn->kn_data = 0; 1651 1.108 christos kn->kn_fflags = 0; 1652 1.108 christos } 1653 1.108 christos break; 1654 1.108 christos 1655 1.108 christos default: 1656 1.108 christos panic("filt_usertouch() - invalid type (%ld)", type); 1657 1.108 christos break; 1658 1.108 christos } 1659 1.135 thorpej 1660 1.135 thorpej return 0; 1661 1.108 christos } 1662 1.108 christos 1663 1.102 christos /* 1664 1.3 jdolecek * filt_seltrue: 1665 1.3 jdolecek * 1666 1.3 jdolecek * This filter "event" routine simulates seltrue(). 1667 1.3 jdolecek */ 1668 1.1 lukem int 1669 1.33 yamt filt_seltrue(struct knote *kn, long hint) 1670 1.1 lukem { 1671 1.1 lukem 1672 1.3 jdolecek /* 1673 1.3 jdolecek * We don't know how much data can be read/written, 1674 1.3 jdolecek * but we know that it *can* be. This is about as 1675 1.3 jdolecek * good as select/poll does as well. 1676 1.3 jdolecek */ 1677 1.3 jdolecek kn->kn_data = 0; 1678 1.3 jdolecek return (1); 1679 1.3 jdolecek } 1680 1.3 jdolecek 1681 1.3 jdolecek /* 1682 1.3 jdolecek * This provides full kqfilter entry for device switch tables, which 1683 1.3 jdolecek * has same effect as filter using filt_seltrue() as filter method. 1684 1.3 jdolecek */ 1685 1.3 jdolecek static void 1686 1.33 yamt filt_seltruedetach(struct knote *kn) 1687 1.3 jdolecek { 1688 1.3 jdolecek /* Nothing to do */ 1689 1.3 jdolecek } 1690 1.3 jdolecek 1691 1.96 maya const struct filterops seltrue_filtops = { 1692 1.123 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 1693 1.96 maya .f_attach = NULL, 1694 1.96 maya .f_detach = filt_seltruedetach, 1695 1.96 maya .f_event = filt_seltrue, 1696 1.96 maya }; 1697 1.3 jdolecek 1698 1.3 jdolecek int 1699 1.33 yamt seltrue_kqfilter(dev_t dev, struct knote *kn) 1700 1.3 jdolecek { 1701 1.3 jdolecek switch (kn->kn_filter) { 1702 1.3 jdolecek case EVFILT_READ: 1703 1.3 jdolecek case EVFILT_WRITE: 1704 1.3 jdolecek kn->kn_fop = &seltrue_filtops; 1705 1.3 jdolecek break; 1706 1.3 jdolecek default: 1707 1.43 pooka return (EINVAL); 1708 1.3 jdolecek } 1709 1.3 jdolecek 1710 1.3 jdolecek /* Nothing more to do */ 1711 1.3 jdolecek return (0); 1712 1.3 jdolecek } 1713 1.3 jdolecek 1714 1.3 jdolecek /* 1715 1.3 jdolecek * kqueue(2) system call. 1716 1.3 jdolecek */ 1717 1.72 christos static int 1718 1.72 christos kqueue1(struct lwp *l, int flags, register_t *retval) 1719 1.3 jdolecek { 1720 1.49 ad struct kqueue *kq; 1721 1.49 ad file_t *fp; 1722 1.49 ad int fd, error; 1723 1.3 jdolecek 1724 1.49 ad if ((error = fd_allocfile(&fp, &fd)) != 0) 1725 1.49 ad return error; 1726 1.75 christos fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE)); 1727 1.1 lukem fp->f_type = DTYPE_KQUEUE; 1728 1.1 lukem fp->f_ops = &kqueueops; 1729 1.49 ad kq = kmem_zalloc(sizeof(*kq), KM_SLEEP); 1730 1.49 ad mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED); 1731 1.49 ad cv_init(&kq->kq_cv, "kqueue"); 1732 1.49 ad selinit(&kq->kq_sel); 1733 1.1 lukem TAILQ_INIT(&kq->kq_head); 1734 1.82 matt fp->f_kqueue = kq; 1735 1.3 jdolecek *retval = fd; 1736 1.49 ad kq->kq_fdp = curlwp->l_fd; 1737 1.72 christos fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0); 1738 1.49 ad fd_affix(curproc, fp, fd); 1739 1.49 ad return error; 1740 1.1 lukem } 1741 1.1 lukem 1742 1.3 jdolecek /* 1743 1.72 christos * kqueue(2) system call. 1744 1.72 christos */ 1745 1.72 christos int 1746 1.72 christos sys_kqueue(struct lwp *l, const void *v, register_t *retval) 1747 1.72 christos { 1748 1.72 christos return kqueue1(l, 0, retval); 1749 1.72 christos } 1750 1.72 christos 1751 1.72 christos int 1752 1.72 christos sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap, 1753 1.72 christos register_t *retval) 1754 1.72 christos { 1755 1.72 christos /* { 1756 1.72 christos syscallarg(int) flags; 1757 1.72 christos } */ 1758 1.72 christos return kqueue1(l, SCARG(uap, flags), retval); 1759 1.72 christos } 1760 1.72 christos 1761 1.72 christos /* 1762 1.3 jdolecek * kevent(2) system call. 1763 1.3 jdolecek */ 1764 1.61 christos int 1765 1.81 matt kevent_fetch_changes(void *ctx, const struct kevent *changelist, 1766 1.61 christos struct kevent *changes, size_t index, int n) 1767 1.24 cube { 1768 1.49 ad 1769 1.24 cube return copyin(changelist + index, changes, n * sizeof(*changes)); 1770 1.24 cube } 1771 1.24 cube 1772 1.61 christos int 1773 1.81 matt kevent_put_events(void *ctx, struct kevent *events, 1774 1.61 christos struct kevent *eventlist, size_t index, int n) 1775 1.24 cube { 1776 1.49 ad 1777 1.24 cube return copyout(events, eventlist + index, n * sizeof(*events)); 1778 1.24 cube } 1779 1.24 cube 1780 1.24 cube static const struct kevent_ops kevent_native_ops = { 1781 1.60 gmcgarry .keo_private = NULL, 1782 1.60 gmcgarry .keo_fetch_timeout = copyin, 1783 1.60 gmcgarry .keo_fetch_changes = kevent_fetch_changes, 1784 1.60 gmcgarry .keo_put_events = kevent_put_events, 1785 1.24 cube }; 1786 1.24 cube 1787 1.1 lukem int 1788 1.149 christos sys___kevent100(struct lwp *l, const struct sys___kevent100_args *uap, 1789 1.61 christos register_t *retval) 1790 1.1 lukem { 1791 1.44 dsl /* { 1792 1.3 jdolecek syscallarg(int) fd; 1793 1.3 jdolecek syscallarg(const struct kevent *) changelist; 1794 1.3 jdolecek syscallarg(size_t) nchanges; 1795 1.3 jdolecek syscallarg(struct kevent *) eventlist; 1796 1.3 jdolecek syscallarg(size_t) nevents; 1797 1.3 jdolecek syscallarg(const struct timespec *) timeout; 1798 1.44 dsl } */ 1799 1.24 cube 1800 1.49 ad return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist), 1801 1.24 cube SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents), 1802 1.24 cube SCARG(uap, timeout), &kevent_native_ops); 1803 1.24 cube } 1804 1.24 cube 1805 1.24 cube int 1806 1.49 ad kevent1(register_t *retval, int fd, 1807 1.49 ad const struct kevent *changelist, size_t nchanges, 1808 1.49 ad struct kevent *eventlist, size_t nevents, 1809 1.49 ad const struct timespec *timeout, 1810 1.49 ad const struct kevent_ops *keops) 1811 1.24 cube { 1812 1.49 ad struct kevent *kevp; 1813 1.49 ad struct kqueue *kq; 1814 1.3 jdolecek struct timespec ts; 1815 1.49 ad size_t i, n, ichange; 1816 1.49 ad int nerrors, error; 1817 1.80 maxv struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */ 1818 1.49 ad file_t *fp; 1819 1.3 jdolecek 1820 1.3 jdolecek /* check that we're dealing with a kq */ 1821 1.49 ad fp = fd_getfile(fd); 1822 1.10 pk if (fp == NULL) 1823 1.1 lukem return (EBADF); 1824 1.10 pk 1825 1.10 pk if (fp->f_type != DTYPE_KQUEUE) { 1826 1.49 ad fd_putfile(fd); 1827 1.10 pk return (EBADF); 1828 1.10 pk } 1829 1.1 lukem 1830 1.24 cube if (timeout != NULL) { 1831 1.24 cube error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts)); 1832 1.1 lukem if (error) 1833 1.1 lukem goto done; 1834 1.24 cube timeout = &ts; 1835 1.1 lukem } 1836 1.1 lukem 1837 1.82 matt kq = fp->f_kqueue; 1838 1.1 lukem nerrors = 0; 1839 1.24 cube ichange = 0; 1840 1.1 lukem 1841 1.3 jdolecek /* traverse list of events to register */ 1842 1.24 cube while (nchanges > 0) { 1843 1.49 ad n = MIN(nchanges, __arraycount(kevbuf)); 1844 1.24 cube error = (*keops->keo_fetch_changes)(keops->keo_private, 1845 1.49 ad changelist, kevbuf, ichange, n); 1846 1.1 lukem if (error) 1847 1.1 lukem goto done; 1848 1.1 lukem for (i = 0; i < n; i++) { 1849 1.49 ad kevp = &kevbuf[i]; 1850 1.1 lukem kevp->flags &= ~EV_SYSFLAGS; 1851 1.3 jdolecek /* register each knote */ 1852 1.49 ad error = kqueue_register(kq, kevp); 1853 1.89 abhinav if (!error && !