kern_event.c revision 1.136 1 1.136 thorpej /* $NetBSD: kern_event.c,v 1.136 2021/10/22 04:49:24 thorpej Exp $ */
2 1.49 ad
3 1.49 ad /*-
4 1.129 thorpej * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
5 1.49 ad * All rights reserved.
6 1.49 ad *
7 1.64 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.64 ad * by Andrew Doran.
9 1.64 ad *
10 1.49 ad * Redistribution and use in source and binary forms, with or without
11 1.49 ad * modification, are permitted provided that the following conditions
12 1.49 ad * are met:
13 1.49 ad * 1. Redistributions of source code must retain the above copyright
14 1.49 ad * notice, this list of conditions and the following disclaimer.
15 1.49 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.49 ad * notice, this list of conditions and the following disclaimer in the
17 1.49 ad * documentation and/or other materials provided with the distribution.
18 1.49 ad *
19 1.49 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.49 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.49 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.49 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.49 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.49 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.49 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.49 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.49 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.49 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.49 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.49 ad */
31 1.28 kardel
32 1.1 lukem /*-
33 1.1 lukem * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 1.108 christos * Copyright (c) 2009 Apple, Inc
35 1.1 lukem * All rights reserved.
36 1.1 lukem *
37 1.1 lukem * Redistribution and use in source and binary forms, with or without
38 1.1 lukem * modification, are permitted provided that the following conditions
39 1.1 lukem * are met:
40 1.1 lukem * 1. Redistributions of source code must retain the above copyright
41 1.1 lukem * notice, this list of conditions and the following disclaimer.
42 1.1 lukem * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 lukem * notice, this list of conditions and the following disclaimer in the
44 1.1 lukem * documentation and/or other materials provided with the distribution.
45 1.1 lukem *
46 1.1 lukem * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 1.1 lukem * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 1.1 lukem * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 1.1 lukem * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 1.1 lukem * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 1.1 lukem * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 1.1 lukem * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 1.1 lukem * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 1.1 lukem * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 1.1 lukem * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 1.1 lukem * SUCH DAMAGE.
57 1.1 lukem *
58 1.49 ad * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59 1.1 lukem */
60 1.14 jdolecek
61 1.130 thorpej #ifdef _KERNEL_OPT
62 1.129 thorpej #include "opt_ddb.h"
63 1.130 thorpej #endif /* _KERNEL_OPT */
64 1.129 thorpej
65 1.14 jdolecek #include <sys/cdefs.h>
66 1.136 thorpej __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.136 2021/10/22 04:49:24 thorpej Exp $");
67 1.1 lukem
68 1.1 lukem #include <sys/param.h>
69 1.1 lukem #include <sys/systm.h>
70 1.1 lukem #include <sys/kernel.h>
71 1.86 christos #include <sys/wait.h>
72 1.1 lukem #include <sys/proc.h>
73 1.1 lukem #include <sys/file.h>
74 1.3 jdolecek #include <sys/select.h>
75 1.1 lukem #include <sys/queue.h>
76 1.1 lukem #include <sys/event.h>
77 1.1 lukem #include <sys/eventvar.h>
78 1.1 lukem #include <sys/poll.h>
79 1.49 ad #include <sys/kmem.h>
80 1.1 lukem #include <sys/stat.h>
81 1.3 jdolecek #include <sys/filedesc.h>
82 1.3 jdolecek #include <sys/syscallargs.h>
83 1.27 elad #include <sys/kauth.h>
84 1.40 ad #include <sys/conf.h>
85 1.49 ad #include <sys/atomic.h>
86 1.1 lukem
87 1.49 ad static int kqueue_scan(file_t *, size_t, struct kevent *,
88 1.49 ad const struct timespec *, register_t *,
89 1.49 ad const struct kevent_ops *, struct kevent *,
90 1.49 ad size_t);
91 1.49 ad static int kqueue_ioctl(file_t *, u_long, void *);
92 1.49 ad static int kqueue_fcntl(file_t *, u_int, void *);
93 1.49 ad static int kqueue_poll(file_t *, int);
94 1.49 ad static int kqueue_kqfilter(file_t *, struct knote *);
95 1.49 ad static int kqueue_stat(file_t *, struct stat *);
96 1.49 ad static int kqueue_close(file_t *);
97 1.118 jdolecek static void kqueue_restart(file_t *);
98 1.49 ad static int kqueue_register(struct kqueue *, struct kevent *);
99 1.49 ad static void kqueue_doclose(struct kqueue *, struct klist *, int);
100 1.49 ad
101 1.49 ad static void knote_detach(struct knote *, filedesc_t *fdp, bool);
102 1.49 ad static void knote_enqueue(struct knote *);
103 1.49 ad static void knote_activate(struct knote *);
104 1.133 thorpej static void knote_activate_locked(struct knote *);
105 1.136 thorpej static void knote_deactivate_locked(struct knote *);
106 1.49 ad
107 1.49 ad static void filt_kqdetach(struct knote *);
108 1.49 ad static int filt_kqueue(struct knote *, long hint);
109 1.49 ad static int filt_procattach(struct knote *);
110 1.49 ad static void filt_procdetach(struct knote *);
111 1.49 ad static int filt_proc(struct knote *, long hint);
112 1.49 ad static int filt_fileattach(struct knote *);
113 1.49 ad static void filt_timerexpire(void *x);
114 1.49 ad static int filt_timerattach(struct knote *);
115 1.49 ad static void filt_timerdetach(struct knote *);
116 1.49 ad static int filt_timer(struct knote *, long hint);
117 1.136 thorpej static int filt_timertouch(struct knote *, struct kevent *, long type);
118 1.108 christos static int filt_userattach(struct knote *);
119 1.108 christos static void filt_userdetach(struct knote *);
120 1.108 christos static int filt_user(struct knote *, long hint);
121 1.135 thorpej static int filt_usertouch(struct knote *, struct kevent *, long type);
122 1.1 lukem
123 1.21 christos static const struct fileops kqueueops = {
124 1.101 christos .fo_name = "kqueue",
125 1.64 ad .fo_read = (void *)enxio,
126 1.64 ad .fo_write = (void *)enxio,
127 1.64 ad .fo_ioctl = kqueue_ioctl,
128 1.64 ad .fo_fcntl = kqueue_fcntl,
129 1.64 ad .fo_poll = kqueue_poll,
130 1.64 ad .fo_stat = kqueue_stat,
131 1.64 ad .fo_close = kqueue_close,
132 1.64 ad .fo_kqfilter = kqueue_kqfilter,
133 1.118 jdolecek .fo_restart = kqueue_restart,
134 1.1 lukem };
135 1.1 lukem
136 1.96 maya static const struct filterops kqread_filtops = {
137 1.123 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
138 1.96 maya .f_attach = NULL,
139 1.96 maya .f_detach = filt_kqdetach,
140 1.96 maya .f_event = filt_kqueue,
141 1.96 maya };
142 1.96 maya
143 1.96 maya static const struct filterops proc_filtops = {
144 1.129 thorpej .f_flags = FILTEROP_MPSAFE,
145 1.96 maya .f_attach = filt_procattach,
146 1.96 maya .f_detach = filt_procdetach,
147 1.96 maya .f_event = filt_proc,
148 1.96 maya };
149 1.96 maya
150 1.122 thorpej /*
151 1.122 thorpej * file_filtops is not marked MPSAFE because it's going to call
152 1.122 thorpej * fileops::fo_kqfilter(), which might not be. That function,
153 1.122 thorpej * however, will override the knote's filterops, and thus will
154 1.122 thorpej * inherit the MPSAFE-ness of the back-end at that time.
155 1.122 thorpej */
156 1.96 maya static const struct filterops file_filtops = {
157 1.121 thorpej .f_flags = FILTEROP_ISFD,
158 1.96 maya .f_attach = filt_fileattach,
159 1.96 maya .f_detach = NULL,
160 1.96 maya .f_event = NULL,
161 1.96 maya };
162 1.96 maya
163 1.96 maya static const struct filterops timer_filtops = {
164 1.125 thorpej .f_flags = FILTEROP_MPSAFE,
165 1.96 maya .f_attach = filt_timerattach,
166 1.96 maya .f_detach = filt_timerdetach,
167 1.96 maya .f_event = filt_timer,
168 1.136 thorpej .f_touch = filt_timertouch,
169 1.96 maya };
170 1.1 lukem
171 1.108 christos static const struct filterops user_filtops = {
172 1.123 thorpej .f_flags = FILTEROP_MPSAFE,
173 1.108 christos .f_attach = filt_userattach,
174 1.108 christos .f_detach = filt_userdetach,
175 1.108 christos .f_event = filt_user,
176 1.108 christos .f_touch = filt_usertouch,
177 1.108 christos };
178 1.108 christos
179 1.49 ad static u_int kq_ncallouts = 0;
180 1.8 jdolecek static int kq_calloutmax = (4 * 1024);
181 1.7 thorpej
182 1.1 lukem #define KN_HASHSIZE 64 /* XXX should be tunable */
183 1.3 jdolecek #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
184 1.1 lukem
185 1.124 thorpej extern const struct filterops fs_filtops; /* vfs_syscalls.c */
186 1.124 thorpej extern const struct filterops sig_filtops; /* kern_sig.c */
187 1.1 lukem
188 1.1 lukem /*
189 1.1 lukem * Table for for all system-defined filters.
190 1.3 jdolecek * These should be listed in the numeric order of the EVFILT_* defines.
191 1.3 jdolecek * If filtops is NULL, the filter isn't implemented in NetBSD.
192 1.3 jdolecek * End of list is when name is NULL.
193 1.93 riastrad *
194 1.49 ad * Note that 'refcnt' is meaningless for built-in filters.
195 1.1 lukem */
196 1.3 jdolecek struct kfilter {
197 1.49 ad const char *name; /* name of filter */
198 1.49 ad uint32_t filter; /* id of filter */
199 1.49 ad unsigned refcnt; /* reference count */
200 1.3 jdolecek const struct filterops *filtops;/* operations for filter */
201 1.49 ad size_t namelen; /* length of name string */
202 1.3 jdolecek };
203 1.3 jdolecek
204 1.49 ad /* System defined filters */
205 1.49 ad static struct kfilter sys_kfilters[] = {
206 1.49 ad { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
207 1.49 ad { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
208 1.49 ad { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
209 1.49 ad { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
210 1.49 ad { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
211 1.49 ad { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
212 1.49 ad { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
213 1.102 christos { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
214 1.108 christos { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
215 1.49 ad { NULL, 0, 0, NULL, 0 },
216 1.1 lukem };
217 1.1 lukem
218 1.49 ad /* User defined kfilters */
219 1.3 jdolecek static struct kfilter *user_kfilters; /* array */
220 1.3 jdolecek static int user_kfilterc; /* current offset */
221 1.3 jdolecek static int user_kfiltermaxc; /* max size so far */
222 1.49 ad static size_t user_kfiltersz; /* size of allocated memory */
223 1.49 ad
224 1.95 riastrad /*
225 1.95 riastrad * Global Locks.
226 1.95 riastrad *
227 1.95 riastrad * Lock order:
228 1.95 riastrad *
229 1.95 riastrad * kqueue_filter_lock
230 1.95 riastrad * -> kn_kq->kq_fdp->fd_lock
231 1.125 thorpej * -> object lock (e.g., device driver lock, &c.)
232 1.95 riastrad * -> kn_kq->kq_lock
233 1.95 riastrad *
234 1.95 riastrad * Locking rules:
235 1.95 riastrad *
236 1.95 riastrad * f_attach: fdp->fd_lock, KERNEL_LOCK
237 1.95 riastrad * f_detach: fdp->fd_lock, KERNEL_LOCK
238 1.95 riastrad * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
239 1.95 riastrad * f_event via knote: whatever caller guarantees
240 1.95 riastrad * Typically, f_event(NOTE_SUBMIT) via knote: object lock
241 1.95 riastrad * f_event(!NOTE_SUBMIT) via knote: nothing,
242 1.95 riastrad * acquires/releases object lock inside.
243 1.129 thorpej *
244 1.129 thorpej * Locking rules when detaching knotes:
245 1.129 thorpej *
246 1.129 thorpej * There are some situations where knote submission may require dropping
247 1.129 thorpej * locks (see knote_proc_fork()). In order to support this, it's possible
248 1.129 thorpej * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to
249 1.129 thorpej * be detached while it remains in-flux. Because it will not be detached,
250 1.129 thorpej * locks can be dropped so e.g. memory can be allocated, locks on other
251 1.129 thorpej * data structures can be acquired, etc. During this time, any attempt to
252 1.129 thorpej * detach an in-flux knote must wait until the knote is no longer in-flux.
253 1.129 thorpej * When this happens, the knote is marked for death (KN_WILLDETACH) and the
254 1.129 thorpej * LWP who gets to finish the detach operation is recorded in the knote's
255 1.129 thorpej * 'udata' field (which is no longer required for its original purpose once
256 1.129 thorpej * a knote is so marked). Code paths that lead to knote_detach() must ensure
257 1.129 thorpej * that their LWP is the one tasked with its final demise after waiting for
258 1.129 thorpej * the in-flux status of the knote to clear. Note that once a knote is
259 1.129 thorpej * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
260 1.129 thorpej *
261 1.129 thorpej * Once the special circumstances have been handled, the locks are re-
262 1.129 thorpej * acquired in the proper order (object lock -> kq_lock), the knote taken
263 1.129 thorpej * out of flux, and any waiters are notified. Because waiters must have
264 1.129 thorpej * also dropped *their* locks in order to safely block, they must re-
265 1.129 thorpej * validate all of their assumptions; see knote_detach_quiesce(). See also
266 1.129 thorpej * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
267 1.129 thorpej * cases.
268 1.129 thorpej *
269 1.129 thorpej * When kqueue_scan() encounters an in-flux knote, the situation is
270 1.129 thorpej * treated like another LWP's list marker.
271 1.129 thorpej *
272 1.129 thorpej * LISTEN WELL: It is important to not hold knotes in flux for an
273 1.129 thorpej * extended period of time! In-flux knotes effectively block any
274 1.129 thorpej * progress of the kqueue_scan() operation. Any code paths that place
275 1.129 thorpej * knotes in-flux should be careful to not block for indefinite periods
276 1.129 thorpej * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
277 1.129 thorpej * KM_SLEEP is not).
278 1.95 riastrad */
279 1.49 ad static krwlock_t kqueue_filter_lock; /* lock on filter lists */
280 1.49 ad
281 1.129 thorpej #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock)
282 1.129 thorpej #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
283 1.129 thorpej
284 1.129 thorpej static inline bool
285 1.129 thorpej kn_in_flux(struct knote *kn)
286 1.129 thorpej {
287 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
288 1.129 thorpej return kn->kn_influx != 0;
289 1.129 thorpej }
290 1.129 thorpej
291 1.129 thorpej static inline bool
292 1.129 thorpej kn_enter_flux(struct knote *kn)
293 1.129 thorpej {
294 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
295 1.129 thorpej
296 1.129 thorpej if (kn->kn_status & KN_WILLDETACH) {
297 1.129 thorpej return false;
298 1.129 thorpej }
299 1.129 thorpej
300 1.129 thorpej KASSERT(kn->kn_influx < UINT_MAX);
301 1.129 thorpej kn->kn_influx++;
302 1.129 thorpej
303 1.129 thorpej return true;
304 1.129 thorpej }
305 1.129 thorpej
306 1.129 thorpej static inline bool
307 1.129 thorpej kn_leave_flux(struct knote *kn)
308 1.129 thorpej {
309 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
310 1.129 thorpej KASSERT(kn->kn_influx > 0);
311 1.129 thorpej kn->kn_influx--;
312 1.129 thorpej return kn->kn_influx == 0;
313 1.129 thorpej }
314 1.129 thorpej
315 1.129 thorpej static void
316 1.129 thorpej kn_wait_flux(struct knote *kn, bool can_loop)
317 1.129 thorpej {
318 1.129 thorpej bool loop;
319 1.129 thorpej
320 1.129 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
321 1.129 thorpej
322 1.129 thorpej /*
323 1.129 thorpej * It may not be safe for us to touch the knote again after
324 1.129 thorpej * dropping the kq_lock. The caller has let us know in
325 1.129 thorpej * 'can_loop'.
326 1.129 thorpej */
327 1.129 thorpej for (loop = true; loop && kn->kn_influx != 0; loop = can_loop) {
328 1.129 thorpej KQ_FLUX_WAIT(kn->kn_kq);
329 1.129 thorpej }
330 1.129 thorpej }
331 1.129 thorpej
332 1.129 thorpej #define KNOTE_WILLDETACH(kn) \
333 1.129 thorpej do { \
334 1.129 thorpej (kn)->kn_status |= KN_WILLDETACH; \
335 1.129 thorpej (kn)->kn_kevent.udata = curlwp; \
336 1.129 thorpej } while (/*CONSTCOND*/0)
337 1.129 thorpej
338 1.129 thorpej /*
339 1.129 thorpej * Wait until the specified knote is in a quiescent state and
340 1.129 thorpej * safe to detach. Returns true if we potentially blocked (and
341 1.129 thorpej * thus dropped our locks).
