kern_event.c revision 1.85 1 1.85 christos /* $NetBSD: kern_event.c,v 1.85 2016/01/31 04:40:01 christos Exp $ */
2 1.49 ad
3 1.49 ad /*-
4 1.64 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.49 ad * All rights reserved.
6 1.49 ad *
7 1.64 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.64 ad * by Andrew Doran.
9 1.64 ad *
10 1.49 ad * Redistribution and use in source and binary forms, with or without
11 1.49 ad * modification, are permitted provided that the following conditions
12 1.49 ad * are met:
13 1.49 ad * 1. Redistributions of source code must retain the above copyright
14 1.49 ad * notice, this list of conditions and the following disclaimer.
15 1.49 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.49 ad * notice, this list of conditions and the following disclaimer in the
17 1.49 ad * documentation and/or other materials provided with the distribution.
18 1.49 ad *
19 1.49 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.49 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.49 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.49 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.49 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.49 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.49 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.49 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.49 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.49 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.49 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.49 ad */
31 1.28 kardel
32 1.1 lukem /*-
33 1.1 lukem * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 1.1 lukem * All rights reserved.
35 1.1 lukem *
36 1.1 lukem * Redistribution and use in source and binary forms, with or without
37 1.1 lukem * modification, are permitted provided that the following conditions
38 1.1 lukem * are met:
39 1.1 lukem * 1. Redistributions of source code must retain the above copyright
40 1.1 lukem * notice, this list of conditions and the following disclaimer.
41 1.1 lukem * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 lukem * notice, this list of conditions and the following disclaimer in the
43 1.1 lukem * documentation and/or other materials provided with the distribution.
44 1.1 lukem *
45 1.1 lukem * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 lukem * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 lukem * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 lukem * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 lukem * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 lukem * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 lukem * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 lukem * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 lukem * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 lukem * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 lukem * SUCH DAMAGE.
56 1.1 lukem *
57 1.49 ad * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 1.1 lukem */
59 1.14 jdolecek
60 1.14 jdolecek #include <sys/cdefs.h>
61 1.85 christos __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.85 2016/01/31 04:40:01 christos Exp $");
62 1.1 lukem
63 1.1 lukem #include <sys/param.h>
64 1.1 lukem #include <sys/systm.h>
65 1.1 lukem #include <sys/kernel.h>
66 1.1 lukem #include <sys/proc.h>
67 1.1 lukem #include <sys/file.h>
68 1.3 jdolecek #include <sys/select.h>
69 1.1 lukem #include <sys/queue.h>
70 1.1 lukem #include <sys/event.h>
71 1.1 lukem #include <sys/eventvar.h>
72 1.1 lukem #include <sys/poll.h>
73 1.49 ad #include <sys/kmem.h>
74 1.1 lukem #include <sys/stat.h>
75 1.3 jdolecek #include <sys/filedesc.h>
76 1.3 jdolecek #include <sys/syscallargs.h>
77 1.27 elad #include <sys/kauth.h>
78 1.40 ad #include <sys/conf.h>
79 1.49 ad #include <sys/atomic.h>
80 1.1 lukem
81 1.49 ad static int kqueue_scan(file_t *, size_t, struct kevent *,
82 1.49 ad const struct timespec *, register_t *,
83 1.49 ad const struct kevent_ops *, struct kevent *,
84 1.49 ad size_t);
85 1.49 ad static int kqueue_ioctl(file_t *, u_long, void *);
86 1.49 ad static int kqueue_fcntl(file_t *, u_int, void *);
87 1.49 ad static int kqueue_poll(file_t *, int);
88 1.49 ad static int kqueue_kqfilter(file_t *, struct knote *);
89 1.49 ad static int kqueue_stat(file_t *, struct stat *);
90 1.49 ad static int kqueue_close(file_t *);
91 1.49 ad static int kqueue_register(struct kqueue *, struct kevent *);
92 1.49 ad static void kqueue_doclose(struct kqueue *, struct klist *, int);
93 1.49 ad
94 1.49 ad static void knote_detach(struct knote *, filedesc_t *fdp, bool);
95 1.49 ad static void knote_enqueue(struct knote *);
96 1.49 ad static void knote_activate(struct knote *);
97 1.49 ad
98 1.49 ad static void filt_kqdetach(struct knote *);
99 1.49 ad static int filt_kqueue(struct knote *, long hint);
100 1.49 ad static int filt_procattach(struct knote *);
