kern_event.c revision 1.131 1 1.131 thorpej /* $NetBSD: kern_event.c,v 1.131 2021/10/11 01:07:36 thorpej Exp $ */
2 1.49 ad
3 1.49 ad /*-
4 1.129 thorpej * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
5 1.49 ad * All rights reserved.
6 1.49 ad *
7 1.64 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.64 ad * by Andrew Doran.
9 1.64 ad *
10 1.49 ad * Redistribution and use in source and binary forms, with or without
11 1.49 ad * modification, are permitted provided that the following conditions
12 1.49 ad * are met:
13 1.49 ad * 1. Redistributions of source code must retain the above copyright
14 1.49 ad * notice, this list of conditions and the following disclaimer.
15 1.49 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.49 ad * notice, this list of conditions and the following disclaimer in the
17 1.49 ad * documentation and/or other materials provided with the distribution.
18 1.49 ad *
19 1.49 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.49 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.49 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.49 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.49 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.49 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.49 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.49 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.49 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.49 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.49 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.49 ad */
31 1.28 kardel
32 1.1 lukem /*-
33 1.1 lukem * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 1.108 christos * Copyright (c) 2009 Apple, Inc
35 1.1 lukem * All rights reserved.
36 1.1 lukem *
37 1.1 lukem * Redistribution and use in source and binary forms, with or without
38 1.1 lukem * modification, are permitted provided that the following conditions
39 1.1 lukem * are met:
40 1.1 lukem * 1. Redistributions of source code must retain the above copyright
41 1.1 lukem * notice, this list of conditions and the following disclaimer.
42 1.1 lukem * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 lukem * notice, this list of conditions and the following disclaimer in the
44 1.1 lukem * documentation and/or other materials provided with the distribution.
45 1.1 lukem *
46 1.1 lukem * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 1.1 lukem * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 1.1 lukem * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 1.1 lukem * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 1.1 lukem * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 1.1 lukem * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 1.1 lukem * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 1.1 lukem * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 1.1 lukem * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 1.1 lukem * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 1.1 lukem * SUCH DAMAGE.
57 1.1 lukem *
58 1.49 ad * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59 1.1 lukem */
60 1.14 jdolecek
61 1.130 thorpej #ifdef _KERNEL_OPT
62 1.129 thorpej #include "opt_ddb.h"
63 1.130 thorpej #endif /* _KERNEL_OPT */
64 1.129 thorpej
65 1.14 jdolecek #include <sys/cdefs.h>
66 1.131 thorpej __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.131 2021/10/11 01:07:36 thorpej Exp $");
67 1.1 lukem
68 1.1 lukem #include <sys/param.h>
69 1.1 lukem #include <sys/systm.h>
70 1.1 lukem #include <sys/kernel.h>
71 1.86 christos #include <sys/wait.h>
72 1.1 lukem #include <sys/proc.h>
73 1.1 lukem #include <sys/file.h>
74 1.3 jdolecek #include <sys/select.h>
75 1.1 lukem #include <sys/queue.h>
76 1.1 lukem #include <sys/event.h>
77 1.1 lukem #include <sys/eventvar.h>
78 1.1 lukem #include <sys/poll.h>
79 1.49 ad #include <sys/kmem.h>
80 1.1 lukem #include <sys/stat.h>
81 1.3 jdolecek #include <sys/filedesc.h>
82 1.3 jdolecek #include <sys/syscallargs.h>
83 1.27 elad #include <sys/kauth.h>
84 1.40 ad #include <sys/conf.h>
85 1.49 ad #include <sys/atomic.h>
86 1.1 lukem
87 1.49 ad static int kqueue_scan(file_t *, size_t, struct kevent *,
88 1.49 ad const struct timespec *, register_t *,
89 1.49 ad const struct kevent_ops *, struct kevent *,
90 1.49 ad size_t);
91 1.49 ad static int kqueue_ioctl(file_t *, u_long, void *);
92 1.49 ad static int kqueue_fcntl(file_t *, u_int, void *);
93 1.49 ad static int kqueue_poll(file_t *, int);
94 1.49 ad static int kqueue_kqfilter(file_t *, struct knote *);
95 1.49 ad static int kqueue_stat(file_t *, struct stat *);
96 1.49 ad static int kqueue_close(file_t *);
97 1.118 jdolecek static void kqueue_restart(file_t *);
98 1.49 ad static int kqueue_register(struct kqueue *, struct kevent *);
99 1.49 ad static void kqueue_doclose(struct kqueue *, struct klist *, int);
100 1.49 ad
101 1.49 ad static void knote_detach(struct knote *, filedesc_t *fdp, bool);
102 1.49 ad static void knote_enqueue(struct knote *);
103 1.49 ad static void knote_activate(struct knote *);
104 1.49 ad
105 1.49 ad static void filt_kqdetach(struct knote *);
106 1.49 ad static int filt_kqueue(struct knote *, long hint);
107 1.49 ad static int filt_procattach(struct knote *);
108 1.49 ad static void filt_procdetach(struct knote *);
109 1.49 ad static int filt_proc(struct knote *, long hint);
110 1.49 ad static int filt_fileattach(struct knote *);
111 1.49 ad static void filt_timerexpire(void *x);
112 1.49 ad static int filt_timerattach(struct knote *);
113 1.49 ad static void filt_timerdetach(struct knote *);
114 1.49 ad static int filt_timer(struct knote *, long hint);
115 1.108 christos static int filt_userattach(struct knote *);
116 1.108 christos static void filt_userdetach(struct knote *);
117 1.108 christos static int filt_user(struct knote *, long hint);
118 1.108 christos static void filt_usertouch(struct knote *, struct kevent *, long type);
119 1.1 lukem
120 1.21 christos static const struct fileops kqueueops = {
121 1.101 christos .fo_name = "kqueue",
122 1.64 ad .fo_read = (void *)enxio,
123 1.64 ad .fo_write = (void *)enxio,
124 1.64 ad .fo_ioctl = kqueue_ioctl,
125 1.64 ad .fo_fcntl = kqueue_fcntl,
126 1.64 ad .fo_poll = kqueue_poll,
127 1.64 ad .fo_stat = kqueue_stat,
128 1.64 ad .fo_close = kqueue_close,
129 1.64 ad .fo_kqfilter = kqueue_kqfilter,
130 1.118 jdolecek .fo_restart = kqueue_restart,
131 1.1 lukem };
132 1.1 lukem
133 1.96 maya static const struct filterops kqread_filtops = {
134 1.123 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
135 1.96 maya .f_attach = NULL,
136 1.96 maya .f_detach = filt_kqdetach,
137 1.96 maya .f_event = filt_kqueue,
138 1.96 maya };
139 1.96 maya
140 1.96 maya static const struct filterops proc_filtops = {
141 1.129 thorpej .f_flags = FILTEROP_MPSAFE,
142 1.96 maya .f_attach = filt_procattach,
143 1.96 maya .f_detach = filt_procdetach,
144 1.96 maya .f_event = filt_proc,
145 1.96 maya };
146 1.96 maya
147 1.122 thorpej /*
148 1.122 thorpej * file_filtops is not marked MPSAFE because it's going to call
149 1.122 thorpej * fileops::fo_kqfilter(), which might not be. That function,
150 1.122 thorpej * however, will override the knote's filterops, and thus will
151 1.122 thorpej * inherit the MPSAFE-ness of the back-end at that time.
152 1.122 thorpej */
153 1.96 maya static const struct filterops file_filtops = {
154 1.121 thorpej .f_flags = FILTEROP_ISFD,
155 1.96 maya .f_attach = filt_fileattach,
156 1.96 maya .f_detach = NULL,
157 1.96 maya .f_event = NULL,
158 1.96 maya };
159 1.96 maya
160 1.96 maya static const struct filterops timer_filtops = {
161 1.125 thorpej .f_flags = FILTEROP_MPSAFE,
162 1.96 maya .f_attach = filt_timerattach,
163 1.96 maya .f_detach = filt_timerdetach,
164 1.96 maya .f_event = filt_timer,
165 1.96 maya };
166 1.1 lukem
167 1.108 christos static const struct filterops user_filtops = {
168 1.123 thorpej .f_flags = FILTEROP_MPSAFE,
169 1.108 christos .f_attach = filt_userattach,
170 1.108 christos .f_detach = filt_userdetach,
171 1.108 christos .f_event = filt_user,
172 1.108 christos .f_touch = filt_usertouch,
173 1.108 christos };
174 1.108 christos
175 1.49 ad static u_int kq_ncallouts = 0;
176 1.8 jdolecek static int kq_calloutmax = (4 * 1024);
177 1.7 thorpej
178 1.1 lukem #define KN_HASHSIZE 64 /* XXX should be tunable */
179 1.3 jdolecek #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
180 1.1 lukem
181 1.124 thorpej extern const struct filterops fs_filtops; /* vfs_syscalls.c */
182 1.124 thorpej extern const struct filterops sig_filtops; /* kern_sig.c */
183 1.1 lukem
184 1.1 lukem /*
185 1.1 lukem * Table for for all system-defined filters.
186 1.3 jdolecek * These should be listed in the numeric order of the EVFILT_* defines.
187 1.3 jdolecek * If filtops is NULL, the filter isn't implemented in NetBSD.
188 1.3 jdolecek * End of list is when name is NULL.
189 1.93 riastrad *
190 1.49 ad * Note that 'refcnt' is meaningless for built-in filters.
191 1.1 lukem */
192 1.3 jdolecek struct kfilter {
193 1.49 ad const char *name; /* name of filter */
194 1.49 ad uint32_t filter; /* id of filter */
195 1.49 ad unsigned refcnt; /* reference count */
196 1.3 jdolecek const struct filterops *filtops;/* operations for filter */
197 1.49 ad size_t namelen; /* length of name string */
198 1.3 jdolecek };
199 1.3 jdolecek
200 1.49 ad /* System defined filters */
201 1.49 ad static struct kfilter sys_kfilters[] = {
202 1.49 ad { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
203 1.49 ad { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
204 1.49 ad { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
205 1.49 ad { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
206 1.49 ad { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
207 1.49 ad { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
208 1.49 ad { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
209 1.102 christos { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
210 1.108 christos { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
211 1.49 ad { NULL, 0, 0, NULL, 0 },
212 1.1 lukem };
213 1.1 lukem
214 1.49 ad /* User defined kfilters */
215 1.3 jdolecek static struct kfilter *user_kfilters; /* array */
216 1.3 jdolecek static int user_kfilterc; /* current offset */
217 1.3 jdolecek static int user_kfiltermaxc; /* max size so far */
218 1.49 ad static size_t user_kfiltersz; /* size of allocated memory */
219 1.49 ad
220 1.95 riastrad /*
221 1.95 riastrad * Global Locks.
222 1.95 riastrad *
223 1.95 riastrad * Lock order:
224 1.95 riastrad *
225 1.95 riastrad * kqueue_filter_lock
226 1.95 riastrad * -> kn_kq->kq_fdp->fd_lock
227 1.125 thorpej * -> object lock (e.g., device driver lock, &c.)
228 1.95 riastrad * -> kn_kq->kq_lock
229 1.95 riastrad *
230 1.95 riastrad * Locking rules:
231 1.95 riastrad *
232 1.95 riastrad * f_attach: fdp->fd_lock, KERNEL_LOCK
233 1.95 riastrad * f_detach: fdp->fd_lock, KERNEL_LOCK
234 1.95 riastrad * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
235 1.95 riastrad * f_event via knote: whatever caller guarantees
236 1.95 riastrad * Typically, f_event(NOTE_SUBMIT) via knote: object lock
237 1.95 riastrad * f_event(!NOTE_SUBMIT) via knote: nothing,
238 1.95 riastrad * acquires/releases object lock inside.
239 1.129 thorpej *
240 1.129 thorpej * Locking rules when detaching knotes:
241 1.129 thorpej *
242 1.129 thorpej * There are some situations where knote submission may require dropping
243 1.129 thorpej * locks (see knote_proc_fork()). In order to support this, it's possible
244 1.129 thorpej * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to
245 1.129 thorpej * be detached while it remains in-flux. Because it will not be detached,
246 1.129 thorpej * locks can be dropped so e.g. memory can be allocated, locks on other
247 1.129 thorpej * data structures can be acquired, etc. During this time, any attempt to
248 1.129 thorpej * detach an in-flux knote must wait until the knote is no longer in-flux.
249 1.129 thorpej * When this happens, the knote is marked for death (KN_WILLDETACH) and the
250 1.129 thorpej * LWP who gets to finish the detach operation is recorded in the knote's
251 1.129 thorpej * 'udata' field (which is no longer required for its original purpose once
252 1.129 thorpej * a knote is so marked). Code paths that lead to knote_detach() must ensure
253 1.129 thorpej * that their LWP is the one tasked with its final demise after waiting for
254 1.129 thorpej * the in-flux status of the knote to clear. Note that once a knote is
255 1.129 thorpej * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
256 1.129 thorpej *
257 1.129 thorpej * Once the special circumstances have been handled, the locks are re-
258 1.129 thorpej * acquired in the proper order (object lock -> kq_lock), the knote taken
259 1.129 thorpej * out of flux, and any waiters are notified. Because waiters must have
260 1.129 thorpej * also dropped *their* locks in order to safely block, they must re-
261 1.129 thorpej * validate all of their assumptions; see knote_detach_quiesce(). See also
262 1.129 thorpej * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
263 1.129 thorpej * cases.
264 1.129 thorpej *
265 1.129 thorpej * When kqueue_scan() encounters an in-flux knote, the situation is
266 1.129 thorpej * treated like another LWP's list marker.
267 1.129 thorpej *
268 1.129 thorpej * LISTEN WELL: It is important to not hold knotes in flux for an
269 1.129 thorpej * extended period of time! In-flux knotes effectively block any
270 1.129 thorpej * progress of the kqueue_scan() operation. Any code paths that place
271 1.129 thorpej * knotes in-flux should be careful to not block for indefinite periods
272 1.129 thorpej * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
273 1.129 thorpej * KM_SLEEP is not).
274 1.95 riastrad */
275 1.49 ad static krwlock_t kqueue_filter_lock; /* lock on filter lists */
276 1.125 thorpej static kmutex_t kqueue_timer_lock; /* for EVFILT_TIMER */
277 1.49 ad
278 1.129 thorpej #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock)
279 1.129 thorpej #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
280 1.129 thorpej
281 1.129 thorpej static inline bool
282 1.129 thorpej kn_in_flux(struct knote *kn)
283 1.129 thorpej {
284 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
285 1.129 thorpej return kn->kn_influx != 0;
286 1.129 thorpej }
287 1.129 thorpej
288 1.129 thorpej static inline bool
289 1.129 thorpej kn_enter_flux(struct knote *kn)
290 1.129 thorpej {
291 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
292 1.129 thorpej
293 1.129 thorpej if (kn->kn_status & KN_WILLDETACH) {
294 1.129 thorpej return false;
295 1.129 thorpej }
296 1.129 thorpej
297 1.129 thorpej KASSERT(kn->kn_influx < UINT_MAX);
298 1.129 thorpej kn->kn_influx++;
299 1.129 thorpej
300 1.129 thorpej return true;
301 1.129 thorpej }
302 1.129 thorpej
303 1.129 thorpej static inline bool
304 1.129 thorpej kn_leave_flux(struct knote *kn)
305 1.129 thorpej {
306 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
307 1.129 thorpej KASSERT(kn->kn_influx > 0);
308 1.129 thorpej kn->kn_influx--;
309 1.129 thorpej return kn->kn_influx == 0;
310 1.129 thorpej }
311 1.129 thorpej
312 1.129 thorpej static void
313 1.129 thorpej kn_wait_flux(struct knote *kn, bool can_loop)
314 1.129 thorpej {
315 1.129 thorpej bool loop;
316 1.129 thorpej
317 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
318 1.129 thorpej
319 1.129 thorpej /*
320 1.129 thorpej * It may not be safe for us to touch the knote again after
321 1.129 thorpej * dropping the kq_lock. The caller has let us know in
322 1.129 thorpej * 'can_loop'.