342 1.129 thorpej */
343 1.129 thorpej static bool
344 1.129 thorpej knote_detach_quiesce(struct knote *kn)
345 1.129 thorpej {
346 1.129 thorpej struct kqueue *kq = kn->kn_kq;
347 1.129 thorpej filedesc_t *fdp = kq->kq_fdp;
348 1.129 thorpej
349 1.129 thorpej KASSERT(mutex_owned(&fdp->fd_lock));
350 1.129 thorpej
351 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
352 1.129 thorpej /*
353 1.129 thorpej * There are two cases where we might see KN_WILLDETACH here:
354 1.129 thorpej *
355 1.129 thorpej * 1. Someone else has already started detaching the knote but
356 1.129 thorpej * had to wait for it to settle first.
357 1.129 thorpej *
358 1.129 thorpej * 2. We had to wait for it to settle, and had to come back
359 1.129 thorpej * around after re-acquiring the locks.
360 1.129 thorpej *
361 1.129 thorpej * When KN_WILLDETACH is set, we also set the LWP that claimed
362 1.129 thorpej * the prize of finishing the detach in the 'udata' field of the
363 1.129 thorpej * knote (which will never be used again for its usual purpose
364 1.129 thorpej * once the note is in this state). If it doesn't point to us,
365 1.129 thorpej * we must drop the locks and let them in to finish the job.
366 1.129 thorpej *
367 1.129 thorpej * Otherwise, once we have claimed the knote for ourselves, we
368 1.129 thorpej * can finish waiting for it to settle. The is the only scenario
369 1.129 thorpej * where touching a detaching knote is safe after dropping the
370 1.129 thorpej * locks.
371 1.129 thorpej */
372 1.129 thorpej if ((kn->kn_status & KN_WILLDETACH) != 0 &&
373 1.129 thorpej kn->kn_kevent.udata != curlwp) {
374 1.129 thorpej /*
375 1.129 thorpej * N.B. it is NOT safe for us to touch the knote again
376 1.129 thorpej * after dropping the locks here. The caller must go
377 1.129 thorpej * back around and re-validate everything. However, if
378 1.129 thorpej * the knote is in-flux, we want to block to minimize
379 1.129 thorpej * busy-looping.
380 1.129 thorpej */
381 1.129 thorpej mutex_exit(&fdp->fd_lock);
382 1.129 thorpej if (kn_in_flux(kn)) {
383 1.129 thorpej kn_wait_flux(kn, false);
384 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
385 1.129 thorpej return true;
386 1.129 thorpej }
387 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
388 1.129 thorpej preempt_point();
389 1.129 thorpej return true;
390 1.129 thorpej }
391 1.129 thorpej /*
392 1.129 thorpej * If we get here, we know that we will be claiming the
393 1.129 thorpej * detach responsibilies, or that we already have and
394 1.129 thorpej * this is the second attempt after re-validation.
395 1.129 thorpej */
396 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
397 1.129 thorpej kn->kn_kevent.udata == curlwp);
398 1.129 thorpej /*
399 1.129 thorpej * Similarly, if we get here, either we are just claiming it
400 1.129 thorpej * and may have to wait for it to settle, or if this is the
401 1.129 thorpej * second attempt after re-validation that no other code paths
402 1.129 thorpej * have put it in-flux.
403 1.129 thorpej */
404 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
405 1.129 thorpej kn_in_flux(kn) == false);
406 1.129 thorpej KNOTE_WILLDETACH(kn);
407 1.129 thorpej if (kn_in_flux(kn)) {
408 1.129 thorpej mutex_exit(&fdp->fd_lock);
409 1.129 thorpej kn_wait_flux(kn, true);
410 1.129 thorpej /*
411 1.129 thorpej * It is safe for us to touch the knote again after
412 1.129 thorpej * dropping the locks, but the caller must still
413 1.129 thorpej * re-validate everything because other aspects of
414 1.129 thorpej * the environment may have changed while we blocked.
415 1.129 thorpej */
416 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
417 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
418 1.129 thorpej return true;
419 1.129 thorpej }
420 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
421 1.129 thorpej
422 1.129 thorpej return false;
423 1.129 thorpej }
424 1.129 thorpej
425 1.122 thorpej static int
426 1.122 thorpej filter_attach(struct knote *kn)
427 1.122 thorpej {
428 1.122 thorpej int rv;
429 1.122 thorpej
430 1.122 thorpej KASSERT(kn->kn_fop != NULL);
431 1.122 thorpej KASSERT(kn->kn_fop->f_attach != NULL);
432 1.122 thorpej
433 1.122 thorpej /*
434 1.122 thorpej * N.B. that kn->kn_fop may change as the result of calling
435 1.122 thorpej * f_attach().
436 1.122 thorpej */
437 1.122 thorpej if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
438 1.122 thorpej rv = kn->kn_fop->f_attach(kn);
439 1.122 thorpej } else {
440 1.122 thorpej KERNEL_LOCK(1, NULL);
441 1.122 thorpej rv = kn->kn_fop->f_attach(kn);
442 1.122 thorpej KERNEL_UNLOCK_ONE(NULL);
443 1.122 thorpej }
444 1.122 thorpej
445 1.122 thorpej return rv;
446 1.122 thorpej }
447 1.122 thorpej
448 1.122 thorpej static void
449 1.122 thorpej filter_detach(struct knote *kn)
450 1.122 thorpej {
451 1.122 thorpej KASSERT(kn->kn_fop != NULL);
452 1.122 thorpej KASSERT(kn->kn_fop->f_detach != NULL);
453 1.122 thorpej
454 1.122 thorpej if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
455 1.122 thorpej kn->kn_fop->f_detach(kn);
456 1.122 thorpej } else {
457 1.122 thorpej KERNEL_LOCK(1, NULL);
458 1.122 thorpej kn->kn_fop->f_detach(kn);
459 1.122 thorpej KERNEL_UNLOCK_ONE(NULL);
460 1.122 thorpej }
461 1.122 thorpej }
462 1.122 thorpej
463 1.122 thorpej static int
464 1.122 thorpej filter_event(struct knote *kn, long hint)
465 1.122 thorpej {
466 1.122 thorpej int rv;
467 1.122 thorpej
468 1.122 thorpej KASSERT(kn->kn_fop != NULL);
469 1.122 thorpej KASSERT(kn->kn_fop->f_event != NULL);
470 1.122 thorpej
471 1.122 thorpej if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
472 1.122 thorpej rv = kn->kn_fop->f_event(kn, hint);
473 1.122 thorpej } else {
474 1.122 thorpej KERNEL_LOCK(1, NULL);
475 1.122 thorpej rv = kn->kn_fop->f_event(kn, hint);
476 1.122 thorpej KERNEL_UNLOCK_ONE(NULL);
477 1.122 thorpej }
478 1.122 thorpej
479 1.122 thorpej return rv;
480 1.122 thorpej }
481 1.122 thorpej
482 1.135 thorpej static int
483 1.122 thorpej filter_touch(struct knote *kn, struct kevent *kev, long type)
484 1.122 thorpej {
485 1.135 thorpej return kn->kn_fop->f_touch(kn, kev, type);
486 1.122 thorpej }
487 1.122 thorpej
488 1.66 elad static kauth_listener_t kqueue_listener;
489 1.66 elad
490 1.66 elad static int
491 1.66 elad kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
492 1.66 elad void *arg0, void *arg1, void *arg2, void *arg3)
493 1.66 elad {
494 1.66 elad struct proc *p;
495 1.66 elad int result;
496 1.66 elad
497 1.66 elad result = KAUTH_RESULT_DEFER;
498 1.66 elad p = arg0;
499 1.66 elad
500 1.66 elad if (action != KAUTH_PROCESS_KEVENT_FILTER)
501 1.66 elad return result;
502 1.66 elad
503 1.66 elad if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
504 1.66 elad ISSET(p->p_flag, PK_SUGID)))
505 1.66 elad return result;
506 1.66 elad
507 1.66 elad result = KAUTH_RESULT_ALLOW;
508 1.66 elad
509 1.66 elad return result;
510 1.66 elad }
511 1.66 elad
512 1.49 ad /*
513 1.49 ad * Initialize the kqueue subsystem.
514 1.49 ad */
515 1.49 ad void
516 1.49 ad kqueue_init(void)
517 1.49 ad {
518 1.49 ad
519 1.49 ad rw_init(&kqueue_filter_lock);
520 1.66 elad
521 1.66 elad kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
522 1.66 elad kqueue_listener_cb, NULL);
523 1.49 ad }
524 1.3 jdolecek
525 1.3 jdolecek /*
526 1.3 jdolecek * Find kfilter entry by name, or NULL if not found.
527 1.3 jdolecek */
528 1.49 ad static struct kfilter *
529 1.3 jdolecek kfilter_byname_sys(const char *name)
530 1.3 jdolecek {
531 1.3 jdolecek int i;
532 1.3 jdolecek
533 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
534 1.49 ad
535 1.3 jdolecek for (i = 0; sys_kfilters[i].name != NULL; i++) {
536 1.3 jdolecek if (strcmp(name, sys_kfilters[i].name) == 0)
537 1.49 ad return &sys_kfilters[i];
538 1.3 jdolecek }
539 1.49 ad return NULL;
540 1.3 jdolecek }
541 1.3 jdolecek
542 1.3 jdolecek static struct kfilter *
543 1.3 jdolecek kfilter_byname_user(const char *name)
544 1.3 jdolecek {
545 1.3 jdolecek int i;
546 1.3 jdolecek
547 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
548 1.49 ad
549 1.31 seanb /* user filter slots have a NULL name if previously deregistered */
550 1.31 seanb for (i = 0; i < user_kfilterc ; i++) {
551 1.31 seanb if (user_kfilters[i].name != NULL &&
552 1.3 jdolecek strcmp(name, user_kfilters[i].name) == 0)
553 1.49 ad return &user_kfilters[i];
554 1.3 jdolecek }
555 1.49 ad return NULL;
556 1.3 jdolecek }
557 1.3 jdolecek
558 1.49 ad static struct kfilter *
559 1.3 jdolecek kfilter_byname(const char *name)
560 1.3 jdolecek {
561 1.49 ad struct kfilter *kfilter;
562 1.49 ad
563 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
564 1.3 jdolecek
565 1.3 jdolecek if ((kfilter = kfilter_byname_sys(name)) != NULL)
566 1.49 ad return kfilter;
567 1.3 jdolecek
568 1.49 ad return kfilter_byname_user(name);
569 1.3 jdolecek }
570 1.3 jdolecek
571 1.3 jdolecek /*
572 1.3 jdolecek * Find kfilter entry by filter id, or NULL if not found.
573 1.3 jdolecek * Assumes entries are indexed in filter id order, for speed.
574 1.3 jdolecek */
575 1.49 ad static struct kfilter *
576 1.3 jdolecek kfilter_byfilter(uint32_t filter)
577 1.3 jdolecek {
578 1.49 ad struct kfilter *kfilter;
579 1.49 ad
580 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
581 1.3 jdolecek
582 1.3 jdolecek if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
583 1.3 jdolecek kfilter = &sys_kfilters[filter];
584 1.3 jdolecek else if (user_kfilters != NULL &&
585 1.3 jdolecek filter < EVFILT_SYSCOUNT + user_kfilterc)
586 1.3 jdolecek /* it's a user filter */
587 1.3 jdolecek kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
588 1.3 jdolecek else
589 1.3 jdolecek return (NULL); /* out of range */
590 1.3 jdolecek KASSERT(kfilter->filter == filter); /* sanity check! */
591 1.3 jdolecek return (kfilter);
592 1.3 jdolecek }
593 1.3 jdolecek
594 1.3 jdolecek /*
595 1.3 jdolecek * Register a new kfilter. Stores the entry in user_kfilters.
596 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
597 1.3 jdolecek * If retfilter != NULL, the new filterid is returned in it.
598 1.3 jdolecek */
599 1.3 jdolecek int
600 1.3 jdolecek kfilter_register(const char *name, const struct filterops *filtops,
601 1.49 ad int *retfilter)
602 1.1 lukem {
603 1.3 jdolecek struct kfilter *kfilter;
604 1.49 ad size_t len;
605 1.31 seanb int i;
606 1.3 jdolecek
607 1.3 jdolecek if (name == NULL || name[0] == '\0' || filtops == NULL)
608 1.3 jdolecek return (EINVAL); /* invalid args */
609 1.49 ad
610 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
611 1.49 ad if (kfilter_byname(name) != NULL) {
612 1.49 ad rw_exit(&kqueue_filter_lock);
613 1.3 jdolecek return (EEXIST); /* already exists */
614 1.49 ad }
615 1.49 ad if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
616 1.49 ad rw_exit(&kqueue_filter_lock);
617 1.3 jdolecek return (EINVAL); /* too many */
618 1.49 ad }
619 1.3 jdolecek
620 1.31 seanb for (i = 0; i < user_kfilterc; i++) {
621 1.31 seanb kfilter = &user_kfilters[i];
622 1.31 seanb if (kfilter->name == NULL) {
623 1.31 seanb /* Previously deregistered slot. Reuse. */
624 1.31 seanb goto reuse;
625 1.31 seanb }
626 1.31 seanb }
627 1.31 seanb
628 1.3 jdolecek /* check if need to grow user_kfilters */
629 1.3 jdolecek if (user_kfilterc + 1 > user_kfiltermaxc) {
630 1.49 ad /* Grow in KFILTER_EXTENT chunks. */
631 1.3 jdolecek user_kfiltermaxc += KFILTER_EXTENT;
632 1.69 dsl len = user_kfiltermaxc * sizeof(*kfilter);
633 1.49 ad kfilter = kmem_alloc(len, KM_SLEEP);
634 1.49 ad memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
635 1.49 ad if (user_kfilters != NULL) {
636 1.49 ad memcpy(kfilter, user_kfilters, user_kfiltersz);
637 1.49 ad kmem_free(user_kfilters, user_kfiltersz);
638 1.49 ad }
639 1.49 ad user_kfiltersz = len;
640 1.3 jdolecek user_kfilters = kfilter;
641 1.3 jdolecek }
642 1.31 seanb /* Adding new slot */
643 1.31 seanb kfilter = &user_kfilters[user_kfilterc++];
644 1.31 seanb reuse:
645 1.97 christos kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
646 1.3 jdolecek
647 1.31 seanb kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
648 1.3 jdolecek
649 1.49 ad kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
650 1.49 ad memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
651 1.3 jdolecek
652 1.3 jdolecek if (retfilter != NULL)
653 1.31 seanb *retfilter = kfilter->filter;
654 1.49 ad rw_exit(&kqueue_filter_lock);
655 1.49 ad
656 1.3 jdolecek return (0);
657 1.1 lukem }
658 1.1 lukem
659 1.3 jdolecek /*
660 1.3 jdolecek * Unregister a kfilter previously registered with kfilter_register.
661 1.3 jdolecek * This retains the filter id, but clears the name and frees filtops (filter
662 1.3 jdolecek * operations), so that the number isn't reused during a boot.
663 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
664 1.3 jdolecek */
665 1.3 jdolecek int
666 1.3 jdolecek kfilter_unregister(const char *name)
667 1.1 lukem {
668 1.3 jdolecek struct kfilter *kfilter;
669 1.3 jdolecek
670 1.3 jdolecek if (name == NULL || name[0] == '\0')
671 1.3 jdolecek return (EINVAL); /* invalid name */
672 1.3 jdolecek
673 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
674 1.49 ad if (kfilter_byname_sys(name) != NULL) {
675 1.49 ad rw_exit(&kqueue_filter_lock);
676 1.3 jdolecek return (EINVAL); /* can't detach system filters */
677 1.49 ad }
678 1.1 lukem
679 1.3 jdolecek kfilter = kfilter_byname_user(name);
680 1.49 ad if (kfilter == NULL) {
681 1.49 ad rw_exit(&kqueue_filter_lock);
682 1.3 jdolecek return (ENOENT);
683 1.49 ad }
684 1.49 ad if (kfilter->refcnt != 0) {
685 1.49 ad rw_exit(&kqueue_filter_lock);
686 1.49 ad return (EBUSY);
687 1.49 ad }
688 1.1 lukem
689 1.49 ad /* Cast away const (but we know it's safe. */
690 1.49 ad kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
691 1.31 seanb kfilter->name = NULL; /* mark as `not implemented' */
692 1.31 seanb
693 1.3 jdolecek if (kfilter->filtops != NULL) {
694 1.49 ad /* Cast away const (but we know it's safe. */
695 1.49 ad kmem_free(__UNCONST(kfilter->filtops),
696 1.49 ad sizeof(*kfilter->filtops));
697 1.3 jdolecek kfilter->filtops = NULL; /* mark as `not implemented' */
698 1.3 jdolecek }
699 1.49 ad rw_exit(&kqueue_filter_lock);
700 1.49 ad
701 1.1 lukem return (0);
702 1.1 lukem }
703 1.1 lukem
704 1.3 jdolecek
705 1.3 jdolecek /*
706 1.3 jdolecek * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
707 1.49 ad * descriptors. Calls fileops kqfilter method for given file descriptor.
708 1.3 jdolecek */
709 1.3 jdolecek static int
710 1.3 jdolecek filt_fileattach(struct knote *kn)
711 1.3 jdolecek {
712 1.49 ad file_t *fp;
713 1.49 ad
714 1.49 ad fp = kn->kn_obj;
715 1.3 jdolecek
716 1.49 ad return (*fp->f_ops->fo_kqfilter)(fp, kn);
717 1.3 jdolecek }
718 1.3 jdolecek
719 1.3 jdolecek /*
720 1.3 jdolecek * Filter detach method for EVFILT_READ on kqueue descriptor.
