kern_event.c revision 1.129 1 1.129 thorpej /* $NetBSD: kern_event.c,v 1.129 2021/10/10 18:07:51 thorpej Exp $ */
2 1.49 ad
3 1.49 ad /*-
4 1.129 thorpej * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
5 1.49 ad * All rights reserved.
6 1.49 ad *
7 1.64 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.64 ad * by Andrew Doran.
9 1.64 ad *
10 1.49 ad * Redistribution and use in source and binary forms, with or without
11 1.49 ad * modification, are permitted provided that the following conditions
12 1.49 ad * are met:
13 1.49 ad * 1. Redistributions of source code must retain the above copyright
14 1.49 ad * notice, this list of conditions and the following disclaimer.
15 1.49 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.49 ad * notice, this list of conditions and the following disclaimer in the
17 1.49 ad * documentation and/or other materials provided with the distribution.
18 1.49 ad *
19 1.49 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.49 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.49 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.49 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.49 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.49 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.49 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.49 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.49 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.49 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.49 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.49 ad */
31 1.28 kardel
32 1.1 lukem /*-
33 1.1 lukem * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 1.108 christos * Copyright (c) 2009 Apple, Inc
35 1.1 lukem * All rights reserved.
36 1.1 lukem *
37 1.1 lukem * Redistribution and use in source and binary forms, with or without
38 1.1 lukem * modification, are permitted provided that the following conditions
39 1.1 lukem * are met:
40 1.1 lukem * 1. Redistributions of source code must retain the above copyright
41 1.1 lukem * notice, this list of conditions and the following disclaimer.
42 1.1 lukem * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 lukem * notice, this list of conditions and the following disclaimer in the
44 1.1 lukem * documentation and/or other materials provided with the distribution.
45 1.1 lukem *
46 1.1 lukem * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 1.1 lukem * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 1.1 lukem * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 1.1 lukem * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 1.1 lukem * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 1.1 lukem * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 1.1 lukem * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 1.1 lukem * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 1.1 lukem * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 1.1 lukem * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 1.1 lukem * SUCH DAMAGE.
57 1.1 lukem *
58 1.49 ad * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59 1.1 lukem */
60 1.14 jdolecek
61 1.129 thorpej #include "opt_ddb.h"
62 1.129 thorpej
63 1.14 jdolecek #include <sys/cdefs.h>
64 1.129 thorpej __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.129 2021/10/10 18:07:51 thorpej Exp $");
65 1.1 lukem
66 1.1 lukem #include <sys/param.h>
67 1.1 lukem #include <sys/systm.h>
68 1.1 lukem #include <sys/kernel.h>
69 1.86 christos #include <sys/wait.h>
70 1.1 lukem #include <sys/proc.h>
71 1.1 lukem #include <sys/file.h>
72 1.3 jdolecek #include <sys/select.h>
73 1.1 lukem #include <sys/queue.h>
74 1.1 lukem #include <sys/event.h>
75 1.1 lukem #include <sys/eventvar.h>
76 1.1 lukem #include <sys/poll.h>
77 1.49 ad #include <sys/kmem.h>
78 1.1 lukem #include <sys/stat.h>
79 1.3 jdolecek #include <sys/filedesc.h>
80 1.3 jdolecek #include <sys/syscallargs.h>
81 1.27 elad #include <sys/kauth.h>
82 1.40 ad #include <sys/conf.h>
83 1.49 ad #include <sys/atomic.h>
84 1.1 lukem
85 1.49 ad static int kqueue_scan(file_t *, size_t, struct kevent *,
86 1.49 ad const struct timespec *, register_t *,
87 1.49 ad const struct kevent_ops *, struct kevent *,
88 1.49 ad size_t);
89 1.49 ad static int kqueue_ioctl(file_t *, u_long, void *);
90 1.49 ad static int kqueue_fcntl(file_t *, u_int, void *);
91 1.49 ad static int kqueue_poll(file_t *, int);
92 1.49 ad static int kqueue_kqfilter(file_t *, struct knote *);
93 1.49 ad static int kqueue_stat(file_t *, struct stat *);
94 1.49 ad static int kqueue_close(file_t *);
95 1.118 jdolecek static void kqueue_restart(file_t *);
96 1.49 ad static int kqueue_register(struct kqueue *, struct kevent *);
97 1.49 ad static void kqueue_doclose(struct kqueue *, struct klist *, int);
98 1.49 ad
99 1.49 ad static void knote_detach(struct knote *, filedesc_t *fdp, bool);
100 1.49 ad static void knote_enqueue(struct knote *);
101 1.49 ad static void knote_activate(struct knote *);
102 1.49 ad
103 1.49 ad static void filt_kqdetach(struct knote *);
104 1.49 ad static int filt_kqueue(struct knote *, long hint);
105 1.49 ad static int filt_procattach(struct knote *);
106 1.49 ad static void filt_procdetach(struct knote *);
107 1.49 ad static int filt_proc(struct knote *, long hint);
108 1.49 ad static int filt_fileattach(struct knote *);
109 1.49 ad static void filt_timerexpire(void *x);
110 1.49 ad static int filt_timerattach(struct knote *);
111 1.49 ad static void filt_timerdetach(struct knote *);
112 1.49 ad static int filt_timer(struct knote *, long hint);
113 1.108 christos static int filt_userattach(struct knote *);
114 1.108 christos static void filt_userdetach(struct knote *);
115 1.108 christos static int filt_user(struct knote *, long hint);
116 1.108 christos static void filt_usertouch(struct knote *, struct kevent *, long type);
117 1.1 lukem
118 1.21 christos static const struct fileops kqueueops = {
119 1.101 christos .fo_name = "kqueue",
120 1.64 ad .fo_read = (void *)enxio,
121 1.64 ad .fo_write = (void *)enxio,
122 1.64 ad .fo_ioctl = kqueue_ioctl,
123 1.64 ad .fo_fcntl = kqueue_fcntl,
124 1.64 ad .fo_poll = kqueue_poll,
125 1.64 ad .fo_stat = kqueue_stat,
126 1.64 ad .fo_close = kqueue_close,
127 1.64 ad .fo_kqfilter = kqueue_kqfilter,
128 1.118 jdolecek .fo_restart = kqueue_restart,
129 1.1 lukem };
130 1.1 lukem
131 1.96 maya static const struct filterops kqread_filtops = {
132 1.123 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
133 1.96 maya .f_attach = NULL,
134 1.96 maya .f_detach = filt_kqdetach,
135 1.96 maya .f_event = filt_kqueue,
136 1.96 maya };
137 1.96 maya
138 1.96 maya static const struct filterops proc_filtops = {
139 1.129 thorpej .f_flags = FILTEROP_MPSAFE,
140 1.96 maya .f_attach = filt_procattach,
141 1.96 maya .f_detach = filt_procdetach,
142 1.96 maya .f_event = filt_proc,
143 1.96 maya };
144 1.96 maya
145 1.122 thorpej /*
146 1.122 thorpej * file_filtops is not marked MPSAFE because it's going to call
147 1.122 thorpej * fileops::fo_kqfilter(), which might not be. That function,
148 1.122 thorpej * however, will override the knote's filterops, and thus will
149 1.122 thorpej * inherit the MPSAFE-ness of the back-end at that time.
150 1.122 thorpej */
151 1.96 maya static const struct filterops file_filtops = {
152 1.121 thorpej .f_flags = FILTEROP_ISFD,
153 1.96 maya .f_attach = filt_fileattach,
154 1.96 maya .f_detach = NULL,
155 1.96 maya .f_event = NULL,
156 1.96 maya };
157 1.96 maya
158 1.96 maya static const struct filterops timer_filtops = {
159 1.125 thorpej .f_flags = FILTEROP_MPSAFE,
160 1.96 maya .f_attach = filt_timerattach,
161 1.96 maya .f_detach = filt_timerdetach,
162 1.96 maya .f_event = filt_timer,
163 1.96 maya };
164 1.1 lukem
165 1.108 christos static const struct filterops user_filtops = {
166 1.123 thorpej .f_flags = FILTEROP_MPSAFE,
167 1.108 christos .f_attach = filt_userattach,
168 1.108 christos .f_detach = filt_userdetach,
169 1.108 christos .f_event = filt_user,
170 1.108 christos .f_touch = filt_usertouch,
171 1.108 christos };
172 1.108 christos
173 1.49 ad static u_int kq_ncallouts = 0;
174 1.8 jdolecek static int kq_calloutmax = (4 * 1024);
175 1.7 thorpej
176 1.1 lukem #define KN_HASHSIZE 64 /* XXX should be tunable */
177 1.3 jdolecek #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
178 1.1 lukem
179 1.124 thorpej extern const struct filterops fs_filtops; /* vfs_syscalls.c */
180 1.124 thorpej extern const struct filterops sig_filtops; /* kern_sig.c */
181 1.1 lukem
182 1.1 lukem /*
183 1.1 lukem * Table for for all system-defined filters.
184 1.3 jdolecek * These should be listed in the numeric order of the EVFILT_* defines.
185 1.3 jdolecek * If filtops is NULL, the filter isn't implemented in NetBSD.
186 1.3 jdolecek * End of list is when name is NULL.
187 1.93 riastrad *
188 1.49 ad * Note that 'refcnt' is meaningless for built-in filters.
189 1.1 lukem */
190 1.3 jdolecek struct kfilter {
191 1.49 ad const char *name; /* name of filter */
192 1.49 ad uint32_t filter; /* id of filter */
193 1.49 ad unsigned refcnt; /* reference count */
194 1.3 jdolecek const struct filterops *filtops;/* operations for filter */
195 1.49 ad size_t namelen; /* length of name string */
196 1.3 jdolecek };
197 1.3 jdolecek
198 1.49 ad /* System defined filters */
199 1.49 ad static struct kfilter sys_kfilters[] = {
200 1.49 ad { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
201 1.49 ad { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
202 1.49 ad { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
203 1.49 ad { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
204 1.49 ad { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
205 1.49 ad { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
206 1.49 ad { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
207 1.102 christos { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
208 1.108 christos { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
209 1.49 ad { NULL, 0, 0, NULL, 0 },
210 1.1 lukem };
211 1.1 lukem
212 1.49 ad /* User defined kfilters */
213 1.3 jdolecek static struct kfilter *user_kfilters; /* array */
214 1.3 jdolecek static int user_kfilterc; /* current offset */
215 1.3 jdolecek static int user_kfiltermaxc; /* max size so far */
216 1.49 ad static size_t user_kfiltersz; /* size of allocated memory */
217 1.49 ad
218 1.95 riastrad /*
219 1.95 riastrad * Global Locks.
220 1.95 riastrad *
221 1.95 riastrad * Lock order:
222 1.95 riastrad *
223 1.95 riastrad * kqueue_filter_lock
224 1.95 riastrad * -> kn_kq->kq_fdp->fd_lock
225 1.125 thorpej * -> object lock (e.g., device driver lock, &c.)
226 1.95 riastrad * -> kn_kq->kq_lock
227 1.95 riastrad *
228 1.95 riastrad * Locking rules:
229 1.95 riastrad *
230 1.95 riastrad * f_attach: fdp->fd_lock, KERNEL_LOCK
231 1.95 riastrad * f_detach: fdp->fd_lock, KERNEL_LOCK
232 1.95 riastrad * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
233 1.95 riastrad * f_event via knote: whatever caller guarantees
234 1.95 riastrad * Typically, f_event(NOTE_SUBMIT) via knote: object lock
235 1.95 riastrad * f_event(!NOTE_SUBMIT) via knote: nothing,
236 1.95 riastrad * acquires/releases object lock inside.
237 1.129 thorpej *
238 1.129 thorpej * Locking rules when detaching knotes:
239 1.129 thorpej *
240 1.129 thorpej * There are some situations where knote submission may require dropping
241 1.129 thorpej * locks (see knote_proc_fork()). In order to support this, it's possible
242 1.129 thorpej * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to
243 1.129 thorpej * be detached while it remains in-flux. Because it will not be detached,
244 1.129 thorpej * locks can be dropped so e.g. memory can be allocated, locks on other
245 1.129 thorpej * data structures can be acquired, etc. During this time, any attempt to
246 1.129 thorpej * detach an in-flux knote must wait until the knote is no longer in-flux.
247 1.129 thorpej * When this happens, the knote is marked for death (KN_WILLDETACH) and the
248 1.129 thorpej * LWP who gets to finish the detach operation is recorded in the knote's
249 1.129 thorpej * 'udata' field (which is no longer required for its original purpose once
250 1.129 thorpej * a knote is so marked). Code paths that lead to knote_detach() must ensure
251 1.129 thorpej * that their LWP is the one tasked with its final demise after waiting for
252 1.129 thorpej * the in-flux status of the knote to clear. Note that once a knote is
253 1.129 thorpej * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
254 1.129 thorpej *
255 1.129 thorpej * Once the special circumstances have been handled, the locks are re-
256 1.129 thorpej * acquired in the proper order (object lock -> kq_lock), the knote taken
257 1.129 thorpej * out of flux, and any waiters are notified. Because waiters must have
258 1.129 thorpej * also dropped *their* locks in order to safely block, they must re-
259 1.129 thorpej * validate all of their assumptions; see knote_detach_quiesce(). See also
260 1.129 thorpej * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
261 1.129 thorpej * cases.
262 1.129 thorpej *
263 1.129 thorpej * When kqueue_scan() encounters an in-flux knote, the situation is
264 1.129 thorpej * treated like another LWP's list marker.
265 1.129 thorpej *
266 1.129 thorpej * LISTEN WELL: It is important to not hold knotes in flux for an
267 1.129 thorpej * extended period of time! In-flux knotes effectively block any
268 1.129 thorpej * progress of the kqueue_scan() operation. Any code paths that place
269 1.129 thorpej * knotes in-flux should be careful to not block for indefinite periods
270 1.129 thorpej * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
271 1.129 thorpej * KM_SLEEP is not).
272 1.95 riastrad */
273 1.49 ad static krwlock_t kqueue_filter_lock; /* lock on filter lists */
274 1.125 thorpej static kmutex_t kqueue_timer_lock; /* for EVFILT_TIMER */
275 1.49 ad
276 1.129 thorpej #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock)
277 1.129 thorpej #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
278 1.129 thorpej
279 1.129 thorpej static inline bool
280 1.129 thorpej kn_in_flux(struct knote *kn)
281 1.129 thorpej {
282 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
283 1.129 thorpej return kn->kn_influx != 0;
284 1.129 thorpej }
285 1.129 thorpej
286 1.129 thorpej static inline bool
287 1.129 thorpej kn_enter_flux(struct knote *kn)
288 1.129 thorpej {
289 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
290 1.129 thorpej
291 1.129 thorpej if (kn->kn_status & KN_WILLDETACH) {
292 1.129 thorpej return false;
293 1.129 thorpej }
294 1.129 thorpej
295 1.129 thorpej KASSERT(kn->kn_influx < UINT_MAX);
296 1.129 thorpej kn->kn_influx++;
297 1.129 thorpej
298 1.129 thorpej return true;
299 1.129 thorpej }
300 1.129 thorpej
301 1.129 thorpej static inline bool
302 1.129 thorpej kn_leave_flux(struct knote *kn)
303 1.129 thorpej {
304 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
305 1.129 thorpej KASSERT(kn->kn_influx > 0);
306 1.129 thorpej kn->kn_influx--;
307 1.129 thorpej return kn->kn_influx == 0;
308 1.129 thorpej }
309 1.129 thorpej
310 1.129 thorpej static void
311 1.129 thorpej kn_wait_flux(struct knote *kn, bool can_loop)
312 1.129 thorpej {
313 1.129 thorpej bool loop;
314 1.129 thorpej
315 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
316 1.129 thorpej
317 1.129 thorpej /*
318 1.129 thorpej * It may not be safe for us to touch the knote again after
319 1.129 thorpej * dropping the kq_lock. The caller has let us know in
320 1.129 thorpej * 'can_loop'.