101 1.49 ad static void filt_procdetach(struct knote *);
102 1.49 ad static int filt_proc(struct knote *, long hint);
103 1.49 ad static int filt_fileattach(struct knote *);
104 1.49 ad static void filt_timerexpire(void *x);
105 1.49 ad static int filt_timerattach(struct knote *);
106 1.49 ad static void filt_timerdetach(struct knote *);
107 1.49 ad static int filt_timer(struct knote *, long hint);
108 1.1 lukem
109 1.21 christos static const struct fileops kqueueops = {
110 1.64 ad .fo_read = (void *)enxio,
111 1.64 ad .fo_write = (void *)enxio,
112 1.64 ad .fo_ioctl = kqueue_ioctl,
113 1.64 ad .fo_fcntl = kqueue_fcntl,
114 1.64 ad .fo_poll = kqueue_poll,
115 1.64 ad .fo_stat = kqueue_stat,
116 1.64 ad .fo_close = kqueue_close,
117 1.64 ad .fo_kqfilter = kqueue_kqfilter,
118 1.68 dsl .fo_restart = fnullop_restart,
119 1.1 lukem };
120 1.1 lukem
121 1.3 jdolecek static const struct filterops kqread_filtops =
122 1.1 lukem { 1, NULL, filt_kqdetach, filt_kqueue };
123 1.3 jdolecek static const struct filterops proc_filtops =
124 1.1 lukem { 0, filt_procattach, filt_procdetach, filt_proc };
125 1.3 jdolecek static const struct filterops file_filtops =
126 1.1 lukem { 1, filt_fileattach, NULL, NULL };
127 1.26 yamt static const struct filterops timer_filtops =
128 1.8 jdolecek { 0, filt_timerattach, filt_timerdetach, filt_timer };
129 1.1 lukem
130 1.49 ad static u_int kq_ncallouts = 0;
131 1.8 jdolecek static int kq_calloutmax = (4 * 1024);
132 1.7 thorpej
133 1.1 lukem #define KN_HASHSIZE 64 /* XXX should be tunable */
134 1.3 jdolecek #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
135 1.1 lukem
136 1.3 jdolecek extern const struct filterops sig_filtops;
137 1.1 lukem
138 1.1 lukem /*
139 1.1 lukem * Table for for all system-defined filters.
140 1.3 jdolecek * These should be listed in the numeric order of the EVFILT_* defines.
141 1.3 jdolecek * If filtops is NULL, the filter isn't implemented in NetBSD.
142 1.3 jdolecek * End of list is when name is NULL.
143 1.49 ad *
144 1.49 ad * Note that 'refcnt' is meaningless for built-in filters.
145 1.1 lukem */
146 1.3 jdolecek struct kfilter {
147 1.49 ad const char *name; /* name of filter */
148 1.49 ad uint32_t filter; /* id of filter */
149 1.49 ad unsigned refcnt; /* reference count */
150 1.3 jdolecek const struct filterops *filtops;/* operations for filter */
151 1.49 ad size_t namelen; /* length of name string */
152 1.3 jdolecek };
153 1.3 jdolecek
154 1.49 ad /* System defined filters */
155 1.49 ad static struct kfilter sys_kfilters[] = {
156 1.49 ad { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
157 1.49 ad { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
158 1.49 ad { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
159 1.49 ad { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
160 1.49 ad { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
161 1.49 ad { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
162 1.49 ad { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
163 1.49 ad { NULL, 0, 0, NULL, 0 },
164 1.1 lukem };
165 1.1 lukem
166 1.49 ad /* User defined kfilters */
167 1.3 jdolecek static struct kfilter *user_kfilters; /* array */
168 1.3 jdolecek static int user_kfilterc; /* current offset */
169 1.3 jdolecek static int user_kfiltermaxc; /* max size so far */
170 1.49 ad static size_t user_kfiltersz; /* size of allocated memory */
171 1.49 ad
172 1.49 ad /* Locks */
173 1.49 ad static krwlock_t kqueue_filter_lock; /* lock on filter lists */
174 1.49 ad static kmutex_t kqueue_misc_lock; /* miscellaneous */
175 1.49 ad
176 1.66 elad static kauth_listener_t kqueue_listener;
177 1.66 elad
178 1.66 elad static int
179 1.66 elad kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
180 1.66 elad void *arg0, void *arg1, void *arg2, void *arg3)
181 1.66 elad {
182 1.66 elad struct proc *p;
183 1.66 elad int result;
184 1.66 elad
185 1.66 elad result = KAUTH_RESULT_DEFER;
186 1.66 elad p = arg0;
187 1.66 elad
188 1.66 elad if (action != KAUTH_PROCESS_KEVENT_FILTER)
189 1.66 elad return result;
190 1.66 elad
191 1.66 elad if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
192 1.66 elad ISSET(p->p_flag, PK_SUGID)))
193 1.66 elad return result;
194 1.66 elad
195 1.66 elad result = KAUTH_RESULT_ALLOW;
196 1.66 elad
197 1.66 elad return result;
198 1.66 elad }
199 1.66 elad
200 1.49 ad /*
201 1.49 ad * Initialize the kqueue subsystem.
202 1.49 ad */
203 1.49 ad void
204 1.49 ad kqueue_init(void)
205 1.49 ad {
206 1.49 ad
207 1.49 ad rw_init(&kqueue_filter_lock);
208 1.49 ad mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
209 1.66 elad
210 1.66 elad kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
211 1.66 elad kqueue_listener_cb, NULL);
212 1.49 ad }
213 1.3 jdolecek
214 1.3 jdolecek /*
215 1.3 jdolecek * Find kfilter entry by name, or NULL if not found.