721 1.3 jdolecek */
722 1.1 lukem static void
723 1.1 lukem filt_kqdetach(struct knote *kn)
724 1.1 lukem {
725 1.3 jdolecek struct kqueue *kq;
726 1.1 lukem
727 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
728 1.49 ad
729 1.49 ad mutex_spin_enter(&kq->kq_lock);
730 1.109 thorpej selremove_knote(&kq->kq_sel, kn);
731 1.49 ad mutex_spin_exit(&kq->kq_lock);
732 1.1 lukem }
733 1.1 lukem
734 1.3 jdolecek /*
735 1.3 jdolecek * Filter event method for EVFILT_READ on kqueue descriptor.
736 1.3 jdolecek */
737 1.1 lukem /*ARGSUSED*/
738 1.1 lukem static int
739 1.33 yamt filt_kqueue(struct knote *kn, long hint)
740 1.1 lukem {
741 1.3 jdolecek struct kqueue *kq;
742 1.49 ad int rv;
743 1.49 ad
744 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
745 1.1 lukem
746 1.49 ad if (hint != NOTE_SUBMIT)
747 1.49 ad mutex_spin_enter(&kq->kq_lock);
748 1.118 jdolecek kn->kn_data = KQ_COUNT(kq);
749 1.49 ad rv = (kn->kn_data > 0);
750 1.49 ad if (hint != NOTE_SUBMIT)
751 1.49 ad mutex_spin_exit(&kq->kq_lock);
752 1.49 ad
753 1.49 ad return rv;
754 1.1 lukem }
755 1.1 lukem
756 1.3 jdolecek /*
757 1.3 jdolecek * Filter attach method for EVFILT_PROC.
758 1.3 jdolecek */
759 1.1 lukem static int
760 1.1 lukem filt_procattach(struct knote *kn)
761 1.1 lukem {
762 1.78 pooka struct proc *p;
763 1.1 lukem
764 1.107 ad mutex_enter(&proc_lock);
765 1.129 thorpej p = proc_find(kn->kn_id);
766 1.49 ad if (p == NULL) {
767 1.107 ad mutex_exit(&proc_lock);
768 1.49 ad return ESRCH;
769 1.49 ad }
770 1.3 jdolecek
771 1.3 jdolecek /*
772 1.3 jdolecek * Fail if it's not owned by you, or the last exec gave us
773 1.3 jdolecek * setuid/setgid privs (unless you're root).
774 1.3 jdolecek */
775 1.57 ad mutex_enter(p->p_lock);
776 1.107 ad mutex_exit(&proc_lock);
777 1.129 thorpej if (kauth_authorize_process(curlwp->l_cred,
778 1.119 christos KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
779 1.57 ad mutex_exit(p->p_lock);
780 1.49 ad return EACCES;
781 1.49 ad }
782 1.1 lukem
783 1.49 ad kn->kn_obj = p;
784 1.3 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
785 1.1 lukem
786 1.1 lukem /*
787 1.129 thorpej * NOTE_CHILD is only ever generated internally; don't let it
788 1.129 thorpej * leak in from user-space. See knote_proc_fork_track().
789 1.1 lukem */
790 1.129 thorpej kn->kn_sfflags &= ~NOTE_CHILD;
791 1.129 thorpej
792 1.1 lukem SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
793 1.57 ad mutex_exit(p->p_lock);
794 1.1 lukem
795 1.49 ad return 0;
796 1.1 lukem }
797 1.1 lukem
798 1.1 lukem /*
799 1.3 jdolecek * Filter detach method for EVFILT_PROC.
800 1.3 jdolecek *
801 1.1 lukem * The knote may be attached to a different process, which may exit,
802 1.1 lukem * leaving nothing for the knote to be attached to. So when the process
803 1.1 lukem * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
804 1.1 lukem * it will be deleted when read out. However, as part of the knote deletion,
805 1.1 lukem * this routine is called, so a check is needed to avoid actually performing
806 1.3 jdolecek * a detach, because the original process might not exist any more.
807 1.1 lukem */
808 1.1 lukem static void
809 1.1 lukem filt_procdetach(struct knote *kn)
810 1.1 lukem {
811 1.129 thorpej struct kqueue *kq = kn->kn_kq;
812 1.3 jdolecek struct proc *p;
813 1.1 lukem
814 1.129 thorpej /*
815 1.129 thorpej * We have to synchronize with knote_proc_exit(), but we
816 1.129 thorpej * are forced to acquire the locks in the wrong order here
817 1.129 thorpej * because we can't be sure kn->kn_obj is valid unless
818 1.129 thorpej * KN_DETACHED is not set.
819 1.129 thorpej */
820 1.129 thorpej again:
821 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
822 1.129 thorpej if ((kn->kn_status & KN_DETACHED) == 0) {
823 1.129 thorpej p = kn->kn_obj;
824 1.129 thorpej if (!mutex_tryenter(p->p_lock)) {
825 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
826 1.129 thorpej preempt_point();
827 1.129 thorpej goto again;
828 1.129 thorpej }
829 1.129 thorpej kn->kn_status |= KN_DETACHED;
830 1.129 thorpej SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
831 1.129 thorpej mutex_exit(p->p_lock);
832 1.129 thorpej }
833 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
834 1.1 lukem }
835 1.1 lukem
836 1.3 jdolecek /*
837 1.3 jdolecek * Filter event method for EVFILT_PROC.
838 1.129 thorpej *
839 1.129 thorpej * Due to some of the complexities of process locking, we have special
840 1.129 thorpej * entry points for delivering knote submissions. filt_proc() is used
841 1.129 thorpej * only to check for activation from kqueue_register() and kqueue_scan().
842 1.3 jdolecek */
843 1.1 lukem static int
844 1.1 lukem filt_proc(struct knote *kn, long hint)
845 1.1 lukem {
846 1.129 thorpej struct kqueue *kq = kn->kn_kq;
847 1.129 thorpej uint32_t fflags;
848 1.129 thorpej
849 1.129 thorpej /*
850 1.129 thorpej * Because we share the same klist with signal knotes, just
851 1.129 thorpej * ensure that we're not being invoked for the proc-related
852 1.129 thorpej * submissions.
853 1.129 thorpej */
854 1.129 thorpej KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
855 1.129 thorpej
856 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
857 1.129 thorpej fflags = kn->kn_fflags;
858 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
859 1.1 lukem
860 1.129 thorpej return fflags != 0;
861 1.129 thorpej }
862 1.1 lukem
863 1.129 thorpej void
864 1.129 thorpej knote_proc_exec(struct proc *p)
865 1.129 thorpej {
866 1.129 thorpej struct knote *kn, *tmpkn;
867 1.129 thorpej struct kqueue *kq;
868 1.129 thorpej uint32_t fflags;
869 1.1 lukem
870 1.129 thorpej mutex_enter(p->p_lock);
871 1.83 christos
872 1.129 thorpej SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
873 1.129 thorpej /* N.B. EVFILT_SIGNAL knotes are on this same list. */
874 1.129 thorpej if (kn->kn_fop == &sig_filtops) {
875 1.129 thorpej continue;
876 1.129 thorpej }
877 1.129 thorpej KASSERT(kn->kn_fop == &proc_filtops);
878 1.49 ad
879 1.129 thorpej kq = kn->kn_kq;
880 1.49 ad mutex_spin_enter(&kq->kq_lock);
881 1.129 thorpej fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
882 1.129 thorpej if (fflags) {
883 1.133 thorpej knote_activate_locked(kn);
884 1.129 thorpej }
885 1.133 thorpej mutex_spin_exit(&kq->kq_lock);
886 1.129 thorpej }
887 1.129 thorpej
888 1.129 thorpej mutex_exit(p->p_lock);
889 1.129 thorpej }
890 1.129 thorpej
891 1.129 thorpej static int __noinline
892 1.129 thorpej knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
893 1.129 thorpej {
894 1.129 thorpej struct kqueue *kq = okn->kn_kq;
895 1.129 thorpej
896 1.129 thorpej KASSERT(mutex_owned(&kq->kq_lock));
897 1.129 thorpej KASSERT(mutex_owned(p1->p_lock));
898 1.129 thorpej
899 1.129 thorpej /*
900 1.129 thorpej * We're going to put this knote into flux while we drop
901 1.129 thorpej * the locks and create and attach a new knote to track the
902 1.129 thorpej * child. If we are not able to enter flux, then this knote
903 1.129 thorpej * is about to go away, so skip the notification.
904 1.129 thorpej */
905 1.129 thorpej if (!kn_enter_flux(okn)) {
906 1.129 thorpej return 0;
907 1.129 thorpej }
908 1.129 thorpej
909 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
910 1.129 thorpej mutex_exit(p1->p_lock);
911 1.49 ad
912 1.129 thorpej /*
913 1.129 thorpej * We actually have to register *two* new knotes:
914 1.129 thorpej *
915 1.129 thorpej * ==> One for the NOTE_CHILD notification. This is a forced
916 1.129 thorpej * ONESHOT note.
917 1.129 thorpej *
918 1.129 thorpej * ==> One to actually track the child process as it subsequently
919 1.129 thorpej * forks, execs, and, ultimately, exits.
920 1.129 thorpej *
921 1.129 thorpej * If we only register a single knote, then it's possible for
922 1.129 thorpej * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
923 1.129 thorpej * notification if the child exits before the tracking process
924 1.129 thorpej * has received the NOTE_CHILD notification, which applications
925 1.129 thorpej * aren't expecting (the event's 'data' field would be clobbered,
926 1.129 thorpej * for exmaple).
927 1.129 thorpej *
928 1.129 thorpej * To do this, what we have here is an **extremely** stripped-down
929 1.129 thorpej * version of kqueue_register() that has the following properties:
930 1.129 thorpej *
931 1.129 thorpej * ==> Does not block to allocate memory. If we are unable
932 1.129 thorpej * to allocate memory, we return ENOMEM.
933 1.129 thorpej *
934 1.129 thorpej * ==> Does not search for existing knotes; we know there
935 1.129 thorpej * are not any because this is a new process that isn't
936 1.129 thorpej * even visible to other processes yet.
937 1.129 thorpej *
938 1.129 thorpej * ==> Assumes that the knhash for our kq's descriptor table
939 1.129 thorpej * already exists (after all, we're already tracking
940 1.129 thorpej * processes with knotes if we got here).
941 1.129 thorpej *
942 1.129 thorpej * ==> Directly attaches the new tracking knote to the child
943 1.129 thorpej * process.
944 1.129 thorpej *
945 1.129 thorpej * The whole point is to do the minimum amount of work while the
946 1.129 thorpej * knote is held in-flux, and to avoid doing extra work in general
947 1.129 thorpej * (we already have the new child process; why bother looking it
948 1.129 thorpej * up again?).
949 1.129 thorpej */
950 1.129 thorpej filedesc_t *fdp = kq->kq_fdp;
951 1.129 thorpej struct knote *knchild, *kntrack;
952 1.129 thorpej int error = 0;
953 1.129 thorpej
954 1.129 thorpej knchild = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
955 1.129 thorpej kntrack = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
956 1.129 thorpej if (__predict_false(knchild == NULL || kntrack == NULL)) {
957 1.129 thorpej error = ENOMEM;
958 1.129 thorpej goto out;
959 1.129 thorpej }
960 1.129 thorpej
961 1.129 thorpej kntrack->kn_obj = p2;
962 1.129 thorpej kntrack->kn_id = p2->p_pid;
963 1.129 thorpej kntrack->kn_kq = kq;
964 1.129 thorpej kntrack->kn_fop = okn->kn_fop;
965 1.129 thorpej kntrack->kn_kfilter = okn->kn_kfilter;
966 1.129 thorpej kntrack->kn_sfflags = okn->kn_sfflags;
967 1.129 thorpej kntrack->kn_sdata = p1->p_pid;
968 1.129 thorpej
969 1.129 thorpej kntrack->kn_kevent.ident = p2->p_pid;
970 1.129 thorpej kntrack->kn_kevent.filter = okn->kn_filter;
971 1.129 thorpej kntrack->kn_kevent.flags =
972 1.129 thorpej okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
973 1.129 thorpej kntrack->kn_kevent.fflags = 0;
974 1.129 thorpej kntrack->kn_kevent.data = 0;
975 1.129 thorpej kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
976 1.129 thorpej
977 1.129 thorpej /*
978 1.129 thorpej * The child note does not need to be attached to the
979 1.129 thorpej * new proc's klist at all.
980 1.129 thorpej */
981 1.129 thorpej *knchild = *kntrack;
982 1.129 thorpej knchild->kn_status = KN_DETACHED;
983 1.129 thorpej knchild->kn_sfflags = 0;
984 1.129 thorpej knchild->kn_kevent.flags |= EV_ONESHOT;
985 1.129 thorpej knchild->kn_kevent.fflags = NOTE_CHILD;
986 1.129 thorpej knchild->kn_kevent.data = p1->p_pid; /* parent */
987 1.129 thorpej
988 1.129 thorpej mutex_enter(&fdp->fd_lock);
989 1.129 thorpej
990 1.129 thorpej /*
991 1.129 thorpej * We need to check to see if the kq is closing, and skip
992 1.129 thorpej * attaching the knote if so. Normally, this isn't necessary
993 1.129 thorpej * when coming in the front door because the file descriptor
994 1.129 thorpej * layer will synchronize this.
995 1.129 thorpej *
996 1.129 thorpej * It's safe to test KQ_CLOSING without taking the kq_lock
997 1.129 thorpej * here because that flag is only ever set when the fd_lock
998 1.129 thorpej * is also held.
999 1.129 thorpej */
1000 1.129 thorpej if (__predict_false(kq->kq_count & KQ_CLOSING)) {
1001 1.129 thorpej mutex_exit(&fdp->fd_lock);
1002 1.129 thorpej goto out;
1003 1.1 lukem }
1004 1.1 lukem
1005 1.129 thorpej /*
1006 1.129 thorpej * We do the "insert into FD table" and "attach to klist" steps
1007 1.129 thorpej * in the opposite order of kqueue_register() here to avoid
1008 1.129 thorpej * having to take p2->p_lock twice. But this is OK because we
1009 1.129 thorpej * hold fd_lock across the entire operation.
1010 1.129 thorpej */
1011 1.129 thorpej
1012 1.129 thorpej mutex_enter(p2->p_lock);
1013 1.129 thorpej error = kauth_authorize_process(curlwp->l_cred,
1014 1.129 thorpej KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
1015 1.129 thorpej if (__predict_false(error != 0)) {
1016 1.129 thorpej mutex_exit(p2->p_lock);
1017 1.129 thorpej mutex_exit(&fdp->fd_lock);
1018 1.129 thorpej error = EACCES;
1019 1.129 thorpej goto out;
1020 1.129 thorpej }
1021 1.129 thorpej SLIST_INSERT_HEAD(&p2->p_klist, kntrack, kn_selnext);
1022 1.129 thorpej mutex_exit(p2->p_lock);
1023 1.129 thorpej
1024 1.129 thorpej KASSERT(fdp->fd_knhashmask != 0);
1025 1.129 thorpej KASSERT(fdp->fd_knhash != NULL);
1026 1.129 thorpej struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
1027 1.129 thorpej fdp->fd_knhashmask)];
1028 1.129 thorpej SLIST_INSERT_HEAD(list, kntrack, kn_link);
1029 1.129 thorpej SLIST_INSERT_HEAD(list, knchild, kn_link);
1030 1.129 thorpej
1031 1.129 thorpej /* This adds references for knchild *and* kntrack. */
1032 1.129 thorpej atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
1033 1.129 thorpej
1034 1.129 thorpej knote_activate(knchild);
1035 1.129 thorpej
1036 1.129 thorpej kntrack = NULL;
1037 1.129 thorpej knchild = NULL;
1038 1.129 thorpej
1039 1.129 thorpej mutex_exit(&fdp->fd_lock);
1040 1.129 thorpej
1041 1.129 thorpej out:
1042 1.129 thorpej if (__predict_false(knchild != NULL)) {
1043 1.129 thorpej kmem_free(knchild, sizeof(*knchild));
1044 1.129 thorpej }
1045 1.129 thorpej if (__predict_false(kntrack != NULL)) {
1046 1.129 thorpej kmem_free(kntrack, sizeof(*kntrack));
1047 1.129 thorpej }
1048 1.129 thorpej mutex_enter(p1->p_lock);
1049 1.49 ad mutex_spin_enter(&kq->kq_lock);
1050 1.129 thorpej
1051 1.129 thorpej if (kn_leave_flux(okn)) {
1052 1.129 thorpej KQ_FLUX_WAKEUP(kq);
1053 1.129 thorpej }
1054 1.129 thorpej
1055 1.129 thorpej return error;
1056 1.129 thorpej }
1057 1.129 thorpej
1058 1.129 thorpej void
1059 1.129 thorpej knote_proc_fork(struct proc *p1, struct proc *p2)
1060 1.129 thorpej {
1061 1.129 thorpej struct knote *kn;
1062 1.129 thorpej struct kqueue *kq;
1063 1.129 thorpej uint32_t fflags;
1064 1.129 thorpej
1065 1.129 thorpej mutex_enter(p1->p_lock);
1066 1.129 thorpej
1067 1.129 thorpej /*
1068 1.129 thorpej * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
1069 1.129 thorpej * don't want to pre-fetch the next knote; in the event we
1070 1.129 thorpej * have to drop p_lock, we will have put the knote in-flux,
1071 1.129 thorpej * meaning that no one will be able to detach it until we
1072 1.129 thorpej * have taken the knote out of flux. However, that does
1073 1.129 thorpej * NOT stop someone else from detaching the next note in the
1074 1.129 thorpej * list while we have it unlocked. Thus, we want to fetch
1075 1.129 thorpej * the next note in the list only after we have re-acquired
1076 1.129 thorpej * the lock, and using SLIST_FOREACH() will satisfy that.