323 1.129 thorpej */
324 1.129 thorpej for (loop = true; loop && kn->kn_influx != 0; loop = can_loop) {
325 1.129 thorpej KQ_FLUX_WAIT(kn->kn_kq);
326 1.129 thorpej }
327 1.129 thorpej }
328 1.129 thorpej
329 1.129 thorpej #define KNOTE_WILLDETACH(kn) \
330 1.129 thorpej do { \
331 1.129 thorpej (kn)->kn_status |= KN_WILLDETACH; \
332 1.129 thorpej (kn)->kn_kevent.udata = curlwp; \
333 1.129 thorpej } while (/*CONSTCOND*/0)
334 1.129 thorpej
335 1.129 thorpej /*
336 1.129 thorpej * Wait until the specified knote is in a quiescent state and
337 1.129 thorpej * safe to detach. Returns true if we potentially blocked (and
338 1.129 thorpej * thus dropped our locks).
339 1.129 thorpej */
340 1.129 thorpej static bool
341 1.129 thorpej knote_detach_quiesce(struct knote *kn)
342 1.129 thorpej {
343 1.129 thorpej struct kqueue *kq = kn->kn_kq;
344 1.129 thorpej filedesc_t *fdp = kq->kq_fdp;
345 1.129 thorpej
346 1.129 thorpej KASSERT(mutex_owned(&fdp->fd_lock));
347 1.129 thorpej
348 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
349 1.129 thorpej /*
350 1.129 thorpej * There are two cases where we might see KN_WILLDETACH here:
351 1.129 thorpej *
352 1.129 thorpej * 1. Someone else has already started detaching the knote but
353 1.129 thorpej * had to wait for it to settle first.
354 1.129 thorpej *
355 1.129 thorpej * 2. We had to wait for it to settle, and had to come back
356 1.129 thorpej * around after re-acquiring the locks.
357 1.129 thorpej *
358 1.129 thorpej * When KN_WILLDETACH is set, we also set the LWP that claimed
359 1.129 thorpej * the prize of finishing the detach in the 'udata' field of the
360 1.129 thorpej * knote (which will never be used again for its usual purpose
361 1.129 thorpej * once the note is in this state). If it doesn't point to us,
362 1.129 thorpej * we must drop the locks and let them in to finish the job.
363 1.129 thorpej *
364 1.129 thorpej * Otherwise, once we have claimed the knote for ourselves, we
365 1.129 thorpej * can finish waiting for it to settle. The is the only scenario
366 1.129 thorpej * where touching a detaching knote is safe after dropping the
367 1.129 thorpej * locks.
368 1.129 thorpej */
369 1.129 thorpej if ((kn->kn_status & KN_WILLDETACH) != 0 &&
370 1.129 thorpej kn->kn_kevent.udata != curlwp) {
371 1.129 thorpej /*
372 1.129 thorpej * N.B. it is NOT safe for us to touch the knote again
373 1.129 thorpej * after dropping the locks here. The caller must go
374 1.129 thorpej * back around and re-validate everything. However, if
375 1.129 thorpej * the knote is in-flux, we want to block to minimize
376 1.129 thorpej * busy-looping.
377 1.129 thorpej */
378 1.129 thorpej mutex_exit(&fdp->fd_lock);
379 1.129 thorpej if (kn_in_flux(kn)) {
380 1.129 thorpej kn_wait_flux(kn, false);
381 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
382 1.129 thorpej return true;
383 1.129 thorpej }
384 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
385 1.129 thorpej preempt_point();
386 1.129 thorpej return true;
387 1.129 thorpej }
388 1.129 thorpej /*
389 1.129 thorpej * If we get here, we know that we will be claiming the
390 1.129 thorpej * detach responsibilies, or that we already have and
391 1.129 thorpej * this is the second attempt after re-validation.
392 1.129 thorpej */
393 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
394 1.129 thorpej kn->kn_kevent.udata == curlwp);
395 1.129 thorpej /*
396 1.129 thorpej * Similarly, if we get here, either we are just claiming it
397 1.129 thorpej * and may have to wait for it to settle, or if this is the
398 1.129 thorpej * second attempt after re-validation that no other code paths
399 1.129 thorpej * have put it in-flux.
400 1.129 thorpej */
401 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
402 1.129 thorpej kn_in_flux(kn) == false);
403 1.129 thorpej KNOTE_WILLDETACH(kn);
404 1.129 thorpej if (kn_in_flux(kn)) {
405 1.129 thorpej mutex_exit(&fdp->fd_lock);
406 1.129 thorpej kn_wait_flux(kn, true);
407 1.129 thorpej /*
408 1.129 thorpej * It is safe for us to touch the knote again after
409 1.129 thorpej * dropping the locks, but the caller must still
410 1.129 thorpej * re-validate everything because other aspects of
411 1.129 thorpej * the environment may have changed while we blocked.
412 1.129 thorpej */
413 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
414 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
415 1.129 thorpej return true;
416 1.129 thorpej }
417 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
418 1.129 thorpej
419 1.129 thorpej return false;
420 1.129 thorpej }
421 1.129 thorpej
422 1.122 thorpej static int
423 1.122 thorpej filter_attach(struct knote *kn)
424 1.122 thorpej {
425 1.122 thorpej int rv;
426 1.122 thorpej
427 1.122 thorpej KASSERT(kn->kn_fop != NULL);
428 1.122 thorpej KASSERT(kn->kn_fop->f_attach != NULL);
429 1.122 thorpej
430 1.122 thorpej /*
431 1.122 thorpej * N.B. that kn->kn_fop may change as the result of calling
432 1.122 thorpej * f_attach().
433 1.122 thorpej */
434 1.122 thorpej if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
435 1.122 thorpej rv = kn->kn_fop->f_attach(kn);
436 1.122 thorpej } else {
437 1.122 thorpej KERNEL_LOCK(1, NULL);
438 1.122 thorpej rv = kn->kn_fop->f_attach(kn);
439 1.122 thorpej KERNEL_UNLOCK_ONE(NULL);
440 1.122 thorpej }
441 1.122 thorpej
442 1.122 thorpej return rv;
443 1.122 thorpej }
444 1.122 thorpej
445 1.122 thorpej static void
446 1.122 thorpej filter_detach(struct knote *kn)
447 1.122 thorpej {
448 1.122 thorpej KASSERT(kn->kn_fop != NULL);
449 1.122 thorpej KASSERT(kn->kn_fop->f_detach != NULL);
450 1.122 thorpej
451 1.122 thorpej if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
452 1.122 thorpej kn->kn_fop->f_detach(kn);
453 1.122 thorpej } else {
454 1.122 thorpej KERNEL_LOCK(1, NULL);
455 1.122 thorpej kn->kn_fop->f_detach(kn);
456 1.122 thorpej KERNEL_UNLOCK_ONE(NULL);
457 1.122 thorpej }
458 1.122 thorpej }
459 1.122 thorpej
460 1.122 thorpej static int
461 1.122 thorpej filter_event(struct knote *kn, long hint)
462 1.122 thorpej {
463 1.122 thorpej int rv;
464 1.122 thorpej
465 1.122 thorpej KASSERT(kn->kn_fop != NULL);
466 1.122 thorpej KASSERT(kn->kn_fop->f_event != NULL);
467 1.122 thorpej
468 1.122 thorpej if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
469 1.122 thorpej rv = kn->kn_fop->f_event(kn, hint);
470 1.122 thorpej } else {
471 1.122 thorpej KERNEL_LOCK(1, NULL);
472 1.122 thorpej rv = kn->kn_fop->f_event(kn, hint);
473 1.122 thorpej KERNEL_UNLOCK_ONE(NULL);
474 1.122 thorpej }
475 1.122 thorpej
476 1.122 thorpej return rv;
477 1.122 thorpej }
478 1.122 thorpej
479 1.122 thorpej static void
480 1.122 thorpej filter_touch(struct knote *kn, struct kevent *kev, long type)
481 1.122 thorpej {
482 1.122 thorpej kn->kn_fop->f_touch(kn, kev, type);
483 1.122 thorpej }
484 1.122 thorpej
485 1.66 elad static kauth_listener_t kqueue_listener;
486 1.66 elad
487 1.66 elad static int
488 1.66 elad kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
489 1.66 elad void *arg0, void *arg1, void *arg2, void *arg3)
490 1.66 elad {
491 1.66 elad struct proc *p;
492 1.66 elad int result;
493 1.66 elad
494 1.66 elad result = KAUTH_RESULT_DEFER;
495 1.66 elad p = arg0;
496 1.66 elad
497 1.66 elad if (action != KAUTH_PROCESS_KEVENT_FILTER)
498 1.66 elad return result;
499 1.66 elad
500 1.66 elad if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
501 1.66 elad ISSET(p->p_flag, PK_SUGID)))
502 1.66 elad return result;
503 1.66 elad
504 1.66 elad result = KAUTH_RESULT_ALLOW;
505 1.66 elad
506 1.66 elad return result;
507 1.66 elad }
508 1.66 elad
509 1.49 ad /*
510 1.49 ad * Initialize the kqueue subsystem.
511 1.49 ad */
512 1.49 ad void
513 1.49 ad kqueue_init(void)
514 1.49 ad {
515 1.49 ad
516 1.49 ad rw_init(&kqueue_filter_lock);
517 1.125 thorpej mutex_init(&kqueue_timer_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK);
518 1.66 elad
519 1.66 elad kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
520 1.66 elad kqueue_listener_cb, NULL);
521 1.49 ad }
522 1.3 jdolecek
523 1.3 jdolecek /*
524 1.3 jdolecek * Find kfilter entry by name, or NULL if not found.
525 1.3 jdolecek */
526 1.49 ad static struct kfilter *
527 1.3 jdolecek kfilter_byname_sys(const char *name)
528 1.3 jdolecek {
529 1.3 jdolecek int i;
530 1.3 jdolecek
531 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
532 1.49 ad
533 1.3 jdolecek for (i = 0; sys_kfilters[i].name != NULL; i++) {
534 1.3 jdolecek if (strcmp(name, sys_kfilters[i].name) == 0)
535 1.49 ad return &sys_kfilters[i];
536 1.3 jdolecek }
537 1.49 ad return NULL;
538 1.3 jdolecek }
539 1.3 jdolecek
540 1.3 jdolecek static struct kfilter *
541 1.3 jdolecek kfilter_byname_user(const char *name)
542 1.3 jdolecek {
543 1.3 jdolecek int i;
544 1.3 jdolecek
545 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
546 1.49 ad
547 1.31 seanb /* user filter slots have a NULL name if previously deregistered */
548 1.31 seanb for (i = 0; i < user_kfilterc ; i++) {
549 1.31 seanb if (user_kfilters[i].name != NULL &&
550 1.3 jdolecek strcmp(name, user_kfilters[i].name) == 0)
551 1.49 ad return &user_kfilters[i];
552 1.3 jdolecek }
553 1.49 ad return NULL;
554 1.3 jdolecek }
555 1.3 jdolecek
556 1.49 ad static struct kfilter *
557 1.3 jdolecek kfilter_byname(const char *name)
558 1.3 jdolecek {
559 1.49 ad struct kfilter *kfilter;
560 1.49 ad
561 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
562 1.3 jdolecek
563 1.3 jdolecek if ((kfilter = kfilter_byname_sys(name)) != NULL)
564 1.49 ad return kfilter;
565 1.3 jdolecek
566 1.49 ad return kfilter_byname_user(name);
567 1.3 jdolecek }
568 1.3 jdolecek
569 1.3 jdolecek /*
570 1.3 jdolecek * Find kfilter entry by filter id, or NULL if not found.
571 1.3 jdolecek * Assumes entries are indexed in filter id order, for speed.
572 1.3 jdolecek */
573 1.49 ad static struct kfilter *
574 1.3 jdolecek kfilter_byfilter(uint32_t filter)
575 1.3 jdolecek {
576 1.49 ad struct kfilter *kfilter;
577 1.49 ad
578 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
579 1.3 jdolecek
580 1.3 jdolecek if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
581 1.3 jdolecek kfilter = &sys_kfilters[filter];
582 1.3 jdolecek else if (user_kfilters != NULL &&
583 1.3 jdolecek filter < EVFILT_SYSCOUNT + user_kfilterc)
584 1.3 jdolecek /* it's a user filter */
585 1.3 jdolecek kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
586 1.3 jdolecek else
587 1.3 jdolecek return (NULL); /* out of range */
588 1.3 jdolecek KASSERT(kfilter->filter == filter); /* sanity check! */
589 1.3 jdolecek return (kfilter);
590 1.3 jdolecek }
591 1.3 jdolecek
592 1.3 jdolecek /*
593 1.3 jdolecek * Register a new kfilter. Stores the entry in user_kfilters.
594 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
595 1.3 jdolecek * If retfilter != NULL, the new filterid is returned in it.
596 1.3 jdolecek */
597 1.3 jdolecek int
598 1.3 jdolecek kfilter_register(const char *name, const struct filterops *filtops,
599 1.49 ad int *retfilter)
600 1.1 lukem {
601 1.3 jdolecek struct kfilter *kfilter;
602 1.49 ad size_t len;
603 1.31 seanb int i;
604 1.3 jdolecek
605 1.3 jdolecek if (name == NULL || name[0] == '\0' || filtops == NULL)
606 1.3 jdolecek return (EINVAL); /* invalid args */
607 1.49 ad
608 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
609 1.49 ad if (kfilter_byname(name) != NULL) {
610 1.49 ad rw_exit(&kqueue_filter_lock);
611 1.3 jdolecek return (EEXIST); /* already exists */
612 1.49 ad }
613 1.49 ad if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
614 1.49 ad rw_exit(&kqueue_filter_lock);
615 1.3 jdolecek return (EINVAL); /* too many */
616 1.49 ad }
617 1.3 jdolecek
618 1.31 seanb for (i = 0; i < user_kfilterc; i++) {
619 1.31 seanb kfilter = &user_kfilters[i];
620 1.31 seanb if (kfilter->name == NULL) {
621 1.31 seanb /* Previously deregistered slot. Reuse. */
622 1.31 seanb goto reuse;
623 1.31 seanb }
624 1.31 seanb }
625 1.31 seanb
626 1.3 jdolecek /* check if need to grow user_kfilters */
627 1.3 jdolecek if (user_kfilterc + 1 > user_kfiltermaxc) {
628 1.49 ad /* Grow in KFILTER_EXTENT chunks. */
629 1.3 jdolecek user_kfiltermaxc += KFILTER_EXTENT;
630 1.69 dsl len = user_kfiltermaxc * sizeof(*kfilter);
631 1.49 ad kfilter = kmem_alloc(len, KM_SLEEP);
632 1.49 ad memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
633 1.49 ad if (user_kfilters != NULL) {
634 1.49 ad memcpy(kfilter, user_kfilters, user_kfiltersz);
635 1.49 ad kmem_free(user_kfilters, user_kfiltersz);
636 1.49 ad }
637 1.49 ad user_kfiltersz = len;
638 1.3 jdolecek user_kfilters = kfilter;
639 1.3 jdolecek }
640 1.31 seanb /* Adding new slot */
641 1.31 seanb kfilter = &user_kfilters[user_kfilterc++];
642 1.31 seanb reuse:
643 1.97 christos kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
644 1.3 jdolecek
645 1.31 seanb kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
646 1.3 jdolecek
647 1.49 ad kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
648 1.49 ad memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
649 1.3 jdolecek
650 1.3 jdolecek if (retfilter != NULL)
651 1.31 seanb *retfilter = kfilter->filter;
652 1.49 ad rw_exit(&kqueue_filter_lock);
653 1.49 ad
654 1.3 jdolecek return (0);
655 1.1 lukem }
656 1.1 lukem
657 1.3 jdolecek /*
658 1.3 jdolecek * Unregister a kfilter previously registered with kfilter_register.
659 1.3 jdolecek * This retains the filter id, but clears the name and frees filtops (filter
660 1.3 jdolecek * operations), so that the number isn't reused during a boot.
