Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.132
      1  1.132   thorpej /*	$NetBSD: kern_event.c,v 1.132 2021/10/13 04:57:19 thorpej Exp $	*/
      2   1.49        ad 
      3   1.49        ad /*-
      4  1.129   thorpej  * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
      5   1.49        ad  * All rights reserved.
      6   1.49        ad  *
      7   1.64        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.64        ad  * by Andrew Doran.
      9   1.64        ad  *
     10   1.49        ad  * Redistribution and use in source and binary forms, with or without
     11   1.49        ad  * modification, are permitted provided that the following conditions
     12   1.49        ad  * are met:
     13   1.49        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.49        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.49        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.49        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.49        ad  *    documentation and/or other materials provided with the distribution.
     18   1.49        ad  *
     19   1.49        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.49        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.49        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.49        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.49        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.49        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.49        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.49        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.49        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.49        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.49        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.49        ad  */
     31   1.28    kardel 
     32    1.1     lukem /*-
     33    1.1     lukem  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
     34  1.108  christos  * Copyright (c) 2009 Apple, Inc
     35    1.1     lukem  * All rights reserved.
     36    1.1     lukem  *
     37    1.1     lukem  * Redistribution and use in source and binary forms, with or without
     38    1.1     lukem  * modification, are permitted provided that the following conditions
     39    1.1     lukem  * are met:
     40    1.1     lukem  * 1. Redistributions of source code must retain the above copyright
     41    1.1     lukem  *    notice, this list of conditions and the following disclaimer.
     42    1.1     lukem  * 2. Redistributions in binary form must reproduce the above copyright
     43    1.1     lukem  *    notice, this list of conditions and the following disclaimer in the
     44    1.1     lukem  *    documentation and/or other materials provided with the distribution.
     45    1.1     lukem  *
     46    1.1     lukem  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     47    1.1     lukem  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     48    1.1     lukem  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     49    1.1     lukem  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     50    1.1     lukem  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     51    1.1     lukem  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     52    1.1     lukem  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     53    1.1     lukem  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     54    1.1     lukem  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     55    1.1     lukem  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     56    1.1     lukem  * SUCH DAMAGE.
     57    1.1     lukem  *
     58   1.49        ad  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
     59    1.1     lukem  */
     60   1.14  jdolecek 
     61  1.130   thorpej #ifdef _KERNEL_OPT
     62  1.129   thorpej #include "opt_ddb.h"
     63  1.130   thorpej #endif /* _KERNEL_OPT */
     64  1.129   thorpej 
     65   1.14  jdolecek #include <sys/cdefs.h>
     66  1.132   thorpej __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.132 2021/10/13 04:57:19 thorpej Exp $");
     67    1.1     lukem 
     68    1.1     lukem #include <sys/param.h>
     69    1.1     lukem #include <sys/systm.h>
     70    1.1     lukem #include <sys/kernel.h>
     71   1.86  christos #include <sys/wait.h>
     72    1.1     lukem #include <sys/proc.h>
     73    1.1     lukem #include <sys/file.h>
     74    1.3  jdolecek #include <sys/select.h>
     75    1.1     lukem #include <sys/queue.h>
     76    1.1     lukem #include <sys/event.h>
     77    1.1     lukem #include <sys/eventvar.h>
     78    1.1     lukem #include <sys/poll.h>
     79   1.49        ad #include <sys/kmem.h>
     80    1.1     lukem #include <sys/stat.h>
     81    1.3  jdolecek #include <sys/filedesc.h>
     82    1.3  jdolecek #include <sys/syscallargs.h>
     83   1.27      elad #include <sys/kauth.h>
     84   1.40        ad #include <sys/conf.h>
     85   1.49        ad #include <sys/atomic.h>
     86    1.1     lukem 
     87   1.49        ad static int	kqueue_scan(file_t *, size_t, struct kevent *,
     88   1.49        ad 			    const struct timespec *, register_t *,
     89   1.49        ad 			    const struct kevent_ops *, struct kevent *,
     90   1.49        ad 			    size_t);
     91   1.49        ad static int	kqueue_ioctl(file_t *, u_long, void *);
     92   1.49        ad static int	kqueue_fcntl(file_t *, u_int, void *);
     93   1.49        ad static int	kqueue_poll(file_t *, int);
     94   1.49        ad static int	kqueue_kqfilter(file_t *, struct knote *);
     95   1.49        ad static int	kqueue_stat(file_t *, struct stat *);
     96   1.49        ad static int	kqueue_close(file_t *);
     97  1.118  jdolecek static void	kqueue_restart(file_t *);
     98   1.49        ad static int	kqueue_register(struct kqueue *, struct kevent *);
     99   1.49        ad static void	kqueue_doclose(struct kqueue *, struct klist *, int);
    100   1.49        ad 
    101   1.49        ad static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
    102   1.49        ad static void	knote_enqueue(struct knote *);
    103   1.49        ad static void	knote_activate(struct knote *);
    104   1.49        ad 
    105   1.49        ad static void	filt_kqdetach(struct knote *);
    106   1.49        ad static int	filt_kqueue(struct knote *, long hint);
    107   1.49        ad static int	filt_procattach(struct knote *);
    108   1.49        ad static void	filt_procdetach(struct knote *);
    109   1.49        ad static int	filt_proc(struct knote *, long hint);
    110   1.49        ad static int	filt_fileattach(struct knote *);
    111   1.49        ad static void	filt_timerexpire(void *x);
    112   1.49        ad static int	filt_timerattach(struct knote *);
    113   1.49        ad static void	filt_timerdetach(struct knote *);
    114   1.49        ad static int	filt_timer(struct knote *, long hint);
    115  1.108  christos static int	filt_userattach(struct knote *);
    116  1.108  christos static void	filt_userdetach(struct knote *);
    117  1.108  christos static int	filt_user(struct knote *, long hint);
    118  1.108  christos static void	filt_usertouch(struct knote *, struct kevent *, long type);
    119    1.1     lukem 
    120   1.21  christos static const struct fileops kqueueops = {
    121  1.101  christos 	.fo_name = "kqueue",
    122   1.64        ad 	.fo_read = (void *)enxio,
    123   1.64        ad 	.fo_write = (void *)enxio,
    124   1.64        ad 	.fo_ioctl = kqueue_ioctl,
    125   1.64        ad 	.fo_fcntl = kqueue_fcntl,
    126   1.64        ad 	.fo_poll = kqueue_poll,
    127   1.64        ad 	.fo_stat = kqueue_stat,
    128   1.64        ad 	.fo_close = kqueue_close,
    129   1.64        ad 	.fo_kqfilter = kqueue_kqfilter,
    130  1.118  jdolecek 	.fo_restart = kqueue_restart,
    131    1.1     lukem };
    132    1.1     lukem 
    133   1.96      maya static const struct filterops kqread_filtops = {
    134  1.123   thorpej 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
    135   1.96      maya 	.f_attach = NULL,
    136   1.96      maya 	.f_detach = filt_kqdetach,
    137   1.96      maya 	.f_event = filt_kqueue,
    138   1.96      maya };
    139   1.96      maya 
    140   1.96      maya static const struct filterops proc_filtops = {
    141  1.129   thorpej 	.f_flags = FILTEROP_MPSAFE,
    142   1.96      maya 	.f_attach = filt_procattach,
    143   1.96      maya 	.f_detach = filt_procdetach,
    144   1.96      maya 	.f_event = filt_proc,
    145   1.96      maya };
    146   1.96      maya 
    147  1.122   thorpej /*
    148  1.122   thorpej  * file_filtops is not marked MPSAFE because it's going to call
    149  1.122   thorpej  * fileops::fo_kqfilter(), which might not be.  That function,
    150  1.122   thorpej  * however, will override the knote's filterops, and thus will
    151  1.122   thorpej  * inherit the MPSAFE-ness of the back-end at that time.
    152  1.122   thorpej  */
    153   1.96      maya static const struct filterops file_filtops = {
    154  1.121   thorpej 	.f_flags = FILTEROP_ISFD,
    155   1.96      maya 	.f_attach = filt_fileattach,
    156   1.96      maya 	.f_detach = NULL,
    157   1.96      maya 	.f_event = NULL,
    158   1.96      maya };
    159   1.96      maya 
    160   1.96      maya static const struct filterops timer_filtops = {
    161  1.125   thorpej 	.f_flags = FILTEROP_MPSAFE,
    162   1.96      maya 	.f_attach = filt_timerattach,
    163   1.96      maya 	.f_detach = filt_timerdetach,
    164   1.96      maya 	.f_event = filt_timer,
    165   1.96      maya };
    166    1.1     lukem 
    167  1.108  christos static const struct filterops user_filtops = {
    168  1.123   thorpej 	.f_flags = FILTEROP_MPSAFE,
    169  1.108  christos 	.f_attach = filt_userattach,
    170  1.108  christos 	.f_detach = filt_userdetach,
    171  1.108  christos 	.f_event = filt_user,
    172  1.108  christos 	.f_touch = filt_usertouch,
    173  1.108  christos };
    174  1.108  christos 
    175   1.49        ad static u_int	kq_ncallouts = 0;
    176    1.8  jdolecek static int	kq_calloutmax = (4 * 1024);
    177    1.7   thorpej 
    178    1.1     lukem #define	KN_HASHSIZE		64		/* XXX should be tunable */
    179    1.3  jdolecek #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    180    1.1     lukem 
    181  1.124   thorpej extern const struct filterops fs_filtops;	/* vfs_syscalls.c */
    182  1.124   thorpej extern const struct filterops sig_filtops;	/* kern_sig.c */
    183    1.1     lukem 
    184    1.1     lukem /*
    185    1.1     lukem  * Table for for all system-defined filters.
    186    1.3  jdolecek  * These should be listed in the numeric order of the EVFILT_* defines.
    187    1.3  jdolecek  * If filtops is NULL, the filter isn't implemented in NetBSD.
    188    1.3  jdolecek  * End of list is when name is NULL.
    189   1.93  riastrad  *
    190   1.49        ad  * Note that 'refcnt' is meaningless for built-in filters.
    191    1.1     lukem  */
    192    1.3  jdolecek struct kfilter {
    193   1.49        ad 	const char	*name;		/* name of filter */
    194   1.49        ad 	uint32_t	filter;		/* id of filter */
    195   1.49        ad 	unsigned	refcnt;		/* reference count */
    196    1.3  jdolecek 	const struct filterops *filtops;/* operations for filter */
    197   1.49        ad 	size_t		namelen;	/* length of name string */
    198    1.3  jdolecek };
    199    1.3  jdolecek 
    200   1.49        ad /* System defined filters */
    201   1.49        ad static struct kfilter sys_kfilters[] = {
    202   1.49        ad 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
    203   1.49        ad 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
    204   1.49        ad 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
    205   1.49        ad 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
    206   1.49        ad 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
    207   1.49        ad 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
    208   1.49        ad 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
    209  1.102  christos 	{ "EVFILT_FS",		EVFILT_FS,	0, &fs_filtops, 0 },
    210  1.108  christos 	{ "EVFILT_USER",	EVFILT_USER,	0, &user_filtops, 0 },
    211   1.49        ad 	{ NULL,			0,		0, NULL, 0 },
    212    1.1     lukem };
    213    1.1     lukem 
    214   1.49        ad /* User defined kfilters */
    215    1.3  jdolecek static struct kfilter	*user_kfilters;		/* array */
    216    1.3  jdolecek static int		user_kfilterc;		/* current offset */
    217    1.3  jdolecek static int		user_kfiltermaxc;	/* max size so far */
    218   1.49        ad static size_t		user_kfiltersz;		/* size of allocated memory */
    219   1.49        ad 
    220   1.95  riastrad /*
    221   1.95  riastrad  * Global Locks.
    222   1.95  riastrad  *
    223   1.95  riastrad  * Lock order:
    224   1.95  riastrad  *
    225   1.95  riastrad  *	kqueue_filter_lock
    226   1.95  riastrad  *	-> kn_kq->kq_fdp->fd_lock
    227  1.125   thorpej  *	-> object lock (e.g., device driver lock, &c.)
    228   1.95  riastrad  *	-> kn_kq->kq_lock
    229   1.95  riastrad  *
    230   1.95  riastrad  * Locking rules:
    231   1.95  riastrad  *
    232   1.95  riastrad  *	f_attach: fdp->fd_lock, KERNEL_LOCK
    233   1.95  riastrad  *	f_detach: fdp->fd_lock, KERNEL_LOCK
    234   1.95  riastrad  *	f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
    235   1.95  riastrad  *	f_event via knote: whatever caller guarantees
    236   1.95  riastrad  *		Typically,	f_event(NOTE_SUBMIT) via knote: object lock
    237   1.95  riastrad  *				f_event(!NOTE_SUBMIT) via knote: nothing,
    238   1.95  riastrad  *					acquires/releases object lock inside.
    239  1.129   thorpej  *
    240  1.129   thorpej  * Locking rules when detaching knotes:
    241  1.129   thorpej  *
    242  1.129   thorpej  * There are some situations where knote submission may require dropping
    243  1.129   thorpej  * locks (see knote_proc_fork()).  In order to support this, it's possible
    244  1.129   thorpej  * to mark a knote as being 'in-flux'.  Such a knote is guaranteed not to
    245  1.129   thorpej  * be detached while it remains in-flux.  Because it will not be detached,
    246  1.129   thorpej  * locks can be dropped so e.g. memory can be allocated, locks on other
    247  1.129   thorpej  * data structures can be acquired, etc.  During this time, any attempt to
    248  1.129   thorpej  * detach an in-flux knote must wait until the knote is no longer in-flux.
    249  1.129   thorpej  * When this happens, the knote is marked for death (KN_WILLDETACH) and the
    250  1.129   thorpej  * LWP who gets to finish the detach operation is recorded in the knote's
    251  1.129   thorpej  * 'udata' field (which is no longer required for its original purpose once
    252  1.129   thorpej  * a knote is so marked).  Code paths that lead to knote_detach() must ensure
    253  1.129   thorpej  * that their LWP is the one tasked with its final demise after waiting for
    254  1.129   thorpej  * the in-flux status of the knote to clear.  Note that once a knote is
    255  1.129   thorpej  * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
    256  1.129   thorpej  *
    257  1.129   thorpej  * Once the special circumstances have been handled, the locks are re-
    258  1.129   thorpej  * acquired in the proper order (object lock -> kq_lock), the knote taken
    259  1.129   thorpej  * out of flux, and any waiters are notified.  Because waiters must have
    260  1.129   thorpej  * also dropped *their* locks in order to safely block, they must re-
    261  1.129   thorpej  * validate all of their assumptions; see knote_detach_quiesce().  See also
    262  1.129   thorpej  * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
    263  1.129   thorpej  * cases.
    264  1.129   thorpej  *
    265  1.129   thorpej  * When kqueue_scan() encounters an in-flux knote, the situation is
    266  1.129   thorpej  * treated like another LWP's list marker.
    267  1.129   thorpej  *
    268  1.129   thorpej  * LISTEN WELL: It is important to not hold knotes in flux for an
    269  1.129   thorpej  * extended period of time! In-flux knotes effectively block any
    270  1.129   thorpej  * progress of the kqueue_scan() operation.  Any code paths that place
    271  1.129   thorpej  * knotes in-flux should be careful to not block for indefinite periods
    272  1.129   thorpej  * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
    273  1.129   thorpej  * KM_SLEEP is not).
    274   1.95  riastrad  */
    275   1.49        ad static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
    276  1.125   thorpej static kmutex_t		kqueue_timer_lock;	/* for EVFILT_TIMER */
    277   1.49        ad 
    278  1.129   thorpej #define	KQ_FLUX_WAIT(kq)	(void)cv_wait(&kq->kq_cv, &kq->kq_lock)
    279  1.129   thorpej #define	KQ_FLUX_WAKEUP(kq)	cv_broadcast(&kq->kq_cv)
    280  1.129   thorpej 
    281  1.129   thorpej static inline bool
    282  1.129   thorpej kn_in_flux(struct knote *kn)
    283  1.129   thorpej {
    284  1.129   thorpej 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    285  1.129   thorpej 	return kn->kn_influx != 0;
    286  1.129   thorpej }
    287  1.129   thorpej 
    288  1.129   thorpej static inline bool
    289  1.129   thorpej kn_enter_flux(struct knote *kn)
    290  1.129   thorpej {
    291  1.129   thorpej 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    292  1.129   thorpej 
    293  1.129   thorpej 	if (kn->kn_status & KN_WILLDETACH) {
    294  1.129   thorpej 		return false;
    295  1.129   thorpej 	}
    296  1.129   thorpej 
    297  1.129   thorpej 	KASSERT(kn->kn_influx < UINT_MAX);
    298  1.129   thorpej 	kn->kn_influx++;
    299  1.129   thorpej 
    300  1.129   thorpej 	return true;
    301  1.129   thorpej }
    302  1.129   thorpej 
    303  1.129   thorpej static inline bool
    304  1.129   thorpej kn_leave_flux(struct knote *kn)
    305  1.129   thorpej {
    306  1.129   thorpej 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    307  1.129   thorpej 	KASSERT(kn->kn_influx > 0);
    308  1.129   thorpej 	kn->kn_influx--;
    309  1.129   thorpej 	return kn->kn_influx == 0;
    310  1.129   thorpej }
    311  1.129   thorpej 
    312  1.129   thorpej static void
    313  1.129   thorpej kn_wait_flux(struct knote *kn, bool can_loop)
    314  1.129   thorpej {
    315  1.129   thorpej 	bool loop;
    316  1.129   thorpej 
    317  1.129   thorpej 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    318  1.129   thorpej 
    319  1.129   thorpej 	/*
    320  1.129   thorpej 	 * It may not be safe for us to touch the knote again after
    321  1.129   thorpej 	 * dropping the kq_lock.  The caller has let us know in
    322  1.129   thorpej 	 * 'can_loop'.
    323  1.129   thorpej 	 */
    324  1.129   thorpej 	for (loop = true; loop && kn->kn_influx != 0; loop = can_loop) {
    325  1.129   thorpej 		KQ_FLUX_WAIT(kn->kn_kq);
    326  1.129   thorpej 	}
    327  1.129   thorpej }
    328  1.129   thorpej 
    329  1.129   thorpej #define	KNOTE_WILLDETACH(kn)						\
    330  1.129   thorpej do {									\
    331  1.129   thorpej 	(kn)->kn_status |= KN_WILLDETACH;				\
    332  1.129   thorpej 	(kn)->kn_kevent.udata = curlwp;					\
    333  1.129   thorpej } while (/*CONSTCOND*/0)
    334  1.129   thorpej 
    335  1.129   thorpej /*
    336  1.129   thorpej  * Wait until the specified knote is in a quiescent state and
    337  1.129   thorpej  * safe to detach.  Returns true if we potentially blocked (and
    338  1.129   thorpej  * thus dropped our locks).
