Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.144
      1  1.144   thorpej /*	$NetBSD: kern_event.c,v 1.144 2022/07/19 00:46:00 thorpej Exp $	*/
      2   1.49        ad 
      3   1.49        ad /*-
      4  1.129   thorpej  * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
      5   1.49        ad  * All rights reserved.
      6   1.49        ad  *
      7   1.64        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.64        ad  * by Andrew Doran.
      9   1.64        ad  *
     10   1.49        ad  * Redistribution and use in source and binary forms, with or without
     11   1.49        ad  * modification, are permitted provided that the following conditions
     12   1.49        ad  * are met:
     13   1.49        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.49        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.49        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.49        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.49        ad  *    documentation and/or other materials provided with the distribution.
     18   1.49        ad  *
     19   1.49        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.49        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.49        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.49        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.49        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.49        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.49        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.49        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.49        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.49        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.49        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.49        ad  */
     31   1.28    kardel 
     32    1.1     lukem /*-
     33    1.1     lukem  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
     34  1.108  christos  * Copyright (c) 2009 Apple, Inc
     35    1.1     lukem  * All rights reserved.
     36    1.1     lukem  *
     37    1.1     lukem  * Redistribution and use in source and binary forms, with or without
     38    1.1     lukem  * modification, are permitted provided that the following conditions
     39    1.1     lukem  * are met:
     40    1.1     lukem  * 1. Redistributions of source code must retain the above copyright
     41    1.1     lukem  *    notice, this list of conditions and the following disclaimer.
     42    1.1     lukem  * 2. Redistributions in binary form must reproduce the above copyright
     43    1.1     lukem  *    notice, this list of conditions and the following disclaimer in the
     44    1.1     lukem  *    documentation and/or other materials provided with the distribution.
     45    1.1     lukem  *
     46    1.1     lukem  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     47    1.1     lukem  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     48    1.1     lukem  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     49    1.1     lukem  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     50    1.1     lukem  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     51    1.1     lukem  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     52    1.1     lukem  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     53    1.1     lukem  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     54    1.1     lukem  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     55    1.1     lukem  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     56    1.1     lukem  * SUCH DAMAGE.
     57    1.1     lukem  *
     58   1.49        ad  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
     59    1.1     lukem  */
     60   1.14  jdolecek 
     61  1.130   thorpej #ifdef _KERNEL_OPT
     62  1.129   thorpej #include "opt_ddb.h"
     63  1.130   thorpej #endif /* _KERNEL_OPT */
     64  1.129   thorpej 
     65   1.14  jdolecek #include <sys/cdefs.h>
     66  1.144   thorpej __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.144 2022/07/19 00:46:00 thorpej Exp $");
     67    1.1     lukem 
     68    1.1     lukem #include <sys/param.h>
     69    1.1     lukem #include <sys/systm.h>
     70    1.1     lukem #include <sys/kernel.h>
     71   1.86  christos #include <sys/wait.h>
     72    1.1     lukem #include <sys/proc.h>
     73    1.1     lukem #include <sys/file.h>
     74    1.3  jdolecek #include <sys/select.h>
     75    1.1     lukem #include <sys/queue.h>
     76    1.1     lukem #include <sys/event.h>
     77    1.1     lukem #include <sys/eventvar.h>
     78    1.1     lukem #include <sys/poll.h>
     79   1.49        ad #include <sys/kmem.h>
     80    1.1     lukem #include <sys/stat.h>
     81    1.3  jdolecek #include <sys/filedesc.h>
     82    1.3  jdolecek #include <sys/syscallargs.h>
     83   1.27      elad #include <sys/kauth.h>
     84   1.40        ad #include <sys/conf.h>
     85   1.49        ad #include <sys/atomic.h>
     86    1.1     lukem 
     87   1.49        ad static int	kqueue_scan(file_t *, size_t, struct kevent *,
     88   1.49        ad 			    const struct timespec *, register_t *,
     89   1.49        ad 			    const struct kevent_ops *, struct kevent *,
     90   1.49        ad 			    size_t);
     91   1.49        ad static int	kqueue_ioctl(file_t *, u_long, void *);
     92   1.49        ad static int	kqueue_fcntl(file_t *, u_int, void *);
     93   1.49        ad static int	kqueue_poll(file_t *, int);
     94   1.49        ad static int	kqueue_kqfilter(file_t *, struct knote *);
     95   1.49        ad static int	kqueue_stat(file_t *, struct stat *);
     96   1.49        ad static int	kqueue_close(file_t *);
     97  1.118  jdolecek static void	kqueue_restart(file_t *);
     98   1.49        ad static int	kqueue_register(struct kqueue *, struct kevent *);
     99   1.49        ad static void	kqueue_doclose(struct kqueue *, struct klist *, int);
    100   1.49        ad 
    101   1.49        ad static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
    102   1.49        ad static void	knote_enqueue(struct knote *);
    103   1.49        ad static void	knote_activate(struct knote *);
    104  1.133   thorpej static void	knote_activate_locked(struct knote *);
    105  1.136   thorpej static void	knote_deactivate_locked(struct knote *);
    106   1.49        ad 
    107   1.49        ad static void	filt_kqdetach(struct knote *);
    108   1.49        ad static int	filt_kqueue(struct knote *, long hint);
    109   1.49        ad static int	filt_procattach(struct knote *);
    110   1.49        ad static void	filt_procdetach(struct knote *);
    111   1.49        ad static int	filt_proc(struct knote *, long hint);
    112   1.49        ad static int	filt_fileattach(struct knote *);
    113   1.49        ad static void	filt_timerexpire(void *x);
    114   1.49        ad static int	filt_timerattach(struct knote *);
    115   1.49        ad static void	filt_timerdetach(struct knote *);
    116   1.49        ad static int	filt_timer(struct knote *, long hint);
    117  1.136   thorpej static int	filt_timertouch(struct knote *, struct kevent *, long type);
    118  1.108  christos static int	filt_userattach(struct knote *);
    119  1.108  christos static void	filt_userdetach(struct knote *);
    120  1.108  christos static int	filt_user(struct knote *, long hint);
    121  1.135   thorpej static int	filt_usertouch(struct knote *, struct kevent *, long type);
    122    1.1     lukem 
    123  1.144   thorpej /*
    124  1.144   thorpej  * Private knote state that should never be exposed outside
    125  1.144   thorpej  * of kern_event.c
    126  1.144   thorpej  *
    127  1.144   thorpej  * Field locking:
    128  1.144   thorpej  *
    129  1.144   thorpej  * q	kn_kq->kq_lock
    130  1.144   thorpej  */
    131  1.144   thorpej struct knote_impl {
    132  1.144   thorpej 	struct knote	ki_knote;
    133  1.144   thorpej 	unsigned int	ki_influx;	/* q: in-flux counter */
    134  1.144   thorpej };
    135  1.144   thorpej 
    136  1.144   thorpej #define	KIMPL_TO_KNOTE(kip)	(&(kip)->ki_knote)
    137  1.144   thorpej #define	KNOTE_TO_KIMPL(knp)	container_of((knp), struct knote_impl, ki_knote)
    138  1.144   thorpej 
    139  1.144   thorpej static inline struct knote *
    140  1.144   thorpej knote_alloc(bool sleepok)
    141  1.144   thorpej {
    142  1.144   thorpej 	struct knote_impl *ki;
    143  1.144   thorpej 
    144  1.144   thorpej 	ki = kmem_zalloc(sizeof(*ki), sleepok ? KM_SLEEP : KM_NOSLEEP);
    145  1.144   thorpej 
    146  1.144   thorpej 	return KIMPL_TO_KNOTE(ki);
    147  1.144   thorpej }
    148  1.144   thorpej 
    149  1.144   thorpej static inline void
    150  1.144   thorpej knote_free(struct knote *kn)
    151  1.144   thorpej {
    152  1.144   thorpej 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    153  1.144   thorpej 
    154  1.144   thorpej 	kmem_free(ki, sizeof(*ki));
    155  1.144   thorpej }
    156  1.144   thorpej 
    157   1.21  christos static const struct fileops kqueueops = {
    158  1.101  christos 	.fo_name = "kqueue",
    159   1.64        ad 	.fo_read = (void *)enxio,
    160   1.64        ad 	.fo_write = (void *)enxio,
    161   1.64        ad 	.fo_ioctl = kqueue_ioctl,
    162   1.64        ad 	.fo_fcntl = kqueue_fcntl,
    163   1.64        ad 	.fo_poll = kqueue_poll,
    164   1.64        ad 	.fo_stat = kqueue_stat,
    165   1.64        ad 	.fo_close = kqueue_close,
    166   1.64        ad 	.fo_kqfilter = kqueue_kqfilter,
    167  1.118  jdolecek 	.fo_restart = kqueue_restart,
    168    1.1     lukem };
    169    1.1     lukem 
    170   1.96      maya static const struct filterops kqread_filtops = {
    171  1.123   thorpej 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
    172   1.96      maya 	.f_attach = NULL,
    173   1.96      maya 	.f_detach = filt_kqdetach,
    174   1.96      maya 	.f_event = filt_kqueue,
    175   1.96      maya };
    176   1.96      maya 
    177   1.96      maya static const struct filterops proc_filtops = {
    178  1.129   thorpej 	.f_flags = FILTEROP_MPSAFE,
    179   1.96      maya 	.f_attach = filt_procattach,
    180   1.96      maya 	.f_detach = filt_procdetach,
    181   1.96      maya 	.f_event = filt_proc,
    182   1.96      maya };
    183   1.96      maya 
    184  1.122   thorpej /*
    185  1.122   thorpej  * file_filtops is not marked MPSAFE because it's going to call
    186  1.122   thorpej  * fileops::fo_kqfilter(), which might not be.  That function,
    187  1.122   thorpej  * however, will override the knote's filterops, and thus will
    188  1.122   thorpej  * inherit the MPSAFE-ness of the back-end at that time.
    189  1.122   thorpej  */
    190   1.96      maya static const struct filterops file_filtops = {
    191  1.121   thorpej 	.f_flags = FILTEROP_ISFD,
    192   1.96      maya 	.f_attach = filt_fileattach,
    193   1.96      maya 	.f_detach = NULL,
    194   1.96      maya 	.f_event = NULL,
    195   1.96      maya };
    196   1.96      maya 
    197   1.96      maya static const struct filterops timer_filtops = {
    198  1.125   thorpej 	.f_flags = FILTEROP_MPSAFE,
    199   1.96      maya 	.f_attach = filt_timerattach,
    200   1.96      maya 	.f_detach = filt_timerdetach,
    201   1.96      maya 	.f_event = filt_timer,
    202  1.136   thorpej 	.f_touch = filt_timertouch,
    203   1.96      maya };
    204    1.1     lukem 
    205  1.108  christos static const struct filterops user_filtops = {
    206  1.123   thorpej 	.f_flags = FILTEROP_MPSAFE,
    207  1.108  christos 	.f_attach = filt_userattach,
    208  1.108  christos 	.f_detach = filt_userdetach,
    209  1.108  christos 	.f_event = filt_user,
    210  1.108  christos 	.f_touch = filt_usertouch,
    211  1.108  christos };
    212  1.108  christos 
    213   1.49        ad static u_int	kq_ncallouts = 0;
    214    1.8  jdolecek static int	kq_calloutmax = (4 * 1024);
    215    1.7   thorpej 
    216    1.1     lukem #define	KN_HASHSIZE		64		/* XXX should be tunable */
    217    1.3  jdolecek #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    218    1.1     lukem 
    219  1.124   thorpej extern const struct filterops fs_filtops;	/* vfs_syscalls.c */
    220  1.124   thorpej extern const struct filterops sig_filtops;	/* kern_sig.c */
    221    1.1     lukem 
    222    1.1     lukem /*
    223    1.1     lukem  * Table for for all system-defined filters.
    224    1.3  jdolecek  * These should be listed in the numeric order of the EVFILT_* defines.
    225    1.3  jdolecek  * If filtops is NULL, the filter isn't implemented in NetBSD.
    226    1.3  jdolecek  * End of list is when name is NULL.
    227   1.93  riastrad  *
    228   1.49        ad  * Note that 'refcnt' is meaningless for built-in filters.
    229    1.1     lukem  */
    230    1.3  jdolecek struct kfilter {
    231   1.49        ad 	const char	*name;		/* name of filter */
    232   1.49        ad 	uint32_t	filter;		/* id of filter */
    233   1.49        ad 	unsigned	refcnt;		/* reference count */
    234    1.3  jdolecek 	const struct filterops *filtops;/* operations for filter */
    235   1.49        ad 	size_t		namelen;	/* length of name string */
    236    1.3  jdolecek };
    237    1.3  jdolecek 
    238   1.49        ad /* System defined filters */
    239   1.49        ad static struct kfilter sys_kfilters[] = {
    240   1.49        ad 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
    241   1.49        ad 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
    242   1.49        ad 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
    243   1.49        ad 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
    244   1.49        ad 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
    245   1.49        ad 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
    246   1.49        ad 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
    247  1.102  christos 	{ "EVFILT_FS",		EVFILT_FS,	0, &fs_filtops, 0 },
    248  1.108  christos 	{ "EVFILT_USER",	EVFILT_USER,	0, &user_filtops, 0 },
    249  1.137   thorpej 	{ "EVFILT_EMPTY",	EVFILT_EMPTY,	0, &file_filtops, 0 },
    250   1.49        ad 	{ NULL,			0,		0, NULL, 0 },
    251    1.1     lukem };
    252    1.1     lukem 
    253   1.49        ad /* User defined kfilters */
    254    1.3  jdolecek static struct kfilter	*user_kfilters;		/* array */
    255    1.3  jdolecek static int		user_kfilterc;		/* current offset */
    256    1.3  jdolecek static int		user_kfiltermaxc;	/* max size so far */
    257   1.49        ad static size_t		user_kfiltersz;		/* size of allocated memory */
    258   1.49        ad 
    259   1.95  riastrad /*
    260   1.95  riastrad  * Global Locks.
    261   1.95  riastrad  *
    262   1.95  riastrad  * Lock order:
    263   1.95  riastrad  *
    264   1.95  riastrad  *	kqueue_filter_lock
    265   1.95  riastrad  *	-> kn_kq->kq_fdp->fd_lock
    266  1.125   thorpej  *	-> object lock (e.g., device driver lock, &c.)
    267   1.95  riastrad  *	-> kn_kq->kq_lock
    268   1.95  riastrad  *
    269   1.95  riastrad  * Locking rules:
    270   1.95  riastrad  *
    271   1.95  riastrad  *	f_attach: fdp->fd_lock, KERNEL_LOCK
    272   1.95  riastrad  *	f_detach: fdp->fd_lock, KERNEL_LOCK
    273   1.95  riastrad  *	f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
    274   1.95  riastrad  *	f_event via knote: whatever caller guarantees
    275   1.95  riastrad  *		Typically,	f_event(NOTE_SUBMIT) via knote: object lock
    276   1.95  riastrad  *				f_event(!NOTE_SUBMIT) via knote: nothing,
    277   1.95  riastrad  *					acquires/releases object lock inside.
    278  1.129   thorpej  *
    279  1.129   thorpej  * Locking rules when detaching knotes:
    280  1.129   thorpej  *
    281  1.129   thorpej  * There are some situations where knote submission may require dropping
    282  1.129   thorpej  * locks (see knote_proc_fork()).  In order to support this, it's possible
    283  1.129   thorpej  * to mark a knote as being 'in-flux'.  Such a knote is guaranteed not to
    284  1.129   thorpej  * be detached while it remains in-flux.  Because it will not be detached,
    285  1.129   thorpej  * locks can be dropped so e.g. memory can be allocated, locks on other
    286  1.129   thorpej  * data structures can be acquired, etc.  During this time, any attempt to
    287  1.129   thorpej  * detach an in-flux knote must wait until the knote is no longer in-flux.
    288  1.129   thorpej  * When this happens, the knote is marked for death (KN_WILLDETACH) and the
    289  1.129   thorpej  * LWP who gets to finish the detach operation is recorded in the knote's
    290  1.129   thorpej  * 'udata' field (which is no longer required for its original purpose once
    291  1.129   thorpej  * a knote is so marked).  Code paths that lead to knote_detach() must ensure
    292  1.129   thorpej  * that their LWP is the one tasked with its final demise after waiting for
    293  1.129   thorpej  * the in-flux status of the knote to clear.  Note that once a knote is
    294  1.129   thorpej  * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
    295  1.129   thorpej  *
    296  1.129   thorpej  * Once the special circumstances have been handled, the locks are re-
    297  1.129   thorpej  * acquired in the proper order (object lock -> kq_lock), the knote taken
    298  1.129   thorpej  * out of flux, and any waiters are notified.  Because waiters must have
    299  1.129   thorpej  * also dropped *their* locks in order to safely block, they must re-
    300  1.129   thorpej  * validate all of their assumptions; see knote_detach_quiesce().  See also
    301  1.129   thorpej  * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
    302  1.129   thorpej  * cases.
    303  1.129   thorpej  *
    304  1.129   thorpej  * When kqueue_scan() encounters an in-flux knote, the situation is
    305  1.129   thorpej  * treated like another LWP's list marker.
    306  1.129   thorpej  *
    307  1.129   thorpej  * LISTEN WELL: It is important to not hold knotes in flux for an
    308  1.129   thorpej  * extended period of time! In-flux knotes effectively block any
    309  1.129   thorpej  * progress of the kqueue_scan() operation.  Any code paths that place
    310  1.129   thorpej  * knotes in-flux should be careful to not block for indefinite periods
    311  1.129   thorpej  * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
    312  1.129   thorpej  * KM_SLEEP is not).
    313   1.95  riastrad  */
    314   1.49        ad static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
    315   1.49        ad 
    316  1.129   thorpej #define	KQ_FLUX_WAIT(kq)	(void)cv_wait(&kq->kq_cv, &kq->kq_lock)
    317  1.129   thorpej #define	KQ_FLUX_WAKEUP(kq)	cv_broadcast(&kq->kq_cv)
    318  1.129   thorpej 
    319  1.129   thorpej static inline bool
    320  1.129   thorpej kn_in_flux(struct knote *kn)
    321  1.129   thorpej {
    322  1.129   thorpej 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    323  1.144   thorpej 	return KNOTE_TO_KIMPL(kn)->ki_influx != 0;
    324  1.129   thorpej }
    325  1.129   thorpej 
    326  1.129   thorpej static inline bool
    327  1.129   thorpej kn_enter_flux(struct knote *kn)
    328  1.129   thorpej {
    329  1.129   thorpej 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    330  1.129   thorpej 
    331  1.129   thorpej 	if (kn->kn_status & KN_WILLDETACH) {
    332  1.129   thorpej 		return false;
    333  1.129   thorpej 	}
    334  1.129   thorpej 
    335  1.144   thorpej 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    336  1.144   thorpej 	KASSERT(ki->ki_influx < UINT_MAX);
    337  1.144   thorpej 	ki->ki_influx++;
    338  1.129   thorpej 
    339  1.129   thorpej 	return true;
    340  1.129   thorpej }
    341  1.129   thorpej 
    342  1.129   thorpej static inline bool
    343  1.129   thorpej kn_leave_flux(struct knote *kn)
    344  1.129   thorpej {
    345  1.129   thorpej 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    346  1.144   thorpej 
    347  1.144   thorpej 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    348  1.144   thorpej 	KASSERT(ki->ki_influx > 0);
    349  1.144   thorpej 	ki->ki_influx--;
    350  1.144   thorpej 	return ki->ki_influx == 0;
    351  1.129   thorpej }
    352  1.129   thorpej 
    353  1.129   thorpej static void
    354  1.129   thorpej kn_wait_flux(struct knote *kn, bool can_loop)
    355  1.129   thorpej {
    356  1.144   thorpej 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    357  1.129   thorpej 	bool loop;
    358  1.129   thorpej 
    359  1.129   thorpej 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    360  1.129   thorpej 
    361  1.129   thorpej 	/*
    362  1.129   thorpej 	 * It may not be safe for us to touch the knote again after
    363  1.129   thorpej 	 * dropping the kq_lock.  The caller has let us know in
    364  1.129   thorpej 	 * 'can_loop'.