661 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
662 1.3 jdolecek */
663 1.3 jdolecek int
664 1.3 jdolecek kfilter_unregister(const char *name)
665 1.1 lukem {
666 1.3 jdolecek struct kfilter *kfilter;
667 1.3 jdolecek
668 1.3 jdolecek if (name == NULL || name[0] == '\0')
669 1.3 jdolecek return (EINVAL); /* invalid name */
670 1.3 jdolecek
671 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
672 1.49 ad if (kfilter_byname_sys(name) != NULL) {
673 1.49 ad rw_exit(&kqueue_filter_lock);
674 1.3 jdolecek return (EINVAL); /* can't detach system filters */
675 1.49 ad }
676 1.1 lukem
677 1.3 jdolecek kfilter = kfilter_byname_user(name);
678 1.49 ad if (kfilter == NULL) {
679 1.49 ad rw_exit(&kqueue_filter_lock);
680 1.3 jdolecek return (ENOENT);
681 1.49 ad }
682 1.49 ad if (kfilter->refcnt != 0) {
683 1.49 ad rw_exit(&kqueue_filter_lock);
684 1.49 ad return (EBUSY);
685 1.49 ad }
686 1.1 lukem
687 1.49 ad /* Cast away const (but we know it's safe. */
688 1.49 ad kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
689 1.31 seanb kfilter->name = NULL; /* mark as `not implemented' */
690 1.31 seanb
691 1.3 jdolecek if (kfilter->filtops != NULL) {
692 1.49 ad /* Cast away const (but we know it's safe. */
693 1.49 ad kmem_free(__UNCONST(kfilter->filtops),
694 1.49 ad sizeof(*kfilter->filtops));
695 1.3 jdolecek kfilter->filtops = NULL; /* mark as `not implemented' */
696 1.3 jdolecek }
697 1.49 ad rw_exit(&kqueue_filter_lock);
698 1.49 ad
699 1.1 lukem return (0);
700 1.1 lukem }
701 1.1 lukem
702 1.3 jdolecek
703 1.3 jdolecek /*
704 1.3 jdolecek * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
705 1.49 ad * descriptors. Calls fileops kqfilter method for given file descriptor.
706 1.3 jdolecek */
707 1.3 jdolecek static int
708 1.3 jdolecek filt_fileattach(struct knote *kn)
709 1.3 jdolecek {
710 1.49 ad file_t *fp;
711 1.49 ad
712 1.49 ad fp = kn->kn_obj;
713 1.3 jdolecek
714 1.49 ad return (*fp->f_ops->fo_kqfilter)(fp, kn);
715 1.3 jdolecek }
716 1.3 jdolecek
717 1.3 jdolecek /*
718 1.3 jdolecek * Filter detach method for EVFILT_READ on kqueue descriptor.
719 1.3 jdolecek */
720 1.1 lukem static void
721 1.1 lukem filt_kqdetach(struct knote *kn)
722 1.1 lukem {
723 1.3 jdolecek struct kqueue *kq;
724 1.1 lukem
725 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
726 1.49 ad
727 1.49 ad mutex_spin_enter(&kq->kq_lock);
728 1.109 thorpej selremove_knote(&kq->kq_sel, kn);
729 1.49 ad mutex_spin_exit(&kq->kq_lock);
730 1.1 lukem }
731 1.1 lukem
732 1.3 jdolecek /*
733 1.3 jdolecek * Filter event method for EVFILT_READ on kqueue descriptor.
734 1.3 jdolecek */
735 1.1 lukem /*ARGSUSED*/
736 1.1 lukem static int
737 1.33 yamt filt_kqueue(struct knote *kn, long hint)
738 1.1 lukem {
739 1.3 jdolecek struct kqueue *kq;
740 1.49 ad int rv;
741 1.49 ad
742 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
743 1.1 lukem
744 1.49 ad if (hint != NOTE_SUBMIT)
745 1.49 ad mutex_spin_enter(&kq->kq_lock);
746 1.118 jdolecek kn->kn_data = KQ_COUNT(kq);
747 1.49 ad rv = (kn->kn_data > 0);
748 1.49 ad if (hint != NOTE_SUBMIT)
749 1.49 ad mutex_spin_exit(&kq->kq_lock);
750 1.49 ad
751 1.49 ad return rv;
752 1.1 lukem }
753 1.1 lukem
754 1.3 jdolecek /*
755 1.3 jdolecek * Filter attach method for EVFILT_PROC.
756 1.3 jdolecek */
757 1.1 lukem static int
758 1.1 lukem filt_procattach(struct knote *kn)
759 1.1 lukem {
760 1.78 pooka struct proc *p;
761 1.1 lukem
762 1.107 ad mutex_enter(&proc_lock);
763 1.129 thorpej p = proc_find(kn->kn_id);
764 1.49 ad if (p == NULL) {
765 1.107 ad mutex_exit(&proc_lock);
766 1.49 ad return ESRCH;
767 1.49 ad }
768 1.3 jdolecek
769 1.3 jdolecek /*
770 1.3 jdolecek * Fail if it's not owned by you, or the last exec gave us
771 1.3 jdolecek * setuid/setgid privs (unless you're root).
772 1.3 jdolecek */
773 1.57 ad mutex_enter(p->p_lock);
774 1.107 ad mutex_exit(&proc_lock);
775 1.129 thorpej if (kauth_authorize_process(curlwp->l_cred,
776 1.119 christos KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
777 1.57 ad mutex_exit(p->p_lock);
778 1.49 ad return EACCES;
779 1.49 ad }
780 1.1 lukem
781 1.49 ad kn->kn_obj = p;
782 1.3 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
783 1.1 lukem
784 1.1 lukem /*
785 1.129 thorpej * NOTE_CHILD is only ever generated internally; don't let it
786 1.129 thorpej * leak in from user-space. See knote_proc_fork_track().
787 1.1 lukem */
788 1.129 thorpej kn->kn_sfflags &= ~NOTE_CHILD;
789 1.129 thorpej
790 1.1 lukem SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
791 1.57 ad mutex_exit(p->p_lock);
792 1.1 lukem
793 1.49 ad return 0;
794 1.1 lukem }
795 1.1 lukem
796 1.1 lukem /*
797 1.3 jdolecek * Filter detach method for EVFILT_PROC.
798 1.3 jdolecek *
799 1.1 lukem * The knote may be attached to a different process, which may exit,
800 1.1 lukem * leaving nothing for the knote to be attached to. So when the process
801 1.1 lukem * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
802 1.1 lukem * it will be deleted when read out. However, as part of the knote deletion,
803 1.1 lukem * this routine is called, so a check is needed to avoid actually performing
804 1.3 jdolecek * a detach, because the original process might not exist any more.
805 1.1 lukem */
806 1.1 lukem static void
807 1.1 lukem filt_procdetach(struct knote *kn)
808 1.1 lukem {
809 1.129 thorpej struct kqueue *kq = kn->kn_kq;
810 1.3 jdolecek struct proc *p;
811 1.1 lukem
812 1.129 thorpej /*
813 1.129 thorpej * We have to synchronize with knote_proc_exit(), but we
814 1.129 thorpej * are forced to acquire the locks in the wrong order here
815 1.129 thorpej * because we can't be sure kn->kn_obj is valid unless
816 1.129 thorpej * KN_DETACHED is not set.
817 1.129 thorpej */
818 1.129 thorpej again:
819 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
820 1.129 thorpej if ((kn->kn_status & KN_DETACHED) == 0) {
821 1.129 thorpej p = kn->kn_obj;
822 1.129 thorpej if (!mutex_tryenter(p->p_lock)) {
823 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
824 1.129 thorpej preempt_point();
825 1.129 thorpej goto again;
826 1.129 thorpej }
827 1.129 thorpej kn->kn_status |= KN_DETACHED;
828 1.129 thorpej SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
829 1.129 thorpej mutex_exit(p->p_lock);
830 1.129 thorpej }
831 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
832 1.1 lukem }
833 1.1 lukem
834 1.3 jdolecek /*
835 1.3 jdolecek * Filter event method for EVFILT_PROC.
836 1.129 thorpej *
837 1.129 thorpej * Due to some of the complexities of process locking, we have special
838 1.129 thorpej * entry points for delivering knote submissions. filt_proc() is used
839 1.129 thorpej * only to check for activation from kqueue_register() and kqueue_scan().
840 1.3 jdolecek */
841 1.1 lukem static int
842 1.1 lukem filt_proc(struct knote *kn, long hint)
843 1.1 lukem {
844 1.129 thorpej struct kqueue *kq = kn->kn_kq;
845 1.129 thorpej uint32_t fflags;
846 1.129 thorpej
847 1.129 thorpej /*
848 1.129 thorpej * Because we share the same klist with signal knotes, just
849 1.129 thorpej * ensure that we're not being invoked for the proc-related
850 1.129 thorpej * submissions.
851 1.129 thorpej */
852 1.129 thorpej KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
853 1.129 thorpej
854 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
855 1.129 thorpej fflags = kn->kn_fflags;
856 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
857 1.1 lukem
858 1.129 thorpej return fflags != 0;
859 1.129 thorpej }
860 1.1 lukem
861 1.129 thorpej void
862 1.129 thorpej knote_proc_exec(struct proc *p)
863 1.129 thorpej {
864 1.129 thorpej struct knote *kn, *tmpkn;
865 1.129 thorpej struct kqueue *kq;
866 1.129 thorpej uint32_t fflags;
867 1.1 lukem
868 1.129 thorpej mutex_enter(p->p_lock);
869 1.83 christos
870 1.129 thorpej SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
871 1.129 thorpej /* N.B. EVFILT_SIGNAL knotes are on this same list. */
872 1.129 thorpej if (kn->kn_fop == &sig_filtops) {
873 1.129 thorpej continue;
874 1.129 thorpej }
875 1.129 thorpej KASSERT(kn->kn_fop == &proc_filtops);
876 1.49 ad
877 1.129 thorpej kq = kn->kn_kq;
878 1.49 ad mutex_spin_enter(&kq->kq_lock);
879 1.129 thorpej fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
880 1.49 ad mutex_spin_exit(&kq->kq_lock);
881 1.129 thorpej if (fflags) {
882 1.129 thorpej knote_activate(kn);
883 1.129 thorpej }
884 1.129 thorpej }
885 1.129 thorpej
886 1.129 thorpej mutex_exit(p->p_lock);
887 1.129 thorpej }
888 1.129 thorpej
889 1.129 thorpej static int __noinline
890 1.129 thorpej knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
891 1.129 thorpej {
892 1.129 thorpej struct kqueue *kq = okn->kn_kq;
893 1.129 thorpej
894 1.129 thorpej KASSERT(mutex_owned(&kq->kq_lock));
895 1.129 thorpej KASSERT(mutex_owned(p1->p_lock));
896 1.129 thorpej
897 1.129 thorpej /*
898 1.129 thorpej * We're going to put this knote into flux while we drop
899 1.129 thorpej * the locks and create and attach a new knote to track the
900 1.129 thorpej * child. If we are not able to enter flux, then this knote
901 1.129 thorpej * is about to go away, so skip the notification.
902 1.129 thorpej */
903 1.129 thorpej if (!kn_enter_flux(okn)) {
904 1.129 thorpej return 0;
905 1.129 thorpej }
906 1.129 thorpej
907 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
908 1.129 thorpej mutex_exit(p1->p_lock);
909 1.49 ad
910 1.129 thorpej /*
911 1.129 thorpej * We actually have to register *two* new knotes:
912 1.129 thorpej *
913 1.129 thorpej * ==> One for the NOTE_CHILD notification. This is a forced
914 1.129 thorpej * ONESHOT note.
915 1.129 thorpej *
916 1.129 thorpej * ==> One to actually track the child process as it subsequently
917 1.129 thorpej * forks, execs, and, ultimately, exits.
918 1.129 thorpej *
919 1.129 thorpej * If we only register a single knote, then it's possible for
920 1.129 thorpej * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
921 1.129 thorpej * notification if the child exits before the tracking process
922 1.129 thorpej * has received the NOTE_CHILD notification, which applications
923 1.129 thorpej * aren't expecting (the event's 'data' field would be clobbered,
924 1.129 thorpej * for exmaple).
925 1.129 thorpej *
926 1.129 thorpej * To do this, what we have here is an **extremely** stripped-down
927 1.129 thorpej * version of kqueue_register() that has the following properties:
928 1.129 thorpej *
929 1.129 thorpej * ==> Does not block to allocate memory. If we are unable
930 1.129 thorpej * to allocate memory, we return ENOMEM.
931 1.129 thorpej *
932 1.129 thorpej * ==> Does not search for existing knotes; we know there
933 1.129 thorpej * are not any because this is a new process that isn't
934 1.129 thorpej * even visible to other processes yet.
935 1.129 thorpej *
936 1.129 thorpej * ==> Assumes that the knhash for our kq's descriptor table
937 1.129 thorpej * already exists (after all, we're already tracking
938 1.129 thorpej * processes with knotes if we got here).
939 1.129 thorpej *
940 1.129 thorpej * ==> Directly attaches the new tracking knote to the child
941 1.129 thorpej * process.
942 1.129 thorpej *
943 1.129 thorpej * The whole point is to do the minimum amount of work while the
944 1.129 thorpej * knote is held in-flux, and to avoid doing extra work in general
945 1.129 thorpej * (we already have the new child process; why bother looking it
946 1.129 thorpej * up again?).
947 1.129 thorpej */
948 1.129 thorpej filedesc_t *fdp = kq->kq_fdp;
949 1.129 thorpej struct knote *knchild, *kntrack;
950 1.129 thorpej int error = 0;
951 1.129 thorpej
952 1.129 thorpej knchild = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
953 1.129 thorpej kntrack = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
954 1.129 thorpej if (__predict_false(knchild == NULL || kntrack == NULL)) {
955 1.129 thorpej error = ENOMEM;
956 1.129 thorpej goto out;
957 1.129 thorpej }
958 1.129 thorpej
959 1.129 thorpej kntrack->kn_obj = p2;
960 1.129 thorpej kntrack->kn_id = p2->p_pid;
961 1.129 thorpej kntrack->kn_kq = kq;
962 1.129 thorpej kntrack->kn_fop = okn->kn_fop;
963 1.129 thorpej kntrack->kn_kfilter = okn->kn_kfilter;
964 1.129 thorpej kntrack->kn_sfflags = okn->kn_sfflags;
965 1.129 thorpej kntrack->kn_sdata = p1->p_pid;
966 1.129 thorpej
967 1.129 thorpej kntrack->kn_kevent.ident = p2->p_pid;
968 1.129 thorpej kntrack->kn_kevent.filter = okn->kn_filter;
969 1.129 thorpej kntrack->kn_kevent.flags =
970 1.129 thorpej okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
971 1.129 thorpej kntrack->kn_kevent.fflags = 0;
972 1.129 thorpej kntrack->kn_kevent.data = 0;
973 1.129 thorpej kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
974 1.129 thorpej
975 1.129 thorpej /*
976 1.129 thorpej * The child note does not need to be attached to the
977 1.129 thorpej * new proc's klist at all.
978 1.129 thorpej */
979 1.129 thorpej *knchild = *kntrack;
980 1.129 thorpej knchild->kn_status = KN_DETACHED;
981 1.129 thorpej knchild->kn_sfflags = 0;
982 1.129 thorpej knchild->kn_kevent.flags |= EV_ONESHOT;
983 1.129 thorpej knchild->kn_kevent.fflags = NOTE_CHILD;
984 1.129 thorpej knchild->kn_kevent.data = p1->p_pid; /* parent */
985 1.129 thorpej
986 1.129 thorpej mutex_enter(&fdp->fd_lock);
987 1.129 thorpej
988 1.129 thorpej /*
989 1.129 thorpej * We need to check to see if the kq is closing, and skip
990 1.129 thorpej * attaching the knote if so. Normally, this isn't necessary
991 1.129 thorpej * when coming in the front door because the file descriptor
992 1.129 thorpej * layer will synchronize this.