216 1.3 jdolecek */
217 1.49 ad static struct kfilter *
218 1.3 jdolecek kfilter_byname_sys(const char *name)
219 1.3 jdolecek {
220 1.3 jdolecek int i;
221 1.3 jdolecek
222 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
223 1.49 ad
224 1.3 jdolecek for (i = 0; sys_kfilters[i].name != NULL; i++) {
225 1.3 jdolecek if (strcmp(name, sys_kfilters[i].name) == 0)
226 1.49 ad return &sys_kfilters[i];
227 1.3 jdolecek }
228 1.49 ad return NULL;
229 1.3 jdolecek }
230 1.3 jdolecek
231 1.3 jdolecek static struct kfilter *
232 1.3 jdolecek kfilter_byname_user(const char *name)
233 1.3 jdolecek {
234 1.3 jdolecek int i;
235 1.3 jdolecek
236 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
237 1.49 ad
238 1.31 seanb /* user filter slots have a NULL name if previously deregistered */
239 1.31 seanb for (i = 0; i < user_kfilterc ; i++) {
240 1.31 seanb if (user_kfilters[i].name != NULL &&
241 1.3 jdolecek strcmp(name, user_kfilters[i].name) == 0)
242 1.49 ad return &user_kfilters[i];
243 1.3 jdolecek }
244 1.49 ad return NULL;
245 1.3 jdolecek }
246 1.3 jdolecek
247 1.49 ad static struct kfilter *
248 1.3 jdolecek kfilter_byname(const char *name)
249 1.3 jdolecek {
250 1.49 ad struct kfilter *kfilter;
251 1.49 ad
252 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
253 1.3 jdolecek
254 1.3 jdolecek if ((kfilter = kfilter_byname_sys(name)) != NULL)
255 1.49 ad return kfilter;
256 1.3 jdolecek
257 1.49 ad return kfilter_byname_user(name);
258 1.3 jdolecek }
259 1.3 jdolecek
260 1.3 jdolecek /*
261 1.3 jdolecek * Find kfilter entry by filter id, or NULL if not found.
262 1.3 jdolecek * Assumes entries are indexed in filter id order, for speed.
263 1.3 jdolecek */
264 1.49 ad static struct kfilter *
265 1.3 jdolecek kfilter_byfilter(uint32_t filter)
266 1.3 jdolecek {
267 1.49 ad struct kfilter *kfilter;
268 1.49 ad
269 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
270 1.3 jdolecek
271 1.3 jdolecek if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
272 1.3 jdolecek kfilter = &sys_kfilters[filter];
273 1.3 jdolecek else if (user_kfilters != NULL &&
274 1.3 jdolecek filter < EVFILT_SYSCOUNT + user_kfilterc)
275 1.3 jdolecek /* it's a user filter */
276 1.3 jdolecek kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
277 1.3 jdolecek else
278 1.3 jdolecek return (NULL); /* out of range */
279 1.3 jdolecek KASSERT(kfilter->filter == filter); /* sanity check! */
280 1.3 jdolecek return (kfilter);
281 1.3 jdolecek }
282 1.3 jdolecek
283 1.3 jdolecek /*
284 1.3 jdolecek * Register a new kfilter. Stores the entry in user_kfilters.
285 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
286 1.3 jdolecek * If retfilter != NULL, the new filterid is returned in it.
287 1.3 jdolecek */
288 1.3 jdolecek int
289 1.3 jdolecek kfilter_register(const char *name, const struct filterops *filtops,
290 1.49 ad int *retfilter)
291 1.1 lukem {
292 1.3 jdolecek struct kfilter *kfilter;
293 1.49 ad size_t len;
294 1.31 seanb int i;
295 1.3 jdolecek
296 1.3 jdolecek if (name == NULL || name[0] == '\0' || filtops == NULL)
297 1.3 jdolecek return (EINVAL); /* invalid args */
298 1.49 ad
299 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
300 1.49 ad if (kfilter_byname(name) != NULL) {
301 1.49 ad rw_exit(&kqueue_filter_lock);
302 1.3 jdolecek return (EEXIST); /* already exists */
303 1.49 ad }
304 1.49 ad if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
305 1.49 ad rw_exit(&kqueue_filter_lock);
306 1.3 jdolecek return (EINVAL); /* too many */
307 1.49 ad }
308 1.3 jdolecek
309 1.31 seanb for (i = 0; i < user_kfilterc; i++) {
310 1.31 seanb kfilter = &user_kfilters[i];
311 1.31 seanb if (kfilter->name == NULL) {
312 1.31 seanb /* Previously deregistered slot. Reuse. */
313 1.31 seanb goto reuse;
314 1.31 seanb }
315 1.31 seanb }
316 1.31 seanb
317 1.3 jdolecek /* check if need to grow user_kfilters */
318 1.3 jdolecek if (user_kfilterc + 1 > user_kfiltermaxc) {
319 1.49 ad /* Grow in KFILTER_EXTENT chunks. */
320 1.3 jdolecek user_kfiltermaxc += KFILTER_EXTENT;
321 1.69 dsl len = user_kfiltermaxc * sizeof(*kfilter);
322 1.49 ad kfilter = kmem_alloc(len, KM_SLEEP);
323 1.49 ad memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
324 1.49 ad if (user_kfilters != NULL) {
325 1.49 ad memcpy(kfilter, user_kfilters, user_kfiltersz);
326 1.49 ad kmem_free(user_kfilters, user_kfiltersz);
327 1.49 ad }
328 1.49 ad user_kfiltersz = len;
329 1.3 jdolecek user_kfilters = kfilter;
330 1.3 jdolecek }
331 1.31 seanb /* Adding new slot */
332 1.31 seanb kfilter = &user_kfilters[user_kfilterc++];
333 1.31 seanb reuse:
334 1.49 ad kfilter->namelen = strlen(name) + 1;
335 1.49 ad kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
336 1.49 ad memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
337 1.3 jdolecek
338 1.31 seanb kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
339 1.3 jdolecek
340 1.49 ad kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
341 1.49 ad memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
342 1.3 jdolecek
343 1.3 jdolecek if (retfilter != NULL)
344 1.31 seanb *retfilter = kfilter->filter;
345 1.49 ad rw_exit(&kqueue_filter_lock);
346 1.49 ad
347 1.3 jdolecek return (0);
348 1.1 lukem }
349 1.1 lukem
350 1.3 jdolecek /*
351 1.3 jdolecek * Unregister a kfilter previously registered with kfilter_register.