    365  1.129   thorpej 	 */
    366  1.144   thorpej 	for (loop = true; loop && ki->ki_influx != 0; loop = can_loop) {
    367  1.129   thorpej 		KQ_FLUX_WAIT(kn->kn_kq);
    368  1.129   thorpej 	}
    369  1.129   thorpej }
    370  1.129   thorpej 
    371  1.129   thorpej #define	KNOTE_WILLDETACH(kn)						\
    372  1.129   thorpej do {									\
    373  1.129   thorpej 	(kn)->kn_status |= KN_WILLDETACH;				\
    374  1.129   thorpej 	(kn)->kn_kevent.udata = curlwp;					\
    375  1.129   thorpej } while (/*CONSTCOND*/0)
    376  1.129   thorpej 
    377  1.129   thorpej /*
    378  1.129   thorpej  * Wait until the specified knote is in a quiescent state and
    379  1.129   thorpej  * safe to detach.  Returns true if we potentially blocked (and
    380  1.129   thorpej  * thus dropped our locks).
    381  1.129   thorpej  */
    382  1.129   thorpej static bool
    383  1.129   thorpej knote_detach_quiesce(struct knote *kn)
    384  1.129   thorpej {
    385  1.129   thorpej 	struct kqueue *kq = kn->kn_kq;
    386  1.129   thorpej 	filedesc_t *fdp = kq->kq_fdp;
    387  1.129   thorpej 
    388  1.129   thorpej 	KASSERT(mutex_owned(&fdp->fd_lock));
    389  1.129   thorpej 
    390  1.129   thorpej 	mutex_spin_enter(&kq->kq_lock);
    391  1.129   thorpej 	/*
    392  1.129   thorpej 	 * There are two cases where we might see KN_WILLDETACH here:
    393  1.129   thorpej 	 *
    394  1.129   thorpej 	 * 1. Someone else has already started detaching the knote but
    395  1.129   thorpej 	 *    had to wait for it to settle first.
    396  1.129   thorpej 	 *
    397  1.129   thorpej 	 * 2. We had to wait for it to settle, and had to come back
    398  1.129   thorpej 	 *    around after re-acquiring the locks.
    399  1.129   thorpej 	 *
    400  1.129   thorpej 	 * When KN_WILLDETACH is set, we also set the LWP that claimed
    401  1.129   thorpej 	 * the prize of finishing the detach in the 'udata' field of the
    402  1.129   thorpej 	 * knote (which will never be used again for its usual purpose
    403  1.129   thorpej 	 * once the note is in this state).  If it doesn't point to us,
    404  1.129   thorpej 	 * we must drop the locks and let them in to finish the job.
    405  1.129   thorpej 	 *
    406  1.129   thorpej 	 * Otherwise, once we have claimed the knote for ourselves, we
    407  1.129   thorpej 	 * can finish waiting for it to settle.  The is the only scenario
    408  1.129   thorpej 	 * where touching a detaching knote is safe after dropping the
    409  1.129   thorpej 	 * locks.
    410  1.129   thorpej 	 */
    411  1.129   thorpej 	if ((kn->kn_status & KN_WILLDETACH) != 0 &&
    412  1.129   thorpej 	    kn->kn_kevent.udata != curlwp) {
    413  1.129   thorpej 		/*
    414  1.129   thorpej 		 * N.B. it is NOT safe for us to touch the knote again
    415  1.129   thorpej 		 * after dropping the locks here.  The caller must go
    416  1.129   thorpej 		 * back around and re-validate everything.  However, if
    417  1.129   thorpej 		 * the knote is in-flux, we want to block to minimize
    418  1.129   thorpej 		 * busy-looping.
    419  1.129   thorpej 		 */
    420  1.129   thorpej 		mutex_exit(&fdp->fd_lock);
    421  1.129   thorpej 		if (kn_in_flux(kn)) {
    422  1.129   thorpej 			kn_wait_flux(kn, false);
    423  1.129   thorpej 			mutex_spin_exit(&kq->kq_lock);
    424  1.129   thorpej 			return true;
    425  1.129   thorpej 		}
    426  1.129   thorpej 		mutex_spin_exit(&kq->kq_lock);
    427  1.129   thorpej 		preempt_point();
    428  1.129   thorpej 		return true;
    429  1.129   thorpej 	}
    430  1.129   thorpej 	/*
    431  1.129   thorpej 	 * If we get here, we know that we will be claiming the
    432  1.129   thorpej 	 * detach responsibilies, or that we already have and
    433  1.129   thorpej 	 * this is the second attempt after re-validation.
    434  1.129   thorpej 	 */
    435  1.129   thorpej 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
    436  1.129   thorpej 		kn->kn_kevent.udata == curlwp);
    437  1.129   thorpej 	/*
    438  1.129   thorpej 	 * Similarly, if we get here, either we are just claiming it
    439  1.129   thorpej 	 * and may have to wait for it to settle, or if this is the
    440  1.129   thorpej 	 * second attempt after re-validation that no other code paths
    441  1.129   thorpej 	 * have put it in-flux.
    442  1.129   thorpej 	 */
    443  1.129   thorpej 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
    444  1.129   thorpej 		kn_in_flux(kn) == false);
    445  1.129   thorpej 	KNOTE_WILLDETACH(kn);
    446  1.129   thorpej 	if (kn_in_flux(kn)) {
    447  1.129   thorpej 		mutex_exit(&fdp->fd_lock);
    448  1.129   thorpej 		kn_wait_flux(kn, true);
    449  1.129   thorpej 		/*
    450  1.129   thorpej 		 * It is safe for us to touch the knote again after
    451  1.129   thorpej 		 * dropping the locks, but the caller must still
    452  1.129   thorpej 		 * re-validate everything because other aspects of
    453  1.129   thorpej 		 * the environment may have changed while we blocked.
    454  1.129   thorpej 		 */
    455  1.129   thorpej 		KASSERT(kn_in_flux(kn) == false);
    456  1.129   thorpej 		mutex_spin_exit(&kq->kq_lock);
    457  1.129   thorpej 		return true;
    458  1.129   thorpej 	}
    459  1.129   thorpej 	mutex_spin_exit(&kq->kq_lock);
    460  1.129   thorpej 
    461  1.129   thorpej 	return false;
    462  1.129   thorpej }
    463  1.129   thorpej 
    464  1.122   thorpej static int
    465  1.122   thorpej filter_attach(struct knote *kn)
    466  1.122   thorpej {
    467  1.122   thorpej 	int rv;
    468  1.122   thorpej 
    469  1.122   thorpej 	KASSERT(kn->kn_fop != NULL);
    470  1.122   thorpej 	KASSERT(kn->kn_fop->f_attach != NULL);
    471  1.122   thorpej 
    472  1.122   thorpej 	/*
    473  1.122   thorpej 	 * N.B. that kn->kn_fop may change as the result of calling
    474  1.122   thorpej 	 * f_attach().
    475  1.122   thorpej 	 */
    476  1.122   thorpej 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    477  1.122   thorpej 		rv = kn->kn_fop->f_attach(kn);
    478  1.122   thorpej 	} else {
    479  1.122   thorpej 		KERNEL_LOCK(1, NULL);
    480  1.122   thorpej 		rv = kn->kn_fop->f_attach(kn);
    481  1.122   thorpej 		KERNEL_UNLOCK_ONE(NULL);
    482  1.122   thorpej 	}
    483  1.122   thorpej 
    484  1.122   thorpej 	return rv;
    485  1.122   thorpej }
    486  1.122   thorpej 
    487  1.122   thorpej static void
    488  1.122   thorpej filter_detach(struct knote *kn)
    489  1.122   thorpej {
    490  1.122   thorpej 	KASSERT(kn->kn_fop != NULL);
    491  1.122   thorpej 	KASSERT(kn->kn_fop->f_detach != NULL);
    492  1.122   thorpej 
    493  1.122   thorpej 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    494  1.122   thorpej 		kn->kn_fop->f_detach(kn);
    495  1.122   thorpej 	} else {
    496  1.122   thorpej 		KERNEL_LOCK(1, NULL);
    497  1.122   thorpej 		kn->kn_fop->f_detach(kn);
    498  1.122   thorpej 		KERNEL_UNLOCK_ONE(NULL);
    499  1.122   thorpej 	}
    500  1.122   thorpej }
    501  1.122   thorpej 
    502  1.122   thorpej static int
    503  1.122   thorpej filter_event(struct knote *kn, long hint)
    504  1.122   thorpej {
    505  1.122   thorpej 	int rv;
    506  1.122   thorpej 
    507  1.122   thorpej 	KASSERT(kn->kn_fop != NULL);
    508  1.122   thorpej 	KASSERT(kn->kn_fop->f_event != NULL);
    509  1.122   thorpej 
    510  1.122   thorpej 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    511  1.122   thorpej 		rv = kn->kn_fop->f_event(kn, hint);
    512  1.122   thorpej 	} else {
    513  1.122   thorpej 		KERNEL_LOCK(1, NULL);
    514  1.122   thorpej 		rv = kn->kn_fop->f_event(kn, hint);
    515  1.122   thorpej 		KERNEL_UNLOCK_ONE(NULL);
    516  1.122   thorpej 	}
    517  1.122   thorpej 
    518  1.122   thorpej 	return rv;
    519  1.122   thorpej }
    520  1.122   thorpej 
    521  1.135   thorpej static int
    522  1.122   thorpej filter_touch(struct knote *kn, struct kevent *kev, long type)
    523  1.122   thorpej {
    524  1.135   thorpej 	return kn->kn_fop->f_touch(kn, kev, type);
    525  1.122   thorpej }
    526  1.122   thorpej 
    527   1.66      elad static kauth_listener_t	kqueue_listener;
    528   1.66      elad 
    529   1.66      elad static int
    530   1.66      elad kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    531   1.66      elad     void *arg0, void *arg1, void *arg2, void *arg3)
    532   1.66      elad {
    533   1.66      elad 	struct proc *p;
    534   1.66      elad 	int result;
    535   1.66      elad 
    536   1.66      elad 	result = KAUTH_RESULT_DEFER;
    537   1.66      elad 	p = arg0;
    538   1.66      elad 
    539   1.66      elad 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
    540   1.66      elad 		return result;
    541   1.66      elad 
    542   1.66      elad 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
    543   1.66      elad 	    ISSET(p->p_flag, PK_SUGID)))
    544   1.66      elad 		return result;
    545   1.66      elad 
    546   1.66      elad 	result = KAUTH_RESULT_ALLOW;
    547   1.66      elad 
    548   1.66      elad 	return result;
    549   1.66      elad }
    550   1.66      elad 
    551   1.49        ad /*
    552   1.49        ad  * Initialize the kqueue subsystem.
    553   1.49        ad  */
    554   1.49        ad void
    555   1.49        ad kqueue_init(void)
    556   1.49        ad {
    557   1.49        ad 
    558   1.49        ad 	rw_init(&kqueue_filter_lock);
    559   1.66      elad 
    560   1.66      elad 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    561   1.66      elad 	    kqueue_listener_cb, NULL);
    562   1.49        ad }
    563    1.3  jdolecek 
    564    1.3  jdolecek /*
    565    1.3  jdolecek  * Find kfilter entry by name, or NULL if not found.
    566    1.3  jdolecek  */
    567   1.49        ad static struct kfilter *
    568    1.3  jdolecek kfilter_byname_sys(const char *name)
    569    1.3  jdolecek {
    570    1.3  jdolecek 	int i;
    571    1.3  jdolecek 
    572   1.49        ad 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    573   1.49        ad 
    574    1.3  jdolecek 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    575    1.3  jdolecek 		if (strcmp(name, sys_kfilters[i].name) == 0)
    576   1.49        ad 			return &sys_kfilters[i];
    577    1.3  jdolecek 	}
    578   1.49        ad 	return NULL;
    579    1.3  jdolecek }
    580    1.3  jdolecek 
    581    1.3  jdolecek static struct kfilter *
    582    1.3  jdolecek kfilter_byname_user(const char *name)
    583    1.3  jdolecek {
    584    1.3  jdolecek 	int i;
    585    1.3  jdolecek 
    586   1.49        ad 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    587   1.49        ad 
    588   1.31     seanb 	/* user filter slots have a NULL name if previously deregistered */
    589   1.31     seanb 	for (i = 0; i < user_kfilterc ; i++) {
    590   1.31     seanb 		if (user_kfilters[i].name != NULL &&
    591    1.3  jdolecek 		    strcmp(name, user_kfilters[i].name) == 0)
    592   1.49        ad 			return &user_kfilters[i];
    593    1.3  jdolecek 	}
    594   1.49        ad 	return NULL;
    595    1.3  jdolecek }
    596    1.3  jdolecek 
    597   1.49        ad static struct kfilter *
    598    1.3  jdolecek kfilter_byname(const char *name)
    599    1.3  jdolecek {
    600   1.49        ad 	struct kfilter *kfilter;
    601   1.49        ad 
    602   1.49        ad 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    603    1.3  jdolecek 
    604    1.3  jdolecek 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    605   1.49        ad 		return kfilter;
    606    1.3  jdolecek 
    607   1.49        ad 	return kfilter_byname_user(name);
    608    1.3  jdolecek }
    609    1.3  jdolecek 
    610    1.3  jdolecek /*
    611    1.3  jdolecek  * Find kfilter entry by filter id, or NULL if not found.
    612    1.3  jdolecek  * Assumes entries are indexed in filter id order, for speed.
    613    1.3  jdolecek  */
    614   1.49        ad static struct kfilter *
    615    1.3  jdolecek kfilter_byfilter(uint32_t filter)
    616    1.3  jdolecek {
    617   1.49        ad 	struct kfilter *kfilter;
    618   1.49        ad 
    619   1.49        ad 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    620    1.3  jdolecek 
    621    1.3  jdolecek 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    622    1.3  jdolecek 		kfilter = &sys_kfilters[filter];
    623    1.3  jdolecek 	else if (user_kfilters != NULL &&
    624    1.3  jdolecek 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    625    1.3  jdolecek 					/* it's a user filter */
    626    1.3  jdolecek 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    627    1.3  jdolecek 	else
    628    1.3  jdolecek 		return (NULL);		/* out of range */
    629    1.3  jdolecek 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    630    1.3  jdolecek 	return (kfilter);
    631    1.3  jdolecek }
    632    1.3  jdolecek 
    633    1.3  jdolecek /*
    634    1.3  jdolecek  * Register a new kfilter. Stores the entry in user_kfilters.
    635    1.3  jdolecek  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    636    1.3  jdolecek  * If retfilter != NULL, the new filterid is returned in it.
    637    1.3  jdolecek  */
    638    1.3  jdolecek int
    639    1.3  jdolecek kfilter_register(const char *name, const struct filterops *filtops,
    640   1.49        ad 		 int *retfilter)
    641    1.1     lukem {
    642    1.3  jdolecek 	struct kfilter *kfilter;
    643   1.49        ad 	size_t len;
    644   1.31     seanb 	int i;
    645    1.3  jdolecek 
    646    1.3  jdolecek 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    647    1.3  jdolecek 		return (EINVAL);	/* invalid args */
    648   1.49        ad 
    649   1.49        ad 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    650   1.49        ad 	if (kfilter_byname(name) != NULL) {
    651   1.49        ad 		rw_exit(&kqueue_filter_lock);
    652    1.3  jdolecek 		return (EEXIST);	/* already exists */
    653   1.49        ad 	}
    654   1.49        ad 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
    655   1.49        ad 		rw_exit(&kqueue_filter_lock);
    656    1.3  jdolecek 		return (EINVAL);	/* too many */
    657   1.49        ad 	}
    658    1.3  jdolecek 
    659   1.31     seanb 	for (i = 0; i < user_kfilterc; i++) {
    660   1.31     seanb 		kfilter = &user_kfilters[i];
    661   1.31     seanb 		if (kfilter->name == NULL) {
    662   1.31     seanb 			/* Previously deregistered slot.  Reuse. */
    663   1.31     seanb 			goto reuse;
    664   1.31     seanb 		}
    665   1.31     seanb 	}
    666   1.31     seanb 
    667    1.3  jdolecek 	/* check if need to grow user_kfilters */
    668    1.3  jdolecek 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    669   1.49        ad 		/* Grow in KFILTER_EXTENT chunks. */
    670    1.3  jdolecek 		user_kfiltermaxc += KFILTER_EXTENT;
    671   1.69       dsl 		len = user_kfiltermaxc * sizeof(*kfilter);
    672   1.49        ad 		kfilter = kmem_alloc(len, KM_SLEEP);
    673   1.49        ad 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
    674   1.49        ad 		if (user_kfilters != NULL) {
    675   1.49        ad 			memcpy(kfilter, user_kfilters, user_kfiltersz);
    676   1.49        ad 			kmem_free(user_kfilters, user_kfiltersz);
    677   1.49        ad 		}
    678   1.49        ad 		user_kfiltersz = len;
    679    1.3  jdolecek 		user_kfilters = kfilter;
    680    1.3  jdolecek 	}
    681   1.31     seanb 	/* Adding new slot */
    682   1.31     seanb 	kfilter = &user_kfilters[user_kfilterc++];
    683   1.31     seanb reuse:
    684   1.97  christos 	kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
    685    1.3  jdolecek 
    686   1.31     seanb 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
    687    1.3  jdolecek 
    688   1.49        ad 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
    689   1.49        ad 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
    690    1.3  jdolecek 
    691    1.3  jdolecek 	if (retfilter != NULL)
    692   1.31     seanb 		*retfilter = kfilter->filter;
    693   1.49        ad 	rw_exit(&kqueue_filter_lock);
    694   1.49        ad 
    695    1.3  jdolecek 	return (0);
    696    1.1     lukem }
    697    1.1     lukem 
    698    1.3  jdolecek /*
    699    1.3  jdolecek  * Unregister a kfilter previously registered with kfilter_register.
    700    1.3  jdolecek  * This retains the filter id, but clears the name and frees filtops (filter
    701    1.3  jdolecek  * operations), so that the number isn't reused during a boot.
    702    1.3  jdolecek  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    703    1.3  jdolecek  */
    704    1.3  jdolecek int
    705    1.3  jdolecek kfilter_unregister(const char *name)
    706    1.1     lukem {
    707    1.3  jdolecek 	struct kfilter *kfilter;
    708    1.3  jdolecek 
    709    1.3  jdolecek 	if (name == NULL || name[0] == '\0')
    710    1.3  jdolecek 		return (EINVAL);	/* invalid name */
    711    1.3  jdolecek 
    712   1.49        ad 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    713   1.49        ad 	if (kfilter_byname_sys(name) != NULL) {
    714   1.49        ad 		rw_exit(&kqueue_filter_lock);
    715    1.3  jdolecek 		return (EINVAL);	/* can't detach system filters */
    716   1.49        ad 	}
    717    1.1     lukem 
    718    1.3  jdolecek 	kfilter = kfilter_byname_user(name);
    719   1.49        ad 	if (kfilter == NULL) {
    720   1.49        ad 		rw_exit(&kqueue_filter_lock);
    721    1.3  jdolecek 		return (ENOENT);
    722   1.49        ad 	}
    723   1.49        ad 	if (kfilter->refcnt != 0) {
    724   1.49        ad 		rw_exit(&kqueue_filter_lock);
    725   1.49        ad 		return (EBUSY);
    726   1.49        ad 	}
    727    1.1     lukem 
    728   1.49        ad 	/* Cast away const (but we know it's safe. */
    729   1.49        ad 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
    730   1.31     seanb 	kfilter->name = NULL;	/* mark as `not implemented' */
    731   1.31     seanb 
    732    1.3  jdolecek 	if (kfilter->filtops != NULL) {
    733   1.49        ad 		/* Cast away const (but we know it's safe. */
    734   1.49        ad 		kmem_free(__UNCONST(kfilter->filtops),
    735   1.49        ad 		    sizeof(*kfilter->filtops));
    736    1.3  jdolecek 		kfilter->filtops = NULL; /* mark as `not implemented' */
    737    1.3  jdolecek 	}
    738   1.49        ad 	rw_exit(&kqueue_filter_lock);
    739   1.49        ad 
    740    1.1     lukem 	return (0);
    741    1.1     lukem }
    742    1.1     lukem 
    743    1.3  jdolecek 
    744    1.3  jdolecek /*
    745    1.3  jdolecek  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    746   1.49        ad  * descriptors. Calls fileops kqfilter method for given file descriptor.