1077 1.129 thorpej */
1078 1.129 thorpej SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
1079 1.129 thorpej /* N.B. EVFILT_SIGNAL knotes are on this same list. */
1080 1.129 thorpej if (kn->kn_fop == &sig_filtops) {
1081 1.129 thorpej continue;
1082 1.129 thorpej }
1083 1.129 thorpej KASSERT(kn->kn_fop == &proc_filtops);
1084 1.129 thorpej
1085 1.129 thorpej kq = kn->kn_kq;
1086 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
1087 1.129 thorpej kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
1088 1.129 thorpej if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
1089 1.129 thorpej /*
1090 1.129 thorpej * This will drop kq_lock and p_lock and
1091 1.129 thorpej * re-acquire them before it returns.
1092 1.129 thorpej */
1093 1.129 thorpej if (knote_proc_fork_track(p1, p2, kn)) {
1094 1.129 thorpej kn->kn_fflags |= NOTE_TRACKERR;
1095 1.129 thorpej }
1096 1.129 thorpej KASSERT(mutex_owned(p1->p_lock));
1097 1.129 thorpej KASSERT(mutex_owned(&kq->kq_lock));
1098 1.129 thorpej }
1099 1.129 thorpej fflags = kn->kn_fflags;
1100 1.129 thorpej if (fflags) {
1101 1.133 thorpej knote_activate_locked(kn);
1102 1.129 thorpej }
1103 1.133 thorpej mutex_spin_exit(&kq->kq_lock);
1104 1.129 thorpej }
1105 1.129 thorpej
1106 1.129 thorpej mutex_exit(p1->p_lock);
1107 1.129 thorpej }
1108 1.129 thorpej
1109 1.129 thorpej void
1110 1.129 thorpej knote_proc_exit(struct proc *p)
1111 1.129 thorpej {
1112 1.129 thorpej struct knote *kn;
1113 1.129 thorpej struct kqueue *kq;
1114 1.129 thorpej
1115 1.129 thorpej KASSERT(mutex_owned(p->p_lock));
1116 1.129 thorpej
1117 1.129 thorpej while (!SLIST_EMPTY(&p->p_klist)) {
1118 1.129 thorpej kn = SLIST_FIRST(&p->p_klist);
1119 1.129 thorpej kq = kn->kn_kq;
1120 1.129 thorpej
1121 1.129 thorpej KASSERT(kn->kn_obj == p);
1122 1.129 thorpej
1123 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
1124 1.129 thorpej kn->kn_data = P_WAITSTATUS(p);
1125 1.129 thorpej /*
1126 1.129 thorpej * Mark as ONESHOT, so that the knote is g/c'ed
1127 1.129 thorpej * when read.
1128 1.129 thorpej */
1129 1.129 thorpej kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1130 1.129 thorpej kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
1131 1.129 thorpej
1132 1.1 lukem /*
1133 1.129 thorpej * Detach the knote from the process and mark it as such.
1134 1.129 thorpej * N.B. EVFILT_SIGNAL are also on p_klist, but by the
1135 1.129 thorpej * time we get here, all open file descriptors for this
1136 1.129 thorpej * process have been released, meaning that signal knotes
1137 1.129 thorpej * will have already been detached.
1138 1.129 thorpej *
1139 1.129 thorpej * We need to synchronize this with filt_procdetach().
1140 1.1 lukem */
1141 1.129 thorpej KASSERT(kn->kn_fop == &proc_filtops);
1142 1.129 thorpej if ((kn->kn_status & KN_DETACHED) == 0) {
1143 1.129 thorpej kn->kn_status |= KN_DETACHED;
1144 1.129 thorpej SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
1145 1.129 thorpej }
1146 1.129 thorpej
1147 1.129 thorpej /*
1148 1.129 thorpej * Always activate the knote for NOTE_EXIT regardless
1149 1.129 thorpej * of whether or not the listener cares about it.
1150 1.129 thorpej * This matches historical behavior.
1151 1.129 thorpej */
1152 1.133 thorpej knote_activate_locked(kn);
1153 1.133 thorpej mutex_spin_exit(&kq->kq_lock);
1154 1.1 lukem }
1155 1.8 jdolecek }
1156 1.8 jdolecek
1157 1.133 thorpej #define FILT_TIMER_NOSCHED ((uintptr_t)-1)
1158 1.133 thorpej
1159 1.8 jdolecek static int
1160 1.134 thorpej filt_timercompute(struct kevent *kev, uintptr_t *tticksp)
1161 1.8 jdolecek {
1162 1.132 thorpej struct timespec ts;
1163 1.134 thorpej uintptr_t tticks;
1164 1.132 thorpej
1165 1.134 thorpej if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) {
1166 1.132 thorpej return EINVAL;
1167 1.132 thorpej }
1168 1.132 thorpej
1169 1.132 thorpej /*
1170 1.132 thorpej * Convert the event 'data' to a timespec, then convert the
1171 1.132 thorpej * timespec to callout ticks.
1172 1.132 thorpej */
1173 1.134 thorpej switch (kev->fflags & NOTE_TIMER_UNITMASK) {
1174 1.132 thorpej case NOTE_SECONDS:
1175 1.134 thorpej ts.tv_sec = kev->data;
1176 1.132 thorpej ts.tv_nsec = 0;
1177 1.132 thorpej break;
1178 1.132 thorpej
1179 1.132 thorpej case NOTE_MSECONDS: /* == historical value 0 */
1180 1.134 thorpej ts.tv_sec = kev->data / 1000;
1181 1.134 thorpej ts.tv_nsec = (kev->data % 1000) * 1000000;
1182 1.132 thorpej break;
1183 1.132 thorpej
1184 1.132 thorpej case NOTE_USECONDS:
1185 1.134 thorpej ts.tv_sec = kev->data / 1000000;
1186 1.134 thorpej ts.tv_nsec = (kev->data % 1000000) * 1000;
1187 1.132 thorpej break;
1188 1.132 thorpej
1189 1.132 thorpej case NOTE_NSECONDS:
1190 1.134 thorpej ts.tv_sec = kev->data / 1000000000;
1191 1.134 thorpej ts.tv_nsec = kev->data % 1000000000;
1192 1.132 thorpej break;
1193 1.132 thorpej
1194 1.132 thorpej default:
1195 1.132 thorpej return EINVAL;
1196 1.132 thorpej }
1197 1.132 thorpej
1198 1.134 thorpej if (kev->fflags & NOTE_ABSTIME) {
1199 1.132 thorpej struct timespec deadline = ts;
1200 1.132 thorpej
1201 1.132 thorpej /*
1202 1.132 thorpej * Get current time.
1203 1.132 thorpej *
1204 1.132 thorpej * XXX This is CLOCK_REALTIME. There is no way to
1205 1.132 thorpej * XXX specify CLOCK_MONOTONIC.
1206 1.132 thorpej */
1207 1.132 thorpej nanotime(&ts);
1208 1.8 jdolecek
1209 1.134 thorpej /* Absolute timers do not repeat. */
1210 1.134 thorpej kev->data = FILT_TIMER_NOSCHED;
1211 1.134 thorpej
1212 1.132 thorpej /* If we're past the deadline, then the event will fire. */
1213 1.132 thorpej if (timespeccmp(&deadline, &ts, <=)) {
1214 1.134 thorpej tticks = FILT_TIMER_NOSCHED;
1215 1.134 thorpej goto out;
1216 1.132 thorpej }
1217 1.132 thorpej
1218 1.132 thorpej /* Calculate how much time is left. */
1219 1.132 thorpej timespecsub(&deadline, &ts, &ts);
1220 1.132 thorpej } else {
1221 1.132 thorpej /* EV_CLEAR automatically set for relative timers. */
1222 1.134 thorpej kev->flags |= EV_CLEAR;
1223 1.132 thorpej }
1224 1.132 thorpej
1225 1.132 thorpej tticks = tstohz(&ts);
1226 1.8 jdolecek
1227 1.8 jdolecek /* if the supplied value is under our resolution, use 1 tick */
1228 1.8 jdolecek if (tticks == 0) {
1229 1.134 thorpej if (kev->data == 0)
1230 1.49 ad return EINVAL;
1231 1.8 jdolecek tticks = 1;
1232 1.134 thorpej } else if (tticks > INT_MAX) {
1233 1.134 thorpej return EINVAL;
1234 1.8 jdolecek }
1235 1.8 jdolecek
1236 1.134 thorpej if ((kev->flags & EV_ONESHOT) != 0) {
1237 1.132 thorpej /* Timer does not repeat. */
1238 1.134 thorpej kev->data = FILT_TIMER_NOSCHED;
1239 1.132 thorpej } else {
1240 1.133 thorpej KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED);
1241 1.134 thorpej kev->data = tticks;
1242 1.134 thorpej }
1243 1.134 thorpej
1244 1.134 thorpej out:
1245 1.134 thorpej *tticksp = tticks;
1246 1.134 thorpej
1247 1.134 thorpej return 0;
1248 1.134 thorpej }
1249 1.134 thorpej
1250 1.134 thorpej static void
1251 1.134 thorpej filt_timerexpire(void *knx)
1252 1.134 thorpej {
1253 1.134 thorpej struct knote *kn = knx;
1254 1.134 thorpej struct kqueue *kq = kn->kn_kq;
1255 1.134 thorpej
1256 1.134 thorpej mutex_spin_enter(&kq->kq_lock);
1257 1.134 thorpej kn->kn_data++;
1258 1.134 thorpej knote_activate_locked(kn);
1259 1.134 thorpej if (kn->kn_sdata != FILT_TIMER_NOSCHED) {
1260 1.134 thorpej KASSERT(kn->kn_sdata > 0 && kn->kn_sdata <= INT_MAX);
1261 1.134 thorpej callout_schedule((callout_t *)kn->kn_hook,
1262 1.134 thorpej (int)kn->kn_sdata);
1263 1.134 thorpej }
1264 1.134 thorpej mutex_spin_exit(&kq->kq_lock);
1265 1.134 thorpej }
1266 1.134 thorpej
1267 1.136 thorpej static inline void
1268 1.136 thorpej filt_timerstart(struct knote *kn, uintptr_t tticks)
1269 1.136 thorpej {
1270 1.136 thorpej callout_t *calloutp = kn->kn_hook;
1271 1.136 thorpej
1272 1.136 thorpej KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1273 1.136 thorpej KASSERT(!callout_pending(calloutp));
1274 1.136 thorpej
1275 1.136 thorpej if (__predict_false(tticks == FILT_TIMER_NOSCHED)) {
1276 1.136 thorpej kn->kn_data = 1;
1277 1.136 thorpej } else {
1278 1.136 thorpej KASSERT(tticks <= INT_MAX);
1279 1.136 thorpej callout_reset(calloutp, (int)tticks, filt_timerexpire, kn);
1280 1.136 thorpej }
1281 1.136 thorpej }
1282 1.136 thorpej
1283 1.134 thorpej static int
1284 1.134 thorpej filt_timerattach(struct knote *kn)
1285 1.134 thorpej {
1286 1.134 thorpej callout_t *calloutp;
1287 1.134 thorpej struct kqueue *kq;
1288 1.134 thorpej uintptr_t tticks;
1289 1.134 thorpej int error;
1290 1.134 thorpej
1291 1.134 thorpej struct kevent kev = {
1292 1.134 thorpej .flags = kn->kn_flags,
1293 1.134 thorpej .fflags = kn->kn_sfflags,
1294 1.134 thorpej .data = kn->kn_sdata,
1295 1.134 thorpej };
1296 1.134 thorpej
1297 1.134 thorpej error = filt_timercompute(&kev, &tticks);
1298 1.134 thorpej if (error) {
1299 1.134 thorpej return error;
1300 1.132 thorpej }
1301 1.132 thorpej
1302 1.49 ad if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
1303 1.49 ad (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
1304 1.49 ad atomic_dec_uint(&kq_ncallouts);
1305 1.49 ad return ENOMEM;
1306 1.49 ad }
1307 1.54 ad callout_init(calloutp, CALLOUT_MPSAFE);
1308 1.49 ad
1309 1.49 ad kq = kn->kn_kq;
1310 1.49 ad mutex_spin_enter(&kq->kq_lock);
1311 1.134 thorpej
1312 1.134 thorpej kn->kn_sdata = kev.data;
1313 1.134 thorpej kn->kn_flags = kev.flags;
1314 1.134 thorpej KASSERT(kn->kn_sfflags == kev.fflags);
1315 1.49 ad kn->kn_hook = calloutp;
1316 1.134 thorpej
1317 1.136 thorpej filt_timerstart(kn, tticks);
1318 1.134 thorpej
1319 1.49 ad mutex_spin_exit(&kq->kq_lock);
1320 1.49 ad
1321 1.8 jdolecek return (0);
1322 1.8 jdolecek }
1323 1.8 jdolecek
1324 1.8 jdolecek static void
1325 1.8 jdolecek filt_timerdetach(struct knote *kn)
1326 1.8 jdolecek {
1327 1.39 ad callout_t *calloutp;
1328 1.103 christos struct kqueue *kq = kn->kn_kq;
1329 1.103 christos
1330 1.133 thorpej /* prevent rescheduling when we expire */
1331 1.103 christos mutex_spin_enter(&kq->kq_lock);
1332 1.133 thorpej kn->kn_sdata = FILT_TIMER_NOSCHED;
1333 1.103 christos mutex_spin_exit(&kq->kq_lock);
1334 1.8 jdolecek
1335 1.39 ad calloutp = (callout_t *)kn->kn_hook;
1336 1.125 thorpej
1337 1.125 thorpej /*
1338 1.125 thorpej * Attempt to stop the callout. This will block if it's
1339 1.125 thorpej * already running.
1340 1.125 thorpej */
1341 1.55 ad callout_halt(calloutp, NULL);
1342 1.125 thorpej
1343 1.39 ad callout_destroy(calloutp);
1344 1.49 ad kmem_free(calloutp, sizeof(*calloutp));
1345 1.49 ad atomic_dec_uint(&kq_ncallouts);
1346 1.8 jdolecek }
1347 1.8 jdolecek
1348 1.8 jdolecek static int
1349 1.136 thorpej filt_timertouch(struct knote *kn, struct kevent *kev, long type)
1350 1.136 thorpej {
1351 1.136 thorpej struct kqueue *kq = kn->kn_kq;
1352 1.136 thorpej callout_t *calloutp;
1353 1.136 thorpej uintptr_t tticks;
1354 1.136 thorpej int error;
1355 1.136 thorpej
1356 1.136 thorpej KASSERT(mutex_owned(&kq->kq_lock));
1357 1.136 thorpej
1358 1.136 thorpej switch (type) {
1359 1.136 thorpej case EVENT_REGISTER:
1360 1.136 thorpej /* Only relevant for EV_ADD. */
1361 1.136 thorpej if ((kev->flags & EV_ADD) == 0) {
1362 1.136 thorpej return 0;
1363 1.136 thorpej }
1364 1.136 thorpej
1365 1.136 thorpej /*
1366 1.136 thorpej * Stop the timer, under the assumption that if
1367 1.136 thorpej * an application is re-configuring the timer,
1368 1.136 thorpej * they no longer care about the old one. We
1369 1.136 thorpej * can safely drop the kq_lock while we wait
1370 1.136 thorpej * because fdp->fd_lock will be held throughout,
1371 1.136 thorpej * ensuring that no one can sneak in with an
1372 1.136 thorpej * EV_DELETE or close the kq.