    339  1.129   thorpej  */
    340  1.129   thorpej static bool
    341  1.129   thorpej knote_detach_quiesce(struct knote *kn)
    342  1.129   thorpej {
    343  1.129   thorpej 	struct kqueue *kq = kn->kn_kq;
    344  1.129   thorpej 	filedesc_t *fdp = kq->kq_fdp;
    345  1.129   thorpej 
    346  1.129   thorpej 	KASSERT(mutex_owned(&fdp->fd_lock));
    347  1.129   thorpej 
    348  1.129   thorpej 	mutex_spin_enter(&kq->kq_lock);
    349  1.129   thorpej 	/*
    350  1.129   thorpej 	 * There are two cases where we might see KN_WILLDETACH here:
    351  1.129   thorpej 	 *
    352  1.129   thorpej 	 * 1. Someone else has already started detaching the knote but
    353  1.129   thorpej 	 *    had to wait for it to settle first.
    354  1.129   thorpej 	 *
    355  1.129   thorpej 	 * 2. We had to wait for it to settle, and had to come back
    356  1.129   thorpej 	 *    around after re-acquiring the locks.
    357  1.129   thorpej 	 *
    358  1.129   thorpej 	 * When KN_WILLDETACH is set, we also set the LWP that claimed
    359  1.129   thorpej 	 * the prize of finishing the detach in the 'udata' field of the
    360  1.129   thorpej 	 * knote (which will never be used again for its usual purpose
    361  1.129   thorpej 	 * once the note is in this state).  If it doesn't point to us,
    362  1.129   thorpej 	 * we must drop the locks and let them in to finish the job.
    363  1.129   thorpej 	 *
    364  1.129   thorpej 	 * Otherwise, once we have claimed the knote for ourselves, we
    365  1.129   thorpej 	 * can finish waiting for it to settle.  The is the only scenario
    366  1.129   thorpej 	 * where touching a detaching knote is safe after dropping the
    367  1.129   thorpej 	 * locks.
    368  1.129   thorpej 	 */
    369  1.129   thorpej 	if ((kn->kn_status & KN_WILLDETACH) != 0 &&
    370  1.129   thorpej 	    kn->kn_kevent.udata != curlwp) {
    371  1.129   thorpej 		/*
    372  1.129   thorpej 		 * N.B. it is NOT safe for us to touch the knote again
    373  1.129   thorpej 		 * after dropping the locks here.  The caller must go
    374  1.129   thorpej 		 * back around and re-validate everything.  However, if
    375  1.129   thorpej 		 * the knote is in-flux, we want to block to minimize
    376  1.129   thorpej 		 * busy-looping.
    377  1.129   thorpej 		 */
    378  1.129   thorpej 		mutex_exit(&fdp->fd_lock);
    379  1.129   thorpej 		if (kn_in_flux(kn)) {
    380  1.129   thorpej 			kn_wait_flux(kn, false);
    381  1.129   thorpej 			mutex_spin_exit(&kq->kq_lock);
    382  1.129   thorpej 			return true;
    383  1.129   thorpej 		}
    384  1.129   thorpej 		mutex_spin_exit(&kq->kq_lock);
    385  1.129   thorpej 		preempt_point();
    386  1.129   thorpej 		return true;
    387  1.129   thorpej 	}
    388  1.129   thorpej 	/*
    389  1.129   thorpej 	 * If we get here, we know that we will be claiming the
    390  1.129   thorpej 	 * detach responsibilies, or that we already have and
    391  1.129   thorpej 	 * this is the second attempt after re-validation.
    392  1.129   thorpej 	 */
    393  1.129   thorpej 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
    394  1.129   thorpej 		kn->kn_kevent.udata == curlwp);
    395  1.129   thorpej 	/*
    396  1.129   thorpej 	 * Similarly, if we get here, either we are just claiming it
    397  1.129   thorpej 	 * and may have to wait for it to settle, or if this is the
    398  1.129   thorpej 	 * second attempt after re-validation that no other code paths
    399  1.129   thorpej 	 * have put it in-flux.
    400  1.129   thorpej 	 */
    401  1.129   thorpej 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
    402  1.129   thorpej 		kn_in_flux(kn) == false);
    403  1.129   thorpej 	KNOTE_WILLDETACH(kn);
    404  1.129   thorpej 	if (kn_in_flux(kn)) {
    405  1.129   thorpej 		mutex_exit(&fdp->fd_lock);
    406  1.129   thorpej 		kn_wait_flux(kn, true);
    407  1.129   thorpej 		/*
    408  1.129   thorpej 		 * It is safe for us to touch the knote again after
    409  1.129   thorpej 		 * dropping the locks, but the caller must still
    410  1.129   thorpej 		 * re-validate everything because other aspects of
    411  1.129   thorpej 		 * the environment may have changed while we blocked.
    412  1.129   thorpej 		 */
    413  1.129   thorpej 		KASSERT(kn_in_flux(kn) == false);
    414  1.129   thorpej 		mutex_spin_exit(&kq->kq_lock);
    415  1.129   thorpej 		return true;
    416  1.129   thorpej 	}
    417  1.129   thorpej 	mutex_spin_exit(&kq->kq_lock);
    418  1.129   thorpej 
    419  1.129   thorpej 	return false;
    420  1.129   thorpej }
    421  1.129   thorpej 
    422  1.122   thorpej static int
    423  1.122   thorpej filter_attach(struct knote *kn)
    424  1.122   thorpej {
    425  1.122   thorpej 	int rv;
    426  1.122   thorpej 
    427  1.122   thorpej 	KASSERT(kn->kn_fop != NULL);
    428  1.122   thorpej 	KASSERT(kn->kn_fop->f_attach != NULL);
    429  1.122   thorpej 
    430  1.122   thorpej 	/*
    431  1.122   thorpej 	 * N.B. that kn->kn_fop may change as the result of calling
    432  1.122   thorpej 	 * f_attach().
    433  1.122   thorpej 	 */
    434  1.122   thorpej 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    435  1.122   thorpej 		rv = kn->kn_fop->f_attach(kn);
    436  1.122   thorpej 	} else {
    437  1.122   thorpej 		KERNEL_LOCK(1, NULL);
    438  1.122   thorpej 		rv = kn->kn_fop->f_attach(kn);
    439  1.122   thorpej 		KERNEL_UNLOCK_ONE(NULL);
    440  1.122   thorpej 	}
    441  1.122   thorpej 
    442  1.122   thorpej 	return rv;
    443  1.122   thorpej }
    444  1.122   thorpej 
    445  1.122   thorpej static void
    446  1.122   thorpej filter_detach(struct knote *kn)
    447  1.122   thorpej {
    448  1.122   thorpej 	KASSERT(kn->kn_fop != NULL);
    449  1.122   thorpej 	KASSERT(kn->kn_fop->f_detach != NULL);
    450  1.122   thorpej 
    451  1.122   thorpej 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    452  1.122   thorpej 		kn->kn_fop->f_detach(kn);
    453  1.122   thorpej 	} else {
    454  1.122   thorpej 		KERNEL_LOCK(1, NULL);
    455  1.122   thorpej 		kn->kn_fop->f_detach(kn);
    456  1.122   thorpej 		KERNEL_UNLOCK_ONE(NULL);
    457  1.122   thorpej 	}
    458  1.122   thorpej }
    459  1.122   thorpej 
    460  1.122   thorpej static int
    461  1.122   thorpej filter_event(struct knote *kn, long hint)
    462  1.122   thorpej {
    463  1.122   thorpej 	int rv;
    464  1.122   thorpej 
    465  1.122   thorpej 	KASSERT(kn->kn_fop != NULL);
    466  1.122   thorpej 	KASSERT(kn->kn_fop->f_event != NULL);
    467  1.122   thorpej 
    468  1.122   thorpej 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    469  1.122   thorpej 		rv = kn->kn_fop->f_event(kn, hint);
    470  1.122   thorpej 	} else {
    471  1.122   thorpej 		KERNEL_LOCK(1, NULL);
    472  1.122   thorpej 		rv = kn->kn_fop->f_event(kn, hint);
    473  1.122   thorpej 		KERNEL_UNLOCK_ONE(NULL);
    474  1.122   thorpej 	}
    475  1.122   thorpej 
    476  1.122   thorpej 	return rv;
    477  1.122   thorpej }
    478  1.122   thorpej 
    479  1.122   thorpej static void
    480  1.122   thorpej filter_touch(struct knote *kn, struct kevent *kev, long type)
    481  1.122   thorpej {
    482  1.122   thorpej 	kn->kn_fop->f_touch(kn, kev, type);
    483  1.122   thorpej }
    484  1.122   thorpej 
    485   1.66      elad static kauth_listener_t	kqueue_listener;
    486   1.66      elad 
    487   1.66      elad static int
    488   1.66      elad kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    489   1.66      elad     void *arg0, void *arg1, void *arg2, void *arg3)
    490   1.66      elad {
    491   1.66      elad 	struct proc *p;
    492   1.66      elad 	int result;
    493   1.66      elad 
    494   1.66      elad 	result = KAUTH_RESULT_DEFER;
    495   1.66      elad 	p = arg0;
    496   1.66      elad 
    497   1.66      elad 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
    498   1.66      elad 		return result;
    499   1.66      elad 
    500   1.66      elad 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
    501   1.66      elad 	    ISSET(p->p_flag, PK_SUGID)))
    502   1.66      elad 		return result;
    503   1.66      elad 
    504   1.66      elad 	result = KAUTH_RESULT_ALLOW;
    505   1.66      elad 
    506   1.66      elad 	return result;
    507   1.66      elad }
    508   1.66      elad 
    509   1.49        ad /*
    510   1.49        ad  * Initialize the kqueue subsystem.
    511   1.49        ad  */
    512   1.49        ad void
    513   1.49        ad kqueue_init(void)
    514   1.49        ad {
    515   1.49        ad 
    516   1.49        ad 	rw_init(&kqueue_filter_lock);
    517  1.125   thorpej 	mutex_init(&kqueue_timer_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK);
    518   1.66      elad 
    519   1.66      elad 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    520   1.66      elad 	    kqueue_listener_cb, NULL);
    521   1.49        ad }
    522    1.3  jdolecek 
    523    1.3  jdolecek /*
    524    1.3  jdolecek  * Find kfilter entry by name, or NULL if not found.
    525    1.3  jdolecek  */
    526   1.49        ad static struct kfilter *
    527    1.3  jdolecek kfilter_byname_sys(const char *name)
    528    1.3  jdolecek {
    529    1.3  jdolecek 	int i;
    530    1.3  jdolecek 
    531   1.49        ad 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    532   1.49        ad 
    533    1.3  jdolecek 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    534    1.3  jdolecek 		if (strcmp(name, sys_kfilters[i].name) == 0)
    535   1.49        ad 			return &sys_kfilters[i];
    536    1.3  jdolecek 	}
    537   1.49        ad 	return NULL;
    538    1.3  jdolecek }
    539    1.3  jdolecek 
    540    1.3  jdolecek static struct kfilter *
    541    1.3  jdolecek kfilter_byname_user(const char *name)
    542    1.3  jdolecek {
    543    1.3  jdolecek 	int i;
    544    1.3  jdolecek 
    545   1.49        ad 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    546   1.49        ad 
    547   1.31     seanb 	/* user filter slots have a NULL name if previously deregistered */
    548   1.31     seanb 	for (i = 0; i < user_kfilterc ; i++) {
    549   1.31     seanb 		if (user_kfilters[i].name != NULL &&
    550    1.3  jdolecek 		    strcmp(name, user_kfilters[i].name) == 0)
    551   1.49        ad 			return &user_kfilters[i];
    552    1.3  jdolecek 	}
    553   1.49        ad 	return NULL;
    554    1.3  jdolecek }
    555    1.3  jdolecek 
    556   1.49        ad static struct kfilter *
    557    1.3  jdolecek kfilter_byname(const char *name)
    558    1.3  jdolecek {
    559   1.49        ad 	struct kfilter *kfilter;
    560   1.49        ad 
    561   1.49        ad 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    562    1.3  jdolecek 
    563    1.3  jdolecek 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    564   1.49        ad 		return kfilter;
    565    1.3  jdolecek 
    566   1.49        ad 	return kfilter_byname_user(name);
    567    1.3  jdolecek }
    568    1.3  jdolecek 
    569    1.3  jdolecek /*
    570    1.3  jdolecek  * Find kfilter entry by filter id, or NULL if not found.
    571    1.3  jdolecek  * Assumes entries are indexed in filter id order, for speed.
    572    1.3  jdolecek  */
    573   1.49        ad static struct kfilter *
    574    1.3  jdolecek kfilter_byfilter(uint32_t filter)
    575    1.3  jdolecek {
    576   1.49        ad 	struct kfilter *kfilter;
    577   1.49        ad 
    578   1.49        ad 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    579    1.3  jdolecek 
    580    1.3  jdolecek 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    581    1.3  jdolecek 		kfilter = &sys_kfilters[filter];
    582    1.3  jdolecek 	else if (user_kfilters != NULL &&
    583    1.3  jdolecek 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    584    1.3  jdolecek 					/* it's a user filter */
    585    1.3  jdolecek 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    586    1.3  jdolecek 	else
    587    1.3  jdolecek 		return (NULL);		/* out of range */
    588    1.3  jdolecek 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    589    1.3  jdolecek 	return (kfilter);
    590    1.3  jdolecek }
    591    1.3  jdolecek 
    592    1.3  jdolecek /*
    593    1.3  jdolecek  * Register a new kfilter. Stores the entry in user_kfilters.
    594    1.3  jdolecek  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    595    1.3  jdolecek  * If retfilter != NULL, the new filterid is returned in it.
    596    1.3  jdolecek  */
    597    1.3  jdolecek int
    598    1.3  jdolecek kfilter_register(const char *name, const struct filterops *filtops,
    599   1.49        ad 		 int *retfilter)
    600    1.1     lukem {
    601    1.3  jdolecek 	struct kfilter *kfilter;
    602   1.49        ad 	size_t len;
    603   1.31     seanb 	int i;
    604    1.3  jdolecek 
    605    1.3  jdolecek 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    606    1.3  jdolecek 		return (EINVAL);	/* invalid args */
    607   1.49        ad 
    608   1.49        ad 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    609   1.49        ad 	if (kfilter_byname(name) != NULL) {
    610   1.49        ad 		rw_exit(&kqueue_filter_lock);
    611    1.3  jdolecek 		return (EEXIST);	/* already exists */
    612   1.49        ad 	}
    613   1.49        ad 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
    614   1.49        ad 		rw_exit(&kqueue_filter_lock);
    615    1.3  jdolecek 		return (EINVAL);	/* too many */
    616   1.49        ad 	}
    617    1.3  jdolecek 
    618   1.31     seanb 	for (i = 0; i < user_kfilterc; i++) {
    619   1.31     seanb 		kfilter = &user_kfilters[i];
    620   1.31     seanb 		if (kfilter->name == NULL) {
    621   1.31     seanb 			/* Previously deregistered slot.  Reuse. */
    622   1.31     seanb 			goto reuse;
    623   1.31     seanb 		}
    624   1.31     seanb 	}
    625   1.31     seanb 
    626    1.3  jdolecek 	/* check if need to grow user_kfilters */
    627    1.3  jdolecek 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    628   1.49        ad 		/* Grow in KFILTER_EXTENT chunks. */
    629    1.3  jdolecek 		user_kfiltermaxc += KFILTER_EXTENT;
    630   1.69       dsl 		len = user_kfiltermaxc * sizeof(*kfilter);
    631   1.49        ad 		kfilter = kmem_alloc(len, KM_SLEEP);
    632   1.49        ad 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
    633   1.49        ad 		if (user_kfilters != NULL) {
    634   1.49        ad 			memcpy(kfilter, user_kfilters, user_kfiltersz);
    635   1.49        ad 			kmem_free(user_kfilters, user_kfiltersz);
    636   1.49        ad 		}
    637   1.49        ad 		user_kfiltersz = len;
    638    1.3  jdolecek 		user_kfilters = kfilter;
    639    1.3  jdolecek 	}
    640   1.31     seanb 	/* Adding new slot */
    641   1.31     seanb 	kfilter = &user_kfilters[user_kfilterc++];
    642   1.31     seanb reuse:
    643   1.97  christos 	kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
    644    1.3  jdolecek 
    645   1.31     seanb 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
    646    1.3  jdolecek 
    647   1.49        ad 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
    648   1.49        ad 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
    649    1.3  jdolecek 
    650    1.3  jdolecek 	if (retfilter != NULL)
    651   1.31     seanb 		*retfilter = kfilter->filter;
    652   1.49        ad 	rw_exit(&kqueue_filter_lock);
    653   1.49        ad 
    654    1.3  jdolecek 	return (0);
    655    1.1     lukem }
    656    1.1     lukem 
    657    1.3  jdolecek /*
    658    1.3  jdolecek  * Unregister a kfilter previously registered with kfilter_register.
    659    1.3  jdolecek  * This retains the filter id, but clears the name and frees filtops (filter
    660    1.3  jdolecek  * operations), so that the number isn't reused during a boot.
    661    1.3  jdolecek  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    662    1.3  jdolecek  */
    663    1.3  jdolecek int
    664    1.3  jdolecek kfilter_unregister(const char *name)
    665    1.1     lukem {
    666    1.3  jdolecek 	struct kfilter *kfilter;
    667    1.3  jdolecek 
    668    1.3  jdolecek 	if (name == NULL || name[0] == '\0')
    669    1.3  jdolecek 		return (EINVAL);	/* invalid name */
    670    1.3  jdolecek 
    671   1.49        ad 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    672   1.49        ad 	if (kfilter_byname_sys(name) != NULL) {
    673   1.49        ad 		rw_exit(&kqueue_filter_lock);
    674    1.3  jdolecek 		return (EINVAL);	/* can't detach system filters */
    675   1.49        ad 	}
    676    1.1     lukem 
    677    1.3  jdolecek 	kfilter = kfilter_byname_user(name);
    678   1.49        ad 	if (kfilter == NULL) {
    679   1.49        ad 		rw_exit(&kqueue_filter_lock);
    680    1.3  jdolecek 		return (ENOENT);
    681   1.49        ad 	}
    682   1.49        ad 	if (kfilter->refcnt != 0) {
    683   1.49        ad 		rw_exit(&kqueue_filter_lock);
    684   1.49        ad 		return (EBUSY);
    685   1.49        ad 	}
    686    1.1     lukem 
    687   1.49        ad 	/* Cast away const (but we know it's safe. */
    688   1.49        ad 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
    689   1.31     seanb 	kfilter->name = NULL;	/* mark as `not implemented' */
    690   1.31     seanb 
    691    1.3  jdolecek 	if (kfilter->filtops != NULL) {
    692   1.49        ad 		/* Cast away const (but we know it's safe. */
    693   1.49        ad 		kmem_free(__UNCONST(kfilter->filtops),
    694   1.49        ad 		    sizeof(*kfilter->filtops));
    695    1.3  jdolecek 		kfilter->filtops = NULL; /* mark as `not implemented' */
    696    1.3  jdolecek 	}
    697   1.49        ad 	rw_exit(&kqueue_filter_lock);
    698   1.49        ad 
    699    1.1     lukem 	return (0);
    700    1.1     lukem }
    701    1.1     lukem 
    702    1.3  jdolecek 
    703    1.3  jdolecek /*
    704    1.3  jdolecek  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    705   1.49        ad  * descriptors. Calls fileops kqfilter method for given file descriptor.