    747    1.3  jdolecek  */
    748    1.3  jdolecek static int
    749    1.3  jdolecek filt_fileattach(struct knote *kn)
    750    1.3  jdolecek {
    751   1.49        ad 	file_t *fp;
    752   1.49        ad 
    753   1.49        ad 	fp = kn->kn_obj;
    754    1.3  jdolecek 
    755   1.49        ad 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
    756    1.3  jdolecek }
    757    1.3  jdolecek 
    758    1.3  jdolecek /*
    759    1.3  jdolecek  * Filter detach method for EVFILT_READ on kqueue descriptor.
    760    1.3  jdolecek  */
    761    1.1     lukem static void
    762    1.1     lukem filt_kqdetach(struct knote *kn)
    763    1.1     lukem {
    764    1.3  jdolecek 	struct kqueue *kq;
    765    1.1     lukem 
    766   1.82      matt 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    767   1.49        ad 
    768   1.49        ad 	mutex_spin_enter(&kq->kq_lock);
    769  1.109   thorpej 	selremove_knote(&kq->kq_sel, kn);
    770   1.49        ad 	mutex_spin_exit(&kq->kq_lock);
    771    1.1     lukem }
    772    1.1     lukem 
    773    1.3  jdolecek /*
    774    1.3  jdolecek  * Filter event method for EVFILT_READ on kqueue descriptor.
    775    1.3  jdolecek  */
    776    1.1     lukem /*ARGSUSED*/
    777    1.1     lukem static int
    778   1.33      yamt filt_kqueue(struct knote *kn, long hint)
    779    1.1     lukem {
    780    1.3  jdolecek 	struct kqueue *kq;
    781   1.49        ad 	int rv;
    782   1.49        ad 
    783   1.82      matt 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    784    1.1     lukem 
    785   1.49        ad 	if (hint != NOTE_SUBMIT)
    786   1.49        ad 		mutex_spin_enter(&kq->kq_lock);
    787  1.118  jdolecek 	kn->kn_data = KQ_COUNT(kq);
    788   1.49        ad 	rv = (kn->kn_data > 0);
    789   1.49        ad 	if (hint != NOTE_SUBMIT)
    790   1.49        ad 		mutex_spin_exit(&kq->kq_lock);
    791   1.49        ad 
    792   1.49        ad 	return rv;
    793    1.1     lukem }
    794    1.1     lukem 
    795    1.3  jdolecek /*
    796    1.3  jdolecek  * Filter attach method for EVFILT_PROC.
    797    1.3  jdolecek  */
    798    1.1     lukem static int
    799    1.1     lukem filt_procattach(struct knote *kn)
    800    1.1     lukem {
    801   1.78     pooka 	struct proc *p;
    802    1.1     lukem 
    803  1.107        ad 	mutex_enter(&proc_lock);
    804  1.129   thorpej 	p = proc_find(kn->kn_id);
    805   1.49        ad 	if (p == NULL) {
    806  1.107        ad 		mutex_exit(&proc_lock);
    807   1.49        ad 		return ESRCH;
    808   1.49        ad 	}
    809    1.3  jdolecek 
    810    1.3  jdolecek 	/*
    811    1.3  jdolecek 	 * Fail if it's not owned by you, or the last exec gave us
    812    1.3  jdolecek 	 * setuid/setgid privs (unless you're root).
    813    1.3  jdolecek 	 */
    814   1.57        ad 	mutex_enter(p->p_lock);
    815  1.107        ad 	mutex_exit(&proc_lock);
    816  1.129   thorpej 	if (kauth_authorize_process(curlwp->l_cred,
    817  1.119  christos 	    KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
    818   1.57        ad 	    	mutex_exit(p->p_lock);
    819   1.49        ad 		return EACCES;
    820   1.49        ad 	}
    821    1.1     lukem 
    822   1.49        ad 	kn->kn_obj = p;
    823    1.3  jdolecek 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    824    1.1     lukem 
    825    1.1     lukem 	/*
    826  1.129   thorpej 	 * NOTE_CHILD is only ever generated internally; don't let it
    827  1.129   thorpej 	 * leak in from user-space.  See knote_proc_fork_track().
    828    1.1     lukem 	 */
    829  1.129   thorpej 	kn->kn_sfflags &= ~NOTE_CHILD;
    830  1.129   thorpej 
    831  1.140   thorpej 	klist_insert(&p->p_klist, kn);
    832   1.57        ad     	mutex_exit(p->p_lock);
    833    1.1     lukem 
    834   1.49        ad 	return 0;
    835    1.1     lukem }
    836    1.1     lukem 
    837    1.1     lukem /*
    838    1.3  jdolecek  * Filter detach method for EVFILT_PROC.
    839    1.3  jdolecek  *
    840    1.1     lukem  * The knote may be attached to a different process, which may exit,
    841    1.1     lukem  * leaving nothing for the knote to be attached to.  So when the process
    842    1.1     lukem  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    843    1.1     lukem  * it will be deleted when read out.  However, as part of the knote deletion,
    844    1.1     lukem  * this routine is called, so a check is needed to avoid actually performing
    845    1.3  jdolecek  * a detach, because the original process might not exist any more.
    846    1.1     lukem  */
    847    1.1     lukem static void
    848    1.1     lukem filt_procdetach(struct knote *kn)
    849    1.1     lukem {
    850  1.129   thorpej 	struct kqueue *kq = kn->kn_kq;
    851    1.3  jdolecek 	struct proc *p;
    852    1.1     lukem 
    853  1.129   thorpej 	/*
    854  1.129   thorpej 	 * We have to synchronize with knote_proc_exit(), but we
    855  1.129   thorpej 	 * are forced to acquire the locks in the wrong order here
    856  1.129   thorpej 	 * because we can't be sure kn->kn_obj is valid unless
    857  1.129   thorpej 	 * KN_DETACHED is not set.
    858  1.129   thorpej 	 */
    859  1.129   thorpej  again:
    860  1.129   thorpej 	mutex_spin_enter(&kq->kq_lock);
    861  1.129   thorpej 	if ((kn->kn_status & KN_DETACHED) == 0) {
    862  1.129   thorpej 		p = kn->kn_obj;
    863  1.129   thorpej 		if (!mutex_tryenter(p->p_lock)) {
    864  1.129   thorpej 			mutex_spin_exit(&kq->kq_lock);
    865  1.129   thorpej 			preempt_point();
    866  1.129   thorpej 			goto again;
    867  1.129   thorpej 		}
    868  1.129   thorpej 		kn->kn_status |= KN_DETACHED;
    869  1.140   thorpej 		klist_remove(&p->p_klist, kn);
    870  1.129   thorpej 		mutex_exit(p->p_lock);
    871  1.129   thorpej 	}
    872  1.129   thorpej 	mutex_spin_exit(&kq->kq_lock);
    873    1.1     lukem }
    874    1.1     lukem 
    875    1.3  jdolecek /*
    876    1.3  jdolecek  * Filter event method for EVFILT_PROC.
    877  1.129   thorpej  *
    878  1.129   thorpej  * Due to some of the complexities of process locking, we have special
    879  1.129   thorpej  * entry points for delivering knote submissions.  filt_proc() is used
    880  1.129   thorpej  * only to check for activation from kqueue_register() and kqueue_scan().
    881    1.3  jdolecek  */
    882    1.1     lukem static int
    883    1.1     lukem filt_proc(struct knote *kn, long hint)
    884    1.1     lukem {
    885  1.129   thorpej 	struct kqueue *kq = kn->kn_kq;
    886  1.129   thorpej 	uint32_t fflags;
    887  1.129   thorpej 
    888  1.129   thorpej 	/*
    889  1.129   thorpej 	 * Because we share the same klist with signal knotes, just
    890  1.129   thorpej 	 * ensure that we're not being invoked for the proc-related
    891  1.129   thorpej 	 * submissions.
    892  1.129   thorpej 	 */
    893  1.129   thorpej 	KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
    894  1.129   thorpej 
    895  1.129   thorpej 	mutex_spin_enter(&kq->kq_lock);
    896  1.129   thorpej 	fflags = kn->kn_fflags;
    897  1.129   thorpej 	mutex_spin_exit(&kq->kq_lock);
    898    1.1     lukem 
    899  1.129   thorpej 	return fflags != 0;
    900  1.129   thorpej }
    901    1.1     lukem 
    902  1.129   thorpej void
    903  1.129   thorpej knote_proc_exec(struct proc *p)
    904  1.129   thorpej {
    905  1.129   thorpej 	struct knote *kn, *tmpkn;
    906  1.129   thorpej 	struct kqueue *kq;
    907  1.129   thorpej 	uint32_t fflags;
    908    1.1     lukem 
    909  1.129   thorpej 	mutex_enter(p->p_lock);
    910   1.83  christos 
    911  1.129   thorpej 	SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
    912  1.129   thorpej 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
    913  1.129   thorpej 		if (kn->kn_fop == &sig_filtops) {
    914  1.129   thorpej 			continue;
    915  1.129   thorpej 		}
    916  1.129   thorpej 		KASSERT(kn->kn_fop == &proc_filtops);
    917   1.49        ad 
    918  1.129   thorpej 		kq = kn->kn_kq;
    919   1.49        ad 		mutex_spin_enter(&kq->kq_lock);
    920  1.129   thorpej 		fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
    921  1.129   thorpej 		if (fflags) {
    922  1.133   thorpej 			knote_activate_locked(kn);
    923  1.129   thorpej 		}
    924  1.133   thorpej 		mutex_spin_exit(&kq->kq_lock);
    925  1.129   thorpej 	}
    926  1.129   thorpej 
    927  1.129   thorpej 	mutex_exit(p->p_lock);
    928  1.129   thorpej }
    929  1.129   thorpej 
    930  1.129   thorpej static int __noinline
    931  1.129   thorpej knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
    932  1.129   thorpej {
    933  1.129   thorpej 	struct kqueue *kq = okn->kn_kq;
    934  1.129   thorpej 
    935  1.129   thorpej 	KASSERT(mutex_owned(&kq->kq_lock));
    936  1.129   thorpej 	KASSERT(mutex_owned(p1->p_lock));
    937  1.129   thorpej 
    938  1.129   thorpej 	/*
    939  1.129   thorpej 	 * We're going to put this knote into flux while we drop
    940  1.129   thorpej 	 * the locks and create and attach a new knote to track the
    941  1.129   thorpej 	 * child.  If we are not able to enter flux, then this knote
    942  1.129   thorpej 	 * is about to go away, so skip the notification.
    943  1.129   thorpej 	 */
    944  1.129   thorpej 	if (!kn_enter_flux(okn)) {
    945  1.129   thorpej 		return 0;
    946  1.129   thorpej 	}
    947  1.129   thorpej 
    948  1.129   thorpej 	mutex_spin_exit(&kq->kq_lock);
    949  1.129   thorpej 	mutex_exit(p1->p_lock);
    950   1.49        ad 
    951  1.129   thorpej 	/*
    952  1.129   thorpej 	 * We actually have to register *two* new knotes:
    953  1.129   thorpej 	 *
    954  1.129   thorpej 	 * ==> One for the NOTE_CHILD notification.  This is a forced
    955  1.129   thorpej 	 *     ONESHOT note.
    956  1.129   thorpej 	 *
    957  1.129   thorpej 	 * ==> One to actually track the child process as it subsequently
    958  1.129   thorpej 	 *     forks, execs, and, ultimately, exits.
    959  1.129   thorpej 	 *
    960  1.129   thorpej 	 * If we only register a single knote, then it's possible for
    961  1.129   thorpej 	 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
    962  1.129   thorpej 	 * notification if the child exits before the tracking process
    963  1.129   thorpej 	 * has received the NOTE_CHILD notification, which applications
    964  1.129   thorpej 	 * aren't expecting (the event's 'data' field would be clobbered,
    965  1.141    andvar 	 * for example).
    966  1.129   thorpej 	 *
    967  1.129   thorpej 	 * To do this, what we have here is an **extremely** stripped-down
    968  1.129   thorpej 	 * version of kqueue_register() that has the following properties:
    969  1.129   thorpej 	 *
    970  1.129   thorpej 	 * ==> Does not block to allocate memory.  If we are unable
    971  1.129   thorpej 	 *     to allocate memory, we return ENOMEM.
    972  1.129   thorpej 	 *
    973  1.129   thorpej 	 * ==> Does not search for existing knotes; we know there
    974  1.129   thorpej 	 *     are not any because this is a new process that isn't
    975  1.129   thorpej 	 *     even visible to other processes yet.
    976  1.129   thorpej 	 *
    977  1.129   thorpej 	 * ==> Assumes that the knhash for our kq's descriptor table
    978  1.129   thorpej 	 *     already exists (after all, we're already tracking
    979  1.129   thorpej 	 *     processes with knotes if we got here).
    980  1.129   thorpej 	 *
    981  1.129   thorpej 	 * ==> Directly attaches the new tracking knote to the child
    982  1.129   thorpej 	 *     process.
    983  1.129   thorpej 	 *
    984  1.129   thorpej 	 * The whole point is to do the minimum amount of work while the
    985  1.129   thorpej 	 * knote is held in-flux, and to avoid doing extra work in general
    986  1.129   thorpej 	 * (we already have the new child process; why bother looking it
    987  1.129   thorpej 	 * up again?).
    988  1.129   thorpej 	 */
    989  1.129   thorpej 	filedesc_t *fdp = kq->kq_fdp;
    990  1.129   thorpej 	struct knote *knchild, *kntrack;
    991  1.129   thorpej 	int error = 0;
    992  1.129   thorpej 
    993  1.142   thorpej 	knchild = knote_alloc(false);
    994  1.142   thorpej 	kntrack = knote_alloc(false);
    995  1.129   thorpej 	if (__predict_false(knchild == NULL || kntrack == NULL)) {
    996  1.129   thorpej 		error = ENOMEM;
    997  1.129   thorpej 		goto out;
    998  1.129   thorpej 	}
    999  1.129   thorpej 
   1000  1.129   thorpej 	kntrack->kn_obj = p2;
   1001  1.129   thorpej 	kntrack->kn_id = p2->p_pid;
   1002  1.129   thorpej 	kntrack->kn_kq = kq;
   1003  1.129   thorpej 	kntrack->kn_fop = okn->kn_fop;
   1004  1.129   thorpej 	kntrack->kn_kfilter = okn->kn_kfilter;
   1005  1.129   thorpej 	kntrack->kn_sfflags = okn->kn_sfflags;
   1006  1.129   thorpej 	kntrack->kn_sdata = p1->p_pid;
   1007  1.129   thorpej 
   1008  1.129   thorpej 	kntrack->kn_kevent.ident = p2->p_pid;
   1009  1.129   thorpej 	kntrack->kn_kevent.filter = okn->kn_filter;
   1010  1.129   thorpej 	kntrack->kn_kevent.flags =
   1011  1.129   thorpej 	    okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
   1012  1.129   thorpej 	kntrack->kn_kevent.fflags = 0;
   1013  1.129   thorpej 	kntrack->kn_kevent.data = 0;
   1014  1.129   thorpej 	kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
   1015  1.129   thorpej 
   1016  1.129   thorpej 	/*
   1017  1.129   thorpej 	 * The child note does not need to be attached to the
   1018  1.129   thorpej 	 * new proc's klist at all.
   1019  1.129   thorpej 	 */
   1020  1.129   thorpej 	*knchild = *kntrack;
   1021  1.129   thorpej 	knchild->kn_status = KN_DETACHED;
   1022  1.129   thorpej 	knchild->kn_sfflags = 0;
   1023  1.129   thorpej 	knchild->kn_kevent.flags |= EV_ONESHOT;
   1024  1.129   thorpej 	knchild->kn_kevent.fflags = NOTE_CHILD;
   1025  1.129   thorpej 	knchild->kn_kevent.data = p1->p_pid;		 /* parent */
   1026  1.129   thorpej 
   1027  1.129   thorpej 	mutex_enter(&fdp->fd_lock);
   1028  1.129   thorpej 
   1029  1.129   thorpej 	/*
   1030  1.129   thorpej 	 * We need to check to see if the kq is closing, and skip
   1031  1.129   thorpej 	 * attaching the knote if so.  Normally, this isn't necessary
   1032  1.129   thorpej 	 * when coming in the front door because the file descriptor
   1033  1.129   thorpej 	 * layer will synchronize this.
   1034  1.129   thorpej 	 *
   1035  1.129   thorpej 	 * It's safe to test KQ_CLOSING without taking the kq_lock
   1036  1.129   thorpej 	 * here because that flag is only ever set when the fd_lock
   1037  1.129   thorpej 	 * is also held.
   1038  1.129   thorpej 	 */
   1039  1.129   thorpej 	if (__predict_false(kq->kq_count & KQ_CLOSING)) {
   1040  1.129   thorpej 		mutex_exit(&fdp->fd_lock);
   1041  1.129   thorpej 		goto out;
   1042    1.1     lukem 	}
   1043    1.1     lukem 
   1044  1.129   thorpej 	/*
   1045  1.129   thorpej 	 * We do the "insert into FD table" and "attach to klist" steps
   1046  1.129   thorpej 	 * in the opposite order of kqueue_register() here to avoid
   1047  1.129   thorpej 	 * having to take p2->p_lock twice.  But this is OK because we
   1048  1.129   thorpej 	 * hold fd_lock across the entire operation.
   1049  1.129   thorpej 	 */
   1050  1.129   thorpej 
   1051  1.129   thorpej 	mutex_enter(p2->p_lock);
   1052  1.129   thorpej 	error = kauth_authorize_process(curlwp->l_cred,
   1053  1.129   thorpej 	    KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
   1054  1.129   thorpej 	if (__predict_false(error != 0)) {
   1055  1.129   thorpej 		mutex_exit(p2->p_lock);
   1056  1.129   thorpej 		mutex_exit(&fdp->fd_lock);
   1057  1.129   thorpej 		error = EACCES;
   1058  1.129   thorpej 		goto out;
   1059  1.129   thorpej 	}
   1060  1.140   thorpej 	klist_insert(&p2->p_klist, kntrack);
   1061  1.129   thorpej 	mutex_exit(p2->p_lock);
   1062  1.129   thorpej 
   1063  1.129   thorpej 	KASSERT(fdp->fd_knhashmask != 0);
   1064  1.129   thorpej 	KASSERT(fdp->fd_knhash != NULL);
   1065  1.129   thorpej 	struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
   1066  1.129   thorpej 	    fdp->fd_knhashmask)];
   1067  1.129   thorpej 	SLIST_INSERT_HEAD(list, kntrack, kn_link);
   1068  1.129   thorpej 	SLIST_INSERT_HEAD(list, knchild, kn_link);
   1069  1.129   thorpej 
   1070  1.129   thorpej 	/* This adds references for knchild *and* kntrack. */
   1071  1.129   thorpej 	atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
   1072  1.129   thorpej 
   1073  1.129   thorpej 	knote_activate(knchild);
   1074  1.129   thorpej 
   1075  1.129   thorpej 	kntrack = NULL;
   1076  1.129   thorpej 	knchild = NULL;
   1077  1.129   thorpej 
   1078  1.129   thorpej 	mutex_exit(&fdp->fd_lock);
   1079  1.129   thorpej 
   1080  1.129   thorpej  out:
   1081  1.129   thorpej 	if (__predict_false(knchild != NULL)) {
   1082  1.142   thorpej 		knote_free(knchild);
   1083  1.129   thorpej 	}
   1084  1.129   thorpej 	if (__predict_false(kntrack != NULL)) {
   1085  1.142   thorpej 		knote_free(kntrack);
   1086  1.129   thorpej 	}
   1087  1.129   thorpej 	mutex_enter(p1->p_lock);
   1088   1.49        ad 	mutex_spin_enter(&kq->kq_lock);
   1089  1.129   thorpej 
   1090  1.129   thorpej 	if (kn_leave_flux(okn)) {
   1091  1.129   thorpej 		KQ_FLUX_WAKEUP(kq);
   1092  1.129   thorpej 	}
   1093  1.129   thorpej 
   1094  1.129   thorpej 	return error;
   1095  1.129   thorpej }
   1096  1.129   thorpej 
   1097  1.129   thorpej void
   1098  1.129   thorpej knote_proc_fork(struct proc *p1, struct proc *p2)
   1099  1.129   thorpej {
   1100  1.129   thorpej 	struct knote *kn;
   1101  1.129   thorpej 	struct kqueue *kq;
   1102  1.129   thorpej 	uint32_t fflags;
   1103  1.129   thorpej 
   1104  1.129   thorpej 	mutex_enter(p1->p_lock);
   1105  1.129   thorpej 
   1106  1.129   thorpej 	/*
   1107  1.129   thorpej 	 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
   1108  1.129   thorpej 	 * don't want to pre-fetch the next knote; in the event we
   1109  1.129   thorpej 	 * have to drop p_lock, we will have put the knote in-flux,
   1110  1.129   thorpej 	 * meaning that no one will be able to detach it until we
   1111  1.129   thorpej 	 * have taken the knote out of flux.  However, that does
   1112  1.129   thorpej 	 * NOT stop someone else from detaching the next note in the
   1113  1.129   thorpej 	 * list while we have it unlocked.  Thus, we want to fetch
   1114  1.129   thorpej 	 * the next note in the list only after we have re-acquired
   1115  1.129   thorpej 	 * the lock, and using SLIST_FOREACH() will satisfy that.