1373 1.136 thorpej */
1374 1.136 thorpej KASSERT(mutex_owned(&kq->kq_fdp->fd_lock));
1375 1.136 thorpej
1376 1.136 thorpej calloutp = kn->kn_hook;
1377 1.136 thorpej callout_halt(calloutp, &kq->kq_lock);
1378 1.136 thorpej KASSERT(mutex_owned(&kq->kq_lock));
1379 1.136 thorpej knote_deactivate_locked(kn);
1380 1.136 thorpej kn->kn_data = 0;
1381 1.136 thorpej
1382 1.136 thorpej error = filt_timercompute(kev, &tticks);
1383 1.136 thorpej if (error) {
1384 1.136 thorpej return error;
1385 1.136 thorpej }
1386 1.136 thorpej kn->kn_sdata = kev->data;
1387 1.136 thorpej kn->kn_flags = kev->flags;
1388 1.136 thorpej kn->kn_sfflags = kev->fflags;
1389 1.136 thorpej filt_timerstart(kn, tticks);
1390 1.136 thorpej break;
1391 1.136 thorpej
1392 1.136 thorpej case EVENT_PROCESS:
1393 1.136 thorpej *kev = kn->kn_kevent;
1394 1.136 thorpej break;
1395 1.136 thorpej
1396 1.136 thorpej default:
1397 1.136 thorpej panic("%s: invalid type (%ld)", __func__, type);
1398 1.136 thorpej }
1399 1.136 thorpej
1400 1.136 thorpej return 0;
1401 1.136 thorpej }
1402 1.136 thorpej
1403 1.136 thorpej static int
1404 1.33 yamt filt_timer(struct knote *kn, long hint)
1405 1.8 jdolecek {
1406 1.133 thorpej struct kqueue *kq = kn->kn_kq;
1407 1.49 ad int rv;
1408 1.49 ad
1409 1.133 thorpej mutex_spin_enter(&kq->kq_lock);
1410 1.49 ad rv = (kn->kn_data != 0);
1411 1.133 thorpej mutex_spin_exit(&kq->kq_lock);
1412 1.49 ad
1413 1.49 ad return rv;
1414 1.1 lukem }
1415 1.1 lukem
1416 1.108 christos static int
1417 1.108 christos filt_userattach(struct knote *kn)
1418 1.108 christos {
1419 1.108 christos struct kqueue *kq = kn->kn_kq;
1420 1.108 christos
1421 1.108 christos /*
1422 1.108 christos * EVFILT_USER knotes are not attached to anything in the kernel.
1423 1.108 christos */
1424 1.108 christos mutex_spin_enter(&kq->kq_lock);
1425 1.108 christos kn->kn_hook = NULL;
1426 1.108 christos if (kn->kn_fflags & NOTE_TRIGGER)
1427 1.108 christos kn->kn_hookid = 1;
1428 1.108 christos else
1429 1.108 christos kn->kn_hookid = 0;
1430 1.108 christos mutex_spin_exit(&kq->kq_lock);
1431 1.108 christos return (0);
1432 1.108 christos }
1433 1.108 christos
1434 1.108 christos static void
1435 1.108 christos filt_userdetach(struct knote *kn)
1436 1.108 christos {
1437 1.108 christos
1438 1.108 christos /*
1439 1.108 christos * EVFILT_USER knotes are not attached to anything in the kernel.
1440 1.108 christos */
1441 1.108 christos }
1442 1.108 christos
1443 1.108 christos static int
1444 1.108 christos filt_user(struct knote *kn, long hint)
1445 1.108 christos {
1446 1.108 christos struct kqueue *kq = kn->kn_kq;
1447 1.108 christos int hookid;
1448 1.108 christos
1449 1.108 christos mutex_spin_enter(&kq->kq_lock);
1450 1.108 christos hookid = kn->kn_hookid;
1451 1.108 christos mutex_spin_exit(&kq->kq_lock);
1452 1.108 christos
1453 1.108 christos return hookid;
1454 1.108 christos }
1455 1.108 christos
1456 1.135 thorpej static int
1457 1.108 christos filt_usertouch(struct knote *kn, struct kevent *kev, long type)
1458 1.108 christos {
1459 1.108 christos int ffctrl;
1460 1.108 christos
1461 1.117 skrll KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1462 1.116 jdolecek
1463 1.108 christos switch (type) {
1464 1.108 christos case EVENT_REGISTER:
1465 1.108 christos if (kev->fflags & NOTE_TRIGGER)
1466 1.108 christos kn->kn_hookid = 1;
1467 1.108 christos
1468 1.108 christos ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1469 1.108 christos kev->fflags &= NOTE_FFLAGSMASK;
1470 1.108 christos switch (ffctrl) {
1471 1.108 christos case NOTE_FFNOP:
1472 1.108 christos break;
1473 1.108 christos
1474 1.108 christos case NOTE_FFAND:
1475 1.108 christos kn->kn_sfflags &= kev->fflags;
1476 1.108 christos break;
1477 1.108 christos
1478 1.108 christos case NOTE_FFOR:
1479 1.108 christos kn->kn_sfflags |= kev->fflags;
1480 1.108 christos break;
1481 1.108 christos
1482 1.108 christos case NOTE_FFCOPY:
1483 1.108 christos kn->kn_sfflags = kev->fflags;
1484 1.108 christos break;
1485 1.108 christos
1486 1.108 christos default:
1487 1.108 christos /* XXX Return error? */
1488 1.108 christos break;
1489 1.108 christos }
1490 1.108 christos kn->kn_sdata = kev->data;
1491 1.108 christos if (kev->flags & EV_CLEAR) {
1492 1.108 christos kn->kn_hookid = 0;
1493 1.108 christos kn->kn_data = 0;
1494 1.108 christos kn->kn_fflags = 0;
1495 1.108 christos }
1496 1.108 christos break;
1497 1.108 christos
1498 1.108 christos case EVENT_PROCESS:
1499 1.108 christos *kev = kn->kn_kevent;
1500 1.108 christos kev->fflags = kn->kn_sfflags;
1501 1.108 christos kev->data = kn->kn_sdata;
1502 1.108 christos if (kn->kn_flags & EV_CLEAR) {
1503 1.108 christos kn->kn_hookid = 0;
1504 1.108 christos kn->kn_data = 0;
1505 1.108 christos kn->kn_fflags = 0;
1506 1.108 christos }
1507 1.108 christos break;
1508 1.108 christos
1509 1.108 christos default:
1510 1.108 christos panic("filt_usertouch() - invalid type (%ld)", type);
1511 1.108 christos break;
1512 1.108 christos }
1513 1.135 thorpej
1514 1.135 thorpej return 0;
1515 1.108 christos }
1516 1.108 christos
1517 1.102 christos /*
1518 1.3 jdolecek * filt_seltrue:
1519 1.3 jdolecek *
1520 1.3 jdolecek * This filter "event" routine simulates seltrue().
1521 1.3 jdolecek */
1522 1.1 lukem int
1523 1.33 yamt filt_seltrue(struct knote *kn, long hint)
1524 1.1 lukem {
1525 1.1 lukem
1526 1.3 jdolecek /*
1527 1.3 jdolecek * We don't know how much data can be read/written,
1528 1.3 jdolecek * but we know that it *can* be. This is about as
1529 1.3 jdolecek * good as select/poll does as well.
1530 1.3 jdolecek */
1531 1.3 jdolecek kn->kn_data = 0;
1532 1.3 jdolecek return (1);
1533 1.3 jdolecek }
1534 1.3 jdolecek
1535 1.3 jdolecek /*
1536 1.3 jdolecek * This provides full kqfilter entry for device switch tables, which
1537 1.3 jdolecek * has same effect as filter using filt_seltrue() as filter method.
1538 1.3 jdolecek */
1539 1.3 jdolecek static void
1540 1.33 yamt filt_seltruedetach(struct knote *kn)
1541 1.3 jdolecek {
1542 1.3 jdolecek /* Nothing to do */
1543 1.3 jdolecek }
1544 1.3 jdolecek
1545 1.96 maya const struct filterops seltrue_filtops = {
1546 1.123 thorpej .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1547 1.96 maya .f_attach = NULL,
1548 1.96 maya .f_detach = filt_seltruedetach,
1549 1.96 maya .f_event = filt_seltrue,
1550 1.96 maya };
1551 1.3 jdolecek
1552 1.3 jdolecek int
1553 1.33 yamt seltrue_kqfilter(dev_t dev, struct knote *kn)
1554 1.3 jdolecek {
1555 1.3 jdolecek switch (kn->kn_filter) {
1556 1.3 jdolecek case EVFILT_READ:
1557 1.3 jdolecek case EVFILT_WRITE:
1558 1.3 jdolecek kn->kn_fop = &seltrue_filtops;
1559 1.3 jdolecek break;
1560 1.3 jdolecek default:
1561 1.43 pooka return (EINVAL);
1562 1.3 jdolecek }
1563 1.3 jdolecek
1564 1.3 jdolecek /* Nothing more to do */
1565 1.3 jdolecek return (0);
1566 1.3 jdolecek }
1567 1.3 jdolecek
1568 1.3 jdolecek /*
1569 1.3 jdolecek * kqueue(2) system call.
1570 1.3 jdolecek */
1571 1.72 christos static int
1572 1.72 christos kqueue1(struct lwp *l, int flags, register_t *retval)
1573 1.3 jdolecek {
1574 1.49 ad struct kqueue *kq;
1575 1.49 ad file_t *fp;
1576 1.49 ad int fd, error;
1577 1.3 jdolecek
1578 1.49 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
1579 1.49 ad return error;
1580 1.75 christos fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
1581 1.1 lukem fp->f_type = DTYPE_KQUEUE;
1582 1.1 lukem fp->f_ops = &kqueueops;
1583 1.49 ad kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
1584 1.49 ad mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
1585 1.49 ad cv_init(&kq->kq_cv, "kqueue");
1586 1.49 ad selinit(&kq->kq_sel);
1587 1.1 lukem TAILQ_INIT(&kq->kq_head);
1588 1.82 matt fp->f_kqueue = kq;
1589 1.3 jdolecek *retval = fd;
1590 1.49 ad kq->kq_fdp = curlwp->l_fd;
1591 1.72 christos fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1592 1.49 ad fd_affix(curproc, fp, fd);
1593 1.49 ad return error;
1594 1.1 lukem }
1595 1.1 lukem
1596 1.3 jdolecek /*
1597 1.72 christos * kqueue(2) system call.
1598 1.72 christos */
1599 1.72 christos int
1600 1.72 christos sys_kqueue(struct lwp *l, const void *v, register_t *retval)
1601 1.72 christos {
1602 1.72 christos return kqueue1(l, 0, retval);
1603 1.72 christos }
1604 1.72 christos
1605 1.72 christos int
1606 1.72 christos sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
1607 1.72 christos register_t *retval)
1608 1.72 christos {
1609 1.72 christos /* {
1610 1.72 christos syscallarg(int) flags;
1611 1.72 christos } */
1612 1.72 christos return kqueue1(l, SCARG(uap, flags), retval);
1613 1.72 christos }
1614 1.72 christos
1615 1.72 christos /*
1616 1.3 jdolecek * kevent(2) system call.
1617 1.3 jdolecek */
1618 1.61 christos int
1619 1.81 matt kevent_fetch_changes(void *ctx, const struct kevent *changelist,
1620 1.61 christos struct kevent *changes, size_t index, int n)
1621 1.24 cube {
1622 1.49 ad
1623 1.24 cube return copyin(changelist + index, changes, n * sizeof(*changes));
1624 1.24 cube }
1625 1.24 cube
1626 1.61 christos int
1627 1.81 matt kevent_put_events(void *ctx, struct kevent *events,
1628 1.61 christos struct kevent *eventlist, size_t index, int n)
1629 1.24 cube {
1630 1.49 ad
1631 1.24 cube return copyout(events, eventlist + index, n * sizeof(*events));
1632 1.24 cube }
1633 1.24 cube
1634 1.24 cube static const struct kevent_ops kevent_native_ops = {
1635 1.60 gmcgarry .keo_private = NULL,
1636 1.60 gmcgarry .keo_fetch_timeout = copyin,
1637 1.60 gmcgarry .keo_fetch_changes = kevent_fetch_changes,
1638 1.60 gmcgarry .keo_put_events = kevent_put_events,
1639 1.24 cube };
1640 1.24 cube
1641 1.1 lukem int
1642 1.61 christos sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1643 1.61 christos register_t *retval)
1644 1.1 lukem {
1645 1.44 dsl /* {
1646 1.3 jdolecek syscallarg(int) fd;
1647 1.3 jdolecek syscallarg(const struct kevent *) changelist;
1648 1.3 jdolecek syscallarg(size_t) nchanges;
1649 1.3 jdolecek syscallarg(struct kevent *) eventlist;
1650 1.3 jdolecek syscallarg(size_t) nevents;
1651 1.3 jdolecek syscallarg(const struct timespec *) timeout;
1652 1.44 dsl } */
1653 1.24 cube
1654 1.49 ad return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1655 1.24 cube SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1656 1.24 cube SCARG(uap, timeout), &kevent_native_ops);
1657 1.24 cube }
1658 1.24 cube
1659 1.24 cube int
1660 1.49 ad kevent1(register_t *retval, int fd,
1661 1.49 ad const struct kevent *changelist, size_t nchanges,
1662 1.49 ad struct kevent *eventlist, size_t nevents,
1663 1.49 ad const struct timespec *timeout,
1664 1.49 ad const struct kevent_ops *keops)
1665 1.24 cube {
1666 1.49 ad struct kevent *kevp;
1667 1.49 ad struct kqueue *kq;
1668 1.3 jdolecek struct timespec ts;
1669 1.49 ad size_t i, n, ichange;
1670 1.49 ad int nerrors, error;
1671 1.80 maxv struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
1672 1.49 ad file_t *fp;
1673 1.3 jdolecek
1674 1.3 jdolecek /* check that we're dealing with a kq */
1675 1.49 ad fp = fd_getfile(fd);
1676 1.10 pk if (fp == NULL)
1677 1.1 lukem return (EBADF);
1678 1.10 pk
1679 1.10 pk if (fp->f_type != DTYPE_KQUEUE) {
1680 1.49 ad fd_putfile(fd);
1681 1.10 pk return (EBADF);
1682 1.10 pk }
1683 1.1 lukem
1684 1.24 cube if (timeout != NULL) {
1685 1.24 cube error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1686 1.1 lukem if (error)
1687 1.1 lukem goto done;
1688 1.24 cube timeout = &ts;
1689 1.1 lukem }
1690 1.1 lukem
1691 1.82 matt kq = fp->f_kqueue;
1692 1.1 lukem nerrors = 0;
1693 1.24 cube ichange = 0;
1694 1.1 lukem
1695 1.3 jdolecek /* traverse list of events to register */
1696 1.24 cube while (nchanges > 0) {
1697 1.49 ad n = MIN(nchanges, __arraycount(kevbuf));
1698 1.24 cube error = (*keops->keo_fetch_changes)(keops->keo_private,
1699 1.49 ad changelist, kevbuf, ichange, n);
1700 1.1 lukem if (error)
1701 1.1 lukem goto done;
1702 1.1 lukem for (i = 0; i < n; i++) {
1703 1.49 ad kevp = &kevbuf[i];
1704 1.1 lukem kevp->flags &= ~EV_SYSFLAGS;
1705 1.3 jdolecek /* register each knote */
1706 1.49 ad error = kqueue_register(kq, kevp);
1707 1.89 abhinav if (!error && !(kevp->flags & EV_RECEIPT))
1708 1.89 abhinav continue;
1709 1.89 abhinav if (nevents == 0)
1710 1.89 abhinav goto done;
1711 1.89 abhinav kevp->flags = EV_ERROR;
1712 1.89 abhinav kevp->data = error;
1713 1.89 abhinav error = (*keops->keo_put_events)
1714 1.89 abhinav (keops->keo_private, kevp,
1715 1.89 abhinav eventlist, nerrors, 1);
1716 1.89 abhinav if (error)
1717 1.89 abhinav goto done;
1718 1.89 abhinav nevents--;
1719 1.89 abhinav nerrors++;
1720 1.1 lukem }
1721 1.24 cube nchanges -= n; /* update the results */
1722 1.24 cube ichange += n;
1723 1.1 lukem }
1724 1.1 lukem if (nerrors) {
1725 1.3 jdolecek *retval = nerrors;
1726 1.1 lukem error = 0;
1727 1.1 lukem goto done;
1728 1.1 lukem }
1729 1.1 lukem
1730 1.3 jdolecek /* actually scan through the events */
1731 1.49 ad error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1732 1.49 ad kevbuf, __arraycount(kevbuf));
1733 1.3 jdolecek done:
1734 1.49 ad fd_putfile(fd);
1735 1.1 lukem return (error);
1736 1.1 lukem }
1737 1.1 lukem
1738 1.3 jdolecek /*
1739 1.3 jdolecek * Register a given kevent kev onto the kqueue
1740 1.3 jdolecek */
1741 1.49 ad static int
1742 1.49 ad kqueue_register(struct kqueue *kq, struct kevent *kev)
1743 1.1 lukem {
1744 1.49 ad struct kfilter *kfilter;
1745 1.49 ad filedesc_t *fdp;
1746 1.49 ad file_t *fp;
1747 1.49 ad fdfile_t *ff;
1748 1.49 ad struct knote *kn, *newkn;
1749 1.49 ad struct klist *list;
1750 1.49 ad int error, fd, rv;
1751 1.3 jdolecek
1752 1.3 jdolecek fdp = kq->kq_fdp;
1753 1.3 jdolecek fp = NULL;
1754 1.3 jdolecek kn = NULL;
1755 1.3 jdolecek error = 0;
1756 1.49 ad fd = 0;
1757 1.49 ad
1758 1.49 ad newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1759 1.49 ad
1760 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
1761 1.3 jdolecek kfilter = kfilter_byfilter(kev->filter);
1762 1.3 jdolecek if (kfilter == NULL || kfilter->filtops == NULL) {
1763 1.3 jdolecek /* filter not found nor implemented */
1764 1.49 ad rw_exit(&kqueue_filter_lock);
1765 1.49 ad kmem_free(newkn, sizeof(*newkn));
1766 1.1 lukem return (EINVAL);
1767 1.1 lukem }
1768 1.1 lukem
1769 1.3 jdolecek /* search if knote already exists */
1770 1.121 thorpej if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
1771 1.3 jdolecek /* monitoring a file descriptor */
1772 1.87 christos /* validate descriptor */
1773 1.88 christos if (kev->ident > INT_MAX
1774 1.88 christos || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1775 1.49 ad rw_exit(&kqueue_filter_lock);
1776 1.49 ad kmem_free(newkn, sizeof(*newkn));
1777 1.49 ad return EBADF;
1778 1.49 ad }
1779 1.74 rmind mutex_enter(&fdp->fd_lock);
1780 1.65 ad ff = fdp->fd_dt->dt_ff[fd];
1781 1.98 christos if (ff->ff_refcnt & FR_CLOSING) {
1782 1.98 christos error = EBADF;
1783 1.98 christos goto doneunlock;
1784 1.98 christos }
1785 1.49 ad if (fd <= fdp->fd_lastkqfile) {
1786 1.49 ad SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1787 1.1 lukem if (kq == kn->kn_kq &&
1788 1.1 lukem kev->filter == kn->kn_filter)
1789 1.1 lukem break;
1790 1.49 ad }
1791 1.1 lukem }
1792 1.1 lukem } else {
1793 1.3 jdolecek /*
1794 1.3 jdolecek * not monitoring a file descriptor, so
1795 1.3 jdolecek * lookup knotes in internal hash table
1796 1.3 jdolecek */
1797 1.74 rmind mutex_enter(&fdp->fd_lock);
1798 1.1 lukem if (fdp->fd_knhashmask != 0) {
1799 1.1 lukem list = &fdp->fd_knhash[
1800 1.1 lukem KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1801 1.49 ad SLIST_FOREACH(kn, list, kn_link) {
1802 1.1 lukem if (kev->ident == kn->kn_id &&
1803 1.1 lukem kq == kn->kn_kq &&
1804 1.1 lukem kev->filter == kn->kn_filter)
1805 1.1 lukem break;
1806 1.49 ad }
1807 1.1 lukem }
1808 1.1 lukem }
1809 1.1 lukem
1810 1.129 thorpej /* It's safe to test KQ_CLOSING while holding only the fd_lock. */
1811 1.129 thorpej KASSERT(mutex_owned(&fdp->fd_lock));
1812 1.129 thorpej KASSERT((kq->kq_count & KQ_CLOSING) == 0);
1813 1.129 thorpej
1814 1.1 lukem /*
1815 1.1 lukem * kn now contains the matching knote, or NULL if no match
1816 1.1 lukem */
1817 1.108 christos if (kn == NULL) {
1818 1.108 christos if (kev->flags & EV_ADD) {
1819 1.3 jdolecek /* create new knote */
1820 1.49 ad kn = newkn;
1821 1.49 ad newkn = NULL;
1822 1.49 ad kn->kn_obj = fp;
1823 1.79 christos kn->kn_id = kev->ident;
1824 1.1 lukem kn->kn_kq = kq;
1825 1.3 jdolecek kn->kn_fop = kfilter->filtops;
1826 1.49 ad kn->kn_kfilter = kfilter;
1827 1.49 ad kn->kn_sfflags = kev->fflags;
1828 1.49 ad kn->kn_sdata = kev->data;
1829 1.49 ad kev->fflags = 0;
1830 1.49 ad kev->data = 0;
1831 1.49 ad kn->kn_kevent = *kev;
1832 1.1 lukem
1833 1.85 christos KASSERT(kn->kn_fop != NULL);
1834 1.1 lukem /*
1835 1.1 lukem * apply reference count to knote structure, and
1836 1.1 lukem * do not release it at the end of this routine.
