kern_event.c revision 1.104.4.2 1 1.104.4.2 martin /* $NetBSD: kern_event.c,v 1.104.4.2 2021/02/07 16:42:41 martin Exp $ */
2 1.49 ad
3 1.49 ad /*-
4 1.64 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.49 ad * All rights reserved.
6 1.49 ad *
7 1.64 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.64 ad * by Andrew Doran.
9 1.64 ad *
10 1.49 ad * Redistribution and use in source and binary forms, with or without
11 1.49 ad * modification, are permitted provided that the following conditions
12 1.49 ad * are met:
13 1.49 ad * 1. Redistributions of source code must retain the above copyright
14 1.49 ad * notice, this list of conditions and the following disclaimer.
15 1.49 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.49 ad * notice, this list of conditions and the following disclaimer in the
17 1.49 ad * documentation and/or other materials provided with the distribution.
18 1.49 ad *
19 1.49 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.49 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.49 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.49 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.49 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.49 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.49 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.49 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.49 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.49 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.49 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.49 ad */
31 1.28 kardel
32 1.1 lukem /*-
33 1.1 lukem * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 1.1 lukem * All rights reserved.
35 1.1 lukem *
36 1.1 lukem * Redistribution and use in source and binary forms, with or without
37 1.1 lukem * modification, are permitted provided that the following conditions
38 1.1 lukem * are met:
39 1.1 lukem * 1. Redistributions of source code must retain the above copyright
40 1.1 lukem * notice, this list of conditions and the following disclaimer.
41 1.1 lukem * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 lukem * notice, this list of conditions and the following disclaimer in the
43 1.1 lukem * documentation and/or other materials provided with the distribution.
44 1.1 lukem *
45 1.1 lukem * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 lukem * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 lukem * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 lukem * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 lukem * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 lukem * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 lukem * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 lukem * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 lukem * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 lukem * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 lukem * SUCH DAMAGE.
56 1.1 lukem *
57 1.49 ad * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 1.1 lukem */
59 1.14 jdolecek
60 1.14 jdolecek #include <sys/cdefs.h>
61 1.104.4.2 martin __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.104.4.2 2021/02/07 16:42:41 martin Exp $");
62 1.1 lukem
63 1.1 lukem #include <sys/param.h>
64 1.1 lukem #include <sys/systm.h>
65 1.1 lukem #include <sys/kernel.h>
66 1.86 christos #include <sys/wait.h>
67 1.1 lukem #include <sys/proc.h>
68 1.1 lukem #include <sys/file.h>
69 1.3 jdolecek #include <sys/select.h>
70 1.1 lukem #include <sys/queue.h>
71 1.1 lukem #include <sys/event.h>
72 1.1 lukem #include <sys/eventvar.h>
73 1.1 lukem #include <sys/poll.h>
74 1.49 ad #include <sys/kmem.h>
75 1.1 lukem #include <sys/stat.h>
76 1.3 jdolecek #include <sys/filedesc.h>
77 1.3 jdolecek #include <sys/syscallargs.h>
78 1.27 elad #include <sys/kauth.h>
79 1.40 ad #include <sys/conf.h>
80 1.49 ad #include <sys/atomic.h>
81 1.1 lukem
82 1.49 ad static int kqueue_scan(file_t *, size_t, struct kevent *,
83 1.49 ad const struct timespec *, register_t *,
84 1.49 ad const struct kevent_ops *, struct kevent *,
85 1.49 ad size_t);
86 1.49 ad static int kqueue_ioctl(file_t *, u_long, void *);
87 1.49 ad static int kqueue_fcntl(file_t *, u_int, void *);
88 1.49 ad static int kqueue_poll(file_t *, int);
89 1.49 ad static int kqueue_kqfilter(file_t *, struct knote *);
90 1.49 ad static int kqueue_stat(file_t *, struct stat *);
91 1.49 ad static int kqueue_close(file_t *);
92 1.49 ad static int kqueue_register(struct kqueue *, struct kevent *);
93 1.49 ad static void kqueue_doclose(struct kqueue *, struct klist *, int);
94 1.49 ad
95 1.49 ad static void knote_detach(struct knote *, filedesc_t *fdp, bool);
96 1.49 ad static void knote_enqueue(struct knote *);
97 1.49 ad static void knote_activate(struct knote *);
98 1.49 ad
99 1.49 ad static void filt_kqdetach(struct knote *);
100 1.49 ad static int filt_kqueue(struct knote *, long hint);
101 1.49 ad static int filt_procattach(struct knote *);
102 1.49 ad static void filt_procdetach(struct knote *);
103 1.49 ad static int filt_proc(struct knote *, long hint);
104 1.49 ad static int filt_fileattach(struct knote *);
105 1.49 ad static void filt_timerexpire(void *x);
106 1.49 ad static int filt_timerattach(struct knote *);
107 1.49 ad static void filt_timerdetach(struct knote *);
108 1.49 ad static int filt_timer(struct knote *, long hint);
109 1.102 christos static int filt_fsattach(struct knote *kn);
110 1.102 christos static void filt_fsdetach(struct knote *kn);
111 1.102 christos static int filt_fs(struct knote *kn, long hint);
112 1.1 lukem
113 1.21 christos static const struct fileops kqueueops = {
114 1.101 christos .fo_name = "kqueue",
115 1.64 ad .fo_read = (void *)enxio,
116 1.64 ad .fo_write = (void *)enxio,
117 1.64 ad .fo_ioctl = kqueue_ioctl,
118 1.64 ad .fo_fcntl = kqueue_fcntl,
119 1.64 ad .fo_poll = kqueue_poll,
120 1.64 ad .fo_stat = kqueue_stat,
121 1.64 ad .fo_close = kqueue_close,
122 1.64 ad .fo_kqfilter = kqueue_kqfilter,
123 1.68 dsl .fo_restart = fnullop_restart,
124 1.1 lukem };
125 1.1 lukem
126 1.96 maya static const struct filterops kqread_filtops = {
127 1.96 maya .f_isfd = 1,
128 1.96 maya .f_attach = NULL,
129 1.96 maya .f_detach = filt_kqdetach,
130 1.96 maya .f_event = filt_kqueue,
131 1.96 maya };
132 1.96 maya
133 1.96 maya static const struct filterops proc_filtops = {
134 1.96 maya .f_isfd = 0,
135 1.96 maya .f_attach = filt_procattach,
136 1.96 maya .f_detach = filt_procdetach,
137 1.96 maya .f_event = filt_proc,
138 1.96 maya };
139 1.96 maya
140 1.96 maya static const struct filterops file_filtops = {
141 1.96 maya .f_isfd = 1,
142 1.96 maya .f_attach = filt_fileattach,
143 1.96 maya .f_detach = NULL,
144 1.96 maya .f_event = NULL,
145 1.96 maya };
146 1.96 maya
147 1.96 maya static const struct filterops timer_filtops = {
148 1.96 maya .f_isfd = 0,
149 1.96 maya .f_attach = filt_timerattach,
150 1.96 maya .f_detach = filt_timerdetach,
151 1.96 maya .f_event = filt_timer,
152 1.96 maya };
153 1.1 lukem
154 1.102 christos static const struct filterops fs_filtops = {
155 1.102 christos .f_isfd = 0,
156 1.102 christos .f_attach = filt_fsattach,
157 1.102 christos .f_detach = filt_fsdetach,
158 1.102 christos .f_event = filt_fs,
159 1.102 christos };
160 1.102 christos
161 1.49 ad static u_int kq_ncallouts = 0;
162 1.8 jdolecek static int kq_calloutmax = (4 * 1024);
163 1.7 thorpej
164 1.1 lukem #define KN_HASHSIZE 64 /* XXX should be tunable */
165 1.3 jdolecek #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
166 1.1 lukem
167 1.3 jdolecek extern const struct filterops sig_filtops;
168 1.1 lukem
169 1.104.4.1 martin #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
170 1.104.4.1 martin
171 1.1 lukem /*
172 1.1 lukem * Table for for all system-defined filters.
173 1.3 jdolecek * These should be listed in the numeric order of the EVFILT_* defines.
174 1.3 jdolecek * If filtops is NULL, the filter isn't implemented in NetBSD.
175 1.3 jdolecek * End of list is when name is NULL.
176 1.93 riastrad *
177 1.49 ad * Note that 'refcnt' is meaningless for built-in filters.
178 1.1 lukem */
179 1.3 jdolecek struct kfilter {
180 1.49 ad const char *name; /* name of filter */
181 1.49 ad uint32_t filter; /* id of filter */
182 1.49 ad unsigned refcnt; /* reference count */
183 1.3 jdolecek const struct filterops *filtops;/* operations for filter */
184 1.49 ad size_t namelen; /* length of name string */
185 1.3 jdolecek };
186 1.3 jdolecek
187 1.49 ad /* System defined filters */
188 1.49 ad static struct kfilter sys_kfilters[] = {
189 1.49 ad { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
190 1.49 ad { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
191 1.49 ad { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
192 1.49 ad { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
193 1.49 ad { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
194 1.49 ad { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
195 1.49 ad { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
196 1.102 christos { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
197 1.49 ad { NULL, 0, 0, NULL, 0 },
198 1.1 lukem };
199 1.1 lukem
200 1.49 ad /* User defined kfilters */
201 1.3 jdolecek static struct kfilter *user_kfilters; /* array */
202 1.3 jdolecek static int user_kfilterc; /* current offset */
203 1.3 jdolecek static int user_kfiltermaxc; /* max size so far */
204 1.49 ad static size_t user_kfiltersz; /* size of allocated memory */
205 1.49 ad
206 1.95 riastrad /*
207 1.95 riastrad * Global Locks.
208 1.95 riastrad *
209 1.95 riastrad * Lock order:
210 1.95 riastrad *
211 1.95 riastrad * kqueue_filter_lock
212 1.95 riastrad * -> kn_kq->kq_fdp->fd_lock
213 1.95 riastrad * -> object lock (e.g., device driver lock, kqueue_misc_lock, &c.)
214 1.95 riastrad * -> kn_kq->kq_lock
215 1.95 riastrad *
216 1.95 riastrad * Locking rules:
217 1.95 riastrad *
218 1.95 riastrad * f_attach: fdp->fd_lock, KERNEL_LOCK
219 1.95 riastrad * f_detach: fdp->fd_lock, KERNEL_LOCK
220 1.95 riastrad * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
221 1.95 riastrad * f_event via knote: whatever caller guarantees
222 1.95 riastrad * Typically, f_event(NOTE_SUBMIT) via knote: object lock
223 1.95 riastrad * f_event(!NOTE_SUBMIT) via knote: nothing,
224 1.95 riastrad * acquires/releases object lock inside.