993 1.129 thorpej *
994 1.129 thorpej * It's safe to test KQ_CLOSING without taking the kq_lock
995 1.129 thorpej * here because that flag is only ever set when the fd_lock
996 1.129 thorpej * is also held.
997 1.129 thorpej */
998 1.129 thorpej if (__predict_false(kq->kq_count & KQ_CLOSING)) {
999 1.129 thorpej mutex_exit(&fdp->fd_lock);
1000 1.129 thorpej goto out;
1001 1.1 lukem }
1002 1.1 lukem
1003 1.129 thorpej /*
1004 1.129 thorpej * We do the "insert into FD table" and "attach to klist" steps
1005 1.129 thorpej * in the opposite order of kqueue_register() here to avoid
1006 1.129 thorpej * having to take p2->p_lock twice. But this is OK because we
1007 1.129 thorpej * hold fd_lock across the entire operation.
1008 1.129 thorpej */
1009 1.129 thorpej
1010 1.129 thorpej mutex_enter(p2->p_lock);
1011 1.129 thorpej error = kauth_authorize_process(curlwp->l_cred,
1012 1.129 thorpej KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
1013 1.129 thorpej if (__predict_false(error != 0)) {
1014 1.129 thorpej mutex_exit(p2->p_lock);
1015 1.129 thorpej mutex_exit(&fdp->fd_lock);
1016 1.129 thorpej error = EACCES;
1017 1.129 thorpej goto out;
1018 1.129 thorpej }
1019 1.129 thorpej SLIST_INSERT_HEAD(&p2->p_klist, kntrack, kn_selnext);
1020 1.129 thorpej mutex_exit(p2->p_lock);
1021 1.129 thorpej
1022 1.129 thorpej KASSERT(fdp->fd_knhashmask != 0);
1023 1.129 thorpej KASSERT(fdp->fd_knhash != NULL);
1024 1.129 thorpej struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
1025 1.129 thorpej fdp->fd_knhashmask)];
1026 1.129 thorpej SLIST_INSERT_HEAD(list, kntrack, kn_link);
1027 1.129 thorpej SLIST_INSERT_HEAD(list, knchild, kn_link);
1028 1.129 thorpej
1029 1.129 thorpej /* This adds references for knchild *and* kntrack. */
1030 1.129 thorpej atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
1031 1.129 thorpej
1032 1.129 thorpej knote_activate(knchild);
1033 1.129 thorpej
1034 1.129 thorpej kntrack = NULL;
1035 1.129 thorpej knchild = NULL;
1036 1.129 thorpej
1037 1.129 thorpej mutex_exit(&fdp->fd_lock);
1038 1.129 thorpej
1039 1.129 thorpej out:
1040 1.129 thorpej if (__predict_false(knchild != NULL)) {
1041 1.129 thorpej kmem_free(knchild, sizeof(*knchild));
1042 1.129 thorpej }
1043 1.129 thorpej if (__predict_false(kntrack != NULL)) {
1044 1.129 thorpej kmem_free(kntrack, sizeof(*kntrack));
1045 1.129 thorpej }
1046 1.129 thorpej mutex_enter(p1->p_lock);
1047 1.49 ad mutex_spin_enter(&kq->kq_lock);
1048 1.129 thorpej
1049 1.129 thorpej if (kn_leave_flux(okn)) {
1050 1.129 thorpej KQ_FLUX_WAKEUP(kq);
1051 1.129 thorpej }
1052 1.129 thorpej
1053 1.129 thorpej return error;
1054 1.129 thorpej }
1055 1.129 thorpej
1056 1.129 thorpej void
1057 1.129 thorpej knote_proc_fork(struct proc *p1, struct proc *p2)
1058 1.129 thorpej {
1059 1.129 thorpej struct knote *kn;
1060 1.129 thorpej struct kqueue *kq;
1061 1.129 thorpej uint32_t fflags;
1062 1.129 thorpej
1063 1.129 thorpej mutex_enter(p1->p_lock);
1064 1.129 thorpej
1065 1.129 thorpej /*
1066 1.129 thorpej * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
1067 1.129 thorpej * don't want to pre-fetch the next knote; in the event we
1068 1.129 thorpej * have to drop p_lock, we will have put the knote in-flux,
1069 1.129 thorpej * meaning that no one will be able to detach it until we
1070 1.129 thorpej * have taken the knote out of flux. However, that does
1071 1.129 thorpej * NOT stop someone else from detaching the next note in the
1072 1.129 thorpej * list while we have it unlocked. Thus, we want to fetch
1073 1.129 thorpej * the next note in the list only after we have re-acquired
1074 1.129 thorpej * the lock, and using SLIST_FOREACH() will satisfy that.
1075 1.129 thorpej */
1076 1.129 thorpej SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
1077 1.129 thorpej /* N.B. EVFILT_SIGNAL knotes are on this same list. */
1078 1.129 thorpej if (kn->kn_fop == &sig_filtops) {
1079 1.129 thorpej continue;
1080 1.129 thorpej }
1081 1.129 thorpej KASSERT(kn->kn_fop == &proc_filtops);
1082 1.129 thorpej
1083 1.129 thorpej kq = kn->kn_kq;
1084 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
1085 1.129 thorpej kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
1086 1.129 thorpej if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
1087 1.129 thorpej /*
1088 1.129 thorpej * This will drop kq_lock and p_lock and
1089 1.129 thorpej * re-acquire them before it returns.
1090 1.129 thorpej */
1091 1.129 thorpej if (knote_proc_fork_track(p1, p2, kn)) {
1092 1.129 thorpej kn->kn_fflags |= NOTE_TRACKERR;
1093 1.129 thorpej }
1094 1.129 thorpej KASSERT(mutex_owned(p1->p_lock));
1095 1.129 thorpej KASSERT(mutex_owned(&kq->kq_lock));
1096 1.129 thorpej }
1097 1.129 thorpej fflags = kn->kn_fflags;
1098 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
1099 1.129 thorpej if (fflags) {
1100 1.129 thorpej knote_activate(kn);
1101 1.129 thorpej }
1102 1.129 thorpej }
1103 1.129 thorpej
1104 1.129 thorpej mutex_exit(p1->p_lock);
1105 1.129 thorpej }
1106 1.129 thorpej
1107 1.129 thorpej void
1108 1.129 thorpej knote_proc_exit(struct proc *p)
1109 1.129 thorpej {
1110 1.129 thorpej struct knote *kn;
1111 1.129 thorpej struct kqueue *kq;
1112 1.129 thorpej
1113 1.129 thorpej KASSERT(mutex_owned(p->p_lock));
1114 1.129 thorpej
1115 1.129 thorpej while (!SLIST_EMPTY(&p->p_klist)) {
1116 1.129 thorpej kn = SLIST_FIRST(&p->p_klist);
1117 1.129 thorpej kq = kn->kn_kq;
1118 1.129 thorpej
1119 1.129 thorpej KASSERT(kn->kn_obj == p);
1120 1.129 thorpej
1121 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
1122 1.129 thorpej kn->kn_data = P_WAITSTATUS(p);
1123 1.129 thorpej /*
1124 1.129 thorpej * Mark as ONESHOT, so that the knote is g/c'ed
1125 1.129 thorpej * when read.
1126 1.129 thorpej */
1127 1.129 thorpej kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1128 1.129 thorpej kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
1129 1.129 thorpej
1130 1.1 lukem /*
1131 1.129 thorpej * Detach the knote from the process and mark it as such.
1132 1.129 thorpej * N.B. EVFILT_SIGNAL are also on p_klist, but by the
1133 1.129 thorpej * time we get here, all open file descriptors for this
1134 1.129 thorpej * process have been released, meaning that signal knotes
1135 1.129 thorpej * will have already been detached.
1136 1.129 thorpej *
1137 1.129 thorpej * We need to synchronize this with filt_procdetach().
1138 1.1 lukem */
1139 1.129 thorpej KASSERT(kn->kn_fop == &proc_filtops);
1140 1.129 thorpej if ((kn->kn_status & KN_DETACHED) == 0) {
1141 1.129 thorpej kn->kn_status |= KN_DETACHED;
1142 1.129 thorpej SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
1143 1.129 thorpej }
1144 1.49 ad mutex_spin_exit(&kq->kq_lock);
1145 1.129 thorpej
1146 1.129 thorpej /*
1147 1.129 thorpej * Always activate the knote for NOTE_EXIT regardless
1148 1.129 thorpej * of whether or not the listener cares about it.
1149 1.129 thorpej * This matches historical behavior.
1150 1.129 thorpej */
1151 1.129 thorpej knote_activate(kn);
1152 1.1 lukem }
1153 1.8 jdolecek }
1154 1.8 jdolecek
1155 1.8 jdolecek static void
1156 1.8 jdolecek filt_timerexpire(void *knx)
1157 1.8 jdolecek {
1158 1.8 jdolecek struct knote *kn = knx;
1159 1.8 jdolecek int tticks;
1160 1.8 jdolecek
1161 1.125 thorpej mutex_enter(&kqueue_timer_lock);
1162 1.8 jdolecek kn->kn_data++;
1163 1.49 ad knote_activate(kn);
1164 1.8 jdolecek if ((kn->kn_flags & EV_ONESHOT) == 0) {
1165 1.8 jdolecek tticks = mstohz(kn->kn_sdata);
1166 1.73 christos if (tticks <= 0)
1167 1.73 christos tticks = 1;
1168 1.39 ad callout_schedule((callout_t *)kn->kn_hook, tticks);
1169 1.8 jdolecek }
1170 1.125 thorpej mutex_exit(&kqueue_timer_lock);
1171 1.8 jdolecek }
1172 1.8 jdolecek
1173 1.8 jdolecek /*
1174 1.8 jdolecek * data contains amount of time to sleep, in milliseconds
1175 1.22 perry */
1176 1.8 jdolecek static int
1177 1.8 jdolecek filt_timerattach(struct knote *kn)
1178 1.8 jdolecek {
1179 1.39 ad callout_t *calloutp;
1180 1.49 ad struct kqueue *kq;
1181 1.8 jdolecek int tticks;
1182 1.8 jdolecek
1183 1.8 jdolecek tticks = mstohz(kn->kn_sdata);
1184 1.8 jdolecek
1185 1.8 jdolecek /* if the supplied value is under our resolution, use 1 tick */
1186 1.8 jdolecek if (tticks == 0) {
1187 1.8 jdolecek if (kn->kn_sdata == 0)
1188 1.49 ad return EINVAL;
1189 1.8 jdolecek tticks = 1;
1190 1.8 jdolecek }
1191 1.8 jdolecek
1192 1.49 ad if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
1193 1.49 ad (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
1194 1.49 ad atomic_dec_uint(&kq_ncallouts);
1195 1.49 ad return ENOMEM;
1196 1.49 ad }
1197 1.54 ad callout_init(calloutp, CALLOUT_MPSAFE);
1198 1.49 ad
1199 1.49 ad kq = kn->kn_kq;
1200 1.49 ad mutex_spin_enter(&kq->kq_lock);
1201 1.8 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
1202 1.49 ad kn->kn_hook = calloutp;
1203 1.49 ad mutex_spin_exit(&kq->kq_lock);
1204 1.49 ad
1205 1.8 jdolecek callout_reset(calloutp, tticks, filt_timerexpire, kn);
1206 1.8 jdolecek
1207 1.8 jdolecek return (0);
1208 1.8 jdolecek }
1209 1.8 jdolecek
1210 1.8 jdolecek static void
1211 1.8 jdolecek filt_timerdetach(struct knote *kn)
1212 1.8 jdolecek {
1213 1.39 ad callout_t *calloutp;
1214 1.103 christos struct kqueue *kq = kn->kn_kq;
1215 1.103 christos
1216 1.125 thorpej /*
1217 1.125 thorpej * We don't need to hold the kqueue_timer_lock here; even
1218 1.125 thorpej * if filt_timerexpire() misses our setting of EV_ONESHOT,
1219 1.125 thorpej * we are guaranteed that the callout will no longer be
1220 1.125 thorpej * scheduled even if we attempted to halt it after it already
1221 1.125 thorpej * started running, even if it rescheduled itself.
1222 1.125 thorpej */
1223 1.125 thorpej
1224 1.103 christos mutex_spin_enter(&kq->kq_lock);
1225 1.103 christos /* prevent rescheduling when we expire */
1226 1.103 christos kn->kn_flags |= EV_ONESHOT;
1227 1.103 christos mutex_spin_exit(&kq->kq_lock);
1228 1.8 jdolecek
1229 1.39 ad calloutp = (callout_t *)kn->kn_hook;
1230 1.125 thorpej
1231 1.125 thorpej /*
1232 1.125 thorpej * Attempt to stop the callout. This will block if it's
1233 1.125 thorpej * already running.
1234 1.125 thorpej */
1235 1.55 ad callout_halt(calloutp, NULL);
1236 1.125 thorpej
1237 1.39 ad callout_destroy(calloutp);
1238 1.49 ad kmem_free(calloutp, sizeof(*calloutp));
1239 1.49 ad atomic_dec_uint(&kq_ncallouts);
1240 1.8 jdolecek }
1241 1.8 jdolecek
1242 1.8 jdolecek static int
1243 1.33 yamt filt_timer(struct knote *kn, long hint)
1244 1.8 jdolecek {
1245 1.49 ad int rv;
1246 1.49 ad
1247 1.125 thorpej mutex_enter(&kqueue_timer_lock);
1248 1.49 ad rv = (kn->kn_data != 0);
1249 1.125 thorpej mutex_exit(&kqueue_timer_lock);
1250 1.49 ad
1251 1.49 ad return rv;
1252 1.1 lukem }
1253 1.1 lukem
1254 1.108 christos static int
1255 1.108 christos filt_userattach(struct knote *kn)
1256 1.108 christos {
1257 1.108 christos struct kqueue *kq = kn->kn_kq;
1258 1.108 christos
1259 1.108 christos /*
1260 1.108 christos * EVFILT_USER knotes are not attached to anything in the kernel.
1261 1.108 christos */
1262 1.108 christos mutex_spin_enter(&kq->kq_lock);
1263 1.108 christos kn->kn_hook = NULL;
1264 1.108 christos if (kn->kn_fflags & NOTE_TRIGGER)
1265 1.108 christos kn->kn_hookid = 1;
1266 1.108 christos else
1267 1.108 christos kn->kn_hookid = 0;
1268 1.108 christos mutex_spin_exit(&kq->kq_lock);
1269 1.108 christos return (0);
1270 1.108 christos }
1271 1.108 christos
1272 1.108 christos static void
1273 1.108 christos filt_userdetach(struct knote *kn)
1274 1.108 christos {
1275 1.108 christos
1276 1.108 christos /*
1277 1.108 christos * EVFILT_USER knotes are not attached to anything in the kernel.