352 1.3 jdolecek * This retains the filter id, but clears the name and frees filtops (filter
353 1.3 jdolecek * operations), so that the number isn't reused during a boot.
354 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
355 1.3 jdolecek */
356 1.3 jdolecek int
357 1.3 jdolecek kfilter_unregister(const char *name)
358 1.1 lukem {
359 1.3 jdolecek struct kfilter *kfilter;
360 1.3 jdolecek
361 1.3 jdolecek if (name == NULL || name[0] == '\0')
362 1.3 jdolecek return (EINVAL); /* invalid name */
363 1.3 jdolecek
364 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
365 1.49 ad if (kfilter_byname_sys(name) != NULL) {
366 1.49 ad rw_exit(&kqueue_filter_lock);
367 1.3 jdolecek return (EINVAL); /* can't detach system filters */
368 1.49 ad }
369 1.1 lukem
370 1.3 jdolecek kfilter = kfilter_byname_user(name);
371 1.49 ad if (kfilter == NULL) {
372 1.49 ad rw_exit(&kqueue_filter_lock);
373 1.3 jdolecek return (ENOENT);
374 1.49 ad }
375 1.49 ad if (kfilter->refcnt != 0) {
376 1.49 ad rw_exit(&kqueue_filter_lock);
377 1.49 ad return (EBUSY);
378 1.49 ad }
379 1.1 lukem
380 1.49 ad /* Cast away const (but we know it's safe. */
381 1.49 ad kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
382 1.31 seanb kfilter->name = NULL; /* mark as `not implemented' */
383 1.31 seanb
384 1.3 jdolecek if (kfilter->filtops != NULL) {
385 1.49 ad /* Cast away const (but we know it's safe. */
386 1.49 ad kmem_free(__UNCONST(kfilter->filtops),
387 1.49 ad sizeof(*kfilter->filtops));
388 1.3 jdolecek kfilter->filtops = NULL; /* mark as `not implemented' */
389 1.3 jdolecek }
390 1.49 ad rw_exit(&kqueue_filter_lock);
391 1.49 ad
392 1.1 lukem return (0);
393 1.1 lukem }
394 1.1 lukem
395 1.3 jdolecek
396 1.3 jdolecek /*
397 1.3 jdolecek * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
398 1.49 ad * descriptors. Calls fileops kqfilter method for given file descriptor.
399 1.3 jdolecek */
400 1.3 jdolecek static int
401 1.3 jdolecek filt_fileattach(struct knote *kn)
402 1.3 jdolecek {
403 1.49 ad file_t *fp;
404 1.49 ad
405 1.49 ad fp = kn->kn_obj;
406 1.3 jdolecek
407 1.49 ad return (*fp->f_ops->fo_kqfilter)(fp, kn);
408 1.3 jdolecek }
409 1.3 jdolecek
410 1.3 jdolecek /*
411 1.3 jdolecek * Filter detach method for EVFILT_READ on kqueue descriptor.
412 1.3 jdolecek */
413 1.1 lukem static void
414 1.1 lukem filt_kqdetach(struct knote *kn)
415 1.1 lukem {
416 1.3 jdolecek struct kqueue *kq;
417 1.1 lukem
418 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
419 1.49 ad
420 1.49 ad mutex_spin_enter(&kq->kq_lock);
421 1.5 christos SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
422 1.49 ad mutex_spin_exit(&kq->kq_lock);
423 1.1 lukem }
424 1.1 lukem
425 1.3 jdolecek /*
426 1.3 jdolecek * Filter event method for EVFILT_READ on kqueue descriptor.