(kevp->flags & EV_RECEIPT)) 1854 1.89 abhinav continue; 1855 1.89 abhinav if (nevents == 0) 1856 1.89 abhinav goto done; 1857 1.89 abhinav kevp->flags = EV_ERROR; 1858 1.89 abhinav kevp->data = error; 1859 1.89 abhinav error = (*keops->keo_put_events) 1860 1.89 abhinav (keops->keo_private, kevp, 1861 1.89 abhinav eventlist, nerrors, 1); 1862 1.89 abhinav if (error) 1863 1.89 abhinav goto done; 1864 1.89 abhinav nevents--; 1865 1.89 abhinav nerrors++; 1866 1.1 lukem } 1867 1.24 cube nchanges -= n; /* update the results */ 1868 1.24 cube ichange += n; 1869 1.1 lukem } 1870 1.1 lukem if (nerrors) { 1871 1.3 jdolecek *retval = nerrors; 1872 1.1 lukem error = 0; 1873 1.1 lukem goto done; 1874 1.1 lukem } 1875 1.1 lukem 1876 1.3 jdolecek /* actually scan through the events */ 1877 1.49 ad error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops, 1878 1.49 ad kevbuf, __arraycount(kevbuf)); 1879 1.3 jdolecek done: 1880 1.49 ad fd_putfile(fd); 1881 1.1 lukem return (error); 1882 1.1 lukem } 1883 1.1 lukem 1884 1.3 jdolecek /* 1885 1.3 jdolecek * Register a given kevent kev onto the kqueue 1886 1.3 jdolecek */ 1887 1.49 ad static int 1888 1.49 ad kqueue_register(struct kqueue *kq, struct kevent *kev) 1889 1.1 lukem { 1890 1.49 ad struct kfilter *kfilter; 1891 1.49 ad filedesc_t *fdp; 1892 1.49 ad file_t *fp; 1893 1.49 ad fdfile_t *ff; 1894 1.49 ad struct knote *kn, *newkn; 1895 1.49 ad struct klist *list; 1896 1.49 ad int error, fd, rv; 1897 1.3 jdolecek 1898 1.3 jdolecek fdp = kq->kq_fdp; 1899 1.3 jdolecek fp = NULL; 1900 1.3 jdolecek kn = NULL; 1901 1.3 jdolecek error = 0; 1902 1.49 ad fd = 0; 1903 1.49 ad 1904 1.142 thorpej newkn = knote_alloc(true); 1905 1.49 ad 1906 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER); 1907 1.3 jdolecek kfilter = kfilter_byfilter(kev->filter); 1908 1.3 jdolecek if (kfilter == NULL || kfilter->filtops == NULL) { 1909 1.3 jdolecek /* filter not found nor implemented */ 1910 1.49 ad rw_exit(&kqueue_filter_lock); 1911 1.142 thorpej knote_free(newkn); 1912 1.1 lukem return (EINVAL); 1913 1.1 lukem } 1914 1.1 lukem 1915 1.3 jdolecek /* search if knote already exists */ 1916 1.121 thorpej if (kfilter->filtops->f_flags & FILTEROP_ISFD) { 1917 1.3 jdolecek /* monitoring a file descriptor */ 1918 1.87 christos /* validate descriptor */ 1919 1.88 christos if (kev->ident > INT_MAX 1920 1.88 christos || (fp = fd_getfile(fd = kev->ident)) == NULL) { 1921 1.49 ad rw_exit(&kqueue_filter_lock); 1922 1.142 thorpej knote_free(newkn); 1923 1.49 ad return EBADF; 1924 1.49 ad } 1925 1.74 rmind mutex_enter(&fdp->fd_lock); 1926 1.65 ad ff = fdp->fd_dt->dt_ff[fd]; 1927 1.98 christos if (ff->ff_refcnt & FR_CLOSING) { 1928 1.98 christos error = EBADF; 1929 1.98 christos goto doneunlock; 1930 1.98 christos } 1931 1.49 ad if (fd <= fdp->fd_lastkqfile) { 1932 1.49 ad SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) { 1933 1.1 lukem if (kq == kn->kn_kq && 1934 1.1 lukem kev->filter == kn->kn_filter) 1935 1.1 lukem break; 1936 1.49 ad } 1937 1.1 lukem } 1938 1.1 lukem } else { 1939 1.3 jdolecek /* 1940 1.3 jdolecek * not monitoring a file descriptor, so 1941 1.3 jdolecek * lookup knotes in internal hash table 1942 1.3 jdolecek */ 1943 1.74 rmind mutex_enter(&fdp->fd_lock); 1944 1.1 lukem if (fdp->fd_knhashmask != 0) { 1945 1.1 lukem list = &fdp->fd_knhash[ 1946 1.1 lukem KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; 1947 1.49 ad SLIST_FOREACH(kn, list, kn_link) { 1948 1.1 lukem if (kev->ident == kn->kn_id && 1949 1.1 lukem kq == kn->kn_kq && 1950 1.1 lukem kev->filter == kn->kn_filter) 1951 1.1 lukem break; 1952 1.49 ad } 1953 1.1 lukem } 1954 1.1 lukem } 1955 1.1 lukem 1956 1.129 thorpej /* It's safe to test KQ_CLOSING while holding only the fd_lock. */ 1957 1.129 thorpej KASSERT(mutex_owned(&fdp->fd_lock)); 1958 1.129 thorpej KASSERT((kq->kq_count & KQ_CLOSING) == 0); 1959 1.129 thorpej 1960 1.1 lukem /* 1961 1.1 lukem * kn now contains the matching knote, or NULL if no match 1962 1.1 lukem */ 1963 1.108 christos if (kn == NULL) { 1964 1.108 christos if (kev->flags & EV_ADD) { 1965 1.3 jdolecek /* create new knote */ 1966 1.49 ad kn = newkn; 1967 1.49 ad newkn = NULL; 1968 1.49 ad kn->kn_obj = fp; 1969 1.79 christos kn->kn_id = kev->ident; 1970 1.1 lukem kn->kn_kq = kq; 1971 1.3 jdolecek kn->kn_fop = kfilter->filtops; 1972 1.49 ad kn->kn_kfilter = kfilter; 1973 1.49 ad kn->kn_sfflags = kev->fflags; 1974 1.49 ad kn->kn_sdata = kev->data; 1975 1.49 ad kev->fflags = 0; 1976 1.49 ad kev->data = 0; 1977 1.49 ad kn->kn_kevent = *kev; 1978 1.1 lukem 1979 1.85 christos KASSERT(kn->kn_fop != NULL); 1980 1.1 lukem /* 1981 1.145 thorpej * XXX Allow only known-safe users of f_touch. 1982 1.145 thorpej * XXX See filter_touch() for details. 1983 1.145 thorpej */ 1984 1.145 thorpej if (kn->kn_fop->f_touch != NULL && 1985 1.145 thorpej kn->kn_fop != &timer_filtops && 1986 1.145 thorpej kn->kn_fop != &user_filtops) { 1987 1.145 thorpej error = ENOTSUP; 1988 1.145 thorpej goto fail_ev_add; 1989 1.145 thorpej } 1990 1.145 thorpej 1991 1.145 thorpej /* 1992 1.1 lukem * apply reference count to knote structure, and 1993 1.1 lukem * do not release it at the end of this routine. 1994 1.1 lukem */ 1995 1.1 lukem fp = NULL; 1996 1.1 lukem 1997 1.121 thorpej if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) { 1998 1.49 ad /* 1999 1.49 ad * If knote is not on an fd, store on 2000 1.49 ad * internal hash table. 2001 1.49 ad */ 2002 1.49 ad if (fdp->fd_knhashmask == 0) { 2003 1.49 ad /* XXXAD can block with fd_lock held */ 2004 1.49 ad fdp->fd_knhash = hashinit(KN_HASHSIZE, 2005 1.59 ad HASH_LIST, true, 2006 1.49 ad &fdp->fd_knhashmask); 2007 1.49 ad } 2008 1.49 ad list = &fdp->fd_knhash[KN_HASH(kn->kn_id, 2009 1.49 ad fdp->fd_knhashmask)]; 2010 1.49 ad } else { 2011 1.49 ad /* Otherwise, knote is on an fd. */ 2012 1.49 ad list = (struct klist *) 2013 1.65 ad &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist; 2014 1.49 ad if ((int)kn->kn_id > fdp->fd_lastkqfile) 2015 1.49 ad fdp->fd_lastkqfile = kn->kn_id; 2016 1.49 ad } 2017 1.49 ad SLIST_INSERT_HEAD(list, kn, kn_link); 2018 1.1 lukem 2019 1.122 thorpej /* 2020 1.122 thorpej * N.B. kn->kn_fop may change as the result 2021 1.122 thorpej * of filter_attach()! 