1278 1.108 christos */
1279 1.108 christos }
1280 1.108 christos
1281 1.108 christos static int
1282 1.108 christos filt_user(struct knote *kn, long hint)
1283 1.108 christos {
1284 1.108 christos struct kqueue *kq = kn->kn_kq;
1285 1.108 christos int hookid;
1286 1.108 christos
1287 1.108 christos mutex_spin_enter(&kq->kq_lock);
1288 1.108 christos hookid = kn->kn_hookid;
1289 1.108 christos mutex_spin_exit(&kq->kq_lock);
1290 1.108 christos
1291 1.108 christos return hookid;
1292 1.108 christos }
1293 1.108 christos
1294 1.108 christos static void
1295 1.108 christos filt_usertouch(struct knote *kn, struct kevent *kev, long type)
1296 1.108 christos {
1297 1.108 christos int ffctrl;
1298 1.108 christos
1299 1.117 skrll KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1300 1.116 jdolecek
1301 1.108 christos switch (type) {
1302 1.108 christos case EVENT_REGISTER:
1303 1.108 christos if (kev->fflags & NOTE_TRIGGER)
1304 1.108 christos kn->kn_hookid = 1;
1305 1.108 christos
1306 1.108 christos ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1307 1.108 christos kev->fflags &= NOTE_FFLAGSMASK;
1308 1.108 christos switch (ffctrl) {
1309 1.108 christos case NOTE_FFNOP:
1310 1.108 christos break;
1311 1.108 christos
1312 1.108 christos case NOTE_FFAND:
1313 1.108 christos kn->kn_sfflags &= kev->fflags;
1314 1.108 christos break;
1315 1.108 christos
1316 1.108 christos case NOTE_FFOR:
1317 1.108 christos kn->kn_sfflags |= kev->fflags;
1318 1.108 christos break;
1319 1.108 christos
1320 1.108 christos case NOTE_FFCOPY:
1321 1.108 christos kn->kn_sfflags = kev->fflags;
1322 1.108 christos break;
1323 1.108 christos
1324 1.108 christos default:
1325 1.108 christos /* XXX Return error? */
1326 1.108 christos break;
1327 1.108 christos }
1328 1.108 christos kn->kn_sdata = kev->data;
1329 1.108 christos if (kev->flags & EV_CLEAR) {
1330 1.108 christos kn->kn_hookid = 0;
1331 1.108 christos kn->kn_data = 0;
1332 1.108 christos kn->kn_fflags = 0;
1333 1.108 christos }
1334 1.108 christos break;
1335 1.108 christos
1336 1.108 christos case EVENT_PROCESS:
1337 1.108 christos *kev = kn->kn_kevent;
1338 1.108 christos kev->fflags = kn->kn_sfflags;
1339 1.108 christos kev->data = kn->kn_sdata;
1340 1.108 christos if (kn->kn_flags & EV_CLEAR) {
1341 1.108 christos kn->kn_hookid = 0;
1342 1.108 christos kn->kn_data = 0;
1343 1.108 christos kn->kn_fflags = 0;
1344 1.108 christos }
1345 1.108 christos break;
1346 1.108 christos
1347 1.108 christos default:
1348 1.108 christos panic("filt_usertouch() - invalid type (%ld)", type);
1349 1.108 christos break;
1350 1.108 christos }
1351 1.108 christos }
1352 1.108 christos
1353 1.102 christos /*
1354 1.3 jdolecek * filt_seltrue:
1355 1.3 jdolecek *
1356 1.3 jdolecek * This filter "event" routine simulates seltrue().
1357 1.3 jdolecek */
1358 1.1 lukem int
1359 1.33 yamt filt_seltrue(struct knote *kn, long hint)
1360 1.1 lukem {
1361 1.1 lukem
1362 1.3 jdolecek /*
1363 1.3 jdolecek * We don't know how much data can be read/written,
1364 1.3 jdolecek * but we know that it *can* be. This is about as
1365 1.3 jdolecek * good as select/poll does as well.
1366 1.3 jdolecek */
1367 1.3 jdolecek kn->kn_data = 0;
1368 1.3 jdolecek return (1);
1369 1.3 jdolecek }
1370 1.3 jdolecek
1371 1.3 jdolecek /*
1372 1.3 jdolecek * This provides full kqfilter entry for device switch tables, which
1373 1.3 jdolecek * has same effect as filter using filt_seltrue() as filter method.
1374 1.3 jdolecek */
1375 1.3 jdolecek static void
1376 1.33 yamt filt_seltruedetach(struct knote *kn)
1377 1.3 jdolecek {
1378 1.3 jdolecek /* Nothing to do */
1379 1.3 jdolecek }
1380 1.3 jdolecek
1381 1.96 maya const struct filterops seltrue_filtops = {
1382 1.123 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1383 1.96 maya .f_attach = NULL,
1384 1.96 maya .f_detach = filt_seltruedetach,
1385 1.96 maya .f_event = filt_seltrue,
1386 1.96 maya };
1387 1.3 jdolecek
1388 1.3 jdolecek int
1389 1.33 yamt seltrue_kqfilter(dev_t dev, struct knote *kn)
1390 1.3 jdolecek {
1391 1.3 jdolecek switch (kn->kn_filter) {
1392 1.3 jdolecek case EVFILT_READ:
1393 1.3 jdolecek case EVFILT_WRITE:
1394 1.3 jdolecek kn->kn_fop = &seltrue_filtops;
1395 1.3 jdolecek break;
1396 1.3 jdolecek default:
1397 1.43 pooka return (EINVAL);
1398 1.3 jdolecek }
1399 1.3 jdolecek
1400 1.3 jdolecek /* Nothing more to do */
1401 1.3 jdolecek return (0);
1402 1.3 jdolecek }
1403 1.3 jdolecek
1404 1.3 jdolecek /*
1405 1.3 jdolecek * kqueue(2) system call.
1406 1.3 jdolecek */
1407 1.72 christos static int
1408 1.72 christos kqueue1(struct lwp *l, int flags, register_t *retval)
1409 1.3 jdolecek {
1410 1.49 ad struct kqueue *kq;
1411 1.49 ad file_t *fp;
1412 1.49 ad int fd, error;
1413 1.3 jdolecek
1414 1.49 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
1415 1.49 ad return error;
1416 1.75 christos fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
1417 1.1 lukem fp->f_type = DTYPE_KQUEUE;
1418 1.1 lukem fp->f_ops = &kqueueops;
1419 1.49 ad kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
1420 1.49 ad mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
1421 1.49 ad cv_init(&kq->kq_cv, "kqueue");
1422 1.49 ad selinit(&kq->kq_sel);
1423 1.1 lukem TAILQ_INIT(&kq->kq_head);
1424 1.82 matt fp->f_kqueue = kq;
1425 1.3 jdolecek *retval = fd;
1426 1.49 ad kq->kq_fdp = curlwp->l_fd;
1427 1.72 christos fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1428 1.49 ad fd_affix(curproc, fp, fd);
1429 1.49 ad return error;
1430 1.1 lukem }
1431 1.1 lukem
1432 1.3 jdolecek /*
1433 1.72 christos * kqueue(2) system call.
1434 1.72 christos */
1435 1.72 christos int
1436 1.72 christos sys_kqueue(struct lwp *l, const void *v, register_t *retval)
1437 1.72 christos {
1438 1.72 christos return kqueue1(l, 0, retval);
1439 1.72 christos }
1440 1.72 christos
1441 1.72 christos int
1442 1.72 christos sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
1443 1.72 christos register_t *retval)
1444 1.72 christos {
1445 1.72 christos /* {
1446 1.72 christos syscallarg(int) flags;
1447 1.72 christos } */
1448 1.72 christos return kqueue1(l, SCARG(uap, flags), retval);
1449 1.72 christos }
1450 1.72 christos
1451 1.72 christos /*
1452 1.3 jdolecek * kevent(2) system call.
1453 1.3 jdolecek */
1454 1.61 christos int
1455 1.81 matt kevent_fetch_changes(void *ctx, const struct kevent *changelist,
1456 1.61 christos struct kevent *changes, size_t index, int n)
1457 1.24 cube {
1458 1.49 ad
1459 1.24 cube return copyin(changelist + index, changes, n * sizeof(*changes));
1460 1.24 cube }
1461 1.24 cube
1462 1.61 christos int
1463 1.81 matt kevent_put_events(void *ctx, struct kevent *events,
1464 1.61 christos struct kevent *eventlist, size_t index, int n)
1465 1.24 cube {
1466 1.49 ad
1467 1.24 cube return copyout(events, eventlist + index, n * sizeof(*events));
1468 1.24 cube }
1469 1.24 cube
1470 1.24 cube static const struct kevent_ops kevent_native_ops = {
1471 1.60 gmcgarry .keo_private = NULL,
1472 1.60 gmcgarry .keo_fetch_timeout = copyin,
1473 1.60 gmcgarry .keo_fetch_changes = kevent_fetch_changes,
1474 1.60 gmcgarry .keo_put_events = kevent_put_events,
1475 1.24 cube };
1476 1.24 cube
1477 1.1 lukem int
1478 1.61 christos sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1479 1.61 christos register_t *retval)
1480 1.1 lukem {
1481 1.44 dsl /* {
1482 1.3 jdolecek syscallarg(int) fd;
1483 1.3 jdolecek syscallarg(const struct kevent *) changelist;
1484 1.3 jdolecek syscallarg(size_t) nchanges;
1485 1.3 jdolecek syscallarg(struct kevent *) eventlist;
1486 1.3 jdolecek syscallarg(size_t) nevents;
1487 1.3 jdolecek syscallarg(const struct timespec *) timeout;
1488 1.44 dsl } */
1489 1.24 cube
1490 1.49 ad return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1491 1.24 cube SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1492 1.24 cube SCARG(uap, timeout), &kevent_native_ops);
1493 1.24 cube }
1494 1.24 cube
1495 1.24 cube int
1496 1.49 ad kevent1(register_t *retval, int fd,
1497 1.49 ad const struct kevent *changelist, size_t nchanges,
1498 1.49 ad struct kevent *eventlist, size_t nevents,
1499 1.49 ad const struct timespec *timeout,
1500 1.49 ad const struct kevent_ops *keops)
1501 1.24 cube {
1502 1.49 ad struct kevent *kevp;
1503 1.49 ad struct kqueue *kq;
1504 1.3 jdolecek struct timespec ts;
1505 1.49 ad size_t i, n, ichange;
1506 1.49 ad int nerrors, error;
1507 1.80 maxv struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
1508 1.49 ad file_t *fp;
1509 1.3 jdolecek
1510 1.3 jdolecek /* check that we're dealing with a kq */
1511 1.49 ad fp = fd_getfile(fd);
1512 1.10 pk if (fp == NULL)
1513 1.1 lukem return (EBADF);
1514 1.10 pk
1515 1.10 pk if (fp->f_type != DTYPE_KQUEUE) {
1516 1.49 ad fd_putfile(fd);
1517 1.10 pk return (EBADF);
1518 1.10 pk }
1519 1.1 lukem
1520 1.24 cube if (timeout != NULL) {
1521 1.24 cube error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1522 1.1 lukem if (error)
1523 1.1 lukem goto done;
1524 1.24 cube timeout = &ts;
1525 1.1 lukem }
1526 1.1 lukem
1527 1.82 matt kq = fp->f_kqueue;
1528 1.1 lukem nerrors = 0;
1529 1.24 cube ichange = 0;
1530 1.1 lukem
1531 1.3 jdolecek /* traverse list of events to register */
1532 1.24 cube while (nchanges > 0) {
1533 1.49 ad n = MIN(nchanges, __arraycount(kevbuf));
1534 1.24 cube error = (*keops->keo_fetch_changes)(keops->keo_private,
1535 1.49 ad changelist, kevbuf, ichange, n);
1536 1.1 lukem if (error)
1537 1.1 lukem goto done;
1538 1.1 lukem for (i = 0; i < n; i++) {
1539 1.49 ad kevp = &kevbuf[i];
1540 1.1 lukem kevp->flags &= ~EV_SYSFLAGS;
1541 1.3 jdolecek /* register each knote */
1542 1.49 ad error = kqueue_register(kq, kevp);
1543 1.89 abhinav if (!error && !(kevp->flags & EV_RECEIPT))
1544 1.89 abhinav continue;
1545 1.89 abhinav if (nevents == 0)
1546 1.89 abhinav goto done;
1547 1.89 abhinav kevp->flags = EV_ERROR;
1548 1.89 abhinav kevp->data = error;
1549 1.89 abhinav error = (*keops->keo_put_events)
1550 1.89 abhinav (keops->keo_private, kevp,
1551 1.89 abhinav eventlist, nerrors, 1);
1552 1.89 abhinav if (error)
1553 1.89 abhinav goto done;
1554 1.89 abhinav nevents--;
1555 1.89 abhinav nerrors++;
1556 1.1 lukem }
1557 1.24 cube nchanges -= n; /* update the results */
1558 1.24 cube ichange += n;
1559 1.1 lukem }
1560 1.1 lukem if (nerrors) {
1561 1.3 jdolecek *retval = nerrors;
1562 1.1 lukem error = 0;
1563 1.1 lukem goto done;
1564 1.1 lukem }
1565 1.1 lukem
1566 1.3 jdolecek /* actually scan through the events */
1567 1.49 ad error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1568 1.49 ad kevbuf, __arraycount(kevbuf));
1569 1.3 jdolecek done:
1570 1.49 ad fd_putfile(fd);
1571 1.1 lukem return (error);
1572 1.1 lukem }
1573 1.1 lukem
1574 1.3 jdolecek /*
1575 1.3 jdolecek * Register a given kevent kev onto the kqueue
1576 1.3 jdolecek */
1577 1.49 ad static int
1578 1.49 ad kqueue_register(struct kqueue *kq, struct kevent *kev)
1579 1.1 lukem {
1580 1.49 ad struct kfilter *kfilter;
1581 1.49 ad filedesc_t *fdp;
1582 1.49 ad file_t *fp;
1583 1.49 ad fdfile_t *ff;
1584 1.49 ad struct knote *kn, *newkn;
1585 1.49 ad struct klist *list;
1586 1.49 ad int error, fd, rv;
1587 1.3 jdolecek
1588 1.3 jdolecek fdp = kq->kq_fdp;
1589 1.3 jdolecek fp = NULL;
1590 1.3 jdolecek kn = NULL;
1591 1.3 jdolecek error = 0;
1592 1.49 ad fd = 0;
1593 1.49 ad
1594 1.49 ad newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1595 1.49 ad
1596 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
1597 1.3 jdolecek kfilter = kfilter_byfilter(kev->filter);
1598 1.3 jdolecek if (kfilter == NULL || kfilter->filtops == NULL) {
1599 1.3 jdolecek /* filter not found nor implemented */
1600 1.49 ad rw_exit(&kqueue_filter_lock);
1601 1.49 ad kmem_free(newkn, sizeof(*newkn));
1602 1.1 lukem return (EINVAL);
1603 1.1 lukem }
1604 1.1 lukem
1605 1.3 jdolecek /* search if knote already exists */
1606 1.121 thorpej if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
1607 1.3 jdolecek /* monitoring a file descriptor */
1608 1.87 christos /* validate descriptor */
1609 1.88 christos if (kev->ident > INT_MAX
1610 1.88 christos || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1611 1.49 ad rw_exit(&kqueue_filter_lock);
1612 1.49 ad kmem_free(newkn, sizeof(*newkn));
1613 1.49 ad return EBADF;
1614 1.49 ad }
1615 1.74 rmind mutex_enter(&fdp->fd_lock);
1616 1.65 ad ff = fdp->fd_dt->dt_ff[fd];
1617 1.98 christos if (ff->ff_refcnt & FR_CLOSING) {
1618 1.98 christos error = EBADF;
1619 1.98 christos goto doneunlock;
1620 1.98 christos }
1621 1.49 ad if (fd <= fdp->fd_lastkqfile) {
1622 1.49 ad SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1623 1.1 lukem if (kq == kn->kn_kq &&
1624 1.1 lukem kev->filter == kn->kn_filter)
1625 1.1 lukem break;
1626 1.49 ad }
1627 1.1 lukem }
1628 1.1 lukem } else {
1629 1.3 jdolecek /*
1630 1.3 jdolecek * not monitoring a file descriptor, so
1631 1.3 jdolecek * lookup knotes in internal hash table
1632 1.3 jdolecek */
1633 1.74 rmind mutex_enter(&fdp->fd_lock);
1634 1.1 lukem if (fdp->fd_knhashmask != 0) {
1635 1.1 lukem list = &fdp->fd_knhash[
1636 1.1 lukem KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1637 1.49 ad SLIST_FOREACH(kn, list, kn_link) {
1638 1.1 lukem if (kev->ident == kn->kn_id &&
1639 1.1 lukem kq == kn->kn_kq &&
1640 1.1 lukem kev->filter == kn->kn_filter)
1641 1.1 lukem break;
1642 1.49 ad }
1643 1.1 lukem }
1644 1.1 lukem }
1645 1.1 lukem
1646 1.129 thorpej /* It's safe to test KQ_CLOSING while holding only the fd_lock. */
1647 1.129 thorpej KASSERT(mutex_owned(&fdp->fd_lock));
1648 1.129 thorpej KASSERT((kq->kq_count & KQ_CLOSING) == 0);
1649 1.129 thorpej
1650 1.1 lukem /*
1651 1.1 lukem * kn now contains the matching knote, or NULL if no match
1652 1.1 lukem */
1653 1.108 christos if (kn == NULL) {
1654 1.108 christos if (kev->flags & EV_ADD) {
1655 1.3 jdolecek /* create new knote */
1656 1.49 ad kn = newkn;
1657 1.49 ad newkn = NULL;
1658 1.49 ad kn->kn_obj = fp;
1659 1.79 christos kn->kn_id = kev->ident;
1660 1.1 lukem kn->kn_kq = kq;
1661 1.3 jdolecek kn->kn_fop = kfilter->filtops;
1662 1.49 ad kn->kn_kfilter = kfilter;
1663 1.49 ad kn->kn_sfflags = kev->fflags;
1664 1.49 ad kn->kn_sdata = kev->data;
1665 1.49 ad kev->fflags = 0;
1666 1.49 ad kev->data = 0;
1667 1.49 ad kn->kn_kevent = *kev;
1668 1.1 lukem
1669 1.85 christos KASSERT(kn->kn_fop != NULL);
1670 1.1 lukem /*
1671 1.1 lukem * apply reference count to knote structure, and
1672 1.1 lukem * do not release it at the end of this routine.