   1116  1.129   thorpej 	 */
   1117  1.129   thorpej 	SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
   1118  1.129   thorpej 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
   1119  1.129   thorpej 		if (kn->kn_fop == &sig_filtops) {
   1120  1.129   thorpej 			continue;
   1121  1.129   thorpej 		}
   1122  1.129   thorpej 		KASSERT(kn->kn_fop == &proc_filtops);
   1123  1.129   thorpej 
   1124  1.129   thorpej 		kq = kn->kn_kq;
   1125  1.129   thorpej 		mutex_spin_enter(&kq->kq_lock);
   1126  1.129   thorpej 		kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
   1127  1.129   thorpej 		if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
   1128  1.129   thorpej 			/*
   1129  1.129   thorpej 			 * This will drop kq_lock and p_lock and
   1130  1.129   thorpej 			 * re-acquire them before it returns.
   1131  1.129   thorpej 			 */
   1132  1.129   thorpej 			if (knote_proc_fork_track(p1, p2, kn)) {
   1133  1.129   thorpej 				kn->kn_fflags |= NOTE_TRACKERR;
   1134  1.129   thorpej 			}
   1135  1.129   thorpej 			KASSERT(mutex_owned(p1->p_lock));
   1136  1.129   thorpej 			KASSERT(mutex_owned(&kq->kq_lock));
   1137  1.129   thorpej 		}
   1138  1.129   thorpej 		fflags = kn->kn_fflags;
   1139  1.129   thorpej 		if (fflags) {
   1140  1.133   thorpej 			knote_activate_locked(kn);
   1141  1.129   thorpej 		}
   1142  1.133   thorpej 		mutex_spin_exit(&kq->kq_lock);
   1143  1.129   thorpej 	}
   1144  1.129   thorpej 
   1145  1.129   thorpej 	mutex_exit(p1->p_lock);
   1146  1.129   thorpej }
   1147  1.129   thorpej 
   1148  1.129   thorpej void
   1149  1.129   thorpej knote_proc_exit(struct proc *p)
   1150  1.129   thorpej {
   1151  1.129   thorpej 	struct knote *kn;
   1152  1.129   thorpej 	struct kqueue *kq;
   1153  1.129   thorpej 
   1154  1.129   thorpej 	KASSERT(mutex_owned(p->p_lock));
   1155  1.129   thorpej 
   1156  1.129   thorpej 	while (!SLIST_EMPTY(&p->p_klist)) {
   1157  1.129   thorpej 		kn = SLIST_FIRST(&p->p_klist);
   1158  1.129   thorpej 		kq = kn->kn_kq;
   1159  1.129   thorpej 
   1160  1.129   thorpej 		KASSERT(kn->kn_obj == p);
   1161  1.129   thorpej 
   1162  1.129   thorpej 		mutex_spin_enter(&kq->kq_lock);
   1163  1.129   thorpej 		kn->kn_data = P_WAITSTATUS(p);
   1164  1.129   thorpej 		/*
   1165  1.129   thorpej 		 * Mark as ONESHOT, so that the knote is g/c'ed
   1166  1.129   thorpej 		 * when read.
   1167  1.129   thorpej 		 */
   1168  1.129   thorpej 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
   1169  1.129   thorpej 		kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
   1170  1.129   thorpej 
   1171    1.1     lukem 		/*
   1172  1.129   thorpej 		 * Detach the knote from the process and mark it as such.
   1173  1.129   thorpej 		 * N.B. EVFILT_SIGNAL are also on p_klist, but by the
   1174  1.129   thorpej 		 * time we get here, all open file descriptors for this
   1175  1.129   thorpej 		 * process have been released, meaning that signal knotes
   1176  1.129   thorpej 		 * will have already been detached.
   1177  1.129   thorpej 		 *
   1178  1.129   thorpej 		 * We need to synchronize this with filt_procdetach().
   1179    1.1     lukem 		 */
   1180  1.129   thorpej 		KASSERT(kn->kn_fop == &proc_filtops);
   1181  1.129   thorpej 		if ((kn->kn_status & KN_DETACHED) == 0) {
   1182  1.129   thorpej 			kn->kn_status |= KN_DETACHED;
   1183  1.129   thorpej 			SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
   1184  1.129   thorpej 		}
   1185  1.129   thorpej 
   1186  1.129   thorpej 		/*
   1187  1.129   thorpej 		 * Always activate the knote for NOTE_EXIT regardless
   1188  1.129   thorpej 		 * of whether or not the listener cares about it.
   1189  1.129   thorpej 		 * This matches historical behavior.
   1190  1.129   thorpej 		 */
   1191  1.133   thorpej 		knote_activate_locked(kn);
   1192  1.133   thorpej 		mutex_spin_exit(&kq->kq_lock);
   1193    1.1     lukem 	}
   1194    1.8  jdolecek }
   1195    1.8  jdolecek 
   1196  1.133   thorpej #define	FILT_TIMER_NOSCHED	((uintptr_t)-1)
   1197  1.133   thorpej 
   1198    1.8  jdolecek static int
   1199  1.134   thorpej filt_timercompute(struct kevent *kev, uintptr_t *tticksp)
   1200    1.8  jdolecek {
   1201  1.132   thorpej 	struct timespec ts;
   1202  1.134   thorpej 	uintptr_t tticks;
   1203  1.132   thorpej 
   1204  1.134   thorpej 	if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) {
   1205  1.132   thorpej 		return EINVAL;
   1206  1.132   thorpej 	}
   1207  1.132   thorpej 
   1208  1.132   thorpej 	/*
   1209  1.132   thorpej 	 * Convert the event 'data' to a timespec, then convert the
   1210  1.132   thorpej 	 * timespec to callout ticks.
   1211  1.132   thorpej 	 */
   1212  1.134   thorpej 	switch (kev->fflags & NOTE_TIMER_UNITMASK) {
   1213  1.132   thorpej 	case NOTE_SECONDS:
   1214  1.134   thorpej 		ts.tv_sec = kev->data;
   1215  1.132   thorpej 		ts.tv_nsec = 0;
   1216  1.132   thorpej 		break;
   1217  1.132   thorpej 
   1218  1.132   thorpej 	case NOTE_MSECONDS:		/* == historical value 0 */
   1219  1.134   thorpej 		ts.tv_sec = kev->data / 1000;
   1220  1.134   thorpej 		ts.tv_nsec = (kev->data % 1000) * 1000000;
   1221  1.132   thorpej 		break;
   1222  1.132   thorpej 
   1223  1.132   thorpej 	case NOTE_USECONDS:
   1224  1.134   thorpej 		ts.tv_sec = kev->data / 1000000;
   1225  1.134   thorpej 		ts.tv_nsec = (kev->data % 1000000) * 1000;
   1226  1.132   thorpej 		break;
   1227  1.132   thorpej 
   1228  1.132   thorpej 	case NOTE_NSECONDS:
   1229  1.134   thorpej 		ts.tv_sec = kev->data / 1000000000;
   1230  1.134   thorpej 		ts.tv_nsec = kev->data % 1000000000;
   1231  1.132   thorpej 		break;
   1232  1.132   thorpej 
   1233  1.132   thorpej 	default:
   1234  1.132   thorpej 		return EINVAL;
   1235  1.132   thorpej 	}
   1236  1.132   thorpej 
   1237  1.134   thorpej 	if (kev->fflags & NOTE_ABSTIME) {
   1238  1.132   thorpej 		struct timespec deadline = ts;
   1239  1.132   thorpej 
   1240  1.132   thorpej 		/*
   1241  1.132   thorpej 		 * Get current time.
   1242  1.132   thorpej 		 *
   1243  1.132   thorpej 		 * XXX This is CLOCK_REALTIME.  There is no way to
   1244  1.132   thorpej 		 * XXX specify CLOCK_MONOTONIC.
   1245  1.132   thorpej 		 */
   1246  1.132   thorpej 		nanotime(&ts);
   1247    1.8  jdolecek 
   1248  1.134   thorpej 		/* Absolute timers do not repeat. */
   1249  1.134   thorpej 		kev->data = FILT_TIMER_NOSCHED;
   1250  1.134   thorpej 
   1251  1.132   thorpej 		/* If we're past the deadline, then the event will fire. */
   1252  1.132   thorpej 		if (timespeccmp(&deadline, &ts, <=)) {
   1253  1.134   thorpej 			tticks = FILT_TIMER_NOSCHED;
   1254  1.134   thorpej 			goto out;
   1255  1.132   thorpej 		}
   1256  1.132   thorpej 
   1257  1.132   thorpej 		/* Calculate how much time is left. */
   1258  1.132   thorpej 		timespecsub(&deadline, &ts, &ts);
   1259  1.132   thorpej 	} else {
   1260  1.132   thorpej 		/* EV_CLEAR automatically set for relative timers. */
   1261  1.134   thorpej 		kev->flags |= EV_CLEAR;
   1262  1.132   thorpej 	}
   1263  1.132   thorpej 
   1264  1.132   thorpej 	tticks = tstohz(&ts);
   1265    1.8  jdolecek 
   1266    1.8  jdolecek 	/* if the supplied value is under our resolution, use 1 tick */
   1267    1.8  jdolecek 	if (tticks == 0) {
   1268  1.134   thorpej 		if (kev->data == 0)
   1269   1.49        ad 			return EINVAL;
   1270    1.8  jdolecek 		tticks = 1;
   1271  1.134   thorpej 	} else if (tticks > INT_MAX) {
   1272  1.134   thorpej 		return EINVAL;
   1273    1.8  jdolecek 	}
   1274    1.8  jdolecek 
   1275  1.134   thorpej 	if ((kev->flags & EV_ONESHOT) != 0) {
   1276  1.132   thorpej 		/* Timer does not repeat. */
   1277  1.134   thorpej 		kev->data = FILT_TIMER_NOSCHED;
   1278  1.132   thorpej 	} else {
   1279  1.133   thorpej 		KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED);
   1280  1.134   thorpej 		kev->data = tticks;
   1281  1.134   thorpej 	}
   1282  1.134   thorpej 
   1283  1.134   thorpej  out:
   1284  1.134   thorpej 	*tticksp = tticks;
   1285  1.134   thorpej 
   1286  1.134   thorpej 	return 0;
   1287  1.134   thorpej }
   1288  1.134   thorpej 
   1289  1.134   thorpej static void
   1290  1.134   thorpej filt_timerexpire(void *knx)
   1291  1.134   thorpej {
   1292  1.134   thorpej 	struct knote *kn = knx;
   1293  1.134   thorpej 	struct kqueue *kq = kn->kn_kq;
   1294  1.134   thorpej 
   1295  1.134   thorpej 	mutex_spin_enter(&kq->kq_lock);
   1296  1.134   thorpej 	kn->kn_data++;
   1297  1.134   thorpej 	knote_activate_locked(kn);
   1298  1.134   thorpej 	if (kn->kn_sdata != FILT_TIMER_NOSCHED) {
   1299  1.134   thorpej 		KASSERT(kn->kn_sdata > 0 && kn->kn_sdata <= INT_MAX);
   1300  1.134   thorpej 		callout_schedule((callout_t *)kn->kn_hook,
   1301  1.134   thorpej 		    (int)kn->kn_sdata);
   1302  1.134   thorpej 	}
   1303  1.134   thorpej 	mutex_spin_exit(&kq->kq_lock);
   1304  1.134   thorpej }
   1305  1.134   thorpej 
   1306  1.136   thorpej static inline void
   1307  1.136   thorpej filt_timerstart(struct knote *kn, uintptr_t tticks)
   1308  1.136   thorpej {
   1309  1.136   thorpej 	callout_t *calloutp = kn->kn_hook;
   1310  1.136   thorpej 
   1311  1.136   thorpej 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
   1312  1.136   thorpej 	KASSERT(!callout_pending(calloutp));
   1313  1.136   thorpej 
   1314  1.136   thorpej 	if (__predict_false(tticks == FILT_TIMER_NOSCHED)) {
   1315  1.136   thorpej 		kn->kn_data = 1;
   1316  1.136   thorpej 	} else {
   1317  1.136   thorpej 		KASSERT(tticks <= INT_MAX);
   1318  1.136   thorpej 		callout_reset(calloutp, (int)tticks, filt_timerexpire, kn);
   1319  1.136   thorpej 	}
   1320  1.136   thorpej }
   1321  1.136   thorpej 
   1322  1.134   thorpej static int
   1323  1.134   thorpej filt_timerattach(struct knote *kn)
   1324  1.134   thorpej {
   1325  1.134   thorpej 	callout_t *calloutp;
   1326  1.134   thorpej 	struct kqueue *kq;
   1327  1.134   thorpej 	uintptr_t tticks;
   1328  1.134   thorpej 	int error;
   1329  1.134   thorpej 
   1330  1.134   thorpej 	struct kevent kev = {
   1331  1.134   thorpej 		.flags = kn->kn_flags,
   1332  1.134   thorpej 		.fflags = kn->kn_sfflags,
   1333  1.134   thorpej 		.data = kn->kn_sdata,
   1334  1.134   thorpej 	};
   1335  1.134   thorpej 
   1336  1.134   thorpej 	error = filt_timercompute(&kev, &tticks);
   1337  1.134   thorpej 	if (error) {
   1338  1.134   thorpej 		return error;
   1339  1.132   thorpej 	}
   1340  1.132   thorpej 
   1341   1.49        ad 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
   1342   1.49        ad 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
   1343   1.49        ad 		atomic_dec_uint(&kq_ncallouts);
   1344   1.49        ad 		return ENOMEM;
   1345   1.49        ad 	}
   1346   1.54        ad 	callout_init(calloutp, CALLOUT_MPSAFE);
   1347   1.49        ad 
   1348   1.49        ad 	kq = kn->kn_kq;
   1349   1.49        ad 	mutex_spin_enter(&kq->kq_lock);
   1350  1.134   thorpej 
   1351  1.134   thorpej 	kn->kn_sdata = kev.data;
   1352  1.134   thorpej 	kn->kn_flags = kev.flags;
   1353  1.134   thorpej 	KASSERT(kn->kn_sfflags == kev.fflags);
   1354   1.49        ad 	kn->kn_hook = calloutp;
   1355  1.134   thorpej 
   1356  1.136   thorpej 	filt_timerstart(kn, tticks);
   1357  1.134   thorpej 
   1358   1.49        ad 	mutex_spin_exit(&kq->kq_lock);
   1359   1.49        ad 
   1360    1.8  jdolecek 	return (0);
   1361    1.8  jdolecek }
   1362    1.8  jdolecek 
   1363    1.8  jdolecek static void
   1364    1.8  jdolecek filt_timerdetach(struct knote *kn)
   1365    1.8  jdolecek {
   1366   1.39        ad 	callout_t *calloutp;
   1367  1.103  christos 	struct kqueue *kq = kn->kn_kq;
   1368  1.103  christos 
   1369  1.133   thorpej 	/* prevent rescheduling when we expire */
   1370  1.103  christos 	mutex_spin_enter(&kq->kq_lock);
   1371  1.133   thorpej 	kn->kn_sdata = FILT_TIMER_NOSCHED;
   1372  1.103  christos 	mutex_spin_exit(&kq->kq_lock);
   1373    1.8  jdolecek 
   1374   1.39        ad 	calloutp = (callout_t *)kn->kn_hook;
   1375  1.125   thorpej 
   1376  1.125   thorpej 	/*
   1377  1.125   thorpej 	 * Attempt to stop the callout.  This will block if it's
   1378  1.125   thorpej 	 * already running.
   1379  1.125   thorpej 	 */
   1380   1.55        ad 	callout_halt(calloutp, NULL);
   1381  1.125   thorpej 
   1382   1.39        ad 	callout_destroy(calloutp);
   1383   1.49        ad 	kmem_free(calloutp, sizeof(*calloutp));
   1384   1.49        ad 	atomic_dec_uint(&kq_ncallouts);
   1385    1.8  jdolecek }
   1386    1.8  jdolecek 
   1387    1.8  jdolecek static int
   1388  1.136   thorpej filt_timertouch(struct knote *kn, struct kevent *kev, long type)
   1389  1.136   thorpej {
   1390  1.136   thorpej 	struct kqueue *kq = kn->kn_kq;
   1391  1.136   thorpej 	callout_t *calloutp;
   1392  1.136   thorpej 	uintptr_t tticks;
   1393  1.136   thorpej 	int error;
   1394  1.136   thorpej 
   1395  1.136   thorpej 	KASSERT(mutex_owned(&kq->kq_lock));
   1396  1.136   thorpej 
   1397  1.136   thorpej 	switch (type) {
   1398  1.136   thorpej 	case EVENT_REGISTER:
   1399  1.136   thorpej 		/* Only relevant for EV_ADD. */
   1400  1.136   thorpej 		if ((kev->flags & EV_ADD) == 0) {
   1401  1.136   thorpej 			return 0;
   1402  1.136   thorpej 		}
   1403  1.136   thorpej 
   1404  1.136   thorpej 		/*
   1405  1.136   thorpej 		 * Stop the timer, under the assumption that if
   1406  1.136   thorpej 		 * an application is re-configuring the timer,
   1407  1.136   thorpej 		 * they no longer care about the old one.  We
   1408  1.136   thorpej 		 * can safely drop the kq_lock while we wait
   1409  1.136   thorpej 		 * because fdp->fd_lock will be held throughout,
   1410  1.136   thorpej 		 * ensuring that no one can sneak in with an
   1411  1.136   thorpej 		 * EV_DELETE or close the kq.