321 1.129 thorpej */
322 1.129 thorpej for (loop = true; loop && kn->kn_influx != 0; loop = can_loop) {
323 1.129 thorpej KQ_FLUX_WAIT(kn->kn_kq);
324 1.129 thorpej }
325 1.129 thorpej }
326 1.129 thorpej
327 1.129 thorpej #define KNOTE_WILLDETACH(kn) \
328 1.129 thorpej do { \
329 1.129 thorpej (kn)->kn_status |= KN_WILLDETACH; \
330 1.129 thorpej (kn)->kn_kevent.udata = curlwp; \
331 1.129 thorpej } while (/*CONSTCOND*/0)
332 1.129 thorpej
333 1.129 thorpej /*
334 1.129 thorpej * Wait until the specified knote is in a quiescent state and
335 1.129 thorpej * safe to detach. Returns true if we potentially blocked (and
336 1.129 thorpej * thus dropped our locks).
337 1.129 thorpej */
338 1.129 thorpej static bool
339 1.129 thorpej knote_detach_quiesce(struct knote *kn)
340 1.129 thorpej {
341 1.129 thorpej struct kqueue *kq = kn->kn_kq;
342 1.129 thorpej filedesc_t *fdp = kq->kq_fdp;
343 1.129 thorpej
344 1.129 thorpej KASSERT(mutex_owned(&fdp->fd_lock));
345 1.129 thorpej
346 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
347 1.129 thorpej /*
348 1.129 thorpej * There are two cases where we might see KN_WILLDETACH here:
349 1.129 thorpej *
350 1.129 thorpej * 1. Someone else has already started detaching the knote but
351 1.129 thorpej * had to wait for it to settle first.
352 1.129 thorpej *
353 1.129 thorpej * 2. We had to wait for it to settle, and had to come back
354 1.129 thorpej * around after re-acquiring the locks.
355 1.129 thorpej *
356 1.129 thorpej * When KN_WILLDETACH is set, we also set the LWP that claimed
357 1.129 thorpej * the prize of finishing the detach in the 'udata' field of the
358 1.129 thorpej * knote (which will never be used again for its usual purpose
359 1.129 thorpej * once the note is in this state). If it doesn't point to us,
360 1.129 thorpej * we must drop the locks and let them in to finish the job.
361 1.129 thorpej *
362 1.129 thorpej * Otherwise, once we have claimed the knote for ourselves, we
363 1.129 thorpej * can finish waiting for it to settle. The is the only scenario
364 1.129 thorpej * where touching a detaching knote is safe after dropping the
365 1.129 thorpej * locks.
366 1.129 thorpej */
367 1.129 thorpej if ((kn->kn_status & KN_WILLDETACH) != 0 &&
368 1.129 thorpej kn->kn_kevent.udata != curlwp) {
369 1.129 thorpej /*
370 1.129 thorpej * N.B. it is NOT safe for us to touch the knote again
371 1.129 thorpej * after dropping the locks here. The caller must go
372 1.129 thorpej * back around and re-validate everything. However, if
373 1.129 thorpej * the knote is in-flux, we want to block to minimize
374 1.129 thorpej * busy-looping.
375 1.129 thorpej */
376 1.129 thorpej mutex_exit(&fdp->fd_lock);
377 1.129 thorpej if (kn_in_flux(kn)) {
378 1.129 thorpej kn_wait_flux(kn, false);
379 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
380 1.129 thorpej return true;
381 1.129 thorpej }
382 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
383 1.129 thorpej preempt_point();
384 1.129 thorpej return true;
385 1.129 thorpej }
386 1.129 thorpej /*
387 1.129 thorpej * If we get here, we know that we will be claiming the
388 1.129 thorpej * detach responsibilies, or that we already have and
389 1.129 thorpej * this is the second attempt after re-validation.
390 1.129 thorpej */
391 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
392 1.129 thorpej kn->kn_kevent.udata == curlwp);
393 1.129 thorpej /*
394 1.129 thorpej * Similarly, if we get here, either we are just claiming it
395 1.129 thorpej * and may have to wait for it to settle, or if this is the
396 1.129 thorpej * second attempt after re-validation that no other code paths
397 1.129 thorpej * have put it in-flux.
398 1.129 thorpej */
399 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
400 1.129 thorpej kn_in_flux(kn) == false);
401 1.129 thorpej KNOTE_WILLDETACH(kn);
402 1.129 thorpej if (kn_in_flux(kn)) {
403 1.129 thorpej mutex_exit(&fdp->fd_lock);
404 1.129 thorpej kn_wait_flux(kn, true);
405 1.129 thorpej /*
406 1.129 thorpej * It is safe for us to touch the knote again after
407 1.129 thorpej * dropping the locks, but the caller must still
408 1.129 thorpej * re-validate everything because other aspects of
409 1.129 thorpej * the environment may have changed while we blocked.
410 1.129 thorpej */
411 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
412 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
413 1.129 thorpej return true;
414 1.129 thorpej }
415 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
416 1.129 thorpej
417 1.129 thorpej return false;
418 1.129 thorpej }
419 1.129 thorpej
420 1.122 thorpej static int
421 1.122 thorpej filter_attach(struct knote *kn)
422 1.122 thorpej {
423 1.122 thorpej int rv;
424 1.122 thorpej
425 1.122 thorpej KASSERT(kn->kn_fop != NULL);
426 1.122 thorpej KASSERT(kn->kn_fop->f_attach != NULL);
427 1.122 thorpej
428 1.122 thorpej /*
429 1.122 thorpej * N.B. that kn->kn_fop may change as the result of calling
430 1.122 thorpej * f_attach().
431 1.122 thorpej */
432 1.122 thorpej if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
433 1.122 thorpej rv = kn->kn_fop->f_attach(kn);
434 1.122 thorpej } else {
435 1.122 thorpej KERNEL_LOCK(1, NULL);
436 1.122 thorpej rv = kn->kn_fop->f_attach(kn);
437 1.122 thorpej KERNEL_UNLOCK_ONE(NULL);
438 1.122 thorpej }
439 1.122 thorpej
440 1.122 thorpej return rv;
441 1.122 thorpej }
442 1.122 thorpej
443 1.122 thorpej static void
444 1.122 thorpej filter_detach(struct knote *kn)
445 1.122 thorpej {
446 1.122 thorpej KASSERT(kn->kn_fop != NULL);
447 1.122 thorpej KASSERT(kn->kn_fop->f_detach != NULL);
448 1.122 thorpej
449 1.122 thorpej if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
450 1.122 thorpej kn->kn_fop->f_detach(kn);
451 1.122 thorpej } else {
452 1.122 thorpej KERNEL_LOCK(1, NULL);
453 1.122 thorpej kn->kn_fop->f_detach(kn);
454 1.122 thorpej KERNEL_UNLOCK_ONE(NULL);
455 1.122 thorpej }
456 1.122 thorpej }
457 1.122 thorpej
458 1.122 thorpej static int
459 1.122 thorpej filter_event(struct knote *kn, long hint)
460 1.122 thorpej {
461 1.122 thorpej int rv;
462 1.122 thorpej
463 1.122 thorpej KASSERT(kn->kn_fop != NULL);
464 1.122 thorpej KASSERT(kn->kn_fop->f_event != NULL);
465 1.122 thorpej
466 1.122 thorpej if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
467 1.122 thorpej rv = kn->kn_fop->f_event(kn, hint);
468 1.122 thorpej } else {
469 1.122 thorpej KERNEL_LOCK(1, NULL);
470 1.122 thorpej rv = kn->kn_fop->f_event(kn, hint);
471 1.122 thorpej KERNEL_UNLOCK_ONE(NULL);
472 1.122 thorpej }
473 1.122 thorpej
474 1.122 thorpej return rv;
475 1.122 thorpej }
476 1.122 thorpej
477 1.122 thorpej static void
478 1.122 thorpej filter_touch(struct knote *kn, struct kevent *kev, long type)
479 1.122 thorpej {
480 1.122 thorpej kn->kn_fop->f_touch(kn, kev, type);
481 1.122 thorpej }
482 1.122 thorpej
483 1.66 elad static kauth_listener_t kqueue_listener;
484 1.66 elad
485 1.66 elad static int
486 1.66 elad kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
487 1.66 elad void *arg0, void *arg1, void *arg2, void *arg3)
488 1.66 elad {
489 1.66 elad struct proc *p;
490 1.66 elad int result;
491 1.66 elad
492 1.66 elad result = KAUTH_RESULT_DEFER;
493 1.66 elad p = arg0;
494 1.66 elad
495 1.66 elad if (action != KAUTH_PROCESS_KEVENT_FILTER)
496 1.66 elad return result;
497 1.66 elad
498 1.66 elad if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
499 1.66 elad ISSET(p->p_flag, PK_SUGID)))
500 1.66 elad return result;
501 1.66 elad
502 1.66 elad result = KAUTH_RESULT_ALLOW;
503 1.66 elad
504 1.66 elad return result;
505 1.66 elad }
506 1.66 elad
507 1.49 ad /*
508 1.49 ad * Initialize the kqueue subsystem.
509 1.49 ad */
510 1.49 ad void
511 1.49 ad kqueue_init(void)
512 1.49 ad {
513 1.49 ad
514 1.49 ad rw_init(&kqueue_filter_lock);
515 1.125 thorpej mutex_init(&kqueue_timer_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK);
516 1.66 elad
517 1.66 elad kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
518 1.66 elad kqueue_listener_cb, NULL);
519 1.49 ad }
520 1.3 jdolecek
521 1.3 jdolecek /*
522 1.3 jdolecek * Find kfilter entry by name, or NULL if not found.
523 1.3 jdolecek */
524 1.49 ad static struct kfilter *
525 1.3 jdolecek kfilter_byname_sys(const char *name)
526 1.3 jdolecek {
527 1.3 jdolecek int i;
528 1.3 jdolecek
529 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
530 1.49 ad
531 1.3 jdolecek for (i = 0; sys_kfilters[i].name != NULL; i++) {
532 1.3 jdolecek if (strcmp(name, sys_kfilters[i].name) == 0)
533 1.49 ad return &sys_kfilters[i];
534 1.3 jdolecek }
535 1.49 ad return NULL;
536 1.3 jdolecek }
537 1.3 jdolecek
538 1.3 jdolecek static struct kfilter *
539 1.3 jdolecek kfilter_byname_user(const char *name)
540 1.3 jdolecek {
541 1.3 jdolecek int i;
542 1.3 jdolecek
543 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
544 1.49 ad
545 1.31 seanb /* user filter slots have a NULL name if previously deregistered */
546 1.31 seanb for (i = 0; i < user_kfilterc ; i++) {
547 1.31 seanb if (user_kfilters[i].name != NULL &&
548 1.3 jdolecek strcmp(name, user_kfilters[i].name) == 0)
549 1.49 ad return &user_kfilters[i];
550 1.3 jdolecek }
551 1.49 ad return NULL;
552 1.3 jdolecek }
553 1.3 jdolecek
554 1.49 ad static struct kfilter *
555 1.3 jdolecek kfilter_byname(const char *name)
556 1.3 jdolecek {
557 1.49 ad struct kfilter *kfilter;
558 1.49 ad
559 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
560 1.3 jdolecek
561 1.3 jdolecek if ((kfilter = kfilter_byname_sys(name)) != NULL)
562 1.49 ad return kfilter;
563 1.3 jdolecek
564 1.49 ad return kfilter_byname_user(name);
565 1.3 jdolecek }
566 1.3 jdolecek
567 1.3 jdolecek /*
568 1.3 jdolecek * Find kfilter entry by filter id, or NULL if not found.
569 1.3 jdolecek * Assumes entries are indexed in filter id order, for speed.
570 1.3 jdolecek */
571 1.49 ad static struct kfilter *
572 1.3 jdolecek kfilter_byfilter(uint32_t filter)
573 1.3 jdolecek {
574 1.49 ad struct kfilter *kfilter;
575 1.49 ad
576 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
577 1.3 jdolecek
578 1.3 jdolecek if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
579 1.3 jdolecek kfilter = &sys_kfilters[filter];
580 1.3 jdolecek else if (user_kfilters != NULL &&
581 1.3 jdolecek filter < EVFILT_SYSCOUNT + user_kfilterc)
582 1.3 jdolecek /* it's a user filter */
583 1.3 jdolecek kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
584 1.3 jdolecek else
585 1.3 jdolecek return (NULL); /* out of range */
586 1.3 jdolecek KASSERT(kfilter->filter == filter); /* sanity check! */
587 1.3 jdolecek return (kfilter);
588 1.3 jdolecek }
589 1.3 jdolecek
590 1.3 jdolecek /*
591 1.3 jdolecek * Register a new kfilter. Stores the entry in user_kfilters.
592 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
593 1.3 jdolecek * If retfilter != NULL, the new filterid is returned in it.
594 1.3 jdolecek */
595 1.3 jdolecek int
596 1.3 jdolecek kfilter_register(const char *name, const struct filterops *filtops,
597 1.49 ad int *retfilter)
598 1.1 lukem {
599 1.3 jdolecek struct kfilter *kfilter;
600 1.49 ad size_t len;
601 1.31 seanb int i;
602 1.3 jdolecek
603 1.3 jdolecek if (name == NULL || name[0] == '\0' || filtops == NULL)
604 1.3 jdolecek return (EINVAL); /* invalid args */
605 1.49 ad
606 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
607 1.49 ad if (kfilter_byname(name) != NULL) {
608 1.49 ad rw_exit(&kqueue_filter_lock);
609 1.3 jdolecek return (EEXIST); /* already exists */
610 1.49 ad }
611 1.49 ad if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
612 1.49 ad rw_exit(&kqueue_filter_lock);
613 1.3 jdolecek return (EINVAL); /* too many */
614 1.49 ad }
615 1.3 jdolecek
616 1.31 seanb for (i = 0; i < user_kfilterc; i++) {
617 1.31 seanb kfilter = &user_kfilters[i];
618 1.31 seanb if (kfilter->name == NULL) {
619 1.31 seanb /* Previously deregistered slot. Reuse. */
620 1.31 seanb goto reuse;
621 1.31 seanb }
622 1.31 seanb }
623 1.31 seanb
624 1.3 jdolecek /* check if need to grow user_kfilters */
625 1.3 jdolecek if (user_kfilterc + 1 > user_kfiltermaxc) {
626 1.49 ad /* Grow in KFILTER_EXTENT chunks. */
627 1.3 jdolecek user_kfiltermaxc += KFILTER_EXTENT;
628 1.69 dsl len = user_kfiltermaxc * sizeof(*kfilter);
629 1.49 ad kfilter = kmem_alloc(len, KM_SLEEP);
630 1.49 ad memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
631 1.49 ad if (user_kfilters != NULL) {
632 1.49 ad memcpy(kfilter, user_kfilters, user_kfiltersz);
633 1.49 ad kmem_free(user_kfilters, user_kfiltersz);
634 1.49 ad }
635 1.49 ad user_kfiltersz = len;
636 1.3 jdolecek user_kfilters = kfilter;
637 1.3 jdolecek }
638 1.31 seanb /* Adding new slot */
639 1.31 seanb kfilter = &user_kfilters[user_kfilterc++];
640 1.31 seanb reuse:
641 1.97 christos kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
642 1.3 jdolecek
643 1.31 seanb kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
644 1.3 jdolecek
645 1.49 ad kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
646 1.49 ad memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
647 1.3 jdolecek
648 1.3 jdolecek if (retfilter != NULL)
649 1.31 seanb *retfilter = kfilter->filter;
650 1.49 ad rw_exit(&kqueue_filter_lock);
651 1.49 ad
652 1.3 jdolecek return (0);
653 1.1 lukem }
654 1.1 lukem
655 1.3 jdolecek /*
656 1.3 jdolecek * Unregister a kfilter previously registered with kfilter_register.