427 1.3 jdolecek */
428 1.1 lukem /*ARGSUSED*/
429 1.1 lukem static int
430 1.33 yamt filt_kqueue(struct knote *kn, long hint)
431 1.1 lukem {
432 1.3 jdolecek struct kqueue *kq;
433 1.49 ad int rv;
434 1.49 ad
435 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
436 1.1 lukem
437 1.49 ad if (hint != NOTE_SUBMIT)
438 1.49 ad mutex_spin_enter(&kq->kq_lock);
439 1.1 lukem kn->kn_data = kq->kq_count;
440 1.49 ad rv = (kn->kn_data > 0);
441 1.49 ad if (hint != NOTE_SUBMIT)
442 1.49 ad mutex_spin_exit(&kq->kq_lock);
443 1.49 ad
444 1.49 ad return rv;
445 1.1 lukem }
446 1.1 lukem
447 1.3 jdolecek /*
448 1.3 jdolecek * Filter attach method for EVFILT_PROC.
449 1.3 jdolecek */
450 1.1 lukem static int
451 1.1 lukem filt_procattach(struct knote *kn)
452 1.1 lukem {
453 1.78 pooka struct proc *p;
454 1.30 ad struct lwp *curl;
455 1.30 ad
456 1.30 ad curl = curlwp;
457 1.1 lukem
458 1.56 ad mutex_enter(proc_lock);
459 1.77 joerg if (kn->kn_flags & EV_FLAG1) {
460 1.77 joerg /*
461 1.77 joerg * NOTE_TRACK attaches to the child process too early
462 1.77 joerg * for proc_find, so do a raw look up and check the state
463 1.77 joerg * explicitly.
464 1.77 joerg */
465 1.77 joerg p = proc_find_raw(kn->kn_id);
466 1.77 joerg if (p != NULL && p->p_stat != SIDL)
467 1.77 joerg p = NULL;
468 1.77 joerg } else {
469 1.77 joerg p = proc_find(kn->kn_id);
470 1.77 joerg }
471 1.77 joerg
472 1.49 ad if (p == NULL) {
473 1.56 ad mutex_exit(proc_lock);
474 1.49 ad return ESRCH;
475 1.49 ad }
476 1.3 jdolecek
477 1.3 jdolecek /*
478 1.3 jdolecek * Fail if it's not owned by you, or the last exec gave us
479 1.3 jdolecek * setuid/setgid privs (unless you're root).
480 1.3 jdolecek */
481 1.57 ad mutex_enter(p->p_lock);
482 1.56 ad mutex_exit(proc_lock);
483 1.46 elad if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
484 1.49 ad p, NULL, NULL, NULL) != 0) {
485 1.57 ad mutex_exit(p->p_lock);
486 1.49 ad return EACCES;
487 1.49 ad }
488 1.1 lukem
489 1.49 ad kn->kn_obj = p;
490 1.3 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
491 1.1 lukem
492 1.1 lukem /*
493 1.1 lukem * internal flag indicating registration done by kernel
494 1.1 lukem */
495 1.1 lukem if (kn->kn_flags & EV_FLAG1) {
496 1.3 jdolecek kn->kn_data = kn->kn_sdata; /* ppid */
497 1.1 lukem kn->kn_fflags = NOTE_CHILD;
498 1.1 lukem kn->kn_flags &= ~EV_FLAG1;
499 1.1 lukem }
500 1.1 lukem SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
501 1.57 ad mutex_exit(p->p_lock);
502 1.1 lukem
503 1.49 ad return 0;
504 1.1 lukem }
505 1.1 lukem
506 1.1 lukem /*
507 1.3 jdolecek * Filter detach method for EVFILT_PROC.
508 1.3 jdolecek *
509 1.1 lukem * The knote may be attached to a different process, which may exit,
510 1.1 lukem * leaving nothing for the knote to be attached to. So when the process
511 1.1 lukem * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
512 1.1 lukem * it will be deleted when read out. However, as part of the knote deletion,
513 1.1 lukem * this routine is called, so a check is needed to avoid actually performing
514 1.3 jdolecek * a detach, because the original process might not exist any more.
515 1.1 lukem */
516 1.1 lukem static void
517 1.1 lukem filt_procdetach(struct knote *kn)
518 1.1 lukem {
519 1.3 jdolecek struct proc *p;
520 1.1 lukem
521 1.1 lukem if (kn->kn_status & KN_DETACHED)
522 1.1 lukem return;
523 1.1 lukem
524 1.49 ad p = kn->kn_obj;
525 1.3 jdolecek
526 1.57 ad mutex_enter(p->p_lock);
527 1.1 lukem SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
528 1.57 ad mutex_exit(p->p_lock);
529 1.1 lukem }
530 1.1 lukem
531 1.3 jdolecek /*
532 1.3 jdolecek * Filter event method for EVFILT_PROC.
533 1.3 jdolecek */
534 1.1 lukem static int
535 1.1 lukem filt_proc(struct knote *kn, long hint)
536 1.1 lukem {
537 1.49 ad u_int event, fflag;
538 1.49 ad struct kevent kev;
539 1.49 ad struct kqueue *kq;
540 1.49 ad int error;
541 1.1 lukem
542 1.1 lukem event = (u_int)hint & NOTE_PCTRLMASK;
543 1.49 ad kq = kn->kn_kq;
544 1.49 ad fflag = 0;
545 1.1 lukem
546 1.49 ad /* If the user is interested in this event, record it. */
547 1.1 lukem if (kn->kn_sfflags & event)
548 1.49 ad fflag |= event;
549 1.1 lukem
550 1.1 lukem if (event == NOTE_EXIT) {
551 1.83 christos struct proc *p = kn->kn_obj;
552 1.83 christos
553 1.83 christos if (p != NULL)
554 1.83 christos kn->kn_data = p->p_xstat;
555 1.3 jdolecek /*
556 1.49 ad * Process is gone, so flag the event as finished.