   1412  1.136   thorpej 		 */
   1413  1.136   thorpej 		KASSERT(mutex_owned(&kq->kq_fdp->fd_lock));
   1414  1.136   thorpej 
   1415  1.136   thorpej 		calloutp = kn->kn_hook;
   1416  1.136   thorpej 		callout_halt(calloutp, &kq->kq_lock);
   1417  1.136   thorpej 		KASSERT(mutex_owned(&kq->kq_lock));
   1418  1.136   thorpej 		knote_deactivate_locked(kn);
   1419  1.136   thorpej 		kn->kn_data = 0;
   1420  1.136   thorpej 
   1421  1.136   thorpej 		error = filt_timercompute(kev, &tticks);
   1422  1.136   thorpej 		if (error) {
   1423  1.136   thorpej 			return error;
   1424  1.136   thorpej 		}
   1425  1.136   thorpej 		kn->kn_sdata = kev->data;
   1426  1.136   thorpej 		kn->kn_flags = kev->flags;
   1427  1.136   thorpej 		kn->kn_sfflags = kev->fflags;
   1428  1.136   thorpej 		filt_timerstart(kn, tticks);
   1429  1.136   thorpej 		break;
   1430  1.136   thorpej 
   1431  1.136   thorpej 	case EVENT_PROCESS:
   1432  1.136   thorpej 		*kev = kn->kn_kevent;
   1433  1.136   thorpej 		break;
   1434  1.136   thorpej 
   1435  1.136   thorpej 	default:
   1436  1.136   thorpej 		panic("%s: invalid type (%ld)", __func__, type);
   1437  1.136   thorpej 	}
   1438  1.136   thorpej 
   1439  1.136   thorpej 	return 0;
   1440  1.136   thorpej }
   1441  1.136   thorpej 
   1442  1.136   thorpej static int
   1443   1.33      yamt filt_timer(struct knote *kn, long hint)
   1444    1.8  jdolecek {
   1445  1.133   thorpej 	struct kqueue *kq = kn->kn_kq;
   1446   1.49        ad 	int rv;
   1447   1.49        ad 
   1448  1.133   thorpej 	mutex_spin_enter(&kq->kq_lock);
   1449   1.49        ad 	rv = (kn->kn_data != 0);
   1450  1.133   thorpej 	mutex_spin_exit(&kq->kq_lock);
   1451   1.49        ad 
   1452   1.49        ad 	return rv;
   1453    1.1     lukem }
   1454    1.1     lukem 
   1455  1.108  christos static int
   1456  1.108  christos filt_userattach(struct knote *kn)
   1457  1.108  christos {
   1458  1.108  christos 	struct kqueue *kq = kn->kn_kq;
   1459  1.108  christos 
   1460  1.108  christos 	/*
   1461  1.108  christos 	 * EVFILT_USER knotes are not attached to anything in the kernel.
   1462  1.108  christos 	 */
   1463  1.108  christos 	mutex_spin_enter(&kq->kq_lock);
   1464  1.108  christos 	kn->kn_hook = NULL;
   1465  1.108  christos 	if (kn->kn_fflags & NOTE_TRIGGER)
   1466  1.108  christos 		kn->kn_hookid = 1;
   1467  1.108  christos 	else
   1468  1.108  christos 		kn->kn_hookid = 0;
   1469  1.108  christos 	mutex_spin_exit(&kq->kq_lock);
   1470  1.108  christos 	return (0);
   1471  1.108  christos }
   1472  1.108  christos 
   1473  1.108  christos static void
   1474  1.108  christos filt_userdetach(struct knote *kn)
   1475  1.108  christos {
   1476  1.108  christos 
   1477  1.108  christos 	/*
   1478  1.108  christos 	 * EVFILT_USER knotes are not attached to anything in the kernel.
   1479  1.108  christos 	 */
   1480  1.108  christos }
   1481  1.108  christos 
   1482  1.108  christos static int
   1483  1.108  christos filt_user(struct knote *kn, long hint)
   1484  1.108  christos {
   1485  1.108  christos 	struct kqueue *kq = kn->kn_kq;
   1486  1.108  christos 	int hookid;
   1487  1.108  christos 
   1488  1.108  christos 	mutex_spin_enter(&kq->kq_lock);
   1489  1.108  christos 	hookid = kn->kn_hookid;
   1490  1.108  christos 	mutex_spin_exit(&kq->kq_lock);
   1491  1.108  christos 
   1492  1.108  christos 	return hookid;
   1493  1.108  christos }
   1494  1.108  christos 
   1495  1.135   thorpej static int
   1496  1.108  christos filt_usertouch(struct knote *kn, struct kevent *kev, long type)
   1497  1.108  christos {
   1498  1.108  christos 	int ffctrl;
   1499  1.108  christos 
   1500  1.117     skrll 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
   1501  1.116  jdolecek 
   1502  1.108  christos 	switch (type) {
   1503  1.108  christos 	case EVENT_REGISTER:
   1504  1.108  christos 		if (kev->fflags & NOTE_TRIGGER)
   1505  1.108  christos 			kn->kn_hookid = 1;
   1506  1.108  christos 
   1507  1.108  christos 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
   1508  1.108  christos 		kev->fflags &= NOTE_FFLAGSMASK;
   1509  1.108  christos 		switch (ffctrl) {
   1510  1.108  christos 		case NOTE_FFNOP:
   1511  1.108  christos 			break;
   1512  1.108  christos 
   1513  1.108  christos 		case NOTE_FFAND:
   1514  1.108  christos 			kn->kn_sfflags &= kev->fflags;
   1515  1.108  christos 			break;
   1516  1.108  christos 
   1517  1.108  christos 		case NOTE_FFOR:
   1518  1.108  christos 			kn->kn_sfflags |= kev->fflags;
   1519  1.108  christos 			break;
   1520  1.108  christos 
   1521  1.108  christos 		case NOTE_FFCOPY:
   1522  1.108  christos 			kn->kn_sfflags = kev->fflags;
   1523  1.108  christos 			break;
   1524  1.108  christos 
   1525  1.108  christos 		default:
   1526  1.108  christos 			/* XXX Return error? */
   1527  1.108  christos 			break;
   1528  1.108  christos 		}
   1529  1.108  christos 		kn->kn_sdata = kev->data;
   1530  1.108  christos 		if (kev->flags & EV_CLEAR) {
   1531  1.108  christos 			kn->kn_hookid = 0;
   1532  1.108  christos 			kn->kn_data = 0;
   1533  1.108  christos 			kn->kn_fflags = 0;
   1534  1.108  christos 		}
   1535  1.108  christos 		break;
   1536  1.108  christos 
   1537  1.108  christos 	case EVENT_PROCESS:
   1538  1.108  christos 		*kev = kn->kn_kevent;
   1539  1.108  christos 		kev->fflags = kn->kn_sfflags;
   1540  1.108  christos 		kev->data = kn->kn_sdata;
   1541  1.108  christos 		if (kn->kn_flags & EV_CLEAR) {
   1542  1.108  christos 			kn->kn_hookid = 0;
   1543  1.108  christos 			kn->kn_data = 0;
   1544  1.108  christos 			kn->kn_fflags = 0;
   1545  1.108  christos 		}
   1546  1.108  christos 		break;
   1547  1.108  christos 
   1548  1.108  christos 	default:
   1549  1.108  christos 		panic("filt_usertouch() - invalid type (%ld)", type);
   1550  1.108  christos 		break;
   1551  1.108  christos 	}
   1552  1.135   thorpej 
   1553  1.135   thorpej 	return 0;
   1554  1.108  christos }
   1555  1.108  christos 
   1556  1.102  christos /*
   1557    1.3  jdolecek  * filt_seltrue:
   1558    1.3  jdolecek  *
   1559    1.3  jdolecek  *	This filter "event" routine simulates seltrue().
   1560    1.3  jdolecek  */
   1561    1.1     lukem int
   1562   1.33      yamt filt_seltrue(struct knote *kn, long hint)
   1563    1.1     lukem {
   1564    1.1     lukem 
   1565    1.3  jdolecek 	/*
   1566    1.3  jdolecek 	 * We don't know how much data can be read/written,
   1567    1.3  jdolecek 	 * but we know that it *can* be.  This is about as
   1568    1.3  jdolecek 	 * good as select/poll does as well.
   1569    1.3  jdolecek 	 */
   1570    1.3  jdolecek 	kn->kn_data = 0;
   1571    1.3  jdolecek 	return (1);
   1572    1.3  jdolecek }
   1573    1.3  jdolecek 
   1574    1.3  jdolecek /*
   1575    1.3  jdolecek  * This provides full kqfilter entry for device switch tables, which
   1576    1.3  jdolecek  * has same effect as filter using filt_seltrue() as filter method.
   1577    1.3  jdolecek  */
   1578    1.3  jdolecek static void
   1579   1.33      yamt filt_seltruedetach(struct knote *kn)
   1580    1.3  jdolecek {
   1581    1.3  jdolecek 	/* Nothing to do */
   1582    1.3  jdolecek }
   1583    1.3  jdolecek 
   1584   1.96      maya const struct filterops seltrue_filtops = {
   1585  1.123   thorpej 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   1586   1.96      maya 	.f_attach = NULL,
   1587   1.96      maya 	.f_detach = filt_seltruedetach,
   1588   1.96      maya 	.f_event = filt_seltrue,
   1589   1.96      maya };
   1590    1.3  jdolecek 
   1591    1.3  jdolecek int
   1592   1.33      yamt seltrue_kqfilter(dev_t dev, struct knote *kn)
   1593    1.3  jdolecek {
   1594    1.3  jdolecek 	switch (kn->kn_filter) {
   1595    1.3  jdolecek 	case EVFILT_READ:
   1596    1.3  jdolecek 	case EVFILT_WRITE:
   1597    1.3  jdolecek 		kn->kn_fop = &seltrue_filtops;
   1598    1.3  jdolecek 		break;
   1599    1.3  jdolecek 	default:
   1600   1.43     pooka 		return (EINVAL);
   1601    1.3  jdolecek 	}
   1602    1.3  jdolecek 
   1603    1.3  jdolecek 	/* Nothing more to do */
   1604    1.3  jdolecek 	return (0);
   1605    1.3  jdolecek }
   1606    1.3  jdolecek 
   1607    1.3  jdolecek /*
   1608    1.3  jdolecek  * kqueue(2) system call.
   1609    1.3  jdolecek  */
   1610   1.72  christos static int
   1611   1.72  christos kqueue1(struct lwp *l, int flags, register_t *retval)
   1612    1.3  jdolecek {
   1613   1.49        ad 	struct kqueue *kq;
   1614   1.49        ad 	file_t *fp;
   1615   1.49        ad 	int fd, error;
   1616    1.3  jdolecek 
   1617   1.49        ad 	if ((error = fd_allocfile(&fp, &fd)) != 0)
   1618   1.49        ad 		return error;
   1619   1.75  christos 	fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
   1620    1.1     lukem 	fp->f_type = DTYPE_KQUEUE;
   1621    1.1     lukem 	fp->f_ops = &kqueueops;
   1622   1.49        ad 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
   1623   1.49        ad 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
   1624   1.49        ad 	cv_init(&kq->kq_cv, "kqueue");
   1625   1.49        ad 	selinit(&kq->kq_sel);
   1626    1.1     lukem 	TAILQ_INIT(&kq->kq_head);
   1627   1.82      matt 	fp->f_kqueue = kq;
   1628    1.3  jdolecek 	*retval = fd;
   1629   1.49        ad 	kq->kq_fdp = curlwp->l_fd;
   1630   1.72  christos 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1631   1.49        ad 	fd_affix(curproc, fp, fd);
   1632   1.49        ad 	return error;
   1633    1.1     lukem }
   1634    1.1     lukem 
   1635    1.3  jdolecek /*
   1636   1.72  christos  * kqueue(2) system call.
   1637   1.72  christos  */
   1638   1.72  christos int
   1639   1.72  christos sys_kqueue(struct lwp *l, const void *v, register_t *retval)
   1640   1.72  christos {
   1641   1.72  christos 	return kqueue1(l, 0, retval);
   1642   1.72  christos }
   1643   1.72  christos 
   1644   1.72  christos int
   1645   1.72  christos sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
   1646   1.72  christos     register_t *retval)
   1647   1.72  christos {
   1648   1.72  christos 	/* {
   1649   1.72  christos 		syscallarg(int) flags;
   1650   1.72  christos 	} */
   1651   1.72  christos 	return kqueue1(l, SCARG(uap, flags), retval);
   1652   1.72  christos }
   1653   1.72  christos 
   1654   1.72  christos /*
   1655    1.3  jdolecek  * kevent(2) system call.
   1656    1.3  jdolecek  */
   1657   1.61  christos int
   1658   1.81      matt kevent_fetch_changes(void *ctx, const struct kevent *changelist,
   1659   1.61  christos     struct kevent *changes, size_t index, int n)
   1660   1.24      cube {
   1661   1.49        ad 
   1662   1.24      cube 	return copyin(changelist + index, changes, n * sizeof(*changes));
   1663   1.24      cube }
   1664   1.24      cube 
   1665   1.61  christos int
   1666   1.81      matt kevent_put_events(void *ctx, struct kevent *events,
   1667   1.61  christos     struct kevent *eventlist, size_t index, int n)
   1668   1.24      cube {
   1669   1.49        ad 
   1670   1.24      cube 	return copyout(events, eventlist + index, n * sizeof(*events));
   1671   1.24      cube }
   1672   1.24      cube 
   1673   1.24      cube static const struct kevent_ops kevent_native_ops = {
   1674   1.60  gmcgarry 	.keo_private = NULL,
   1675   1.60  gmcgarry 	.keo_fetch_timeout = copyin,
   1676   1.60  gmcgarry 	.keo_fetch_changes = kevent_fetch_changes,
   1677   1.60  gmcgarry 	.keo_put_events = kevent_put_events,
   1678   1.24      cube };
   1679   1.24      cube 
   1680    1.1     lukem int
   1681   1.61  christos sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
   1682   1.61  christos     register_t *retval)
   1683    1.1     lukem {
   1684   1.44       dsl 	/* {
   1685    1.3  jdolecek 		syscallarg(int) fd;
   1686    1.3  jdolecek 		syscallarg(const struct kevent *) changelist;
   1687    1.3  jdolecek 		syscallarg(size_t) nchanges;
   1688    1.3  jdolecek 		syscallarg(struct kevent *) eventlist;
   1689    1.3  jdolecek 		syscallarg(size_t) nevents;
   1690    1.3  jdolecek 		syscallarg(const struct timespec *) timeout;
   1691   1.44       dsl 	} */
   1692   1.24      cube 
   1693   1.49        ad 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
   1694   1.24      cube 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
   1695   1.24      cube 	    SCARG(uap, timeout), &kevent_native_ops);
   1696   1.24      cube }
   1697   1.24      cube 
   1698   1.24      cube int
   1699   1.49        ad kevent1(register_t *retval, int fd,
   1700   1.49        ad 	const struct kevent *changelist, size_t nchanges,
   1701   1.49        ad 	struct kevent *eventlist, size_t nevents,
   1702   1.49        ad 	const struct timespec *timeout,
   1703   1.49        ad 	const struct kevent_ops *keops)
   1704   1.24      cube {
   1705   1.49        ad 	struct kevent *kevp;
   1706   1.49        ad 	struct kqueue *kq;
   1707    1.3  jdolecek 	struct timespec	ts;
   1708   1.49        ad 	size_t i, n, ichange;
   1709   1.49        ad 	int nerrors, error;
   1710   1.80      maxv 	struct kevent kevbuf[KQ_NEVENTS];	/* approx 300 bytes on 64-bit */
   1711   1.49        ad 	file_t *fp;
   1712    1.3  jdolecek 
   1713    1.3  jdolecek 	/* check that we're dealing with a kq */
   1714   1.49        ad 	fp = fd_getfile(fd);
   1715   1.10        pk 	if (fp == NULL)
   1716    1.1     lukem 		return (EBADF);
   1717   1.10        pk 
   1718   1.10        pk 	if (fp->f_type != DTYPE_KQUEUE) {
   1719   1.49        ad 		fd_putfile(fd);
   1720   1.10        pk 		return (EBADF);
   1721   1.10        pk 	}
   1722    1.1     lukem 
   1723   1.24      cube 	if (timeout != NULL) {
   1724   1.24      cube 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
   1725    1.1     lukem 		if (error)
   1726    1.1     lukem 			goto done;
   1727   1.24      cube 		timeout = &ts;
   1728    1.1     lukem 	}
   1729    1.1     lukem 
   1730   1.82      matt 	kq = fp->f_kqueue;
   1731    1.1     lukem 	nerrors = 0;
   1732   1.24      cube 	ichange = 0;
   1733    1.1     lukem 
   1734    1.3  jdolecek 	/* traverse list of events to register */
   1735   1.24      cube 	while (nchanges > 0) {
   1736   1.49        ad 		n = MIN(nchanges, __arraycount(kevbuf));
   1737   1.24      cube 		error = (*keops->keo_fetch_changes)(keops->keo_private,
   1738   1.49        ad 		    changelist, kevbuf, ichange, n);
   1739    1.1     lukem 		if (error)
   1740    1.1     lukem 			goto done;
   1741    1.1     lukem 		for (i = 0; i < n; i++) {
   1742   1.49        ad 			kevp = &kevbuf[i];
   1743    1.1     lukem 			kevp->flags &= ~EV_SYSFLAGS;
   1744    1.3  jdolecek 			/* register each knote */
   1745   1.49        ad 			error = kqueue_register(kq, kevp);
   1746   1.89   abhinav 			if (!error && !(kevp->flags & EV_RECEIPT))
   1747   1.89   abhinav 				continue;
   1748   1.89   abhinav 			if (nevents == 0)
   1749   1.89   abhinav 				goto done;
   1750   1.89   abhinav 			kevp->flags = EV_ERROR;
   1751   1.89   abhinav 			kevp->data = error;
   1752   1.89   abhinav 			error = (*keops->keo_put_events)
   1753   1.89   abhinav 				(keops->keo_private, kevp,
   1754   1.89   abhinav 				 eventlist, nerrors, 1);
   1755   1.89   abhinav 			if (error)
   1756   1.89   abhinav 				goto done;
   1757   1.89   abhinav 			nevents--;
   1758   1.89   abhinav 			nerrors++;
   1759    1.1     lukem 		}
   1760   1.24      cube 		nchanges -= n;	/* update the results */
   1761   1.24      cube 		ichange += n;
   1762    1.1     lukem 	}
   1763    1.1     lukem 	if (nerrors) {
   1764    1.3  jdolecek 		*retval = nerrors;
   1765    1.1     lukem 		error = 0;
   1766    1.1     lukem 		goto done;
   1767    1.1     lukem 	}
   1768    1.1     lukem 
   1769    1.3  jdolecek 	/* actually scan through the events */
   1770   1.49        ad 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
   1771   1.49        ad 	    kevbuf, __arraycount(kevbuf));
   1772    1.3  jdolecek  done:
   1773   1.49        ad 	fd_putfile(fd);
   1774    1.1     lukem 	return (error);
   1775    1.1     lukem }
   1776    1.1     lukem 
   1777    1.3  jdolecek /*
   1778    1.3  jdolecek  * Register a given kevent kev onto the kqueue
   1779    1.3  jdolecek  */
   1780   1.49        ad static int
   1781   1.49        ad kqueue_register(struct kqueue *kq, struct kevent *kev)
   1782    1.1     lukem {
   1783   1.49        ad 	struct kfilter *kfilter;
   1784   1.49        ad 	filedesc_t *fdp;
   1785   1.49        ad 	file_t *fp;
   1786   1.49        ad 	fdfile_t *ff;
   1787   1.49        ad 	struct knote *kn, *newkn;
   1788   1.49        ad 	struct klist *list;
   1789   1.49        ad 	int error, fd, rv;
   1790    1.3  jdolecek 
   1791    1.3  jdolecek 	fdp = kq->kq_fdp;
   1792    1.3  jdolecek 	fp = NULL;
   1793    1.3  jdolecek 	kn = NULL;
   1794    1.3  jdolecek 	error = 0;
   1795   1.49        ad 	fd = 0;
   1796   1.49        ad 
   1797  1.142   thorpej 	newkn = knote_alloc(true);
   1798   1.49        ad 
   1799   1.49        ad 	rw_enter(&kqueue_filter_lock, RW_READER);
   1800    1.3  jdolecek 	kfilter = kfilter_byfilter(kev->filter);
   1801    1.3  jdolecek 	if (kfilter == NULL || kfilter->filtops == NULL) {
   1802    1.3  jdolecek 		/* filter not found nor implemented */
   1803   1.49        ad 		rw_exit(&kqueue_filter_lock);
   1804  1.142   thorpej 		knote_free(newkn);
   1805    1.1     lukem 		return (EINVAL);
   1806    1.1     lukem 	}
   1807    1.1     lukem 
   1808    1.3  jdolecek 	/* search if knote already exists */
   1809  1.121   thorpej 	if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
   1810    1.3  jdolecek 		/* monitoring a file descriptor */
   1811   1.87  christos 		/* validate descriptor */
   1812   1.88  christos 		if (kev->ident > INT_MAX
   1813   1.88  christos 		    || (fp = fd_getfile(fd = kev->ident)) == NULL) {
   1814   1.49        ad 			rw_exit(&kqueue_filter_lock);
   1815  1.142   thorpej 			knote_free(newkn);
   1816   1.49        ad 			return EBADF;
   1817   1.49        ad 		}
   1818   1.74     rmind 		mutex_enter(&fdp->fd_lock);
   1819   1.65        ad 		ff = fdp->fd_dt->dt_ff[fd];
   1820   1.98  christos 		if (ff->ff_refcnt & FR_CLOSING) {
   1821   1.98  christos 			error = EBADF;
   1822   1.98  christos 			goto doneunlock;
   1823   1.98  christos 		}
   1824   1.49        ad 		if (fd <= fdp->fd_lastkqfile) {
   1825   1.49        ad 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
   1826    1.1     lukem 				if (kq == kn->kn_kq &&
   1827    1.1     lukem 				    kev->filter == kn->kn_filter)
   1828    1.1     lukem 					break;
   1829   1.49        ad 			}
   1830    1.1     lukem 		}
   1831    1.1     lukem 	} else {
   1832    1.3  jdolecek 		/*
   1833    1.3  jdolecek 		 * not monitoring a file descriptor, so
   1834    1.3  jdolecek 		 * lookup knotes in internal hash table
   1835    1.3  jdolecek 		 */
   1836   1.74     rmind 		mutex_enter(&fdp->fd_lock);
   1837    1.1     lukem 		if (fdp->fd_knhashmask != 0) {
   1838    1.1     lukem 			list = &fdp->fd_knhash[
   1839    1.1     lukem 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
   1840   1.49        ad 			SLIST_FOREACH(kn, list, kn_link) {
   1841    1.1     lukem 				if (kev->ident == kn->kn_id &&
   1842    1.1     lukem 				    kq == kn->kn_kq &&
   1843    1.1     lukem 				    kev->filter == kn->kn_filter)
   1844    1.1     lukem 					break;
   1845   1.49        ad 			}
   1846    1.1     lukem 		}
   1847    1.1     lukem 	}
   1848    1.1     lukem 
   1849  1.129   thorpej 	/* It's safe to test KQ_CLOSING while holding only the fd_lock. */
   1850  1.129   thorpej 	KASSERT(mutex_owned(&fdp->fd_lock));
   1851  1.129   thorpej 	KASSERT((kq->kq_count & KQ_CLOSING) == 0);
   1852  1.129   thorpej 
   1853    1.1     lukem 	/*
   1854    1.1     lukem 	 * kn now contains the matching knote, or NULL if no match
   1855    1.1     lukem 	 */
   1856  1.108  christos 	if (kn == NULL) {
   1857  1.108  christos 		if (kev->flags & EV_ADD) {
   1858    1.3  jdolecek 			/* create new knote */
   1859   1.49        ad 			kn = newkn;
   1860   1.49        ad 			newkn = NULL;
   1861   1.49        ad 			kn->kn_obj = fp;
   1862   1.79  christos 			kn->kn_id = kev->ident;
   1863    1.1     lukem 			kn->kn_kq = kq;
   1864    1.3  jdolecek 			kn->kn_fop = kfilter->filtops;
   1865   1.49        ad 			kn->kn_kfilter = kfilter;
   1866   1.49        ad 			kn->kn_sfflags = kev->fflags;
   1867   1.49        ad 			kn->kn_sdata = kev->data;
   1868   1.49        ad 			kev->fflags = 0;
   1869   1.49        ad 			kev->data = 0;
   1870   1.49        ad 			kn->kn_kevent = *kev;
   1871    1.1     lukem 
   1872   1.85  christos 			KASSERT(kn->kn_fop != NULL);
   1873    1.1     lukem 			/*
   1874    1.1     lukem 			 * apply reference count to knote structure, and
   1875    1.1     lukem 			 * do not release it at the end of this routine.