225 1.95 riastrad */
226 1.49 ad static krwlock_t kqueue_filter_lock; /* lock on filter lists */
227 1.49 ad static kmutex_t kqueue_misc_lock; /* miscellaneous */
228 1.49 ad
229 1.66 elad static kauth_listener_t kqueue_listener;
230 1.66 elad
231 1.66 elad static int
232 1.66 elad kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
233 1.66 elad void *arg0, void *arg1, void *arg2, void *arg3)
234 1.66 elad {
235 1.66 elad struct proc *p;
236 1.66 elad int result;
237 1.66 elad
238 1.66 elad result = KAUTH_RESULT_DEFER;
239 1.66 elad p = arg0;
240 1.66 elad
241 1.66 elad if (action != KAUTH_PROCESS_KEVENT_FILTER)
242 1.66 elad return result;
243 1.66 elad
244 1.66 elad if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
245 1.66 elad ISSET(p->p_flag, PK_SUGID)))
246 1.66 elad return result;
247 1.66 elad
248 1.66 elad result = KAUTH_RESULT_ALLOW;
249 1.66 elad
250 1.66 elad return result;
251 1.66 elad }
252 1.66 elad
253 1.49 ad /*
254 1.49 ad * Initialize the kqueue subsystem.
255 1.49 ad */
256 1.49 ad void
257 1.49 ad kqueue_init(void)
258 1.49 ad {
259 1.49 ad
260 1.49 ad rw_init(&kqueue_filter_lock);
261 1.49 ad mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
262 1.66 elad
263 1.66 elad kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
264 1.66 elad kqueue_listener_cb, NULL);
265 1.49 ad }
266 1.3 jdolecek
267 1.3 jdolecek /*
268 1.3 jdolecek * Find kfilter entry by name, or NULL if not found.
269 1.3 jdolecek */
270 1.49 ad static struct kfilter *
271 1.3 jdolecek kfilter_byname_sys(const char *name)
272 1.3 jdolecek {
273 1.3 jdolecek int i;
274 1.3 jdolecek
275 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
276 1.49 ad
277 1.3 jdolecek for (i = 0; sys_kfilters[i].name != NULL; i++) {
278 1.3 jdolecek if (strcmp(name, sys_kfilters[i].name) == 0)
279 1.49 ad return &sys_kfilters[i];
280 1.3 jdolecek }
281 1.49 ad return NULL;
282 1.3 jdolecek }
283 1.3 jdolecek
284 1.3 jdolecek static struct kfilter *
285 1.3 jdolecek kfilter_byname_user(const char *name)
286 1.3 jdolecek {
287 1.3 jdolecek int i;
288 1.3 jdolecek
289 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
290 1.49 ad
291 1.31 seanb /* user filter slots have a NULL name if previously deregistered */
292 1.31 seanb for (i = 0; i < user_kfilterc ; i++) {
293 1.31 seanb if (user_kfilters[i].name != NULL &&
294 1.3 jdolecek strcmp(name, user_kfilters[i].name) == 0)
295 1.49 ad return &user_kfilters[i];
296 1.3 jdolecek }
297 1.49 ad return NULL;
298 1.3 jdolecek }
299 1.3 jdolecek
300 1.49 ad static struct kfilter *
301 1.3 jdolecek kfilter_byname(const char *name)
302 1.3 jdolecek {
303 1.49 ad struct kfilter *kfilter;
304 1.49 ad
305 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
306 1.3 jdolecek
307 1.3 jdolecek if ((kfilter = kfilter_byname_sys(name)) != NULL)
308 1.49 ad return kfilter;
309 1.3 jdolecek
310 1.49 ad return kfilter_byname_user(name);
311 1.3 jdolecek }
312 1.3 jdolecek
313 1.3 jdolecek /*
314 1.3 jdolecek * Find kfilter entry by filter id, or NULL if not found.
315 1.3 jdolecek * Assumes entries are indexed in filter id order, for speed.
316 1.3 jdolecek */
317 1.49 ad static struct kfilter *
318 1.3 jdolecek kfilter_byfilter(uint32_t filter)
319 1.3 jdolecek {
320 1.49 ad struct kfilter *kfilter;
321 1.49 ad
322 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
323 1.3 jdolecek
324 1.3 jdolecek if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
325 1.3 jdolecek kfilter = &sys_kfilters[filter];
326 1.3 jdolecek else if (user_kfilters != NULL &&
327 1.3 jdolecek filter < EVFILT_SYSCOUNT + user_kfilterc)
328 1.3 jdolecek /* it's a user filter */
329 1.3 jdolecek kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
330 1.3 jdolecek else
331 1.3 jdolecek return (NULL); /* out of range */
332 1.3 jdolecek KASSERT(kfilter->filter == filter); /* sanity check! */
333 1.3 jdolecek return (kfilter);
334 1.3 jdolecek }
335 1.3 jdolecek
336 1.3 jdolecek /*
337 1.3 jdolecek * Register a new kfilter. Stores the entry in user_kfilters.
338 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
339 1.3 jdolecek * If retfilter != NULL, the new filterid is returned in it.
340 1.3 jdolecek */
341 1.3 jdolecek int
342 1.3 jdolecek kfilter_register(const char *name, const struct filterops *filtops,
343 1.49 ad int *retfilter)
344 1.1 lukem {
345 1.3 jdolecek struct kfilter *kfilter;
346 1.49 ad size_t len;
347 1.31 seanb int i;
348 1.3 jdolecek
349 1.3 jdolecek if (name == NULL || name[0] == '\0' || filtops == NULL)
350 1.3 jdolecek return (EINVAL); /* invalid args */
351 1.49 ad
352 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
353 1.49 ad if (kfilter_byname(name) != NULL) {
354 1.49 ad rw_exit(&kqueue_filter_lock);
355 1.3 jdolecek return (EEXIST); /* already exists */
356 1.49 ad }
357 1.49 ad if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
358 1.49 ad rw_exit(&kqueue_filter_lock);
359 1.3 jdolecek return (EINVAL); /* too many */
360 1.49 ad }
361 1.3 jdolecek
362 1.31 seanb for (i = 0; i < user_kfilterc; i++) {
363 1.31 seanb kfilter = &user_kfilters[i];
364 1.31 seanb if (kfilter->name == NULL) {
365 1.31 seanb /* Previously deregistered slot. Reuse. */
366 1.31 seanb goto reuse;
367 1.31 seanb }
368 1.31 seanb }
369 1.31 seanb
370 1.3 jdolecek /* check if need to grow user_kfilters */
371 1.3 jdolecek if (user_kfilterc + 1 > user_kfiltermaxc) {
372 1.49 ad /* Grow in KFILTER_EXTENT chunks. */
373 1.3 jdolecek user_kfiltermaxc += KFILTER_EXTENT;
374 1.69 dsl len = user_kfiltermaxc * sizeof(*kfilter);
375 1.49 ad kfilter = kmem_alloc(len, KM_SLEEP);
376 1.49 ad memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
377 1.49 ad if (user_kfilters != NULL) {
378 1.49 ad memcpy(kfilter, user_kfilters, user_kfiltersz);
379 1.49 ad kmem_free(user_kfilters, user_kfiltersz);
380 1.49 ad }
381 1.49 ad user_kfiltersz = len;
382 1.3 jdolecek user_kfilters = kfilter;
383 1.3 jdolecek }
384 1.31 seanb /* Adding new slot */
385 1.31 seanb kfilter = &user_kfilters[user_kfilterc++];
386 1.31 seanb reuse:
387 1.97 christos kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
388 1.3 jdolecek
389 1.31 seanb kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
390 1.3 jdolecek
391 1.49 ad kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
392 1.49 ad memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
393 1.3 jdolecek
394 1.3 jdolecek if (retfilter != NULL)
395 1.31 seanb *retfilter = kfilter->filter;
396 1.49 ad rw_exit(&kqueue_filter_lock);
397 1.49 ad
398 1.3 jdolecek return (0);
399 1.1 lukem }
400 1.1 lukem
401 1.3 jdolecek /*
402 1.3 jdolecek * Unregister a kfilter previously registered with kfilter_register.
403 1.3 jdolecek * This retains the filter id, but clears the name and frees filtops (filter
404 1.3 jdolecek * operations), so that the number isn't reused during a boot.
405 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
406 1.3 jdolecek */
407 1.3 jdolecek int
408 1.3 jdolecek kfilter_unregister(const char *name)
409 1.1 lukem {
410 1.3 jdolecek struct kfilter *kfilter;
411 1.3 jdolecek
412 1.3 jdolecek if (name == NULL || name[0] == '\0')
413 1.3 jdolecek return (EINVAL); /* invalid name */
414 1.3 jdolecek
415 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
416 1.49 ad if (kfilter_byname_sys(name) != NULL) {
417 1.49 ad rw_exit(&kqueue_filter_lock);
418 1.3 jdolecek return (EINVAL); /* can't detach system filters */
419 1.49 ad }
420 1.1 lukem
421 1.3 jdolecek kfilter = kfilter_byname_user(name);
422 1.49 ad if (kfilter == NULL) {
423 1.49 ad rw_exit(&kqueue_filter_lock);
424 1.3 jdolecek return (ENOENT);
425 1.49 ad }
426 1.49 ad if (kfilter->refcnt != 0) {
427 1.49 ad rw_exit(&kqueue_filter_lock);
428 1.49 ad return (EBUSY);
429 1.49 ad }
430 1.1 lukem
431 1.49 ad /* Cast away const (but we know it's safe. */
432 1.49 ad kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
433 1.31 seanb kfilter->name = NULL; /* mark as `not implemented' */
434 1.31 seanb
435 1.3 jdolecek if (kfilter->filtops != NULL) {
436 1.49 ad /* Cast away const (but we know it's safe. */
437 1.49 ad kmem_free(__UNCONST(kfilter->filtops),
438 1.49 ad sizeof(*kfilter->filtops));
439 1.3 jdolecek kfilter->filtops = NULL; /* mark as `not implemented' */
440 1.3 jdolecek }
441 1.49 ad rw_exit(&kqueue_filter_lock);
442 1.49 ad
443 1.1 lukem return (0);
444 1.1 lukem }
445 1.1 lukem
446 1.3 jdolecek
447 1.3 jdolecek /*
448 1.3 jdolecek * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
449 1.49 ad * descriptors. Calls fileops kqfilter method for given file descriptor.
450 1.3 jdolecek */
451 1.3 jdolecek static int
452 1.3 jdolecek filt_fileattach(struct knote *kn)
453 1.3 jdolecek {
454 1.49 ad file_t *fp;
455 1.49 ad
456 1.49 ad fp = kn->kn_obj;
457 1.3 jdolecek
458 1.49 ad return (*fp->f_ops->fo_kqfilter)(fp, kn);
459 1.3 jdolecek }
460 1.3 jdolecek
461 1.3 jdolecek /*
462 1.3 jdolecek * Filter detach method for EVFILT_READ on kqueue descriptor.