657 1.3 jdolecek * This retains the filter id, but clears the name and frees filtops (filter
658 1.3 jdolecek * operations), so that the number isn't reused during a boot.
659 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
660 1.3 jdolecek */
661 1.3 jdolecek int
662 1.3 jdolecek kfilter_unregister(const char *name)
663 1.1 lukem {
664 1.3 jdolecek struct kfilter *kfilter;
665 1.3 jdolecek
666 1.3 jdolecek if (name == NULL || name[0] == '\0')
667 1.3 jdolecek return (EINVAL); /* invalid name */
668 1.3 jdolecek
669 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
670 1.49 ad if (kfilter_byname_sys(name) != NULL) {
671 1.49 ad rw_exit(&kqueue_filter_lock);
672 1.3 jdolecek return (EINVAL); /* can't detach system filters */
673 1.49 ad }
674 1.1 lukem
675 1.3 jdolecek kfilter = kfilter_byname_user(name);
676 1.49 ad if (kfilter == NULL) {
677 1.49 ad rw_exit(&kqueue_filter_lock);
678 1.3 jdolecek return (ENOENT);
679 1.49 ad }
680 1.49 ad if (kfilter->refcnt != 0) {
681 1.49 ad rw_exit(&kqueue_filter_lock);
682 1.49 ad return (EBUSY);
683 1.49 ad }
684 1.1 lukem
685 1.49 ad /* Cast away const (but we know it's safe. */
686 1.49 ad kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
687 1.31 seanb kfilter->name = NULL; /* mark as `not implemented' */
688 1.31 seanb
689 1.3 jdolecek if (kfilter->filtops != NULL) {
690 1.49 ad /* Cast away const (but we know it's safe. */
691 1.49 ad kmem_free(__UNCONST(kfilter->filtops),
692 1.49 ad sizeof(*kfilter->filtops));
693 1.3 jdolecek kfilter->filtops = NULL; /* mark as `not implemented' */
694 1.3 jdolecek }
695 1.49 ad rw_exit(&kqueue_filter_lock);
696 1.49 ad
697 1.1 lukem return (0);
698 1.1 lukem }
699 1.1 lukem
700 1.3 jdolecek
701 1.3 jdolecek /*
702 1.3 jdolecek * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
703 1.49 ad * descriptors. Calls fileops kqfilter method for given file descriptor.
704 1.3 jdolecek */
705 1.3 jdolecek static int
706 1.3 jdolecek filt_fileattach(struct knote *kn)
707 1.3 jdolecek {
708 1.49 ad file_t *fp;
709 1.49 ad
710 1.49 ad fp = kn->kn_obj;
711 1.3 jdolecek
712 1.49 ad return (*fp->f_ops->fo_kqfilter)(fp, kn);
713 1.3 jdolecek }
714 1.3 jdolecek
715 1.3 jdolecek /*
716 1.3 jdolecek * Filter detach method for EVFILT_READ on kqueue descriptor.
717 1.3 jdolecek */
718 1.1 lukem static void
719 1.1 lukem filt_kqdetach(struct knote *kn)
720 1.1 lukem {
721 1.3 jdolecek struct kqueue *kq;
722 1.1 lukem
723 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
724 1.49 ad
725 1.49 ad mutex_spin_enter(&kq->kq_lock);
726 1.109 thorpej selremove_knote(&kq->kq_sel, kn);
727 1.49 ad mutex_spin_exit(&kq->kq_lock);
728 1.1 lukem }
729 1.1 lukem
730 1.3 jdolecek /*
731 1.3 jdolecek * Filter event method for EVFILT_READ on kqueue descriptor.
732 1.3 jdolecek */
733 1.1 lukem /*ARGSUSED*/
734 1.1 lukem static int
735 1.33 yamt filt_kqueue(struct knote *kn, long hint)
736 1.1 lukem {
737 1.3 jdolecek struct kqueue *kq;
738 1.49 ad int rv;
739 1.49 ad
740 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
741 1.1 lukem
742 1.49 ad if (hint != NOTE_SUBMIT)
743 1.49 ad mutex_spin_enter(&kq->kq_lock);
744 1.118 jdolecek kn->kn_data = KQ_COUNT(kq);
745 1.49 ad rv = (kn->kn_data > 0);
746 1.49 ad if (hint != NOTE_SUBMIT)
747 1.49 ad mutex_spin_exit(&kq->kq_lock);
748 1.49 ad
749 1.49 ad return rv;
750 1.1 lukem }
751 1.1 lukem
752 1.3 jdolecek /*
753 1.3 jdolecek * Filter attach method for EVFILT_PROC.
754 1.3 jdolecek */
755 1.1 lukem static int
756 1.1 lukem filt_procattach(struct knote *kn)
757 1.1 lukem {
758 1.78 pooka struct proc *p;
759 1.1 lukem
760 1.107 ad mutex_enter(&proc_lock);
761 1.129 thorpej p = proc_find(kn->kn_id);
762 1.49 ad if (p == NULL) {
763 1.107 ad mutex_exit(&proc_lock);
764 1.49 ad return ESRCH;
765 1.49 ad }
766 1.3 jdolecek
767 1.3 jdolecek /*
768 1.3 jdolecek * Fail if it's not owned by you, or the last exec gave us
769 1.3 jdolecek * setuid/setgid privs (unless you're root).
770 1.3 jdolecek */
771 1.57 ad mutex_enter(p->p_lock);
772 1.107 ad mutex_exit(&proc_lock);
773 1.129 thorpej if (kauth_authorize_process(curlwp->l_cred,
774 1.119 christos KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
775 1.57 ad mutex_exit(p->p_lock);
776 1.49 ad return EACCES;
777 1.49 ad }
778 1.1 lukem
779 1.49 ad kn->kn_obj = p;
780 1.3 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
781 1.1 lukem
782 1.1 lukem /*
783 1.129 thorpej * NOTE_CHILD is only ever generated internally; don't let it
784 1.129 thorpej * leak in from user-space. See knote_proc_fork_track().
785 1.1 lukem */
786 1.129 thorpej kn->kn_sfflags &= ~NOTE_CHILD;
787 1.129 thorpej
788 1.1 lukem SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
789 1.57 ad mutex_exit(p->p_lock);
790 1.1 lukem
791 1.49 ad return 0;
792 1.1 lukem }
793 1.1 lukem
794 1.1 lukem /*
795 1.3 jdolecek * Filter detach method for EVFILT_PROC.
796 1.3 jdolecek *
797 1.1 lukem * The knote may be attached to a different process, which may exit,
798 1.1 lukem * leaving nothing for the knote to be attached to. So when the process
799 1.1 lukem * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
800 1.1 lukem * it will be deleted when read out. However, as part of the knote deletion,
801 1.1 lukem * this routine is called, so a check is needed to avoid actually performing
802 1.3 jdolecek * a detach, because the original process might not exist any more.
803 1.1 lukem */
804 1.1 lukem static void
805 1.1 lukem filt_procdetach(struct knote *kn)
806 1.1 lukem {
807 1.129 thorpej struct kqueue *kq = kn->kn_kq;
808 1.3 jdolecek struct proc *p;
809 1.1 lukem
810 1.129 thorpej /*
811 1.129 thorpej * We have to synchronize with knote_proc_exit(), but we
812 1.129 thorpej * are forced to acquire the locks in the wrong order here
813 1.129 thorpej * because we can't be sure kn->kn_obj is valid unless
814 1.129 thorpej * KN_DETACHED is not set.
815 1.129 thorpej */
816 1.129 thorpej again:
817 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
818 1.129 thorpej if ((kn->kn_status & KN_DETACHED) == 0) {
819 1.129 thorpej p = kn->kn_obj;
820 1.129 thorpej if (!mutex_tryenter(p->p_lock)) {
821 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
822 1.129 thorpej preempt_point();
823 1.129 thorpej goto again;
824 1.129 thorpej }
825 1.129 thorpej kn->kn_status |= KN_DETACHED;
826 1.129 thorpej SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
827 1.129 thorpej mutex_exit(p->p_lock);
828 1.129 thorpej }
829 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
830 1.1 lukem }
831 1.1 lukem
832 1.3 jdolecek /*
833 1.3 jdolecek * Filter event method for EVFILT_PROC.
834 1.129 thorpej *
835 1.129 thorpej * Due to some of the complexities of process locking, we have special
836 1.129 thorpej * entry points for delivering knote submissions. filt_proc() is used
837 1.129 thorpej * only to check for activation from kqueue_register() and kqueue_scan().
838 1.3 jdolecek */
839 1.1 lukem static int
840 1.1 lukem filt_proc(struct knote *kn, long hint)
841 1.1 lukem {
842 1.129 thorpej struct kqueue *kq = kn->kn_kq;
843 1.129 thorpej uint32_t fflags;
844 1.129 thorpej
845 1.129 thorpej /*
846 1.129 thorpej * Because we share the same klist with signal knotes, just
847 1.129 thorpej * ensure that we're not being invoked for the proc-related
848 1.129 thorpej * submissions.
849 1.129 thorpej */
850 1.129 thorpej KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
851 1.129 thorpej
852 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
853 1.129 thorpej fflags = kn->kn_fflags;
854 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
855 1.1 lukem
856 1.129 thorpej return fflags != 0;
857 1.129 thorpej }
858 1.1 lukem
859 1.129 thorpej void
860 1.129 thorpej knote_proc_exec(struct proc *p)
861 1.129 thorpej {
862 1.129 thorpej struct knote *kn, *tmpkn;
863 1.129 thorpej struct kqueue *kq;
864 1.129 thorpej uint32_t fflags;
865 1.1 lukem
866 1.129 thorpej mutex_enter(p->p_lock);
867 1.83 christos
868 1.129 thorpej SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
869 1.129 thorpej /* N.B. EVFILT_SIGNAL knotes are on this same list. */
870 1.129 thorpej if (kn->kn_fop == &sig_filtops) {
871 1.129 thorpej continue;
872 1.129 thorpej }
873 1.129 thorpej KASSERT(kn->kn_fop == &proc_filtops);
874 1.49 ad
875 1.129 thorpej kq = kn->kn_kq;
876 1.49 ad mutex_spin_enter(&kq->kq_lock);
877 1.129 thorpej fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
878 1.49 ad mutex_spin_exit(&kq->kq_lock);
879 1.129 thorpej if (fflags) {
880 1.129 thorpej knote_activate(kn);
881 1.129 thorpej }
882 1.129 thorpej }
883 1.129 thorpej
884 1.129 thorpej mutex_exit(p->p_lock);
885 1.129 thorpej }
886 1.129 thorpej
887 1.129 thorpej static int __noinline
888 1.129 thorpej knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
889 1.129 thorpej {
890 1.129 thorpej struct kqueue *kq = okn->kn_kq;
891 1.129 thorpej
892 1.129 thorpej KASSERT(mutex_owned(&kq->kq_lock));
893 1.129 thorpej KASSERT(mutex_owned(p1->p_lock));
894 1.129 thorpej
895 1.129 thorpej /*
896 1.129 thorpej * We're going to put this knote into flux while we drop
897 1.129 thorpej * the locks and create and attach a new knote to track the
898 1.129 thorpej * child. If we are not able to enter flux, then this knote
899 1.129 thorpej * is about to go away, so skip the notification.
900 1.129 thorpej */
901 1.129 thorpej if (!kn_enter_flux(okn)) {
902 1.129 thorpej return 0;
903 1.129 thorpej }
904 1.129 thorpej
905 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
906 1.129 thorpej mutex_exit(p1->p_lock);
907 1.49 ad
908 1.129 thorpej /*
909 1.129 thorpej * We actually have to register *two* new knotes:
910 1.129 thorpej *
911 1.129 thorpej * ==> One for the NOTE_CHILD notification. This is a forced
912 1.129 thorpej * ONESHOT note.
913 1.129 thorpej *
914 1.129 thorpej * ==> One to actually track the child process as it subsequently
915 1.129 thorpej * forks, execs, and, ultimately, exits.
916 1.129 thorpej *
917 1.129 thorpej * If we only register a single knote, then it's possible for
918 1.129 thorpej * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
919 1.129 thorpej * notification if the child exits before the tracking process
920 1.129 thorpej * has received the NOTE_CHILD notification, which applications
921 1.129 thorpej * aren't expecting (the event's 'data' field would be clobbered,
922 1.129 thorpej * for exmaple).
923 1.129 thorpej *
924 1.129 thorpej * To do this, what we have here is an **extremely** stripped-down
925 1.129 thorpej * version of kqueue_register() that has the following properties:
926 1.129 thorpej *
927 1.129 thorpej * ==> Does not block to allocate memory. If we are unable
928 1.129 thorpej * to allocate memory, we return ENOMEM.
929 1.129 thorpej *
930 1.129 thorpej * ==> Does not search for existing knotes; we know there
931 1.129 thorpej * are not any because this is a new process that isn't
932 1.129 thorpej * even visible to other processes yet.
933 1.129 thorpej *
934 1.129 thorpej * ==> Assumes that the knhash for our kq's descriptor table
935 1.129 thorpej * already exists (after all, we're already tracking
936 1.129 thorpej * processes with knotes if we got here).
937 1.129 thorpej *
938 1.129 thorpej * ==> Directly attaches the new tracking knote to the child
939 1.129 thorpej * process.
940 1.129 thorpej *
941 1.129 thorpej * The whole point is to do the minimum amount of work while the
942 1.129 thorpej * knote is held in-flux, and to avoid doing extra work in general
943 1.129 thorpej * (we already have the new child process; why bother looking it
944 1.129 thorpej * up again?).
945 1.129 thorpej */
946 1.129 thorpej filedesc_t *fdp = kq->kq_fdp;
947 1.129 thorpej struct knote *knchild, *kntrack;
948 1.129 thorpej int error = 0;
949 1.129 thorpej
950 1.129 thorpej knchild = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
951 1.129 thorpej kntrack = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
952 1.129 thorpej if (__predict_false(knchild == NULL || kntrack == NULL)) {
953 1.129 thorpej error = ENOMEM;
954 1.129 thorpej goto out;
955 1.129 thorpej }
956 1.129 thorpej
957 1.129 thorpej kntrack->kn_obj = p2;
958 1.129 thorpej kntrack->kn_id = p2->p_pid;
959 1.129 thorpej kntrack->kn_kq = kq;
960 1.129 thorpej kntrack->kn_fop = okn->kn_fop;
961 1.129 thorpej kntrack->kn_kfilter = okn->kn_kfilter;
962 1.129 thorpej kntrack->kn_sfflags = okn->kn_sfflags;
963 1.129 thorpej kntrack->kn_sdata = p1->p_pid;
964 1.129 thorpej
965 1.129 thorpej kntrack->kn_kevent.ident = p2->p_pid;
966 1.129 thorpej kntrack->kn_kevent.filter = okn->kn_filter;
967 1.129 thorpej kntrack->kn_kevent.flags =
968 1.129 thorpej okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
969 1.129 thorpej kntrack->kn_kevent.fflags = 0;
970 1.129 thorpej kntrack->kn_kevent.data = 0;
971 1.129 thorpej kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
972 1.129 thorpej
973 1.129 thorpej /*
974 1.129 thorpej * The child note does not need to be attached to the
975 1.129 thorpej * new proc's klist at all.