557 1.49 ad *
558 1.3 jdolecek * Detach the knote from watched process and mark
559 1.3 jdolecek * it as such. We can't leave this to kqueue_scan(),
560 1.3 jdolecek * since the process might not exist by then. And we
561 1.3 jdolecek * have to do this now, since psignal KNOTE() is called
562 1.3 jdolecek * also for zombies and we might end up reading freed
563 1.3 jdolecek * memory if the kevent would already be picked up
564 1.22 perry * and knote g/c'ed.
565 1.3 jdolecek */
566 1.49 ad filt_procdetach(kn);
567 1.49 ad
568 1.49 ad mutex_spin_enter(&kq->kq_lock);
569 1.1 lukem kn->kn_status |= KN_DETACHED;
570 1.3 jdolecek /* Mark as ONESHOT, so that the knote it g/c'ed when read */
571 1.22 perry kn->kn_flags |= (EV_EOF | EV_ONESHOT);
572 1.49 ad kn->kn_fflags |= fflag;
573 1.49 ad mutex_spin_exit(&kq->kq_lock);
574 1.49 ad
575 1.49 ad return 1;
576 1.1 lukem }
577 1.1 lukem
578 1.49 ad mutex_spin_enter(&kq->kq_lock);
579 1.1 lukem if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
580 1.1 lukem /*
581 1.49 ad * Process forked, and user wants to track the new process,
582 1.49 ad * so attach a new knote to it, and immediately report an
583 1.49 ad * event with the parent's pid. Register knote with new
584 1.49 ad * process.
585 1.1 lukem */
586 1.1 lukem kev.ident = hint & NOTE_PDATAMASK; /* pid */
587 1.1 lukem kev.filter = kn->kn_filter;
588 1.1 lukem kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
589 1.1 lukem kev.fflags = kn->kn_sfflags;
590 1.1 lukem kev.data = kn->kn_id; /* parent */
591 1.1 lukem kev.udata = kn->kn_kevent.udata; /* preserve udata */
592 1.49 ad mutex_spin_exit(&kq->kq_lock);
593 1.49 ad error = kqueue_register(kq, &kev);
594 1.49 ad mutex_spin_enter(&kq->kq_lock);
595 1.49 ad if (error != 0)
596 1.1 lukem kn->kn_fflags |= NOTE_TRACKERR;
597 1.1 lukem }
598 1.49 ad kn->kn_fflags |= fflag;
599 1.49 ad fflag = kn->kn_fflags;
600 1.49 ad mutex_spin_exit(&kq->kq_lock);
601 1.1 lukem
602 1.49 ad return fflag != 0;
603 1.8 jdolecek }
604 1.8 jdolecek
605 1.8 jdolecek static void
606 1.8 jdolecek filt_timerexpire(void *knx)
607 1.8 jdolecek {
608 1.8 jdolecek struct knote *kn = knx;
609 1.8 jdolecek int tticks;
610 1.8 jdolecek
611 1.49 ad mutex_enter(&kqueue_misc_lock);
612 1.8 jdolecek kn->kn_data++;
613 1.49 ad knote_activate(kn);
614 1.8 jdolecek if ((kn->kn_flags & EV_ONESHOT) == 0) {
615 1.8 jdolecek tticks = mstohz(kn->kn_sdata);
616 1.73 christos if (tticks <= 0)
617 1.73 christos tticks = 1;
618 1.39 ad callout_schedule((callout_t *)kn->kn_hook, tticks);
619 1.8 jdolecek }
620 1.49 ad mutex_exit(&kqueue_misc_lock);
621 1.8 jdolecek }
622 1.8 jdolecek
623 1.8 jdolecek /*
624 1.8 jdolecek * data contains amount of time to sleep, in milliseconds
625 1.22 perry */
626 1.8 jdolecek static int
627 1.8 jdolecek filt_timerattach(struct knote *kn)
628 1.8 jdolecek {
629 1.39 ad callout_t *calloutp;
630 1.49 ad struct kqueue *kq;
631 1.8 jdolecek int tticks;
632 1.8 jdolecek
633 1.8 jdolecek tticks = mstohz(kn->kn_sdata);
634 1.8 jdolecek
635 1.8 jdolecek /* if the supplied value is under our resolution, use 1 tick */
636 1.8 jdolecek if (tticks == 0) {
637 1.8 jdolecek if (kn->kn_sdata == 0)
638 1.49 ad return EINVAL;
639 1.8 jdolecek tticks = 1;
640 1.8 jdolecek }
641 1.8 jdolecek
642 1.49 ad if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
643 1.49 ad (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
644 1.49 ad atomic_dec_uint(&kq_ncallouts);
645 1.49 ad return ENOMEM;
646 1.49 ad }
647 1.54 ad callout_init(calloutp, CALLOUT_MPSAFE);
648 1.49 ad
649 1.49 ad kq = kn->kn_kq;
650 1.49 ad mutex_spin_enter(&kq->kq_lock);
651 1.8 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