1837 1.1 lukem */
1838 1.1 lukem fp = NULL;
1839 1.1 lukem
1840 1.121 thorpej if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
1841 1.49 ad /*
1842 1.49 ad * If knote is not on an fd, store on
1843 1.49 ad * internal hash table.
1844 1.49 ad */
1845 1.49 ad if (fdp->fd_knhashmask == 0) {
1846 1.49 ad /* XXXAD can block with fd_lock held */
1847 1.49 ad fdp->fd_knhash = hashinit(KN_HASHSIZE,
1848 1.59 ad HASH_LIST, true,
1849 1.49 ad &fdp->fd_knhashmask);
1850 1.49 ad }
1851 1.49 ad list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1852 1.49 ad fdp->fd_knhashmask)];
1853 1.49 ad } else {
1854 1.49 ad /* Otherwise, knote is on an fd. */
1855 1.49 ad list = (struct klist *)
1856 1.65 ad &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1857 1.49 ad if ((int)kn->kn_id > fdp->fd_lastkqfile)
1858 1.49 ad fdp->fd_lastkqfile = kn->kn_id;
1859 1.49 ad }
1860 1.49 ad SLIST_INSERT_HEAD(list, kn, kn_link);
1861 1.1 lukem
1862 1.122 thorpej /*
1863 1.122 thorpej * N.B. kn->kn_fop may change as the result
1864 1.122 thorpej * of filter_attach()!
1865 1.122 thorpej */
1866 1.122 thorpej error = filter_attach(kn);
1867 1.49 ad if (error != 0) {
1868 1.100 christos #ifdef DEBUG
1869 1.105 christos struct proc *p = curlwp->l_proc;
1870 1.101 christos const file_t *ft = kn->kn_obj;
1871 1.105 christos printf("%s: %s[%d]: event type %d not "
1872 1.105 christos "supported for file type %d/%s "
1873 1.105 christos "(error %d)\n", __func__,
1874 1.105 christos p->p_comm, p->p_pid,
1875 1.101 christos kn->kn_filter, ft ? ft->f_type : -1,
1876 1.101 christos ft ? ft->f_ops->fo_name : "?", error);
1877 1.100 christos #endif
1878 1.100 christos
1879 1.129 thorpej /*
1880 1.129 thorpej * N.B. no need to check for this note to
1881 1.129 thorpej * be in-flux, since it was never visible
1882 1.129 thorpej * to the monitored object.
1883 1.129 thorpej *
1884 1.129 thorpej * knote_detach() drops fdp->fd_lock
1885 1.129 thorpej */
1886 1.129 thorpej mutex_enter(&kq->kq_lock);
1887 1.129 thorpej KNOTE_WILLDETACH(kn);
1888 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
1889 1.129 thorpej mutex_exit(&kq->kq_lock);
1890 1.49 ad knote_detach(kn, fdp, false);
1891 1.1 lukem goto done;
1892 1.1 lukem }
1893 1.49 ad atomic_inc_uint(&kfilter->refcnt);
1894 1.108 christos goto done_ev_add;
1895 1.1 lukem } else {
1896 1.108 christos /* No matching knote and the EV_ADD flag is not set. */
1897 1.108 christos error = ENOENT;
1898 1.108 christos goto doneunlock;
1899 1.1 lukem }
1900 1.108 christos }
1901 1.108 christos
1902 1.108 christos if (kev->flags & EV_DELETE) {
1903 1.129 thorpej /*
1904 1.129 thorpej * Let the world know that this knote is about to go
1905 1.129 thorpej * away, and wait for it to settle if it's currently
1906 1.129 thorpej * in-flux.
1907 1.129 thorpej */
1908 1.129 thorpej mutex_spin_enter(&kq->kq_lock);
1909 1.129 thorpej if (kn->kn_status & KN_WILLDETACH) {
1910 1.129 thorpej /*
1911 1.129 thorpej * This knote is already on its way out,
1912 1.129 thorpej * so just be done.
1913 1.129 thorpej */
1914 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
1915 1.129 thorpej goto doneunlock;
1916 1.129 thorpej }
1917 1.129 thorpej KNOTE_WILLDETACH(kn);
1918 1.129 thorpej if (kn_in_flux(kn)) {
1919 1.129 thorpej mutex_exit(&fdp->fd_lock);
1920 1.129 thorpej /*
1921 1.129 thorpej * It's safe for us to conclusively wait for
1922 1.129 thorpej * this knote to settle because we know we'll
1923 1.129 thorpej * be completing the detach.
1924 1.129 thorpej */
1925 1.129 thorpej kn_wait_flux(kn, true);
1926 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
1927 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
1928 1.129 thorpej mutex_enter(&fdp->fd_lock);
1929 1.129 thorpej } else {
1930 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
1931 1.129 thorpej }
1932 1.129 thorpej
1933 1.108 christos /* knote_detach() drops fdp->fd_lock */
1934 1.108 christos knote_detach(kn, fdp, true);
1935 1.108 christos goto done;
1936 1.108 christos }
1937 1.108 christos
1938 1.108 christos /*
1939 1.108 christos * The user may change some filter values after the
1940 1.108 christos * initial EV_ADD, but doing so will not reset any
1941 1.108 christos * filter which have already been triggered.
1942 1.108 christos */
1943 1.108 christos kn->kn_kevent.udata = kev->udata;
1944 1.108 christos KASSERT(kn->kn_fop != NULL);
1945 1.121 thorpej if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1946 1.121 thorpej kn->kn_fop->f_touch != NULL) {
1947 1.116 jdolecek mutex_spin_enter(&kq->kq_lock);
1948 1.135 thorpej error = filter_touch(kn, kev, EVENT_REGISTER);
1949 1.116 jdolecek mutex_spin_exit(&kq->kq_lock);
1950 1.135 thorpej if (__predict_false(error != 0)) {
1951 1.135 thorpej /* Never a new knote (which would consume newkn). */
1952 1.135 thorpej KASSERT(newkn != NULL);
1953 1.135 thorpej goto doneunlock;
1954 1.135 thorpej }
1955 1.49 ad } else {
1956 1.108 christos kn->kn_sfflags = kev->fflags;
1957 1.108 christos kn->kn_sdata = kev->data;
1958 1.1 lukem }
1959 1.1 lukem
1960 1.108 christos /*
1961 1.108 christos * We can get here if we are trying to attach
1962 1.108 christos * an event to a file descriptor that does not
1963 1.108 christos * support events, and the attach routine is
1964 1.108 christos * broken and does not return an error.
1965 1.108 christos */
1966 1.135 thorpej done_ev_add:
1967 1.122 thorpej rv = filter_event(kn, 0);
1968 1.108 christos if (rv)
1969 1.108 christos knote_activate(kn);
1970 1.108 christos
1971 1.3 jdolecek /* disable knote */
1972 1.49 ad if ((kev->flags & EV_DISABLE)) {
1973 1.49 ad mutex_spin_enter(&kq->kq_lock);
1974 1.49 ad if ((kn->kn_status & KN_DISABLED) == 0)
1975 1.49 ad kn->kn_status |= KN_DISABLED;
1976 1.49 ad mutex_spin_exit(&kq->kq_lock);
1977 1.1 lukem }
1978 1.1 lukem
1979 1.3 jdolecek /* enable knote */
1980 1.49 ad if ((kev->flags & EV_ENABLE)) {
1981 1.49 ad knote_enqueue(kn);
1982 1.1 lukem }
1983 1.135 thorpej doneunlock:
1984 1.49 ad mutex_exit(&fdp->fd_lock);
1985 1.3 jdolecek done:
1986 1.49 ad rw_exit(&kqueue_filter_lock);
1987 1.49 ad if (newkn != NULL)
1988 1.49 ad kmem_free(newkn, sizeof(*newkn));
1989 1.1 lukem if (fp != NULL)
1990 1.49 ad fd_putfile(fd);
1991 1.1 lukem return (error);
1992 1.1 lukem }
1993 1.1 lukem
1994 1.94 christos #define KN_FMT(buf, kn) \
1995 1.94 christos (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1996 1.94 christos
1997 1.129 thorpej #if defined(DDB)
1998 1.129 thorpej void
1999 1.129 thorpej kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
2000 1.129 thorpej {
2001 1.129 thorpej const struct knote *kn;
2002 1.129 thorpej u_int count;
2003 1.129 thorpej int nmarker;
2004 1.129 thorpej char buf[128];
2005 1.129 thorpej
2006 1.129 thorpej count = 0;
2007 1.129 thorpej nmarker = 0;
2008 1.129 thorpej
2009 1.129 thorpej (*pr)("kqueue %p (restart=%d count=%u):\n", kq,
2010 1.129 thorpej !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
2011 1.129 thorpej (*pr)(" Queued knotes:\n");
2012 1.129 thorpej TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
2013 1.129 thorpej if (kn->kn_status & KN_MARKER) {
2014 1.129 thorpej nmarker++;
2015 1.129 thorpej } else {
2016 1.129 thorpej count++;
2017 1.129 thorpej }
2018 1.129 thorpej (*pr)(" knote %p: kq=%p status=%s\n",
2019 1.129 thorpej kn, kn->kn_kq, KN_FMT(buf, kn));
2020 1.129 thorpej (*pr)(" id=0x%lx (%lu) filter=%d\n",
2021 1.129 thorpej (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
2022 1.129 thorpej if (kn->kn_kq != kq) {
2023 1.129 thorpej (*pr)(" !!! kn->kn_kq != kq\n");
2024 1.129 thorpej }
2025 1.129 thorpej }
2026 1.129 thorpej if (count != KQ_COUNT(kq)) {
2027 1.129 thorpej (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n",
2028 1.129 thorpej count, KQ_COUNT(kq));
2029 1.129 thorpej }
2030 1.129 thorpej }
2031 1.129 thorpej #endif /* DDB */
2032 1.129 thorpej
2033 1.129 thorpej #if defined(DEBUG)
2034 1.52 yamt static void
2035 1.94 christos kqueue_check(const char *func, size_t line, const struct kqueue *kq)
2036 1.52 yamt {
2037 1.52 yamt const struct knote *kn;
2038 1.118 jdolecek u_int count;
2039 1.52 yamt int nmarker;
2040 1.94 christos char buf[128];
2041 1.52 yamt
2042 1.52 yamt KASSERT(mutex_owned(&kq->kq_lock));
2043 1.52 yamt
2044 1.52 yamt count = 0;
2045 1.52 yamt nmarker = 0;
2046 1.52 yamt TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
2047 1.52 yamt if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
2048 1.94 christos panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
2049 1.94 christos func, line, kq, kn, KN_FMT(buf, kn));
2050 1.52 yamt }
2051 1.52 yamt if ((kn->kn_status & KN_MARKER) == 0) {
2052 1.52 yamt if (kn->kn_kq != kq) {
2053 1.94 christos panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
2054 1.94 christos func, line, kq, kn, kn->kn_kq,
2055 1.94 christos KN_FMT(buf, kn));
2056 1.52 yamt }
2057 1.52 yamt if ((kn->kn_status & KN_ACTIVE) == 0) {
2058 1.94 christos panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
2059 1.94 christos func, line, kq, kn, KN_FMT(buf, kn));
2060 1.52 yamt }
2061 1.52 yamt count++;
2062 1.118 jdolecek if (count > KQ_COUNT(kq)) {
2063 1.129 thorpej panic("%s,%zu: kq=%p kq->kq_count(%u) != "
2064 1.112 jdolecek "count(%d), nmarker=%d",
2065 1.118 jdolecek func, line, kq, KQ_COUNT(kq), count,
2066 1.112 jdolecek nmarker);
2067 1.52 yamt }
2068 1.52 yamt } else {
2069 1.52 yamt nmarker++;
2070 1.52 yamt }
2071 1.52 yamt }
2072 1.52 yamt }
2073 1.94 christos #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
2074 1.52 yamt #else /* defined(DEBUG) */
2075 1.52 yamt #define kq_check(a) /* nothing */
2076 1.52 yamt #endif /* defined(DEBUG) */
2077 1.52 yamt
2078 1.118 jdolecek static void
2079 1.118 jdolecek kqueue_restart(file_t *fp)
2080 1.118 jdolecek {
2081 1.118 jdolecek struct kqueue *kq = fp->f_kqueue;
2082 1.118 jdolecek KASSERT(kq != NULL);
2083 1.118 jdolecek
2084 1.118 jdolecek mutex_spin_enter(&kq->kq_lock);
2085 1.118 jdolecek kq->kq_count |= KQ_RESTART;
2086 1.118 jdolecek cv_broadcast(&kq->kq_cv);
2087 1.118 jdolecek mutex_spin_exit(&kq->kq_lock);
2088 1.118 jdolecek }
2089 1.118 jdolecek
2090 1.3 jdolecek /*
2091 1.3 jdolecek * Scan through the list of events on fp (for a maximum of maxevents),
2092 1.3 jdolecek * returning the results in to ulistp. Timeout is determined by tsp; if
2093 1.3 jdolecek * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
2094 1.3 jdolecek * as appropriate.