976 1.129 thorpej */
977 1.129 thorpej *knchild = *kntrack;
978 1.129 thorpej knchild->kn_status = KN_DETACHED;
979 1.129 thorpej knchild->kn_sfflags = 0;
980 1.129 thorpej knchild->kn_kevent.flags |= EV_ONESHOT;
981 1.129 thorpej knchild->kn_kevent.fflags = NOTE_CHILD;
982 1.129 thorpej knchild->kn_kevent.data = p1->p_pid; /* parent */
983 1.129 thorpej
984 1.129 thorpej mutex_enter(&fdp->fd_lock);
985 1.129 thorpej
986 1.129 thorpej /*
987 1.129 thorpej * We need to check to see if the kq is closing, and skip
988 1.129 thorpej * attaching the knote if so. Normally, this isn't necessary
989 1.129 thorpej * when coming in the front door because the file descriptor
990 1.129 thorpej * layer will synchronize this.
991 1.129 thorpej *
992 1.129 thorpej * It's safe to test KQ_CLOSING without taking the kq_lock
993 1.129 thorpej * here because that flag is only ever set when the fd_lock
994 1.129 thorpej * is also held.
995 1.129 thorpej */
996 1.129 thorpej if (__predict_false(kq->kq_count & KQ_CLOSING)) {
997 1.129 thorpej mutex_exit(&fdp->fd_lock);
998 1.129 thorpej goto out;
999 1.1 lukem }
1000 1.1 lukem
1001 1.129 thorpej /*
1002 1.129 thorpej * We do the "insert into FD table" and "attach to klist" steps
1003 1.129 thorpej * in the opposite order of kqueue_register() here to avoid
1004 1.129 thorpej * having to take p2->p_lock twice. But this is OK because we
1005 1.129 thorpej * hold fd_lock across the entire operation.
1006 1.129 thorpej */
1007 1.129 thorpej
1008 1.129 thorpej mutex_enter(p2->p_lock);
1009 1.129 thorpej error = kauth_authorize_process(curlwp->l_cred,
1010 1.129 thorpej KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
1011 1.129 thorpej if (__predict_false(error != 0)) {
1012 1.129 thorpej mutex_exit(p2->p_lock);
1013 1.129 thorpej mutex_exit(&fdp->fd_lock);
1014 1.129 thorpej error = EACCES;
1015 1.129 thorpej goto out;
1016 1.129 thorpej }
1017 1.129 thorpej SLIST_INSERT_HEAD(&p2->p_klist, kntrack, kn_selnext);
1018 1.129 thorpej mutex_exit(p2->p_lock);
1019 1.129 thorpej
1020 1.129 thorpej KASSERT(fdp->fd_knhashmask != 0);
1021 1.129 thorpej KASSERT(fdp->fd_knhash != NULL);
1022 1.129 thorpej struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
1023 1.129 thorpej fdp->fd_knhashmask)];
1024 1.129 thorpej SLIST_INSERT_HEAD(list, kntrack, kn_link);
1025 1.129 thorpej SLIST_INSERT_HEAD(list, knchild, kn_link);
1026 1.129 thorpej
1027 1.129 thorpej /* This adds references for knchild *and* kntrack. */
1028 1.129 thorpej atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
1029 1.129 thorpej
1030 1.129 thorpej knote_activate(knchild);
1031 1.129 thorpej
1032 1.129 thorpej kntrack = NULL;
1033 1.129 thorpej knchild = NULL;
1034 1.129 thorpej
1035 1.129 thorpej mutex_exit(&fdp->fd_lock);
1036 1.129 thorpej
1037 1.129 thorpej out:
1038 1.129 thorpej if (__predict_false(knchild != NULL)) {
1039 1.129 thorpej kmem_free(knchild, sizeof(*knchild));
1040 1.129 thorpej }
1041 1.129 thorpej if (__predict_false(kntrack != NULL)) {
1042 1.129 thorpej kmem_free(kntrack, sizeof(*kntrack));
1043 1.129 thorpej }
1044 1.129 thorpej mutex_enter(p1->p_lock);
1045 1.49 ad mutex_spin_enter(&kq->kq_lock);
1046 1.129 thorpej
1047 1.129 thorpej if (kn_leave_flux(okn)) {
1048 1.129 thorpej KQ_FLUX_WAKEUP(kq);
1049 1.129 thorpej }
1050 1.129 thorpej
1051 1.129 thorpej return error;
1052 1.129 thorpej }
1053 1.129 thorpej
1054 1.129 thorpej void
1055 1.129 thorpej knote_proc_fork(struct proc *p1, struct proc *p2)
1056 1.129 thorpej {
1057 1.129 thorpej struct knote *kn;
1058 1.129 thorpej struct kqueue *kq;
1059 1.129 thorpej uint32_t fflags;
1060 1.129 thorpej
1061 1.129 thorpej mutex_enter(p1->p_lock);
1062 1.129 thorpej
1063 1.129 thorpej /*
1064 1.129 thorpej * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
1065 1.129 thorpej * don't want to pre-fetch the next knote; in the event we
1066 1.129 thorpej * have to drop p_lock, we will have put the knote in-flux,
1067 1.129 thorpej * meaning that no one will be able to detach it until we
1068 1.129 thorpej * have taken the knote out of flux. However, that does
1069 1.129 thorpej * NOT stop someone else from detaching the next note in the
1070 1.129 thorpej * list while we have it unlocked. Thus, we want to fetch
1071 1.129 thorpej * the next note in the list only after we have re-acquired
1072 1.129 thorpej * the lock, and using SLIST_FOREACH() will satisfy that.
1073 1.129 thorpej */
1074 1.129 thorpej SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
1075 1.129 thorpej /* N.B. EVFILT_SIGNAL knotes are on this same list. */
1076 1.129 thorpej if (kn->kn_fop == &sig_filtops) {
1077 1.129 thorpej continue;
1078 1.129 thorpej }
1079 1.129 thorpej KASSERT(kn->kn_fop == &proc_filtops);
1080 1.129 thorpej
1081 1.129 thorpej kq = kn->kn_kq;
1082 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
1083 1.129 thorpej kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
1084 1.129 thorpej if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
1085 1.129 thorpej /*
1086 1.129 thorpej * This will drop kq_lock and p_lock and
1087 1.129 thorpej * re-acquire them before it returns.
1088 1.129 thorpej */
1089 1.129 thorpej if (knote_proc_fork_track(p1, p2, kn)) {
1090 1.129 thorpej kn->kn_fflags |= NOTE_TRACKERR;
1091 1.129 thorpej }
1092 1.129 thorpej KASSERT(mutex_owned(p1->p_lock));
1093 1.129 thorpej KASSERT(mutex_owned(&kq->kq_lock));
1094 1.129 thorpej }
1095 1.129 thorpej fflags = kn->kn_fflags;
1096 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
1097 1.129 thorpej if (fflags) {
1098 1.129 thorpej knote_activate(kn);
1099 1.129 thorpej }
1100 1.129 thorpej }
1101 1.129 thorpej
1102 1.129 thorpej mutex_exit(p1->p_lock);
1103 1.129 thorpej }
1104 1.129 thorpej
1105 1.129 thorpej void
1106 1.129 thorpej knote_proc_exit(struct proc *p)
1107 1.129 thorpej {
1108 1.129 thorpej struct knote *kn;
1109 1.129 thorpej struct kqueue *kq;
1110 1.129 thorpej
1111 1.129 thorpej KASSERT(mutex_owned(p->p_lock));
1112 1.129 thorpej
1113 1.129 thorpej while (!SLIST_EMPTY(&p->p_klist)) {
1114 1.129 thorpej kn = SLIST_FIRST(&p->p_klist);
1115 1.129 thorpej kq = kn->kn_kq;
1116 1.129 thorpej
1117 1.129 thorpej KASSERT(kn->kn_obj == p);
1118 1.129 thorpej
1119 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
1120 1.129 thorpej kn->kn_data = P_WAITSTATUS(p);
1121 1.129 thorpej /*
1122 1.129 thorpej * Mark as ONESHOT, so that the knote is g/c'ed
1123 1.129 thorpej * when read.
1124 1.129 thorpej */
1125 1.129 thorpej kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1126 1.129 thorpej kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
1127 1.129 thorpej
1128 1.1 lukem /*
1129 1.129 thorpej * Detach the knote from the process and mark it as such.
1130 1.129 thorpej * N.B. EVFILT_SIGNAL are also on p_klist, but by the
1131 1.129 thorpej * time we get here, all open file descriptors for this
1132 1.129 thorpej * process have been released, meaning that signal knotes
1133 1.129 thorpej * will have already been detached.
1134 1.129 thorpej *
1135 1.129 thorpej * We need to synchronize this with filt_procdetach().
1136 1.1 lukem */
1137 1.129 thorpej KASSERT(kn->kn_fop == &proc_filtops);
1138 1.129 thorpej if ((kn->kn_status & KN_DETACHED) == 0) {
1139 1.129 thorpej kn->kn_status |= KN_DETACHED;
1140 1.129 thorpej SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
1141 1.129 thorpej }
1142 1.49 ad mutex_spin_exit(&kq->kq_lock);
1143 1.129 thorpej
1144 1.129 thorpej /*
1145 1.129 thorpej * Always activate the knote for NOTE_EXIT regardless
1146 1.129 thorpej * of whether or not the listener cares about it.
1147 1.129 thorpej * This matches historical behavior.
1148 1.129 thorpej */
1149 1.129 thorpej knote_activate(kn);
1150 1.1 lukem }
1151 1.8 jdolecek }
1152 1.8 jdolecek
1153 1.8 jdolecek static void
1154 1.8 jdolecek filt_timerexpire(void *knx)
1155 1.8 jdolecek {
1156 1.8 jdolecek struct knote *kn = knx;
1157 1.8 jdolecek int tticks;
1158 1.8 jdolecek
1159 1.125 thorpej mutex_enter(&kqueue_timer_lock);
1160 1.8 jdolecek kn->kn_data++;
1161 1.49 ad knote_activate(kn);
1162 1.8 jdolecek if ((kn->kn_flags & EV_ONESHOT) == 0) {
1163 1.8 jdolecek tticks = mstohz(kn->kn_sdata);
1164 1.73 christos if (tticks <= 0)
1165 1.73 christos tticks = 1;
1166 1.39 ad callout_schedule((callout_t *)kn->kn_hook, tticks);
1167 1.8 jdolecek }
1168 1.125 thorpej mutex_exit(&kqueue_timer_lock);
1169 1.8 jdolecek }
1170 1.8 jdolecek
1171 1.8 jdolecek /*
1172 1.8 jdolecek * data contains amount of time to sleep, in milliseconds
1173 1.22 perry */
1174 1.8 jdolecek static int
1175 1.8 jdolecek filt_timerattach(struct knote *kn)
1176 1.8 jdolecek {
1177 1.39 ad callout_t *calloutp;
1178 1.49 ad struct kqueue *kq;
1179 1.8 jdolecek int tticks;
1180 1.8 jdolecek
1181 1.8 jdolecek tticks = mstohz(kn->kn_sdata);
1182 1.8 jdolecek
1183 1.8 jdolecek /* if the supplied value is under our resolution, use 1 tick */
1184 1.8 jdolecek if (tticks == 0) {
1185 1.8 jdolecek if (kn->kn_sdata == 0)
1186 1.49 ad return EINVAL;
1187 1.8 jdolecek tticks = 1;
1188 1.8 jdolecek }
1189 1.8 jdolecek
1190 1.49 ad if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
1191 1.49 ad (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
1192 1.49 ad atomic_dec_uint(&kq_ncallouts);
1193 1.49 ad return ENOMEM;
1194 1.49 ad }
1195 1.54 ad callout_init(calloutp, CALLOUT_MPSAFE);
1196 1.49 ad
1197 1.49 ad kq = kn->kn_kq;
1198 1.49 ad mutex_spin_enter(&kq->kq_lock);
1199 1.8 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
1200 1.49 ad kn->kn_hook = calloutp;
1201 1.49 ad mutex_spin_exit(&kq->kq_lock);
1202 1.49 ad
1203 1.8 jdolecek callout_reset(calloutp, tticks, filt_timerexpire, kn);
1204 1.8 jdolecek
1205 1.8 jdolecek return (0);
1206 1.8 jdolecek }
1207 1.8 jdolecek
1208 1.8 jdolecek static void
1209 1.8 jdolecek filt_timerdetach(struct knote *kn)
1210 1.8 jdolecek {
1211 1.39 ad callout_t *calloutp;
1212 1.103 christos struct kqueue *kq = kn->kn_kq;
1213 1.103 christos
1214 1.125 thorpej /*
1215 1.125 thorpej * We don't need to hold the kqueue_timer_lock here; even
1216 1.125 thorpej * if filt_timerexpire() misses our setting of EV_ONESHOT,
1217 1.125 thorpej * we are guaranteed that the callout will no longer be
1218 1.125 thorpej * scheduled even if we attempted to halt it after it already
1219 1.125 thorpej * started running, even if it rescheduled itself.
1220 1.125 thorpej */
1221 1.125 thorpej
1222 1.103 christos mutex_spin_enter(&kq->kq_lock);
1223 1.103 christos /* prevent rescheduling when we expire */
1224 1.103 christos kn->kn_flags |= EV_ONESHOT;
1225 1.103 christos mutex_spin_exit(&kq->kq_lock);
1226 1.8 jdolecek
1227 1.39 ad calloutp = (callout_t *)kn->kn_hook;
1228 1.125 thorpej
1229 1.125 thorpej /*
1230 1.125 thorpej * Attempt to stop the callout. This will block if it's
1231 1.125 thorpej * already running.
1232 1.125 thorpej */
1233 1.55 ad callout_halt(calloutp, NULL);
1234 1.125 thorpej
1235 1.39 ad callout_destroy(calloutp);
1236 1.49 ad kmem_free(calloutp, sizeof(*calloutp));
1237 1.49 ad atomic_dec_uint(&kq_ncallouts);
1238 1.8 jdolecek }
1239 1.8 jdolecek
1240 1.8 jdolecek static int
1241 1.33 yamt filt_timer(struct knote *kn, long hint)
1242 1.8 jdolecek {
1243 1.49 ad int rv;
1244 1.49 ad
1245 1.125 thorpej mutex_enter(&kqueue_timer_lock);
1246 1.49 ad rv = (kn->kn_data != 0);
1247 1.125 thorpej mutex_exit(&kqueue_timer_lock);
1248 1.49 ad
1249 1.49 ad return rv;
1250 1.1 lukem }
1251 1.1 lukem
1252 1.108 christos static int
1253 1.108 christos filt_userattach(struct knote *kn)
1254 1.108 christos {
1255 1.108 christos struct kqueue *kq = kn->kn_kq;
1256 1.108 christos
1257 1.108 christos /*
1258 1.108 christos * EVFILT_USER knotes are not attached to anything in the kernel.
1259 1.108 christos */
1260 1.108 christos mutex_spin_enter(&kq->kq_lock);
1261 1.108 christos kn->kn_hook = NULL;
1262 1.108 christos if (kn->kn_fflags & NOTE_TRIGGER)
1263 1.108 christos kn->kn_hookid = 1;
1264 1.108 christos else
1265 1.108 christos kn->kn_hookid = 0;
1266 1.108 christos mutex_spin_exit(&kq->kq_lock);
1267 1.108 christos return (0);
1268 1.108 christos }
1269 1.108 christos
1270 1.108 christos static void
1271 1.108 christos filt_userdetach(struct knote *kn)
1272 1.108 christos {
1273 1.108 christos
1274 1.108 christos /*
1275 1.108 christos * EVFILT_USER knotes are not attached to anything in the kernel.