    706    1.3  jdolecek  */
    707    1.3  jdolecek static int
    708    1.3  jdolecek filt_fileattach(struct knote *kn)
    709    1.3  jdolecek {
    710   1.49        ad 	file_t *fp;
    711   1.49        ad 
    712   1.49        ad 	fp = kn->kn_obj;
    713    1.3  jdolecek 
    714   1.49        ad 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
    715    1.3  jdolecek }
    716    1.3  jdolecek 
    717    1.3  jdolecek /*
    718    1.3  jdolecek  * Filter detach method for EVFILT_READ on kqueue descriptor.
    719    1.3  jdolecek  */
    720    1.1     lukem static void
    721    1.1     lukem filt_kqdetach(struct knote *kn)
    722    1.1     lukem {
    723    1.3  jdolecek 	struct kqueue *kq;
    724    1.1     lukem 
    725   1.82      matt 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    726   1.49        ad 
    727   1.49        ad 	mutex_spin_enter(&kq->kq_lock);
    728  1.109   thorpej 	selremove_knote(&kq->kq_sel, kn);
    729   1.49        ad 	mutex_spin_exit(&kq->kq_lock);
    730    1.1     lukem }
    731    1.1     lukem 
    732    1.3  jdolecek /*
    733    1.3  jdolecek  * Filter event method for EVFILT_READ on kqueue descriptor.
    734    1.3  jdolecek  */
    735    1.1     lukem /*ARGSUSED*/
    736    1.1     lukem static int
    737   1.33      yamt filt_kqueue(struct knote *kn, long hint)
    738    1.1     lukem {
    739    1.3  jdolecek 	struct kqueue *kq;
    740   1.49        ad 	int rv;
    741   1.49        ad 
    742   1.82      matt 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    743    1.1     lukem 
    744   1.49        ad 	if (hint != NOTE_SUBMIT)
    745   1.49        ad 		mutex_spin_enter(&kq->kq_lock);
    746  1.118  jdolecek 	kn->kn_data = KQ_COUNT(kq);
    747   1.49        ad 	rv = (kn->kn_data > 0);
    748   1.49        ad 	if (hint != NOTE_SUBMIT)
    749   1.49        ad 		mutex_spin_exit(&kq->kq_lock);
    750   1.49        ad 
    751   1.49        ad 	return rv;
    752    1.1     lukem }
    753    1.1     lukem 
    754    1.3  jdolecek /*
    755    1.3  jdolecek  * Filter attach method for EVFILT_PROC.
    756    1.3  jdolecek  */
    757    1.1     lukem static int
    758    1.1     lukem filt_procattach(struct knote *kn)
    759    1.1     lukem {
    760   1.78     pooka 	struct proc *p;
    761    1.1     lukem 
    762  1.107        ad 	mutex_enter(&proc_lock);
    763  1.129   thorpej 	p = proc_find(kn->kn_id);
    764   1.49        ad 	if (p == NULL) {
    765  1.107        ad 		mutex_exit(&proc_lock);
    766   1.49        ad 		return ESRCH;
    767   1.49        ad 	}
    768    1.3  jdolecek 
    769    1.3  jdolecek 	/*
    770    1.3  jdolecek 	 * Fail if it's not owned by you, or the last exec gave us
    771    1.3  jdolecek 	 * setuid/setgid privs (unless you're root).
    772    1.3  jdolecek 	 */
    773   1.57        ad 	mutex_enter(p->p_lock);
    774  1.107        ad 	mutex_exit(&proc_lock);
    775  1.129   thorpej 	if (kauth_authorize_process(curlwp->l_cred,
    776  1.119  christos 	    KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
    777   1.57        ad 	    	mutex_exit(p->p_lock);
    778   1.49        ad 		return EACCES;
    779   1.49        ad 	}
    780    1.1     lukem 
    781   1.49        ad 	kn->kn_obj = p;
    782    1.3  jdolecek 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    783    1.1     lukem 
    784    1.1     lukem 	/*
    785  1.129   thorpej 	 * NOTE_CHILD is only ever generated internally; don't let it
    786  1.129   thorpej 	 * leak in from user-space.  See knote_proc_fork_track().
    787    1.1     lukem 	 */
    788  1.129   thorpej 	kn->kn_sfflags &= ~NOTE_CHILD;
    789  1.129   thorpej 
    790    1.1     lukem 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
    791   1.57        ad     	mutex_exit(p->p_lock);
    792    1.1     lukem 
    793   1.49        ad 	return 0;
    794    1.1     lukem }
    795    1.1     lukem 
    796    1.1     lukem /*
    797    1.3  jdolecek  * Filter detach method for EVFILT_PROC.
    798    1.3  jdolecek  *
    799    1.1     lukem  * The knote may be attached to a different process, which may exit,
    800    1.1     lukem  * leaving nothing for the knote to be attached to.  So when the process
    801    1.1     lukem  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    802    1.1     lukem  * it will be deleted when read out.  However, as part of the knote deletion,
    803    1.1     lukem  * this routine is called, so a check is needed to avoid actually performing
    804    1.3  jdolecek  * a detach, because the original process might not exist any more.
    805    1.1     lukem  */
    806    1.1     lukem static void
    807    1.1     lukem filt_procdetach(struct knote *kn)
    808    1.1     lukem {
    809  1.129   thorpej 	struct kqueue *kq = kn->kn_kq;
    810    1.3  jdolecek 	struct proc *p;
    811    1.1     lukem 
    812  1.129   thorpej 	/*
    813  1.129   thorpej 	 * We have to synchronize with knote_proc_exit(), but we
    814  1.129   thorpej 	 * are forced to acquire the locks in the wrong order here
    815  1.129   thorpej 	 * because we can't be sure kn->kn_obj is valid unless
    816  1.129   thorpej 	 * KN_DETACHED is not set.
    817  1.129   thorpej 	 */
    818  1.129   thorpej  again:
    819  1.129   thorpej 	mutex_spin_enter(&kq->kq_lock);
    820  1.129   thorpej 	if ((kn->kn_status & KN_DETACHED) == 0) {
    821  1.129   thorpej 		p = kn->kn_obj;
    822  1.129   thorpej 		if (!mutex_tryenter(p->p_lock)) {
    823  1.129   thorpej 			mutex_spin_exit(&kq->kq_lock);
    824  1.129   thorpej 			preempt_point();
    825  1.129   thorpej 			goto again;
    826  1.129   thorpej 		}
    827  1.129   thorpej 		kn->kn_status |= KN_DETACHED;
    828  1.129   thorpej 		SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
    829  1.129   thorpej 		mutex_exit(p->p_lock);
    830  1.129   thorpej 	}
    831  1.129   thorpej 	mutex_spin_exit(&kq->kq_lock);
    832    1.1     lukem }
    833    1.1     lukem 
    834    1.3  jdolecek /*
    835    1.3  jdolecek  * Filter event method for EVFILT_PROC.
    836  1.129   thorpej  *
    837  1.129   thorpej  * Due to some of the complexities of process locking, we have special
    838  1.129   thorpej  * entry points for delivering knote submissions.  filt_proc() is used
    839  1.129   thorpej  * only to check for activation from kqueue_register() and kqueue_scan().
    840    1.3  jdolecek  */
    841    1.1     lukem static int
    842    1.1     lukem filt_proc(struct knote *kn, long hint)
    843    1.1     lukem {
    844  1.129   thorpej 	struct kqueue *kq = kn->kn_kq;
    845  1.129   thorpej 	uint32_t fflags;
    846  1.129   thorpej 
    847  1.129   thorpej 	/*
    848  1.129   thorpej 	 * Because we share the same klist with signal knotes, just
    849  1.129   thorpej 	 * ensure that we're not being invoked for the proc-related
    850  1.129   thorpej 	 * submissions.
    851  1.129   thorpej 	 */
    852  1.129   thorpej 	KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
    853  1.129   thorpej 
    854  1.129   thorpej 	mutex_spin_enter(&kq->kq_lock);
    855  1.129   thorpej 	fflags = kn->kn_fflags;
    856  1.129   thorpej 	mutex_spin_exit(&kq->kq_lock);
    857    1.1     lukem 
    858  1.129   thorpej 	return fflags != 0;
    859  1.129   thorpej }
    860    1.1     lukem 
    861  1.129   thorpej void
    862  1.129   thorpej knote_proc_exec(struct proc *p)
    863  1.129   thorpej {
    864  1.129   thorpej 	struct knote *kn, *tmpkn;
    865  1.129   thorpej 	struct kqueue *kq;
    866  1.129   thorpej 	uint32_t fflags;
    867    1.1     lukem 
    868  1.129   thorpej 	mutex_enter(p->p_lock);
    869   1.83  christos 
    870  1.129   thorpej 	SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
    871  1.129   thorpej 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
    872  1.129   thorpej 		if (kn->kn_fop == &sig_filtops) {
    873  1.129   thorpej 			continue;
    874  1.129   thorpej 		}
    875  1.129   thorpej 		KASSERT(kn->kn_fop == &proc_filtops);
    876   1.49        ad 
    877  1.129   thorpej 		kq = kn->kn_kq;
    878   1.49        ad 		mutex_spin_enter(&kq->kq_lock);
    879  1.129   thorpej 		fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
    880   1.49        ad 		mutex_spin_exit(&kq->kq_lock);
    881  1.129   thorpej 		if (fflags) {
    882  1.129   thorpej 			knote_activate(kn);
    883  1.129   thorpej 		}
    884  1.129   thorpej 	}
    885  1.129   thorpej 
    886  1.129   thorpej 	mutex_exit(p->p_lock);
    887  1.129   thorpej }
    888  1.129   thorpej 
    889  1.129   thorpej static int __noinline
    890  1.129   thorpej knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
    891  1.129   thorpej {
    892  1.129   thorpej 	struct kqueue *kq = okn->kn_kq;
    893  1.129   thorpej 
    894  1.129   thorpej 	KASSERT(mutex_owned(&kq->kq_lock));
    895  1.129   thorpej 	KASSERT(mutex_owned(p1->p_lock));
    896  1.129   thorpej 
    897  1.129   thorpej 	/*
    898  1.129   thorpej 	 * We're going to put this knote into flux while we drop
    899  1.129   thorpej 	 * the locks and create and attach a new knote to track the
    900  1.129   thorpej 	 * child.  If we are not able to enter flux, then this knote
    901  1.129   thorpej 	 * is about to go away, so skip the notification.
    902  1.129   thorpej 	 */
    903  1.129   thorpej 	if (!kn_enter_flux(okn)) {
    904  1.129   thorpej 		return 0;
    905  1.129   thorpej 	}
    906  1.129   thorpej 
    907  1.129   thorpej 	mutex_spin_exit(&kq->kq_lock);
    908  1.129   thorpej 	mutex_exit(p1->p_lock);
    909   1.49        ad 
    910  1.129   thorpej 	/*
    911  1.129   thorpej 	 * We actually have to register *two* new knotes:
    912  1.129   thorpej 	 *
    913  1.129   thorpej 	 * ==> One for the NOTE_CHILD notification.  This is a forced
    914  1.129   thorpej 	 *     ONESHOT note.
    915  1.129   thorpej 	 *
    916  1.129   thorpej 	 * ==> One to actually track the child process as it subsequently
    917  1.129   thorpej 	 *     forks, execs, and, ultimately, exits.
    918  1.129   thorpej 	 *
    919  1.129   thorpej 	 * If we only register a single knote, then it's possible for
    920  1.129   thorpej 	 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
    921  1.129   thorpej 	 * notification if the child exits before the tracking process
    922  1.129   thorpej 	 * has received the NOTE_CHILD notification, which applications
    923  1.129   thorpej 	 * aren't expecting (the event's 'data' field would be clobbered,
    924  1.129   thorpej 	 * for exmaple).
    925  1.129   thorpej 	 *
    926  1.129   thorpej 	 * To do this, what we have here is an **extremely** stripped-down
    927  1.129   thorpej 	 * version of kqueue_register() that has the following properties:
    928  1.129   thorpej 	 *
    929  1.129   thorpej 	 * ==> Does not block to allocate memory.  If we are unable
    930  1.129   thorpej 	 *     to allocate memory, we return ENOMEM.
    931  1.129   thorpej 	 *
    932  1.129   thorpej 	 * ==> Does not search for existing knotes; we know there
    933  1.129   thorpej 	 *     are not any because this is a new process that isn't
    934  1.129   thorpej 	 *     even visible to other processes yet.
    935  1.129   thorpej 	 *
    936  1.129   thorpej 	 * ==> Assumes that the knhash for our kq's descriptor table
    937  1.129   thorpej 	 *     already exists (after all, we're already tracking
    938  1.129   thorpej 	 *     processes with knotes if we got here).
    939  1.129   thorpej 	 *
    940  1.129   thorpej 	 * ==> Directly attaches the new tracking knote to the child
    941  1.129   thorpej 	 *     process.
    942  1.129   thorpej 	 *
    943  1.129   thorpej 	 * The whole point is to do the minimum amount of work while the
    944  1.129   thorpej 	 * knote is held in-flux, and to avoid doing extra work in general
    945  1.129   thorpej 	 * (we already have the new child process; why bother looking it
    946  1.129   thorpej 	 * up again?).
    947  1.129   thorpej 	 */
    948  1.129   thorpej 	filedesc_t *fdp = kq->kq_fdp;
    949  1.129   thorpej 	struct knote *knchild, *kntrack;
    950  1.129   thorpej 	int error = 0;
    951  1.129   thorpej 
    952  1.129   thorpej 	knchild = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
    953  1.129   thorpej 	kntrack = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
    954  1.129   thorpej 	if (__predict_false(knchild == NULL || kntrack == NULL)) {
    955  1.129   thorpej 		error = ENOMEM;
    956  1.129   thorpej 		goto out;
    957  1.129   thorpej 	}
    958  1.129   thorpej 
    959  1.129   thorpej 	kntrack->kn_obj = p2;
    960  1.129   thorpej 	kntrack->kn_id = p2->p_pid;
    961  1.129   thorpej 	kntrack->kn_kq = kq;
    962  1.129   thorpej 	kntrack->kn_fop = okn->kn_fop;
    963  1.129   thorpej 	kntrack->kn_kfilter = okn->kn_kfilter;
    964  1.129   thorpej 	kntrack->kn_sfflags = okn->kn_sfflags;
    965  1.129   thorpej 	kntrack->kn_sdata = p1->p_pid;
    966  1.129   thorpej 
    967  1.129   thorpej 	kntrack->kn_kevent.ident = p2->p_pid;
    968  1.129   thorpej 	kntrack->kn_kevent.filter = okn->kn_filter;
    969  1.129   thorpej 	kntrack->kn_kevent.flags =
    970  1.129   thorpej 	    okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
    971  1.129   thorpej 	kntrack->kn_kevent.fflags = 0;
    972  1.129   thorpej 	kntrack->kn_kevent.data = 0;
    973  1.129   thorpej 	kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
    974  1.129   thorpej 
    975  1.129   thorpej 	/*
    976  1.129   thorpej 	 * The child note does not need to be attached to the
    977  1.129   thorpej 	 * new proc's klist at all.
    978  1.129   thorpej 	 */
    979  1.129   thorpej 	*knchild = *kntrack;
    980  1.129   thorpej 	knchild->kn_status = KN_DETACHED;
    981  1.129   thorpej 	knchild->kn_sfflags = 0;
    982  1.129   thorpej 	knchild->kn_kevent.flags |= EV_ONESHOT;
    983  1.129   thorpej 	knchild->kn_kevent.fflags = NOTE_CHILD;
    984  1.129   thorpej 	knchild->kn_kevent.data = p1->p_pid;		 /* parent */
    985  1.129   thorpej 
    986  1.129   thorpej 	mutex_enter(&fdp->fd_lock);
    987  1.129   thorpej 
    988  1.129   thorpej 	/*
    989  1.129   thorpej 	 * We need to check to see if the kq is closing, and skip
    990  1.129   thorpej 	 * attaching the knote if so.  Normally, this isn't necessary
    991  1.129   thorpej 	 * when coming in the front door because the file descriptor
    992  1.129   thorpej 	 * layer will synchronize this.
    993  1.129   thorpej 	 *
    994  1.129   thorpej 	 * It's safe to test KQ_CLOSING without taking the kq_lock
    995  1.129   thorpej 	 * here because that flag is only ever set when the fd_lock
    996  1.129   thorpej 	 * is also held.
    997  1.129   thorpej 	 */
    998  1.129   thorpej 	if (__predict_false(kq->kq_count & KQ_CLOSING)) {
    999  1.129   thorpej 		mutex_exit(&fdp->fd_lock);
   1000  1.129   thorpej 		goto out;
   1001    1.1     lukem 	}
   1002    1.1     lukem 
   1003  1.129   thorpej 	/*
   1004  1.129   thorpej 	 * We do the "insert into FD table" and "attach to klist" steps
   1005  1.129   thorpej 	 * in the opposite order of kqueue_register() here to avoid
   1006  1.129   thorpej 	 * having to take p2->p_lock twice.  But this is OK because we
   1007  1.129   thorpej 	 * hold fd_lock across the entire operation.