2095 1.3 jdolecek */
2096 1.1 lukem static int
2097 1.49 ad kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
2098 1.49 ad const struct timespec *tsp, register_t *retval,
2099 1.49 ad const struct kevent_ops *keops, struct kevent *kevbuf,
2100 1.49 ad size_t kevcnt)
2101 1.1 lukem {
2102 1.3 jdolecek struct kqueue *kq;
2103 1.3 jdolecek struct kevent *kevp;
2104 1.62 christos struct timespec ats, sleepts;
2105 1.85 christos struct knote *kn, *marker, morker;
2106 1.24 cube size_t count, nkev, nevents;
2107 1.111 jdolecek int timeout, error, touch, rv, influx;
2108 1.49 ad filedesc_t *fdp;
2109 1.1 lukem
2110 1.49 ad fdp = curlwp->l_fd;
2111 1.82 matt kq = fp->f_kqueue;
2112 1.1 lukem count = maxevents;
2113 1.24 cube nkev = nevents = error = 0;
2114 1.49 ad if (count == 0) {
2115 1.49 ad *retval = 0;
2116 1.49 ad return 0;
2117 1.49 ad }
2118 1.1 lukem
2119 1.9 jdolecek if (tsp) { /* timeout supplied */
2120 1.63 christos ats = *tsp;
2121 1.62 christos if (inittimeleft(&ats, &sleepts) == -1) {
2122 1.49 ad *retval = maxevents;
2123 1.49 ad return EINVAL;
2124 1.1 lukem }
2125 1.62 christos timeout = tstohz(&ats);
2126 1.9 jdolecek if (timeout <= 0)
2127 1.29 kardel timeout = -1; /* do poll */
2128 1.1 lukem } else {
2129 1.9 jdolecek /* no timeout, wait forever */
2130 1.1 lukem timeout = 0;
2131 1.93 riastrad }
2132 1.1 lukem
2133 1.85 christos memset(&morker, 0, sizeof(morker));
2134 1.85 christos marker = &morker;
2135 1.129 thorpej marker->kn_kq = kq;
2136 1.49 ad marker->kn_status = KN_MARKER;
2137 1.49 ad mutex_spin_enter(&kq->kq_lock);
2138 1.3 jdolecek retry:
2139 1.49 ad kevp = kevbuf;
2140 1.118 jdolecek if (KQ_COUNT(kq) == 0) {
2141 1.49 ad if (timeout >= 0) {
2142 1.49 ad error = cv_timedwait_sig(&kq->kq_cv,
2143 1.49 ad &kq->kq_lock, timeout);
2144 1.49 ad if (error == 0) {
2145 1.118 jdolecek if (KQ_COUNT(kq) == 0 &&
2146 1.118 jdolecek (kq->kq_count & KQ_RESTART)) {
2147 1.118 jdolecek /* return to clear file reference */
2148 1.118 jdolecek error = ERESTART;
2149 1.118 jdolecek } else if (tsp == NULL || (timeout =
2150 1.118 jdolecek gettimeleft(&ats, &sleepts)) > 0) {
2151 1.49 ad goto retry;
2152 1.118 jdolecek }
2153 1.49 ad } else {
2154 1.49 ad /* don't restart after signals... */
2155 1.49 ad if (error == ERESTART)
2156 1.49 ad error = EINTR;
2157 1.49 ad if (error == EWOULDBLOCK)
2158 1.49 ad error = 0;
2159 1.49 ad }
2160 1.1 lukem }
2161 1.92 christos mutex_spin_exit(&kq->kq_lock);
2162 1.110 jdolecek goto done;
2163 1.110 jdolecek }
2164 1.110 jdolecek
2165 1.110 jdolecek /* mark end of knote list */
2166 1.110 jdolecek TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
2167 1.111 jdolecek influx = 0;
2168 1.1 lukem
2169 1.110 jdolecek /*
2170 1.110 jdolecek * Acquire the fdp->fd_lock interlock to avoid races with
2171 1.110 jdolecek * file creation/destruction from other threads.
2172 1.110 jdolecek */
2173 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
2174 1.111 jdolecek relock:
2175 1.110 jdolecek mutex_enter(&fdp->fd_lock);
2176 1.110 jdolecek mutex_spin_enter(&kq->kq_lock);
2177 1.92 christos
2178 1.110 jdolecek while (count != 0) {
2179 1.129 thorpej /*
2180 1.129 thorpej * Get next knote. We are guaranteed this will never
2181 1.129 thorpej * be NULL because of the marker we inserted above.
2182 1.129 thorpej */
2183 1.129 thorpej kn = TAILQ_FIRST(&kq->kq_head);
2184 1.111 jdolecek
2185 1.129 thorpej bool kn_is_other_marker =
2186 1.129 thorpej (kn->kn_status & KN_MARKER) != 0 && kn != marker;
2187 1.129 thorpej bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
2188 1.129 thorpej bool kn_is_in_flux = kn_in_flux(kn);
2189 1.129 thorpej
2190 1.129 thorpej /*
2191 1.129 thorpej * If we found a marker that's not ours, or this knote
2192 1.129 thorpej * is in a state of flux, then wait for everything to
2193 1.129 thorpej * settle down and go around again.
2194 1.129 thorpej */
2195 1.129 thorpej if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
2196 1.111 jdolecek if (influx) {
2197 1.111 jdolecek influx = 0;
2198 1.111 jdolecek KQ_FLUX_WAKEUP(kq);
2199 1.111 jdolecek }
2200 1.111 jdolecek mutex_exit(&fdp->fd_lock);
2201 1.129 thorpej if (kn_is_other_marker || kn_is_in_flux) {
2202 1.129 thorpej KQ_FLUX_WAIT(kq);
2203 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
2204 1.129 thorpej } else {
2205 1.129 thorpej /*
2206 1.129 thorpej * Detaching but not in-flux? Someone is
2207 1.129 thorpej * actively trying to finish the job; just
2208 1.129 thorpej * go around and try again.
2209 1.129 thorpej */
2210 1.129 thorpej KASSERT(kn_is_detaching);
2211 1.129 thorpej mutex_spin_exit(&kq->kq_lock);
2212 1.129 thorpej preempt_point();
2213 1.129 thorpej }
2214 1.111 jdolecek goto relock;
2215 1.111 jdolecek }
2216 1.111 jdolecek
2217 1.111 jdolecek TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2218 1.111 jdolecek if (kn == marker) {
2219 1.111 jdolecek /* it's our marker, stop */
2220 1.111 jdolecek KQ_FLUX_WAKEUP(kq);
2221 1.111 jdolecek if (count == maxevents) {
2222 1.110 jdolecek mutex_exit(&fdp->fd_lock);
2223 1.110 jdolecek goto retry;
2224 1.49 ad }
2225 1.111 jdolecek break;
2226 1.110 jdolecek }
2227 1.111 jdolecek KASSERT((kn->kn_status & KN_BUSY) == 0);
2228 1.111 jdolecek
2229 1.110 jdolecek kq_check(kq);
2230 1.115 jdolecek kn->kn_status &= ~KN_QUEUED;
2231 1.110 jdolecek kn->kn_status |= KN_BUSY;
2232 1.110 jdolecek kq_check(kq);
2233 1.110 jdolecek if (kn->kn_status & KN_DISABLED) {
2234 1.115 jdolecek kn->kn_status &= ~KN_BUSY;
2235 1.111 jdolecek kq->kq_count--;
2236 1.110 jdolecek /* don't want disabled events */
2237 1.110 jdolecek continue;
2238 1.110 jdolecek }
2239 1.110 jdolecek if ((kn->kn_flags & EV_ONESHOT) == 0) {
2240 1.110 jdolecek mutex_spin_exit(&kq->kq_lock);
2241 1.110 jdolecek KASSERT(mutex_owned(&fdp->fd_lock));
2242 1.122 thorpej rv = filter_event(kn, 0);
2243 1.110 jdolecek mutex_spin_enter(&kq->kq_lock);
2244 1.115 jdolecek /* Re-poll if note was re-enqueued. */
2245 1.115 jdolecek if ((kn->kn_status & KN_QUEUED) != 0) {
2246 1.115 jdolecek kn->kn_status &= ~KN_BUSY;
2247 1.115 jdolecek /* Re-enqueue raised kq_count, lower it again */
2248 1.115 jdolecek kq->kq_count--;
2249 1.115 jdolecek influx = 1;
2250 1.115 jdolecek continue;
2251 1.115 jdolecek }
2252 1.110 jdolecek if (rv == 0) {
2253 1.110 jdolecek /*
2254 1.129 thorpej * non-ONESHOT event that hasn't triggered
2255 1.129 thorpej * again, so it will remain de-queued.
2256 1.110 jdolecek */
2257 1.115 jdolecek kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2258 1.111 jdolecek kq->kq_count--;
2259 1.111 jdolecek influx = 1;
2260 1.110 jdolecek continue;
2261 1.49 ad }
2262 1.129 thorpej } else {
2263 1.129 thorpej /*
2264 1.129 thorpej * This ONESHOT note is going to be detached
2265 1.129 thorpej * below. Mark the knote as not long for this
2266 1.129 thorpej * world before we release the kq lock so that
2267 1.129 thorpej * no one else will put it in a state of flux.
2268 1.129 thorpej */
2269 1.129 thorpej KNOTE_WILLDETACH(kn);
2270 1.110 jdolecek }
2271 1.110 jdolecek KASSERT(kn->kn_fop != NULL);
2272 1.121 thorpej touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
2273 1.110 jdolecek kn->kn_fop->f_touch != NULL);
2274 1.110 jdolecek /* XXXAD should be got from f_event if !oneshot. */
2275 1.110 jdolecek if (touch) {
2276 1.135 thorpej (void)filter_touch(kn, kevp, EVENT_PROCESS);
2277 1.110 jdolecek } else {
2278 1.110 jdolecek *kevp = kn->kn_kevent;
2279 1.110 jdolecek }
2280 1.110 jdolecek kevp++;
2281 1.110 jdolecek nkev++;
2282 1.111 jdolecek influx = 1;
2283 1.110 jdolecek if (kn->kn_flags & EV_ONESHOT) {
2284 1.110 jdolecek /* delete ONESHOT events after retrieval */
2285 1.115 jdolecek kn->kn_status &= ~KN_BUSY;
2286 1.111 jdolecek kq->kq_count--;
2287 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
2288 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) != 0 &&
2289 1.129 thorpej kn->kn_kevent.udata == curlwp);
2290 1.110 jdolecek mutex_spin_exit(&kq->kq_lock);
2291 1.110 jdolecek knote_detach(kn, fdp, true);
2292 1.110 jdolecek mutex_enter(&fdp->fd_lock);
2293 1.110 jdolecek mutex_spin_enter(&kq->kq_lock);
2294 1.110 jdolecek } else if (kn->kn_flags & EV_CLEAR) {
2295 1.110 jdolecek /* clear state after retrieval */
2296 1.110 jdolecek kn->kn_data = 0;
2297 1.110 jdolecek kn->kn_fflags = 0;
2298 1.110 jdolecek /*
2299 1.110 jdolecek * Manually clear knotes who weren't
2300 1.110 jdolecek * 'touch'ed.
2301 1.110 jdolecek */
2302 1.110 jdolecek if (touch == 0) {
2303 1.49 ad kn->kn_data = 0;
2304 1.49 ad kn->kn_fflags = 0;
2305 1.49 ad }
2306 1.115 jdolecek kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2307 1.111 jdolecek kq->kq_count--;
2308 1.110 jdolecek } else if (kn->kn_flags & EV_DISPATCH) {
2309 1.110 jdolecek kn->kn_status |= KN_DISABLED;
2310 1.115 jdolecek kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2311 1.111 jdolecek kq->kq_count--;
2312 1.110 jdolecek } else {
2313 1.110 jdolecek /* add event back on list */
2314 1.110 jdolecek kq_check(kq);
2315 1.115 jdolecek kn->kn_status |= KN_QUEUED;
2316 1.110 jdolecek kn->kn_status &= ~KN_BUSY;
2317 1.110 jdolecek TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2318 1.110 jdolecek kq_check(kq);
2319 1.110 jdolecek }
2320 1.111 jdolecek
2321 1.110 jdolecek if (nkev == kevcnt) {
2322 1.110 jdolecek /* do copyouts in kevcnt chunks */
2323 1.111 jdolecek influx = 0;
2324 1.111 jdolecek KQ_FLUX_WAKEUP(kq);
2325 1.110 jdolecek mutex_spin_exit(&kq->kq_lock);
2326 1.110 jdolecek mutex_exit(&fdp->fd_lock);
2327 1.110 jdolecek error = (*keops->keo_put_events)
2328 1.110 jdolecek (keops->keo_private,
2329 1.110 jdolecek kevbuf, ulistp, nevents, nkev);
2330 1.110 jdolecek mutex_enter(&fdp->fd_lock);
2331 1.110 jdolecek mutex_spin_enter(&kq->kq_lock);
2332 1.110 jdolecek nevents += nkev;
2333 1.110 jdolecek nkev = 0;
2334 1.110 jdolecek kevp = kevbuf;
2335 1.110 jdolecek }
2336 1.110 jdolecek count--;
2337 1.110 jdolecek if (error != 0 || count == 0) {
2338 1.110 jdolecek /* remove marker */
2339 1.110 jdolecek TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2340 1.110 jdolecek break;
2341 1.1 lukem }
2342 1.1 lukem }
2343 1.111 jdolecek KQ_FLUX_WAKEUP(kq);
2344 1.110 jdolecek mutex_spin_exit(&kq->kq_lock);
2345 1.110 jdolecek mutex_exit(&fdp->fd_lock);
2346 1.110 jdolecek
2347 1.110 jdolecek done:
2348 1.49 ad if (nkev != 0) {
2349 1.3 jdolecek /* copyout remaining events */
2350 1.24 cube error = (*keops->keo_put_events)(keops->keo_private,
2351 1.49 ad kevbuf, ulistp, nevents, nkev);
2352 1.49 ad }
2353 1.3 jdolecek *retval = maxevents - count;
2354 1.3 jdolecek
2355 1.49 ad return error;
2356 1.1 lukem }
2357 1.1 lukem
2358 1.1 lukem /*
2359 1.49 ad * fileops ioctl method for a kqueue descriptor.
2360 1.3 jdolecek *
2361 1.3 jdolecek * Two ioctls are currently supported. They both use struct kfilter_mapping:
2362 1.3 jdolecek * KFILTER_BYNAME find name for filter, and return result in
2363 1.3 jdolecek * name, which is of size len.
2364 1.3 jdolecek * KFILTER_BYFILTER find filter for name. len is ignored.
2365 1.3 jdolecek */
2366 1.1 lukem /*ARGSUSED*/
2367 1.1 lukem static int
2368 1.49 ad kqueue_ioctl(file_t *fp, u_long com, void *data)
2369 1.1 lukem {
2370 1.3 jdolecek struct kfilter_mapping *km;
2371 1.3 jdolecek const struct kfilter *kfilter;
2372 1.3 jdolecek char *name;
2373 1.3 jdolecek int error;
2374 1.3 jdolecek
2375 1.49 ad km = data;
2376 1.3 jdolecek error = 0;
2377 1.49 ad name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
2378 1.3 jdolecek
2379 1.3 jdolecek switch (com) {
2380 1.3 jdolecek case KFILTER_BYFILTER: /* convert filter -> name */
2381 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
2382 1.3 jdolecek kfilter = kfilter_byfilter(km->filter);
2383 1.49 ad if (kfilter != NULL) {
2384 1.49 ad strlcpy(name, kfilter->name, KFILTER_MAXNAME);
2385 1.49 ad rw_exit(&kqueue_filter_lock);
2386 1.49 ad error = copyoutstr(name, km->name, km->len, NULL);
2387 1.49 ad } else {
2388 1.49 ad rw_exit(&kqueue_filter_lock);
2389 1.3 jdolecek error = ENOENT;
2390 1.49 ad }
2391 1.3 jdolecek break;
2392 1.3 jdolecek
2393 1.3 jdolecek case KFILTER_BYNAME: /* convert name -> filter */
2394 1.3 jdolecek error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
2395 1.3 jdolecek if (error) {
2396 1.3 jdolecek break;
2397 1.3 jdolecek }
2398 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
2399 1.3 jdolecek kfilter = kfilter_byname(name);
2400 1.3 jdolecek if (kfilter != NULL)
2401 1.3 jdolecek km->filter = kfilter->filter;
2402 1.3 jdolecek else
2403 1.3 jdolecek error = ENOENT;
2404 1.49 ad rw_exit(&kqueue_filter_lock);
2405 1.3 jdolecek break;
2406 1.3 jdolecek
2407 1.3 jdolecek default:
2408 1.3 jdolecek error = ENOTTY;
2409 1.49 ad break;
2410 1.3 jdolecek
2411 1.3 jdolecek }
2412 1.49 ad kmem_free(name, KFILTER_MAXNAME);
2413 1.3 jdolecek return (error);
2414 1.3 jdolecek }
2415 1.3 jdolecek
2416 1.3 jdolecek /*
2417 1.49 ad * fileops fcntl method for a kqueue descriptor.
2418 1.3 jdolecek */
2419 1.3 jdolecek static int
2420 1.49 ad kqueue_fcntl(file_t *fp, u_int com, void *data)
2421 1.3 jdolecek {
2422 1.3 jdolecek
2423 1.1 lukem return (ENOTTY);
2424 1.1 lukem }
2425 1.1 lukem
2426 1.3 jdolecek /*
2427 1.49 ad * fileops poll method for a kqueue descriptor.
2428 1.3 jdolecek * Determine if kqueue has events pending.