1673 1.1 lukem */
1674 1.1 lukem fp = NULL;
1675 1.1 lukem
1676 1.121 thorpej if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
1677 1.49 ad /*
1678 1.49 ad * If knote is not on an fd, store on
1679 1.49 ad * internal hash table.
1680 1.49 ad */
1681 1.49 ad if (fdp->fd_knhashmask == 0) {
1682 1.49 ad /* XXXAD can block with fd_lock held */
1683 1.49 ad fdp->fd_knhash = hashinit(KN_HASHSIZE,
1684 1.59 ad HASH_LIST, true,
1685 1.49 ad &fdp->fd_knhashmask);
1686 1.49 ad }
1687 1.49 ad list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1688 1.49 ad fdp->fd_knhashmask)];
1689 1.49 ad } else {
1690 1.49 ad /* Otherwise, knote is on an fd. */
1691 1.49 ad list = (struct klist *)
1692 1.65 ad &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1693 1.49 ad if ((int)kn->kn_id > fdp->fd_lastkqfile)
1694 1.49 ad fdp->fd_lastkqfile = kn->kn_id;
1695 1.49 ad }
1696 1.49 ad SLIST_INSERT_HEAD(list, kn, kn_link);
1697 1.1 lukem
1698 1.122 thorpej /*
1699 1.122 thorpej * N.B. kn->kn_fop may change as the result
1700 1.122 thorpej * of filter_attach()!
1701 1.122 thorpej */
1702 1.122 thorpej error = filter_attach(kn);
1703 1.49 ad if (error != 0) {
1704 1.100 christos #ifdef DEBUG
1705 1.105 christos struct proc *p = curlwp->l_proc;
1706 1.101 christos const file_t *ft = kn->kn_obj;
1707 1.105 christos printf("%s: %s[%d]: event type %d not "
1708 1.105 christos "supported for file type %d/%s "
1709 1.105 christos "(error %d)\n", __func__,
1710 1.105 christos p->p_comm, p->p_pid,
1711 1.101 christos kn->kn_filter, ft ? ft->f_type : -1,
1712 1.101 christos ft ? ft->f_ops->fo_name : "?", error);
1713 1.100 christos #endif
1714 1.100 christos
1715 1.129 thorpej /*
1716 1.129 thorpej * N.B. no need to check for this note to
1717 1.129 thorpej * be in-flux, since it was never visible
1718 1.129 thorpej * to the monitored object.
1719 1.129 thorpej *
1720 1.129 thorpej * knote_detach() drops fdp->fd_lock
1721 1.129 thorpej */
1722 1.129 thorpej mutex_enter(&kq->kq_lock);
1723 1.129 thorpej KNOTE_WILLDETACH(kn);
1724 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
1725 1.129 thorpej mutex_exit(&kq->kq_lock);
1726 1.49 ad knote_detach(kn, fdp, false);
1727 1.1 lukem goto done;
1728 1.1 lukem }
1729 1.49 ad atomic_inc_uint(&kfilter->refcnt);
1730 1.108 christos goto done_ev_add;
1731 1.1 lukem } else {
1732 1.108 christos /* No matching knote and the EV_ADD flag is not set. */
1733 1.108 christos error = ENOENT;
1734 1.108 christos goto doneunlock;
1735 1.1 lukem }
1736 1.108 christos }
1737 1.108 christos
1738 1.108 christos if (kev->flags & EV_DELETE) {
1739 1.129 thorpej /*
1740 1.129 thorpej * Let the world know that this knote is about to go
1741 1.129 thorpej * away, and wait for it to settle if it's currently
1742 1.129 thorpej * in-flux.
1743 1.129 thorpej */
1744 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
1745 1.129 thorpej if (kn->kn_status & KN_WILLDETACH) {
1746 1.129 thorpej /*
1747 1.129 thorpej * This knote is already on its way out,
1748 1.129 thorpej * so just be done.
1749 1.129 thorpej */
1750 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
1751 1.129 thorpej goto doneunlock;
1752 1.129 thorpej }
1753 1.129 thorpej KNOTE_WILLDETACH(kn);
1754 1.129 thorpej if (kn_in_flux(kn)) {
1755 1.129 thorpej mutex_exit(&fdp->fd_lock);
1756 1.129 thorpej /*
1757 1.129 thorpej * It's safe for us to conclusively wait for
1758 1.129 thorpej * this knote to settle because we know we'll
1759 1.129 thorpej * be completing the detach.
1760 1.129 thorpej */
1761 1.129 thorpej kn_wait_flux(kn, true);
1762 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
1763 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
1764 1.129 thorpej mutex_enter(&fdp->fd_lock);
1765 1.129 thorpej } else {
1766 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
1767 1.129 thorpej }
1768 1.129 thorpej
1769 1.108 christos /* knote_detach() drops fdp->fd_lock */
1770 1.108 christos knote_detach(kn, fdp, true);
1771 1.108 christos goto done;
1772 1.108 christos }
1773 1.108 christos
1774 1.108 christos /*
1775 1.108 christos * The user may change some filter values after the
1776 1.108 christos * initial EV_ADD, but doing so will not reset any
1777 1.108 christos * filter which have already been triggered.
1778 1.108 christos */
1779 1.108 christos kn->kn_kevent.udata = kev->udata;
1780 1.108 christos KASSERT(kn->kn_fop != NULL);
1781 1.121 thorpej if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1782 1.121 thorpej kn->kn_fop->f_touch != NULL) {
1783 1.116 jdolecek mutex_spin_enter(&kq->kq_lock);
1784 1.122 thorpej filter_touch(kn, kev, EVENT_REGISTER);
1785 1.116 jdolecek mutex_spin_exit(&kq->kq_lock);
1786 1.49 ad } else {
1787 1.108 christos kn->kn_sfflags = kev->fflags;
1788 1.108 christos kn->kn_sdata = kev->data;
1789 1.1 lukem }
1790 1.1 lukem
1791 1.108 christos /*
1792 1.108 christos * We can get here if we are trying to attach
1793 1.108 christos * an event to a file descriptor that does not
1794 1.108 christos * support events, and the attach routine is
1795 1.108 christos * broken and does not return an error.
1796 1.108 christos */
1797 1.108 christos done_ev_add:
1798 1.122 thorpej rv = filter_event(kn, 0);
1799 1.108 christos if (rv)
1800 1.108 christos knote_activate(kn);
1801 1.108 christos
1802 1.3 jdolecek /* disable knote */
1803 1.49 ad if ((kev->flags & EV_DISABLE)) {
1804 1.49 ad mutex_spin_enter(&kq->kq_lock);
1805 1.49 ad if ((kn->kn_status & KN_DISABLED) == 0)
1806 1.49 ad kn->kn_status |= KN_DISABLED;
1807 1.49 ad mutex_spin_exit(&kq->kq_lock);
1808 1.1 lukem }
1809 1.1 lukem
1810 1.3 jdolecek /* enable knote */
1811 1.49 ad if ((kev->flags & EV_ENABLE)) {
1812 1.49 ad knote_enqueue(kn);
1813 1.1 lukem }
1814 1.98 christos doneunlock:
1815 1.49 ad mutex_exit(&fdp->fd_lock);
1816 1.3 jdolecek done:
1817 1.49 ad rw_exit(&kqueue_filter_lock);
1818 1.49 ad if (newkn != NULL)
1819 1.49 ad kmem_free(newkn, sizeof(*newkn));
1820 1.1 lukem if (fp != NULL)
1821 1.49 ad fd_putfile(fd);
1822 1.1 lukem return (error);
1823 1.1 lukem }
1824 1.1 lukem
1825 1.94 christos #define KN_FMT(buf, kn) \
1826 1.94 christos (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1827 1.94 christos
1828 1.129 thorpej #if defined(DDB)
1829 1.129 thorpej void
1830 1.129 thorpej kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
1831 1.129 thorpej {
1832 1.129 thorpej const struct knote *kn;
1833 1.129 thorpej u_int count;
1834 1.129 thorpej int nmarker;
1835 1.129 thorpej char buf[128];
1836 1.129 thorpej
1837 1.129 thorpej count = 0;
1838 1.129 thorpej nmarker = 0;
1839 1.129 thorpej
1840 1.129 thorpej (*pr)("kqueue %p (restart=%d count=%u):\n", kq,
1841 1.129 thorpej !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
1842 1.129 thorpej (*pr)(" Queued knotes:\n");
1843 1.129 thorpej TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1844 1.129 thorpej if (kn->kn_status & KN_MARKER) {
1845 1.129 thorpej nmarker++;
1846 1.129 thorpej } else {
1847 1.129 thorpej count++;
1848 1.129 thorpej }
1849 1.129 thorpej (*pr)(" knote %p: kq=%p status=%s\n",
1850 1.129 thorpej kn, kn->kn_kq, KN_FMT(buf, kn));
1851 1.129 thorpej (*pr)(" id=0x%lx (%lu) filter=%d\n",
1852 1.129 thorpej (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
1853 1.129 thorpej if (kn->kn_kq != kq) {
1854 1.129 thorpej (*pr)(" !!! kn->kn_kq != kq\n");
1855 1.129 thorpej }
1856 1.129 thorpej }
1857 1.129 thorpej if (count != KQ_COUNT(kq)) {
1858 1.129 thorpej (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n",
1859 1.129 thorpej count, KQ_COUNT(kq));
1860 1.129 thorpej }
1861 1.129 thorpej }
1862 1.129 thorpej #endif /* DDB */
1863 1.129 thorpej
1864 1.129 thorpej #if defined(DEBUG)
1865 1.52 yamt static void
1866 1.94 christos kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1867 1.52 yamt {
1868 1.52 yamt const struct knote *kn;
1869 1.118 jdolecek u_int count;
1870 1.52 yamt int nmarker;
1871 1.94 christos char buf[128];
1872 1.52 yamt
1873 1.52 yamt KASSERT(mutex_owned(&kq->kq_lock));
1874 1.52 yamt
1875 1.52 yamt count = 0;
1876 1.52 yamt nmarker = 0;
1877 1.52 yamt TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1878 1.52 yamt if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1879 1.94 christos panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1880 1.94 christos func, line, kq, kn, KN_FMT(buf, kn));
1881 1.52 yamt }
1882 1.52 yamt if ((kn->kn_status & KN_MARKER) == 0) {
1883 1.52 yamt if (kn->kn_kq != kq) {
1884 1.94 christos panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1885 1.94 christos func, line, kq, kn, kn->kn_kq,
1886 1.94 christos KN_FMT(buf, kn));
1887 1.52 yamt }
1888 1.52 yamt if ((kn->kn_status & KN_ACTIVE) == 0) {
1889 1.94 christos panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1890 1.94 christos func, line, kq, kn, KN_FMT(buf, kn));
1891 1.52 yamt }
1892 1.52 yamt count++;
1893 1.118 jdolecek if (count > KQ_COUNT(kq)) {
1894 1.129 thorpej panic("%s,%zu: kq=%p kq->kq_count(%u) != "
1895 1.112 jdolecek "count(%d), nmarker=%d",
1896 1.118 jdolecek func, line, kq, KQ_COUNT(kq), count,
1897 1.112 jdolecek nmarker);
1898 1.52 yamt }
1899 1.52 yamt } else {
1900 1.52 yamt nmarker++;
1901 1.52 yamt }
1902 1.52 yamt }
1903 1.52 yamt }
1904 1.94 christos #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1905 1.52 yamt #else /* defined(DEBUG) */
1906 1.52 yamt #define kq_check(a) /* nothing */
1907 1.52 yamt #endif /* defined(DEBUG) */
1908 1.52 yamt
1909 1.118 jdolecek static void
1910 1.118 jdolecek kqueue_restart(file_t *fp)
1911 1.118 jdolecek {
1912 1.118 jdolecek struct kqueue *kq = fp->f_kqueue;
1913 1.118 jdolecek KASSERT(kq != NULL);
1914 1.118 jdolecek
1915 1.118 jdolecek mutex_spin_enter(&kq->kq_lock);
1916 1.118 jdolecek kq->kq_count |= KQ_RESTART;
1917 1.118 jdolecek cv_broadcast(&kq->kq_cv);
1918 1.118 jdolecek mutex_spin_exit(&kq->kq_lock);
1919 1.118 jdolecek }
1920 1.118 jdolecek
1921 1.3 jdolecek /*
1922 1.3 jdolecek * Scan through the list of events on fp (for a maximum of maxevents),
1923 1.3 jdolecek * returning the results in to ulistp. Timeout is determined by tsp; if
1924 1.3 jdolecek * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1925 1.3 jdolecek * as appropriate.
1926 1.3 jdolecek */
1927 1.1 lukem static int
1928 1.49 ad kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1929 1.49 ad const struct timespec *tsp, register_t *retval,
1930 1.49 ad const struct kevent_ops *keops, struct kevent *kevbuf,
1931 1.49 ad size_t kevcnt)
1932 1.1 lukem {
1933 1.3 jdolecek struct kqueue *kq;
1934 1.3 jdolecek struct kevent *kevp;
1935 1.62 christos struct timespec ats, sleepts;
1936 1.85 christos struct knote *kn, *marker, morker;
1937 1.24 cube size_t count, nkev, nevents;
1938 1.111 jdolecek int timeout, error, touch, rv, influx;
1939 1.49 ad filedesc_t *fdp;
1940 1.1 lukem
1941 1.49 ad fdp = curlwp->l_fd;
1942 1.82 matt kq = fp->f_kqueue;
1943 1.1 lukem count = maxevents;
1944 1.24 cube nkev = nevents = error = 0;
1945 1.49 ad if (count == 0) {
1946 1.49 ad *retval = 0;
1947 1.49 ad return 0;
1948 1.49 ad }
1949 1.1 lukem
1950 1.9 jdolecek if (tsp) { /* timeout supplied */
1951 1.63 christos ats = *tsp;
1952 1.62 christos if (inittimeleft(&ats, &sleepts) == -1) {
1953 1.49 ad *retval = maxevents;
1954 1.49 ad return EINVAL;
1955 1.1 lukem }
1956 1.62 christos timeout = tstohz(&ats);
1957 1.9 jdolecek if (timeout <= 0)
1958 1.29 kardel timeout = -1; /* do poll */
1959 1.1 lukem } else {
1960 1.9 jdolecek /* no timeout, wait forever */
1961 1.1 lukem timeout = 0;
1962 1.93 riastrad }
1963 1.1 lukem
1964 1.85 christos memset(&morker, 0, sizeof(morker));
1965 1.85 christos marker = &morker;
1966 1.129 thorpej marker->kn_kq = kq;
1967 1.49 ad marker->kn_status = KN_MARKER;
1968 1.49 ad mutex_spin_enter(&kq->kq_lock);
1969 1.3 jdolecek retry:
1970 1.49 ad kevp = kevbuf;
1971 1.118 jdolecek if (KQ_COUNT(kq) == 0) {
1972 1.49 ad if (timeout >= 0) {
1973 1.49 ad error = cv_timedwait_sig(&kq->kq_cv,
1974 1.49 ad &kq->kq_lock, timeout);
1975 1.49 ad if (error == 0) {
1976 1.118 jdolecek if (KQ_COUNT(kq) == 0 &&
1977 1.118 jdolecek (kq->kq_count & KQ_RESTART)) {
1978 1.118 jdolecek /* return to clear file reference */
1979 1.118 jdolecek error = ERESTART;
1980 1.118 jdolecek } else if (tsp == NULL || (timeout =
1981 1.118 jdolecek gettimeleft(&ats, &sleepts)) > 0) {
1982 1.49 ad goto retry;
1983 1.118 jdolecek }
1984 1.49 ad } else {
1985 1.49 ad /* don't restart after signals... */
1986 1.49 ad if (error == ERESTART)
1987 1.49 ad error = EINTR;
1988 1.49 ad if (error == EWOULDBLOCK)
1989 1.49 ad error = 0;
1990 1.49 ad }
1991 1.1 lukem }
1992 1.92 christos mutex_spin_exit(&kq->kq_lock);
1993 1.110 jdolecek goto done;
1994 1.110 jdolecek }
1995 1.110 jdolecek
1996 1.110 jdolecek /* mark end of knote list */
1997 1.110 jdolecek TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1998 1.111 jdolecek influx = 0;
1999 1.1 lukem
2000 1.110 jdolecek /*
2001 1.110 jdolecek * Acquire the fdp->fd_lock interlock to avoid races with
2002 1.110 jdolecek * file creation/destruction from other threads.