1276 1.108 christos */
1277 1.108 christos }
1278 1.108 christos
1279 1.108 christos static int
1280 1.108 christos filt_user(struct knote *kn, long hint)
1281 1.108 christos {
1282 1.108 christos struct kqueue *kq = kn->kn_kq;
1283 1.108 christos int hookid;
1284 1.108 christos
1285 1.108 christos mutex_spin_enter(&kq->kq_lock);
1286 1.108 christos hookid = kn->kn_hookid;
1287 1.108 christos mutex_spin_exit(&kq->kq_lock);
1288 1.108 christos
1289 1.108 christos return hookid;
1290 1.108 christos }
1291 1.108 christos
1292 1.108 christos static void
1293 1.108 christos filt_usertouch(struct knote *kn, struct kevent *kev, long type)
1294 1.108 christos {
1295 1.108 christos int ffctrl;
1296 1.108 christos
1297 1.117 skrll KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1298 1.116 jdolecek
1299 1.108 christos switch (type) {
1300 1.108 christos case EVENT_REGISTER:
1301 1.108 christos if (kev->fflags & NOTE_TRIGGER)
1302 1.108 christos kn->kn_hookid = 1;
1303 1.108 christos
1304 1.108 christos ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1305 1.108 christos kev->fflags &= NOTE_FFLAGSMASK;
1306 1.108 christos switch (ffctrl) {
1307 1.108 christos case NOTE_FFNOP:
1308 1.108 christos break;
1309 1.108 christos
1310 1.108 christos case NOTE_FFAND:
1311 1.108 christos kn->kn_sfflags &= kev->fflags;
1312 1.108 christos break;
1313 1.108 christos
1314 1.108 christos case NOTE_FFOR:
1315 1.108 christos kn->kn_sfflags |= kev->fflags;
1316 1.108 christos break;
1317 1.108 christos
1318 1.108 christos case NOTE_FFCOPY:
1319 1.108 christos kn->kn_sfflags = kev->fflags;
1320 1.108 christos break;
1321 1.108 christos
1322 1.108 christos default:
1323 1.108 christos /* XXX Return error? */
1324 1.108 christos break;
1325 1.108 christos }
1326 1.108 christos kn->kn_sdata = kev->data;
1327 1.108 christos if (kev->flags & EV_CLEAR) {
1328 1.108 christos kn->kn_hookid = 0;
1329 1.108 christos kn->kn_data = 0;
1330 1.108 christos kn->kn_fflags = 0;
1331 1.108 christos }
1332 1.108 christos break;
1333 1.108 christos
1334 1.108 christos case EVENT_PROCESS:
1335 1.108 christos *kev = kn->kn_kevent;
1336 1.108 christos kev->fflags = kn->kn_sfflags;
1337 1.108 christos kev->data = kn->kn_sdata;
1338 1.108 christos if (kn->kn_flags & EV_CLEAR) {
1339 1.108 christos kn->kn_hookid = 0;
1340 1.108 christos kn->kn_data = 0;
1341 1.108 christos kn->kn_fflags = 0;
1342 1.108 christos }
1343 1.108 christos break;
1344 1.108 christos
1345 1.108 christos default:
1346 1.108 christos panic("filt_usertouch() - invalid type (%ld)", type);
1347 1.108 christos break;
1348 1.108 christos }
1349 1.108 christos }
1350 1.108 christos
1351 1.102 christos /*
1352 1.3 jdolecek * filt_seltrue:
1353 1.3 jdolecek *
1354 1.3 jdolecek * This filter "event" routine simulates seltrue().
1355 1.3 jdolecek */
1356 1.1 lukem int
1357 1.33 yamt filt_seltrue(struct knote *kn, long hint)
1358 1.1 lukem {
1359 1.1 lukem
1360 1.3 jdolecek /*
1361 1.3 jdolecek * We don't know how much data can be read/written,
1362 1.3 jdolecek * but we know that it *can* be. This is about as
1363 1.3 jdolecek * good as select/poll does as well.
1364 1.3 jdolecek */
1365 1.3 jdolecek kn->kn_data = 0;
1366 1.3 jdolecek return (1);
1367 1.3 jdolecek }
1368 1.3 jdolecek
1369 1.3 jdolecek /*
1370 1.3 jdolecek * This provides full kqfilter entry for device switch tables, which
1371 1.3 jdolecek * has same effect as filter using filt_seltrue() as filter method.
1372 1.3 jdolecek */
1373 1.3 jdolecek static void
1374 1.33 yamt filt_seltruedetach(struct knote *kn)
1375 1.3 jdolecek {
1376 1.3 jdolecek /* Nothing to do */
1377 1.3 jdolecek }
1378 1.3 jdolecek
1379 1.96 maya const struct filterops seltrue_filtops = {
1380 1.123 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1381 1.96 maya .f_attach = NULL,
1382 1.96 maya .f_detach = filt_seltruedetach,
1383 1.96 maya .f_event = filt_seltrue,
1384 1.96 maya };
1385 1.3 jdolecek
1386 1.3 jdolecek int
1387 1.33 yamt seltrue_kqfilter(dev_t dev, struct knote *kn)
1388 1.3 jdolecek {
1389 1.3 jdolecek switch (kn->kn_filter) {
1390 1.3 jdolecek case EVFILT_READ:
1391 1.3 jdolecek case EVFILT_WRITE:
1392 1.3 jdolecek kn->kn_fop = &seltrue_filtops;
1393 1.3 jdolecek break;
1394 1.3 jdolecek default:
1395 1.43 pooka return (EINVAL);
1396 1.3 jdolecek }
1397 1.3 jdolecek
1398 1.3 jdolecek /* Nothing more to do */
1399 1.3 jdolecek return (0);
1400 1.3 jdolecek }
1401 1.3 jdolecek
1402 1.3 jdolecek /*
1403 1.3 jdolecek * kqueue(2) system call.
1404 1.3 jdolecek */
1405 1.72 christos static int
1406 1.72 christos kqueue1(struct lwp *l, int flags, register_t *retval)
1407 1.3 jdolecek {
1408 1.49 ad struct kqueue *kq;
1409 1.49 ad file_t *fp;
1410 1.49 ad int fd, error;
1411 1.3 jdolecek
1412 1.49 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
1413 1.49 ad return error;
1414 1.75 christos fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
1415 1.1 lukem fp->f_type = DTYPE_KQUEUE;
1416 1.1 lukem fp->f_ops = &kqueueops;
1417 1.49 ad kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
1418 1.49 ad mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
1419 1.49 ad cv_init(&kq->kq_cv, "kqueue");
1420 1.49 ad selinit(&kq->kq_sel);
1421 1.1 lukem TAILQ_INIT(&kq->kq_head);
1422 1.82 matt fp->f_kqueue = kq;
1423 1.3 jdolecek *retval = fd;
1424 1.49 ad kq->kq_fdp = curlwp->l_fd;
1425 1.72 christos fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1426 1.49 ad fd_affix(curproc, fp, fd);
1427 1.49 ad return error;
1428 1.1 lukem }
1429 1.1 lukem
1430 1.3 jdolecek /*
1431 1.72 christos * kqueue(2) system call.
1432 1.72 christos */
1433 1.72 christos int
1434 1.72 christos sys_kqueue(struct lwp *l, const void *v, register_t *retval)
1435 1.72 christos {
1436 1.72 christos return kqueue1(l, 0, retval);
1437 1.72 christos }
1438 1.72 christos
1439 1.72 christos int
1440 1.72 christos sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
1441 1.72 christos register_t *retval)
1442 1.72 christos {
1443 1.72 christos /* {
1444 1.72 christos syscallarg(int) flags;
1445 1.72 christos } */
1446 1.72 christos return kqueue1(l, SCARG(uap, flags), retval);
1447 1.72 christos }
1448 1.72 christos
1449 1.72 christos /*
1450 1.3 jdolecek * kevent(2) system call.
1451 1.3 jdolecek */
1452 1.61 christos int
1453 1.81 matt kevent_fetch_changes(void *ctx, const struct kevent *changelist,
1454 1.61 christos struct kevent *changes, size_t index, int n)
1455 1.24 cube {
1456 1.49 ad
1457 1.24 cube return copyin(changelist + index, changes, n * sizeof(*changes));
1458 1.24 cube }
1459 1.24 cube
1460 1.61 christos int
1461 1.81 matt kevent_put_events(void *ctx, struct kevent *events,
1462 1.61 christos struct kevent *eventlist, size_t index, int n)
1463 1.24 cube {
1464 1.49 ad
1465 1.24 cube return copyout(events, eventlist + index, n * sizeof(*events));
1466 1.24 cube }
1467 1.24 cube
1468 1.24 cube static const struct kevent_ops kevent_native_ops = {
1469 1.60 gmcgarry .keo_private = NULL,
1470 1.60 gmcgarry .keo_fetch_timeout = copyin,
1471 1.60 gmcgarry .keo_fetch_changes = kevent_fetch_changes,
1472 1.60 gmcgarry .keo_put_events = kevent_put_events,
1473 1.24 cube };
1474 1.24 cube
1475 1.1 lukem int
1476 1.61 christos sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1477 1.61 christos register_t *retval)
1478 1.1 lukem {
1479 1.44 dsl /* {
1480 1.3 jdolecek syscallarg(int) fd;
1481 1.3 jdolecek syscallarg(const struct kevent *) changelist;
1482 1.3 jdolecek syscallarg(size_t) nchanges;
1483 1.3 jdolecek syscallarg(struct kevent *) eventlist;
1484 1.3 jdolecek syscallarg(size_t) nevents;
1485 1.3 jdolecek syscallarg(const struct timespec *) timeout;
1486 1.44 dsl } */
1487 1.24 cube
1488 1.49 ad return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1489 1.24 cube SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1490 1.24 cube SCARG(uap, timeout), &kevent_native_ops);
1491 1.24 cube }
1492 1.24 cube
1493 1.24 cube int
1494 1.49 ad kevent1(register_t *retval, int fd,
1495 1.49 ad const struct kevent *changelist, size_t nchanges,
1496 1.49 ad struct kevent *eventlist, size_t nevents,
1497 1.49 ad const struct timespec *timeout,
1498 1.49 ad const struct kevent_ops *keops)
1499 1.24 cube {
1500 1.49 ad struct kevent *kevp;
1501 1.49 ad struct kqueue *kq;
1502 1.3 jdolecek struct timespec ts;
1503 1.49 ad size_t i, n, ichange;
1504 1.49 ad int nerrors, error;
1505 1.80 maxv struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
1506 1.49 ad file_t *fp;
1507 1.3 jdolecek
1508 1.3 jdolecek /* check that we're dealing with a kq */
1509 1.49 ad fp = fd_getfile(fd);
1510 1.10 pk if (fp == NULL)
1511 1.1 lukem return (EBADF);
1512 1.10 pk
1513 1.10 pk if (fp->f_type != DTYPE_KQUEUE) {
1514 1.49 ad fd_putfile(fd);
1515 1.10 pk return (EBADF);
1516 1.10 pk }
1517 1.1 lukem
1518 1.24 cube if (timeout != NULL) {
1519 1.24 cube error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1520 1.1 lukem if (error)
1521 1.1 lukem goto done;
1522 1.24 cube timeout = &ts;
1523 1.1 lukem }
1524 1.1 lukem
1525 1.82 matt kq = fp->f_kqueue;
1526 1.1 lukem nerrors = 0;
1527 1.24 cube ichange = 0;
1528 1.1 lukem
1529 1.3 jdolecek /* traverse list of events to register */
1530 1.24 cube while (nchanges > 0) {
1531 1.49 ad n = MIN(nchanges, __arraycount(kevbuf));
1532 1.24 cube error = (*keops->keo_fetch_changes)(keops->keo_private,
1533 1.49 ad changelist, kevbuf, ichange, n);
1534 1.1 lukem if (error)
1535 1.1 lukem goto done;
1536 1.1 lukem for (i = 0; i < n; i++) {
1537 1.49 ad kevp = &kevbuf[i];
1538 1.1 lukem kevp->flags &= ~EV_SYSFLAGS;
1539 1.3 jdolecek /* register each knote */
1540 1.49 ad error = kqueue_register(kq, kevp);
1541 1.89 abhinav if (!error && !(kevp->flags & EV_RECEIPT))
1542 1.89 abhinav continue;
1543 1.89 abhinav if (nevents == 0)
1544 1.89 abhinav goto done;
1545 1.89 abhinav kevp->flags = EV_ERROR;
1546 1.89 abhinav kevp->data = error;
1547 1.89 abhinav error = (*keops->keo_put_events)
1548 1.89 abhinav (keops->keo_private, kevp,
1549 1.89 abhinav eventlist, nerrors, 1);
1550 1.89 abhinav if (error)
1551 1.89 abhinav goto done;
1552 1.89 abhinav nevents--;
1553 1.89 abhinav nerrors++;
1554 1.1 lukem }
1555 1.24 cube nchanges -= n; /* update the results */
1556 1.24 cube ichange += n;
1557 1.1 lukem }
1558 1.1 lukem if (nerrors) {
1559 1.3 jdolecek *retval = nerrors;
1560 1.1 lukem error = 0;
1561 1.1 lukem goto done;
1562 1.1 lukem }
1563 1.1 lukem
1564 1.3 jdolecek /* actually scan through the events */
1565 1.49 ad error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1566 1.49 ad kevbuf, __arraycount(kevbuf));
1567 1.3 jdolecek done:
1568 1.49 ad fd_putfile(fd);
1569 1.1 lukem return (error);
1570 1.1 lukem }
1571 1.1 lukem
1572 1.3 jdolecek /*
1573 1.3 jdolecek * Register a given kevent kev onto the kqueue
1574 1.3 jdolecek */
1575 1.49 ad static int
1576 1.49 ad kqueue_register(struct kqueue *kq, struct kevent *kev)
1577 1.1 lukem {
1578 1.49 ad struct kfilter *kfilter;
1579 1.49 ad filedesc_t *fdp;
1580 1.49 ad file_t *fp;
1581 1.49 ad fdfile_t *ff;
1582 1.49 ad struct knote *kn, *newkn;
1583 1.49 ad struct klist *list;
1584 1.49 ad int error, fd, rv;
1585 1.3 jdolecek
1586 1.3 jdolecek fdp = kq->kq_fdp;
1587 1.3 jdolecek fp = NULL;
1588 1.3 jdolecek kn = NULL;
1589 1.3 jdolecek error = 0;
1590 1.49 ad fd = 0;
1591 1.49 ad
1592 1.49 ad newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1593 1.49 ad
1594 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
1595 1.3 jdolecek kfilter = kfilter_byfilter(kev->filter);
1596 1.3 jdolecek if (kfilter == NULL || kfilter->filtops == NULL) {
1597 1.3 jdolecek /* filter not found nor implemented */
1598 1.49 ad rw_exit(&kqueue_filter_lock);
1599 1.49 ad kmem_free(newkn, sizeof(*newkn));
1600 1.1 lukem return (EINVAL);
1601 1.1 lukem }
1602 1.1 lukem
1603 1.3 jdolecek /* search if knote already exists */
1604 1.121 thorpej if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
1605 1.3 jdolecek /* monitoring a file descriptor */
1606 1.87 christos /* validate descriptor */
1607 1.88 christos if (kev->ident > INT_MAX
1608 1.88 christos || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1609 1.49 ad rw_exit(&kqueue_filter_lock);
1610 1.49 ad kmem_free(newkn, sizeof(*newkn));
1611 1.49 ad return EBADF;
1612 1.49 ad }
1613 1.74 rmind mutex_enter(&fdp->fd_lock);
1614 1.65 ad ff = fdp->fd_dt->dt_ff[fd];
1615 1.98 christos if (ff->ff_refcnt & FR_CLOSING) {
1616 1.98 christos error = EBADF;
1617 1.98 christos goto doneunlock;
1618 1.98 christos }
1619 1.49 ad if (fd <= fdp->fd_lastkqfile) {
1620 1.49 ad SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1621 1.1 lukem if (kq == kn->kn_kq &&
1622 1.1 lukem kev->filter == kn->kn_filter)
1623 1.1 lukem break;
1624 1.49 ad }
1625 1.1 lukem }
1626 1.1 lukem } else {
1627 1.3 jdolecek /*
1628 1.3 jdolecek * not monitoring a file descriptor, so
1629 1.3 jdolecek * lookup knotes in internal hash table
1630 1.3 jdolecek */
1631 1.74 rmind mutex_enter(&fdp->fd_lock);
1632 1.1 lukem if (fdp->fd_knhashmask != 0) {
1633 1.1 lukem list = &fdp->fd_knhash[
1634 1.1 lukem KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1635 1.49 ad SLIST_FOREACH(kn, list, kn_link) {
1636 1.1 lukem if (kev->ident == kn->kn_id &&
1637 1.1 lukem kq == kn->kn_kq &&
1638 1.1 lukem kev->filter == kn->kn_filter)
1639 1.1 lukem break;
1640 1.49 ad }
1641 1.1 lukem }
1642 1.1 lukem }
1643 1.1 lukem
1644 1.129 thorpej /* It's safe to test KQ_CLOSING while holding only the fd_lock. */
1645 1.129 thorpej KASSERT(mutex_owned(&fdp->fd_lock));
1646 1.129 thorpej KASSERT((kq->kq_count & KQ_CLOSING) == 0);
1647 1.129 thorpej
1648 1.1 lukem /*
1649 1.1 lukem * kn now contains the matching knote, or NULL if no match
1650 1.1 lukem */
1651 1.108 christos if (kn == NULL) {
1652 1.108 christos if (kev->flags & EV_ADD) {
1653 1.3 jdolecek /* create new knote */
1654 1.49 ad kn = newkn;
1655 1.49 ad newkn = NULL;
1656 1.49 ad kn->kn_obj = fp;
1657 1.79 christos kn->kn_id = kev->ident;
1658 1.1 lukem kn->kn_kq = kq;
1659 1.3 jdolecek kn->kn_fop = kfilter->filtops;
1660 1.49 ad kn->kn_kfilter = kfilter;
1661 1.49 ad kn->kn_sfflags = kev->fflags;
1662 1.49 ad kn->kn_sdata = kev->data;
1663 1.49 ad kev->fflags = 0;
1664 1.49 ad kev->data = 0;
1665 1.49 ad kn->kn_kevent = *kev;
1666 1.1 lukem
1667 1.85 christos KASSERT(kn->kn_fop != NULL);
1668 1.1 lukem /*
1669 1.1 lukem * apply reference count to knote structure, and
1670 1.1 lukem * do not release it at the end of this routine.