2022 1.122 thorpej */ 2023 1.145 thorpej knote_foplock_enter(kn); 2024 1.122 thorpej error = filter_attach(kn); 2025 1.49 ad if (error != 0) { 2026 1.100 christos #ifdef DEBUG 2027 1.105 christos struct proc *p = curlwp->l_proc; 2028 1.101 christos const file_t *ft = kn->kn_obj; 2029 1.105 christos printf("%s: %s[%d]: event type %d not " 2030 1.105 christos "supported for file type %d/%s " 2031 1.105 christos "(error %d)\n", __func__, 2032 1.105 christos p->p_comm, p->p_pid, 2033 1.101 christos kn->kn_filter, ft ? ft->f_type : -1, 2034 1.101 christos ft ? ft->f_ops->fo_name : "?", error); 2035 1.100 christos #endif 2036 1.100 christos 2037 1.145 thorpej fail_ev_add: 2038 1.129 thorpej /* 2039 1.129 thorpej * N.B. no need to check for this note to 2040 1.129 thorpej * be in-flux, since it was never visible 2041 1.129 thorpej * to the monitored object. 2042 1.129 thorpej * 2043 1.129 thorpej * knote_detach() drops fdp->fd_lock 2044 1.129 thorpej */ 2045 1.145 thorpej knote_foplock_exit(kn); 2046 1.129 thorpej mutex_enter(&kq->kq_lock); 2047 1.129 thorpej KNOTE_WILLDETACH(kn); 2048 1.129 thorpej KASSERT(kn_in_flux(kn) == false); 2049 1.129 thorpej mutex_exit(&kq->kq_lock); 2050 1.49 ad knote_detach(kn, fdp, false); 2051 1.1 lukem goto done; 2052 1.1 lukem } 2053 1.49 ad atomic_inc_uint(&kfilter->refcnt); 2054 1.108 christos goto done_ev_add; 2055 1.1 lukem } else { 2056 1.108 christos /* No matching knote and the EV_ADD flag is not set. */ 2057 1.108 christos error = ENOENT; 2058 1.108 christos goto doneunlock; 2059 1.1 lukem } 2060 1.108 christos } 2061 1.108 christos 2062 1.108 christos if (kev->flags & EV_DELETE) { 2063 1.129 thorpej /* 2064 1.129 thorpej * Let the world know that this knote is about to go 2065 1.129 thorpej * away, and wait for it to settle if it's currently 2066 1.129 thorpej * in-flux. 2067 1.129 thorpej */ 2068 1.129 thorpej mutex_spin_enter(&kq->kq_lock); 2069 1.129 thorpej if (kn->kn_status & KN_WILLDETACH) { 2070 1.129 thorpej /* 2071 1.129 thorpej * This knote is already on its way out, 2072 1.129 thorpej * so just be done. 2073 1.129 thorpej */ 2074 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 2075 1.129 thorpej goto doneunlock; 2076 1.129 thorpej } 2077 1.129 thorpej KNOTE_WILLDETACH(kn); 2078 1.129 thorpej if (kn_in_flux(kn)) { 2079 1.129 thorpej mutex_exit(&fdp->fd_lock); 2080 1.129 thorpej /* 2081 1.129 thorpej * It's safe for us to conclusively wait for 2082 1.129 thorpej * this knote to settle because we know we'll 2083 1.129 thorpej * be completing the detach. 2084 1.129 thorpej */ 2085 1.129 thorpej kn_wait_flux(kn, true); 2086 1.129 thorpej KASSERT(kn_in_flux(kn) == false); 2087 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 2088 1.129 thorpej mutex_enter(&fdp->fd_lock); 2089 1.129 thorpej } else { 2090 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 2091 1.129 thorpej } 2092 1.129 thorpej 2093 1.108 christos /* knote_detach() drops fdp->fd_lock */ 2094 1.108 christos knote_detach(kn, fdp, true); 2095 1.108 christos goto done; 2096 1.108 christos } 2097 1.108 christos 2098 1.108 christos /* 2099 1.108 christos * The user may change some filter values after the 2100 1.108 christos * initial EV_ADD, but doing so will not reset any 2101 1.108 christos * filter which have already been triggered. 2102 1.108 christos */ 2103 1.145 thorpej knote_foplock_enter(kn); 2104 1.108 christos kn->kn_kevent.udata = kev->udata; 2105 1.108 christos KASSERT(kn->kn_fop != NULL); 2106 1.121 thorpej if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) && 2107 1.121 thorpej kn->kn_fop->f_touch != NULL) { 2108 1.116 jdolecek mutex_spin_enter(&kq->kq_lock); 2109 1.135 thorpej error = filter_touch(kn, kev, EVENT_REGISTER); 2110 1.116 jdolecek mutex_spin_exit(&kq->kq_lock); 2111 1.135 thorpej if (__predict_false(error != 0)) { 2112 1.135 thorpej /* Never a new knote (which would consume newkn). */ 2113 1.135 thorpej KASSERT(newkn != NULL); 2114 1.145 thorpej knote_foplock_exit(kn); 2115 1.135 thorpej goto doneunlock; 2116 1.135 thorpej } 2117 1.49 ad } else { 2118 1.108 christos kn->kn_sfflags = kev->fflags; 2119 1.108 christos kn->kn_sdata = kev->data; 2120 1.1 lukem } 2121 1.1 lukem 2122 1.108 christos /* 2123 1.108 christos * We can get here if we are trying to attach 2124 1.108 christos * an event to a file descriptor that does not 2125 1.108 christos * support events, and the attach routine is 2126 1.108 christos * broken and does not return an error. 2127 1.108 christos */ 2128 1.135 thorpej done_ev_add: 2129 1.145 thorpej rv = filter_event(kn, 0, false); 2130 1.108 christos if (rv) 2131 1.108 christos knote_activate(kn); 2132 1.108 christos 2133 1.145 thorpej knote_foplock_exit(kn); 2134 1.145 thorpej 2135 1.3 jdolecek /* disable knote */ 2136 1.49 ad if ((kev->flags & EV_DISABLE)) { 2137 1.49 ad mutex_spin_enter(&kq->kq_lock); 2138 1.49 ad if ((kn->kn_status & KN_DISABLED) == 0) 2139 1.49 ad kn->kn_status |= KN_DISABLED; 2140 1.49 ad mutex_spin_exit(&kq->kq_lock); 2141 1.1 lukem } 2142 1.1 lukem 2143 1.3 jdolecek /* enable knote */ 2144 1.49 ad if ((kev->flags & EV_ENABLE)) { 2145 1.49 ad knote_enqueue(kn); 2146 1.1 lukem } 2147 1.135 thorpej doneunlock: 2148 1.49 ad mutex_exit(&fdp->fd_lock); 2149 1.3 jdolecek done: 2150 1.49 ad rw_exit(&kqueue_filter_lock); 2151 1.49 ad if (newkn != NULL) 2152 1.142 thorpej knote_free(newkn); 2153 1.1 lukem if (fp != NULL) 2154 1.49 ad fd_putfile(fd); 2155 1.1 lukem return (error); 2156 1.1 lukem } 2157 1.1 lukem 2158 1.94 christos #define KN_FMT(buf, kn) \ 2159 1.94 christos (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf) 2160 1.94 christos 2161 1.129 thorpej #if defined(DDB) 2162 1.129 thorpej void 2163 1.129 thorpej kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...)) 2164 1.129 thorpej { 2165 1.129 thorpej const struct knote *kn; 2166 1.129 thorpej u_int count; 2167 1.129 thorpej int nmarker; 2168 1.129 thorpej char buf[128]; 2169 1.129 thorpej 2170 1.129 thorpej count = 0; 2171 1.129 thorpej nmarker = 0; 2172 1.129 thorpej 2173 1.129 thorpej (*pr)("kqueue %p (restart=%d count=%u):\n", kq, 2174 1.129 thorpej !