463 1.3 jdolecek */
464 1.1 lukem static void
465 1.1 lukem filt_kqdetach(struct knote *kn)
466 1.1 lukem {
467 1.3 jdolecek struct kqueue *kq;
468 1.1 lukem
469 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
470 1.49 ad
471 1.49 ad mutex_spin_enter(&kq->kq_lock);
472 1.5 christos SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
473 1.49 ad mutex_spin_exit(&kq->kq_lock);
474 1.1 lukem }
475 1.1 lukem
476 1.3 jdolecek /*
477 1.3 jdolecek * Filter event method for EVFILT_READ on kqueue descriptor.
478 1.3 jdolecek */
479 1.1 lukem /*ARGSUSED*/
480 1.1 lukem static int
481 1.33 yamt filt_kqueue(struct knote *kn, long hint)
482 1.1 lukem {
483 1.3 jdolecek struct kqueue *kq;
484 1.49 ad int rv;
485 1.49 ad
486 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
487 1.1 lukem
488 1.49 ad if (hint != NOTE_SUBMIT)
489 1.49 ad mutex_spin_enter(&kq->kq_lock);
490 1.1 lukem kn->kn_data = kq->kq_count;
491 1.49 ad rv = (kn->kn_data > 0);
492 1.49 ad if (hint != NOTE_SUBMIT)
493 1.49 ad mutex_spin_exit(&kq->kq_lock);
494 1.49 ad
495 1.49 ad return rv;
496 1.1 lukem }
497 1.1 lukem
498 1.3 jdolecek /*
499 1.3 jdolecek * Filter attach method for EVFILT_PROC.
500 1.3 jdolecek */
501 1.1 lukem static int
502 1.1 lukem filt_procattach(struct knote *kn)
503 1.1 lukem {
504 1.78 pooka struct proc *p;
505 1.30 ad struct lwp *curl;
506 1.30 ad
507 1.30 ad curl = curlwp;
508 1.1 lukem
509 1.56 ad mutex_enter(proc_lock);
510 1.77 joerg if (kn->kn_flags & EV_FLAG1) {
511 1.77 joerg /*
512 1.77 joerg * NOTE_TRACK attaches to the child process too early
513 1.77 joerg * for proc_find, so do a raw look up and check the state
514 1.77 joerg * explicitly.
515 1.77 joerg */
516 1.77 joerg p = proc_find_raw(kn->kn_id);
517 1.77 joerg if (p != NULL && p->p_stat != SIDL)
518 1.77 joerg p = NULL;
519 1.77 joerg } else {
520 1.77 joerg p = proc_find(kn->kn_id);
521 1.77 joerg }
522 1.77 joerg
523 1.49 ad if (p == NULL) {
524 1.56 ad mutex_exit(proc_lock);
525 1.49 ad return ESRCH;
526 1.49 ad }
527 1.3 jdolecek
528 1.3 jdolecek /*
529 1.3 jdolecek * Fail if it's not owned by you, or the last exec gave us
530 1.3 jdolecek * setuid/setgid privs (unless you're root).
531 1.3 jdolecek */
532 1.57 ad mutex_enter(p->p_lock);
533 1.56 ad mutex_exit(proc_lock);
534 1.46 elad if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
535 1.49 ad p, NULL, NULL, NULL) != 0) {
536 1.57 ad mutex_exit(p->p_lock);
537 1.49 ad return EACCES;
538 1.49 ad }
539 1.1 lukem
540 1.49 ad kn->kn_obj = p;
541 1.3 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
542 1.1 lukem
543 1.1 lukem /*
544 1.1 lukem * internal flag indicating registration done by kernel
545 1.1 lukem */
546 1.1 lukem if (kn->kn_flags & EV_FLAG1) {
547 1.3 jdolecek kn->kn_data = kn->kn_sdata; /* ppid */
548 1.1 lukem kn->kn_fflags = NOTE_CHILD;
549 1.1 lukem kn->kn_flags &= ~EV_FLAG1;
550 1.1 lukem }
551 1.1 lukem SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
552 1.57 ad mutex_exit(p->p_lock);
553 1.1 lukem
554 1.49 ad return 0;
555 1.1 lukem }
556 1.1 lukem
557 1.1 lukem /*
558 1.3 jdolecek * Filter detach method for EVFILT_PROC.
559 1.3 jdolecek *
560 1.1 lukem * The knote may be attached to a different process, which may exit,
561 1.1 lukem * leaving nothing for the knote to be attached to. So when the process
562 1.1 lukem * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
563 1.1 lukem * it will be deleted when read out. However, as part of the knote deletion,
564 1.1 lukem * this routine is called, so a check is needed to avoid actually performing
565 1.3 jdolecek * a detach, because the original process might not exist any more.
566 1.1 lukem */
567 1.1 lukem static void
568 1.1 lukem filt_procdetach(struct knote *kn)
569 1.1 lukem {
570 1.3 jdolecek struct proc *p;
571 1.1 lukem
572 1.1 lukem if (kn->kn_status & KN_DETACHED)
573 1.1 lukem return;
574 1.1 lukem
575 1.49 ad p = kn->kn_obj;
576 1.3 jdolecek
577 1.57 ad mutex_enter(p->p_lock);
578 1.1 lukem SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
579 1.57 ad mutex_exit(p->p_lock);
580 1.1 lukem }
581 1.1 lukem
582 1.3 jdolecek /*
583 1.3 jdolecek * Filter event method for EVFILT_PROC.
584 1.3 jdolecek */
585 1.1 lukem static int
586 1.1 lukem filt_proc(struct knote *kn, long hint)
587 1.1 lukem {
588 1.49 ad u_int event, fflag;
589 1.49 ad struct kevent kev;
590 1.49 ad struct kqueue *kq;
591 1.49 ad int error;
592 1.1 lukem
593 1.1 lukem event = (u_int)hint & NOTE_PCTRLMASK;
594 1.49 ad kq = kn->kn_kq;
595 1.49 ad fflag = 0;
596 1.1 lukem
597 1.49 ad /* If the user is interested in this event, record it. */
598 1.1 lukem if (kn->kn_sfflags & event)
599 1.49 ad fflag |= event;
600 1.1 lukem
601 1.1 lukem if (event == NOTE_EXIT) {
602 1.83 christos struct proc *p = kn->kn_obj;
603 1.83 christos
604 1.83 christos if (p != NULL)
605 1.86 christos kn->kn_data = P_WAITSTATUS(p);
606 1.3 jdolecek /*
607 1.49 ad * Process is gone, so flag the event as finished.
608 1.49 ad *
609 1.3 jdolecek * Detach the knote from watched process and mark
610 1.3 jdolecek * it as such. We can't leave this to kqueue_scan(),
611 1.3 jdolecek * since the process might not exist by then. And we
612 1.3 jdolecek * have to do this now, since psignal KNOTE() is called
613 1.3 jdolecek * also for zombies and we might end up reading freed
614 1.3 jdolecek * memory if the kevent would already be picked up
615 1.22 perry * and knote g/c'ed.
616 1.3 jdolecek */
617 1.49 ad filt_procdetach(kn);
618 1.49 ad
619 1.49 ad mutex_spin_enter(&kq->kq_lock);
620 1.1 lukem kn->kn_status |= KN_DETACHED;
621 1.3 jdolecek /* Mark as ONESHOT, so that the knote it g/c'ed when read */
622 1.22 perry kn->kn_flags |= (EV_EOF | EV_ONESHOT);
623 1.49 ad kn->kn_fflags |= fflag;
624 1.49 ad mutex_spin_exit(&kq->kq_lock);
625 1.49 ad
626 1.49 ad return 1;
627 1.1 lukem }
628 1.1 lukem
629 1.49 ad mutex_spin_enter(&kq->kq_lock);
630 1.1 lukem if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
631 1.1 lukem /*
632 1.49 ad * Process forked, and user wants to track the new process,
633 1.49 ad * so attach a new knote to it, and immediately report an
634 1.49 ad * event with the parent's pid. Register knote with new
635 1.49 ad * process.
636 1.1 lukem */
637 1.104 maxv memset(&kev, 0, sizeof(kev));
638 1.1 lukem kev.ident = hint & NOTE_PDATAMASK; /* pid */
639 1.1 lukem kev.filter = kn->kn_filter;
640 1.1 lukem kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
641 1.1 lukem kev.fflags = kn->kn_sfflags;
642 1.1 lukem kev.data = kn->kn_id; /* parent */
643 1.1 lukem kev.udata = kn->kn_kevent.udata; /* preserve udata */
644 1.49 ad mutex_spin_exit(&kq->kq_lock);
645 1.49 ad error = kqueue_register(kq, &kev);
646 1.49 ad mutex_spin_enter(&kq->kq_lock);
647 1.49 ad if (error != 0)
648 1.1 lukem kn->kn_fflags |= NOTE_TRACKERR;
649 1.1 lukem }
650 1.49 ad kn->kn_fflags |= fflag;
651 1.49 ad fflag = kn->kn_fflags;
652 1.49 ad mutex_spin_exit(&kq->kq_lock);
653 1.1 lukem
654 1.49 ad return fflag != 0;
655 1.8 jdolecek }
656 1.8 jdolecek
657 1.8 jdolecek static void
658 1.8 jdolecek filt_timerexpire(void *knx)
659 1.8 jdolecek {
660 1.8 jdolecek struct knote *kn = knx;
661 1.8 jdolecek int tticks;
662 1.8 jdolecek
663 1.49 ad mutex_enter(&kqueue_misc_lock);
664 1.8 jdolecek kn->kn_data++;
665 1.49 ad knote_activate(kn);
666 1.8 jdolecek if ((kn->kn_flags & EV_ONESHOT) == 0) {
667 1.8 jdolecek tticks = mstohz(kn->kn_sdata);
668 1.73 christos if (tticks <= 0)
669 1.73 christos tticks = 1;
670 1.39 ad callout_schedule((callout_t *)kn->kn_hook, tticks);
671 1.8 jdolecek }
672 1.49 ad mutex_exit(&kqueue_misc_lock);
673 1.8 jdolecek }
674 1.8 jdolecek
675 1.8 jdolecek /*
676 1.8 jdolecek * data contains amount of time to sleep, in milliseconds
677 1.22 perry */
678 1.8 jdolecek static int
679 1.8 jdolecek filt_timerattach(struct knote *kn)
680 1.8 jdolecek {
681 1.39 ad callout_t *calloutp;
682 1.49 ad struct kqueue *kq;
683 1.8 jdolecek int tticks;
684 1.8 jdolecek
685 1.8 jdolecek tticks = mstohz(kn->kn_sdata);
686 1.8 jdolecek
687 1.8 jdolecek /* if the supplied value is under our resolution, use 1 tick */
688 1.8 jdolecek if (tticks == 0) {
689 1.8 jdolecek if (kn->kn_sdata == 0)
690 1.49 ad return EINVAL;
691 1.8 jdolecek tticks = 1;
692 1.8 jdolecek }
693 1.8 jdolecek
694 1.49 ad if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
695 1.49 ad (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
696 1.49 ad atomic_dec_uint(&kq_ncallouts);
697 1.49 ad return ENOMEM;
698 1.49 ad }
699 1.54 ad callout_init(calloutp, CALLOUT_MPSAFE);
700 1.49 ad
701 1.49 ad kq = kn->kn_kq;
702 1.49 ad mutex_spin_enter(&kq->kq_lock);
703 1.8 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
704 1.49 ad kn->kn_hook = calloutp;
705 1.49 ad mutex_spin_exit(&kq->kq_lock);
706 1.49 ad
707 1.8 jdolecek callout_reset(calloutp, tticks, filt_timerexpire, kn);
708 1.8 jdolecek
709 1.8 jdolecek return (0);
710 1.8 jdolecek }
711 1.8 jdolecek
712 1.8 jdolecek static void
713 1.8 jdolecek filt_timerdetach(struct knote *kn)
714 1.8 jdolecek {
715 1.39 ad callout_t *calloutp;
716 1.103 christos struct kqueue *kq = kn->kn_kq;
717 1.103 christos
718 1.103 christos mutex_spin_enter(&kq->kq_lock);
719 1.103 christos /* prevent rescheduling when we expire */
720 1.103 christos kn->kn_flags |= EV_ONESHOT;
721 1.103 christos mutex_spin_exit(&kq->kq_lock);
722 1.8 jdolecek
723 1.39 ad calloutp = (callout_t *)kn->kn_hook;
724 1.55 ad callout_halt(calloutp, NULL);
725 1.39 ad callout_destroy(calloutp);
726 1.49 ad kmem_free(calloutp, sizeof(*calloutp));
727 1.49 ad atomic_dec_uint(&kq_ncallouts);
728 1.8 jdolecek }
729 1.8 jdolecek
730 1.8 jdolecek static int
731 1.33 yamt filt_timer(struct knote *kn, long hint)
732 1.8 jdolecek {
733 1.49 ad int rv;
734 1.49 ad
735 1.49 ad mutex_enter(&kqueue_misc_lock);
736 1.49 ad rv = (kn->kn_data != 0);
737 1.49 ad mutex_exit(&kqueue_misc_lock);
738 1.49 ad
739 1.49 ad return rv;
740 1.1 lukem }
741 1.1 lukem
742 1.3 jdolecek /*
743 1.102 christos * Filter event method for EVFILT_FS.