   1008  1.129   thorpej 	 */
   1009  1.129   thorpej 
   1010  1.129   thorpej 	mutex_enter(p2->p_lock);
   1011  1.129   thorpej 	error = kauth_authorize_process(curlwp->l_cred,
   1012  1.129   thorpej 	    KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
   1013  1.129   thorpej 	if (__predict_false(error != 0)) {
   1014  1.129   thorpej 		mutex_exit(p2->p_lock);
   1015  1.129   thorpej 		mutex_exit(&fdp->fd_lock);
   1016  1.129   thorpej 		error = EACCES;
   1017  1.129   thorpej 		goto out;
   1018  1.129   thorpej 	}
   1019  1.129   thorpej 	SLIST_INSERT_HEAD(&p2->p_klist, kntrack, kn_selnext);
   1020  1.129   thorpej 	mutex_exit(p2->p_lock);
   1021  1.129   thorpej 
   1022  1.129   thorpej 	KASSERT(fdp->fd_knhashmask != 0);
   1023  1.129   thorpej 	KASSERT(fdp->fd_knhash != NULL);
   1024  1.129   thorpej 	struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
   1025  1.129   thorpej 	    fdp->fd_knhashmask)];
   1026  1.129   thorpej 	SLIST_INSERT_HEAD(list, kntrack, kn_link);
   1027  1.129   thorpej 	SLIST_INSERT_HEAD(list, knchild, kn_link);
   1028  1.129   thorpej 
   1029  1.129   thorpej 	/* This adds references for knchild *and* kntrack. */
   1030  1.129   thorpej 	atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
   1031  1.129   thorpej 
   1032  1.129   thorpej 	knote_activate(knchild);
   1033  1.129   thorpej 
   1034  1.129   thorpej 	kntrack = NULL;
   1035  1.129   thorpej 	knchild = NULL;
   1036  1.129   thorpej 
   1037  1.129   thorpej 	mutex_exit(&fdp->fd_lock);
   1038  1.129   thorpej 
   1039  1.129   thorpej  out:
   1040  1.129   thorpej 	if (__predict_false(knchild != NULL)) {
   1041  1.129   thorpej 		kmem_free(knchild, sizeof(*knchild));
   1042  1.129   thorpej 	}
   1043  1.129   thorpej 	if (__predict_false(kntrack != NULL)) {
   1044  1.129   thorpej 		kmem_free(kntrack, sizeof(*kntrack));
   1045  1.129   thorpej 	}
   1046  1.129   thorpej 	mutex_enter(p1->p_lock);
   1047   1.49        ad 	mutex_spin_enter(&kq->kq_lock);
   1048  1.129   thorpej 
   1049  1.129   thorpej 	if (kn_leave_flux(okn)) {
   1050  1.129   thorpej 		KQ_FLUX_WAKEUP(kq);
   1051  1.129   thorpej 	}
   1052  1.129   thorpej 
   1053  1.129   thorpej 	return error;
   1054  1.129   thorpej }
   1055  1.129   thorpej 
   1056  1.129   thorpej void
   1057  1.129   thorpej knote_proc_fork(struct proc *p1, struct proc *p2)
   1058  1.129   thorpej {
   1059  1.129   thorpej 	struct knote *kn;
   1060  1.129   thorpej 	struct kqueue *kq;
   1061  1.129   thorpej 	uint32_t fflags;
   1062  1.129   thorpej 
   1063  1.129   thorpej 	mutex_enter(p1->p_lock);
   1064  1.129   thorpej 
   1065  1.129   thorpej 	/*
   1066  1.129   thorpej 	 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
   1067  1.129   thorpej 	 * don't want to pre-fetch the next knote; in the event we
   1068  1.129   thorpej 	 * have to drop p_lock, we will have put the knote in-flux,
   1069  1.129   thorpej 	 * meaning that no one will be able to detach it until we
   1070  1.129   thorpej 	 * have taken the knote out of flux.  However, that does
   1071  1.129   thorpej 	 * NOT stop someone else from detaching the next note in the
   1072  1.129   thorpej 	 * list while we have it unlocked.  Thus, we want to fetch
   1073  1.129   thorpej 	 * the next note in the list only after we have re-acquired
   1074  1.129   thorpej 	 * the lock, and using SLIST_FOREACH() will satisfy that.
   1075  1.129   thorpej 	 */
   1076  1.129   thorpej 	SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
   1077  1.129   thorpej 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
   1078  1.129   thorpej 		if (kn->kn_fop == &sig_filtops) {
   1079  1.129   thorpej 			continue;
   1080  1.129   thorpej 		}
   1081  1.129   thorpej 		KASSERT(kn->kn_fop == &proc_filtops);
   1082  1.129   thorpej 
   1083  1.129   thorpej 		kq = kn->kn_kq;
   1084  1.129   thorpej 		mutex_spin_enter(&kq->kq_lock);
   1085  1.129   thorpej 		kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
   1086  1.129   thorpej 		if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
   1087  1.129   thorpej 			/*
   1088  1.129   thorpej 			 * This will drop kq_lock and p_lock and
   1089  1.129   thorpej 			 * re-acquire them before it returns.
   1090  1.129   thorpej 			 */
   1091  1.129   thorpej 			if (knote_proc_fork_track(p1, p2, kn)) {
   1092  1.129   thorpej 				kn->kn_fflags |= NOTE_TRACKERR;
   1093  1.129   thorpej 			}
   1094  1.129   thorpej 			KASSERT(mutex_owned(p1->p_lock));
   1095  1.129   thorpej 			KASSERT(mutex_owned(&kq->kq_lock));
   1096  1.129   thorpej 		}
   1097  1.129   thorpej 		fflags = kn->kn_fflags;
   1098  1.129   thorpej 		mutex_spin_exit(&kq->kq_lock);
   1099  1.129   thorpej 		if (fflags) {
   1100  1.129   thorpej 			knote_activate(kn);
   1101  1.129   thorpej 		}
   1102  1.129   thorpej 	}
   1103  1.129   thorpej 
   1104  1.129   thorpej 	mutex_exit(p1->p_lock);
   1105  1.129   thorpej }
   1106  1.129   thorpej 
   1107  1.129   thorpej void
   1108  1.129   thorpej knote_proc_exit(struct proc *p)
   1109  1.129   thorpej {
   1110  1.129   thorpej 	struct knote *kn;
   1111  1.129   thorpej 	struct kqueue *kq;
   1112  1.129   thorpej 
   1113  1.129   thorpej 	KASSERT(mutex_owned(p->p_lock));
   1114  1.129   thorpej 
   1115  1.129   thorpej 	while (!SLIST_EMPTY(&p->p_klist)) {
   1116  1.129   thorpej 		kn = SLIST_FIRST(&p->p_klist);
   1117  1.129   thorpej 		kq = kn->kn_kq;
   1118  1.129   thorpej 
   1119  1.129   thorpej 		KASSERT(kn->kn_obj == p);
   1120  1.129   thorpej 
   1121  1.129   thorpej 		mutex_spin_enter(&kq->kq_lock);
   1122  1.129   thorpej 		kn->kn_data = P_WAITSTATUS(p);
   1123  1.129   thorpej 		/*
   1124  1.129   thorpej 		 * Mark as ONESHOT, so that the knote is g/c'ed
   1125  1.129   thorpej 		 * when read.
   1126  1.129   thorpej 		 */
   1127  1.129   thorpej 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
   1128  1.129   thorpej 		kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
   1129  1.129   thorpej 
   1130    1.1     lukem 		/*
   1131  1.129   thorpej 		 * Detach the knote from the process and mark it as such.
   1132  1.129   thorpej 		 * N.B. EVFILT_SIGNAL are also on p_klist, but by the
   1133  1.129   thorpej 		 * time we get here, all open file descriptors for this
   1134  1.129   thorpej 		 * process have been released, meaning that signal knotes
   1135  1.129   thorpej 		 * will have already been detached.
   1136  1.129   thorpej 		 *
   1137  1.129   thorpej 		 * We need to synchronize this with filt_procdetach().
   1138    1.1     lukem 		 */
   1139  1.129   thorpej 		KASSERT(kn->kn_fop == &proc_filtops);
   1140  1.129   thorpej 		if ((kn->kn_status & KN_DETACHED) == 0) {
   1141  1.129   thorpej 			kn->kn_status |= KN_DETACHED;
   1142  1.129   thorpej 			SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
   1143  1.129   thorpej 		}
   1144   1.49        ad 		mutex_spin_exit(&kq->kq_lock);
   1145  1.129   thorpej 
   1146  1.129   thorpej 		/*
   1147  1.129   thorpej 		 * Always activate the knote for NOTE_EXIT regardless
   1148  1.129   thorpej 		 * of whether or not the listener cares about it.
   1149  1.129   thorpej 		 * This matches historical behavior.
   1150  1.129   thorpej 		 */
   1151  1.129   thorpej 		knote_activate(kn);
   1152    1.1     lukem 	}
   1153    1.8  jdolecek }
   1154    1.8  jdolecek 
   1155    1.8  jdolecek static void
   1156    1.8  jdolecek filt_timerexpire(void *knx)
   1157    1.8  jdolecek {
   1158    1.8  jdolecek 	struct knote *kn = knx;
   1159    1.8  jdolecek 
   1160  1.125   thorpej 	mutex_enter(&kqueue_timer_lock);
   1161    1.8  jdolecek 	kn->kn_data++;
   1162   1.49        ad 	knote_activate(kn);
   1163  1.132   thorpej 	if (kn->kn_sdata != (uintptr_t)-1) {
   1164  1.132   thorpej 		KASSERT(kn->kn_sdata > 0 && kn->kn_sdata <= INT_MAX);
   1165  1.132   thorpej 		callout_schedule((callout_t *)kn->kn_hook,
   1166  1.132   thorpej 		    (int)kn->kn_sdata);
   1167    1.8  jdolecek 	}
   1168  1.125   thorpej 	mutex_exit(&kqueue_timer_lock);
   1169    1.8  jdolecek }
   1170    1.8  jdolecek 
   1171    1.8  jdolecek static int
   1172    1.8  jdolecek filt_timerattach(struct knote *kn)
   1173    1.8  jdolecek {
   1174   1.39        ad 	callout_t *calloutp;
   1175   1.49        ad 	struct kqueue *kq;
   1176  1.132   thorpej 	struct timespec ts;
   1177  1.132   thorpej 	int tticks, flags = 0;
   1178  1.132   thorpej 
   1179  1.132   thorpej 	if (kn->kn_sfflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) {
   1180  1.132   thorpej 		return EINVAL;
   1181  1.132   thorpej 	}
   1182  1.132   thorpej 
   1183  1.132   thorpej 	/*
   1184  1.132   thorpej 	 * Convert the event 'data' to a timespec, then convert the
   1185  1.132   thorpej 	 * timespec to callout ticks.
   1186  1.132   thorpej 	 */
   1187  1.132   thorpej 	switch (kn->kn_sfflags & NOTE_TIMER_UNITMASK) {
   1188  1.132   thorpej 	case NOTE_SECONDS:
   1189  1.132   thorpej 		ts.tv_sec = kn->kn_sdata;
   1190  1.132   thorpej 		ts.tv_nsec = 0;
   1191  1.132   thorpej 		break;
   1192  1.132   thorpej 
   1193  1.132   thorpej 	case NOTE_MSECONDS:		/* == historical value 0 */
   1194  1.132   thorpej 		ts.tv_sec = kn->kn_sdata / 1000;
   1195  1.132   thorpej 		ts.tv_nsec = (kn->kn_sdata % 1000) * 1000000;
   1196  1.132   thorpej 		break;
   1197  1.132   thorpej 
   1198  1.132   thorpej 	case NOTE_USECONDS:
   1199  1.132   thorpej 		ts.tv_sec = kn->kn_sdata / 1000000;
   1200  1.132   thorpej 		ts.tv_nsec = (kn->kn_sdata % 1000000) * 1000;
   1201  1.132   thorpej 		break;
   1202  1.132   thorpej 
   1203  1.132   thorpej 	case NOTE_NSECONDS:
   1204  1.132   thorpej 		ts.tv_sec = kn->kn_sdata / 1000000000;
   1205  1.132   thorpej 		ts.tv_nsec = kn->kn_sdata % 1000000000;
   1206  1.132   thorpej 		break;
   1207  1.132   thorpej 
   1208  1.132   thorpej 	default:
   1209  1.132   thorpej 		return EINVAL;
   1210  1.132   thorpej 	}
   1211  1.132   thorpej 
   1212  1.132   thorpej 	if (kn->kn_sfflags & NOTE_ABSTIME) {
   1213  1.132   thorpej 		struct timespec deadline = ts;
   1214  1.132   thorpej 
   1215  1.132   thorpej 		/*
   1216  1.132   thorpej 		 * Get current time.
   1217  1.132   thorpej 		 *
   1218  1.132   thorpej 		 * XXX This is CLOCK_REALTIME.  There is no way to
   1219  1.132   thorpej 		 * XXX specify CLOCK_MONOTONIC.
   1220  1.132   thorpej 		 */
   1221  1.132   thorpej 		nanotime(&ts);
   1222    1.8  jdolecek 
   1223  1.132   thorpej 		/* If we're past the deadline, then the event will fire. */
   1224  1.132   thorpej 		if (timespeccmp(&deadline, &ts, <=)) {
   1225  1.132   thorpej 			kn->kn_data = 1;
   1226  1.132   thorpej 			return 0;
   1227  1.132   thorpej 		}
   1228  1.132   thorpej 
   1229  1.132   thorpej 		/* Calculate how much time is left. */
   1230  1.132   thorpej 		timespecsub(&deadline, &ts, &ts);
   1231  1.132   thorpej 	} else {
   1232  1.132   thorpej 		/* EV_CLEAR automatically set for relative timers. */
   1233  1.132   thorpej 		flags |= EV_CLEAR;
   1234  1.132   thorpej 	}
   1235  1.132   thorpej 
   1236  1.132   thorpej 	tticks = tstohz(&ts);
   1237    1.8  jdolecek 
   1238    1.8  jdolecek 	/* if the supplied value is under our resolution, use 1 tick */
   1239    1.8  jdolecek 	if (tticks == 0) {
   1240    1.8  jdolecek 		if (kn->kn_sdata == 0)
   1241   1.49        ad 			return EINVAL;
   1242    1.8  jdolecek 		tticks = 1;
   1243    1.8  jdolecek 	}
   1244    1.8  jdolecek 
   1245  1.132   thorpej 	if ((kn->kn_flags & EV_ONESHOT) != 0 ||
   1246  1.132   thorpej 	    (kn->kn_sfflags & NOTE_ABSTIME) != 0) {
   1247  1.132   thorpej 		/* Timer does not repeat. */
   1248  1.132   thorpej 		kn->kn_sdata = (uintptr_t)-1;
   1249  1.132   thorpej 	} else {
   1250  1.132   thorpej 		KASSERT((uintptr_t)tticks != (uintptr_t)-1);
   1251  1.132   thorpej 		kn->kn_sdata = tticks;
   1252  1.132   thorpej 	}
   1253  1.132   thorpej 
   1254   1.49        ad 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
   1255   1.49        ad 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
   1256   1.49        ad 		atomic_dec_uint(&kq_ncallouts);
   1257   1.49        ad 		return ENOMEM;
   1258   1.49        ad 	}
   1259   1.54        ad 	callout_init(calloutp, CALLOUT_MPSAFE);
   1260   1.49        ad 
   1261   1.49        ad 	kq = kn->kn_kq;
   1262   1.49        ad 	mutex_spin_enter(&kq->kq_lock);
   1263  1.132   thorpej 	kn->kn_flags |= flags;
   1264   1.49        ad 	kn->kn_hook = calloutp;
   1265   1.49        ad 	mutex_spin_exit(&kq->kq_lock);
   1266   1.49        ad 
   1267    1.8  jdolecek 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
   1268    1.8  jdolecek 
   1269    1.8  jdolecek 	return (0);
   1270    1.8  jdolecek }
   1271    1.8  jdolecek 
   1272    1.8  jdolecek static void
   1273    1.8  jdolecek filt_timerdetach(struct knote *kn)
   1274    1.8  jdolecek {
   1275   1.39        ad 	callout_t *calloutp;
   1276  1.103  christos 	struct kqueue *kq = kn->kn_kq;
   1277  1.103  christos 
   1278  1.125   thorpej 	/*
   1279  1.125   thorpej 	 * We don't need to hold the kqueue_timer_lock here; even
   1280  1.125   thorpej 	 * if filt_timerexpire() misses our setting of EV_ONESHOT,
   1281  1.125   thorpej 	 * we are guaranteed that the callout will no longer be
   1282  1.125   thorpej 	 * scheduled even if we attempted to halt it after it already
   1283  1.125   thorpej 	 * started running, even if it rescheduled itself.
   1284  1.125   thorpej 	 */
   1285  1.125   thorpej 
   1286  1.103  christos 	mutex_spin_enter(&kq->kq_lock);
   1287  1.103  christos 	/* prevent rescheduling when we expire */
   1288  1.103  christos 	kn->kn_flags |= EV_ONESHOT;
   1289  1.103  christos 	mutex_spin_exit(&kq->kq_lock);
   1290    1.8  jdolecek 
   1291   1.39        ad 	calloutp = (callout_t *)kn->kn_hook;
   1292  1.125   thorpej 
   1293  1.125   thorpej 	/*
   1294  1.125   thorpej 	 * Attempt to stop the callout.  This will block if it's
   1295  1.125   thorpej 	 * already running.
   1296  1.125   thorpej 	 */
   1297   1.55        ad 	callout_halt(calloutp, NULL);
   1298  1.125   thorpej 
   1299   1.39        ad 	callout_destroy(calloutp);
   1300   1.49        ad 	kmem_free(calloutp, sizeof(*calloutp));
   1301   1.49        ad 	atomic_dec_uint(&kq_ncallouts);
   1302    1.8  jdolecek }
   1303    1.8  jdolecek 
   1304    1.8  jdolecek static int
   1305   1.33      yamt filt_timer(struct knote *kn, long hint)
   1306    1.8  jdolecek {
   1307   1.49        ad 	int rv;
   1308   1.49        ad 
   1309  1.125   thorpej 	mutex_enter(&kqueue_timer_lock);
   1310   1.49        ad 	rv = (kn->kn_data != 0);
   1311  1.125   thorpej 	mutex_exit(&kqueue_timer_lock);
   1312   1.49        ad 
   1313   1.49        ad 	return rv;
   1314    1.1     lukem }
   1315    1.1     lukem 
   1316  1.108  christos static int
   1317  1.108  christos filt_userattach(struct knote *kn)
   1318  1.108  christos {
   1319  1.108  christos 	struct kqueue *kq = kn->kn_kq;
   1320  1.108  christos 
   1321  1.108  christos 	/*
   1322  1.108  christos 	 * EVFILT_USER knotes are not attached to anything in the kernel.
   1323  1.108  christos 	 */
   1324  1.108  christos 	mutex_spin_enter(&kq->kq_lock);
   1325  1.108  christos 	kn->kn_hook = NULL;
   1326  1.108  christos 	if (kn->kn_fflags & NOTE_TRIGGER)
   1327  1.108  christos 		kn->kn_hookid = 1;
   1328  1.108  christos 	else
   1329  1.108  christos 		kn->kn_hookid = 0;
   1330  1.108  christos 	mutex_spin_exit(&kq->kq_lock);
   1331  1.108  christos 	return (0);
   1332  1.108  christos }
   1333  1.108  christos 
   1334  1.108  christos static void
   1335  1.108  christos filt_userdetach(struct knote *kn)
   1336  1.108  christos {
   1337  1.108  christos 
   1338  1.108  christos 	/*
   1339  1.108  christos 	 * EVFILT_USER knotes are not attached to anything in the kernel.