   1876    1.1     lukem 			 */
   1877    1.1     lukem 			fp = NULL;
   1878    1.1     lukem 
   1879  1.121   thorpej 			if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
   1880   1.49        ad 				/*
   1881   1.49        ad 				 * If knote is not on an fd, store on
   1882   1.49        ad 				 * internal hash table.
   1883   1.49        ad 				 */
   1884   1.49        ad 				if (fdp->fd_knhashmask == 0) {
   1885   1.49        ad 					/* XXXAD can block with fd_lock held */
   1886   1.49        ad 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
   1887   1.59        ad 					    HASH_LIST, true,
   1888   1.49        ad 					    &fdp->fd_knhashmask);
   1889   1.49        ad 				}
   1890   1.49        ad 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
   1891   1.49        ad 				    fdp->fd_knhashmask)];
   1892   1.49        ad 			} else {
   1893   1.49        ad 				/* Otherwise, knote is on an fd. */
   1894   1.49        ad 				list = (struct klist *)
   1895   1.65        ad 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   1896   1.49        ad 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
   1897   1.49        ad 					fdp->fd_lastkqfile = kn->kn_id;
   1898   1.49        ad 			}
   1899   1.49        ad 			SLIST_INSERT_HEAD(list, kn, kn_link);
   1900    1.1     lukem 
   1901  1.122   thorpej 			/*
   1902  1.122   thorpej 			 * N.B. kn->kn_fop may change as the result
   1903  1.122   thorpej 			 * of filter_attach()!
   1904  1.122   thorpej 			 */
   1905  1.122   thorpej 			error = filter_attach(kn);
   1906   1.49        ad 			if (error != 0) {
   1907  1.100  christos #ifdef DEBUG
   1908  1.105  christos 				struct proc *p = curlwp->l_proc;
   1909  1.101  christos 				const file_t *ft = kn->kn_obj;
   1910  1.105  christos 				printf("%s: %s[%d]: event type %d not "
   1911  1.105  christos 				    "supported for file type %d/%s "
   1912  1.105  christos 				    "(error %d)\n", __func__,
   1913  1.105  christos 				    p->p_comm, p->p_pid,
   1914  1.101  christos 				    kn->kn_filter, ft ? ft->f_type : -1,
   1915  1.101  christos 				    ft ? ft->f_ops->fo_name : "?", error);
   1916  1.100  christos #endif
   1917  1.100  christos 
   1918  1.129   thorpej 				/*
   1919  1.129   thorpej 				 * N.B. no need to check for this note to
   1920  1.129   thorpej 				 * be in-flux, since it was never visible
   1921  1.129   thorpej 				 * to the monitored object.
   1922  1.129   thorpej 				 *
   1923  1.129   thorpej 				 * knote_detach() drops fdp->fd_lock
   1924  1.129   thorpej 				 */
   1925  1.129   thorpej 				mutex_enter(&kq->kq_lock);
   1926  1.129   thorpej 				KNOTE_WILLDETACH(kn);
   1927  1.129   thorpej 				KASSERT(kn_in_flux(kn) == false);
   1928  1.129   thorpej 				mutex_exit(&kq->kq_lock);
   1929   1.49        ad 				knote_detach(kn, fdp, false);
   1930    1.1     lukem 				goto done;
   1931    1.1     lukem 			}
   1932   1.49        ad 			atomic_inc_uint(&kfilter->refcnt);
   1933  1.108  christos 			goto done_ev_add;
   1934    1.1     lukem 		} else {
   1935  1.108  christos 			/* No matching knote and the EV_ADD flag is not set. */
   1936  1.108  christos 			error = ENOENT;
   1937  1.108  christos 			goto doneunlock;
   1938    1.1     lukem 		}
   1939  1.108  christos 	}
   1940  1.108  christos 
   1941  1.108  christos 	if (kev->flags & EV_DELETE) {
   1942  1.129   thorpej 		/*
   1943  1.129   thorpej 		 * Let the world know that this knote is about to go
   1944  1.129   thorpej 		 * away, and wait for it to settle if it's currently
   1945  1.129   thorpej 		 * in-flux.
   1946  1.129   thorpej 		 */
   1947  1.129   thorpej 		mutex_spin_enter(&kq->kq_lock);
   1948  1.129   thorpej 		if (kn->kn_status & KN_WILLDETACH) {
   1949  1.129   thorpej 			/*
   1950  1.129   thorpej 			 * This knote is already on its way out,
   1951  1.129   thorpej 			 * so just be done.
   1952  1.129   thorpej 			 */
   1953  1.129   thorpej 			mutex_spin_exit(&kq->kq_lock);
   1954  1.129   thorpej 			goto doneunlock;
   1955  1.129   thorpej 		}
   1956  1.129   thorpej 		KNOTE_WILLDETACH(kn);
   1957  1.129   thorpej 		if (kn_in_flux(kn)) {
   1958  1.129   thorpej 			mutex_exit(&fdp->fd_lock);
   1959  1.129   thorpej 			/*
   1960  1.129   thorpej 			 * It's safe for us to conclusively wait for
   1961  1.129   thorpej 			 * this knote to settle because we know we'll
   1962  1.129   thorpej 			 * be completing the detach.
   1963  1.129   thorpej 			 */
   1964  1.129   thorpej 			kn_wait_flux(kn, true);
   1965  1.129   thorpej 			KASSERT(kn_in_flux(kn) == false);
   1966  1.129   thorpej 			mutex_spin_exit(&kq->kq_lock);
   1967  1.129   thorpej 			mutex_enter(&fdp->fd_lock);
   1968  1.129   thorpej 		} else {
   1969  1.129   thorpej 			mutex_spin_exit(&kq->kq_lock);
   1970  1.129   thorpej 		}
   1971  1.129   thorpej 
   1972  1.108  christos 		/* knote_detach() drops fdp->fd_lock */
   1973  1.108  christos 		knote_detach(kn, fdp, true);
   1974  1.108  christos 		goto done;
   1975  1.108  christos 	}
   1976  1.108  christos 
   1977  1.108  christos 	/*
   1978  1.108  christos 	 * The user may change some filter values after the
   1979  1.108  christos 	 * initial EV_ADD, but doing so will not reset any
   1980  1.108  christos 	 * filter which have already been triggered.
   1981  1.108  christos 	 */
   1982  1.108  christos 	kn->kn_kevent.udata = kev->udata;
   1983  1.108  christos 	KASSERT(kn->kn_fop != NULL);
   1984  1.121   thorpej 	if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
   1985  1.121   thorpej 	    kn->kn_fop->f_touch != NULL) {
   1986  1.116  jdolecek 		mutex_spin_enter(&kq->kq_lock);
   1987  1.135   thorpej 		error = filter_touch(kn, kev, EVENT_REGISTER);
   1988  1.116  jdolecek 		mutex_spin_exit(&kq->kq_lock);
   1989  1.135   thorpej 		if (__predict_false(error != 0)) {
   1990  1.135   thorpej 			/* Never a new knote (which would consume newkn). */
   1991  1.135   thorpej 			KASSERT(newkn != NULL);
   1992  1.135   thorpej 			goto doneunlock;
   1993  1.135   thorpej 		}
   1994   1.49        ad 	} else {
   1995  1.108  christos 		kn->kn_sfflags = kev->fflags;
   1996  1.108  christos 		kn->kn_sdata = kev->data;
   1997    1.1     lukem 	}
   1998    1.1     lukem 
   1999  1.108  christos 	/*
   2000  1.108  christos 	 * We can get here if we are trying to attach
   2001  1.108  christos 	 * an event to a file descriptor that does not
   2002  1.108  christos 	 * support events, and the attach routine is
   2003  1.108  christos 	 * broken and does not return an error.
   2004  1.108  christos 	 */
   2005  1.135   thorpej  done_ev_add:
   2006  1.122   thorpej 	rv = filter_event(kn, 0);
   2007  1.108  christos 	if (rv)
   2008  1.108  christos 		knote_activate(kn);
   2009  1.108  christos 
   2010    1.3  jdolecek 	/* disable knote */
   2011   1.49        ad 	if ((kev->flags & EV_DISABLE)) {
   2012   1.49        ad 		mutex_spin_enter(&kq->kq_lock);
   2013   1.49        ad 		if ((kn->kn_status & KN_DISABLED) == 0)
   2014   1.49        ad 			kn->kn_status |= KN_DISABLED;
   2015   1.49        ad 		mutex_spin_exit(&kq->kq_lock);
   2016    1.1     lukem 	}
   2017    1.1     lukem 
   2018    1.3  jdolecek 	/* enable knote */
   2019   1.49        ad 	if ((kev->flags & EV_ENABLE)) {
   2020   1.49        ad 		knote_enqueue(kn);
   2021    1.1     lukem 	}
   2022  1.135   thorpej  doneunlock:
   2023   1.49        ad 	mutex_exit(&fdp->fd_lock);
   2024    1.3  jdolecek  done:
   2025   1.49        ad 	rw_exit(&kqueue_filter_lock);
   2026   1.49        ad 	if (newkn != NULL)
   2027  1.142   thorpej 		knote_free(newkn);
   2028    1.1     lukem 	if (fp != NULL)
   2029   1.49        ad 		fd_putfile(fd);
   2030    1.1     lukem 	return (error);
   2031    1.1     lukem }
   2032    1.1     lukem 
   2033   1.94  christos #define KN_FMT(buf, kn) \
   2034   1.94  christos     (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
   2035   1.94  christos 
   2036  1.129   thorpej #if defined(DDB)
   2037  1.129   thorpej void
   2038  1.129   thorpej kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
   2039  1.129   thorpej {
   2040  1.129   thorpej 	const struct knote *kn;
   2041  1.129   thorpej 	u_int count;
   2042  1.129   thorpej 	int nmarker;
   2043  1.129   thorpej 	char buf[128];
   2044  1.129   thorpej 
   2045  1.129   thorpej 	count = 0;
   2046  1.129   thorpej 	nmarker = 0;
   2047  1.129   thorpej 
   2048  1.129   thorpej 	(*pr)("kqueue %p (restart=%d count=%u):\n", kq,
   2049  1.129   thorpej 	    !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
   2050  1.129   thorpej 	(*pr)("  Queued knotes:\n");
   2051  1.129   thorpej 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   2052  1.129   thorpej 		if (kn->kn_status & KN_MARKER) {
   2053  1.129   thorpej 			nmarker++;
   2054  1.129   thorpej 		} else {
   2055  1.129   thorpej 			count++;
   2056  1.129   thorpej 		}
   2057  1.129   thorpej 		(*pr)("    knote %p: kq=%p status=%s\n",
   2058  1.129   thorpej 		    kn, kn->kn_kq, KN_FMT(buf, kn));
   2059  1.129   thorpej 		(*pr)("      id=0x%lx (%lu) filter=%d\n",
   2060  1.129   thorpej 		    (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
   2061  1.129   thorpej 		if (kn->kn_kq != kq) {
   2062  1.129   thorpej 			(*pr)("      !!! kn->kn_kq != kq\n");
   2063  1.129   thorpej 		}
   2064  1.129   thorpej 	}
   2065  1.129   thorpej 	if (count != KQ_COUNT(kq)) {
   2066  1.129   thorpej 		(*pr)("  !!! count(%u) != KQ_COUNT(%u)\n",
   2067  1.129   thorpej 		    count, KQ_COUNT(kq));
   2068  1.129   thorpej 	}
   2069  1.129   thorpej }
   2070  1.129   thorpej #endif /* DDB */
   2071  1.129   thorpej 
   2072  1.129   thorpej #if defined(DEBUG)
   2073   1.52      yamt static void
   2074   1.94  christos kqueue_check(const char *func, size_t line, const struct kqueue *kq)
   2075   1.52      yamt {
   2076   1.52      yamt 	const struct knote *kn;
   2077  1.118  jdolecek 	u_int count;
   2078   1.52      yamt 	int nmarker;
   2079   1.94  christos 	char buf[128];
   2080   1.52      yamt 
   2081   1.52      yamt 	KASSERT(mutex_owned(&kq->kq_lock));
   2082   1.52      yamt 
   2083   1.52      yamt 	count = 0;
   2084   1.52      yamt 	nmarker = 0;
   2085   1.52      yamt 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   2086   1.52      yamt 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
   2087   1.94  christos 			panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
   2088   1.94  christos 			    func, line, kq, kn, KN_FMT(buf, kn));
   2089   1.52      yamt 		}
   2090   1.52      yamt 		if ((kn->kn_status & KN_MARKER) == 0) {
   2091   1.52      yamt 			if (kn->kn_kq != kq) {
   2092   1.94  christos 				panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
   2093   1.94  christos 				    func, line, kq, kn, kn->kn_kq,
   2094   1.94  christos 				    KN_FMT(buf, kn));
   2095   1.52      yamt 			}
   2096   1.52      yamt 			if ((kn->kn_status & KN_ACTIVE) == 0) {
   2097   1.94  christos 				panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
   2098   1.94  christos 				    func, line, kq, kn, KN_FMT(buf, kn));
   2099   1.52      yamt 			}
   2100   1.52      yamt 			count++;
   2101  1.118  jdolecek 			if (count > KQ_COUNT(kq)) {
   2102  1.129   thorpej 				panic("%s,%zu: kq=%p kq->kq_count(%u) != "
   2103  1.112  jdolecek 				    "count(%d), nmarker=%d",
   2104  1.118  jdolecek 		    		    func, line, kq, KQ_COUNT(kq), count,
   2105  1.112  jdolecek 				    nmarker);
   2106   1.52      yamt 			}
   2107   1.52      yamt 		} else {
   2108   1.52      yamt 			nmarker++;
   2109   1.52      yamt 		}
   2110   1.52      yamt 	}
   2111   1.52      yamt }
   2112   1.94  christos #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
   2113   1.52      yamt #else /* defined(DEBUG) */
   2114   1.52      yamt #define	kq_check(a)	/* nothing */
   2115   1.52      yamt #endif /* defined(DEBUG) */
   2116   1.52      yamt 
   2117  1.118  jdolecek static void
   2118  1.118  jdolecek kqueue_restart(file_t *fp)
   2119  1.118  jdolecek {
   2120  1.118  jdolecek 	struct kqueue *kq = fp->f_kqueue;
   2121  1.118  jdolecek 	KASSERT(kq != NULL);
   2122  1.118  jdolecek 
   2123  1.118  jdolecek 	mutex_spin_enter(&kq->kq_lock);
   2124  1.118  jdolecek 	kq->kq_count |= KQ_RESTART;
   2125  1.118  jdolecek 	cv_broadcast(&kq->kq_cv);
   2126  1.118  jdolecek 	mutex_spin_exit(&kq->kq_lock);
   2127  1.118  jdolecek }
   2128  1.118  jdolecek 
   2129    1.3  jdolecek /*
   2130    1.3  jdolecek  * Scan through the list of events on fp (for a maximum of maxevents),
   2131    1.3  jdolecek  * returning the results in to ulistp. Timeout is determined by tsp; if
   2132    1.3  jdolecek  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
   2133    1.3  jdolecek  * as appropriate.