744 1.102 christos */
745 1.102 christos struct klist fs_klist = SLIST_HEAD_INITIALIZER(&fs_klist);
746 1.102 christos
747 1.102 christos static int
748 1.102 christos filt_fsattach(struct knote *kn)
749 1.102 christos {
750 1.102 christos
751 1.102 christos mutex_enter(&kqueue_misc_lock);
752 1.102 christos kn->kn_flags |= EV_CLEAR;
753 1.102 christos SLIST_INSERT_HEAD(&fs_klist, kn, kn_selnext);
754 1.102 christos mutex_exit(&kqueue_misc_lock);
755 1.102 christos
756 1.102 christos return 0;
757 1.102 christos }
758 1.102 christos
759 1.102 christos static void
760 1.102 christos filt_fsdetach(struct knote *kn)
761 1.102 christos {
762 1.102 christos
763 1.102 christos mutex_enter(&kqueue_misc_lock);
764 1.102 christos SLIST_REMOVE(&fs_klist, kn, knote, kn_selnext);
765 1.102 christos mutex_exit(&kqueue_misc_lock);
766 1.102 christos }
767 1.102 christos
768 1.102 christos static int
769 1.102 christos filt_fs(struct knote *kn, long hint)
770 1.102 christos {
771 1.102 christos int rv;
772 1.102 christos
773 1.102 christos mutex_enter(&kqueue_misc_lock);
774 1.102 christos kn->kn_fflags |= hint;
775 1.102 christos rv = (kn->kn_fflags != 0);
776 1.102 christos mutex_exit(&kqueue_misc_lock);
777 1.102 christos
778 1.102 christos return rv;
779 1.102 christos }
780 1.102 christos
781 1.102 christos /*
782 1.3 jdolecek * filt_seltrue:
783 1.3 jdolecek *
784 1.3 jdolecek * This filter "event" routine simulates seltrue().
785 1.3 jdolecek */
786 1.1 lukem int
787 1.33 yamt filt_seltrue(struct knote *kn, long hint)
788 1.1 lukem {
789 1.1 lukem
790 1.3 jdolecek /*
791 1.3 jdolecek * We don't know how much data can be read/written,
792 1.3 jdolecek * but we know that it *can* be. This is about as
793 1.3 jdolecek * good as select/poll does as well.
794 1.3 jdolecek */
795 1.3 jdolecek kn->kn_data = 0;
796 1.3 jdolecek return (1);
797 1.3 jdolecek }
798 1.3 jdolecek
799 1.3 jdolecek /*
800 1.3 jdolecek * This provides full kqfilter entry for device switch tables, which
801 1.3 jdolecek * has same effect as filter using filt_seltrue() as filter method.
802 1.3 jdolecek */
803 1.3 jdolecek static void
804 1.33 yamt filt_seltruedetach(struct knote *kn)
805 1.3 jdolecek {
806 1.3 jdolecek /* Nothing to do */
807 1.3 jdolecek }
808 1.3 jdolecek
809 1.96 maya const struct filterops seltrue_filtops = {
810 1.96 maya .f_isfd = 1,
811 1.96 maya .f_attach = NULL,
812 1.96 maya .f_detach = filt_seltruedetach,
813 1.96 maya .f_event = filt_seltrue,
814 1.96 maya };
815 1.3 jdolecek
816 1.3 jdolecek int
817 1.33 yamt seltrue_kqfilter(dev_t dev, struct knote *kn)
818 1.3 jdolecek {
819 1.3 jdolecek switch (kn->kn_filter) {
820 1.3 jdolecek case EVFILT_READ:
821 1.3 jdolecek case EVFILT_WRITE:
822 1.3 jdolecek kn->kn_fop = &seltrue_filtops;
823 1.3 jdolecek break;
824 1.3 jdolecek default:
825 1.43 pooka return (EINVAL);
826 1.3 jdolecek }
827 1.3 jdolecek
828 1.3 jdolecek /* Nothing more to do */
829 1.3 jdolecek return (0);
830 1.3 jdolecek }
831 1.3 jdolecek
832 1.3 jdolecek /*
833 1.3 jdolecek * kqueue(2) system call.
834 1.3 jdolecek */
835 1.72 christos static int
836 1.72 christos kqueue1(struct lwp *l, int flags, register_t *retval)
837 1.3 jdolecek {
838 1.49 ad struct kqueue *kq;
839 1.49 ad file_t *fp;
840 1.49 ad int fd, error;
841 1.3 jdolecek
842 1.49 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
843 1.49 ad return error;
844 1.75 christos fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
845 1.1 lukem fp->f_type = DTYPE_KQUEUE;
846 1.1 lukem fp->f_ops = &kqueueops;
847 1.49 ad kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
848 1.49 ad mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
849 1.49 ad cv_init(&kq->kq_cv, "kqueue");
850 1.49 ad selinit(&kq->kq_sel);
851 1.1 lukem TAILQ_INIT(&kq->kq_head);
852 1.82 matt fp->f_kqueue = kq;
853 1.3 jdolecek *retval = fd;
854 1.49 ad kq->kq_fdp = curlwp->l_fd;
855 1.72 christos fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
856 1.49 ad fd_affix(curproc, fp, fd);
857 1.49 ad return error;
858 1.1 lukem }
859 1.1 lukem
860 1.3 jdolecek /*
861 1.72 christos * kqueue(2) system call.
862 1.72 christos */
863 1.72 christos int
864 1.72 christos sys_kqueue(struct lwp *l, const void *v, register_t *retval)
865 1.72 christos {
866 1.72 christos return kqueue1(l, 0, retval);
867 1.72 christos }
868 1.72 christos
869 1.72 christos int
870 1.72 christos sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
871 1.72 christos register_t *retval)
872 1.72 christos {
873 1.72 christos /* {
874 1.72 christos syscallarg(int) flags;
875 1.72 christos } */
876 1.72 christos return kqueue1(l, SCARG(uap, flags), retval);
877 1.72 christos }
878 1.72 christos
879 1.72 christos /*
880 1.3 jdolecek * kevent(2) system call.