   1340  1.108  christos 	 */
   1341  1.108  christos }
   1342  1.108  christos 
   1343  1.108  christos static int
   1344  1.108  christos filt_user(struct knote *kn, long hint)
   1345  1.108  christos {
   1346  1.108  christos 	struct kqueue *kq = kn->kn_kq;
   1347  1.108  christos 	int hookid;
   1348  1.108  christos 
   1349  1.108  christos 	mutex_spin_enter(&kq->kq_lock);
   1350  1.108  christos 	hookid = kn->kn_hookid;
   1351  1.108  christos 	mutex_spin_exit(&kq->kq_lock);
   1352  1.108  christos 
   1353  1.108  christos 	return hookid;
   1354  1.108  christos }
   1355  1.108  christos 
   1356  1.108  christos static void
   1357  1.108  christos filt_usertouch(struct knote *kn, struct kevent *kev, long type)
   1358  1.108  christos {
   1359  1.108  christos 	int ffctrl;
   1360  1.108  christos 
   1361  1.117     skrll 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
   1362  1.116  jdolecek 
   1363  1.108  christos 	switch (type) {
   1364  1.108  christos 	case EVENT_REGISTER:
   1365  1.108  christos 		if (kev->fflags & NOTE_TRIGGER)
   1366  1.108  christos 			kn->kn_hookid = 1;
   1367  1.108  christos 
   1368  1.108  christos 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
   1369  1.108  christos 		kev->fflags &= NOTE_FFLAGSMASK;
   1370  1.108  christos 		switch (ffctrl) {
   1371  1.108  christos 		case NOTE_FFNOP:
   1372  1.108  christos 			break;
   1373  1.108  christos 
   1374  1.108  christos 		case NOTE_FFAND:
   1375  1.108  christos 			kn->kn_sfflags &= kev->fflags;
   1376  1.108  christos 			break;
   1377  1.108  christos 
   1378  1.108  christos 		case NOTE_FFOR:
   1379  1.108  christos 			kn->kn_sfflags |= kev->fflags;
   1380  1.108  christos 			break;
   1381  1.108  christos 
   1382  1.108  christos 		case NOTE_FFCOPY:
   1383  1.108  christos 			kn->kn_sfflags = kev->fflags;
   1384  1.108  christos 			break;
   1385  1.108  christos 
   1386  1.108  christos 		default:
   1387  1.108  christos 			/* XXX Return error? */
   1388  1.108  christos 			break;
   1389  1.108  christos 		}
   1390  1.108  christos 		kn->kn_sdata = kev->data;
   1391  1.108  christos 		if (kev->flags & EV_CLEAR) {
   1392  1.108  christos 			kn->kn_hookid = 0;
   1393  1.108  christos 			kn->kn_data = 0;
   1394  1.108  christos 			kn->kn_fflags = 0;
   1395  1.108  christos 		}
   1396  1.108  christos 		break;
   1397  1.108  christos 
   1398  1.108  christos 	case EVENT_PROCESS:
   1399  1.108  christos 		*kev = kn->kn_kevent;
   1400  1.108  christos 		kev->fflags = kn->kn_sfflags;
   1401  1.108  christos 		kev->data = kn->kn_sdata;
   1402  1.108  christos 		if (kn->kn_flags & EV_CLEAR) {
   1403  1.108  christos 			kn->kn_hookid = 0;
   1404  1.108  christos 			kn->kn_data = 0;
   1405  1.108  christos 			kn->kn_fflags = 0;
   1406  1.108  christos 		}
   1407  1.108  christos 		break;
   1408  1.108  christos 
   1409  1.108  christos 	default:
   1410  1.108  christos 		panic("filt_usertouch() - invalid type (%ld)", type);
   1411  1.108  christos 		break;
   1412  1.108  christos 	}
   1413  1.108  christos }
   1414  1.108  christos 
   1415  1.102  christos /*
   1416    1.3  jdolecek  * filt_seltrue:
   1417    1.3  jdolecek  *
   1418    1.3  jdolecek  *	This filter "event" routine simulates seltrue().
   1419    1.3  jdolecek  */
   1420    1.1     lukem int
   1421   1.33      yamt filt_seltrue(struct knote *kn, long hint)
   1422    1.1     lukem {
   1423    1.1     lukem 
   1424    1.3  jdolecek 	/*
   1425    1.3  jdolecek 	 * We don't know how much data can be read/written,
   1426    1.3  jdolecek 	 * but we know that it *can* be.  This is about as
   1427    1.3  jdolecek 	 * good as select/poll does as well.
   1428    1.3  jdolecek 	 */
   1429    1.3  jdolecek 	kn->kn_data = 0;
   1430    1.3  jdolecek 	return (1);
   1431    1.3  jdolecek }
   1432    1.3  jdolecek 
   1433    1.3  jdolecek /*
   1434    1.3  jdolecek  * This provides full kqfilter entry for device switch tables, which
   1435    1.3  jdolecek  * has same effect as filter using filt_seltrue() as filter method.
   1436    1.3  jdolecek  */
   1437    1.3  jdolecek static void
   1438   1.33      yamt filt_seltruedetach(struct knote *kn)
   1439    1.3  jdolecek {
   1440    1.3  jdolecek 	/* Nothing to do */
   1441    1.3  jdolecek }
   1442    1.3  jdolecek 
   1443   1.96      maya const struct filterops seltrue_filtops = {
   1444  1.123   thorpej 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   1445   1.96      maya 	.f_attach = NULL,
   1446   1.96      maya 	.f_detach = filt_seltruedetach,
   1447   1.96      maya 	.f_event = filt_seltrue,
   1448   1.96      maya };
   1449    1.3  jdolecek 
   1450    1.3  jdolecek int
   1451   1.33      yamt seltrue_kqfilter(dev_t dev, struct knote *kn)
   1452    1.3  jdolecek {
   1453    1.3  jdolecek 	switch (kn->kn_filter) {
   1454    1.3  jdolecek 	case EVFILT_READ:
   1455    1.3  jdolecek 	case EVFILT_WRITE:
   1456    1.3  jdolecek 		kn->kn_fop = &seltrue_filtops;
   1457    1.3  jdolecek 		break;
   1458    1.3  jdolecek 	default:
   1459   1.43     pooka 		return (EINVAL);
   1460    1.3  jdolecek 	}
   1461    1.3  jdolecek 
   1462    1.3  jdolecek 	/* Nothing more to do */
   1463    1.3  jdolecek 	return (0);
   1464    1.3  jdolecek }
   1465    1.3  jdolecek 
   1466    1.3  jdolecek /*
   1467    1.3  jdolecek  * kqueue(2) system call.
   1468    1.3  jdolecek  */
   1469   1.72  christos static int
   1470   1.72  christos kqueue1(struct lwp *l, int flags, register_t *retval)
   1471    1.3  jdolecek {
   1472   1.49        ad 	struct kqueue *kq;
   1473   1.49        ad 	file_t *fp;
   1474   1.49        ad 	int fd, error;
   1475    1.3  jdolecek 
   1476   1.49        ad 	if ((error = fd_allocfile(&fp, &fd)) != 0)
   1477   1.49        ad 		return error;
   1478   1.75  christos 	fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
   1479    1.1     lukem 	fp->f_type = DTYPE_KQUEUE;
   1480    1.1     lukem 	fp->f_ops = &kqueueops;
   1481   1.49        ad 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
   1482   1.49        ad 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
   1483   1.49        ad 	cv_init(&kq->kq_cv, "kqueue");
   1484   1.49        ad 	selinit(&kq->kq_sel);
   1485    1.1     lukem 	TAILQ_INIT(&kq->kq_head);
   1486   1.82      matt 	fp->f_kqueue = kq;
   1487    1.3  jdolecek 	*retval = fd;
   1488   1.49        ad 	kq->kq_fdp = curlwp->l_fd;
   1489   1.72  christos 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1490   1.49        ad 	fd_affix(curproc, fp, fd);
   1491   1.49        ad 	return error;
   1492    1.1     lukem }
   1493    1.1     lukem 
   1494    1.3  jdolecek /*
   1495   1.72  christos  * kqueue(2) system call.
   1496   1.72  christos  */
   1497   1.72  christos int
   1498   1.72  christos sys_kqueue(struct lwp *l, const void *v, register_t *retval)
   1499   1.72  christos {
   1500   1.72  christos 	return kqueue1(l, 0, retval);
   1501   1.72  christos }
   1502   1.72  christos 
   1503   1.72  christos int
   1504   1.72  christos sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
   1505   1.72  christos     register_t *retval)
   1506   1.72  christos {
   1507   1.72  christos 	/* {
   1508   1.72  christos 		syscallarg(int) flags;
   1509   1.72  christos 	} */
   1510   1.72  christos 	return kqueue1(l, SCARG(uap, flags), retval);
   1511   1.72  christos }
   1512   1.72  christos 
   1513   1.72  christos /*
   1514    1.3  jdolecek  * kevent(2) system call.
   1515    1.3  jdolecek  */
   1516   1.61  christos int
   1517   1.81      matt kevent_fetch_changes(void *ctx, const struct kevent *changelist,
   1518   1.61  christos     struct kevent *changes, size_t index, int n)
   1519   1.24      cube {
   1520   1.49        ad 
   1521   1.24      cube 	return copyin(changelist + index, changes, n * sizeof(*changes));
   1522   1.24      cube }
   1523   1.24      cube 
   1524   1.61  christos int
   1525   1.81      matt kevent_put_events(void *ctx, struct kevent *events,
   1526   1.61  christos     struct kevent *eventlist, size_t index, int n)
   1527   1.24      cube {
   1528   1.49        ad 
   1529   1.24      cube 	return copyout(events, eventlist + index, n * sizeof(*events));
   1530   1.24      cube }
   1531   1.24      cube 
   1532   1.24      cube static const struct kevent_ops kevent_native_ops = {
   1533   1.60  gmcgarry 	.keo_private = NULL,
   1534   1.60  gmcgarry 	.keo_fetch_timeout = copyin,
   1535   1.60  gmcgarry 	.keo_fetch_changes = kevent_fetch_changes,
   1536   1.60  gmcgarry 	.keo_put_events = kevent_put_events,
   1537   1.24      cube };
   1538   1.24      cube 
   1539    1.1     lukem int
   1540   1.61  christos sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
   1541   1.61  christos     register_t *retval)
   1542    1.1     lukem {
   1543   1.44       dsl 	/* {
   1544    1.3  jdolecek 		syscallarg(int) fd;
   1545    1.3  jdolecek 		syscallarg(const struct kevent *) changelist;
   1546    1.3  jdolecek 		syscallarg(size_t) nchanges;
   1547    1.3  jdolecek 		syscallarg(struct kevent *) eventlist;
   1548    1.3  jdolecek 		syscallarg(size_t) nevents;
   1549    1.3  jdolecek 		syscallarg(const struct timespec *) timeout;
   1550   1.44       dsl 	} */
   1551   1.24      cube 
   1552   1.49        ad 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
   1553   1.24      cube 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
   1554   1.24      cube 	    SCARG(uap, timeout), &kevent_native_ops);
   1555   1.24      cube }
   1556   1.24      cube 
   1557   1.24      cube int
   1558   1.49        ad kevent1(register_t *retval, int fd,
   1559   1.49        ad 	const struct kevent *changelist, size_t nchanges,
   1560   1.49        ad 	struct kevent *eventlist, size_t nevents,
   1561   1.49        ad 	const struct timespec *timeout,
   1562   1.49        ad 	const struct kevent_ops *keops)
   1563   1.24      cube {
   1564   1.49        ad 	struct kevent *kevp;
   1565   1.49        ad 	struct kqueue *kq;
   1566    1.3  jdolecek 	struct timespec	ts;
   1567   1.49        ad 	size_t i, n, ichange;
   1568   1.49        ad 	int nerrors, error;
   1569   1.80      maxv 	struct kevent kevbuf[KQ_NEVENTS];	/* approx 300 bytes on 64-bit */
   1570   1.49        ad 	file_t *fp;
   1571    1.3  jdolecek 
   1572    1.3  jdolecek 	/* check that we're dealing with a kq */
   1573   1.49        ad 	fp = fd_getfile(fd);
   1574   1.10        pk 	if (fp == NULL)
   1575    1.1     lukem 		return (EBADF);
   1576   1.10        pk 
   1577   1.10        pk 	if (fp->f_type != DTYPE_KQUEUE) {
   1578   1.49        ad 		fd_putfile(fd);
   1579   1.10        pk 		return (EBADF);
   1580   1.10        pk 	}
   1581    1.1     lukem 
   1582   1.24      cube 	if (timeout != NULL) {
   1583   1.24      cube 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
   1584    1.1     lukem 		if (error)
   1585    1.1     lukem 			goto done;
   1586   1.24      cube 		timeout = &ts;
   1587    1.1     lukem 	}
   1588    1.1     lukem 
   1589   1.82      matt 	kq = fp->f_kqueue;
   1590    1.1     lukem 	nerrors = 0;
   1591   1.24      cube 	ichange = 0;
   1592    1.1     lukem 
   1593    1.3  jdolecek 	/* traverse list of events to register */
   1594   1.24      cube 	while (nchanges > 0) {
   1595   1.49        ad 		n = MIN(nchanges, __arraycount(kevbuf));
   1596   1.24      cube 		error = (*keops->keo_fetch_changes)(keops->keo_private,
   1597   1.49        ad 		    changelist, kevbuf, ichange, n);
   1598    1.1     lukem 		if (error)
   1599    1.1     lukem 			goto done;
   1600    1.1     lukem 		for (i = 0; i < n; i++) {
   1601   1.49        ad 			kevp = &kevbuf[i];
   1602    1.1     lukem 			kevp->flags &= ~EV_SYSFLAGS;
   1603    1.3  jdolecek 			/* register each knote */
   1604   1.49        ad 			error = kqueue_register(kq, kevp);
   1605   1.89   abhinav 			if (!error && !(kevp->flags & EV_RECEIPT))
   1606   1.89   abhinav 				continue;
   1607   1.89   abhinav 			if (nevents == 0)
   1608   1.89   abhinav 				goto done;
   1609   1.89   abhinav 			kevp->flags = EV_ERROR;
   1610   1.89   abhinav 			kevp->data = error;
   1611   1.89   abhinav 			error = (*keops->keo_put_events)
   1612   1.89   abhinav 				(keops->keo_private, kevp,
   1613   1.89   abhinav 				 eventlist, nerrors, 1);
   1614   1.89   abhinav 			if (error)
   1615   1.89   abhinav 				goto done;
   1616   1.89   abhinav 			nevents--;
   1617   1.89   abhinav 			nerrors++;
   1618    1.1     lukem 		}
   1619   1.24      cube 		nchanges -= n;	/* update the results */
   1620   1.24      cube 		ichange += n;
   1621    1.1     lukem 	}
   1622    1.1     lukem 	if (nerrors) {
   1623    1.3  jdolecek 		*retval = nerrors;
   1624    1.1     lukem 		error = 0;
   1625    1.1     lukem 		goto done;
   1626    1.1     lukem 	}
   1627    1.1     lukem 
   1628    1.3  jdolecek 	/* actually scan through the events */
   1629   1.49        ad 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
   1630   1.49        ad 	    kevbuf, __arraycount(kevbuf));
   1631    1.3  jdolecek  done:
   1632   1.49        ad 	fd_putfile(fd);
   1633    1.1     lukem 	return (error);
   1634    1.1     lukem }
   1635    1.1     lukem 
   1636    1.3  jdolecek /*
   1637    1.3  jdolecek  * Register a given kevent kev onto the kqueue
   1638    1.3  jdolecek  */
   1639   1.49        ad static int
   1640   1.49        ad kqueue_register(struct kqueue *kq, struct kevent *kev)
   1641    1.1     lukem {
   1642   1.49        ad 	struct kfilter *kfilter;
   1643   1.49        ad 	filedesc_t *fdp;
   1644   1.49        ad 	file_t *fp;
   1645   1.49        ad 	fdfile_t *ff;
   1646   1.49        ad 	struct knote *kn, *newkn;
   1647   1.49        ad 	struct klist *list;
   1648   1.49        ad 	int error, fd, rv;
   1649    1.3  jdolecek 
   1650    1.3  jdolecek 	fdp = kq->kq_fdp;
   1651    1.3  jdolecek 	fp = NULL;
   1652    1.3  jdolecek 	kn = NULL;
   1653    1.3  jdolecek 	error = 0;
   1654   1.49        ad 	fd = 0;
   1655   1.49        ad 
   1656   1.49        ad 	newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
   1657   1.49        ad 
   1658   1.49        ad 	rw_enter(&kqueue_filter_lock, RW_READER);
   1659    1.3  jdolecek 	kfilter = kfilter_byfilter(kev->filter);
   1660    1.3  jdolecek 	if (kfilter == NULL || kfilter->filtops == NULL) {
   1661    1.3  jdolecek 		/* filter not found nor implemented */
   1662   1.49        ad 		rw_exit(&kqueue_filter_lock);
   1663   1.49        ad 		kmem_free(newkn, sizeof(*newkn));
   1664    1.1     lukem 		return (EINVAL);
   1665    1.1     lukem 	}
   1666    1.1     lukem 
   1667    1.3  jdolecek 	/* search if knote already exists */
   1668  1.121   thorpej 	if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
   1669    1.3  jdolecek 		/* monitoring a file descriptor */
   1670   1.87  christos 		/* validate descriptor */
   1671   1.88  christos 		if (kev->ident > INT_MAX
   1672   1.88  christos 		    || (fp = fd_getfile(fd = kev->ident)) == NULL) {
   1673   1.49        ad 			rw_exit(&kqueue_filter_lock);
   1674   1.49        ad 			kmem_free(newkn, sizeof(*newkn));
   1675   1.49        ad 			return EBADF;
   1676   1.49        ad 		}
   1677   1.74     rmind 		mutex_enter(&fdp->fd_lock);
   1678   1.65        ad 		ff = fdp->fd_dt->dt_ff[fd];
   1679   1.98  christos 		if (ff->ff_refcnt & FR_CLOSING) {
   1680   1.98  christos 			error = EBADF;
   1681   1.98  christos 			goto doneunlock;
   1682   1.98  christos 		}
   1683   1.49        ad 		if (fd <= fdp->fd_lastkqfile) {
   1684   1.49        ad 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
   1685    1.1     lukem 				if (kq == kn->kn_kq &&
   1686    1.1     lukem 				    kev->filter == kn->kn_filter)
   1687    1.1     lukem 					break;
   1688   1.49        ad 			}
   1689    1.1     lukem 		}
   1690    1.1     lukem 	} else {
   1691    1.3  jdolecek 		/*
   1692    1.3  jdolecek 		 * not monitoring a file descriptor, so
   1693    1.3  jdolecek 		 * lookup knotes in internal hash table
   1694    1.3  jdolecek 		 */
   1695   1.74     rmind 		mutex_enter(&fdp->fd_lock);
   1696    1.1     lukem 		if (fdp->fd_knhashmask != 0) {
   1697    1.1     lukem 			list = &fdp->fd_knhash[
   1698    1.1     lukem 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
   1699   1.49        ad 			SLIST_FOREACH(kn, list, kn_link) {
   1700    1.1     lukem 				if (kev->ident == kn->kn_id &&
   1701    1.1     lukem 				    kq == kn->kn_kq &&
   1702    1.1     lukem 				    kev->filter == kn->kn_filter)
   1703    1.1     lukem 					break;
   1704   1.49        ad 			}
   1705    1.1     lukem 		}
   1706    1.1     lukem 	}
   1707    1.1     lukem 
   1708  1.129   thorpej 	/* It's safe to test KQ_CLOSING while holding only the fd_lock. */
   1709  1.129   thorpej 	KASSERT(mutex_owned(&fdp->fd_lock));
   1710  1.129   thorpej 	KASSERT((kq->kq_count & KQ_CLOSING) == 0);
   1711  1.129   thorpej 
   1712    1.1     lukem 	/*
   1713    1.1     lukem 	 * kn now contains the matching knote, or NULL if no match
   1714    1.1     lukem 	 */
   1715  1.108  christos 	if (kn == NULL) {
   1716  1.108  christos 		if (kev->flags & EV_ADD) {
   1717    1.3  jdolecek 			/* create new knote */
   1718   1.49        ad 			kn = newkn;
   1719   1.49        ad 			newkn = NULL;
   1720   1.49        ad 			kn->kn_obj = fp;
   1721   1.79  christos 			kn->kn_id = kev->ident;
   1722    1.1     lukem 			kn->kn_kq = kq;
   1723    1.3  jdolecek 			kn->kn_fop = kfilter->filtops;
   1724   1.49        ad 			kn->kn_kfilter = kfilter;
   1725   1.49        ad 			kn->kn_sfflags = kev->fflags;
   1726   1.49        ad 			kn->kn_sdata = kev->data;
   1727   1.49        ad 			kev->fflags = 0;
   1728   1.49        ad 			kev->data = 0;
   1729   1.49        ad 			kn->kn_kevent = *kev;
   1730    1.1     lukem 
   1731   1.85  christos 			KASSERT(kn->kn_fop != NULL);
   1732    1.1     lukem 			/*
   1733    1.1     lukem 			 * apply reference count to knote structure, and
   1734    1.1     lukem 			 * do not release it at the end of this routine.