   2134    1.3  jdolecek  */
   2135    1.1     lukem static int
   2136   1.49        ad kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
   2137   1.49        ad 	    const struct timespec *tsp, register_t *retval,
   2138   1.49        ad 	    const struct kevent_ops *keops, struct kevent *kevbuf,
   2139   1.49        ad 	    size_t kevcnt)
   2140    1.1     lukem {
   2141    1.3  jdolecek 	struct kqueue	*kq;
   2142    1.3  jdolecek 	struct kevent	*kevp;
   2143   1.62  christos 	struct timespec	ats, sleepts;
   2144  1.144   thorpej 	struct knote	*kn, *marker;
   2145  1.144   thorpej 	struct knote_impl morker;
   2146   1.24      cube 	size_t		count, nkev, nevents;
   2147  1.111  jdolecek 	int		timeout, error, touch, rv, influx;
   2148   1.49        ad 	filedesc_t	*fdp;
   2149    1.1     lukem 
   2150   1.49        ad 	fdp = curlwp->l_fd;
   2151   1.82      matt 	kq = fp->f_kqueue;
   2152    1.1     lukem 	count = maxevents;
   2153   1.24      cube 	nkev = nevents = error = 0;
   2154   1.49        ad 	if (count == 0) {
   2155   1.49        ad 		*retval = 0;
   2156   1.49        ad 		return 0;
   2157   1.49        ad 	}
   2158    1.1     lukem 
   2159    1.9  jdolecek 	if (tsp) {				/* timeout supplied */
   2160   1.63  christos 		ats = *tsp;
   2161   1.62  christos 		if (inittimeleft(&ats, &sleepts) == -1) {
   2162   1.49        ad 			*retval = maxevents;
   2163   1.49        ad 			return EINVAL;
   2164    1.1     lukem 		}
   2165   1.62  christos 		timeout = tstohz(&ats);
   2166    1.9  jdolecek 		if (timeout <= 0)
   2167   1.29    kardel 			timeout = -1;           /* do poll */
   2168    1.1     lukem 	} else {
   2169    1.9  jdolecek 		/* no timeout, wait forever */
   2170    1.1     lukem 		timeout = 0;
   2171   1.93  riastrad 	}
   2172    1.1     lukem 
   2173   1.85  christos 	memset(&morker, 0, sizeof(morker));
   2174  1.144   thorpej 	marker = &morker.ki_knote;
   2175  1.129   thorpej 	marker->kn_kq = kq;
   2176   1.49        ad 	marker->kn_status = KN_MARKER;
   2177   1.49        ad 	mutex_spin_enter(&kq->kq_lock);
   2178    1.3  jdolecek  retry:
   2179   1.49        ad 	kevp = kevbuf;
   2180  1.118  jdolecek 	if (KQ_COUNT(kq) == 0) {
   2181   1.49        ad 		if (timeout >= 0) {
   2182   1.49        ad 			error = cv_timedwait_sig(&kq->kq_cv,
   2183   1.49        ad 			    &kq->kq_lock, timeout);
   2184   1.49        ad 			if (error == 0) {
   2185  1.118  jdolecek 				if (KQ_COUNT(kq) == 0 &&
   2186  1.118  jdolecek 				    (kq->kq_count & KQ_RESTART)) {
   2187  1.118  jdolecek 					/* return to clear file reference */
   2188  1.118  jdolecek 					error = ERESTART;
   2189  1.118  jdolecek 				} else if (tsp == NULL || (timeout =
   2190  1.118  jdolecek 				    gettimeleft(&ats, &sleepts)) > 0) {
   2191   1.49        ad 					goto retry;
   2192  1.118  jdolecek 				}
   2193   1.49        ad 			} else {
   2194   1.49        ad 				/* don't restart after signals... */
   2195   1.49        ad 				if (error == ERESTART)
   2196   1.49        ad 					error = EINTR;
   2197   1.49        ad 				if (error == EWOULDBLOCK)
   2198   1.49        ad 					error = 0;
   2199   1.49        ad 			}
   2200    1.1     lukem 		}
   2201   1.92  christos 		mutex_spin_exit(&kq->kq_lock);
   2202  1.110  jdolecek 		goto done;
   2203  1.110  jdolecek 	}
   2204  1.110  jdolecek 
   2205  1.110  jdolecek 	/* mark end of knote list */
   2206  1.110  jdolecek 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
   2207  1.111  jdolecek 	influx = 0;
   2208    1.1     lukem 
   2209  1.110  jdolecek 	/*
   2210  1.110  jdolecek 	 * Acquire the fdp->fd_lock interlock to avoid races with
   2211  1.110  jdolecek 	 * file creation/destruction from other threads.
   2212  1.110  jdolecek 	 */
   2213  1.129   thorpej 	mutex_spin_exit(&kq->kq_lock);
   2214  1.111  jdolecek relock:
   2215  1.110  jdolecek 	mutex_enter(&fdp->fd_lock);
   2216  1.110  jdolecek 	mutex_spin_enter(&kq->kq_lock);
   2217   1.92  christos 
   2218  1.110  jdolecek 	while (count != 0) {
   2219  1.129   thorpej 		/*
   2220  1.129   thorpej 		 * Get next knote.  We are guaranteed this will never
   2221  1.129   thorpej 		 * be NULL because of the marker we inserted above.
   2222  1.129   thorpej 		 */
   2223  1.129   thorpej 		kn = TAILQ_FIRST(&kq->kq_head);
   2224  1.111  jdolecek 
   2225  1.129   thorpej 		bool kn_is_other_marker =
   2226  1.129   thorpej 		    (kn->kn_status & KN_MARKER) != 0 && kn != marker;
   2227  1.129   thorpej 		bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
   2228  1.129   thorpej 		bool kn_is_in_flux = kn_in_flux(kn);
   2229  1.129   thorpej 
   2230  1.129   thorpej 		/*
   2231  1.129   thorpej 		 * If we found a marker that's not ours, or this knote
   2232  1.129   thorpej 		 * is in a state of flux, then wait for everything to
   2233  1.129   thorpej 		 * settle down and go around again.
   2234  1.129   thorpej 		 */
   2235  1.129   thorpej 		if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
   2236  1.111  jdolecek 			if (influx) {
   2237  1.111  jdolecek 				influx = 0;
   2238  1.111  jdolecek 				KQ_FLUX_WAKEUP(kq);
   2239  1.111  jdolecek 			}
   2240  1.111  jdolecek 			mutex_exit(&fdp->fd_lock);
   2241  1.129   thorpej 			if (kn_is_other_marker || kn_is_in_flux) {
   2242  1.129   thorpej 				KQ_FLUX_WAIT(kq);
   2243  1.129   thorpej 				mutex_spin_exit(&kq->kq_lock);
   2244  1.129   thorpej 			} else {
   2245  1.129   thorpej 				/*
   2246  1.129   thorpej 				 * Detaching but not in-flux?  Someone is
   2247  1.129   thorpej 				 * actively trying to finish the job; just
   2248  1.129   thorpej 				 * go around and try again.
   2249  1.129   thorpej 				 */
   2250  1.129   thorpej 				KASSERT(kn_is_detaching);
   2251  1.129   thorpej 				mutex_spin_exit(&kq->kq_lock);
   2252  1.129   thorpej 				preempt_point();
   2253  1.129   thorpej 			}
   2254  1.111  jdolecek 			goto relock;
   2255  1.111  jdolecek 		}
   2256  1.111  jdolecek 
   2257  1.111  jdolecek 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2258  1.111  jdolecek 		if (kn == marker) {
   2259  1.111  jdolecek 			/* it's our marker, stop */
   2260  1.111  jdolecek 			KQ_FLUX_WAKEUP(kq);
   2261  1.111  jdolecek 			if (count == maxevents) {
   2262  1.110  jdolecek 				mutex_exit(&fdp->fd_lock);
   2263  1.110  jdolecek 				goto retry;
   2264   1.49        ad 			}
   2265  1.111  jdolecek 			break;
   2266  1.110  jdolecek 		}
   2267  1.111  jdolecek 		KASSERT((kn->kn_status & KN_BUSY) == 0);
   2268  1.111  jdolecek 
   2269  1.110  jdolecek 		kq_check(kq);
   2270  1.115  jdolecek 		kn->kn_status &= ~KN_QUEUED;
   2271  1.110  jdolecek 		kn->kn_status |= KN_BUSY;
   2272  1.110  jdolecek 		kq_check(kq);
   2273  1.110  jdolecek 		if (kn->kn_status & KN_DISABLED) {
   2274  1.115  jdolecek 			kn->kn_status &= ~KN_BUSY;
   2275  1.111  jdolecek 			kq->kq_count--;
   2276  1.110  jdolecek 			/* don't want disabled events */
   2277  1.110  jdolecek 			continue;
   2278  1.110  jdolecek 		}
   2279  1.110  jdolecek 		if ((kn->kn_flags & EV_ONESHOT) == 0) {
   2280  1.110  jdolecek 			mutex_spin_exit(&kq->kq_lock);
   2281  1.110  jdolecek 			KASSERT(mutex_owned(&fdp->fd_lock));
   2282  1.122   thorpej 			rv = filter_event(kn, 0);
   2283  1.110  jdolecek 			mutex_spin_enter(&kq->kq_lock);
   2284  1.115  jdolecek 			/* Re-poll if note was re-enqueued. */
   2285  1.115  jdolecek 			if ((kn->kn_status & KN_QUEUED) != 0) {
   2286  1.115  jdolecek 				kn->kn_status &= ~KN_BUSY;
   2287  1.115  jdolecek 				/* Re-enqueue raised kq_count, lower it again */
   2288  1.115  jdolecek 				kq->kq_count--;
   2289  1.115  jdolecek 				influx = 1;
   2290  1.115  jdolecek 				continue;
   2291  1.115  jdolecek 			}
   2292  1.110  jdolecek 			if (rv == 0) {
   2293  1.110  jdolecek 				/*
   2294  1.129   thorpej 				 * non-ONESHOT event that hasn't triggered
   2295  1.129   thorpej 				 * again, so it will remain de-queued.
   2296  1.110  jdolecek 				 */
   2297  1.115  jdolecek 				kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2298  1.111  jdolecek 				kq->kq_count--;
   2299  1.111  jdolecek 				influx = 1;
   2300  1.110  jdolecek 				continue;
   2301   1.49        ad 			}
   2302  1.129   thorpej 		} else {
   2303  1.129   thorpej 			/*
   2304  1.138   thorpej 			 * Must NOT drop kq_lock until we can do
   2305  1.138   thorpej 			 * the KNOTE_WILLDETACH() below.
   2306  1.129   thorpej 			 */
   2307  1.110  jdolecek 		}
   2308  1.110  jdolecek 		KASSERT(kn->kn_fop != NULL);
   2309  1.121   thorpej 		touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
   2310  1.110  jdolecek 				kn->kn_fop->f_touch != NULL);
   2311  1.110  jdolecek 		/* XXXAD should be got from f_event if !oneshot. */
   2312  1.138   thorpej 		KASSERT((kn->kn_status & KN_WILLDETACH) == 0);
   2313  1.110  jdolecek 		if (touch) {
   2314  1.135   thorpej 			(void)filter_touch(kn, kevp, EVENT_PROCESS);
   2315  1.110  jdolecek 		} else {
   2316  1.110  jdolecek 			*kevp = kn->kn_kevent;
   2317  1.110  jdolecek 		}
   2318  1.110  jdolecek 		kevp++;
   2319  1.110  jdolecek 		nkev++;
   2320  1.111  jdolecek 		influx = 1;
   2321  1.110  jdolecek 		if (kn->kn_flags & EV_ONESHOT) {
   2322  1.110  jdolecek 			/* delete ONESHOT events after retrieval */
   2323  1.138   thorpej 			KNOTE_WILLDETACH(kn);
   2324  1.115  jdolecek 			kn->kn_status &= ~KN_BUSY;
   2325  1.111  jdolecek 			kq->kq_count--;
   2326  1.129   thorpej 			KASSERT(kn_in_flux(kn) == false);
   2327  1.129   thorpej 			KASSERT((kn->kn_status & KN_WILLDETACH) != 0 &&
   2328  1.129   thorpej 				kn->kn_kevent.udata == curlwp);
   2329  1.110  jdolecek 			mutex_spin_exit(&kq->kq_lock);
   2330  1.110  jdolecek 			knote_detach(kn, fdp, true);
   2331  1.110  jdolecek 			mutex_enter(&fdp->fd_lock);
   2332  1.110  jdolecek 			mutex_spin_enter(&kq->kq_lock);
   2333  1.110  jdolecek 		} else if (kn->kn_flags & EV_CLEAR) {
   2334  1.110  jdolecek 			/* clear state after retrieval */
   2335  1.110  jdolecek 			kn->kn_data = 0;
   2336  1.110  jdolecek 			kn->kn_fflags = 0;
   2337  1.110  jdolecek 			/*
   2338  1.110  jdolecek 			 * Manually clear knotes who weren't
   2339  1.110  jdolecek 			 * 'touch'ed.
   2340  1.110  jdolecek 			 */
   2341  1.110  jdolecek 			if (touch == 0) {
   2342   1.49        ad 				kn->kn_data = 0;
   2343   1.49        ad 				kn->kn_fflags = 0;
   2344   1.49        ad 			}
   2345  1.115  jdolecek 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2346  1.111  jdolecek 			kq->kq_count--;
   2347  1.110  jdolecek 		} else if (kn->kn_flags & EV_DISPATCH) {
   2348  1.110  jdolecek 			kn->kn_status |= KN_DISABLED;
   2349  1.115  jdolecek 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2350  1.111  jdolecek 			kq->kq_count--;
   2351  1.110  jdolecek 		} else {
   2352  1.110  jdolecek 			/* add event back on list */
   2353  1.110  jdolecek 			kq_check(kq);
   2354  1.115  jdolecek 			kn->kn_status |= KN_QUEUED;
   2355  1.110  jdolecek 			kn->kn_status &= ~KN_BUSY;
   2356  1.110  jdolecek 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2357  1.110  jdolecek 			kq_check(kq);
   2358  1.110  jdolecek 		}
   2359  1.111  jdolecek 
   2360  1.110  jdolecek 		if (nkev == kevcnt) {
   2361  1.110  jdolecek 			/* do copyouts in kevcnt chunks */
   2362  1.111  jdolecek 			influx = 0;
   2363  1.111  jdolecek 			KQ_FLUX_WAKEUP(kq);
   2364  1.110  jdolecek 			mutex_spin_exit(&kq->kq_lock);
   2365  1.110  jdolecek 			mutex_exit(&fdp->fd_lock);
   2366  1.110  jdolecek 			error = (*keops->keo_put_events)
   2367  1.110  jdolecek 			    (keops->keo_private,
   2368  1.110  jdolecek 			    kevbuf, ulistp, nevents, nkev);
   2369  1.110  jdolecek 			mutex_enter(&fdp->fd_lock);
   2370  1.110  jdolecek 			mutex_spin_enter(&kq->kq_lock);
   2371  1.110  jdolecek 			nevents += nkev;
   2372  1.110  jdolecek 			nkev = 0;
   2373  1.110  jdolecek 			kevp = kevbuf;
   2374  1.110  jdolecek 		}
   2375  1.110  jdolecek 		count--;
   2376  1.110  jdolecek 		if (error != 0 || count == 0) {
   2377  1.110  jdolecek 			/* remove marker */
   2378  1.110  jdolecek 			TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   2379  1.110  jdolecek 			break;
   2380    1.1     lukem 		}
   2381    1.1     lukem 	}
   2382  1.111  jdolecek 	KQ_FLUX_WAKEUP(kq);
   2383  1.110  jdolecek 	mutex_spin_exit(&kq->kq_lock);
   2384  1.110  jdolecek 	mutex_exit(&fdp->fd_lock);
   2385  1.110  jdolecek 
   2386  1.110  jdolecek done:
   2387   1.49        ad 	if (nkev != 0) {
   2388    1.3  jdolecek 		/* copyout remaining events */
   2389   1.24      cube 		error = (*keops->keo_put_events)(keops->keo_private,
   2390   1.49        ad 		    kevbuf, ulistp, nevents, nkev);
   2391   1.49        ad 	}
   2392    1.3  jdolecek 	*retval = maxevents - count;
   2393    1.3  jdolecek 
   2394   1.49        ad 	return error;
   2395    1.1     lukem }
   2396    1.1     lukem 
   2397    1.1     lukem /*
   2398   1.49        ad  * fileops ioctl method for a kqueue descriptor.
   2399    1.3  jdolecek  *
   2400    1.3  jdolecek  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   2401    1.3  jdolecek  *	KFILTER_BYNAME		find name for filter, and return result in
   2402    1.3  jdolecek  *				name, which is of size len.
   2403    1.3  jdolecek  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   2404    1.3  jdolecek  */
   2405    1.1     lukem /*ARGSUSED*/
   2406    1.1     lukem static int
   2407   1.49        ad kqueue_ioctl(file_t *fp, u_long com, void *data)
   2408    1.1     lukem {
   2409    1.3  jdolecek 	struct kfilter_mapping	*km;
   2410    1.3  jdolecek 	const struct kfilter	*kfilter;
   2411    1.3  jdolecek 	char			*name;
   2412    1.3  jdolecek 	int			error;
   2413    1.3  jdolecek 
   2414   1.49        ad 	km = data;
   2415    1.3  jdolecek 	error = 0;
   2416   1.49        ad 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
   2417    1.3  jdolecek 
   2418    1.3  jdolecek 	switch (com) {
   2419    1.3  jdolecek 	case KFILTER_BYFILTER:	/* convert filter -> name */
   2420   1.49        ad 		rw_enter(&kqueue_filter_lock, RW_READER);
   2421    1.3  jdolecek 		kfilter = kfilter_byfilter(km->filter);
   2422   1.49        ad 		if (kfilter != NULL) {
   2423   1.49        ad 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
   2424   1.49        ad 			rw_exit(&kqueue_filter_lock);
   2425   1.49        ad 			error = copyoutstr(name, km->name, km->len, NULL);
   2426   1.49        ad 		} else {
   2427   1.49        ad 			rw_exit(&kqueue_filter_lock);
   2428    1.3  jdolecek 			error = ENOENT;
   2429   1.49        ad 		}
   2430    1.3  jdolecek 		break;
   2431    1.3  jdolecek 
   2432    1.3  jdolecek 	case KFILTER_BYNAME:	/* convert name -> filter */
   2433    1.3  jdolecek 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   2434    1.3  jdolecek 		if (error) {
   2435    1.3  jdolecek 			break;
   2436    1.3  jdolecek 		}
   2437   1.49        ad 		rw_enter(&kqueue_filter_lock, RW_READER);
   2438    1.3  jdolecek 		kfilter = kfilter_byname(name);
   2439    1.3  jdolecek 		if (kfilter != NULL)
   2440    1.3  jdolecek 			km->filter = kfilter->filter;
   2441    1.3  jdolecek 		else
   2442    1.3  jdolecek 			error = ENOENT;
   2443   1.49        ad 		rw_exit(&kqueue_filter_lock);
   2444    1.3  jdolecek 		break;
   2445    1.3  jdolecek 
   2446    1.3  jdolecek 	default:
   2447    1.3  jdolecek 		error = ENOTTY;
   2448   1.49        ad 		break;
   2449    1.3  jdolecek 
   2450    1.3  jdolecek 	}
   2451   1.49        ad 	kmem_free(name, KFILTER_MAXNAME);
   2452    1.3  jdolecek 	return (error);
   2453    1.3  jdolecek }
   2454    1.3  jdolecek 
   2455    1.3  jdolecek /*
   2456   1.49        ad  * fileops fcntl method for a kqueue descriptor.
   2457    1.3  jdolecek  */
   2458    1.3  jdolecek static int
   2459   1.49        ad kqueue_fcntl(file_t *fp, u_int com, void *data)
   2460    1.3  jdolecek {
   2461    1.3  jdolecek 
   2462    1.1     lukem 	return (ENOTTY);
   2463    1.1     lukem }
   2464    1.1     lukem 
   2465    1.3  jdolecek /*
   2466   1.49        ad  * fileops poll method for a kqueue descriptor.
   2467    1.3  jdolecek  * Determine if kqueue has events pending.
   2468    1.3  jdolecek  */
   2469    1.1     lukem static int
   2470   1.49        ad kqueue_poll(file_t *fp, int events)
   2471    1.1     lukem {
   2472    1.3  jdolecek 	struct kqueue	*kq;
   2473    1.3  jdolecek 	int		revents;
   2474    1.3  jdolecek 
   2475   1.82      matt 	kq = fp->f_kqueue;
   2476   1.49        ad 
   2477    1.3  jdolecek 	revents = 0;
   2478    1.3  jdolecek 	if (events & (POLLIN | POLLRDNORM)) {
   2479   1.49        ad 		mutex_spin_enter(&kq->kq_lock);
   2480  1.118  jdolecek 		if (KQ_COUNT(kq) != 0) {
   2481    1.3  jdolecek 			revents |= events & (POLLIN | POLLRDNORM);
   2482    1.1     lukem 		} else {
   2483   1.49        ad 			selrecord(curlwp, &kq->kq_sel);
   2484    1.1     lukem 		}
   2485   1.52      yamt 		kq_check(kq);
   2486   1.49        ad 		mutex_spin_exit(&kq->kq_lock);
   2487    1.1     lukem 	}
   2488   1.49        ad 
   2489   1.49        ad 	return revents;
   2490    1.1     lukem }
   2491    1.1     lukem 
   2492    1.3  jdolecek /*
   2493   1.49        ad  * fileops stat method for a kqueue descriptor.