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq)); 2175 1.129 thorpej (*pr)(" Queued knotes:\n"); 2176 1.129 thorpej TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) { 2177 1.129 thorpej if (kn->kn_status & KN_MARKER) { 2178 1.129 thorpej nmarker++; 2179 1.129 thorpej } else { 2180 1.129 thorpej count++; 2181 1.129 thorpej } 2182 1.129 thorpej (*pr)(" knote %p: kq=%p status=%s\n", 2183 1.129 thorpej kn, kn->kn_kq, KN_FMT(buf, kn)); 2184 1.129 thorpej (*pr)(" id=0x%lx (%lu) filter=%d\n", 2185 1.129 thorpej (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter); 2186 1.129 thorpej if (kn->kn_kq != kq) { 2187 1.129 thorpej (*pr)(" !!! kn->kn_kq != kq\n"); 2188 1.129 thorpej } 2189 1.129 thorpej } 2190 1.129 thorpej if (count != KQ_COUNT(kq)) { 2191 1.129 thorpej (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n", 2192 1.129 thorpej count, KQ_COUNT(kq)); 2193 1.129 thorpej } 2194 1.129 thorpej } 2195 1.129 thorpej #endif /* DDB */ 2196 1.129 thorpej 2197 1.129 thorpej #if defined(DEBUG) 2198 1.52 yamt static void 2199 1.94 christos kqueue_check(const char *func, size_t line, const struct kqueue *kq) 2200 1.52 yamt { 2201 1.52 yamt const struct knote *kn; 2202 1.118 jdolecek u_int count; 2203 1.52 yamt int nmarker; 2204 1.94 christos char buf[128]; 2205 1.52 yamt 2206 1.52 yamt KASSERT(mutex_owned(&kq->kq_lock)); 2207 1.52 yamt 2208 1.52 yamt count = 0; 2209 1.52 yamt nmarker = 0; 2210 1.52 yamt TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) { 2211 1.52 yamt if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) { 2212 1.94 christos panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s", 2213 1.94 christos func, line, kq, kn, KN_FMT(buf, kn)); 2214 1.52 yamt } 2215 1.52 yamt if ((kn->kn_status & KN_MARKER) == 0) { 2216 1.52 yamt if (kn->kn_kq != kq) { 2217 1.94 christos panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s", 2218 1.94 christos func, line, kq, kn, kn->kn_kq, 2219 1.94 christos KN_FMT(buf, kn)); 2220 1.52 yamt } 2221 1.52 yamt if ((kn->kn_status & KN_ACTIVE) == 0) { 2222 1.94 christos panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s", 2223 1.94 christos func, line, kq, kn, KN_FMT(buf, kn)); 2224 1.52 yamt } 2225 1.52 yamt count++; 2226 1.118 jdolecek if (count > KQ_COUNT(kq)) { 2227 1.129 thorpej panic("%s,%zu: kq=%p kq->kq_count(%u) != " 2228 1.112 jdolecek "count(%d), nmarker=%d", 2229 1.118 jdolecek func, line, kq, KQ_COUNT(kq), count, 2230 1.112 jdolecek nmarker); 2231 1.52 yamt } 2232 1.52 yamt } else { 2233 1.52 yamt nmarker++; 2234 1.52 yamt } 2235 1.52 yamt } 2236 1.52 yamt } 2237 1.94 christos #define kq_check(a) kqueue_check(__func__, __LINE__, (a)) 2238 1.52 yamt #else /* defined(DEBUG) */ 2239 1.52 yamt #define kq_check(a) /* nothing */ 2240 1.52 yamt #endif /* defined(DEBUG) */ 2241 1.52 yamt 2242 1.118 jdolecek static void 2243 1.118 jdolecek kqueue_restart(file_t *fp) 2244 1.118 jdolecek { 2245 1.118 jdolecek struct kqueue *kq = fp->f_kqueue; 2246 1.118 jdolecek KASSERT(kq != NULL); 2247 1.118 jdolecek 2248 1.118 jdolecek mutex_spin_enter(&kq->kq_lock); 2249 1.118 jdolecek kq->kq_count |= KQ_RESTART; 2250 1.118 jdolecek cv_broadcast(&kq->kq_cv); 2251 1.118 jdolecek mutex_spin_exit(&kq->kq_lock); 2252 1.118 jdolecek } 2253 1.118 jdolecek 2254 1.148 riastrad static int 2255 1.148 riastrad kqueue_fpathconf(struct file *fp, int name, register_t *retval) 2256 1.148 riastrad { 2257 1.148 riastrad 2258 1.148 riastrad return EINVAL; 2259 1.148 riastrad } 2260 1.148 riastrad 2261 1.3 jdolecek /* 2262 1.3 jdolecek * Scan through the list of events on fp (for a maximum of maxevents), 2263 1.3 jdolecek * returning the results in to ulistp. Timeout is determined by tsp; if 2264 1.3 jdolecek * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait 2265 1.3 jdolecek * as appropriate. 2266 1.3 jdolecek */ 2267 1.1 lukem static int 2268 1.49 ad kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp, 2269 1.49 ad const struct timespec *tsp, register_t *retval, 2270 1.49 ad const struct kevent_ops *keops, struct kevent *kevbuf, 2271 1.49 ad size_t kevcnt) 2272 1.1 lukem { 2273 1.3 jdolecek struct kqueue *kq; 2274 1.3 jdolecek struct kevent *kevp; 2275 1.62 christos struct timespec ats, sleepts; 2276 1.144 thorpej struct knote *kn, *marker; 2277 1.144 thorpej struct knote_impl morker; 2278 1.24 cube size_t count, nkev, nevents; 2279 1.111 jdolecek int timeout, error, touch, rv, influx; 2280 1.49 ad filedesc_t *fdp; 2281 1.1 lukem 2282 1.49 ad fdp = curlwp->l_fd; 2283 1.82 matt kq = fp->f_kqueue; 2284 1.1 lukem count = maxevents; 2285 1.24 cube nkev = nevents = error = 0; 2286 1.49 ad if (count == 0) { 2287 1.49 ad *retval = 0; 2288 1.49 ad return 0; 2289 1.49 ad } 2290 1.1 lukem 2291 1.9 jdolecek if (tsp) { /* timeout supplied */ 2292 1.63 christos ats = *tsp; 2293 1.62 christos if (inittimeleft(&ats, &sleepts) == -1) { 2294 1.49 ad *retval = maxevents; 2295 1.49 ad return EINVAL; 2296 1.1 lukem } 2297 1.62 christos timeout = tstohz(&ats); 2298 1.9 jdolecek if (timeout <= 0) 2299 1.29 kardel timeout = -1; /* do poll */ 2300 1.1 lukem } else { 2301 1.9 jdolecek /* no timeout, wait forever */ 2302 1.1 lukem timeout = 0; 2303 1.93 riastrad } 2304 1.1 lukem 2305 1.85 christos memset(&morker, 0, sizeof(morker)); 2306 1.144 thorpej marker = &morker.ki_knote; 2307 1.129 thorpej marker->kn_kq = kq; 2308 1.49 ad marker->kn_status = KN_MARKER; 2309 1.49 ad mutex_spin_enter(&kq->kq_lock); 2310 1.3 jdolecek retry: 2311 1.49 ad kevp = kevbuf; 2312 1.118 jdolecek if (KQ_COUNT(kq) == 0) { 2313 1.49 ad if (timeout >= 0) { 2314 1.49 ad error = cv_timedwait_sig(&kq->kq_cv, 2315 1.49 ad &kq->kq_lock, timeout); 2316 1.49 ad if (error == 0) { 2317 1.118 jdolecek if (KQ_COUNT(kq) == 0 && 2318 1.118 jdolecek (kq->kq_count & KQ_RESTART)) { 2319 1.118 jdolecek /* return to clear file reference */ 2320 1.118 jdolecek error = ERESTART; 2321 1.118 jdolecek } else if (tsp == NULL || (timeout = 2322 1.118 jdolecek gettimeleft(&ats, &sleepts)) > 0) { 2323 1.49 ad goto retry; 2324 1.118 jdolecek } 2325 1.49 ad } else { 2326 1.49 ad /* don't restart after signals... */ 2327 1.49 ad if (error == ERESTART) 2328 1.49 ad error = EINTR; 2329 1.49 ad if (error == EWOULDBLOCK) 2330 1.49 ad error = 0; 2331 1.49 ad } 2332 1.1 lukem } 2333 1.92 christos mutex_spin_exit(&kq->kq_lock); 2334 1.110 jdolecek goto done; 2335 1.110 jdolecek } 2336 1.110 jdolecek 2337 1.110 jdolecek /* mark end of knote list */ 2338 1.110 jdolecek TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe); 2339 1.111 jdolecek influx = 0; 2340 1.1 lukem 2341 1.110 jdolecek /* 2342 1.110 jdolecek * Acquire the fdp->fd_lock interlock to avoid races with 2343 1.110 jdolecek * file creation/destruction from other threads. 