881 1.3 jdolecek */
882 1.61 christos int
883 1.81 matt kevent_fetch_changes(void *ctx, const struct kevent *changelist,
884 1.61 christos struct kevent *changes, size_t index, int n)
885 1.24 cube {
886 1.49 ad
887 1.24 cube return copyin(changelist + index, changes, n * sizeof(*changes));
888 1.24 cube }
889 1.24 cube
890 1.61 christos int
891 1.81 matt kevent_put_events(void *ctx, struct kevent *events,
892 1.61 christos struct kevent *eventlist, size_t index, int n)
893 1.24 cube {
894 1.49 ad
895 1.24 cube return copyout(events, eventlist + index, n * sizeof(*events));
896 1.24 cube }
897 1.24 cube
898 1.24 cube static const struct kevent_ops kevent_native_ops = {
899 1.60 gmcgarry .keo_private = NULL,
900 1.60 gmcgarry .keo_fetch_timeout = copyin,
901 1.60 gmcgarry .keo_fetch_changes = kevent_fetch_changes,
902 1.60 gmcgarry .keo_put_events = kevent_put_events,
903 1.24 cube };
904 1.24 cube
905 1.1 lukem int
906 1.61 christos sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
907 1.61 christos register_t *retval)
908 1.1 lukem {
909 1.44 dsl /* {
910 1.3 jdolecek syscallarg(int) fd;
911 1.3 jdolecek syscallarg(const struct kevent *) changelist;
912 1.3 jdolecek syscallarg(size_t) nchanges;
913 1.3 jdolecek syscallarg(struct kevent *) eventlist;
914 1.3 jdolecek syscallarg(size_t) nevents;
915 1.3 jdolecek syscallarg(const struct timespec *) timeout;
916 1.44 dsl } */
917 1.24 cube
918 1.49 ad return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
919 1.24 cube SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
920 1.24 cube SCARG(uap, timeout), &kevent_native_ops);
921 1.24 cube }
922 1.24 cube
923 1.24 cube int
924 1.49 ad kevent1(register_t *retval, int fd,
925 1.49 ad const struct kevent *changelist, size_t nchanges,
926 1.49 ad struct kevent *eventlist, size_t nevents,
927 1.49 ad const struct timespec *timeout,
928 1.49 ad const struct kevent_ops *keops)
929 1.24 cube {
930 1.49 ad struct kevent *kevp;
931 1.49 ad struct kqueue *kq;
932 1.3 jdolecek struct timespec ts;
933 1.49 ad size_t i, n, ichange;
934 1.49 ad int nerrors, error;
935 1.80 maxv struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
936 1.49 ad file_t *fp;
937 1.3 jdolecek
938 1.3 jdolecek /* check that we're dealing with a kq */
939 1.49 ad fp = fd_getfile(fd);
940 1.10 pk if (fp == NULL)
941 1.1 lukem return (EBADF);
942 1.10 pk
943 1.10 pk if (fp->f_type != DTYPE_KQUEUE) {
944 1.49 ad fd_putfile(fd);
945 1.10 pk return (EBADF);
946 1.10 pk }
947 1.1 lukem
948 1.24 cube if (timeout != NULL) {
949 1.24 cube error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
950 1.1 lukem if (error)
951 1.1 lukem goto done;
952 1.24 cube timeout = &ts;
953 1.1 lukem }
954 1.1 lukem
955 1.82 matt kq = fp->f_kqueue;
956 1.1 lukem nerrors = 0;
957 1.24 cube ichange = 0;
958 1.1 lukem
959 1.3 jdolecek /* traverse list of events to register */
960 1.24 cube while (nchanges > 0) {
961 1.49 ad n = MIN(nchanges, __arraycount(kevbuf));
962 1.24 cube error = (*keops->keo_fetch_changes)(keops->keo_private,
963 1.49 ad changelist, kevbuf, ichange, n);
964 1.1 lukem if (error)
965 1.1 lukem goto done;
966 1.1 lukem for (i = 0; i < n; i++) {
967 1.49 ad kevp = &kevbuf[i];
968 1.1 lukem kevp->flags &= ~EV_SYSFLAGS;
969 1.3 jdolecek /* register each knote */
970 1.49 ad error = kqueue_register(kq, kevp);
971 1.89 abhinav if (!error && !(kevp->flags & EV_RECEIPT))
972 1.89 abhinav continue;
973 1.89 abhinav if (nevents == 0)
974 1.89 abhinav goto done;
975 1.89 abhinav kevp->flags = EV_ERROR;
976 1.89 abhinav kevp->data = error;
977 1.89 abhinav error = (*keops->keo_put_events)
978 1.89 abhinav (keops->keo_private, kevp,
979 1.89 abhinav eventlist, nerrors, 1);
980 1.89 abhinav if (error)
981 1.89 abhinav goto done;
982 1.89 abhinav nevents--;
983 1.89 abhinav nerrors++;
984 1.1 lukem }
985 1.24 cube nchanges -= n; /* update the results */
986 1.24 cube ichange += n;
987 1.1 lukem }
988 1.1 lukem if (nerrors) {
989 1.3 jdolecek *retval = nerrors;
990 1.1 lukem error = 0;
991 1.1 lukem goto done;
992 1.1 lukem }
993 1.1 lukem
994 1.3 jdolecek /* actually scan through the events */
995 1.49 ad error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
996 1.49 ad kevbuf, __arraycount(kevbuf));
997 1.3 jdolecek done:
998 1.49 ad fd_putfile(fd);
999 1.1 lukem return (error);
1000 1.1 lukem }
1001 1.1 lukem
1002 1.3 jdolecek /*
1003 1.3 jdolecek * Register a given kevent kev onto the kqueue
1004 1.3 jdolecek */
1005 1.49 ad static int
1006 1.49 ad kqueue_register(struct kqueue *kq, struct kevent *kev)
1007 1.1 lukem {
1008 1.49 ad struct kfilter *kfilter;
1009 1.49 ad filedesc_t *fdp;
1010 1.49 ad file_t *fp;
1011 1.49 ad fdfile_t *ff;
1012 1.49 ad struct knote *kn, *newkn;
1013 1.49 ad struct klist *list;
1014 1.49 ad int error, fd, rv;
1015 1.3 jdolecek
1016 1.3 jdolecek fdp = kq->kq_fdp;
1017 1.3 jdolecek fp = NULL;
1018 1.3 jdolecek kn = NULL;
1019 1.3 jdolecek error = 0;
1020 1.49 ad fd = 0;
1021 1.49 ad
1022 1.49 ad newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1023 1.49 ad
1024 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
1025 1.3 jdolecek kfilter = kfilter_byfilter(kev->filter);
1026 1.3 jdolecek if (kfilter == NULL || kfilter->filtops == NULL) {
1027 1.3 jdolecek /* filter not found nor implemented */
1028 1.49 ad rw_exit(&kqueue_filter_lock);
1029 1.49 ad kmem_free(newkn, sizeof(*newkn));
1030 1.1 lukem return (EINVAL);
1031 1.1 lukem }
1032 1.1 lukem
1033 1.3 jdolecek /* search if knote already exists */
1034 1.3 jdolecek if (kfilter->filtops->f_isfd) {
1035 1.3 jdolecek /* monitoring a file descriptor */
1036 1.87 christos /* validate descriptor */
1037 1.88 christos if (kev->ident > INT_MAX
1038 1.88 christos || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1039 1.49 ad rw_exit(&kqueue_filter_lock);
1040 1.49 ad kmem_free(newkn, sizeof(*newkn));
1041 1.49 ad return EBADF;
1042 1.49 ad }
1043 1.74 rmind mutex_enter(&fdp->fd_lock);
1044 1.65 ad ff = fdp->fd_dt->dt_ff[fd];
1045 1.98 christos if (ff->ff_refcnt & FR_CLOSING) {
1046 1.98 christos error = EBADF;
1047 1.98 christos goto doneunlock;
1048 1.98 christos }
1049 1.49 ad if (fd <= fdp->fd_lastkqfile) {
1050 1.49 ad SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1051 1.1 lukem if (kq == kn->kn_kq &&
1052 1.1 lukem kev->filter == kn->kn_filter)
1053 1.1 lukem break;
1054 1.49 ad }
1055 1.1 lukem }
1056 1.1 lukem } else {
1057 1.3 jdolecek /*
1058 1.3 jdolecek * not monitoring a file descriptor, so
1059 1.3 jdolecek * lookup knotes in internal hash table
1060 1.3 jdolecek */
1061 1.74 rmind mutex_enter(&fdp->fd_lock);
1062 1.1 lukem if (fdp->fd_knhashmask != 0) {
1063 1.1 lukem list = &fdp->fd_knhash[
1064 1.1 lukem KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1065 1.49 ad SLIST_FOREACH(kn, list, kn_link) {
1066 1.1 lukem if (kev->ident == kn->kn_id &&
1067 1.1 lukem kq == kn->kn_kq &&
1068 1.1 lukem kev->filter == kn->kn_filter)
1069 1.1 lukem break;
1070 1.49 ad }
1071 1.1 lukem }
1072 1.1 lukem }
1073 1.1 lukem
1074 1.1 lukem /*
1075 1.1 lukem * kn now contains the matching knote, or NULL if no match
1076 1.1 lukem */
1077 1.1 lukem if (kev->flags & EV_ADD) {
1078 1.1 lukem if (kn == NULL) {
1079 1.3 jdolecek /* create new knote */
1080 1.49 ad kn = newkn;
1081 1.49 ad newkn = NULL;
1082 1.49 ad kn->kn_obj = fp;
1083 1.79 christos kn->kn_id = kev->ident;
1084 1.1 lukem kn->kn_kq = kq;
1085 1.3 jdolecek kn->kn_fop = kfilter->filtops;
1086 1.49 ad kn->kn_kfilter = kfilter;
1087 1.49 ad kn->kn_sfflags = kev->fflags;
1088 1.49 ad kn->kn_sdata = kev->data;
1089 1.49 ad kev->fflags = 0;
1090 1.49 ad kev->data = 0;
1091 1.49 ad kn->kn_kevent = *kev;
1092 1.1 lukem
1093 1.85 christos KASSERT(kn->kn_fop != NULL);
1094 1.1 lukem /*
1095 1.1 lukem * apply reference count to knote structure, and
1096 1.1 lukem * do not release it at the end of this routine.
1097 1.1 lukem */
1098 1.1 lukem fp = NULL;
1099 1.1 lukem
1100 1.49 ad if (!kn->kn_fop->f_isfd) {
1101 1.49 ad /*
1102 1.49 ad * If knote is not on an fd, store on
1103 1.49 ad * internal hash table.
1104 1.49 ad */
1105 1.49 ad if (fdp->fd_knhashmask == 0) {
1106 1.49 ad /* XXXAD can block with fd_lock held */
1107 1.49 ad fdp->fd_knhash = hashinit(KN_HASHSIZE,
1108 1.59 ad HASH_LIST, true,
1109 1.49 ad &fdp->fd_knhashmask);
1110 1.49 ad }
1111 1.49 ad list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1112 1.49 ad fdp->fd_knhashmask)];
1113 1.49 ad } else {
1114 1.49 ad /* Otherwise, knote is on an fd. */
1115 1.49 ad list = (struct klist *)
1116 1.65 ad &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1117 1.49 ad if ((int)kn->kn_id > fdp->fd_lastkqfile)
1118 1.49 ad fdp->fd_lastkqfile = kn->kn_id;
1119 1.49 ad }
1120 1.49 ad SLIST_INSERT_HEAD(list, kn, kn_link);
1121 1.1 lukem
1122 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1123 1.49 ad error = (*kfilter->filtops->f_attach)(kn);
1124 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1125 1.49 ad if (error != 0) {
1126 1.100 christos #ifdef DEBUG
1127 1.101 christos const file_t *ft = kn->kn_obj;
1128 1.101 christos uprintf("%s: event type %d not supported for "
1129 1.101 christos "file type %d/%s (error %d)\n", __func__,
1130 1.101 christos kn->kn_filter, ft ? ft->f_type : -1,
1131 1.101 christos ft ? ft->f_ops->fo_name : "?", error);
1132 1.100 christos #endif
1133 1.100 christos
1134 1.49 ad /* knote_detach() drops fdp->fd_lock */
1135 1.49 ad knote_detach(kn, fdp, false);
1136 1.1 lukem goto done;
1137 1.1 lukem }
1138 1.49 ad atomic_inc_uint(&kfilter->refcnt);
1139 1.1 lukem } else {
1140 1.1 lukem /*
1141 1.1 lukem * The user may change some filter values after the
1142 1.22 perry * initial EV_ADD, but doing so will not reset any
1143 1.1 lukem * filter which have already been triggered.
1144 1.1 lukem */
1145 1.1 lukem kn->kn_sfflags = kev->fflags;
1146 1.1 lukem kn->kn_sdata = kev->data;
1147 1.1 lukem kn->kn_kevent.udata = kev->udata;
1148 1.1 lukem }
1149 1.79 christos /*
1150 1.79 christos * We can get here if we are trying to attach
1151 1.79 christos * an event to a file descriptor that does not
1152 1.79 christos * support events, and the attach routine is
1153 1.79 christos * broken and does not return an error.