   1735    1.1     lukem 			 */
   1736    1.1     lukem 			fp = NULL;
   1737    1.1     lukem 
   1738  1.121   thorpej 			if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
   1739   1.49        ad 				/*
   1740   1.49        ad 				 * If knote is not on an fd, store on
   1741   1.49        ad 				 * internal hash table.
   1742   1.49        ad 				 */
   1743   1.49        ad 				if (fdp->fd_knhashmask == 0) {
   1744   1.49        ad 					/* XXXAD can block with fd_lock held */
   1745   1.49        ad 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
   1746   1.59        ad 					    HASH_LIST, true,
   1747   1.49        ad 					    &fdp->fd_knhashmask);
   1748   1.49        ad 				}
   1749   1.49        ad 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
   1750   1.49        ad 				    fdp->fd_knhashmask)];
   1751   1.49        ad 			} else {
   1752   1.49        ad 				/* Otherwise, knote is on an fd. */
   1753   1.49        ad 				list = (struct klist *)
   1754   1.65        ad 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   1755   1.49        ad 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
   1756   1.49        ad 					fdp->fd_lastkqfile = kn->kn_id;
   1757   1.49        ad 			}
   1758   1.49        ad 			SLIST_INSERT_HEAD(list, kn, kn_link);
   1759    1.1     lukem 
   1760  1.122   thorpej 			/*
   1761  1.122   thorpej 			 * N.B. kn->kn_fop may change as the result
   1762  1.122   thorpej 			 * of filter_attach()!
   1763  1.122   thorpej 			 */
   1764  1.122   thorpej 			error = filter_attach(kn);
   1765   1.49        ad 			if (error != 0) {
   1766  1.100  christos #ifdef DEBUG
   1767  1.105  christos 				struct proc *p = curlwp->l_proc;
   1768  1.101  christos 				const file_t *ft = kn->kn_obj;
   1769  1.105  christos 				printf("%s: %s[%d]: event type %d not "
   1770  1.105  christos 				    "supported for file type %d/%s "
   1771  1.105  christos 				    "(error %d)\n", __func__,
   1772  1.105  christos 				    p->p_comm, p->p_pid,
   1773  1.101  christos 				    kn->kn_filter, ft ? ft->f_type : -1,
   1774  1.101  christos 				    ft ? ft->f_ops->fo_name : "?", error);
   1775  1.100  christos #endif
   1776  1.100  christos 
   1777  1.129   thorpej 				/*
   1778  1.129   thorpej 				 * N.B. no need to check for this note to
   1779  1.129   thorpej 				 * be in-flux, since it was never visible
   1780  1.129   thorpej 				 * to the monitored object.
   1781  1.129   thorpej 				 *
   1782  1.129   thorpej 				 * knote_detach() drops fdp->fd_lock
   1783  1.129   thorpej 				 */
   1784  1.129   thorpej 				mutex_enter(&kq->kq_lock);
   1785  1.129   thorpej 				KNOTE_WILLDETACH(kn);
   1786  1.129   thorpej 				KASSERT(kn_in_flux(kn) == false);
   1787  1.129   thorpej 				mutex_exit(&kq->kq_lock);
   1788   1.49        ad 				knote_detach(kn, fdp, false);
   1789    1.1     lukem 				goto done;
   1790    1.1     lukem 			}
   1791   1.49        ad 			atomic_inc_uint(&kfilter->refcnt);
   1792  1.108  christos 			goto done_ev_add;
   1793    1.1     lukem 		} else {
   1794  1.108  christos 			/* No matching knote and the EV_ADD flag is not set. */
   1795  1.108  christos 			error = ENOENT;
   1796  1.108  christos 			goto doneunlock;
   1797    1.1     lukem 		}
   1798  1.108  christos 	}
   1799  1.108  christos 
   1800  1.108  christos 	if (kev->flags & EV_DELETE) {
   1801  1.129   thorpej 		/*
   1802  1.129   thorpej 		 * Let the world know that this knote is about to go
   1803  1.129   thorpej 		 * away, and wait for it to settle if it's currently
   1804  1.129   thorpej 		 * in-flux.
   1805  1.129   thorpej 		 */
   1806  1.129   thorpej 		mutex_spin_enter(&kq->kq_lock);
   1807  1.129   thorpej 		if (kn->kn_status & KN_WILLDETACH) {
   1808  1.129   thorpej 			/*
   1809  1.129   thorpej 			 * This knote is already on its way out,
   1810  1.129   thorpej 			 * so just be done.
   1811  1.129   thorpej 			 */
   1812  1.129   thorpej 			mutex_spin_exit(&kq->kq_lock);
   1813  1.129   thorpej 			goto doneunlock;
   1814  1.129   thorpej 		}
   1815  1.129   thorpej 		KNOTE_WILLDETACH(kn);
   1816  1.129   thorpej 		if (kn_in_flux(kn)) {
   1817  1.129   thorpej 			mutex_exit(&fdp->fd_lock);
   1818  1.129   thorpej 			/*
   1819  1.129   thorpej 			 * It's safe for us to conclusively wait for
   1820  1.129   thorpej 			 * this knote to settle because we know we'll
   1821  1.129   thorpej 			 * be completing the detach.
   1822  1.129   thorpej 			 */
   1823  1.129   thorpej 			kn_wait_flux(kn, true);
   1824  1.129   thorpej 			KASSERT(kn_in_flux(kn) == false);
   1825  1.129   thorpej 			mutex_spin_exit(&kq->kq_lock);
   1826  1.129   thorpej 			mutex_enter(&fdp->fd_lock);
   1827  1.129   thorpej 		} else {
   1828  1.129   thorpej 			mutex_spin_exit(&kq->kq_lock);
   1829  1.129   thorpej 		}
   1830  1.129   thorpej 
   1831  1.108  christos 		/* knote_detach() drops fdp->fd_lock */
   1832  1.108  christos 		knote_detach(kn, fdp, true);
   1833  1.108  christos 		goto done;
   1834  1.108  christos 	}
   1835  1.108  christos 
   1836  1.108  christos 	/*
   1837  1.108  christos 	 * The user may change some filter values after the
   1838  1.108  christos 	 * initial EV_ADD, but doing so will not reset any
   1839  1.108  christos 	 * filter which have already been triggered.
   1840  1.108  christos 	 */
   1841  1.108  christos 	kn->kn_kevent.udata = kev->udata;
   1842  1.108  christos 	KASSERT(kn->kn_fop != NULL);
   1843  1.121   thorpej 	if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
   1844  1.121   thorpej 	    kn->kn_fop->f_touch != NULL) {
   1845  1.116  jdolecek 		mutex_spin_enter(&kq->kq_lock);
   1846  1.122   thorpej 		filter_touch(kn, kev, EVENT_REGISTER);
   1847  1.116  jdolecek 		mutex_spin_exit(&kq->kq_lock);
   1848   1.49        ad 	} else {
   1849  1.108  christos 		kn->kn_sfflags = kev->fflags;
   1850  1.108  christos 		kn->kn_sdata = kev->data;
   1851    1.1     lukem 	}
   1852    1.1     lukem 
   1853  1.108  christos 	/*
   1854  1.108  christos 	 * We can get here if we are trying to attach
   1855  1.108  christos 	 * an event to a file descriptor that does not
   1856  1.108  christos 	 * support events, and the attach routine is
   1857  1.108  christos 	 * broken and does not return an error.
   1858  1.108  christos 	 */
   1859  1.108  christos done_ev_add:
   1860  1.122   thorpej 	rv = filter_event(kn, 0);
   1861  1.108  christos 	if (rv)
   1862  1.108  christos 		knote_activate(kn);
   1863  1.108  christos 
   1864    1.3  jdolecek 	/* disable knote */
   1865   1.49        ad 	if ((kev->flags & EV_DISABLE)) {
   1866   1.49        ad 		mutex_spin_enter(&kq->kq_lock);
   1867   1.49        ad 		if ((kn->kn_status & KN_DISABLED) == 0)
   1868   1.49        ad 			kn->kn_status |= KN_DISABLED;
   1869   1.49        ad 		mutex_spin_exit(&kq->kq_lock);
   1870    1.1     lukem 	}
   1871    1.1     lukem 
   1872    1.3  jdolecek 	/* enable knote */
   1873   1.49        ad 	if ((kev->flags & EV_ENABLE)) {
   1874   1.49        ad 		knote_enqueue(kn);
   1875    1.1     lukem 	}
   1876   1.98  christos doneunlock:
   1877   1.49        ad 	mutex_exit(&fdp->fd_lock);
   1878    1.3  jdolecek  done:
   1879   1.49        ad 	rw_exit(&kqueue_filter_lock);
   1880   1.49        ad 	if (newkn != NULL)
   1881   1.49        ad 		kmem_free(newkn, sizeof(*newkn));
   1882    1.1     lukem 	if (fp != NULL)
   1883   1.49        ad 		fd_putfile(fd);
   1884    1.1     lukem 	return (error);
   1885    1.1     lukem }
   1886    1.1     lukem 
   1887   1.94  christos #define KN_FMT(buf, kn) \
   1888   1.94  christos     (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
   1889   1.94  christos 
   1890  1.129   thorpej #if defined(DDB)
   1891  1.129   thorpej void
   1892  1.129   thorpej kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
   1893  1.129   thorpej {
   1894  1.129   thorpej 	const struct knote *kn;
   1895  1.129   thorpej 	u_int count;
   1896  1.129   thorpej 	int nmarker;
   1897  1.129   thorpej 	char buf[128];
   1898  1.129   thorpej 
   1899  1.129   thorpej 	count = 0;
   1900  1.129   thorpej 	nmarker = 0;
   1901  1.129   thorpej 
   1902  1.129   thorpej 	(*pr)("kqueue %p (restart=%d count=%u):\n", kq,
   1903  1.129   thorpej 	    !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
   1904  1.129   thorpej 	(*pr)("  Queued knotes:\n");
   1905  1.129   thorpej 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   1906  1.129   thorpej 		if (kn->kn_status & KN_MARKER) {
   1907  1.129   thorpej 			nmarker++;
   1908  1.129   thorpej 		} else {
   1909  1.129   thorpej 			count++;
   1910  1.129   thorpej 		}
   1911  1.129   thorpej 		(*pr)("    knote %p: kq=%p status=%s\n",
   1912  1.129   thorpej 		    kn, kn->kn_kq, KN_FMT(buf, kn));
   1913  1.129   thorpej 		(*pr)("      id=0x%lx (%lu) filter=%d\n",
   1914  1.129   thorpej 		    (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
   1915  1.129   thorpej 		if (kn->kn_kq != kq) {
   1916  1.129   thorpej 			(*pr)("      !!! kn->kn_kq != kq\n");
   1917  1.129   thorpej 		}
   1918  1.129   thorpej 	}
   1919  1.129   thorpej 	if (count != KQ_COUNT(kq)) {
   1920  1.129   thorpej 		(*pr)("  !!! count(%u) != KQ_COUNT(%u)\n",
   1921  1.129   thorpej 		    count, KQ_COUNT(kq));
   1922  1.129   thorpej 	}
   1923  1.129   thorpej }
   1924  1.129   thorpej #endif /* DDB */
   1925  1.129   thorpej 
   1926  1.129   thorpej #if defined(DEBUG)
   1927   1.52      yamt static void
   1928   1.94  christos kqueue_check(const char *func, size_t line, const struct kqueue *kq)
   1929   1.52      yamt {
   1930   1.52      yamt 	const struct knote *kn;
   1931  1.118  jdolecek 	u_int count;
   1932   1.52      yamt 	int nmarker;
   1933   1.94  christos 	char buf[128];
   1934   1.52      yamt 
   1935   1.52      yamt 	KASSERT(mutex_owned(&kq->kq_lock));
   1936   1.52      yamt 
   1937   1.52      yamt 	count = 0;
   1938   1.52      yamt 	nmarker = 0;
   1939   1.52      yamt 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   1940   1.52      yamt 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
   1941   1.94  christos 			panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
   1942   1.94  christos 			    func, line, kq, kn, KN_FMT(buf, kn));
   1943   1.52      yamt 		}
   1944   1.52      yamt 		if ((kn->kn_status & KN_MARKER) == 0) {
   1945   1.52      yamt 			if (kn->kn_kq != kq) {
   1946   1.94  christos 				panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
   1947   1.94  christos 				    func, line, kq, kn, kn->kn_kq,
   1948   1.94  christos 				    KN_FMT(buf, kn));
   1949   1.52      yamt 			}
   1950   1.52      yamt 			if ((kn->kn_status & KN_ACTIVE) == 0) {
   1951   1.94  christos 				panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
   1952   1.94  christos 				    func, line, kq, kn, KN_FMT(buf, kn));
   1953   1.52      yamt 			}
   1954   1.52      yamt 			count++;
   1955  1.118  jdolecek 			if (count > KQ_COUNT(kq)) {
   1956  1.129   thorpej 				panic("%s,%zu: kq=%p kq->kq_count(%u) != "
   1957  1.112  jdolecek 				    "count(%d), nmarker=%d",
   1958  1.118  jdolecek 		    		    func, line, kq, KQ_COUNT(kq), count,
   1959  1.112  jdolecek 				    nmarker);
   1960   1.52      yamt 			}
   1961   1.52      yamt 		} else {
   1962   1.52      yamt 			nmarker++;
   1963   1.52      yamt 		}
   1964   1.52      yamt 	}
   1965   1.52      yamt }
   1966   1.94  christos #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
   1967   1.52      yamt #else /* defined(DEBUG) */
   1968   1.52      yamt #define	kq_check(a)	/* nothing */
   1969   1.52      yamt #endif /* defined(DEBUG) */
   1970   1.52      yamt 
   1971  1.118  jdolecek static void
   1972  1.118  jdolecek kqueue_restart(file_t *fp)
   1973  1.118  jdolecek {
   1974  1.118  jdolecek 	struct kqueue *kq = fp->f_kqueue;
   1975  1.118  jdolecek 	KASSERT(kq != NULL);
   1976  1.118  jdolecek 
   1977  1.118  jdolecek 	mutex_spin_enter(&kq->kq_lock);
   1978  1.118  jdolecek 	kq->kq_count |= KQ_RESTART;
   1979  1.118  jdolecek 	cv_broadcast(&kq->kq_cv);
   1980  1.118  jdolecek 	mutex_spin_exit(&kq->kq_lock);
   1981  1.118  jdolecek }
   1982  1.118  jdolecek 
   1983    1.3  jdolecek /*
   1984    1.3  jdolecek  * Scan through the list of events on fp (for a maximum of maxevents),
   1985    1.3  jdolecek  * returning the results in to ulistp. Timeout is determined by tsp; if
   1986    1.3  jdolecek  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
   1987    1.3  jdolecek  * as appropriate.