1671 1.1 lukem */
1672 1.1 lukem fp = NULL;
1673 1.1 lukem
1674 1.121 thorpej if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
1675 1.49 ad /*
1676 1.49 ad * If knote is not on an fd, store on
1677 1.49 ad * internal hash table.
1678 1.49 ad */
1679 1.49 ad if (fdp->fd_knhashmask == 0) {
1680 1.49 ad /* XXXAD can block with fd_lock held */
1681 1.49 ad fdp->fd_knhash = hashinit(KN_HASHSIZE,
1682 1.59 ad HASH_LIST, true,
1683 1.49 ad &fdp->fd_knhashmask);
1684 1.49 ad }
1685 1.49 ad list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1686 1.49 ad fdp->fd_knhashmask)];
1687 1.49 ad } else {
1688 1.49 ad /* Otherwise, knote is on an fd. */
1689 1.49 ad list = (struct klist *)
1690 1.65 ad &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1691 1.49 ad if ((int)kn->kn_id > fdp->fd_lastkqfile)
1692 1.49 ad fdp->fd_lastkqfile = kn->kn_id;
1693 1.49 ad }
1694 1.49 ad SLIST_INSERT_HEAD(list, kn, kn_link);
1695 1.1 lukem
1696 1.122 thorpej /*
1697 1.122 thorpej * N.B. kn->kn_fop may change as the result
1698 1.122 thorpej * of filter_attach()!
1699 1.122 thorpej */
1700 1.122 thorpej error = filter_attach(kn);
1701 1.49 ad if (error != 0) {
1702 1.100 christos #ifdef DEBUG
1703 1.105 christos struct proc *p = curlwp->l_proc;
1704 1.101 christos const file_t *ft = kn->kn_obj;
1705 1.105 christos printf("%s: %s[%d]: event type %d not "
1706 1.105 christos "supported for file type %d/%s "
1707 1.105 christos "(error %d)\n", __func__,
1708 1.105 christos p->p_comm, p->p_pid,
1709 1.101 christos kn->kn_filter, ft ? ft->f_type : -1,
1710 1.101 christos ft ? ft->f_ops->fo_name : "?", error);
1711 1.100 christos #endif
1712 1.100 christos
1713 1.129 thorpej /*
1714 1.129 thorpej * N.B. no need to check for this note to
1715 1.129 thorpej * be in-flux, since it was never visible
1716 1.129 thorpej * to the monitored object.
1717 1.129 thorpej *
1718 1.129 thorpej * knote_detach() drops fdp->fd_lock
1719 1.129 thorpej */
1720 1.129 thorpej mutex_enter(&kq->kq_lock);
1721 1.129 thorpej KNOTE_WILLDETACH(kn);
1722 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
1723 1.129 thorpej mutex_exit(&kq->kq_lock);
1724 1.49 ad knote_detach(kn, fdp, false);
1725 1.1 lukem goto done;
1726 1.1 lukem }
1727 1.49 ad atomic_inc_uint(&kfilter->refcnt);
1728 1.108 christos goto done_ev_add;
1729 1.1 lukem } else {
1730 1.108 christos /* No matching knote and the EV_ADD flag is not set. */
1731 1.108 christos error = ENOENT;
1732 1.108 christos goto doneunlock;
1733 1.1 lukem }
1734 1.108 christos }
1735 1.108 christos
1736 1.108 christos if (kev->flags & EV_DELETE) {
1737 1.129 thorpej /*
1738 1.129 thorpej * Let the world know that this knote is about to go
1739 1.129 thorpej * away, and wait for it to settle if it's currently
1740 1.129 thorpej * in-flux.
1741 1.129 thorpej */
1742 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
1743 1.129 thorpej if (kn->kn_status & KN_WILLDETACH) {
1744 1.129 thorpej /*
1745 1.129 thorpej * This knote is already on its way out,
1746 1.129 thorpej * so just be done.
1747 1.129 thorpej */
1748 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
1749 1.129 thorpej goto doneunlock;
1750 1.129 thorpej }
1751 1.129 thorpej KNOTE_WILLDETACH(kn);
1752 1.129 thorpej if (kn_in_flux(kn)) {
1753 1.129 thorpej mutex_exit(&fdp->fd_lock);
1754 1.129 thorpej /*
1755 1.129 thorpej * It's safe for us to conclusively wait for
1756 1.129 thorpej * this knote to settle because we know we'll
1757 1.129 thorpej * be completing the detach.
1758 1.129 thorpej */
1759 1.129 thorpej kn_wait_flux(kn, true);
1760 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
1761 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
1762 1.129 thorpej mutex_enter(&fdp->fd_lock);
1763 1.129 thorpej } else {
1764 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
1765 1.129 thorpej }
1766 1.129 thorpej
1767 1.108 christos /* knote_detach() drops fdp->fd_lock */
1768 1.108 christos knote_detach(kn, fdp, true);
1769 1.108 christos goto done;
1770 1.108 christos }
1771 1.108 christos
1772 1.108 christos /*
1773 1.108 christos * The user may change some filter values after the
1774 1.108 christos * initial EV_ADD, but doing so will not reset any
1775 1.108 christos * filter which have already been triggered.
1776 1.108 christos */
1777 1.108 christos kn->kn_kevent.udata = kev->udata;
1778 1.108 christos KASSERT(kn->kn_fop != NULL);
1779 1.121 thorpej if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1780 1.121 thorpej kn->kn_fop->f_touch != NULL) {
1781 1.116 jdolecek mutex_spin_enter(&kq->kq_lock);
1782 1.122 thorpej filter_touch(kn, kev, EVENT_REGISTER);
1783 1.116 jdolecek mutex_spin_exit(&kq->kq_lock);
1784 1.49 ad } else {
1785 1.108 christos kn->kn_sfflags = kev->fflags;
1786 1.108 christos kn->kn_sdata = kev->data;
1787 1.1 lukem }
1788 1.1 lukem
1789 1.108 christos /*
1790 1.108 christos * We can get here if we are trying to attach
1791 1.108 christos * an event to a file descriptor that does not
1792 1.108 christos * support events, and the attach routine is
1793 1.108 christos * broken and does not return an error.
1794 1.108 christos */
1795 1.108 christos done_ev_add:
1796 1.122 thorpej rv = filter_event(kn, 0);
1797 1.108 christos if (rv)
1798 1.108 christos knote_activate(kn);
1799 1.108 christos
1800 1.3 jdolecek /* disable knote */
1801 1.49 ad if ((kev->flags & EV_DISABLE)) {
1802 1.49 ad mutex_spin_enter(&kq->kq_lock);
1803 1.49 ad if ((kn->kn_status & KN_DISABLED) == 0)
1804 1.49 ad kn->kn_status |= KN_DISABLED;
1805 1.49 ad mutex_spin_exit(&kq->kq_lock);
1806 1.1 lukem }
1807 1.1 lukem
1808 1.3 jdolecek /* enable knote */
1809 1.49 ad if ((kev->flags & EV_ENABLE)) {
1810 1.49 ad knote_enqueue(kn);
1811 1.1 lukem }
1812 1.98 christos doneunlock:
1813 1.49 ad mutex_exit(&fdp->fd_lock);
1814 1.3 jdolecek done:
1815 1.49 ad rw_exit(&kqueue_filter_lock);
1816 1.49 ad if (newkn != NULL)
1817 1.49 ad kmem_free(newkn, sizeof(*newkn));
1818 1.1 lukem if (fp != NULL)
1819 1.49 ad fd_putfile(fd);
1820 1.1 lukem return (error);
1821 1.1 lukem }
1822 1.1 lukem
1823 1.94 christos #define KN_FMT(buf, kn) \
1824 1.94 christos (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1825 1.94 christos
1826 1.129 thorpej #if defined(DDB)
1827 1.129 thorpej void
1828 1.129 thorpej kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
1829 1.129 thorpej {
1830 1.129 thorpej const struct knote *kn;
1831 1.129 thorpej u_int count;
1832 1.129 thorpej int nmarker;
1833 1.129 thorpej char buf[128];
1834 1.129 thorpej
1835 1.129 thorpej count = 0;
1836 1.129 thorpej nmarker = 0;
1837 1.129 thorpej
1838 1.129 thorpej (*pr)("kqueue %p (restart=%d count=%u):\n", kq,
1839 1.129 thorpej !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
1840 1.129 thorpej (*pr)(" Queued knotes:\n");
1841 1.129 thorpej TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1842 1.129 thorpej if (kn->kn_status & KN_MARKER) {
1843 1.129 thorpej nmarker++;
1844 1.129 thorpej } else {
1845 1.129 thorpej count++;
1846 1.129 thorpej }
1847 1.129 thorpej (*pr)(" knote %p: kq=%p status=%s\n",
1848 1.129 thorpej kn, kn->kn_kq, KN_FMT(buf, kn));
1849 1.129 thorpej (*pr)(" id=0x%lx (%lu) filter=%d\n",
1850 1.129 thorpej (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
1851 1.129 thorpej if (kn->kn_kq != kq) {
1852 1.129 thorpej (*pr)(" !!! kn->kn_kq != kq\n");
1853 1.129 thorpej }
1854 1.129 thorpej }
1855 1.129 thorpej if (count != KQ_COUNT(kq)) {
1856 1.129 thorpej (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n",
1857 1.129 thorpej count, KQ_COUNT(kq));
1858 1.129 thorpej }
1859 1.129 thorpej }
1860 1.129 thorpej #endif /* DDB */
1861 1.129 thorpej
1862 1.129 thorpej #if defined(DEBUG)
1863 1.52 yamt static void
1864 1.94 christos kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1865 1.52 yamt {
1866 1.52 yamt const struct knote *kn;
1867 1.118 jdolecek u_int count;
1868 1.52 yamt int nmarker;
1869 1.94 christos char buf[128];
1870 1.52 yamt
1871 1.52 yamt KASSERT(mutex_owned(&kq->kq_lock));
1872 1.52 yamt
1873 1.52 yamt count = 0;
1874 1.52 yamt nmarker = 0;
1875 1.52 yamt TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1876 1.52 yamt if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1877 1.94 christos panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1878 1.94 christos func, line, kq, kn, KN_FMT(buf, kn));
1879 1.52 yamt }
1880 1.52 yamt if ((kn->kn_status & KN_MARKER) == 0) {
1881 1.52 yamt if (kn->kn_kq != kq) {
1882 1.94 christos panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1883 1.94 christos func, line, kq, kn, kn->kn_kq,
1884 1.94 christos KN_FMT(buf, kn));
1885 1.52 yamt }
1886 1.52 yamt if ((kn->kn_status & KN_ACTIVE) == 0) {
1887 1.94 christos panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1888 1.94 christos func, line, kq, kn, KN_FMT(buf, kn));
1889 1.52 yamt }
1890 1.52 yamt count++;
1891 1.118 jdolecek if (count > KQ_COUNT(kq)) {
1892 1.129 thorpej panic("%s,%zu: kq=%p kq->kq_count(%u) != "
1893 1.112 jdolecek "count(%d), nmarker=%d",
1894 1.118 jdolecek func, line, kq, KQ_COUNT(kq), count,
1895 1.112 jdolecek nmarker);
1896 1.52 yamt }
1897 1.52 yamt } else {
1898 1.52 yamt nmarker++;
1899 1.52 yamt }
1900 1.52 yamt }
1901 1.52 yamt }
1902 1.94 christos #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1903 1.52 yamt #else /* defined(DEBUG) */
1904 1.52 yamt #define kq_check(a) /* nothing */
1905 1.52 yamt #endif /* defined(DEBUG) */
1906 1.52 yamt
1907 1.118 jdolecek static void
1908 1.118 jdolecek kqueue_restart(file_t *fp)
1909 1.118 jdolecek {
1910 1.118 jdolecek struct kqueue *kq = fp->f_kqueue;
1911 1.118 jdolecek KASSERT(kq != NULL);
1912 1.118 jdolecek
1913 1.118 jdolecek mutex_spin_enter(&kq->kq_lock);
1914 1.118 jdolecek kq->kq_count |= KQ_RESTART;
1915 1.118 jdolecek cv_broadcast(&kq->kq_cv);
1916 1.118 jdolecek mutex_spin_exit(&kq->kq_lock);
1917 1.118 jdolecek }
1918 1.118 jdolecek
1919 1.3 jdolecek /*
1920 1.3 jdolecek * Scan through the list of events on fp (for a maximum of maxevents),
1921 1.3 jdolecek * returning the results in to ulistp. Timeout is determined by tsp; if
1922 1.3 jdolecek * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1923 1.3 jdolecek * as appropriate.