1154 1.79 christos */
1155 1.85 christos KASSERT(kn->kn_fop != NULL);
1156 1.79 christos KASSERT(kn->kn_fop->f_event != NULL);
1157 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1158 1.49 ad rv = (*kn->kn_fop->f_event)(kn, 0);
1159 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1160 1.49 ad if (rv)
1161 1.49 ad knote_activate(kn);
1162 1.49 ad } else {
1163 1.49 ad if (kn == NULL) {
1164 1.49 ad error = ENOENT;
1165 1.98 christos goto doneunlock;
1166 1.49 ad }
1167 1.49 ad if (kev->flags & EV_DELETE) {
1168 1.49 ad /* knote_detach() drops fdp->fd_lock */
1169 1.49 ad knote_detach(kn, fdp, true);
1170 1.49 ad goto done;
1171 1.49 ad }
1172 1.1 lukem }
1173 1.1 lukem
1174 1.3 jdolecek /* disable knote */
1175 1.49 ad if ((kev->flags & EV_DISABLE)) {
1176 1.49 ad mutex_spin_enter(&kq->kq_lock);
1177 1.49 ad if ((kn->kn_status & KN_DISABLED) == 0)
1178 1.49 ad kn->kn_status |= KN_DISABLED;
1179 1.49 ad mutex_spin_exit(&kq->kq_lock);
1180 1.1 lukem }
1181 1.1 lukem
1182 1.3 jdolecek /* enable knote */
1183 1.49 ad if ((kev->flags & EV_ENABLE)) {
1184 1.49 ad knote_enqueue(kn);
1185 1.1 lukem }
1186 1.98 christos doneunlock:
1187 1.49 ad mutex_exit(&fdp->fd_lock);
1188 1.3 jdolecek done:
1189 1.49 ad rw_exit(&kqueue_filter_lock);
1190 1.49 ad if (newkn != NULL)
1191 1.49 ad kmem_free(newkn, sizeof(*newkn));
1192 1.1 lukem if (fp != NULL)
1193 1.49 ad fd_putfile(fd);
1194 1.1 lukem return (error);
1195 1.1 lukem }
1196 1.1 lukem
1197 1.52 yamt #if defined(DEBUG)
1198 1.94 christos #define KN_FMT(buf, kn) \
1199 1.94 christos (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1200 1.94 christos
1201 1.52 yamt static void
1202 1.94 christos kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1203 1.52 yamt {
1204 1.52 yamt const struct knote *kn;
1205 1.52 yamt int count;
1206 1.52 yamt int nmarker;
1207 1.94 christos char buf[128];
1208 1.52 yamt
1209 1.52 yamt KASSERT(mutex_owned(&kq->kq_lock));
1210 1.52 yamt KASSERT(kq->kq_count >= 0);
1211 1.52 yamt
1212 1.52 yamt count = 0;
1213 1.52 yamt nmarker = 0;
1214 1.52 yamt TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1215 1.52 yamt if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1216 1.94 christos panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1217 1.94 christos func, line, kq, kn, KN_FMT(buf, kn));
1218 1.52 yamt }
1219 1.52 yamt if ((kn->kn_status & KN_MARKER) == 0) {
1220 1.52 yamt if (kn->kn_kq != kq) {
1221 1.94 christos panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1222 1.94 christos func, line, kq, kn, kn->kn_kq,
1223 1.94 christos KN_FMT(buf, kn));
1224 1.52 yamt }
1225 1.52 yamt if ((kn->kn_status & KN_ACTIVE) == 0) {
1226 1.94 christos panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1227 1.94 christos func, line, kq, kn, KN_FMT(buf, kn));
1228 1.52 yamt }
1229 1.52 yamt count++;
1230 1.52 yamt if (count > kq->kq_count) {
1231 1.104.4.1 martin panic("%s,%zu: kq=%p kq->kq_count(%d) != "
1232 1.104.4.1 martin "count(%d), nmarker=%d",
1233 1.104.4.1 martin func, line, kq, kq->kq_count, count,
1234 1.104.4.1 martin nmarker);
1235 1.52 yamt }
1236 1.52 yamt } else {
1237 1.52 yamt nmarker++;
1238 1.52 yamt #if 0
1239 1.52 yamt if (nmarker > 10000) {
1240 1.94 christos panic("%s,%zu: kq=%p too many markers: "
1241 1.94 christos "%d != %d, nmarker=%d",
1242 1.94 christos func, line, kq, kq->kq_count, count,
1243 1.94 christos nmarker);
1244 1.52 yamt }
1245 1.52 yamt #endif
1246 1.52 yamt }
1247 1.52 yamt }
1248 1.52 yamt }
1249 1.94 christos #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1250 1.52 yamt #else /* defined(DEBUG) */
1251 1.52 yamt #define kq_check(a) /* nothing */
1252 1.52 yamt #endif /* defined(DEBUG) */
1253 1.52 yamt
1254 1.3 jdolecek /*
1255 1.3 jdolecek * Scan through the list of events on fp (for a maximum of maxevents),
1256 1.3 jdolecek * returning the results in to ulistp. Timeout is determined by tsp; if
1257 1.3 jdolecek * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1258 1.3 jdolecek * as appropriate.
1259 1.3 jdolecek */
1260 1.1 lukem static int
1261 1.49 ad kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1262 1.49 ad const struct timespec *tsp, register_t *retval,
1263 1.49 ad const struct kevent_ops *keops, struct kevent *kevbuf,
1264 1.49 ad size_t kevcnt)
1265 1.1 lukem {
1266 1.3 jdolecek struct kqueue *kq;
1267 1.3 jdolecek struct kevent *kevp;
1268 1.62 christos struct timespec ats, sleepts;
1269 1.85 christos struct knote *kn, *marker, morker;
1270 1.24 cube size_t count, nkev, nevents;
1271 1.104.4.1 martin int timeout, error, rv, influx;
1272 1.49 ad filedesc_t *fdp;
1273 1.1 lukem
1274 1.49 ad fdp = curlwp->l_fd;
1275 1.82 matt kq = fp->f_kqueue;
1276 1.1 lukem count = maxevents;
1277 1.24 cube nkev = nevents = error = 0;
1278 1.49 ad if (count == 0) {
1279 1.49 ad *retval = 0;
1280 1.49 ad return 0;
1281 1.49 ad }
1282 1.1 lukem
1283 1.9 jdolecek if (tsp) { /* timeout supplied */
1284 1.63 christos ats = *tsp;
1285 1.62 christos if (inittimeleft(&ats, &sleepts) == -1) {
1286 1.49 ad *retval = maxevents;
1287 1.49 ad return EINVAL;
1288 1.1 lukem }
1289 1.62 christos timeout = tstohz(&ats);
1290 1.9 jdolecek if (timeout <= 0)
1291 1.29 kardel timeout = -1; /* do poll */
1292 1.1 lukem } else {
1293 1.9 jdolecek /* no timeout, wait forever */
1294 1.1 lukem timeout = 0;
1295 1.93 riastrad }
1296 1.1 lukem
1297 1.85 christos memset(&morker, 0, sizeof(morker));
1298 1.85 christos marker = &morker;
1299 1.49 ad marker->kn_status = KN_MARKER;
1300 1.49 ad mutex_spin_enter(&kq->kq_lock);
1301 1.3 jdolecek retry:
1302 1.49 ad kevp = kevbuf;
1303 1.1 lukem if (kq->kq_count == 0) {
1304 1.49 ad if (timeout >= 0) {
1305 1.49 ad error = cv_timedwait_sig(&kq->kq_cv,
1306 1.49 ad &kq->kq_lock, timeout);
1307 1.49 ad if (error == 0) {
1308 1.49 ad if (tsp == NULL || (timeout =
1309 1.62 christos gettimeleft(&ats, &sleepts)) > 0)
1310 1.49 ad goto retry;
1311 1.49 ad } else {
1312 1.49 ad /* don't restart after signals... */
1313 1.49 ad if (error == ERESTART)
1314 1.49 ad error = EINTR;
1315 1.49 ad if (error == EWOULDBLOCK)
1316 1.49 ad error = 0;
1317 1.49 ad }
1318 1.1 lukem }
1319 1.92 christos mutex_spin_exit(&kq->kq_lock);
1320 1.104.4.1 martin goto done;
1321 1.104.4.1 martin }
1322 1.1 lukem
1323 1.104.4.1 martin /* mark end of knote list */
1324 1.104.4.1 martin TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1325 1.104.4.1 martin influx = 0;
1326 1.92 christos
1327 1.104.4.1 martin /*
1328 1.104.4.1 martin * Acquire the fdp->fd_lock interlock to avoid races with
1329 1.104.4.1 martin * file creation/destruction from other threads.
1330 1.104.4.1 martin */
1331 1.104.4.1 martin relock:
1332 1.104.4.1 martin mutex_spin_exit(&kq->kq_lock);
1333 1.104.4.1 martin mutex_enter(&fdp->fd_lock);
1334 1.104.4.1 martin mutex_spin_enter(&kq->kq_lock);
1335 1.104.4.1 martin
1336 1.104.4.1 martin while (count != 0) {
1337 1.104.4.1 martin kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1338 1.104.4.1 martin
1339 1.104.4.1 martin if ((kn->kn_status & KN_MARKER) != 0 && kn != marker) {
1340 1.104.4.1 martin if (influx) {
1341 1.104.4.1 martin influx = 0;
1342 1.104.4.1 martin KQ_FLUX_WAKEUP(kq);
1343 1.49 ad }
1344 1.104.4.1 martin mutex_exit(&fdp->fd_lock);
1345 1.104.4.1 martin (void)cv_wait(&kq->kq_cv, &kq->kq_lock);
1346 1.104.4.1 martin goto relock;
1347 1.104.4.1 martin }
1348 1.104.4.1 martin
1349 1.104.4.1 martin TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1350 1.104.4.1 martin if (kn == marker) {
1351 1.104.4.1 martin /* it's our marker, stop */
1352 1.104.4.1 martin KQ_FLUX_WAKEUP(kq);
1353 1.104.4.1 martin if (count == maxevents) {
1354 1.104.4.1 martin mutex_exit(&fdp->fd_lock);
1355 1.104.4.1 martin goto retry;
1356 1.104.4.1 martin }
1357 1.104.4.1 martin break;
1358 1.104.4.1 martin }
1359 1.104.4.1 martin KASSERT((kn->kn_status & KN_BUSY) == 0);
1360 1.104.4.1 martin
1361 1.104.4.1 martin kq_check(kq);
1362 1.104.4.1 martin kn->kn_status &= ~KN_QUEUED;
1363 1.104.4.1 martin kn->kn_status |= KN_BUSY;
1364 1.104.4.1 martin kq_check(kq);
1365 1.104.4.1 martin if (kn->kn_status & KN_DISABLED) {
1366 1.104.4.1 martin kn->kn_status &= ~KN_BUSY;
1367 1.85 christos kq->kq_count--;
1368 1.104.4.1 martin /* don't want disabled events */
1369 1.104.4.1 martin continue;
1370 1.104.4.1 martin }
1371 1.104.4.1 martin if ((kn->kn_flags & EV_ONESHOT) == 0) {
1372 1.104.4.1 martin mutex_spin_exit(&kq->kq_lock);
1373 1.104.4.1 martin KASSERT(kn->kn_fop != NULL);
1374 1.104.4.1 martin KASSERT(kn->kn_fop->f_event != NULL);
1375 1.104.4.1 martin KERNEL_LOCK(1, NULL); /* XXXSMP */
1376 1.104.4.1 martin KASSERT(mutex_owned(&fdp->fd_lock));
1377 1.104.4.1 martin rv = (*kn->kn_fop->f_event)(kn, 0);
1378 1.104.4.1 martin KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1379 1.104.4.1 martin mutex_spin_enter(&kq->kq_lock);
1380 1.104.4.1 martin /* Re-poll if note was re-enqueued. */
1381 1.104.4.1 martin if ((kn->kn_status & KN_QUEUED) != 0) {
1382 1.85 christos kn->kn_status &= ~KN_BUSY;
1383 1.104.4.1 martin /* Re-enqueue raised kq_count, lower it again */
1384 1.104.4.1 martin kq->kq_count--;
1385 1.104.4.1 martin influx = 1;
1386 1.49 ad continue;
1387 1.49 ad }
1388 1.104.4.1 martin if (rv == 0) {
1389 1.104.4.1 martin /*
1390 1.104.4.1 martin * non-ONESHOT event that hasn't
1391 1.104.4.1 martin * triggered again, so de-queue.