   1988    1.3  jdolecek  */
   1989    1.1     lukem static int
   1990   1.49        ad kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
   1991   1.49        ad 	    const struct timespec *tsp, register_t *retval,
   1992   1.49        ad 	    const struct kevent_ops *keops, struct kevent *kevbuf,
   1993   1.49        ad 	    size_t kevcnt)
   1994    1.1     lukem {
   1995    1.3  jdolecek 	struct kqueue	*kq;
   1996    1.3  jdolecek 	struct kevent	*kevp;
   1997   1.62  christos 	struct timespec	ats, sleepts;
   1998   1.85  christos 	struct knote	*kn, *marker, morker;
   1999   1.24      cube 	size_t		count, nkev, nevents;
   2000  1.111  jdolecek 	int		timeout, error, touch, rv, influx;
   2001   1.49        ad 	filedesc_t	*fdp;
   2002    1.1     lukem 
   2003   1.49        ad 	fdp = curlwp->l_fd;
   2004   1.82      matt 	kq = fp->f_kqueue;
   2005    1.1     lukem 	count = maxevents;
   2006   1.24      cube 	nkev = nevents = error = 0;
   2007   1.49        ad 	if (count == 0) {
   2008   1.49        ad 		*retval = 0;
   2009   1.49        ad 		return 0;
   2010   1.49        ad 	}
   2011    1.1     lukem 
   2012    1.9  jdolecek 	if (tsp) {				/* timeout supplied */
   2013   1.63  christos 		ats = *tsp;
   2014   1.62  christos 		if (inittimeleft(&ats, &sleepts) == -1) {
   2015   1.49        ad 			*retval = maxevents;
   2016   1.49        ad 			return EINVAL;
   2017    1.1     lukem 		}
   2018   1.62  christos 		timeout = tstohz(&ats);
   2019    1.9  jdolecek 		if (timeout <= 0)
   2020   1.29    kardel 			timeout = -1;           /* do poll */
   2021    1.1     lukem 	} else {
   2022    1.9  jdolecek 		/* no timeout, wait forever */
   2023    1.1     lukem 		timeout = 0;
   2024   1.93  riastrad 	}
   2025    1.1     lukem 
   2026   1.85  christos 	memset(&morker, 0, sizeof(morker));
   2027   1.85  christos 	marker = &morker;
   2028  1.129   thorpej 	marker->kn_kq = kq;
   2029   1.49        ad 	marker->kn_status = KN_MARKER;
   2030   1.49        ad 	mutex_spin_enter(&kq->kq_lock);
   2031    1.3  jdolecek  retry:
   2032   1.49        ad 	kevp = kevbuf;
   2033  1.118  jdolecek 	if (KQ_COUNT(kq) == 0) {
   2034   1.49        ad 		if (timeout >= 0) {
   2035   1.49        ad 			error = cv_timedwait_sig(&kq->kq_cv,
   2036   1.49        ad 			    &kq->kq_lock, timeout);
   2037   1.49        ad 			if (error == 0) {
   2038  1.118  jdolecek 				if (KQ_COUNT(kq) == 0 &&
   2039  1.118  jdolecek 				    (kq->kq_count & KQ_RESTART)) {
   2040  1.118  jdolecek 					/* return to clear file reference */
   2041  1.118  jdolecek 					error = ERESTART;
   2042  1.118  jdolecek 				} else if (tsp == NULL || (timeout =
   2043  1.118  jdolecek 				    gettimeleft(&ats, &sleepts)) > 0) {
   2044   1.49        ad 					goto retry;
   2045  1.118  jdolecek 				}
   2046   1.49        ad 			} else {
   2047   1.49        ad 				/* don't restart after signals... */
   2048   1.49        ad 				if (error == ERESTART)
   2049   1.49        ad 					error = EINTR;
   2050   1.49        ad 				if (error == EWOULDBLOCK)
   2051   1.49        ad 					error = 0;
   2052   1.49        ad 			}
   2053    1.1     lukem 		}
   2054   1.92  christos 		mutex_spin_exit(&kq->kq_lock);
   2055  1.110  jdolecek 		goto done;
   2056  1.110  jdolecek 	}
   2057  1.110  jdolecek 
   2058  1.110  jdolecek 	/* mark end of knote list */
   2059  1.110  jdolecek 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
   2060  1.111  jdolecek 	influx = 0;
   2061    1.1     lukem 
   2062  1.110  jdolecek 	/*
   2063  1.110  jdolecek 	 * Acquire the fdp->fd_lock interlock to avoid races with
   2064  1.110  jdolecek 	 * file creation/destruction from other threads.
   2065  1.110  jdolecek 	 */
   2066  1.129   thorpej 	mutex_spin_exit(&kq->kq_lock);
   2067  1.111  jdolecek relock:
   2068  1.110  jdolecek 	mutex_enter(&fdp->fd_lock);
   2069  1.110  jdolecek 	mutex_spin_enter(&kq->kq_lock);
   2070   1.92  christos 
   2071  1.110  jdolecek 	while (count != 0) {
   2072  1.129   thorpej 		/*
   2073  1.129   thorpej 		 * Get next knote.  We are guaranteed this will never
   2074  1.129   thorpej 		 * be NULL because of the marker we inserted above.
   2075  1.129   thorpej 		 */
   2076  1.129   thorpej 		kn = TAILQ_FIRST(&kq->kq_head);
   2077  1.111  jdolecek 
   2078  1.129   thorpej 		bool kn_is_other_marker =
   2079  1.129   thorpej 		    (kn->kn_status & KN_MARKER) != 0 && kn != marker;
   2080  1.129   thorpej 		bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
   2081  1.129   thorpej 		bool kn_is_in_flux = kn_in_flux(kn);
   2082  1.129   thorpej 
   2083  1.129   thorpej 		/*
   2084  1.129   thorpej 		 * If we found a marker that's not ours, or this knote
   2085  1.129   thorpej 		 * is in a state of flux, then wait for everything to
   2086  1.129   thorpej 		 * settle down and go around again.
   2087  1.129   thorpej 		 */
   2088  1.129   thorpej 		if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
   2089  1.111  jdolecek 			if (influx) {
   2090  1.111  jdolecek 				influx = 0;
   2091  1.111  jdolecek 				KQ_FLUX_WAKEUP(kq);
   2092  1.111  jdolecek 			}
   2093  1.111  jdolecek 			mutex_exit(&fdp->fd_lock);
   2094  1.129   thorpej 			if (kn_is_other_marker || kn_is_in_flux) {
   2095  1.129   thorpej 				KQ_FLUX_WAIT(kq);
   2096  1.129   thorpej 				mutex_spin_exit(&kq->kq_lock);
   2097  1.129   thorpej 			} else {
   2098  1.129   thorpej 				/*
   2099  1.129   thorpej 				 * Detaching but not in-flux?  Someone is
   2100  1.129   thorpej 				 * actively trying to finish the job; just
   2101  1.129   thorpej 				 * go around and try again.
   2102  1.129   thorpej 				 */
   2103  1.129   thorpej 				KASSERT(kn_is_detaching);
   2104  1.129   thorpej 				mutex_spin_exit(&kq->kq_lock);
   2105  1.129   thorpej 				preempt_point();
   2106  1.129   thorpej 			}
   2107  1.111  jdolecek 			goto relock;
   2108  1.111  jdolecek 		}
   2109  1.111  jdolecek 
   2110  1.111  jdolecek 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2111  1.111  jdolecek 		if (kn == marker) {
   2112  1.111  jdolecek 			/* it's our marker, stop */
   2113  1.111  jdolecek 			KQ_FLUX_WAKEUP(kq);
   2114  1.111  jdolecek 			if (count == maxevents) {
   2115  1.110  jdolecek 				mutex_exit(&fdp->fd_lock);
   2116  1.110  jdolecek 				goto retry;
   2117   1.49        ad 			}
   2118  1.111  jdolecek 			break;
   2119  1.110  jdolecek 		}
   2120  1.111  jdolecek 		KASSERT((kn->kn_status & KN_BUSY) == 0);
   2121  1.111  jdolecek 
   2122  1.110  jdolecek 		kq_check(kq);
   2123  1.115  jdolecek 		kn->kn_status &= ~KN_QUEUED;
   2124  1.110  jdolecek 		kn->kn_status |= KN_BUSY;
   2125  1.110  jdolecek 		kq_check(kq);
   2126  1.110  jdolecek 		if (kn->kn_status & KN_DISABLED) {
   2127  1.115  jdolecek 			kn->kn_status &= ~KN_BUSY;
   2128  1.111  jdolecek 			kq->kq_count--;
   2129  1.110  jdolecek 			/* don't want disabled events */
   2130  1.110  jdolecek 			continue;
   2131  1.110  jdolecek 		}
   2132  1.110  jdolecek 		if ((kn->kn_flags & EV_ONESHOT) == 0) {
   2133  1.110  jdolecek 			mutex_spin_exit(&kq->kq_lock);
   2134  1.110  jdolecek 			KASSERT(mutex_owned(&fdp->fd_lock));
   2135  1.122   thorpej 			rv = filter_event(kn, 0);
   2136  1.110  jdolecek 			mutex_spin_enter(&kq->kq_lock);
   2137  1.115  jdolecek 			/* Re-poll if note was re-enqueued. */
   2138  1.115  jdolecek 			if ((kn->kn_status & KN_QUEUED) != 0) {
   2139  1.115  jdolecek 				kn->kn_status &= ~KN_BUSY;
   2140  1.115  jdolecek 				/* Re-enqueue raised kq_count, lower it again */
   2141  1.115  jdolecek 				kq->kq_count--;
   2142  1.115  jdolecek 				influx = 1;
   2143  1.115  jdolecek 				continue;
   2144  1.115  jdolecek 			}
   2145  1.110  jdolecek 			if (rv == 0) {
   2146  1.110  jdolecek 				/*
   2147  1.129   thorpej 				 * non-ONESHOT event that hasn't triggered
   2148  1.129   thorpej 				 * again, so it will remain de-queued.
   2149  1.110  jdolecek 				 */
   2150  1.115  jdolecek 				kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2151  1.111  jdolecek 				kq->kq_count--;
   2152  1.111  jdolecek 				influx = 1;
   2153  1.110  jdolecek 				continue;
   2154   1.49        ad 			}
   2155  1.129   thorpej 		} else {
   2156  1.129   thorpej 			/*
   2157  1.129   thorpej 			 * This ONESHOT note is going to be detached
   2158  1.129   thorpej 			 * below.  Mark the knote as not long for this
   2159  1.129   thorpej 			 * world before we release the kq lock so that
   2160  1.129   thorpej 			 * no one else will put it in a state of flux.
   2161  1.129   thorpej 			 */
   2162  1.129   thorpej 			KNOTE_WILLDETACH(kn);
   2163  1.110  jdolecek 		}
   2164  1.110  jdolecek 		KASSERT(kn->kn_fop != NULL);
   2165  1.121   thorpej 		touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
   2166  1.110  jdolecek 				kn->kn_fop->f_touch != NULL);
   2167  1.110  jdolecek 		/* XXXAD should be got from f_event if !oneshot. */
   2168  1.110  jdolecek 		if (touch) {
   2169  1.122   thorpej 			filter_touch(kn, kevp, EVENT_PROCESS);
   2170  1.110  jdolecek 		} else {
   2171  1.110  jdolecek 			*kevp = kn->kn_kevent;
   2172  1.110  jdolecek 		}
   2173  1.110  jdolecek 		kevp++;
   2174  1.110  jdolecek 		nkev++;
   2175  1.111  jdolecek 		influx = 1;
   2176  1.110  jdolecek 		if (kn->kn_flags & EV_ONESHOT) {
   2177  1.110  jdolecek 			/* delete ONESHOT events after retrieval */
   2178  1.115  jdolecek 			kn->kn_status &= ~KN_BUSY;
   2179  1.111  jdolecek 			kq->kq_count--;
   2180  1.129   thorpej 			KASSERT(kn_in_flux(kn) == false);
   2181  1.129   thorpej 			KASSERT((kn->kn_status & KN_WILLDETACH) != 0 &&
   2182  1.129   thorpej 				kn->kn_kevent.udata == curlwp);
   2183  1.110  jdolecek 			mutex_spin_exit(&kq->kq_lock);
   2184  1.110  jdolecek 			knote_detach(kn, fdp, true);
   2185  1.110  jdolecek 			mutex_enter(&fdp->fd_lock);
   2186  1.110  jdolecek 			mutex_spin_enter(&kq->kq_lock);
   2187  1.110  jdolecek 		} else if (kn->kn_flags & EV_CLEAR) {
   2188  1.110  jdolecek 			/* clear state after retrieval */
   2189  1.110  jdolecek 			kn->kn_data = 0;
   2190  1.110  jdolecek 			kn->kn_fflags = 0;
   2191  1.110  jdolecek 			/*
   2192  1.110  jdolecek 			 * Manually clear knotes who weren't
   2193  1.110  jdolecek 			 * 'touch'ed.
   2194  1.110  jdolecek 			 */
   2195  1.110  jdolecek 			if (touch == 0) {
   2196   1.49        ad 				kn->kn_data = 0;
   2197   1.49        ad 				kn->kn_fflags = 0;
   2198   1.49        ad 			}
   2199  1.115  jdolecek 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2200  1.111  jdolecek 			kq->kq_count--;
   2201  1.110  jdolecek 		} else if (kn->kn_flags & EV_DISPATCH) {
   2202  1.110  jdolecek 			kn->kn_status |= KN_DISABLED;
   2203  1.115  jdolecek 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2204  1.111  jdolecek 			kq->kq_count--;
   2205  1.110  jdolecek 		} else {
   2206  1.110  jdolecek 			/* add event back on list */
   2207  1.110  jdolecek 			kq_check(kq);
   2208  1.115  jdolecek 			kn->kn_status |= KN_QUEUED;
   2209  1.110  jdolecek 			kn->kn_status &= ~KN_BUSY;
   2210  1.110  jdolecek 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2211  1.110  jdolecek 			kq_check(kq);
   2212  1.110  jdolecek 		}
   2213  1.111  jdolecek 
   2214  1.110  jdolecek 		if (nkev == kevcnt) {
   2215  1.110  jdolecek 			/* do copyouts in kevcnt chunks */
   2216  1.111  jdolecek 			influx = 0;
   2217  1.111  jdolecek 			KQ_FLUX_WAKEUP(kq);
   2218  1.110  jdolecek 			mutex_spin_exit(&kq->kq_lock);
   2219  1.110  jdolecek 			mutex_exit(&fdp->fd_lock);
   2220  1.110  jdolecek 			error = (*keops->keo_put_events)
   2221  1.110  jdolecek 			    (keops->keo_private,
   2222  1.110  jdolecek 			    kevbuf, ulistp, nevents, nkev);
   2223  1.110  jdolecek 			mutex_enter(&fdp->fd_lock);
   2224  1.110  jdolecek 			mutex_spin_enter(&kq->kq_lock);
   2225  1.110  jdolecek 			nevents += nkev;
   2226  1.110  jdolecek 			nkev = 0;
   2227  1.110  jdolecek 			kevp = kevbuf;
   2228  1.110  jdolecek 		}
   2229  1.110  jdolecek 		count--;
   2230  1.110  jdolecek 		if (error != 0 || count == 0) {
   2231  1.110  jdolecek 			/* remove marker */
   2232  1.110  jdolecek 			TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   2233  1.110  jdolecek 			break;
   2234    1.1     lukem 		}
   2235    1.1     lukem 	}
   2236  1.111  jdolecek 	KQ_FLUX_WAKEUP(kq);
   2237  1.110  jdolecek 	mutex_spin_exit(&kq->kq_lock);
   2238  1.110  jdolecek 	mutex_exit(&fdp->fd_lock);
   2239  1.110  jdolecek 
   2240  1.110  jdolecek done:
   2241   1.49        ad 	if (nkev != 0) {
   2242    1.3  jdolecek 		/* copyout remaining events */
   2243   1.24      cube 		error = (*keops->keo_put_events)(keops->keo_private,
   2244   1.49        ad 		    kevbuf, ulistp, nevents, nkev);
   2245   1.49        ad 	}
   2246    1.3  jdolecek 	*retval = maxevents - count;
   2247    1.3  jdolecek 
   2248   1.49        ad 	return error;
   2249    1.1     lukem }
   2250    1.1     lukem 
   2251    1.1     lukem /*
   2252   1.49        ad  * fileops ioctl method for a kqueue descriptor.
   2253    1.3  jdolecek  *
   2254    1.3  jdolecek  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   2255    1.3  jdolecek  *	KFILTER_BYNAME		find name for filter, and return result in
   2256    1.3  jdolecek  *				name, which is of size len.
   2257    1.3  jdolecek  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   2258    1.3  jdolecek  */
   2259    1.1     lukem /*ARGSUSED*/
   2260    1.1     lukem static int
   2261   1.49        ad kqueue_ioctl(file_t *fp, u_long com, void *data)
   2262    1.1     lukem {
   2263    1.3  jdolecek 	struct kfilter_mapping	*km;
   2264    1.3  jdolecek 	const struct kfilter	*kfilter;
   2265    1.3  jdolecek 	char			*name;
   2266    1.3  jdolecek 	int			error;
   2267    1.3  jdolecek 
   2268   1.49        ad 	km = data;
   2269    1.3  jdolecek 	error = 0;
   2270   1.49        ad 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
   2271    1.3  jdolecek 
   2272    1.3  jdolecek 	switch (com) {
   2273    1.3  jdolecek 	case KFILTER_BYFILTER:	/* convert filter -> name */
   2274   1.49        ad 		rw_enter(&kqueue_filter_lock, RW_READER);
   2275    1.3  jdolecek 		kfilter = kfilter_byfilter(km->filter);
   2276   1.49        ad 		if (kfilter != NULL) {
   2277   1.49        ad 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
   2278   1.49        ad 			rw_exit(&kqueue_filter_lock);
   2279   1.49        ad 			error = copyoutstr(name, km->name, km->len, NULL);
   2280   1.49        ad 		} else {
   2281   1.49        ad 			rw_exit(&kqueue_filter_lock);
   2282    1.3  jdolecek 			error = ENOENT;
   2283   1.49        ad 		}
   2284    1.3  jdolecek 		break;
   2285    1.3  jdolecek 
   2286    1.3  jdolecek 	case KFILTER_BYNAME:	/* convert name -> filter */
   2287    1.3  jdolecek 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   2288    1.3  jdolecek 		if (error) {
   2289    1.3  jdolecek 			break;
   2290    1.3  jdolecek 		}
   2291   1.49        ad 		rw_enter(&kqueue_filter_lock, RW_READER);
   2292    1.3  jdolecek 		kfilter = kfilter_byname(name);
   2293    1.3  jdolecek 		if (kfilter != NULL)
   2294    1.3  jdolecek 			km->filter = kfilter->filter;
   2295    1.3  jdolecek 		else
   2296    1.3  jdolecek 			error = ENOENT;
   2297   1.49        ad 		rw_exit(&kqueue_filter_lock);
   2298    1.3  jdolecek 		break;
   2299    1.3  jdolecek 
   2300    1.3  jdolecek 	default:
   2301    1.3  jdolecek 		error = ENOTTY;
   2302   1.49        ad 		break;
   2303    1.3  jdolecek 
   2304    1.3  jdolecek 	}
   2305   1.49        ad 	kmem_free(name, KFILTER_MAXNAME);
   2306    1.3  jdolecek 	return (error);
   2307    1.3  jdolecek }
   2308    1.3  jdolecek 
   2309    1.3  jdolecek /*
   2310   1.49        ad  * fileops fcntl method for a kqueue descriptor.
   2311    1.3  jdolecek  */
   2312    1.3  jdolecek static int
   2313   1.49        ad kqueue_fcntl(file_t *fp, u_int com, void *data)
   2314    1.3  jdolecek {
   2315    1.3  jdolecek 
   2316    1.1     lukem 	return (ENOTTY);
   2317    1.1     lukem }
   2318    1.1     lukem 
   2319    1.3  jdolecek /*
   2320   1.49        ad  * fileops poll method for a kqueue descriptor.