2003 1.110 jdolecek */
2004 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
2005 1.111 jdolecek relock:
2006 1.110 jdolecek mutex_enter(&fdp->fd_lock);
2007 1.110 jdolecek mutex_spin_enter(&kq->kq_lock);
2008 1.92 christos
2009 1.110 jdolecek while (count != 0) {
2010 1.129 thorpej /*
2011 1.129 thorpej * Get next knote. We are guaranteed this will never
2012 1.129 thorpej * be NULL because of the marker we inserted above.
2013 1.129 thorpej */
2014 1.129 thorpej kn = TAILQ_FIRST(&kq->kq_head);
2015 1.111 jdolecek
2016 1.129 thorpej bool kn_is_other_marker =
2017 1.129 thorpej (kn->kn_status & KN_MARKER) != 0 && kn != marker;
2018 1.129 thorpej bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
2019 1.129 thorpej bool kn_is_in_flux = kn_in_flux(kn);
2020 1.129 thorpej
2021 1.129 thorpej /*
2022 1.129 thorpej * If we found a marker that's not ours, or this knote
2023 1.129 thorpej * is in a state of flux, then wait for everything to
2024 1.129 thorpej * settle down and go around again.
2025 1.129 thorpej */
2026 1.129 thorpej if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
2027 1.111 jdolecek if (influx) {
2028 1.111 jdolecek influx = 0;
2029 1.111 jdolecek KQ_FLUX_WAKEUP(kq);
2030 1.111 jdolecek }
2031 1.111 jdolecek mutex_exit(&fdp->fd_lock);
2032 1.129 thorpej if (kn_is_other_marker || kn_is_in_flux) {
2033 1.129 thorpej KQ_FLUX_WAIT(kq);
2034 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
2035 1.129 thorpej } else {
2036 1.129 thorpej /*
2037 1.129 thorpej * Detaching but not in-flux? Someone is
2038 1.129 thorpej * actively trying to finish the job; just
2039 1.129 thorpej * go around and try again.
2040 1.129 thorpej */
2041 1.129 thorpej KASSERT(kn_is_detaching);
2042 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
2043 1.129 thorpej preempt_point();
2044 1.129 thorpej }
2045 1.111 jdolecek goto relock;
2046 1.111 jdolecek }
2047 1.111 jdolecek
2048 1.111 jdolecek TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2049 1.111 jdolecek if (kn == marker) {
2050 1.111 jdolecek /* it's our marker, stop */
2051 1.111 jdolecek KQ_FLUX_WAKEUP(kq);
2052 1.111 jdolecek if (count == maxevents) {
2053 1.110 jdolecek mutex_exit(&fdp->fd_lock);
2054 1.110 jdolecek goto retry;
2055 1.49 ad }
2056 1.111 jdolecek break;
2057 1.110 jdolecek }
2058 1.111 jdolecek KASSERT((kn->kn_status & KN_BUSY) == 0);
2059 1.111 jdolecek
2060 1.110 jdolecek kq_check(kq);
2061 1.115 jdolecek kn->kn_status &= ~KN_QUEUED;
2062 1.110 jdolecek kn->kn_status |= KN_BUSY;
2063 1.110 jdolecek kq_check(kq);
2064 1.110 jdolecek if (kn->kn_status & KN_DISABLED) {
2065 1.115 jdolecek kn->kn_status &= ~KN_BUSY;
2066 1.111 jdolecek kq->kq_count--;
2067 1.110 jdolecek /* don't want disabled events */
2068 1.110 jdolecek continue;
2069 1.110 jdolecek }
2070 1.110 jdolecek if ((kn->kn_flags & EV_ONESHOT) == 0) {
2071 1.110 jdolecek mutex_spin_exit(&kq->kq_lock);
2072 1.110 jdolecek KASSERT(mutex_owned(&fdp->fd_lock));
2073 1.122 thorpej rv = filter_event(kn, 0);
2074 1.110 jdolecek mutex_spin_enter(&kq->kq_lock);
2075 1.115 jdolecek /* Re-poll if note was re-enqueued. */
2076 1.115 jdolecek if ((kn->kn_status & KN_QUEUED) != 0) {
2077 1.115 jdolecek kn->kn_status &= ~KN_BUSY;
2078 1.115 jdolecek /* Re-enqueue raised kq_count, lower it again */
2079 1.115 jdolecek kq->kq_count--;
2080 1.115 jdolecek influx = 1;
2081 1.115 jdolecek continue;
2082 1.115 jdolecek }
2083 1.110 jdolecek if (rv == 0) {
2084 1.110 jdolecek /*
2085 1.129 thorpej * non-ONESHOT event that hasn't triggered
2086 1.129 thorpej * again, so it will remain de-queued.
2087 1.110 jdolecek */
2088 1.115 jdolecek kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2089 1.111 jdolecek kq->kq_count--;
2090 1.111 jdolecek influx = 1;
2091 1.110 jdolecek continue;
2092 1.49 ad }
2093 1.129 thorpej } else {
2094 1.129 thorpej /*
2095 1.129 thorpej * This ONESHOT note is going to be detached
2096 1.129 thorpej * below. Mark the knote as not long for this
2097 1.129 thorpej * world before we release the kq lock so that
2098 1.129 thorpej * no one else will put it in a state of flux.
2099 1.129 thorpej */
2100 1.129 thorpej KNOTE_WILLDETACH(kn);
2101 1.110 jdolecek }
2102 1.110 jdolecek KASSERT(kn->kn_fop != NULL);
2103 1.121 thorpej touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
2104 1.110 jdolecek kn->kn_fop->f_touch != NULL);
2105 1.110 jdolecek /* XXXAD should be got from f_event if !oneshot. */
2106 1.110 jdolecek if (touch) {
2107 1.122 thorpej filter_touch(kn, kevp, EVENT_PROCESS);
2108 1.110 jdolecek } else {
2109 1.110 jdolecek *kevp = kn->kn_kevent;
2110 1.110 jdolecek }
2111 1.110 jdolecek kevp++;
2112 1.110 jdolecek nkev++;
2113 1.111 jdolecek influx = 1;
2114 1.110 jdolecek if (kn->kn_flags & EV_ONESHOT) {
2115 1.110 jdolecek /* delete ONESHOT events after retrieval */
2116 1.115 jdolecek kn->kn_status &= ~KN_BUSY;
2117 1.111 jdolecek kq->kq_count--;
2118 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
2119 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) != 0 &&
2120 1.129 thorpej kn->kn_kevent.udata == curlwp);
2121 1.110 jdolecek mutex_spin_exit(&kq->kq_lock);
2122 1.110 jdolecek knote_detach(kn, fdp, true);
2123 1.110 jdolecek mutex_enter(&fdp->fd_lock);
2124 1.110 jdolecek mutex_spin_enter(&kq->kq_lock);
2125 1.110 jdolecek } else if (kn->kn_flags & EV_CLEAR) {
2126 1.110 jdolecek /* clear state after retrieval */
2127 1.110 jdolecek kn->kn_data = 0;
2128 1.110 jdolecek kn->kn_fflags = 0;
2129 1.110 jdolecek /*
2130 1.110 jdolecek * Manually clear knotes who weren't
2131 1.110 jdolecek * 'touch'ed.
2132 1.110 jdolecek */
2133 1.110 jdolecek if (touch == 0) {
2134 1.49 ad kn->kn_data = 0;
2135 1.49 ad kn->kn_fflags = 0;
2136 1.49 ad }
2137 1.115 jdolecek kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2138 1.111 jdolecek kq->kq_count--;
2139 1.110 jdolecek } else if (kn->kn_flags & EV_DISPATCH) {
2140 1.110 jdolecek kn->kn_status |= KN_DISABLED;
2141 1.115 jdolecek kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2142 1.111 jdolecek kq->kq_count--;
2143 1.110 jdolecek } else {
2144 1.110 jdolecek /* add event back on list */
2145 1.110 jdolecek kq_check(kq);
2146 1.115 jdolecek kn->kn_status |= KN_QUEUED;
2147 1.110 jdolecek kn->kn_status &= ~KN_BUSY;
2148 1.110 jdolecek TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2149 1.110 jdolecek kq_check(kq);
2150 1.110 jdolecek }
2151 1.111 jdolecek
2152 1.110 jdolecek if (nkev == kevcnt) {
2153 1.110 jdolecek /* do copyouts in kevcnt chunks */
2154 1.111 jdolecek influx = 0;
2155 1.111 jdolecek KQ_FLUX_WAKEUP(kq);
2156 1.110 jdolecek mutex_spin_exit(&kq->kq_lock);
2157 1.110 jdolecek mutex_exit(&fdp->fd_lock);
2158 1.110 jdolecek error = (*keops->keo_put_events)
2159 1.110 jdolecek (keops->keo_private,
2160 1.110 jdolecek kevbuf, ulistp, nevents, nkev);
2161 1.110 jdolecek mutex_enter(&fdp->fd_lock);
2162 1.110 jdolecek mutex_spin_enter(&kq->kq_lock);
2163 1.110 jdolecek nevents += nkev;
2164 1.110 jdolecek nkev = 0;
2165 1.110 jdolecek kevp = kevbuf;
2166 1.110 jdolecek }
2167 1.110 jdolecek count--;
2168 1.110 jdolecek if (error != 0 || count == 0) {
2169 1.110 jdolecek /* remove marker */
2170 1.110 jdolecek TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2171 1.110 jdolecek break;
2172 1.1 lukem }
2173 1.1 lukem }
2174 1.111 jdolecek KQ_FLUX_WAKEUP(kq);
2175 1.110 jdolecek mutex_spin_exit(&kq->kq_lock);
2176 1.110 jdolecek mutex_exit(&fdp->fd_lock);
2177 1.110 jdolecek
2178 1.110 jdolecek done:
2179 1.49 ad if (nkev != 0) {
2180 1.3 jdolecek /* copyout remaining events */
2181 1.24 cube error = (*keops->keo_put_events)(keops->keo_private,
2182 1.49 ad kevbuf, ulistp, nevents, nkev);
2183 1.49 ad }
2184 1.3 jdolecek *retval = maxevents - count;
2185 1.3 jdolecek
2186 1.49 ad return error;
2187 1.1 lukem }
2188 1.1 lukem
2189 1.1 lukem /*
2190 1.49 ad * fileops ioctl method for a kqueue descriptor.
2191 1.3 jdolecek *
2192 1.3 jdolecek * Two ioctls are currently supported. They both use struct kfilter_mapping:
2193 1.3 jdolecek * KFILTER_BYNAME find name for filter, and return result in
2194 1.3 jdolecek * name, which is of size len.
2195 1.3 jdolecek * KFILTER_BYFILTER find filter for name. len is ignored.
2196 1.3 jdolecek */
2197 1.1 lukem /*ARGSUSED*/
2198 1.1 lukem static int
2199 1.49 ad kqueue_ioctl(file_t *fp, u_long com, void *data)
2200 1.1 lukem {
2201 1.3 jdolecek struct kfilter_mapping *km;
2202 1.3 jdolecek const struct kfilter *kfilter;
2203 1.3 jdolecek char *name;
2204 1.3 jdolecek int error;
2205 1.3 jdolecek
2206 1.49 ad km = data;
2207 1.3 jdolecek error = 0;
2208 1.49 ad name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
2209 1.3 jdolecek
2210 1.3 jdolecek switch (com) {
2211 1.3 jdolecek case KFILTER_BYFILTER: /* convert filter -> name */
2212 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
2213 1.3 jdolecek kfilter = kfilter_byfilter(km->filter);
2214 1.49 ad if (kfilter != NULL) {
2215 1.49 ad strlcpy(name, kfilter->name, KFILTER_MAXNAME);
2216 1.49 ad rw_exit(&kqueue_filter_lock);
2217 1.49 ad error = copyoutstr(name, km->name, km->len, NULL);
2218 1.49 ad } else {
2219 1.49 ad rw_exit(&kqueue_filter_lock);
2220 1.3 jdolecek error = ENOENT;
2221 1.49 ad }
2222 1.3 jdolecek break;
2223 1.3 jdolecek
2224 1.3 jdolecek case KFILTER_BYNAME: /* convert name -> filter */
2225 1.3 jdolecek error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
2226 1.3 jdolecek if (error) {
2227 1.3 jdolecek break;
2228 1.3 jdolecek }
2229 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
2230 1.3 jdolecek kfilter = kfilter_byname(name);
2231 1.3 jdolecek if (kfilter != NULL)
2232 1.3 jdolecek km->filter = kfilter->filter;
2233 1.3 jdolecek else
2234 1.3 jdolecek error = ENOENT;
2235 1.49 ad rw_exit(&kqueue_filter_lock);
2236 1.3 jdolecek break;
2237 1.3 jdolecek
2238 1.3 jdolecek default:
2239 1.3 jdolecek error = ENOTTY;
2240 1.49 ad break;
2241 1.3 jdolecek
2242 1.3 jdolecek }
2243 1.49 ad kmem_free(name, KFILTER_MAXNAME);
2244 1.3 jdolecek return (error);
2245 1.3 jdolecek }
2246 1.3 jdolecek
2247 1.3 jdolecek /*
2248 1.49 ad * fileops fcntl method for a kqueue descriptor.
2249 1.3 jdolecek */
2250 1.3 jdolecek static int
2251 1.49 ad kqueue_fcntl(file_t *fp, u_int com, void *data)
2252 1.3 jdolecek {
2253 1.3 jdolecek
2254 1.1 lukem return (ENOTTY);
2255 1.1 lukem }
2256 1.1 lukem
2257 1.3 jdolecek /*
2258 1.49 ad * fileops poll method for a kqueue descriptor.
2259 1.3 jdolecek * Determine if kqueue has events pending.