1392 1.104.4.1 martin */
1393 1.104.4.1 martin kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1394 1.104.4.1 martin kq->kq_count--;
1395 1.104.4.1 martin influx = 1;
1396 1.104.4.1 martin continue;
1397 1.49 ad }
1398 1.1 lukem }
1399 1.104.4.1 martin /* XXXAD should be got from f_event if !oneshot. */
1400 1.104.4.1 martin *kevp++ = kn->kn_kevent;
1401 1.104.4.1 martin nkev++;
1402 1.104.4.2 martin influx = 1;
1403 1.104.4.1 martin if (kn->kn_flags & EV_ONESHOT) {
1404 1.104.4.1 martin /* delete ONESHOT events after retrieval */
1405 1.104.4.1 martin kn->kn_status &= ~KN_BUSY;
1406 1.104.4.2 martin kq->kq_count--;
1407 1.104.4.1 martin mutex_spin_exit(&kq->kq_lock);
1408 1.104.4.1 martin knote_detach(kn, fdp, true);
1409 1.104.4.1 martin mutex_enter(&fdp->fd_lock);
1410 1.104.4.1 martin mutex_spin_enter(&kq->kq_lock);
1411 1.104.4.1 martin } else if (kn->kn_flags & EV_CLEAR) {
1412 1.104.4.1 martin /* clear state after retrieval */
1413 1.104.4.1 martin kn->kn_data = 0;
1414 1.104.4.1 martin kn->kn_fflags = 0;
1415 1.104.4.1 martin kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1416 1.104.4.1 martin kq->kq_count--;
1417 1.104.4.1 martin } else if (kn->kn_flags & EV_DISPATCH) {
1418 1.104.4.1 martin kn->kn_status |= KN_DISABLED;
1419 1.104.4.1 martin kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1420 1.104.4.1 martin kq->kq_count--;
1421 1.104.4.1 martin } else {
1422 1.104.4.1 martin /* add event back on list */
1423 1.104.4.1 martin kq_check(kq);
1424 1.104.4.1 martin kn->kn_status |= KN_QUEUED;
1425 1.104.4.1 martin kn->kn_status &= ~KN_BUSY;
1426 1.104.4.1 martin TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1427 1.104.4.1 martin kq_check(kq);
1428 1.104.4.1 martin }
1429 1.104.4.1 martin if (nkev == kevcnt) {
1430 1.104.4.1 martin /* do copyouts in kevcnt chunks */
1431 1.104.4.1 martin influx = 0;
1432 1.104.4.1 martin KQ_FLUX_WAKEUP(kq);
1433 1.104.4.1 martin mutex_spin_exit(&kq->kq_lock);
1434 1.104.4.1 martin mutex_exit(&fdp->fd_lock);
1435 1.104.4.1 martin error = (*keops->keo_put_events)
1436 1.104.4.1 martin (keops->keo_private,
1437 1.104.4.1 martin kevbuf, ulistp, nevents, nkev);
1438 1.104.4.1 martin mutex_enter(&fdp->fd_lock);
1439 1.104.4.1 martin mutex_spin_enter(&kq->kq_lock);
1440 1.104.4.1 martin nevents += nkev;
1441 1.104.4.1 martin nkev = 0;
1442 1.104.4.1 martin kevp = kevbuf;
1443 1.104.4.1 martin }
1444 1.104.4.1 martin count--;
1445 1.104.4.1 martin if (error != 0 || count == 0) {
1446 1.104.4.1 martin /* remove marker */
1447 1.104.4.1 martin TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1448 1.104.4.1 martin break;
1449 1.104.4.1 martin }
1450 1.1 lukem }
1451 1.104.4.1 martin KQ_FLUX_WAKEUP(kq);
1452 1.104.4.1 martin mutex_spin_exit(&kq->kq_lock);
1453 1.104.4.1 martin mutex_exit(&fdp->fd_lock);
1454 1.104.4.1 martin
1455 1.104.4.1 martin done:
1456 1.49 ad if (nkev != 0) {
1457 1.3 jdolecek /* copyout remaining events */
1458 1.24 cube error = (*keops->keo_put_events)(keops->keo_private,
1459 1.49 ad kevbuf, ulistp, nevents, nkev);
1460 1.49 ad }
1461 1.3 jdolecek *retval = maxevents - count;
1462 1.3 jdolecek
1463 1.49 ad return error;
1464 1.1 lukem }
1465 1.1 lukem
1466 1.1 lukem /*
1467 1.49 ad * fileops ioctl method for a kqueue descriptor.
1468 1.3 jdolecek *
1469 1.3 jdolecek * Two ioctls are currently supported. They both use struct kfilter_mapping:
1470 1.3 jdolecek * KFILTER_BYNAME find name for filter, and return result in
1471 1.3 jdolecek * name, which is of size len.
1472 1.3 jdolecek * KFILTER_BYFILTER find filter for name. len is ignored.
1473 1.3 jdolecek */
1474 1.1 lukem /*ARGSUSED*/
1475 1.1 lukem static int
1476 1.49 ad kqueue_ioctl(file_t *fp, u_long com, void *data)
1477 1.1 lukem {
1478 1.3 jdolecek struct kfilter_mapping *km;
1479 1.3 jdolecek const struct kfilter *kfilter;
1480 1.3 jdolecek char *name;
1481 1.3 jdolecek int error;
1482 1.3 jdolecek
1483 1.49 ad km = data;
1484 1.3 jdolecek error = 0;
1485 1.49 ad name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1486 1.3 jdolecek
1487 1.3 jdolecek switch (com) {
1488 1.3 jdolecek case KFILTER_BYFILTER: /* convert filter -> name */
1489 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
1490 1.3 jdolecek kfilter = kfilter_byfilter(km->filter);
1491 1.49 ad if (kfilter != NULL) {
1492 1.49 ad strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1493 1.49 ad rw_exit(&kqueue_filter_lock);
1494 1.49 ad error = copyoutstr(name, km->name, km->len, NULL);
1495 1.49 ad } else {
1496 1.49 ad rw_exit(&kqueue_filter_lock);
1497 1.3 jdolecek error = ENOENT;
1498 1.49 ad }
1499 1.3 jdolecek break;
1500 1.3 jdolecek
1501 1.3 jdolecek case KFILTER_BYNAME: /* convert name -> filter */
1502 1.3 jdolecek error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1503 1.3 jdolecek if (error) {
1504 1.3 jdolecek break;
1505 1.3 jdolecek }
1506 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
1507 1.3 jdolecek kfilter = kfilter_byname(name);
1508 1.3 jdolecek if (kfilter != NULL)
1509 1.3 jdolecek km->filter = kfilter->filter;
1510 1.3 jdolecek else
1511 1.3 jdolecek error = ENOENT;
1512 1.49 ad rw_exit(&kqueue_filter_lock);
1513 1.3 jdolecek break;
1514 1.3 jdolecek
1515 1.3 jdolecek default:
1516 1.3 jdolecek error = ENOTTY;
1517 1.49 ad break;
1518 1.3 jdolecek
1519 1.3 jdolecek }
1520 1.49 ad kmem_free(name, KFILTER_MAXNAME);
1521 1.3 jdolecek return (error);
1522 1.3 jdolecek }
1523 1.3 jdolecek
1524 1.3 jdolecek /*
1525 1.49 ad * fileops fcntl method for a kqueue descriptor.
1526 1.3 jdolecek */
1527 1.3 jdolecek static int
1528 1.49 ad kqueue_fcntl(file_t *fp, u_int com, void *data)
1529 1.3 jdolecek {
1530 1.3 jdolecek
1531 1.1 lukem return (ENOTTY);
1532 1.1 lukem }
1533 1.1 lukem
1534 1.3 jdolecek /*
1535 1.49 ad * fileops poll method for a kqueue descriptor.
1536 1.3 jdolecek * Determine if kqueue has events pending.
1537 1.3 jdolecek */
1538 1.1 lukem static int
1539 1.49 ad kqueue_poll(file_t *fp, int events)
1540 1.1 lukem {
1541 1.3 jdolecek struct kqueue *kq;
1542 1.3 jdolecek int revents;
1543 1.3 jdolecek
1544 1.82 matt kq = fp->f_kqueue;
1545 1.49 ad
1546 1.3 jdolecek revents = 0;
1547 1.3 jdolecek if (events & (POLLIN | POLLRDNORM)) {
1548 1.49 ad mutex_spin_enter(&kq->kq_lock);
1549 1.49 ad if (kq->kq_count != 0) {
1550 1.3 jdolecek revents |= events & (POLLIN | POLLRDNORM);
1551 1.1 lukem } else {
1552 1.49 ad selrecord(curlwp, &kq->kq_sel);
1553 1.1 lukem }
1554 1.52 yamt kq_check(kq);
1555 1.49 ad mutex_spin_exit(&kq->kq_lock);
1556 1.1 lukem }
1557 1.49 ad
1558 1.49 ad return revents;
1559 1.1 lukem }
1560 1.1 lukem
1561 1.3 jdolecek /*
1562 1.49 ad * fileops stat method for a kqueue descriptor.
1563 1.3 jdolecek * Returns dummy info, with st_size being number of events pending.