   2494    1.3  jdolecek  * Returns dummy info, with st_size being number of events pending.
   2495    1.3  jdolecek  */
   2496    1.1     lukem static int
   2497   1.49        ad kqueue_stat(file_t *fp, struct stat *st)
   2498    1.1     lukem {
   2499   1.49        ad 	struct kqueue *kq;
   2500   1.49        ad 
   2501   1.82      matt 	kq = fp->f_kqueue;
   2502    1.1     lukem 
   2503   1.49        ad 	memset(st, 0, sizeof(*st));
   2504  1.118  jdolecek 	st->st_size = KQ_COUNT(kq);
   2505    1.1     lukem 	st->st_blksize = sizeof(struct kevent);
   2506  1.128   thorpej 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   2507  1.128   thorpej 	st->st_blocks = 1;
   2508  1.128   thorpej 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   2509  1.128   thorpej 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   2510   1.49        ad 
   2511   1.49        ad 	return 0;
   2512   1.49        ad }
   2513   1.49        ad 
   2514   1.49        ad static void
   2515   1.49        ad kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
   2516   1.49        ad {
   2517   1.49        ad 	struct knote *kn;
   2518   1.49        ad 	filedesc_t *fdp;
   2519   1.49        ad 
   2520   1.49        ad 	fdp = kq->kq_fdp;
   2521   1.49        ad 
   2522   1.49        ad 	KASSERT(mutex_owned(&fdp->fd_lock));
   2523   1.49        ad 
   2524  1.129   thorpej  again:
   2525   1.49        ad 	for (kn = SLIST_FIRST(list); kn != NULL;) {
   2526   1.49        ad 		if (kq != kn->kn_kq) {
   2527   1.49        ad 			kn = SLIST_NEXT(kn, kn_link);
   2528   1.49        ad 			continue;
   2529   1.49        ad 		}
   2530  1.129   thorpej 		if (knote_detach_quiesce(kn)) {
   2531  1.129   thorpej 			mutex_enter(&fdp->fd_lock);
   2532  1.129   thorpej 			goto again;
   2533  1.129   thorpej 		}
   2534   1.49        ad 		knote_detach(kn, fdp, true);
   2535   1.49        ad 		mutex_enter(&fdp->fd_lock);
   2536   1.49        ad 		kn = SLIST_FIRST(list);
   2537   1.49        ad 	}
   2538    1.1     lukem }
   2539    1.1     lukem 
   2540    1.3  jdolecek /*
   2541   1.49        ad  * fileops close method for a kqueue descriptor.
   2542    1.3  jdolecek  */
   2543    1.1     lukem static int
   2544   1.49        ad kqueue_close(file_t *fp)
   2545    1.1     lukem {
   2546   1.49        ad 	struct kqueue *kq;
   2547   1.49        ad 	filedesc_t *fdp;
   2548   1.49        ad 	fdfile_t *ff;
   2549   1.49        ad 	int i;
   2550   1.49        ad 
   2551   1.82      matt 	kq = fp->f_kqueue;
   2552   1.82      matt 	fp->f_kqueue = NULL;
   2553   1.79  christos 	fp->f_type = 0;
   2554   1.49        ad 	fdp = curlwp->l_fd;
   2555    1.1     lukem 
   2556  1.129   thorpej 	KASSERT(kq->kq_fdp == fdp);
   2557  1.129   thorpej 
   2558   1.49        ad 	mutex_enter(&fdp->fd_lock);
   2559  1.129   thorpej 
   2560  1.129   thorpej 	/*
   2561  1.129   thorpej 	 * We're doing to drop the fd_lock multiple times while
   2562  1.129   thorpej 	 * we detach knotes.  During this time, attempts to register
   2563  1.129   thorpej 	 * knotes via the back door (e.g. knote_proc_fork_track())
   2564  1.129   thorpej 	 * need to fail, lest they sneak in to attach a knote after
   2565  1.129   thorpej 	 * we've already drained the list it's destined for.
   2566  1.129   thorpej 	 *
   2567  1.139   msaitoh 	 * We must acquire kq_lock here to set KQ_CLOSING (to serialize
   2568  1.129   thorpej 	 * with other code paths that modify kq_count without holding
   2569  1.129   thorpej 	 * the fd_lock), but once this bit is set, it's only safe to
   2570  1.129   thorpej 	 * test it while holding the fd_lock, and holding kq_lock while
   2571  1.129   thorpej 	 * doing so is not necessary.
   2572  1.129   thorpej 	 */
   2573  1.129   thorpej 	mutex_enter(&kq->kq_lock);
   2574  1.129   thorpej 	kq->kq_count |= KQ_CLOSING;
   2575  1.129   thorpej 	mutex_exit(&kq->kq_lock);
   2576  1.129   thorpej 
   2577   1.49        ad 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
   2578   1.65        ad 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
   2579   1.49        ad 			continue;
   2580   1.49        ad 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
   2581    1.1     lukem 	}
   2582    1.1     lukem 	if (fdp->fd_knhashmask != 0) {
   2583    1.1     lukem 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   2584   1.49        ad 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
   2585    1.1     lukem 		}
   2586    1.1     lukem 	}
   2587  1.129   thorpej 
   2588   1.49        ad 	mutex_exit(&fdp->fd_lock);
   2589   1.49        ad 
   2590  1.129   thorpej #if defined(DEBUG)
   2591  1.129   thorpej 	mutex_enter(&kq->kq_lock);
   2592  1.129   thorpej 	kq_check(kq);
   2593  1.129   thorpej 	mutex_exit(&kq->kq_lock);
   2594  1.129   thorpej #endif /* DEBUG */
   2595  1.129   thorpej 	KASSERT(TAILQ_EMPTY(&kq->kq_head));
   2596  1.118  jdolecek 	KASSERT(KQ_COUNT(kq) == 0);
   2597   1.49        ad 	mutex_destroy(&kq->kq_lock);
   2598   1.49        ad 	cv_destroy(&kq->kq_cv);
   2599   1.48     rmind 	seldestroy(&kq->kq_sel);
   2600   1.49        ad 	kmem_free(kq, sizeof(*kq));
   2601    1.1     lukem 
   2602    1.1     lukem 	return (0);
   2603    1.1     lukem }
   2604    1.1     lukem 
   2605    1.3  jdolecek /*
   2606    1.3  jdolecek  * struct fileops kqfilter method for a kqueue descriptor.
   2607    1.3  jdolecek  * Event triggered when monitored kqueue changes.
   2608    1.3  jdolecek  */
   2609    1.3  jdolecek static int
   2610   1.49        ad kqueue_kqfilter(file_t *fp, struct knote *kn)
   2611    1.3  jdolecek {
   2612    1.3  jdolecek 	struct kqueue *kq;
   2613   1.49        ad 
   2614   1.82      matt 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
   2615   1.49        ad 
   2616   1.49        ad 	KASSERT(fp == kn->kn_obj);
   2617    1.3  jdolecek 
   2618    1.3  jdolecek 	if (kn->kn_filter != EVFILT_READ)
   2619  1.126   thorpej 		return EINVAL;
   2620   1.49        ad 
   2621    1.3  jdolecek 	kn->kn_fop = &kqread_filtops;
   2622   1.49        ad 	mutex_enter(&kq->kq_lock);
   2623  1.109   thorpej 	selrecord_knote(&kq->kq_sel, kn);
   2624   1.49        ad 	mutex_exit(&kq->kq_lock);
   2625   1.49        ad 
   2626   1.49        ad 	return 0;
   2627    1.3  jdolecek }
   2628    1.3  jdolecek 
   2629    1.3  jdolecek 
   2630    1.3  jdolecek /*
   2631   1.49        ad  * Walk down a list of knotes, activating them if their event has
   2632   1.49        ad  * triggered.  The caller's object lock (e.g. device driver lock)
   2633   1.49        ad  * must be held.
   2634    1.1     lukem  */
   2635    1.1     lukem void
   2636    1.1     lukem knote(struct klist *list, long hint)
   2637    1.1     lukem {
   2638   1.71  drochner 	struct knote *kn, *tmpkn;
   2639    1.1     lukem 
   2640   1.71  drochner 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
   2641  1.127   thorpej 		if (filter_event(kn, hint)) {
   2642   1.49        ad 			knote_activate(kn);
   2643  1.127   thorpej 		}
   2644   1.49        ad 	}
   2645    1.1     lukem }
   2646    1.1     lukem 
   2647    1.1     lukem /*
   2648   1.49        ad  * Remove all knotes referencing a specified fd
   2649    1.1     lukem  */
   2650    1.1     lukem void
   2651   1.49        ad knote_fdclose(int fd)
   2652    1.1     lukem {
   2653   1.49        ad 	struct klist *list;
   2654    1.1     lukem 	struct knote *kn;
   2655   1.49        ad 	filedesc_t *fdp;
   2656    1.1     lukem 
   2657  1.129   thorpej  again:
   2658   1.49        ad 	fdp = curlwp->l_fd;
   2659  1.106  riastrad 	mutex_enter(&fdp->fd_lock);
   2660   1.65        ad 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
   2661    1.1     lukem 	while ((kn = SLIST_FIRST(list)) != NULL) {
   2662  1.129   thorpej 		if (knote_detach_quiesce(kn)) {
   2663  1.129   thorpej 			goto again;
   2664  1.129   thorpej 		}
   2665   1.49        ad 		knote_detach(kn, fdp, true);
   2666   1.49        ad 		mutex_enter(&fdp->fd_lock);
   2667    1.1     lukem 	}
   2668   1.49        ad 	mutex_exit(&fdp->fd_lock);
   2669    1.1     lukem }
   2670    1.1     lukem 
   2671    1.1     lukem /*
   2672   1.49        ad  * Drop knote.  Called with fdp->fd_lock held, and will drop before
   2673   1.49        ad  * returning.
   2674    1.3  jdolecek  */
   2675    1.1     lukem static void
   2676   1.49        ad knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
   2677    1.1     lukem {
   2678   1.49        ad 	struct klist *list;
   2679   1.53        ad 	struct kqueue *kq;
   2680   1.53        ad 
   2681   1.53        ad 	kq = kn->kn_kq;
   2682    1.1     lukem 
   2683   1.49        ad 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2684  1.129   thorpej 	KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
   2685  1.129   thorpej 	KASSERT(kn->kn_fop != NULL);
   2686   1.49        ad 	KASSERT(mutex_owned(&fdp->fd_lock));
   2687    1.3  jdolecek 
   2688   1.53        ad 	/* Remove from monitored object. */
   2689   1.49        ad 	if (dofop) {
   2690  1.122   thorpej 		filter_detach(kn);
   2691    1.1     lukem 	}
   2692    1.3  jdolecek 
   2693   1.53        ad 	/* Remove from descriptor table. */
   2694  1.121   thorpej 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
   2695   1.65        ad 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   2696    1.1     lukem 	else
   2697    1.1     lukem 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   2698    1.1     lukem 
   2699    1.1     lukem 	SLIST_REMOVE(list, kn, knote, kn_link);
   2700   1.53        ad 
   2701   1.53        ad 	/* Remove from kqueue. */
   2702   1.85  christos again:
   2703   1.53        ad 	mutex_spin_enter(&kq->kq_lock);
   2704  1.129   thorpej 	KASSERT(kn_in_flux(kn) == false);
   2705   1.53        ad 	if ((kn->kn_status & KN_QUEUED) != 0) {
   2706   1.53        ad 		kq_check(kq);
   2707  1.129   thorpej 		KASSERT(KQ_COUNT(kq) != 0);
   2708   1.85  christos 		kq->kq_count--;
   2709   1.53        ad 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2710   1.53        ad 		kn->kn_status &= ~KN_QUEUED;
   2711   1.53        ad 		kq_check(kq);
   2712   1.85  christos 	} else if (kn->kn_status & KN_BUSY) {
   2713   1.85  christos 		mutex_spin_exit(&kq->kq_lock);
   2714   1.85  christos 		goto again;
   2715   1.53        ad 	}
   2716   1.53        ad 	mutex_spin_exit(&kq->kq_lock);
   2717   1.53        ad 
   2718   1.49        ad 	mutex_exit(&fdp->fd_lock);
   2719  1.121   thorpej 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
   2720   1.49        ad 		fd_putfile(kn->kn_id);
   2721   1.49        ad 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
   2722  1.142   thorpej 	knote_free(kn);
   2723    1.1     lukem }
   2724    1.1     lukem 
   2725    1.3  jdolecek /*
   2726    1.3  jdolecek  * Queue new event for knote.
   2727    1.3  jdolecek  */
   2728    1.1     lukem static void
   2729    1.1     lukem knote_enqueue(struct knote *kn)
   2730    1.1     lukem {
   2731   1.49        ad 	struct kqueue *kq;
   2732   1.49        ad 
   2733   1.49        ad 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2734    1.1     lukem 
   2735    1.3  jdolecek 	kq = kn->kn_kq;
   2736    1.1     lukem 
   2737   1.49        ad 	mutex_spin_enter(&kq->kq_lock);
   2738  1.129   thorpej 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
   2739  1.129   thorpej 		/* Don't bother enqueueing a dying knote. */
   2740  1.129   thorpej 		goto out;
   2741  1.129   thorpej 	}
   2742   1.49        ad 	if ((kn->kn_status & KN_DISABLED) != 0) {
   2743   1.49        ad 		kn->kn_status &= ~KN_DISABLED;
   2744   1.49        ad 	}
   2745   1.49        ad 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
   2746   1.52      yamt 		kq_check(kq);
   2747   1.85  christos 		kn->kn_status |= KN_QUEUED;
   2748   1.49        ad 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2749  1.129   thorpej 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
   2750   1.49        ad 		kq->kq_count++;
   2751   1.52      yamt 		kq_check(kq);
   2752   1.49        ad 		cv_broadcast(&kq->kq_cv);
   2753   1.49        ad 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   2754   1.49        ad 	}
   2755  1.129   thorpej  out:
   2756   1.49        ad 	mutex_spin_exit(&kq->kq_lock);
   2757    1.1     lukem }
   2758   1.49        ad /*
   2759   1.49        ad  * Queue new event for knote.
   2760   1.49        ad  */
   2761   1.49        ad static void
   2762  1.133   thorpej knote_activate_locked(struct knote *kn)
   2763   1.49        ad {
   2764   1.49        ad 	struct kqueue *kq;
   2765   1.49        ad 
   2766   1.49        ad 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2767    1.1     lukem 
   2768    1.3  jdolecek 	kq = kn->kn_kq;
   2769   1.12        pk 
   2770  1.129   thorpej 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
   2771  1.129   thorpej 		/* Don't bother enqueueing a dying knote. */
   2772  1.133   thorpej 		return;
   2773  1.129   thorpej 	}
   2774   1.49        ad 	kn->kn_status |= KN_ACTIVE;
   2775   1.49        ad 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
   2776   1.52      yamt 		kq_check(kq);
   2777   1.85  christos 		kn->kn_status |= KN_QUEUED;
   2778   1.49        ad 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2779  1.129   thorpej 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
   2780   1.49        ad 		kq->kq_count++;
   2781   1.52      yamt 		kq_check(kq);
   2782   1.49        ad 		cv_broadcast(&kq->kq_cv);
   2783   1.49        ad 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   2784   1.49        ad 	}
   2785  1.133   thorpej }
   2786  1.133   thorpej 
   2787  1.133   thorpej static void
   2788  1.133   thorpej knote_activate(struct knote *kn)
   2789  1.133   thorpej {
   2790  1.133   thorpej 	struct kqueue *kq = kn->kn_kq;
   2791  1.133   thorpej 
   2792  1.133   thorpej 	mutex_spin_enter(&kq->kq_lock);
   2793  1.133   thorpej 	knote_activate_locked(kn);
   2794   1.49        ad 	mutex_spin_exit(&kq->kq_lock);
   2795    1.1     lukem }
   2796  1.131   thorpej 
   2797  1.136   thorpej static void
   2798  1.136   thorpej knote_deactivate_locked(struct knote *kn)
   2799  1.136   thorpej {
   2800  1.136   thorpej 	struct kqueue *kq = kn->kn_kq;
   2801  1.136   thorpej 
   2802  1.136   thorpej 	if (kn->kn_status & KN_QUEUED) {
   2803  1.136   thorpej 		kq_check(kq);
   2804  1.136   thorpej 		kn->kn_status &= ~KN_QUEUED;
   2805  1.136   thorpej 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2806  1.136   thorpej 		KASSERT(KQ_COUNT(kq) > 0);
   2807  1.136   thorpej 		kq->kq_count--;
   2808  1.136   thorpej 		kq_check(kq);
   2809  1.136   thorpej 	}
   2810  1.136   thorpej 	kn->kn_status &= ~KN_ACTIVE;
   2811  1.136   thorpej }
   2812  1.136   thorpej 
   2813  1.131   thorpej /*
   2814  1.131   thorpej  * Set EV_EOF on the specified knote.  Also allows additional
   2815  1.131   thorpej  * EV_* flags to be set (e.g. EV_ONESHOT).
   2816  1.131   thorpej  */
   2817  1.131   thorpej void
   2818  1.131   thorpej knote_set_eof(struct knote *kn, uint32_t flags)
   2819  1.131   thorpej {
   2820  1.131   thorpej 	struct kqueue *kq = kn->kn_kq;
   2821  1.131   thorpej 
   2822  1.131   thorpej 	mutex_spin_enter(&kq->kq_lock);
   2823  1.131   thorpej 	kn->kn_flags |= EV_EOF | flags;
   2824  1.131   thorpej 	mutex_spin_exit(&kq->kq_lock);
   2825  1.131   thorpej }
   2826  1.131   thorpej 
   2827  1.131   thorpej /*
   2828  1.131   thorpej  * Clear EV_EOF on the specified knote.
   2829  1.131   thorpej  */
   2830  1.131   thorpej void
   2831  1.131   thorpej knote_clear_eof(struct knote *kn)
   2832  1.131   thorpej {
   2833  1.131   thorpej 	struct kqueue *kq = kn->kn_kq;
   2834  1.131   thorpej 
   2835  1.131   thorpej 	mutex_spin_enter(&kq->kq_lock);
   2836  1.131   thorpej 	kn->kn_flags &= ~EV_EOF;
   2837  1.131   thorpej 	mutex_spin_exit(&kq->kq_lock);
   2838  1.131   thorpej }
   2839  1.143   thorpej 
   2840  1.143   thorpej /*
   2841  1.143   thorpej  * Initialize a klist.
   2842  1.143   thorpej  */
   2843  1.143   thorpej void
   2844  1.143   thorpej klist_init(struct klist *list)
   2845  1.143   thorpej {
   2846  1.143   thorpej 	SLIST_INIT(list);
   2847  1.143   thorpej }
   2848  1.143   thorpej 
   2849  1.143   thorpej /*
   2850  1.143   thorpej  * Finalize a klist.
   2851  1.143   thorpej  */
   2852  1.143   thorpej void
   2853  1.143   thorpej klist_fini(struct klist *list)
   2854  1.143   thorpej {
   2855  1.143   thorpej 	/* Nothing, for now. */
   2856  1.143   thorpej }
   2857  1.143   thorpej 
   2858  1.143   thorpej /*
   2859  1.143   thorpej  * Insert a knote into a klist.
   2860  1.143   thorpej  */
   2861  1.143   thorpej void
   2862  1.143   thorpej klist_insert(struct klist *list, struct knote *kn)
   2863  1.143   thorpej {
   2864  1.143   thorpej 	SLIST_INSERT_HEAD(list, kn, kn_selnext);
   2865  1.143   thorpej }
   2866  1.143   thorpej 
   2867  1.143   thorpej /*
   2868  1.143   thorpej  * Remove a knote from a klist.  Returns true if the last
   2869  1.143   thorpej  * knote was removed and the list is now empty.
   2870  1.143   thorpej  */
   2871  1.143   thorpej bool
   2872  1.143   thorpej klist_remove(struct klist *list, struct knote *kn)
   2873  1.143   thorpej {
   2874  1.143   thorpej 	SLIST_REMOVE(list, kn, knote, kn_selnext);
   2875  1.143   thorpej 	return SLIST_EMPTY(list);
   2876  1.143   thorpej }
   2877