652 1.49 ad kn->kn_hook = calloutp;
653 1.49 ad mutex_spin_exit(&kq->kq_lock);
654 1.49 ad
655 1.8 jdolecek callout_reset(calloutp, tticks, filt_timerexpire, kn);
656 1.8 jdolecek
657 1.8 jdolecek return (0);
658 1.8 jdolecek }
659 1.8 jdolecek
660 1.8 jdolecek static void
661 1.8 jdolecek filt_timerdetach(struct knote *kn)
662 1.8 jdolecek {
663 1.39 ad callout_t *calloutp;
664 1.8 jdolecek
665 1.39 ad calloutp = (callout_t *)kn->kn_hook;
666 1.55 ad callout_halt(calloutp, NULL);
667 1.39 ad callout_destroy(calloutp);
668 1.49 ad kmem_free(calloutp, sizeof(*calloutp));
669 1.49 ad atomic_dec_uint(&kq_ncallouts);
670 1.8 jdolecek }
671 1.8 jdolecek
672 1.8 jdolecek static int
673 1.33 yamt filt_timer(struct knote *kn, long hint)
674 1.8 jdolecek {
675 1.49 ad int rv;
676 1.49 ad
677 1.49 ad mutex_enter(&kqueue_misc_lock);
678 1.49 ad rv = (kn->kn_data != 0);
679 1.49 ad mutex_exit(&kqueue_misc_lock);
680 1.49 ad
681 1.49 ad return rv;
682 1.1 lukem }
683 1.1 lukem
684 1.3 jdolecek /*
685 1.3 jdolecek * filt_seltrue:
686 1.3 jdolecek *
687 1.3 jdolecek * This filter "event" routine simulates seltrue().
688 1.3 jdolecek */
689 1.1 lukem int
690 1.33 yamt filt_seltrue(struct knote *kn, long hint)
691 1.1 lukem {
692 1.1 lukem
693 1.3 jdolecek /*
694 1.3 jdolecek * We don't know how much data can be read/written,
695 1.3 jdolecek * but we know that it *can* be. This is about as
696 1.3 jdolecek * good as select/poll does as well.
697 1.3 jdolecek */
698 1.3 jdolecek kn->kn_data = 0;
699 1.3 jdolecek return (1);
700 1.3 jdolecek }
701 1.3 jdolecek
702 1.3 jdolecek /*
703 1.3 jdolecek * This provides full kqfilter entry for device switch tables, which
704 1.3 jdolecek * has same effect as filter using filt_seltrue() as filter method.
705 1.3 jdolecek */
706 1.3 jdolecek static void
707 1.33 yamt filt_seltruedetach(struct knote *kn)
708 1.3 jdolecek {
709 1.3 jdolecek /* Nothing to do */
710 1.3 jdolecek }
711 1.3 jdolecek
712 1.42 pooka const struct filterops seltrue_filtops =
713 1.3 jdolecek { 1, NULL, filt_seltruedetach, filt_seltrue };
714 1.3 jdolecek
715 1.3 jdolecek int
716 1.33 yamt seltrue_kqfilter(dev_t dev, struct knote *kn)
717 1.3 jdolecek {
718 1.3 jdolecek switch (kn->kn_filter) {
719 1.3 jdolecek case EVFILT_READ:
720 1.3 jdolecek case EVFILT_WRITE:
721 1.3 jdolecek kn->kn_fop = &seltrue_filtops;
722 1.3 jdolecek break;
723 1.3 jdolecek default:
724 1.43 pooka return (EINVAL);
725 1.3 jdolecek }
726 1.3 jdolecek
727 1.3 jdolecek /* Nothing more to do */
728 1.3 jdolecek return (0);
729 1.3 jdolecek }
730 1.3 jdolecek
731 1.3 jdolecek /*
732 1.3 jdolecek * kqueue(2) system call.
733 1.3 jdolecek */
734 1.72 christos static int
735 1.72 christos kqueue1(struct lwp *l, int flags, register_t *retval)
736 1.3 jdolecek {
737 1.49 ad struct kqueue *kq;
738 1.49 ad file_t *fp;
739 1.49 ad int fd, error;
740 1.3 jdolecek
741 1.49 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
742 1.49 ad return error;
743 1.75 christos fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
744 1.1 lukem fp->f_type = DTYPE_KQUEUE;
745 1.1 lukem fp->f_ops = &kqueueops;
746 1.49 ad kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
747 1.49 ad mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
748 1.49 ad cv_init(&kq->kq_cv, "kqueue");
749 1.49 ad selinit(&kq->kq_sel);
750 1.1 lukem TAILQ_INIT(&kq->kq_head);
751 1.82 matt fp->f_kqueue = kq;
752 1.3 jdolecek *retval = fd;
753 1.49 ad kq->kq_fdp = curlwp->l_fd;
754 1.72 christos fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
755 1.49 ad fd_affix(curproc, fp, fd);
756 1.49 ad return error;
757 1.1 lukem }
758 1.1 lukem
759 1.3 jdolecek /*
760 1.72 christos * kqueue(2) system call.