2344 1.110 jdolecek */ 2345 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 2346 1.111 jdolecek relock: 2347 1.110 jdolecek mutex_enter(&fdp->fd_lock); 2348 1.110 jdolecek mutex_spin_enter(&kq->kq_lock); 2349 1.92 christos 2350 1.110 jdolecek while (count != 0) { 2351 1.129 thorpej /* 2352 1.129 thorpej * Get next knote. We are guaranteed this will never 2353 1.129 thorpej * be NULL because of the marker we inserted above. 2354 1.129 thorpej */ 2355 1.129 thorpej kn = TAILQ_FIRST(&kq->kq_head); 2356 1.111 jdolecek 2357 1.129 thorpej bool kn_is_other_marker = 2358 1.129 thorpej (kn->kn_status & KN_MARKER) != 0 && kn != marker; 2359 1.129 thorpej bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0; 2360 1.129 thorpej bool kn_is_in_flux = kn_in_flux(kn); 2361 1.129 thorpej 2362 1.129 thorpej /* 2363 1.129 thorpej * If we found a marker that's not ours, or this knote 2364 1.129 thorpej * is in a state of flux, then wait for everything to 2365 1.129 thorpej * settle down and go around again. 2366 1.129 thorpej */ 2367 1.129 thorpej if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) { 2368 1.111 jdolecek if (influx) { 2369 1.111 jdolecek influx = 0; 2370 1.111 jdolecek KQ_FLUX_WAKEUP(kq); 2371 1.111 jdolecek } 2372 1.111 jdolecek mutex_exit(&fdp->fd_lock); 2373 1.129 thorpej if (kn_is_other_marker || kn_is_in_flux) { 2374 1.129 thorpej KQ_FLUX_WAIT(kq); 2375 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 2376 1.129 thorpej } else { 2377 1.129 thorpej /* 2378 1.129 thorpej * Detaching but not in-flux? Someone is 2379 1.129 thorpej * actively trying to finish the job; just 2380 1.129 thorpej * go around and try again. 2381 1.129 thorpej */ 2382 1.129 thorpej KASSERT(kn_is_detaching); 2383 1.129 thorpej mutex_spin_exit(&kq->kq_lock); 2384 1.129 thorpej preempt_point(); 2385 1.129 thorpej } 2386 1.111 jdolecek goto relock; 2387 1.111 jdolecek } 2388 1.111 jdolecek 2389 1.111 jdolecek TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2390 1.111 jdolecek if (kn == marker) { 2391 1.111 jdolecek /* it's our marker, stop */ 2392 1.111 jdolecek KQ_FLUX_WAKEUP(kq); 2393 1.111 jdolecek if (count == maxevents) { 2394 1.110 jdolecek mutex_exit(&fdp->fd_lock); 2395 1.110 jdolecek goto retry; 2396 1.49 ad } 2397 1.111 jdolecek break; 2398 1.110 jdolecek } 2399 1.111 jdolecek KASSERT((kn->kn_status & KN_BUSY) == 0); 2400 1.111 jdolecek 2401 1.110 jdolecek kq_check(kq); 2402 1.115 jdolecek kn->kn_status &= ~KN_QUEUED; 2403 1.110 jdolecek kn->kn_status |= KN_BUSY; 2404 1.110 jdolecek kq_check(kq); 2405 1.110 jdolecek if (kn->kn_status & KN_DISABLED) { 2406 1.115 jdolecek kn->kn_status &= ~KN_BUSY; 2407 1.111 jdolecek kq->kq_count--; 2408 1.110 jdolecek /* don't want disabled events */ 2409 1.110 jdolecek continue; 2410 1.110 jdolecek } 2411 1.110 jdolecek if ((kn->kn_flags & EV_ONESHOT) == 0) { 2412 1.110 jdolecek mutex_spin_exit(&kq->kq_lock); 2413 1.110 jdolecek KASSERT(mutex_owned(&fdp->fd_lock)); 2414 1.145 thorpej knote_foplock_enter(kn); 2415 1.145 thorpej rv = filter_event(kn, 0, false); 2416 1.145 thorpej knote_foplock_exit(kn); 2417 1.110 jdolecek mutex_spin_enter(&kq->kq_lock); 2418 1.115 jdolecek /* Re-poll if note was re-enqueued. */ 2419 1.115 jdolecek if ((kn->kn_status & KN_QUEUED) != 0) { 2420 1.115 jdolecek kn->kn_status &= ~KN_BUSY; 2421 1.115 jdolecek /* Re-enqueue raised kq_count, lower it again */ 2422 1.115 jdolecek kq->kq_count--; 2423 1.115 jdolecek influx = 1; 2424 1.115 jdolecek continue; 2425 1.115 jdolecek } 2426 1.110 jdolecek if (rv == 0) { 2427 1.110 jdolecek /* 2428 1.129 thorpej * non-ONESHOT event that hasn't triggered 2429 1.129 thorpej * again, so it will remain de-queued. 2430 1.110 jdolecek */ 2431 1.115 jdolecek kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2432 1.111 jdolecek kq->kq_count--; 2433 1.111 jdolecek influx = 1; 2434 1.110 jdolecek continue; 2435 1.49 ad } 2436 1.129 thorpej } else { 2437 1.129 thorpej /* 2438 1.138 thorpej * Must NOT drop kq_lock until we can do 2439 1.138 thorpej * the KNOTE_WILLDETACH() below. 2440 1.129 thorpej */ 2441 1.110 jdolecek } 2442 1.110 jdolecek KASSERT(kn->kn_fop != NULL); 2443 1.121 thorpej touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) && 2444 1.110 jdolecek kn->kn_fop->f_touch != NULL); 2445 1.110 jdolecek /* XXXAD should be got from f_event if !oneshot. */ 2446 1.138 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) == 0); 2447 1.110 jdolecek if (touch) { 2448 1.135 thorpej (void)filter_touch(kn, kevp, EVENT_PROCESS); 2449 1.110 jdolecek } else { 2450 1.110 jdolecek *kevp = kn->kn_kevent; 2451 1.110 jdolecek } 2452 1.110 jdolecek kevp++; 2453 1.110 jdolecek nkev++; 2454 1.111 jdolecek influx = 1; 2455 1.110 jdolecek if (kn->kn_flags & EV_ONESHOT) { 2456 1.110 jdolecek /* delete ONESHOT events after retrieval */ 2457 1.138 thorpej KNOTE_WILLDETACH(kn); 2458 1.115 jdolecek kn->kn_status &= ~KN_BUSY; 2459 1.111 jdolecek kq->kq_count--; 2460 1.129 thorpej KASSERT(kn_in_flux(kn) == false); 2461 1.147 riastrad KASSERT((kn->kn_status & KN_WILLDETACH) != 0); 2462 1.147 riastrad KASSERT(kn->kn_kevent.udata == curlwp); 2463 1.110 jdolecek mutex_spin_exit(&kq->kq_lock); 2464 1.110 jdolecek knote_detach(kn, fdp, true); 2465 1.110 jdolecek mutex_enter(&fdp->fd_lock); 2466 1.110 jdolecek mutex_spin_enter(&kq->kq_lock); 2467 1.110 jdolecek } else if (kn->kn_flags & EV_CLEAR) { 2468 1.110 jdolecek /* clear state after retrieval */ 2469 1.110 jdolecek kn->kn_data = 0; 2470 1.110 jdolecek kn->kn_fflags = 0; 2471 1.110 jdolecek /* 2472 1.110 jdolecek * Manually clear knotes who weren't 2473 1.110 jdolecek * 'touch'ed. 2474 1.110 jdolecek */ 2475 1.110 jdolecek if (touch == 0) { 2476 1.49 ad kn->kn_data = 0; 2477 1.49 ad kn->kn_fflags = 0; 2478 1.49 ad } 2479 1.115 jdolecek kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2480 1.111 jdolecek kq->kq_count--; 2481 1.110 jdolecek } else if (kn->kn_flags & EV_DISPATCH) { 2482 1.110 jdolecek kn->kn_status |= KN_DISABLED; 2483 1.115 jdolecek kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2484 1.111 jdolecek kq->kq_count--; 2485 1.110 jdolecek } else { 2486 1.110 jdolecek /* add event back on list */ 2487 1.110 jdolecek kq_check(kq); 2488 1.115 jdolecek kn->kn_status |= KN_QUEUED; 2489 1.110 jdolecek kn->kn_status &= ~KN_BUSY; 2490 1.110 jdolecek TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2491 1.110 jdolecek kq_check(kq); 2492 1.110 jdolecek } 2493 1.111 jdolecek 2494 1.110 jdolecek if (nkev == kevcnt) { 2495 1.110 jdolecek /* do copyouts in kevcnt chunks */ 2496 1.111 jdolecek influx = 0; 2497 1.111 jdolecek KQ_FLUX_WAKEUP(kq); 2498 1.110 jdolecek mutex_spin_exit(&kq->kq_lock); 2499 1.110 jdolecek mutex_exit(&fdp->fd_lock); 2500 1.110 jdolecek error = (*keops->keo_put_events) 2501 1.110 jdolecek (keops->keo_private, 2502 