2429 1.3 jdolecek */
2430 1.1 lukem static int
2431 1.49 ad kqueue_poll(file_t *fp, int events)
2432 1.1 lukem {
2433 1.3 jdolecek struct kqueue *kq;
2434 1.3 jdolecek int revents;
2435 1.3 jdolecek
2436 1.82 matt kq = fp->f_kqueue;
2437 1.49 ad
2438 1.3 jdolecek revents = 0;
2439 1.3 jdolecek if (events & (POLLIN | POLLRDNORM)) {
2440 1.49 ad mutex_spin_enter(&kq->kq_lock);
2441 1.118 jdolecek if (KQ_COUNT(kq) != 0) {
2442 1.3 jdolecek revents |= events & (POLLIN | POLLRDNORM);
2443 1.1 lukem } else {
2444 1.49 ad selrecord(curlwp, &kq->kq_sel);
2445 1.1 lukem }
2446 1.52 yamt kq_check(kq);
2447 1.49 ad mutex_spin_exit(&kq->kq_lock);
2448 1.1 lukem }
2449 1.49 ad
2450 1.49 ad return revents;
2451 1.1 lukem }
2452 1.1 lukem
2453 1.3 jdolecek /*
2454 1.49 ad * fileops stat method for a kqueue descriptor.
2455 1.3 jdolecek * Returns dummy info, with st_size being number of events pending.
2456 1.3 jdolecek */
2457 1.1 lukem static int
2458 1.49 ad kqueue_stat(file_t *fp, struct stat *st)
2459 1.1 lukem {
2460 1.49 ad struct kqueue *kq;
2461 1.49 ad
2462 1.82 matt kq = fp->f_kqueue;
2463 1.1 lukem
2464 1.49 ad memset(st, 0, sizeof(*st));
2465 1.118 jdolecek st->st_size = KQ_COUNT(kq);
2466 1.1 lukem st->st_blksize = sizeof(struct kevent);
2467 1.128 thorpej st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
2468 1.128 thorpej st->st_blocks = 1;
2469 1.128 thorpej st->st_uid = kauth_cred_geteuid(fp->f_cred);
2470 1.128 thorpej st->st_gid = kauth_cred_getegid(fp->f_cred);
2471 1.49 ad
2472 1.49 ad return 0;
2473 1.49 ad }
2474 1.49 ad
2475 1.49 ad static void
2476 1.49 ad kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
2477 1.49 ad {
2478 1.49 ad struct knote *kn;
2479 1.49 ad filedesc_t *fdp;
2480 1.49 ad
2481 1.49 ad fdp = kq->kq_fdp;
2482 1.49 ad
2483 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
2484 1.49 ad
2485 1.129 thorpej again:
2486 1.49 ad for (kn = SLIST_FIRST(list); kn != NULL;) {
2487 1.49 ad if (kq != kn->kn_kq) {
2488 1.49 ad kn = SLIST_NEXT(kn, kn_link);
2489 1.49 ad continue;
2490 1.49 ad }
2491 1.129 thorpej if (knote_detach_quiesce(kn)) {
2492 1.129 thorpej mutex_enter(&fdp->fd_lock);
2493 1.129 thorpej goto again;
2494 1.129 thorpej }
2495 1.49 ad knote_detach(kn, fdp, true);
2496 1.49 ad mutex_enter(&fdp->fd_lock);
2497 1.49 ad kn = SLIST_FIRST(list);
2498 1.49 ad }
2499 1.1 lukem }
2500 1.1 lukem
2501 1.3 jdolecek /*
2502 1.49 ad * fileops close method for a kqueue descriptor.
2503 1.3 jdolecek */
2504 1.1 lukem static int
2505 1.49 ad kqueue_close(file_t *fp)
2506 1.1 lukem {
2507 1.49 ad struct kqueue *kq;
2508 1.49 ad filedesc_t *fdp;
2509 1.49 ad fdfile_t *ff;
2510 1.49 ad int i;
2511 1.49 ad
2512 1.82 matt kq = fp->f_kqueue;
2513 1.82 matt fp->f_kqueue = NULL;
2514 1.79 christos fp->f_type = 0;
2515 1.49 ad fdp = curlwp->l_fd;
2516 1.1 lukem
2517 1.129 thorpej KASSERT(kq->kq_fdp == fdp);
2518 1.129 thorpej
2519 1.49 ad mutex_enter(&fdp->fd_lock);
2520 1.129 thorpej
2521 1.129 thorpej /*
2522 1.129 thorpej * We're doing to drop the fd_lock multiple times while
2523 1.129 thorpej * we detach knotes. During this time, attempts to register
2524 1.129 thorpej * knotes via the back door (e.g. knote_proc_fork_track())
2525 1.129 thorpej * need to fail, lest they sneak in to attach a knote after
2526 1.129 thorpej * we've already drained the list it's destined for.
2527 1.129 thorpej *
2528 1.129 thorpej * We must aquire kq_lock here to set KQ_CLOSING (to serialize
2529 1.129 thorpej * with other code paths that modify kq_count without holding
2530 1.129 thorpej * the fd_lock), but once this bit is set, it's only safe to
2531 1.129 thorpej * test it while holding the fd_lock, and holding kq_lock while
2532 1.129 thorpej * doing so is not necessary.
2533 1.129 thorpej */
2534 1.129 thorpej mutex_enter(&kq->kq_lock);
2535 1.129 thorpej kq->kq_count |= KQ_CLOSING;
2536 1.129 thorpej mutex_exit(&kq->kq_lock);
2537 1.129 thorpej
2538 1.49 ad for (i = 0; i <= fdp->fd_lastkqfile; i++) {
2539 1.65 ad if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
2540 1.49 ad continue;
2541 1.49 ad kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
2542 1.1 lukem }
2543 1.1 lukem if (fdp->fd_knhashmask != 0) {
2544 1.1 lukem for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
2545 1.49 ad kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
2546 1.1 lukem }
2547 1.1 lukem }
2548 1.129 thorpej
2549 1.49 ad mutex_exit(&fdp->fd_lock);
2550 1.49 ad
2551 1.129 thorpej #if defined(DEBUG)
2552 1.129 thorpej mutex_enter(&kq->kq_lock);
2553 1.129 thorpej kq_check(kq);
2554 1.129 thorpej mutex_exit(&kq->kq_lock);
2555 1.129 thorpej #endif /* DEBUG */
2556 1.129 thorpej KASSERT(TAILQ_EMPTY(&kq->kq_head));
2557 1.118 jdolecek KASSERT(KQ_COUNT(kq) == 0);
2558 1.49 ad mutex_destroy(&kq->kq_lock);
2559 1.49 ad cv_destroy(&kq->kq_cv);
2560 1.48 rmind seldestroy(&kq->kq_sel);
2561 1.49 ad kmem_free(kq, sizeof(*kq));
2562 1.1 lukem
2563 1.1 lukem return (0);
2564 1.1 lukem }
2565 1.1 lukem
2566 1.3 jdolecek /*
2567 1.3 jdolecek * struct fileops kqfilter method for a kqueue descriptor.
2568 1.3 jdolecek * Event triggered when monitored kqueue changes.
2569 1.3 jdolecek */
2570 1.3 jdolecek static int
2571 1.49 ad kqueue_kqfilter(file_t *fp, struct knote *kn)
2572 1.3 jdolecek {
2573 1.3 jdolecek struct kqueue *kq;
2574 1.49 ad
2575 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
2576 1.49 ad
2577 1.49 ad KASSERT(fp == kn->kn_obj);
2578 1.3 jdolecek
2579 1.3 jdolecek if (kn->kn_filter != EVFILT_READ)
2580 1.126 thorpej return EINVAL;
2581 1.49 ad
2582 1.3 jdolecek kn->kn_fop = &kqread_filtops;
2583 1.49 ad mutex_enter(&kq->kq_lock);
2584 1.109 thorpej selrecord_knote(&kq->kq_sel, kn);
2585 1.49 ad mutex_exit(&kq->kq_lock);
2586 1.49 ad
2587 1.49 ad return 0;
2588 1.3 jdolecek }
2589 1.3 jdolecek
2590 1.3 jdolecek
2591 1.3 jdolecek /*
2592 1.49 ad * Walk down a list of knotes, activating them if their event has
2593 1.49 ad * triggered. The caller's object lock (e.g. device driver lock)
2594 1.49 ad * must be held.
2595 1.1 lukem */
2596 1.1 lukem void
2597 1.1 lukem knote(struct klist *list, long hint)
2598 1.1 lukem {
2599 1.71 drochner struct knote *kn, *tmpkn;
2600 1.1 lukem
2601 1.71 drochner SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
2602 1.127 thorpej if (filter_event(kn, hint)) {
2603 1.49 ad knote_activate(kn);
2604 1.127 thorpej }
2605 1.49 ad }
2606 1.1 lukem }
2607 1.1 lukem
2608 1.1 lukem /*
2609 1.49 ad * Remove all knotes referencing a specified fd
2610 1.1 lukem */
2611 1.1 lukem void
2612 1.49 ad knote_fdclose(int fd)
2613 1.1 lukem {
2614 1.49 ad struct klist *list;
2615 1.1 lukem struct knote *kn;
2616 1.49 ad filedesc_t *fdp;
2617 1.1 lukem
2618 1.129 thorpej again:
2619 1.49 ad fdp = curlwp->l_fd;
2620 1.106 riastrad mutex_enter(&fdp->fd_lock);
2621 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
2622 1.1 lukem while ((kn = SLIST_FIRST(list)) != NULL) {
2623 1.129 thorpej if (knote_detach_quiesce(kn)) {
2624 1.129 thorpej goto again;
2625 1.129 thorpej }
2626 1.49 ad knote_detach(kn, fdp, true);
2627 1.49 ad mutex_enter(&fdp->fd_lock);
2628 1.1 lukem }
2629 1.49 ad mutex_exit(&fdp->fd_lock);
2630 1.1 lukem }
2631 1.1 lukem
2632 1.1 lukem /*
2633 1.49 ad * Drop knote. Called with fdp->fd_lock held, and will drop before
2634 1.49 ad * returning.
2635 1.3 jdolecek */
2636 1.1 lukem static void
2637 1.49 ad knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
2638 1.1 lukem {
2639 1.49 ad struct klist *list;
2640 1.53 ad struct kqueue *kq;
2641 1.53 ad
2642 1.53 ad kq = kn->kn_kq;
2643 1.1 lukem
2644 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
2645 1.129 thorpej KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
2646 1.129 thorpej KASSERT(kn->kn_fop != NULL);
2647 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
2648 1.3 jdolecek
2649 1.53 ad /* Remove from monitored object. */
2650 1.49 ad if (dofop) {
2651 1.122 thorpej filter_detach(kn);
2652 1.1 lukem }
2653 1.3 jdolecek
2654 1.53 ad /* Remove from descriptor table. */
2655 1.121 thorpej if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2656 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
2657 1.1 lukem else
2658 1.1 lukem list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2659 1.1 lukem
2660 1.1 lukem SLIST_REMOVE(list, kn, knote, kn_link);
2661 1.53 ad
2662 1.53 ad /* Remove from kqueue. */
2663 1.85 christos again:
2664 1.53 ad mutex_spin_enter(&kq->kq_lock);
2665 1.129 thorpej KASSERT(kn_in_flux(kn) == false);
2666 1.53 ad if ((kn->kn_status & KN_QUEUED) != 0) {
2667 1.53 ad kq_check(kq);
2668 1.129 thorpej KASSERT(KQ_COUNT(kq) != 0);
2669 1.85 christos kq->kq_count--;
2670 1.53 ad TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2671 1.53 ad kn->kn_status &= ~KN_QUEUED;
2672 1.53 ad kq_check(kq);
2673 1.85 christos } else if (kn->kn_status & KN_BUSY) {
2674 1.85 christos mutex_spin_exit(&kq->kq_lock);
2675 1.85 christos goto again;
2676 1.53 ad }
2677 1.53 ad mutex_spin_exit(&kq->kq_lock);
2678 1.53 ad
2679 1.49 ad mutex_exit(&fdp->fd_lock);
2680 1.121 thorpej if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2681 1.49 ad fd_putfile(kn->kn_id);
2682 1.49 ad atomic_dec_uint(&kn->kn_kfilter->refcnt);
2683 1.49 ad kmem_free(kn, sizeof(*kn));
2684 1.1 lukem }
2685 1.1 lukem
2686 1.3 jdolecek /*
2687 1.3 jdolecek * Queue new event for knote.
2688 1.3 jdolecek */
2689 1.1 lukem static void
2690 1.1 lukem knote_enqueue(struct knote *kn)
2691 1.1 lukem {
2692 1.49 ad struct kqueue *kq;
2693 1.49 ad
2694 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
2695 1.1 lukem
2696 1.3 jdolecek kq = kn->kn_kq;
2697 1.1 lukem
2698 1.49 ad mutex_spin_enter(&kq->kq_lock);
2699 1.129 thorpej if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2700 1.129 thorpej /* Don't bother enqueueing a dying knote. */
2701 1.129 thorpej goto out;
2702 1.129 thorpej }
2703 1.49 ad if ((kn->kn_status & KN_DISABLED) != 0) {
2704 1.49 ad kn->kn_status &= ~KN_DISABLED;
2705 1.49 ad }
2706 1.49 ad if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
2707 1.52 yamt kq_check(kq);
2708 1.85 christos kn->kn_status |= KN_QUEUED;
2709 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2710 1.129 thorpej KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2711 1.49 ad kq->kq_count++;
2712 1.52 yamt kq_check(kq);
2713 1.49 ad cv_broadcast(&kq->kq_cv);
2714 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2715 1.49 ad }
2716 1.129 thorpej out:
2717 1.49 ad mutex_spin_exit(&kq->kq_lock);
2718 1.1 lukem }
2719 1.49 ad /*
2720 1.49 ad * Queue new event for knote.
2721 1.49 ad */
2722 1.49 ad static void
2723 1.133 thorpej knote_activate_locked(struct knote *kn)
2724 1.49 ad {
2725 1.49 ad struct kqueue *kq;
2726 1.49 ad
2727 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
2728 1.1 lukem
2729 1.3 jdolecek kq = kn->kn_kq;
2730 1.12 pk
2731 1.129 thorpej if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2732 1.129 thorpej /* Don't bother enqueueing a dying knote. */
2733 1.133 thorpej return;
2734 1.129 thorpej }
2735 1.49 ad kn->kn_status |= KN_ACTIVE;
2736 1.49 ad if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
2737 1.52 yamt kq_check(kq);
2738 1.85 christos kn->kn_status |= KN_QUEUED;
2739 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2740 1.129 thorpej KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2741 1.49 ad kq->kq_count++;
2742 1.52 yamt kq_check(kq);
2743 1.49 ad cv_broadcast(&kq->kq_cv);
2744 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2745 1.49 ad }
2746 1.133 thorpej }
2747 1.133 thorpej
2748 1.133 thorpej static void
2749 1.133 thorpej knote_activate(struct knote *kn)
2750 1.133 thorpej {
2751 1.133 thorpej struct kqueue *kq = kn->kn_kq;
2752 1.133 thorpej
2753 1.133 thorpej mutex_spin_enter(&kq->kq_lock);
2754 1.133 thorpej knote_activate_locked(kn);
2755 1.49 ad mutex_spin_exit(&kq->kq_lock);
2756 1.1 lukem }
2757 1.131 thorpej
2758 1.136 thorpej static void
2759 1.136 thorpej knote_deactivate_locked(struct knote *kn)
2760 1.136 thorpej {
2761 1.136 thorpej struct kqueue *kq = kn->kn_kq;
2762 1.136 thorpej
2763 1.136 thorpej if (kn->kn_status & KN_QUEUED) {
2764 1.136 thorpej kq_check(kq);
2765 1.136 thorpej kn->kn_status &= ~KN_QUEUED;
2766 1.136 thorpej TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2767 1.136 thorpej KASSERT(KQ_COUNT(kq) > 0);
2768 1.136 thorpej kq->kq_count--;
2769 1.136 thorpej kq_check(kq);
2770 1.136 thorpej }
2771 1.136 thorpej kn->kn_status &= ~KN_ACTIVE;
2772 1.136 thorpej }
2773 1.136 thorpej
2774 1.131 thorpej /*
2775 1.131 thorpej * Set EV_EOF on the specified knote. Also allows additional
2776 1.131 thorpej * EV_* flags to be set (e.g. EV_ONESHOT).
2777 1.131 thorpej */
2778 1.131 thorpej void
2779 1.131 thorpej knote_set_eof(struct knote *kn, uint32_t flags)
2780 1.131 thorpej {
2781 1.131 thorpej struct kqueue *kq = kn->kn_kq;
2782 1.131 thorpej
2783 1.131 thorpej mutex_spin_enter(&kq->kq_lock);
2784 1.131 thorpej kn->kn_flags |= EV_EOF | flags;
2785 1.131 thorpej mutex_spin_exit(&kq->kq_lock);
2786 1.131 thorpej }
2787 1.131 thorpej
2788 1.131 thorpej /*
2789 1.131 thorpej * Clear EV_EOF on the specified knote.
2790 1.131 thorpej */
2791 1.131 thorpej void
2792 1.131 thorpej knote_clear_eof(struct knote *kn)
2793 1.131 thorpej {
2794 1.131 thorpej struct kqueue *kq = kn->kn_kq;
2795 1.131 thorpej
2796 1.131 thorpej mutex_spin_enter(&kq->kq_lock);
2797 1.131 thorpej kn->kn_flags &= ~EV_EOF;
2798 1.131 thorpej mutex_spin_exit(&kq->kq_lock);
2799 1.131 thorpej }
2800