1564 1.3 jdolecek */
1565 1.1 lukem static int
1566 1.49 ad kqueue_stat(file_t *fp, struct stat *st)
1567 1.1 lukem {
1568 1.49 ad struct kqueue *kq;
1569 1.49 ad
1570 1.82 matt kq = fp->f_kqueue;
1571 1.1 lukem
1572 1.49 ad memset(st, 0, sizeof(*st));
1573 1.1 lukem st->st_size = kq->kq_count;
1574 1.1 lukem st->st_blksize = sizeof(struct kevent);
1575 1.1 lukem st->st_mode = S_IFIFO;
1576 1.49 ad
1577 1.49 ad return 0;
1578 1.49 ad }
1579 1.49 ad
1580 1.49 ad static void
1581 1.49 ad kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1582 1.49 ad {
1583 1.49 ad struct knote *kn;
1584 1.49 ad filedesc_t *fdp;
1585 1.49 ad
1586 1.49 ad fdp = kq->kq_fdp;
1587 1.49 ad
1588 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
1589 1.49 ad
1590 1.49 ad for (kn = SLIST_FIRST(list); kn != NULL;) {
1591 1.49 ad if (kq != kn->kn_kq) {
1592 1.49 ad kn = SLIST_NEXT(kn, kn_link);
1593 1.49 ad continue;
1594 1.49 ad }
1595 1.49 ad knote_detach(kn, fdp, true);
1596 1.49 ad mutex_enter(&fdp->fd_lock);
1597 1.49 ad kn = SLIST_FIRST(list);
1598 1.49 ad }
1599 1.1 lukem }
1600 1.1 lukem
1601 1.49 ad
1602 1.3 jdolecek /*
1603 1.49 ad * fileops close method for a kqueue descriptor.
1604 1.3 jdolecek */
1605 1.1 lukem static int
1606 1.49 ad kqueue_close(file_t *fp)
1607 1.1 lukem {
1608 1.49 ad struct kqueue *kq;
1609 1.49 ad filedesc_t *fdp;
1610 1.49 ad fdfile_t *ff;
1611 1.49 ad int i;
1612 1.49 ad
1613 1.82 matt kq = fp->f_kqueue;
1614 1.82 matt fp->f_kqueue = NULL;
1615 1.79 christos fp->f_type = 0;
1616 1.49 ad fdp = curlwp->l_fd;
1617 1.1 lukem
1618 1.49 ad mutex_enter(&fdp->fd_lock);
1619 1.49 ad for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1620 1.65 ad if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1621 1.49 ad continue;
1622 1.49 ad kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1623 1.1 lukem }
1624 1.1 lukem if (fdp->fd_knhashmask != 0) {
1625 1.1 lukem for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1626 1.49 ad kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1627 1.1 lukem }
1628 1.1 lukem }
1629 1.49 ad mutex_exit(&fdp->fd_lock);
1630 1.49 ad
1631 1.49 ad KASSERT(kq->kq_count == 0);
1632 1.49 ad mutex_destroy(&kq->kq_lock);
1633 1.49 ad cv_destroy(&kq->kq_cv);
1634 1.48 rmind seldestroy(&kq->kq_sel);
1635 1.49 ad kmem_free(kq, sizeof(*kq));
1636 1.1 lukem
1637 1.1 lukem return (0);
1638 1.1 lukem }
1639 1.1 lukem
1640 1.3 jdolecek /*
1641 1.3 jdolecek * struct fileops kqfilter method for a kqueue descriptor.
1642 1.3 jdolecek * Event triggered when monitored kqueue changes.
1643 1.3 jdolecek */
1644 1.3 jdolecek static int
1645 1.49 ad kqueue_kqfilter(file_t *fp, struct knote *kn)
1646 1.3 jdolecek {
1647 1.3 jdolecek struct kqueue *kq;
1648 1.49 ad
1649 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
1650 1.49 ad
1651 1.49 ad KASSERT(fp == kn->kn_obj);
1652 1.3 jdolecek
1653 1.3 jdolecek if (kn->kn_filter != EVFILT_READ)
1654 1.49 ad return 1;
1655 1.49 ad
1656 1.3 jdolecek kn->kn_fop = &kqread_filtops;
1657 1.49 ad mutex_enter(&kq->kq_lock);
1658 1.5 christos SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1659 1.49 ad mutex_exit(&kq->kq_lock);
1660 1.49 ad
1661 1.49 ad return 0;
1662 1.3 jdolecek }
1663 1.3 jdolecek
1664 1.3 jdolecek
1665 1.3 jdolecek /*
1666 1.49 ad * Walk down a list of knotes, activating them if their event has
1667 1.49 ad * triggered. The caller's object lock (e.g. device driver lock)
1668 1.49 ad * must be held.
1669 1.1 lukem */
1670 1.1 lukem void
1671 1.1 lukem knote(struct klist *list, long hint)
1672 1.1 lukem {
1673 1.71 drochner struct knote *kn, *tmpkn;
1674 1.1 lukem
1675 1.71 drochner SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1676 1.85 christos KASSERT(kn->kn_fop != NULL);
1677 1.84 christos KASSERT(kn->kn_fop->f_event != NULL);
1678 1.49 ad if ((*kn->kn_fop->f_event)(kn, hint))
1679 1.49 ad knote_activate(kn);
1680 1.49 ad }
1681 1.1 lukem }
1682 1.1 lukem
1683 1.1 lukem /*
1684 1.49 ad * Remove all knotes referencing a specified fd
1685 1.1 lukem */
1686 1.1 lukem void
1687 1.49 ad knote_fdclose(int fd)
1688 1.1 lukem {
1689 1.49 ad struct klist *list;
1690 1.1 lukem struct knote *kn;
1691 1.49 ad filedesc_t *fdp;
1692 1.1 lukem
1693 1.49 ad fdp = curlwp->l_fd;
1694 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1695 1.49 ad mutex_enter(&fdp->fd_lock);
1696 1.1 lukem while ((kn = SLIST_FIRST(list)) != NULL) {
1697 1.49 ad knote_detach(kn, fdp, true);
1698 1.49 ad mutex_enter(&fdp->fd_lock);
1699 1.1 lukem }
1700 1.49 ad mutex_exit(&fdp->fd_lock);
1701 1.1 lukem }
1702 1.1 lukem
1703 1.1 lukem /*
1704 1.49 ad * Drop knote. Called with fdp->fd_lock held, and will drop before
1705 1.49 ad * returning.
1706 1.3 jdolecek */
1707 1.1 lukem static void
1708 1.49 ad knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1709 1.1 lukem {
1710 1.49 ad struct klist *list;
1711 1.53 ad struct kqueue *kq;
1712 1.53 ad
1713 1.53 ad kq = kn->kn_kq;
1714 1.1 lukem
1715 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
1716 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
1717 1.3 jdolecek
1718 1.85 christos KASSERT(kn->kn_fop != NULL);
1719 1.53 ad /* Remove from monitored object. */
1720 1.49 ad if (dofop) {
1721 1.85 christos KASSERT(kn->kn_fop->f_detach != NULL);
1722 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1723 1.49 ad (*kn->kn_fop->f_detach)(kn);
1724 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1725 1.1 lukem }
1726 1.3 jdolecek
1727 1.53 ad /* Remove from descriptor table. */
1728 1.1 lukem if (kn->kn_fop->f_isfd)
1729 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1730 1.1 lukem else
1731 1.1 lukem list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1732 1.1 lukem
1733 1.1 lukem SLIST_REMOVE(list, kn, knote, kn_link);
1734 1.53 ad
1735 1.53 ad /* Remove from kqueue. */
1736 1.85 christos again:
1737 1.53 ad mutex_spin_enter(&kq->kq_lock);
1738 1.53 ad if ((kn->kn_status & KN_QUEUED) != 0) {
1739 1.53 ad kq_check(kq);
1740 1.85 christos kq->kq_count--;
1741 1.53 ad TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1742 1.53 ad kn->kn_status &= ~KN_QUEUED;
1743 1.53 ad kq_check(kq);
1744 1.85 christos } else if (kn->kn_status & KN_BUSY) {
1745 1.85 christos mutex_spin_exit(&kq->kq_lock);
1746 1.85 christos goto again;
1747 1.53 ad }
1748 1.53 ad mutex_spin_exit(&kq->kq_lock);
1749 1.53 ad
1750 1.49 ad mutex_exit(&fdp->fd_lock);
1751 1.93 riastrad if (kn->kn_fop->f_isfd)
1752 1.49 ad fd_putfile(kn->kn_id);
1753 1.49 ad atomic_dec_uint(&kn->kn_kfilter->refcnt);
1754 1.49 ad kmem_free(kn, sizeof(*kn));
1755 1.1 lukem }
1756 1.1 lukem
1757 1.3 jdolecek /*
1758 1.3 jdolecek * Queue new event for knote.
1759 1.3 jdolecek */
1760 1.1 lukem static void
1761 1.1 lukem knote_enqueue(struct knote *kn)
1762 1.1 lukem {
1763 1.49 ad struct kqueue *kq;
1764 1.49 ad
1765 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
1766 1.1 lukem
1767 1.3 jdolecek kq = kn->kn_kq;
1768 1.1 lukem
1769 1.49 ad mutex_spin_enter(&kq->kq_lock);
1770 1.49 ad if ((kn->kn_status & KN_DISABLED) != 0) {
1771 1.49 ad kn->kn_status &= ~KN_DISABLED;
1772 1.49 ad }
1773 1.49 ad if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1774 1.52 yamt kq_check(kq);
1775 1.85 christos kn->kn_status |= KN_QUEUED;
1776 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1777 1.49 ad kq->kq_count++;
1778 1.52 yamt kq_check(kq);
1779 1.49 ad cv_broadcast(&kq->kq_cv);
1780 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1781 1.49 ad }
1782 1.49 ad mutex_spin_exit(&kq->kq_lock);
1783 1.1 lukem }
1784 1.49 ad /*
1785 1.49 ad * Queue new event for knote.
1786 1.49 ad */
1787 1.49 ad static void
1788 1.49 ad knote_activate(struct knote *kn)
1789 1.49 ad {
1790 1.49 ad struct kqueue *kq;
1791 1.49 ad
1792 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
1793 1.1 lukem
1794 1.3 jdolecek kq = kn->kn_kq;
1795 1.12 pk
1796 1.49 ad mutex_spin_enter(&kq->kq_lock);
1797 1.49 ad kn->kn_status |= KN_ACTIVE;
1798 1.49 ad if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1799 1.52 yamt kq_check(kq);
1800 1.85 christos kn->kn_status |= KN_QUEUED;
1801 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1802 1.49 ad kq->kq_count++;
1803 1.52 yamt kq_check(kq);
1804 1.49 ad cv_broadcast(&kq->kq_cv);
1805 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1806 1.49 ad }
1807 1.49 ad mutex_spin_exit(&kq->kq_lock);
1808 1.1 lukem }
1809