1.110 jdolecek kevbuf, ulistp, nevents, nkev); 2503 1.110 jdolecek mutex_enter(&fdp->fd_lock); 2504 1.110 jdolecek mutex_spin_enter(&kq->kq_lock); 2505 1.110 jdolecek nevents += nkev; 2506 1.110 jdolecek nkev = 0; 2507 1.110 jdolecek kevp = kevbuf; 2508 1.110 jdolecek } 2509 1.110 jdolecek count--; 2510 1.110 jdolecek if (error != 0 || count == 0) { 2511 1.110 jdolecek /* remove marker */ 2512 1.110 jdolecek TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe); 2513 1.110 jdolecek break; 2514 1.1 lukem } 2515 1.1 lukem } 2516 1.111 jdolecek KQ_FLUX_WAKEUP(kq); 2517 1.110 jdolecek mutex_spin_exit(&kq->kq_lock); 2518 1.110 jdolecek mutex_exit(&fdp->fd_lock); 2519 1.110 jdolecek 2520 1.110 jdolecek done: 2521 1.49 ad if (nkev != 0) { 2522 1.3 jdolecek /* copyout remaining events */ 2523 1.24 cube error = (*keops->keo_put_events)(keops->keo_private, 2524 1.49 ad kevbuf, ulistp, nevents, nkev); 2525 1.49 ad } 2526 1.3 jdolecek *retval = maxevents - count; 2527 1.3 jdolecek 2528 1.49 ad return error; 2529 1.1 lukem } 2530 1.1 lukem 2531 1.1 lukem /* 2532 1.49 ad * fileops ioctl method for a kqueue descriptor. 2533 1.3 jdolecek * 2534 1.3 jdolecek * Two ioctls are currently supported. They both use struct kfilter_mapping: 2535 1.3 jdolecek * KFILTER_BYNAME find name for filter, and return result in 2536 1.3 jdolecek * name, which is of size len. 2537 1.3 jdolecek * KFILTER_BYFILTER find filter for name. len is ignored. 2538 1.3 jdolecek */ 2539 1.1 lukem /*ARGSUSED*/ 2540 1.1 lukem static int 2541 1.49 ad kqueue_ioctl(file_t *fp, u_long com, void *data) 2542 1.1 lukem { 2543 1.3 jdolecek struct kfilter_mapping *km; 2544 1.3 jdolecek const struct kfilter *kfilter; 2545 1.3 jdolecek char *name; 2546 1.3 jdolecek int error; 2547 1.3 jdolecek 2548 1.49 ad km = data; 2549 1.3 jdolecek error = 0; 2550 1.49 ad name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP); 2551 1.3 jdolecek 2552 1.3 jdolecek switch (com) { 2553 1.3 jdolecek case KFILTER_BYFILTER: /* convert filter -> name */ 2554 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER); 2555 1.3 jdolecek kfilter = kfilter_byfilter(km->filter); 2556 1.49 ad if (kfilter != NULL) { 2557 1.49 ad strlcpy(name, kfilter->name, KFILTER_MAXNAME); 2558 1.49 ad rw_exit(&kqueue_filter_lock); 2559 1.49 ad error = copyoutstr(name, km->name, km->len, NULL); 2560 1.49 ad } else { 2561 1.49 ad rw_exit(&kqueue_filter_lock); 2562 1.3 jdolecek error = ENOENT; 2563 1.49 ad } 2564 1.3 jdolecek break; 2565 1.3 jdolecek 2566 1.3 jdolecek case KFILTER_BYNAME: /* convert name -> filter */ 2567 1.3 jdolecek error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL); 2568 1.3 jdolecek if (error) { 2569 1.3 jdolecek break; 2570 1.3 jdolecek } 2571 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER); 2572 1.3 jdolecek kfilter = kfilter_byname(name); 2573 1.3 jdolecek if (kfilter != NULL) 2574 1.3 jdolecek km->filter = kfilter->filter; 2575 1.3 jdolecek else 2576 1.3 jdolecek error = ENOENT; 2577 1.49 ad rw_exit(&kqueue_filter_lock); 2578 1.3 jdolecek break; 2579 1.3 jdolecek 2580 1.3 jdolecek default: 2581 1.3 jdolecek error = ENOTTY; 2582 1.49 ad break; 2583 1.3 jdolecek 2584 1.3 jdolecek } 2585 1.49 ad kmem_free(name, KFILTER_MAXNAME); 2586 1.3 jdolecek return (error); 2587 1.3 jdolecek } 2588 1.3 jdolecek 2589 1.3 jdolecek /* 2590 1.49 ad * fileops fcntl method for a kqueue descriptor. 2591 1.3 jdolecek */ 2592 1.3 jdolecek static int 2593 1.49 ad kqueue_fcntl(file_t *fp, u_int com, void *data) 2594 1.3 jdolecek { 2595 1.3 jdolecek 2596 1.1 lukem return (ENOTTY); 2597 1.1 lukem } 2598 1.1 lukem 2599 1.3 jdolecek /* 2600 1.49 ad * fileops poll method for a kqueue descriptor. 2601 1.3 jdolecek * Determine if kqueue has events pending. 2602 1.3 jdolecek */ 2603 1.1 lukem static int 2604 1.49 ad kqueue_poll(file_t *fp, int events) 2605 1.1 lukem { 2606 1.3 jdolecek struct kqueue *kq; 2607 1.3 jdolecek int revents; 2608 1.3 jdolecek 2609 1.82 matt kq = fp->f_kqueue; 2610 1.49 ad 2611 1.3 jdolecek revents = 0; 2612 1.3 jdolecek if (events & (POLLIN | POLLRDNORM)) { 2613 1.49 ad mutex_spin_enter(&kq->kq_lock); 2614 1.118 jdolecek if (KQ_COUNT(kq) != 0) { 2615 1.3 jdolecek revents |= events & (POLLIN | POLLRDNORM); 2616 1.1 lukem } else { 2617 1.49 ad selrecord(curlwp, &kq->kq_sel); 2618 1.1 lukem } 2619 1.52 yamt kq_check(kq); 2620 1.49 ad mutex_spin_exit(&kq->kq_lock); 2621 1.1 lukem } 2622 1.49 ad 2623 1.49 ad return revents; 2624 1.1 lukem } 2625 1.1 lukem 2626 1.3 jdolecek /* 2627 1.49 ad * fileops stat method for a kqueue descriptor. 2628 1.3 jdolecek * Returns dummy info, with st_size being number of events pending. 2629 1.3 jdolecek */ 2630 1.1 lukem static int 2631 1.49 ad kqueue_stat(file_t *fp, struct stat *st) 2632 1.1 lukem { 2633 1.49 ad struct kqueue *kq; 2634 1.49 ad 2635 1.82 matt kq = fp->f_kqueue; 2636 1.1 lukem 2637 1.49 ad memset(st, 0, sizeof(*st)); 2638 1.118 jdolecek st->st_size = KQ_COUNT(kq); 2639 1.1 lukem st->st_blksize = sizeof(struct kevent); 2640 1.128 thorpej st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; 2641 1.128 thorpej st->st_blocks = 1; 2642 1.128 thorpej st->st_uid = kauth_cred_geteuid(fp->f_cred); 2643 1.128 thorpej st->st_gid = kauth_cred_getegid(fp->f_cred); 2644 1.49 ad 2645 1.49 ad return 0; 2646 1.49 ad } 2647 1.49 ad 2648 1.49 ad static void 2649 1.49 ad kqueue_doclose(struct kqueue *kq, struct klist *list, int fd) 2650 1.49 ad { 2651 1.49 ad struct knote *kn; 2652 1.49 ad filedesc_t *fdp; 2653 1.49 ad 2654 1.49 ad fdp = kq->kq_fdp; 2655 1.49 ad 2656 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock)); 2657 1.49 ad 2658 1.129 thorpej again: 2659 1.49 ad for (kn = SLIST_FIRST(list); kn != NULL;) { 2660 1.49 ad if (kq != kn->kn_kq) { 2661 1.49 ad kn = SLIST_NEXT(kn, kn_link); 2662 1.49 ad continue; 2663 1.49 ad } 2664 1.129 thorpej if (knote_detach_quiesce(kn)) { 2665 1.129 thorpej mutex_enter(&fdp->fd_lock); 2666 1.129 thorpej goto again; 2667 1.129 thorpej } 2668 1.49 ad knote_detach(kn, fdp, true); 2669 1.49 ad mutex_enter(&fdp->fd_lock); 2670 1.49 ad kn = SLIST_FIRST(list); 2671 1.49 ad } 2672 1.1 lukem } 2673 1.1 lukem 2674 1.3 jdolecek /* 2675 1.49 ad * fileops close method for a kqueue descriptor. 