   2321    1.3  jdolecek  * Determine if kqueue has events pending.
   2322    1.3  jdolecek  */
   2323    1.1     lukem static int
   2324   1.49        ad kqueue_poll(file_t *fp, int events)
   2325    1.1     lukem {
   2326    1.3  jdolecek 	struct kqueue	*kq;
   2327    1.3  jdolecek 	int		revents;
   2328    1.3  jdolecek 
   2329   1.82      matt 	kq = fp->f_kqueue;
   2330   1.49        ad 
   2331    1.3  jdolecek 	revents = 0;
   2332    1.3  jdolecek 	if (events & (POLLIN | POLLRDNORM)) {
   2333   1.49        ad 		mutex_spin_enter(&kq->kq_lock);
   2334  1.118  jdolecek 		if (KQ_COUNT(kq) != 0) {
   2335    1.3  jdolecek 			revents |= events & (POLLIN | POLLRDNORM);
   2336    1.1     lukem 		} else {
   2337   1.49        ad 			selrecord(curlwp, &kq->kq_sel);
   2338    1.1     lukem 		}
   2339   1.52      yamt 		kq_check(kq);
   2340   1.49        ad 		mutex_spin_exit(&kq->kq_lock);
   2341    1.1     lukem 	}
   2342   1.49        ad 
   2343   1.49        ad 	return revents;
   2344    1.1     lukem }
   2345    1.1     lukem 
   2346    1.3  jdolecek /*
   2347   1.49        ad  * fileops stat method for a kqueue descriptor.
   2348    1.3  jdolecek  * Returns dummy info, with st_size being number of events pending.
   2349    1.3  jdolecek  */
   2350    1.1     lukem static int
   2351   1.49        ad kqueue_stat(file_t *fp, struct stat *st)
   2352    1.1     lukem {
   2353   1.49        ad 	struct kqueue *kq;
   2354   1.49        ad 
   2355   1.82      matt 	kq = fp->f_kqueue;
   2356    1.1     lukem 
   2357   1.49        ad 	memset(st, 0, sizeof(*st));
   2358  1.118  jdolecek 	st->st_size = KQ_COUNT(kq);
   2359    1.1     lukem 	st->st_blksize = sizeof(struct kevent);
   2360  1.128   thorpej 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   2361  1.128   thorpej 	st->st_blocks = 1;
   2362  1.128   thorpej 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   2363  1.128   thorpej 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   2364   1.49        ad 
   2365   1.49        ad 	return 0;
   2366   1.49        ad }
   2367   1.49        ad 
   2368   1.49        ad static void
   2369   1.49        ad kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
   2370   1.49        ad {
   2371   1.49        ad 	struct knote *kn;
   2372   1.49        ad 	filedesc_t *fdp;
   2373   1.49        ad 
   2374   1.49        ad 	fdp = kq->kq_fdp;
   2375   1.49        ad 
   2376   1.49        ad 	KASSERT(mutex_owned(&fdp->fd_lock));
   2377   1.49        ad 
   2378  1.129   thorpej  again:
   2379   1.49        ad 	for (kn = SLIST_FIRST(list); kn != NULL;) {
   2380   1.49        ad 		if (kq != kn->kn_kq) {
   2381   1.49        ad 			kn = SLIST_NEXT(kn, kn_link);
   2382   1.49        ad 			continue;
   2383   1.49        ad 		}
   2384  1.129   thorpej 		if (knote_detach_quiesce(kn)) {
   2385  1.129   thorpej 			mutex_enter(&fdp->fd_lock);
   2386  1.129   thorpej 			goto again;
   2387  1.129   thorpej 		}
   2388   1.49        ad 		knote_detach(kn, fdp, true);
   2389   1.49        ad 		mutex_enter(&fdp->fd_lock);
   2390   1.49        ad 		kn = SLIST_FIRST(list);
   2391   1.49        ad 	}
   2392    1.1     lukem }
   2393    1.1     lukem 
   2394    1.3  jdolecek /*
   2395   1.49        ad  * fileops close method for a kqueue descriptor.
   2396    1.3  jdolecek  */
   2397    1.1     lukem static int
   2398   1.49        ad kqueue_close(file_t *fp)
   2399    1.1     lukem {
   2400   1.49        ad 	struct kqueue *kq;
   2401   1.49        ad 	filedesc_t *fdp;
   2402   1.49        ad 	fdfile_t *ff;
   2403   1.49        ad 	int i;
   2404   1.49        ad 
   2405   1.82      matt 	kq = fp->f_kqueue;
   2406   1.82      matt 	fp->f_kqueue = NULL;
   2407   1.79  christos 	fp->f_type = 0;
   2408   1.49        ad 	fdp = curlwp->l_fd;
   2409    1.1     lukem 
   2410  1.129   thorpej 	KASSERT(kq->kq_fdp == fdp);
   2411  1.129   thorpej 
   2412   1.49        ad 	mutex_enter(&fdp->fd_lock);
   2413  1.129   thorpej 
   2414  1.129   thorpej 	/*
   2415  1.129   thorpej 	 * We're doing to drop the fd_lock multiple times while
   2416  1.129   thorpej 	 * we detach knotes.  During this time, attempts to register
   2417  1.129   thorpej 	 * knotes via the back door (e.g. knote_proc_fork_track())
   2418  1.129   thorpej 	 * need to fail, lest they sneak in to attach a knote after
   2419  1.129   thorpej 	 * we've already drained the list it's destined for.
   2420  1.129   thorpej 	 *
   2421  1.129   thorpej 	 * We must aquire kq_lock here to set KQ_CLOSING (to serialize
   2422  1.129   thorpej 	 * with other code paths that modify kq_count without holding
   2423  1.129   thorpej 	 * the fd_lock), but once this bit is set, it's only safe to
   2424  1.129   thorpej 	 * test it while holding the fd_lock, and holding kq_lock while
   2425  1.129   thorpej 	 * doing so is not necessary.
   2426  1.129   thorpej 	 */
   2427  1.129   thorpej 	mutex_enter(&kq->kq_lock);
   2428  1.129   thorpej 	kq->kq_count |= KQ_CLOSING;
   2429  1.129   thorpej 	mutex_exit(&kq->kq_lock);
   2430  1.129   thorpej 
   2431   1.49        ad 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
   2432   1.65        ad 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
   2433   1.49        ad 			continue;
   2434   1.49        ad 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
   2435    1.1     lukem 	}
   2436    1.1     lukem 	if (fdp->fd_knhashmask != 0) {
   2437    1.1     lukem 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   2438   1.49        ad 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
   2439    1.1     lukem 		}
   2440    1.1     lukem 	}
   2441  1.129   thorpej 
   2442   1.49        ad 	mutex_exit(&fdp->fd_lock);
   2443   1.49        ad 
   2444  1.129   thorpej #if defined(DEBUG)
   2445  1.129   thorpej 	mutex_enter(&kq->kq_lock);
   2446  1.129   thorpej 	kq_check(kq);
   2447  1.129   thorpej 	mutex_exit(&kq->kq_lock);
   2448  1.129   thorpej #endif /* DEBUG */
   2449  1.129   thorpej 	KASSERT(TAILQ_EMPTY(&kq->kq_head));
   2450  1.118  jdolecek 	KASSERT(KQ_COUNT(kq) == 0);
   2451   1.49        ad 	mutex_destroy(&kq->kq_lock);
   2452   1.49        ad 	cv_destroy(&kq->kq_cv);
   2453   1.48     rmind 	seldestroy(&kq->kq_sel);
   2454   1.49        ad 	kmem_free(kq, sizeof(*kq));
   2455    1.1     lukem 
   2456    1.1     lukem 	return (0);
   2457    1.1     lukem }
   2458    1.1     lukem 
   2459    1.3  jdolecek /*
   2460    1.3  jdolecek  * struct fileops kqfilter method for a kqueue descriptor.
   2461    1.3  jdolecek  * Event triggered when monitored kqueue changes.
   2462    1.3  jdolecek  */
   2463    1.3  jdolecek static int
   2464   1.49        ad kqueue_kqfilter(file_t *fp, struct knote *kn)
   2465    1.3  jdolecek {
   2466    1.3  jdolecek 	struct kqueue *kq;
   2467   1.49        ad 
   2468   1.82      matt 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
   2469   1.49        ad 
   2470   1.49        ad 	KASSERT(fp == kn->kn_obj);
   2471    1.3  jdolecek 
   2472    1.3  jdolecek 	if (kn->kn_filter != EVFILT_READ)
   2473  1.126   thorpej 		return EINVAL;
   2474   1.49        ad 
   2475    1.3  jdolecek 	kn->kn_fop = &kqread_filtops;
   2476   1.49        ad 	mutex_enter(&kq->kq_lock);
   2477  1.109   thorpej 	selrecord_knote(&kq->kq_sel, kn);
   2478   1.49        ad 	mutex_exit(&kq->kq_lock);
   2479   1.49        ad 
   2480   1.49        ad 	return 0;
   2481    1.3  jdolecek }
   2482    1.3  jdolecek 
   2483    1.3  jdolecek 
   2484    1.3  jdolecek /*
   2485   1.49        ad  * Walk down a list of knotes, activating them if their event has
   2486   1.49        ad  * triggered.  The caller's object lock (e.g. device driver lock)
   2487   1.49        ad  * must be held.
   2488    1.1     lukem  */
   2489    1.1     lukem void
   2490    1.1     lukem knote(struct klist *list, long hint)
   2491    1.1     lukem {
   2492   1.71  drochner 	struct knote *kn, *tmpkn;
   2493    1.1     lukem 
   2494   1.71  drochner 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
   2495  1.127   thorpej 		if (filter_event(kn, hint)) {
   2496   1.49        ad 			knote_activate(kn);
   2497  1.127   thorpej 		}
   2498   1.49        ad 	}
   2499    1.1     lukem }
   2500    1.1     lukem 
   2501    1.1     lukem /*
   2502   1.49        ad  * Remove all knotes referencing a specified fd
   2503    1.1     lukem  */
   2504    1.1     lukem void
   2505   1.49        ad knote_fdclose(int fd)
   2506    1.1     lukem {
   2507   1.49        ad 	struct klist *list;
   2508    1.1     lukem 	struct knote *kn;
   2509   1.49        ad 	filedesc_t *fdp;
   2510    1.1     lukem 
   2511  1.129   thorpej  again:
   2512   1.49        ad 	fdp = curlwp->l_fd;
   2513  1.106  riastrad 	mutex_enter(&fdp->fd_lock);
   2514   1.65        ad 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
   2515    1.1     lukem 	while ((kn = SLIST_FIRST(list)) != NULL) {
   2516  1.129   thorpej 		if (knote_detach_quiesce(kn)) {
   2517  1.129   thorpej 			goto again;
   2518  1.129   thorpej 		}
   2519   1.49        ad 		knote_detach(kn, fdp, true);
   2520   1.49        ad 		mutex_enter(&fdp->fd_lock);
   2521    1.1     lukem 	}
   2522   1.49        ad 	mutex_exit(&fdp->fd_lock);
   2523    1.1     lukem }
   2524    1.1     lukem 
   2525    1.1     lukem /*
   2526   1.49        ad  * Drop knote.  Called with fdp->fd_lock held, and will drop before
   2527   1.49        ad  * returning.
   2528    1.3  jdolecek  */
   2529    1.1     lukem static void
   2530   1.49        ad knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
   2531    1.1     lukem {
   2532   1.49        ad 	struct klist *list;
   2533   1.53        ad 	struct kqueue *kq;
   2534   1.53        ad 
   2535   1.53        ad 	kq = kn->kn_kq;
   2536    1.1     lukem 
   2537   1.49        ad 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2538  1.129   thorpej 	KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
   2539  1.129   thorpej 	KASSERT(kn->kn_fop != NULL);
   2540   1.49        ad 	KASSERT(mutex_owned(&fdp->fd_lock));
   2541    1.3  jdolecek 
   2542   1.53        ad 	/* Remove from monitored object. */
   2543   1.49        ad 	if (dofop) {
   2544  1.122   thorpej 		filter_detach(kn);
   2545    1.1     lukem 	}
   2546    1.3  jdolecek 
   2547   1.53        ad 	/* Remove from descriptor table. */
   2548  1.121   thorpej 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
   2549   1.65        ad 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   2550    1.1     lukem 	else
   2551    1.1     lukem 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   2552    1.1     lukem 
   2553    1.1     lukem 	SLIST_REMOVE(list, kn, knote, kn_link);
   2554   1.53        ad 
   2555   1.53        ad 	/* Remove from kqueue. */
   2556   1.85  christos again:
   2557   1.53        ad 	mutex_spin_enter(&kq->kq_lock);
   2558  1.129   thorpej 	KASSERT(kn_in_flux(kn) == false);
   2559   1.53        ad 	if ((kn->kn_status & KN_QUEUED) != 0) {
   2560   1.53        ad 		kq_check(kq);
   2561  1.129   thorpej 		KASSERT(KQ_COUNT(kq) != 0);
   2562   1.85  christos 		kq->kq_count--;
   2563   1.53        ad 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2564   1.53        ad 		kn->kn_status &= ~KN_QUEUED;
   2565   1.53        ad 		kq_check(kq);
   2566   1.85  christos 	} else if (kn->kn_status & KN_BUSY) {
   2567   1.85  christos 		mutex_spin_exit(&kq->kq_lock);
   2568   1.85  christos 		goto again;
   2569   1.53        ad 	}
   2570   1.53        ad 	mutex_spin_exit(&kq->kq_lock);
   2571   1.53        ad 
   2572   1.49        ad 	mutex_exit(&fdp->fd_lock);
   2573  1.121   thorpej 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
   2574   1.49        ad 		fd_putfile(kn->kn_id);
   2575   1.49        ad 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
   2576   1.49        ad 	kmem_free(kn, sizeof(*kn));
   2577    1.1     lukem }
   2578    1.1     lukem 
   2579    1.3  jdolecek /*
   2580    1.3  jdolecek  * Queue new event for knote.
   2581    1.3  jdolecek  */
   2582    1.1     lukem static void
   2583    1.1     lukem knote_enqueue(struct knote *kn)
   2584    1.1     lukem {
   2585   1.49        ad 	struct kqueue *kq;
   2586   1.49        ad 
   2587   1.49        ad 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2588    1.1     lukem 
   2589    1.3  jdolecek 	kq = kn->kn_kq;
   2590    1.1     lukem 
   2591   1.49        ad 	mutex_spin_enter(&kq->kq_lock);
   2592  1.129   thorpej 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
   2593  1.129   thorpej 		/* Don't bother enqueueing a dying knote. */
   2594  1.129   thorpej 		goto out;
   2595  1.129   thorpej 	}
   2596   1.49        ad 	if ((kn->kn_status & KN_DISABLED) != 0) {
   2597   1.49        ad 		kn->kn_status &= ~KN_DISABLED;
   2598   1.49        ad 	}
   2599   1.49        ad 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
   2600   1.52      yamt 		kq_check(kq);
   2601   1.85  christos 		kn->kn_status |= KN_QUEUED;
   2602   1.49        ad 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2603  1.129   thorpej 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
   2604   1.49        ad 		kq->kq_count++;
   2605   1.52      yamt 		kq_check(kq);
   2606   1.49        ad 		cv_broadcast(&kq->kq_cv);
   2607   1.49        ad 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   2608   1.49        ad 	}
   2609  1.129   thorpej  out:
   2610   1.49        ad 	mutex_spin_exit(&kq->kq_lock);
   2611    1.1     lukem }
   2612   1.49        ad /*
   2613   1.49        ad  * Queue new event for knote.
   2614   1.49        ad  */
   2615   1.49        ad static void
   2616   1.49        ad knote_activate(struct knote *kn)
   2617   1.49        ad {
   2618   1.49        ad 	struct kqueue *kq;
   2619   1.49        ad 
   2620   1.49        ad 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2621    1.1     lukem 
   2622    1.3  jdolecek 	kq = kn->kn_kq;
   2623   1.12        pk 
   2624   1.49        ad 	mutex_spin_enter(&kq->kq_lock);
   2625  1.129   thorpej 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
   2626  1.129   thorpej 		/* Don't bother enqueueing a dying knote. */
   2627  1.129   thorpej 		goto out;
   2628  1.129   thorpej 	}
   2629   1.49        ad 	kn->kn_status |= KN_ACTIVE;
   2630   1.49        ad 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
   2631   1.52      yamt 		kq_check(kq);
   2632   1.85  christos 		kn->kn_status |= KN_QUEUED;
   2633   1.49        ad 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2634  1.129   thorpej 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
   2635   1.49        ad 		kq->kq_count++;
   2636   1.52      yamt 		kq_check(kq);
   2637   1.49        ad 		cv_broadcast(&kq->kq_cv);
   2638   1.49        ad 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   2639   1.49        ad 	}
   2640  1.129   thorpej  out:
   2641   1.49        ad 	mutex_spin_exit(&kq->kq_lock);
   2642    1.1     lukem }
   2643  1.131   thorpej 
   2644  1.131   thorpej /*
   2645  1.131   thorpej  * Set EV_EOF on the specified knote.  Also allows additional
   2646  1.131   thorpej  * EV_* flags to be set (e.g. EV_ONESHOT).
   2647  1.131   thorpej  */
   2648  1.131   thorpej void
   2649  1.131   thorpej knote_set_eof(struct knote *kn, uint32_t flags)
   2650  1.131   thorpej {
   2651  1.131   thorpej 	struct kqueue *kq = kn->kn_kq;
   2652  1.131   thorpej 
   2653  1.131   thorpej 	mutex_spin_enter(&kq->kq_lock);
   2654  1.131   thorpej 	kn->kn_flags |= EV_EOF | flags;
   2655  1.131   thorpej 	mutex_spin_exit(&kq->kq_lock);
   2656  1.131   thorpej }
   2657  1.131   thorpej 
   2658  1.131   thorpej /*
   2659  1.131   thorpej  * Clear EV_EOF on the specified knote.
   2660  1.131   thorpej  */
   2661  1.131   thorpej void
   2662  1.131   thorpej knote_clear_eof(struct knote *kn)
   2663  1.131   thorpej {
   2664  1.131   thorpej 	struct kqueue *kq = kn->kn_kq;
   2665  1.131   thorpej 
   2666  1.131   thorpej 	mutex_spin_enter(&kq->kq_lock);
   2667  1.131   thorpej 	kn->kn_flags &= ~EV_EOF;
   2668  1.131   thorpej 	mutex_spin_exit(&kq->kq_lock);
   2669  1.131   thorpej }
   2670