2260 1.3 jdolecek */
2261 1.1 lukem static int
2262 1.49 ad kqueue_poll(file_t *fp, int events)
2263 1.1 lukem {
2264 1.3 jdolecek struct kqueue *kq;
2265 1.3 jdolecek int revents;
2266 1.3 jdolecek
2267 1.82 matt kq = fp->f_kqueue;
2268 1.49 ad
2269 1.3 jdolecek revents = 0;
2270 1.3 jdolecek if (events & (POLLIN | POLLRDNORM)) {
2271 1.49 ad mutex_spin_enter(&kq->kq_lock);
2272 1.118 jdolecek if (KQ_COUNT(kq) != 0) {
2273 1.3 jdolecek revents |= events & (POLLIN | POLLRDNORM);
2274 1.1 lukem } else {
2275 1.49 ad selrecord(curlwp, &kq->kq_sel);
2276 1.1 lukem }
2277 1.52 yamt kq_check(kq);
2278 1.49 ad mutex_spin_exit(&kq->kq_lock);
2279 1.1 lukem }
2280 1.49 ad
2281 1.49 ad return revents;
2282 1.1 lukem }
2283 1.1 lukem
2284 1.3 jdolecek /*
2285 1.49 ad * fileops stat method for a kqueue descriptor.
2286 1.3 jdolecek * Returns dummy info, with st_size being number of events pending.
2287 1.3 jdolecek */
2288 1.1 lukem static int
2289 1.49 ad kqueue_stat(file_t *fp, struct stat *st)
2290 1.1 lukem {
2291 1.49 ad struct kqueue *kq;
2292 1.49 ad
2293 1.82 matt kq = fp->f_kqueue;
2294 1.1 lukem
2295 1.49 ad memset(st, 0, sizeof(*st));
2296 1.118 jdolecek st->st_size = KQ_COUNT(kq);
2297 1.1 lukem st->st_blksize = sizeof(struct kevent);
2298 1.128 thorpej st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
2299 1.128 thorpej st->st_blocks = 1;
2300 1.128 thorpej st->st_uid = kauth_cred_geteuid(fp->f_cred);
2301 1.128 thorpej st->st_gid = kauth_cred_getegid(fp->f_cred);
2302 1.49 ad
2303 1.49 ad return 0;
2304 1.49 ad }
2305 1.49 ad
2306 1.49 ad static void
2307 1.49 ad kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
2308 1.49 ad {
2309 1.49 ad struct knote *kn;
2310 1.49 ad filedesc_t *fdp;
2311 1.49 ad
2312 1.49 ad fdp = kq->kq_fdp;
2313 1.49 ad
2314 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
2315 1.49 ad
2316 1.129 thorpej again:
2317 1.49 ad for (kn = SLIST_FIRST(list); kn != NULL;) {
2318 1.49 ad if (kq != kn->kn_kq) {
2319 1.49 ad kn = SLIST_NEXT(kn, kn_link);
2320 1.49 ad continue;
2321 1.49 ad }
2322 1.129 thorpej if (knote_detach_quiesce(kn)) {
2323 1.129 thorpej mutex_enter(&fdp->fd_lock);
2324 1.129 thorpej goto again;
2325 1.129 thorpej }
2326 1.49 ad knote_detach(kn, fdp, true);
2327 1.49 ad mutex_enter(&fdp->fd_lock);
2328 1.49 ad kn = SLIST_FIRST(list);
2329 1.49 ad }
2330 1.1 lukem }
2331 1.1 lukem
2332 1.3 jdolecek /*
2333 1.49 ad * fileops close method for a kqueue descriptor.
2334 1.3 jdolecek */
2335 1.1 lukem static int
2336 1.49 ad kqueue_close(file_t *fp)
2337 1.1 lukem {
2338 1.49 ad struct kqueue *kq;
2339 1.49 ad filedesc_t *fdp;
2340 1.49 ad fdfile_t *ff;
2341 1.49 ad int i;
2342 1.49 ad
2343 1.82 matt kq = fp->f_kqueue;
2344 1.82 matt fp->f_kqueue = NULL;
2345 1.79 christos fp->f_type = 0;
2346 1.49 ad fdp = curlwp->l_fd;
2347 1.1 lukem
2348 1.129 thorpej KASSERT(kq->kq_fdp == fdp);
2349 1.129 thorpej
2350 1.49 ad mutex_enter(&fdp->fd_lock);
2351 1.129 thorpej
2352 1.129 thorpej /*
2353 1.129 thorpej * We're doing to drop the fd_lock multiple times while
2354 1.129 thorpej * we detach knotes. During this time, attempts to register
2355 1.129 thorpej * knotes via the back door (e.g. knote_proc_fork_track())
2356 1.129 thorpej * need to fail, lest they sneak in to attach a knote after
2357 1.129 thorpej * we've already drained the list it's destined for.
2358 1.129 thorpej *
2359 1.129 thorpej * We must aquire kq_lock here to set KQ_CLOSING (to serialize
2360 1.129 thorpej * with other code paths that modify kq_count without holding
2361 1.129 thorpej * the fd_lock), but once this bit is set, it's only safe to
2362 1.129 thorpej * test it while holding the fd_lock, and holding kq_lock while
2363 1.129 thorpej * doing so is not necessary.
2364 1.129 thorpej */
2365 1.129 thorpej mutex_enter(&kq->kq_lock);
2366 1.129 thorpej kq->kq_count |= KQ_CLOSING;
2367 1.129 thorpej mutex_exit(&kq->kq_lock);
2368 1.129 thorpej
2369 1.49 ad for (i = 0; i <= fdp->fd_lastkqfile; i++) {
2370 1.65 ad if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
2371 1.49 ad continue;
2372 1.49 ad kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
2373 1.1 lukem }
2374 1.1 lukem if (fdp->fd_knhashmask != 0) {
2375 1.1 lukem for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
2376 1.49 ad kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
2377 1.1 lukem }
2378 1.1 lukem }
2379 1.129 thorpej
2380 1.49 ad mutex_exit(&fdp->fd_lock);
2381 1.49 ad
2382 1.129 thorpej #if defined(DEBUG)
2383 1.129 thorpej mutex_enter(&kq->kq_lock);
2384 1.129 thorpej kq_check(kq);
2385 1.129 thorpej mutex_exit(&kq->kq_lock);
2386 1.129 thorpej #endif /* DEBUG */
2387 1.129 thorpej KASSERT(TAILQ_EMPTY(&kq->kq_head));
2388 1.118 jdolecek KASSERT(KQ_COUNT(kq) == 0);
2389 1.49 ad mutex_destroy(&kq->kq_lock);
2390 1.49 ad cv_destroy(&kq->kq_cv);
2391 1.48 rmind seldestroy(&kq->kq_sel);
2392 1.49 ad kmem_free(kq, sizeof(*kq));
2393 1.1 lukem
2394 1.1 lukem return (0);
2395 1.1 lukem }
2396 1.1 lukem
2397 1.3 jdolecek /*
2398 1.3 jdolecek * struct fileops kqfilter method for a kqueue descriptor.
2399 1.3 jdolecek * Event triggered when monitored kqueue changes.
2400 1.3 jdolecek */
2401 1.3 jdolecek static int
2402 1.49 ad kqueue_kqfilter(file_t *fp, struct knote *kn)
2403 1.3 jdolecek {
2404 1.3 jdolecek struct kqueue *kq;
2405 1.49 ad
2406 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
2407 1.49 ad
2408 1.49 ad KASSERT(fp == kn->kn_obj);
2409 1.3 jdolecek
2410 1.3 jdolecek if (kn->kn_filter != EVFILT_READ)
2411 1.126 thorpej return EINVAL;
2412 1.49 ad
2413 1.3 jdolecek kn->kn_fop = &kqread_filtops;
2414 1.49 ad mutex_enter(&kq->kq_lock);
2415 1.109 thorpej selrecord_knote(&kq->kq_sel, kn);
2416 1.49 ad mutex_exit(&kq->kq_lock);
2417 1.49 ad
2418 1.49 ad return 0;
2419 1.3 jdolecek }
2420 1.3 jdolecek
2421 1.3 jdolecek
2422 1.3 jdolecek /*
2423 1.49 ad * Walk down a list of knotes, activating them if their event has
2424 1.49 ad * triggered. The caller's object lock (e.g. device driver lock)
2425 1.49 ad * must be held.
2426 1.1 lukem */
2427 1.1 lukem void
2428 1.1 lukem knote(struct klist *list, long hint)
2429 1.1 lukem {
2430 1.71 drochner struct knote *kn, *tmpkn;
2431 1.1 lukem
2432 1.71 drochner SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
2433 1.127 thorpej if (filter_event(kn, hint)) {
2434 1.49 ad knote_activate(kn);
2435 1.127 thorpej }
2436 1.49 ad }
2437 1.1 lukem }
2438 1.1 lukem
2439 1.1 lukem /*
2440 1.49 ad * Remove all knotes referencing a specified fd
2441 1.1 lukem */
2442 1.1 lukem void
2443 1.49 ad knote_fdclose(int fd)
2444 1.1 lukem {
2445 1.49 ad struct klist *list;
2446 1.1 lukem struct knote *kn;
2447 1.49 ad filedesc_t *fdp;
2448 1.1 lukem
2449 1.129 thorpej again:
2450 1.49 ad fdp = curlwp->l_fd;
2451 1.106 riastrad mutex_enter(&fdp->fd_lock);
2452 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
2453 1.1 lukem while ((kn = SLIST_FIRST(list)) != NULL) {
2454 1.129 thorpej if (knote_detach_quiesce(kn)) {
2455 1.129 thorpej goto again;
2456 1.129 thorpej }
2457 1.49 ad knote_detach(kn, fdp, true);
2458 1.49 ad mutex_enter(&fdp->fd_lock);
2459 1.1 lukem }
2460 1.49 ad mutex_exit(&fdp->fd_lock);
2461 1.1 lukem }
2462 1.1 lukem
2463 1.1 lukem /*
2464 1.49 ad * Drop knote. Called with fdp->fd_lock held, and will drop before
2465 1.49 ad * returning.
2466 1.3 jdolecek */
2467 1.1 lukem static void
2468 1.49 ad knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
2469 1.1 lukem {
2470 1.49 ad struct klist *list;
2471 1.53 ad struct kqueue *kq;
2472 1.53 ad
2473 1.53 ad kq = kn->kn_kq;
2474 1.1 lukem
2475 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
2476 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
2477 1.129 thorpej KASSERT(kn->kn_fop != NULL);
2478 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
2479 1.3 jdolecek
2480 1.53 ad /* Remove from monitored object. */
2481 1.49 ad if (dofop) {
2482 1.122 thorpej filter_detach(kn);
2483 1.1 lukem }
2484 1.3 jdolecek
2485 1.53 ad /* Remove from descriptor table. */
2486 1.121 thorpej if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2487 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
2488 1.1 lukem else
2489 1.1 lukem list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2490 1.1 lukem
2491 1.1 lukem SLIST_REMOVE(list, kn, knote, kn_link);
2492 1.53 ad
2493 1.53 ad /* Remove from kqueue. */
2494 1.85 christos again:
2495 1.53 ad mutex_spin_enter(&kq->kq_lock);
2496 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
2497 1.53 ad if ((kn->kn_status & KN_QUEUED) != 0) {
2498 1.53 ad kq_check(kq);
2499 1.129 thorpej KASSERT(KQ_COUNT(kq) != 0);
2500 1.85 christos kq->kq_count--;
2501 1.53 ad TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2502 1.53 ad kn->kn_status &= ~KN_QUEUED;
2503 1.53 ad kq_check(kq);
2504 1.85 christos } else if (kn->kn_status & KN_BUSY) {
2505 1.85 christos mutex_spin_exit(&kq->kq_lock);
2506 1.85 christos goto again;
2507 1.53 ad }
2508 1.53 ad mutex_spin_exit(&kq->kq_lock);
2509 1.53 ad
2510 1.49 ad mutex_exit(&fdp->fd_lock);
2511 1.121 thorpej if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2512 1.49 ad fd_putfile(kn->kn_id);
2513 1.49 ad atomic_dec_uint(&kn->kn_kfilter->refcnt);
2514 1.49 ad kmem_free(kn, sizeof(*kn));
2515 1.1 lukem }
2516 1.1 lukem
2517 1.3 jdolecek /*
2518 1.3 jdolecek * Queue new event for knote.
2519 1.3 jdolecek */
2520 1.1 lukem static void
2521 1.1 lukem knote_enqueue(struct knote *kn)
2522 1.1 lukem {
2523 1.49 ad struct kqueue *kq;
2524 1.49 ad
2525 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
2526 1.1 lukem
2527 1.3 jdolecek kq = kn->kn_kq;
2528 1.1 lukem
2529 1.49 ad mutex_spin_enter(&kq->kq_lock);
2530 1.129 thorpej if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2531 1.129 thorpej /* Don't bother enqueueing a dying knote. */
2532 1.129 thorpej goto out;
2533 1.129 thorpej }
2534 1.49 ad if ((kn->kn_status & KN_DISABLED) != 0) {
2535 1.49 ad kn->kn_status &= ~KN_DISABLED;
2536 1.49 ad }
2537 1.49 ad if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
2538 1.52 yamt kq_check(kq);
2539 1.85 christos kn->kn_status |= KN_QUEUED;
2540 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2541 1.129 thorpej KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2542 1.49 ad kq->kq_count++;
2543 1.52 yamt kq_check(kq);
2544 1.49 ad cv_broadcast(&kq->kq_cv);
2545 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2546 1.49 ad }
2547 1.129 thorpej out:
2548 1.49 ad mutex_spin_exit(&kq->kq_lock);
2549 1.1 lukem }
2550 1.49 ad /*
2551 1.49 ad * Queue new event for knote.
2552 1.49 ad */
2553 1.49 ad static void
2554 1.49 ad knote_activate(struct knote *kn)
2555 1.49 ad {
2556 1.49 ad struct kqueue *kq;
2557 1.49 ad
2558 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
2559 1.1 lukem
2560 1.3 jdolecek kq = kn->kn_kq;
2561 1.12 pk
2562 1.49 ad mutex_spin_enter(&kq->kq_lock);
2563 1.129 thorpej if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2564 1.129 thorpej /* Don't bother enqueueing a dying knote. */
2565 1.129 thorpej goto out;
2566 1.129 thorpej }
2567 1.49 ad kn->kn_status |= KN_ACTIVE;
2568 1.49 ad if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
2569 1.52 yamt kq_check(kq);
2570 1.85 christos kn->kn_status |= KN_QUEUED;
2571 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2572 1.129 thorpej KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2573 1.49 ad kq->kq_count++;
2574 1.52 yamt kq_check(kq);
2575 1.49 ad cv_broadcast(&kq->kq_cv);
2576 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2577 1.49 ad }
2578 1.129 thorpej out:
2579 1.49 ad mutex_spin_exit(&kq->kq_lock);
2580 1.1 lukem }
2581 1.131 thorpej
2582 1.131 thorpej /*
2583 1.131 thorpej * Set EV_EOF on the specified knote. Also allows additional
2584 1.131 thorpej * EV_* flags to be set (e.g. EV_ONESHOT).
2585 1.131 thorpej */
2586 1.131 thorpej void
2587 1.131 thorpej knote_set_eof(struct knote *kn, uint32_t flags)
2588 1.131 thorpej {
2589 1.131 thorpej struct kqueue *kq = kn->kn_kq;
2590 1.131 thorpej
2591 1.131 thorpej mutex_spin_enter(&kq->kq_lock);
2592 1.131 thorpej kn->kn_flags |= EV_EOF | flags;
2593 1.131 thorpej mutex_spin_exit(&kq->kq_lock);
2594 1.131 thorpej }
2595 1.131 thorpej
2596 1.131 thorpej /*
2597 1.131 thorpej * Clear EV_EOF on the specified knote.
2598 1.131 thorpej */
2599 1.131 thorpej void
2600 1.131 thorpej knote_clear_eof(struct knote *kn)
2601 1.131 thorpej {
2602 1.131 thorpej struct kqueue *kq = kn->kn_kq;
2603 1.131 thorpej
2604 1.131 thorpej mutex_spin_enter(&kq->kq_lock);
2605 1.131 thorpej kn->kn_flags &= ~EV_EOF;
2606 1.131 thorpej mutex_spin_exit(&kq->kq_lock);
2607 1.131 thorpej }
2608