2676 1.3 jdolecek */ 2677 1.1 lukem static int 2678 1.49 ad kqueue_close(file_t *fp) 2679 1.1 lukem { 2680 1.49 ad struct kqueue *kq; 2681 1.49 ad filedesc_t *fdp; 2682 1.49 ad fdfile_t *ff; 2683 1.49 ad int i; 2684 1.49 ad 2685 1.82 matt kq = fp->f_kqueue; 2686 1.82 matt fp->f_kqueue = NULL; 2687 1.79 christos fp->f_type = 0; 2688 1.49 ad fdp = curlwp->l_fd; 2689 1.1 lukem 2690 1.129 thorpej KASSERT(kq->kq_fdp == fdp); 2691 1.129 thorpej 2692 1.49 ad mutex_enter(&fdp->fd_lock); 2693 1.129 thorpej 2694 1.129 thorpej /* 2695 1.129 thorpej * We're doing to drop the fd_lock multiple times while 2696 1.129 thorpej * we detach knotes. During this time, attempts to register 2697 1.129 thorpej * knotes via the back door (e.g. knote_proc_fork_track()) 2698 1.129 thorpej * need to fail, lest they sneak in to attach a knote after 2699 1.129 thorpej * we've already drained the list it's destined for. 2700 1.129 thorpej * 2701 1.139 msaitoh * We must acquire kq_lock here to set KQ_CLOSING (to serialize 2702 1.129 thorpej * with other code paths that modify kq_count without holding 2703 1.129 thorpej * the fd_lock), but once this bit is set, it's only safe to 2704 1.129 thorpej * test it while holding the fd_lock, and holding kq_lock while 2705 1.129 thorpej * doing so is not necessary. 2706 1.129 thorpej */ 2707 1.129 thorpej mutex_enter(&kq->kq_lock); 2708 1.129 thorpej kq->kq_count |= KQ_CLOSING; 2709 1.129 thorpej mutex_exit(&kq->kq_lock); 2710 1.129 thorpej 2711 1.49 ad for (i = 0; i <= fdp->fd_lastkqfile; i++) { 2712 1.65 ad if ((ff = fdp->fd_dt->dt_ff[i]) == NULL) 2713 1.49 ad continue; 2714 1.49 ad kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i); 2715 1.1 lukem } 2716 1.1 lukem if (fdp->fd_knhashmask != 0) { 2717 1.1 lukem for (i = 0; i < fdp->fd_knhashmask + 1; i++) { 2718 1.49 ad kqueue_doclose(kq, &fdp->fd_knhash[i], -1); 2719 1.1 lukem } 2720 1.1 lukem } 2721 1.129 thorpej 2722 1.49 ad mutex_exit(&fdp->fd_lock); 2723 1.49 ad 2724 1.129 thorpej #if defined(DEBUG) 2725 1.129 thorpej mutex_enter(&kq->kq_lock); 2726 1.129 thorpej kq_check(kq); 2727 1.129 thorpej mutex_exit(&kq->kq_lock); 2728 1.129 thorpej #endif /* DEBUG */ 2729 1.129 thorpej KASSERT(TAILQ_EMPTY(&kq->kq_head)); 2730 1.118 jdolecek KASSERT(KQ_COUNT(kq) == 0); 2731 1.49 ad mutex_destroy(&kq->kq_lock); 2732 1.49 ad cv_destroy(&kq->kq_cv); 2733 1.48 rmind seldestroy(&kq->kq_sel); 2734 1.49 ad kmem_free(kq, sizeof(*kq)); 2735 1.1 lukem 2736 1.1 lukem return (0); 2737 1.1 lukem } 2738 1.1 lukem 2739 1.3 jdolecek /* 2740 1.3 jdolecek * struct fileops kqfilter method for a kqueue descriptor. 2741 1.3 jdolecek * Event triggered when monitored kqueue changes. 2742 1.3 jdolecek */ 2743 1.3 jdolecek static int 2744 1.49 ad kqueue_kqfilter(file_t *fp, struct knote *kn) 2745 1.3 jdolecek { 2746 1.3 jdolecek struct kqueue *kq; 2747 1.49 ad 2748 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue; 2749 1.49 ad 2750 1.49 ad KASSERT(fp == kn->kn_obj); 2751 1.3 jdolecek 2752 1.3 jdolecek if (kn->kn_filter != EVFILT_READ) 2753 1.126 thorpej return EINVAL; 2754 1.49 ad 2755 1.3 jdolecek kn->kn_fop = &kqread_filtops; 2756 1.49 ad mutex_enter(&kq->kq_lock); 2757 1.109 thorpej selrecord_knote(&kq->kq_sel, kn); 2758 1.49 ad mutex_exit(&kq->kq_lock); 2759 1.49 ad 2760 1.49 ad return 0; 2761 1.3 jdolecek } 2762 1.3 jdolecek 2763 1.3 jdolecek 2764 1.3 jdolecek /* 2765 1.49 ad * Walk down a list of knotes, activating them if their event has 2766 1.49 ad * triggered. The caller's object lock (e.g. device driver lock) 2767 1.49 ad * must be held. 2768 1.1 lukem */ 2769 1.1 lukem void 2770 1.1 lukem knote(struct klist *list, long hint) 2771 1.1 lukem { 2772 1.71 drochner struct knote *kn, *tmpkn; 2773 1.1 lukem 2774 1.71 drochner SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) { 2775 1.145 thorpej /* 2776 1.145 thorpej * We assume here that the backing object's lock is 2777 1.145 thorpej * already held if we're traversing the klist, and 2778 1.145 thorpej * so acquiring the knote foplock would create a 2779 1.145 thorpej * deadlock scenario. But we also know that the klist 2780 1.145 thorpej * won't disappear on us while we're here, so not 2781 1.145 thorpej * acquiring it is safe. 2782 1.145 thorpej */ 2783 1.145 thorpej if (filter_event(kn, hint, true)) { 2784 1.49 ad knote_activate(kn); 2785 1.127 thorpej } 2786 1.49 ad } 2787 1.1 lukem } 2788 1.1 lukem 2789 1.1 lukem /* 2790 1.49 ad * Remove all knotes referencing a specified fd 2791 1.1 lukem */ 2792 1.1 lukem void 2793 1.49 ad knote_fdclose(int fd) 2794 1.1 lukem { 2795 1.49 ad struct klist *list; 2796 1.1 lukem struct knote *kn; 2797 1.49 ad filedesc_t *fdp; 2798 1.1 lukem 2799 1.129 thorpej again: 2800 1.49 ad fdp = curlwp->l_fd; 2801 1.106 riastrad mutex_enter(&fdp->fd_lock); 2802 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist; 2803 1.1 lukem while ((kn = SLIST_FIRST(list)) != NULL) { 2804 1.129 thorpej if (knote_detach_quiesce(kn)) { 2805 1.129 thorpej goto again; 2806 1.129 thorpej } 2807 1.49 ad knote_detach(kn, fdp, true); 2808 1.49 ad mutex_enter(&fdp->fd_lock); 2809 1.1 lukem } 2810 1.49 ad mutex_exit(&fdp->fd_lock); 2811 1.1 lukem } 2812 1.1 lukem 2813 1.1 lukem /* 2814 1.49 ad * Drop knote. Called with fdp->fd_lock held, and will drop before 2815 1.49 ad * returning. 2816 1.3 jdolecek */ 2817 1.1 lukem static void 2818 1.49 ad knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop) 2819 1.1 lukem { 2820 1.49 ad struct klist *list; 2821 1.53 ad struct kqueue *kq; 2822 1.53 ad 2823 1.53 ad kq = kn->kn_kq; 2824 1.1 lukem 2825 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0); 2826 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) != 0); 2827 1.129 thorpej KASSERT(kn->kn_fop != NULL); 2828 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock)); 2829 1.3 jdolecek 2830 1.53 ad /* Remove from monitored object. */ 2831 1.49 ad if (dofop) { 2832 1.145 thorpej knote_foplock_enter(kn); 2833 1.122 thorpej filter_detach(kn); 2834 1.145 thorpej knote_foplock_exit(kn); 2835 1.1 lukem } 2836 1.3 jdolecek 2837 1.53 ad /* Remove from descriptor table. */ 2838 1.121 thorpej if (kn->kn_fop->f_flags & FILTEROP_ISFD) 2839 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist; 2840 1.1 lukem else 2841 1.1 lukem list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; 2842 1.1 lukem 2843 1.1 lukem SLIST_REMOVE(list, kn, knote, kn_link); 2844 1.53 ad 2845 1.53 ad /* Remove from kqueue. */ 2846 1.85 christos again: 2847 1.53 ad mutex_spin_enter(&kq->kq_lock); 2848 1.129 thorpej KASSERT(kn_in_flux(kn) == false); 2849 1.53 ad if ((kn->kn_status & KN_QUEUED) != 0) { 2850 1.53 ad kq_check(kq); 2851 1.129 thorpej KASSERT(KQ_COUNT(kq) != 0); 2852 1.85 christos kq->kq_count--; 2853 1.53 ad TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2854 1.53 ad kn->kn_status &= ~KN_QUEUED; 2855 1.53 ad kq_check(kq); 2856 1.85 christos } else if (kn->kn_status & KN_BUSY) { 2857 1.85 christos mutex_spin_exit(&kq->kq_lock); 2858 1.85 christos goto again; 2859 1.53 ad } 2860 1.53 ad mutex_spin_exit(&kq->kq_lock); 2861 1.53 ad 2862 1.49 ad mutex_exit(&fdp->fd_lock); 2863 1.121 thorpej if (kn->kn_fop->f_flags & FILTEROP_ISFD) 2864 1.49 ad fd_putfile(kn->kn_id); 2865 1.49 ad atomic_dec_uint(&kn->kn_kfilter->refcnt); 2866 1.142 thorpej knote_free(kn); 2867 1.1 lukem } 2868 1.1 lukem 2869 1.3 jdolecek /* 2870 1.3 jdolecek * Queue new event for knote. 