1924 1.3 jdolecek */
1925 1.1 lukem static int
1926 1.49 ad kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1927 1.49 ad const struct timespec *tsp, register_t *retval,
1928 1.49 ad const struct kevent_ops *keops, struct kevent *kevbuf,
1929 1.49 ad size_t kevcnt)
1930 1.1 lukem {
1931 1.3 jdolecek struct kqueue *kq;
1932 1.3 jdolecek struct kevent *kevp;
1933 1.62 christos struct timespec ats, sleepts;
1934 1.85 christos struct knote *kn, *marker, morker;
1935 1.24 cube size_t count, nkev, nevents;
1936 1.111 jdolecek int timeout, error, touch, rv, influx;
1937 1.49 ad filedesc_t *fdp;
1938 1.1 lukem
1939 1.49 ad fdp = curlwp->l_fd;
1940 1.82 matt kq = fp->f_kqueue;
1941 1.1 lukem count = maxevents;
1942 1.24 cube nkev = nevents = error = 0;
1943 1.49 ad if (count == 0) {
1944 1.49 ad *retval = 0;
1945 1.49 ad return 0;
1946 1.49 ad }
1947 1.1 lukem
1948 1.9 jdolecek if (tsp) { /* timeout supplied */
1949 1.63 christos ats = *tsp;
1950 1.62 christos if (inittimeleft(&ats, &sleepts) == -1) {
1951 1.49 ad *retval = maxevents;
1952 1.49 ad return EINVAL;
1953 1.1 lukem }
1954 1.62 christos timeout = tstohz(&ats);
1955 1.9 jdolecek if (timeout <= 0)
1956 1.29 kardel timeout = -1; /* do poll */
1957 1.1 lukem } else {
1958 1.9 jdolecek /* no timeout, wait forever */
1959 1.1 lukem timeout = 0;
1960 1.93 riastrad }
1961 1.1 lukem
1962 1.85 christos memset(&morker, 0, sizeof(morker));
1963 1.85 christos marker = &morker;
1964 1.129 thorpej marker->kn_kq = kq;
1965 1.49 ad marker->kn_status = KN_MARKER;
1966 1.49 ad mutex_spin_enter(&kq->kq_lock);
1967 1.3 jdolecek retry:
1968 1.49 ad kevp = kevbuf;
1969 1.118 jdolecek if (KQ_COUNT(kq) == 0) {
1970 1.49 ad if (timeout >= 0) {
1971 1.49 ad error = cv_timedwait_sig(&kq->kq_cv,
1972 1.49 ad &kq->kq_lock, timeout);
1973 1.49 ad if (error == 0) {
1974 1.118 jdolecek if (KQ_COUNT(kq) == 0 &&
1975 1.118 jdolecek (kq->kq_count & KQ_RESTART)) {
1976 1.118 jdolecek /* return to clear file reference */
1977 1.118 jdolecek error = ERESTART;
1978 1.118 jdolecek } else if (tsp == NULL || (timeout =
1979 1.118 jdolecek gettimeleft(&ats, &sleepts)) > 0) {
1980 1.49 ad goto retry;
1981 1.118 jdolecek }
1982 1.49 ad } else {
1983 1.49 ad /* don't restart after signals... */
1984 1.49 ad if (error == ERESTART)
1985 1.49 ad error = EINTR;
1986 1.49 ad if (error == EWOULDBLOCK)
1987 1.49 ad error = 0;
1988 1.49 ad }
1989 1.1 lukem }
1990 1.92 christos mutex_spin_exit(&kq->kq_lock);
1991 1.110 jdolecek goto done;
1992 1.110 jdolecek }
1993 1.110 jdolecek
1994 1.110 jdolecek /* mark end of knote list */
1995 1.110 jdolecek TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1996 1.111 jdolecek influx = 0;
1997 1.1 lukem
1998 1.110 jdolecek /*
1999 1.110 jdolecek * Acquire the fdp->fd_lock interlock to avoid races with
2000 1.110 jdolecek * file creation/destruction from other threads.
2001 1.110 jdolecek */
2002 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
2003 1.111 jdolecek relock:
2004 1.110 jdolecek mutex_enter(&fdp->fd_lock);
2005 1.110 jdolecek mutex_spin_enter(&kq->kq_lock);
2006 1.92 christos
2007 1.110 jdolecek while (count != 0) {
2008 1.129 thorpej /*
2009 1.129 thorpej * Get next knote. We are guaranteed this will never
2010 1.129 thorpej * be NULL because of the marker we inserted above.
2011 1.129 thorpej */
2012 1.129 thorpej kn = TAILQ_FIRST(&kq->kq_head);
2013 1.111 jdolecek
2014 1.129 thorpej bool kn_is_other_marker =
2015 1.129 thorpej (kn->kn_status & KN_MARKER) != 0 && kn != marker;
2016 1.129 thorpej bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
2017 1.129 thorpej bool kn_is_in_flux = kn_in_flux(kn);
2018 1.129 thorpej
2019 1.129 thorpej /*
2020 1.129 thorpej * If we found a marker that's not ours, or this knote
2021 1.129 thorpej * is in a state of flux, then wait for everything to
2022 1.129 thorpej * settle down and go around again.
2023 1.129 thorpej */
2024 1.129 thorpej if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
2025 1.111 jdolecek if (influx) {
2026 1.111 jdolecek influx = 0;
2027 1.111 jdolecek KQ_FLUX_WAKEUP(kq);
2028 1.111 jdolecek }
2029 1.111 jdolecek mutex_exit(&fdp->fd_lock);
2030 1.129 thorpej if (kn_is_other_marker || kn_is_in_flux) {
2031 1.129 thorpej KQ_FLUX_WAIT(kq);
2032 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
2033 1.129 thorpej } else {
2034 1.129 thorpej /*
2035 1.129 thorpej * Detaching but not in-flux? Someone is
2036 1.129 thorpej * actively trying to finish the job; just
2037 1.129 thorpej * go around and try again.
2038 1.129 thorpej */
2039 1.129 thorpej KASSERT(kn_is_detaching);
2040 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
2041 1.129 thorpej preempt_point();
2042 1.129 thorpej }
2043 1.111 jdolecek goto relock;
2044 1.111 jdolecek }
2045 1.111 jdolecek
2046 1.111 jdolecek TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2047 1.111 jdolecek if (kn == marker) {
2048 1.111 jdolecek /* it's our marker, stop */
2049 1.111 jdolecek KQ_FLUX_WAKEUP(kq);
2050 1.111 jdolecek if (count == maxevents) {
2051 1.110 jdolecek mutex_exit(&fdp->fd_lock);
2052 1.110 jdolecek goto retry;
2053 1.49 ad }
2054 1.111 jdolecek break;
2055 1.110 jdolecek }
2056 1.111 jdolecek KASSERT((kn->kn_status & KN_BUSY) == 0);
2057 1.111 jdolecek
2058 1.110 jdolecek kq_check(kq);
2059 1.115 jdolecek kn->kn_status &= ~KN_QUEUED;
2060 1.110 jdolecek kn->kn_status |= KN_BUSY;
2061 1.110 jdolecek kq_check(kq);
2062 1.110 jdolecek if (kn->kn_status & KN_DISABLED) {
2063 1.115 jdolecek kn->kn_status &= ~KN_BUSY;
2064 1.111 jdolecek kq->kq_count--;
2065 1.110 jdolecek /* don't want disabled events */
2066 1.110 jdolecek continue;
2067 1.110 jdolecek }
2068 1.110 jdolecek if ((kn->kn_flags & EV_ONESHOT) == 0) {
2069 1.110 jdolecek mutex_spin_exit(&kq->kq_lock);
2070 1.110 jdolecek KASSERT(mutex_owned(&fdp->fd_lock));
2071 1.122 thorpej rv = filter_event(kn, 0);
2072 1.110 jdolecek mutex_spin_enter(&kq->kq_lock);
2073 1.115 jdolecek /* Re-poll if note was re-enqueued. */
2074 1.115 jdolecek if ((kn->kn_status & KN_QUEUED) != 0) {
2075 1.115 jdolecek kn->kn_status &= ~KN_BUSY;
2076 1.115 jdolecek /* Re-enqueue raised kq_count, lower it again */
2077 1.115 jdolecek kq->kq_count--;
2078 1.115 jdolecek influx = 1;
2079 1.115 jdolecek continue;
2080 1.115 jdolecek }
2081 1.110 jdolecek if (rv == 0) {
2082 1.110 jdolecek /*
2083 1.129 thorpej * non-ONESHOT event that hasn't triggered
2084 1.129 thorpej * again, so it will remain de-queued.
2085 1.110 jdolecek */
2086 1.115 jdolecek kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2087 1.111 jdolecek kq->kq_count--;
2088 1.111 jdolecek influx = 1;
2089 1.110 jdolecek continue;
2090 1.49 ad }
2091 1.129 thorpej } else {
2092 1.129 thorpej /*
2093 1.129 thorpej * This ONESHOT note is going to be detached
2094 1.129 thorpej * below. Mark the knote as not long for this
2095 1.129 thorpej * world before we release the kq lock so that
2096 1.129 thorpej * no one else will put it in a state of flux.
2097 1.129 thorpej */
2098 1.129 thorpej KNOTE_WILLDETACH(kn);
2099 1.110 jdolecek }
2100 1.110 jdolecek KASSERT(kn->kn_fop != NULL);
2101 1.121 thorpej touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
2102 1.110 jdolecek kn->kn_fop->f_touch != NULL);
2103 1.110 jdolecek /* XXXAD should be got from f_event if !oneshot. */
2104 1.110 jdolecek if (touch) {
2105 1.122 thorpej filter_touch(kn, kevp, EVENT_PROCESS);
2106 1.110 jdolecek } else {
2107 1.110 jdolecek *kevp = kn->kn_kevent;
2108 1.110 jdolecek }
2109 1.110 jdolecek kevp++;
2110 1.110 jdolecek nkev++;
2111 1.111 jdolecek influx = 1;
2112 1.110 jdolecek if (kn->kn_flags & EV_ONESHOT) {
2113 1.110 jdolecek /* delete ONESHOT events after retrieval */
2114 1.115 jdolecek kn->kn_status &= ~KN_BUSY;
2115 1.111 jdolecek kq->kq_count--;
2116 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
2117 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) != 0 &&
2118 1.129 thorpej kn->kn_kevent.udata == curlwp);
2119 1.110 jdolecek mutex_spin_exit(&kq->kq_lock);
2120 1.110 jdolecek knote_detach(kn, fdp, true);
2121 1.110 jdolecek mutex_enter(&fdp->fd_lock);
2122 1.110 jdolecek mutex_spin_enter(&kq->kq_lock);
2123 1.110 jdolecek } else if (kn->kn_flags & EV_CLEAR) {
2124 1.110 jdolecek /* clear state after retrieval */
2125 1.110 jdolecek kn->kn_data = 0;
2126 1.110 jdolecek kn->kn_fflags = 0;
2127 1.110 jdolecek /*
2128 1.110 jdolecek * Manually clear knotes who weren't
2129 1.110 jdolecek * 'touch'ed.
2130 1.110 jdolecek */
2131 1.110 jdolecek if (touch == 0) {
2132 1.49 ad kn->kn_data = 0;
2133 1.49 ad kn->kn_fflags = 0;
2134 1.49 ad }
2135 1.115 jdolecek kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2136 1.111 jdolecek kq->kq_count--;
2137 1.110 jdolecek } else if (kn->kn_flags & EV_DISPATCH) {
2138 1.110 jdolecek kn->kn_status |= KN_DISABLED;
2139 1.115 jdolecek kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2140 1.111 jdolecek kq->kq_count--;
2141 1.110 jdolecek } else {
2142 1.110 jdolecek /* add event back on list */
2143 1.110 jdolecek kq_check(kq);
2144 1.115 jdolecek kn->kn_status |= KN_QUEUED;
2145 1.110 jdolecek kn->kn_status &= ~KN_BUSY;
2146 1.110 jdolecek TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2147 1.110 jdolecek kq_check(kq);
2148 1.110 jdolecek }
2149 1.111 jdolecek
2150 1.110 jdolecek if (nkev == kevcnt) {
2151 1.110 jdolecek /* do copyouts in kevcnt chunks */
2152 1.111 jdolecek influx = 0;
2153 1.111 jdolecek KQ_FLUX_WAKEUP(kq);
2154 1.110 jdolecek mutex_spin_exit(&kq->kq_lock);
2155 1.110 jdolecek mutex_exit(&fdp->fd_lock);
2156 1.110 jdolecek error = (*keops->keo_put_events)
2157 1.110 jdolecek (keops->keo_private,
2158 1.110 jdolecek kevbuf, ulistp, nevents, nkev);
2159 1.110 jdolecek mutex_enter(&fdp->fd_lock);
2160 1.110 jdolecek mutex_spin_enter(&kq->kq_lock);
2161 1.110 jdolecek nevents += nkev;
2162 1.110 jdolecek nkev = 0;
2163 1.110 jdolecek kevp = kevbuf;
2164 1.110 jdolecek }
2165 1.110 jdolecek count--;
2166 1.110 jdolecek if (error != 0 || count == 0) {
2167 1.110 jdolecek /* remove marker */
2168 1.110 jdolecek TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2169 1.110 jdolecek break;
2170 1.1 lukem }
2171 1.1 lukem }
2172 1.111 jdolecek KQ_FLUX_WAKEUP(kq);
2173 1.110 jdolecek mutex_spin_exit(&kq->kq_lock);
2174 1.110 jdolecek mutex_exit(&fdp->fd_lock);
2175 1.110 jdolecek
2176 1.110 jdolecek done:
2177 1.49 ad if (nkev != 0) {
2178 1.3 jdolecek /* copyout remaining events */
2179 1.24 cube error = (*keops->keo_put_events)(keops->keo_private,
2180 1.49 ad kevbuf, ulistp, nevents, nkev);
2181 1.49 ad }
2182 1.3 jdolecek *retval = maxevents - count;
2183 1.3 jdolecek
2184 1.49 ad return error;
2185 1.1 lukem }
2186 1.1 lukem
2187 1.1 lukem /*
2188 1.49 ad * fileops ioctl method for a kqueue descriptor.
2189 1.3 jdolecek *
2190 1.3 jdolecek * Two ioctls are currently supported. They both use struct kfilter_mapping:
2191 1.3 jdolecek * KFILTER_BYNAME find name for filter, and return result in
2192 1.3 jdolecek * name, which is of size len.
2193 1.3 jdolecek * KFILTER_BYFILTER find filter for name. len is ignored.
2194 1.3 jdolecek */
2195 1.1 lukem /*ARGSUSED*/
2196 1.1 lukem static int
2197 1.49 ad kqueue_ioctl(file_t *fp, u_long com, void *data)
2198 1.1 lukem {
2199 1.3 jdolecek struct kfilter_mapping *km;
2200 1.3 jdolecek const struct kfilter *kfilter;
2201 1.3 jdolecek char *name;
2202 1.3 jdolecek int error;
2203 1.3 jdolecek
2204 1.49 ad km = data;
2205 1.3 jdolecek error = 0;
2206 1.49 ad name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
2207 1.3 jdolecek
2208 1.3 jdolecek switch (com) {
2209 1.3 jdolecek case KFILTER_BYFILTER: /* convert filter -> name */
2210 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
2211 1.3 jdolecek kfilter = kfilter_byfilter(km->filter);
2212 1.49 ad if (kfilter != NULL) {
2213 1.49 ad strlcpy(name, kfilter->name, KFILTER_MAXNAME);
2214 1.49 ad rw_exit(&kqueue_filter_lock);
2215 1.49 ad error = copyoutstr(name, km->name, km->len, NULL);
2216 1.49 ad } else {
2217 1.49 ad rw_exit(&kqueue_filter_lock);
2218 1.3 jdolecek error = ENOENT;
2219 1.49 ad }
2220 1.3 jdolecek break;
2221 1.3 jdolecek
2222 1.3 jdolecek case KFILTER_BYNAME: /* convert name -> filter */
2223 1.3 jdolecek error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
2224 1.3 jdolecek if (error) {
2225 1.3 jdolecek break;
2226 1.3 jdolecek }
2227 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
2228 1.3 jdolecek kfilter = kfilter_byname(name);
2229 1.3 jdolecek if (kfilter != NULL)
2230 1.3 jdolecek km->filter = kfilter->filter;
2231 1.3 jdolecek else
2232 1.3 jdolecek error = ENOENT;
2233 1.49 ad rw_exit(&kqueue_filter_lock);
2234 1.3 jdolecek break;
2235 1.3 jdolecek
2236 1.3 jdolecek default:
2237 1.3 jdolecek error = ENOTTY;
2238 1.49 ad break;
2239 1.3 jdolecek
2240 1.3 jdolecek }
2241 1.49 ad kmem_free(name, KFILTER_MAXNAME);
2242 1.3 jdolecek return (error);
2243 1.3 jdolecek }
2244 1.3 jdolecek
2245 1.3 jdolecek /*
2246 1.49 ad * fileops fcntl method for a kqueue descriptor.