2871 1.3 jdolecek */ 2872 1.1 lukem static void 2873 1.1 lukem knote_enqueue(struct knote *kn) 2874 1.1 lukem { 2875 1.49 ad struct kqueue *kq; 2876 1.49 ad 2877 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0); 2878 1.1 lukem 2879 1.3 jdolecek kq = kn->kn_kq; 2880 1.1 lukem 2881 1.49 ad mutex_spin_enter(&kq->kq_lock); 2882 1.129 thorpej if (__predict_false(kn->kn_status & KN_WILLDETACH)) { 2883 1.129 thorpej /* Don't bother enqueueing a dying knote. */ 2884 1.129 thorpej goto out; 2885 1.129 thorpej } 2886 1.49 ad if ((kn->kn_status & KN_DISABLED) != 0) { 2887 1.49 ad kn->kn_status &= ~KN_DISABLED; 2888 1.49 ad } 2889 1.49 ad if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) { 2890 1.52 yamt kq_check(kq); 2891 1.85 christos kn->kn_status |= KN_QUEUED; 2892 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2893 1.129 thorpej KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT); 2894 1.49 ad kq->kq_count++; 2895 1.52 yamt kq_check(kq); 2896 1.49 ad cv_broadcast(&kq->kq_cv); 2897 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT); 2898 1.49 ad } 2899 1.129 thorpej out: 2900 1.49 ad mutex_spin_exit(&kq->kq_lock); 2901 1.1 lukem } 2902 1.49 ad /* 2903 1.49 ad * Queue new event for knote. 2904 1.49 ad */ 2905 1.49 ad static void 2906 1.133 thorpej knote_activate_locked(struct knote *kn) 2907 1.49 ad { 2908 1.49 ad struct kqueue *kq; 2909 1.49 ad 2910 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0); 2911 1.1 lukem 2912 1.3 jdolecek kq = kn->kn_kq; 2913 1.12 pk 2914 1.129 thorpej if (__predict_false(kn->kn_status & KN_WILLDETACH)) { 2915 1.129 thorpej /* Don't bother enqueueing a dying knote. */ 2916 1.133 thorpej return; 2917 1.129 thorpej } 2918 1.49 ad kn->kn_status |= KN_ACTIVE; 2919 1.49 ad if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) { 2920 1.52 yamt kq_check(kq); 2921 1.85 christos kn->kn_status |= KN_QUEUED; 2922 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2923 1.129 thorpej KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT); 2924 1.49 ad kq->kq_count++; 2925 1.52 yamt kq_check(kq); 2926 1.49 ad cv_broadcast(&kq->kq_cv); 2927 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT); 2928 1.49 ad } 2929 1.133 thorpej } 2930 1.133 thorpej 2931 1.133 thorpej static void 2932 1.133 thorpej knote_activate(struct knote *kn) 2933 1.133 thorpej { 2934 1.133 thorpej struct kqueue *kq = kn->kn_kq; 2935 1.133 thorpej 2936 1.133 thorpej mutex_spin_enter(&kq->kq_lock); 2937 1.133 thorpej knote_activate_locked(kn); 2938 1.49 ad mutex_spin_exit(&kq->kq_lock); 2939 1.1 lukem } 2940 1.131 thorpej 2941 1.136 thorpej static void 2942 1.136 thorpej knote_deactivate_locked(struct knote *kn) 2943 1.136 thorpej { 2944 1.136 thorpej struct kqueue *kq = kn->kn_kq; 2945 1.136 thorpej 2946 1.136 thorpej if (kn->kn_status & KN_QUEUED) { 2947 1.136 thorpej kq_check(kq); 2948 1.136 thorpej kn->kn_status &= ~KN_QUEUED; 2949 1.136 thorpej TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2950 1.136 thorpej KASSERT(KQ_COUNT(kq) > 0); 2951 1.136 thorpej kq->kq_count--; 2952 1.136 thorpej kq_check(kq); 2953 1.136 thorpej } 2954 1.136 thorpej kn->kn_status &= ~KN_ACTIVE; 2955 1.136 thorpej } 2956 1.136 thorpej 2957 1.131 thorpej /* 2958 1.131 thorpej * Set EV_EOF on the specified knote. Also allows additional 2959 1.131 thorpej * EV_* flags to be set (e.g. EV_ONESHOT). 2960 1.131 thorpej */ 2961 1.131 thorpej void 2962 1.131 thorpej knote_set_eof(struct knote *kn, uint32_t flags) 2963 1.131 thorpej { 2964 1.131 thorpej struct kqueue *kq = kn->kn_kq; 2965 1.131 thorpej 2966 1.131 thorpej mutex_spin_enter(&kq->kq_lock); 2967 1.131 thorpej kn->kn_flags |= EV_EOF | flags; 2968 1.131 thorpej mutex_spin_exit(&kq->kq_lock); 2969 1.131 thorpej } 2970 1.131 thorpej 2971 1.131 thorpej /* 2972 1.131 thorpej * Clear EV_EOF on the specified knote. 2973 1.131 thorpej */ 2974 1.131 thorpej void 2975 1.131 thorpej knote_clear_eof(struct knote *kn) 2976 1.131 thorpej { 2977 1.131 thorpej struct kqueue *kq = kn->kn_kq; 2978 1.131 thorpej 2979 1.131 thorpej mutex_spin_enter(&kq->kq_lock); 2980 1.131 thorpej kn->kn_flags &= ~EV_EOF; 2981 1.131 thorpej mutex_spin_exit(&kq->kq_lock); 2982 1.131 thorpej } 2983 1.143 thorpej 2984 1.143 thorpej /* 2985 1.143 thorpej * Initialize a klist. 2986 1.143 thorpej */ 2987 1.143 thorpej void 2988 1.143 thorpej klist_init(struct klist *list) 2989 1.143 thorpej { 2990 1.143 thorpej SLIST_INIT(list); 2991 1.143 thorpej } 2992 1.143 thorpej 2993 1.143 thorpej /* 2994 1.143 thorpej * Finalize a klist. 2995 1.143 thorpej */ 2996 1.143 thorpej void 2997 1.143 thorpej klist_fini(struct klist *list) 2998 1.143 thorpej { 2999 1.145 thorpej struct knote *kn; 3000 1.145 thorpej 3001 1.145 thorpej /* 3002 1.145 thorpej * Neuter all existing knotes on the klist because the list is 3003 1.145 thorpej * being destroyed. The caller has guaranteed that no additional 3004 1.145 thorpej * knotes will be added to the list, that the backing object's 3005 1.145 thorpej * locks are not held (otherwise there is a locking order issue 3006 1.145 thorpej * with acquiring the knote foplock ), and that we can traverse 3007 1.145 thorpej * the list safely in this state. 3008 1.145 thorpej */ 3009 1.145 thorpej SLIST_FOREACH(kn, list, kn_selnext) { 3010 1.145 thorpej knote_foplock_enter(kn); 3011 1.145 thorpej KASSERT(kn->kn_fop != NULL); 3012 1.145 thorpej if (kn->kn_fop->f_flags & FILTEROP_ISFD) { 3013 1.145 thorpej kn->kn_fop = &nop_fd_filtops; 3014 1.145 thorpej } else { 3015 1.145 thorpej kn->kn_fop = &nop_filtops; 3016 1.145 thorpej } 3017 1.145 thorpej knote_foplock_exit(kn); 3018 1.145 thorpej } 3019 1.143 thorpej } 3020 1.143 thorpej 3021 1.143 thorpej /* 3022 1.143 thorpej * Insert a knote into a klist. 3023 1.143 thorpej */ 3024 1.143 thorpej void 3025 1.143 thorpej klist_insert(struct klist *list, struct knote *kn) 3026 1.143 thorpej { 3027 1.143 thorpej SLIST_INSERT_HEAD(list, kn, kn_selnext); 3028 1.143 thorpej } 3029 1.143 thorpej 3030 1.143 thorpej /* 3031 1.143 thorpej * Remove a knote from a klist. Returns true if the last 3032 1.143 thorpej * knote was removed and the list is now empty. 3033 1.143 thorpej */ 3034 1.143 thorpej bool 3035 1.143 thorpej klist_remove(struct klist *list, struct knote *kn) 3036 1.143 thorpej { 3037 1.143 thorpej SLIST_REMOVE(list, kn, knote, kn_selnext); 3038 1.143 thorpej return SLIST_EMPTY(list); 3039 1.143 thorpej } 3040