2247 1.3 jdolecek */
2248 1.3 jdolecek static int
2249 1.49 ad kqueue_fcntl(file_t *fp, u_int com, void *data)
2250 1.3 jdolecek {
2251 1.3 jdolecek
2252 1.1 lukem return (ENOTTY);
2253 1.1 lukem }
2254 1.1 lukem
2255 1.3 jdolecek /*
2256 1.49 ad * fileops poll method for a kqueue descriptor.
2257 1.3 jdolecek * Determine if kqueue has events pending.
2258 1.3 jdolecek */
2259 1.1 lukem static int
2260 1.49 ad kqueue_poll(file_t *fp, int events)
2261 1.1 lukem {
2262 1.3 jdolecek struct kqueue *kq;
2263 1.3 jdolecek int revents;
2264 1.3 jdolecek
2265 1.82 matt kq = fp->f_kqueue;
2266 1.49 ad
2267 1.3 jdolecek revents = 0;
2268 1.3 jdolecek if (events & (POLLIN | POLLRDNORM)) {
2269 1.49 ad mutex_spin_enter(&kq->kq_lock);
2270 1.118 jdolecek if (KQ_COUNT(kq) != 0) {
2271 1.3 jdolecek revents |= events & (POLLIN | POLLRDNORM);
2272 1.1 lukem } else {
2273 1.49 ad selrecord(curlwp, &kq->kq_sel);
2274 1.1 lukem }
2275 1.52 yamt kq_check(kq);
2276 1.49 ad mutex_spin_exit(&kq->kq_lock);
2277 1.1 lukem }
2278 1.49 ad
2279 1.49 ad return revents;
2280 1.1 lukem }
2281 1.1 lukem
2282 1.3 jdolecek /*
2283 1.49 ad * fileops stat method for a kqueue descriptor.
2284 1.3 jdolecek * Returns dummy info, with st_size being number of events pending.
2285 1.3 jdolecek */
2286 1.1 lukem static int
2287 1.49 ad kqueue_stat(file_t *fp, struct stat *st)
2288 1.1 lukem {
2289 1.49 ad struct kqueue *kq;
2290 1.49 ad
2291 1.82 matt kq = fp->f_kqueue;
2292 1.1 lukem
2293 1.49 ad memset(st, 0, sizeof(*st));
2294 1.118 jdolecek st->st_size = KQ_COUNT(kq);
2295 1.1 lukem st->st_blksize = sizeof(struct kevent);
2296 1.128 thorpej st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
2297 1.128 thorpej st->st_blocks = 1;
2298 1.128 thorpej st->st_uid = kauth_cred_geteuid(fp->f_cred);
2299 1.128 thorpej st->st_gid = kauth_cred_getegid(fp->f_cred);
2300 1.49 ad
2301 1.49 ad return 0;
2302 1.49 ad }
2303 1.49 ad
2304 1.49 ad static void
2305 1.49 ad kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
2306 1.49 ad {
2307 1.49 ad struct knote *kn;
2308 1.49 ad filedesc_t *fdp;
2309 1.49 ad
2310 1.49 ad fdp = kq->kq_fdp;
2311 1.49 ad
2312 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
2313 1.49 ad
2314 1.129 thorpej again:
2315 1.49 ad for (kn = SLIST_FIRST(list); kn != NULL;) {
2316 1.49 ad if (kq != kn->kn_kq) {
2317 1.49 ad kn = SLIST_NEXT(kn, kn_link);
2318 1.49 ad continue;
2319 1.49 ad }
2320 1.129 thorpej if (knote_detach_quiesce(kn)) {
2321 1.129 thorpej mutex_enter(&fdp->fd_lock);
2322 1.129 thorpej goto again;
2323 1.129 thorpej }
2324 1.49 ad knote_detach(kn, fdp, true);
2325 1.49 ad mutex_enter(&fdp->fd_lock);
2326 1.49 ad kn = SLIST_FIRST(list);
2327 1.49 ad }
2328 1.1 lukem }
2329 1.1 lukem
2330 1.3 jdolecek /*
2331 1.49 ad * fileops close method for a kqueue descriptor.
2332 1.3 jdolecek */
2333 1.1 lukem static int
2334 1.49 ad kqueue_close(file_t *fp)
2335 1.1 lukem {
2336 1.49 ad struct kqueue *kq;
2337 1.49 ad filedesc_t *fdp;
2338 1.49 ad fdfile_t *ff;
2339 1.49 ad int i;
2340 1.49 ad
2341 1.82 matt kq = fp->f_kqueue;
2342 1.82 matt fp->f_kqueue = NULL;
2343 1.79 christos fp->f_type = 0;
2344 1.49 ad fdp = curlwp->l_fd;
2345 1.1 lukem
2346 1.129 thorpej KASSERT(kq->kq_fdp == fdp);
2347 1.129 thorpej
2348 1.49 ad mutex_enter(&fdp->fd_lock);
2349 1.129 thorpej
2350 1.129 thorpej /*
2351 1.129 thorpej * We're doing to drop the fd_lock multiple times while
2352 1.129 thorpej * we detach knotes. During this time, attempts to register
2353 1.129 thorpej * knotes via the back door (e.g. knote_proc_fork_track())
2354 1.129 thorpej * need to fail, lest they sneak in to attach a knote after
2355 1.129 thorpej * we've already drained the list it's destined for.
2356 1.129 thorpej *
2357 1.129 thorpej * We must aquire kq_lock here to set KQ_CLOSING (to serialize
2358 1.129 thorpej * with other code paths that modify kq_count without holding
2359 1.129 thorpej * the fd_lock), but once this bit is set, it's only safe to
2360 1.129 thorpej * test it while holding the fd_lock, and holding kq_lock while
2361 1.129 thorpej * doing so is not necessary.
2362 1.129 thorpej */
2363 1.129 thorpej mutex_enter(&kq->kq_lock);
2364 1.129 thorpej kq->kq_count |= KQ_CLOSING;
2365 1.129 thorpej mutex_exit(&kq->kq_lock);
2366 1.129 thorpej
2367 1.49 ad for (i = 0; i <= fdp->fd_lastkqfile; i++) {
2368 1.65 ad if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
2369 1.49 ad continue;
2370 1.49 ad kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
2371 1.1 lukem }
2372 1.1 lukem if (fdp->fd_knhashmask != 0) {
2373 1.1 lukem for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
2374 1.49 ad kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
2375 1.1 lukem }
2376 1.1 lukem }
2377 1.129 thorpej
2378 1.49 ad mutex_exit(&fdp->fd_lock);
2379 1.49 ad
2380 1.129 thorpej #if defined(DEBUG)
2381 1.129 thorpej mutex_enter(&kq->kq_lock);
2382 1.129 thorpej kq_check(kq);
2383 1.129 thorpej mutex_exit(&kq->kq_lock);
2384 1.129 thorpej #endif /* DEBUG */
2385 1.129 thorpej KASSERT(TAILQ_EMPTY(&kq->kq_head));
2386 1.118 jdolecek KASSERT(KQ_COUNT(kq) == 0);
2387 1.49 ad mutex_destroy(&kq->kq_lock);
2388 1.49 ad cv_destroy(&kq->kq_cv);
2389 1.48 rmind seldestroy(&kq->kq_sel);
2390 1.49 ad kmem_free(kq, sizeof(*kq));
2391 1.1 lukem
2392 1.1 lukem return (0);
2393 1.1 lukem }
2394 1.1 lukem
2395 1.3 jdolecek /*
2396 1.3 jdolecek * struct fileops kqfilter method for a kqueue descriptor.
2397 1.3 jdolecek * Event triggered when monitored kqueue changes.
2398 1.3 jdolecek */
2399 1.3 jdolecek static int
2400 1.49 ad kqueue_kqfilter(file_t *fp, struct knote *kn)
2401 1.3 jdolecek {
2402 1.3 jdolecek struct kqueue *kq;
2403 1.49 ad
2404 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
2405 1.49 ad
2406 1.49 ad KASSERT(fp == kn->kn_obj);
2407 1.3 jdolecek
2408 1.3 jdolecek if (kn->kn_filter != EVFILT_READ)
2409 1.126 thorpej return EINVAL;
2410 1.49 ad
2411 1.3 jdolecek kn->kn_fop = &kqread_filtops;
2412 1.49 ad mutex_enter(&kq->kq_lock);
2413 1.109 thorpej selrecord_knote(&kq->kq_sel, kn);
2414 1.49 ad mutex_exit(&kq->kq_lock);
2415 1.49 ad
2416 1.49 ad return 0;
2417 1.3 jdolecek }
2418 1.3 jdolecek
2419 1.3 jdolecek
2420 1.3 jdolecek /*
2421 1.49 ad * Walk down a list of knotes, activating them if their event has
2422 1.49 ad * triggered. The caller's object lock (e.g. device driver lock)
2423 1.49 ad * must be held.
2424 1.1 lukem */
2425 1.1 lukem void
2426 1.1 lukem knote(struct klist *list, long hint)
2427 1.1 lukem {
2428 1.71 drochner struct knote *kn, *tmpkn;
2429 1.1 lukem
2430 1.71 drochner SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
2431 1.127 thorpej if (filter_event(kn, hint)) {
2432 1.49 ad knote_activate(kn);
2433 1.127 thorpej }
2434 1.49 ad }
2435 1.1 lukem }
2436 1.1 lukem
2437 1.1 lukem /*
2438 1.49 ad * Remove all knotes referencing a specified fd
2439 1.1 lukem */
2440 1.1 lukem void
2441 1.49 ad knote_fdclose(int fd)
2442 1.1 lukem {
2443 1.49 ad struct klist *list;
2444 1.1 lukem struct knote *kn;
2445 1.49 ad filedesc_t *fdp;
2446 1.1 lukem
2447 1.129 thorpej again:
2448 1.49 ad fdp = curlwp->l_fd;
2449 1.106 riastrad mutex_enter(&fdp->fd_lock);
2450 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
2451 1.1 lukem while ((kn = SLIST_FIRST(list)) != NULL) {
2452 1.129 thorpej if (knote_detach_quiesce(kn)) {
2453 1.129 thorpej goto again;
2454 1.129 thorpej }
2455 1.49 ad knote_detach(kn, fdp, true);
2456 1.49 ad mutex_enter(&fdp->fd_lock);
2457 1.1 lukem }
2458 1.49 ad mutex_exit(&fdp->fd_lock);
2459 1.1 lukem }
2460 1.1 lukem
2461 1.1 lukem /*
2462 1.49 ad * Drop knote. Called with fdp->fd_lock held, and will drop before
2463 1.49 ad * returning.
2464 1.3 jdolecek */
2465 1.1 lukem static void
2466 1.49 ad knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
2467 1.1 lukem {
2468 1.49 ad struct klist *list;
2469 1.53 ad struct kqueue *kq;
2470 1.53 ad
2471 1.53 ad kq = kn->kn_kq;
2472 1.1 lukem
2473 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
2474 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
2475 1.129 thorpej KASSERT(kn->kn_fop != NULL);
2476 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
2477 1.3 jdolecek
2478 1.53 ad /* Remove from monitored object. */
2479 1.49 ad if (dofop) {
2480 1.122 thorpej filter_detach(kn);
2481 1.1 lukem }
2482 1.3 jdolecek
2483 1.53 ad /* Remove from descriptor table. */
2484 1.121 thorpej if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2485 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
2486 1.1 lukem else
2487 1.1 lukem list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2488 1.1 lukem
2489 1.1 lukem SLIST_REMOVE(list, kn, knote, kn_link);
2490 1.53 ad
2491 1.53 ad /* Remove from kqueue. */
2492 1.85 christos again:
2493 1.53 ad mutex_spin_enter(&kq->kq_lock);
2494 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
2495 1.53 ad if ((kn->kn_status & KN_QUEUED) != 0) {
2496 1.53 ad kq_check(kq);
2497 1.129 thorpej KASSERT(KQ_COUNT(kq) != 0);
2498 1.85 christos kq->kq_count--;
2499 1.53 ad TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2500 1.53 ad kn->kn_status &= ~KN_QUEUED;
2501 1.53 ad kq_check(kq);
2502 1.85 christos } else if (kn->kn_status & KN_BUSY) {
2503 1.85 christos mutex_spin_exit(&kq->kq_lock);
2504 1.85 christos goto again;
2505 1.53 ad }
2506 1.53 ad mutex_spin_exit(&kq->kq_lock);
2507 1.53 ad
2508 1.49 ad mutex_exit(&fdp->fd_lock);
2509 1.121 thorpej if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2510 1.49 ad fd_putfile(kn->kn_id);
2511 1.49 ad atomic_dec_uint(&kn->kn_kfilter->refcnt);
2512 1.49 ad kmem_free(kn, sizeof(*kn));
2513 1.1 lukem }
2514 1.1 lukem
2515 1.3 jdolecek /*
2516 1.3 jdolecek * Queue new event for knote.
2517 1.3 jdolecek */
2518 1.1 lukem static void
2519 1.1 lukem knote_enqueue(struct knote *kn)
2520 1.1 lukem {
2521 1.49 ad struct kqueue *kq;
2522 1.49 ad
2523 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
2524 1.1 lukem
2525 1.3 jdolecek kq = kn->kn_kq;
2526 1.1 lukem
2527 1.49 ad mutex_spin_enter(&kq->kq_lock);
2528 1.129 thorpej if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2529 1.129 thorpej /* Don't bother enqueueing a dying knote. */
2530 1.129 thorpej goto out;
2531 1.129 thorpej }
2532 1.49 ad if ((kn->kn_status & KN_DISABLED) != 0) {
2533 1.49 ad kn->kn_status &= ~KN_DISABLED;
2534 1.49 ad }
2535 1.49 ad if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
2536 1.52 yamt kq_check(kq);
2537 1.85 christos kn->kn_status |= KN_QUEUED;
2538 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2539 1.129 thorpej KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2540 1.49 ad kq->kq_count++;
2541 1.52 yamt kq_check(kq);
2542 1.49 ad cv_broadcast(&kq->kq_cv);
2543 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2544 1.49 ad }
2545 1.129 thorpej out:
2546 1.49 ad mutex_spin_exit(&kq->kq_lock);
2547 1.1 lukem }
2548 1.49 ad /*
2549 1.49 ad * Queue new event for knote.
2550 1.49 ad */
2551 1.49 ad static void
2552 1.49 ad knote_activate(struct knote *kn)
2553 1.49 ad {
2554 1.49 ad struct kqueue *kq;
2555 1.49 ad
2556 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
2557 1.1 lukem
2558 1.3 jdolecek kq = kn->kn_kq;
2559 1.12 pk
2560 1.49 ad mutex_spin_enter(&kq->kq_lock);
2561 1.129 thorpej if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2562 1.129 thorpej /* Don't bother enqueueing a dying knote. */
2563 1.129 thorpej goto out;
2564 1.129 thorpej }
2565 1.49 ad kn->kn_status |= KN_ACTIVE;
2566 1.49 ad if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
2567 1.52 yamt kq_check(kq);
2568 1.85 christos kn->kn_status |= KN_QUEUED;
2569 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2570 1.129 thorpej KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2571 1.49 ad kq->kq_count++;
2572 1.52 yamt kq_check(kq);
2573 1.49 ad cv_broadcast(&kq->kq_cv);
2574 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2575 1.49 ad }
2576 1.129 thorpej out:
2577 1.49 ad mutex_spin_exit(&kq->kq_lock);
2578 1.1 lukem }
2579