761 1.72 christos */
762 1.72 christos int
763 1.72 christos sys_kqueue(struct lwp *l, const void *v, register_t *retval)
764 1.72 christos {
765 1.72 christos return kqueue1(l, 0, retval);
766 1.72 christos }
767 1.72 christos
768 1.72 christos int
769 1.72 christos sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
770 1.72 christos register_t *retval)
771 1.72 christos {
772 1.72 christos /* {
773 1.72 christos syscallarg(int) flags;
774 1.72 christos } */
775 1.72 christos return kqueue1(l, SCARG(uap, flags), retval);
776 1.72 christos }
777 1.72 christos
778 1.72 christos /*
779 1.3 jdolecek * kevent(2) system call.
780 1.3 jdolecek */
781 1.61 christos int
782 1.81 matt kevent_fetch_changes(void *ctx, const struct kevent *changelist,
783 1.61 christos struct kevent *changes, size_t index, int n)
784 1.24 cube {
785 1.49 ad
786 1.24 cube return copyin(changelist + index, changes, n * sizeof(*changes));
787 1.24 cube }
788 1.24 cube
789 1.61 christos int
790 1.81 matt kevent_put_events(void *ctx, struct kevent *events,
791 1.61 christos struct kevent *eventlist, size_t index, int n)
792 1.24 cube {
793 1.49 ad
794 1.24 cube return copyout(events, eventlist + index, n * sizeof(*events));
795 1.24 cube }
796 1.24 cube
797 1.24 cube static const struct kevent_ops kevent_native_ops = {
798 1.60 gmcgarry .keo_private = NULL,
799 1.60 gmcgarry .keo_fetch_timeout = copyin,
800 1.60 gmcgarry .keo_fetch_changes = kevent_fetch_changes,
801 1.60 gmcgarry .keo_put_events = kevent_put_events,
802 1.24 cube };
803 1.24 cube
804 1.1 lukem int
805 1.61 christos sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
806 1.61 christos register_t *retval)
807 1.1 lukem {
808 1.44 dsl /* {
809 1.3 jdolecek syscallarg(int) fd;
810 1.3 jdolecek syscallarg(const struct kevent *) changelist;
811 1.3 jdolecek syscallarg(size_t) nchanges;
812 1.3 jdolecek syscallarg(struct kevent *) eventlist;
813 1.3 jdolecek syscallarg(size_t) nevents;
814 1.3 jdolecek syscallarg(const struct timespec *) timeout;
815 1.44 dsl } */
816 1.24 cube
817 1.49 ad return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
818 1.24 cube SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
819 1.24 cube SCARG(uap, timeout), &kevent_native_ops);
820 1.24 cube }
821 1.24 cube
822 1.24 cube int
823 1.49 ad kevent1(register_t *retval, int fd,
824 1.49 ad const struct kevent *changelist, size_t nchanges,
825 1.49 ad struct kevent *eventlist, size_t nevents,
826 1.49 ad const struct timespec *timeout,
827 1.49 ad const struct kevent_ops *keops)
828 1.24 cube {
829 1.49 ad struct kevent *kevp;
830 1.49 ad struct kqueue *kq;
831 1.3 jdolecek struct timespec ts;
832 1.49 ad size_t i, n, ichange;
833 1.49 ad int nerrors, error;
834 1.80 maxv struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
835 1.49 ad file_t *fp;
836 1.3 jdolecek
837 1.3 jdolecek /* check that we're dealing with a kq */
838 1.49 ad fp = fd_getfile(fd);
839 1.10 pk if (fp == NULL)
840 1.1 lukem return (EBADF);
841 1.10 pk
842 1.10 pk if (fp->f_type != DTYPE_KQUEUE) {
843 1.49 ad fd_putfile(fd);
844 1.10 pk return (EBADF);
845 1.10 pk }
846 1.1 lukem
847 1.24 cube if (timeout != NULL) {
848 1.24 cube error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
849 1.1 lukem if (error)
850 1.1 lukem goto done;
851 1.24 cube timeout = &ts;
852 1.1 lukem }
853 1.1 lukem
854 1.82 matt kq = fp->f_kqueue;
855 1.1 lukem nerrors = 0;
856 1.24 cube ichange = 0;
857 1.1 lukem
858 1.3 jdolecek /* traverse list of events to register */
859 1.24 cube while (nchanges > 0) {
860 1.49 ad n = MIN(nchanges, __arraycount(kevbuf));
861 1.24 cube error = (*keops->keo_fetch_changes)(keops->keo_private,
862 1.49 ad changelist, kevbuf, ichange, n);
863 1.1 lukem if (error)
864 1.1 lukem goto done;
865 1.1 lukem for (i = 0; i < n; i++) {
866 1.49 ad kevp = &kevbuf[i];
867 1.1 lukem kevp->flags &= ~EV_SYSFLAGS;
868 1.3 jdolecek /* register each knote */
869 1.49 ad error = kqueue_register(kq, kevp);
870 1.84 christos if (error || (kevp->flags & EV_RECEIPT)) {
871 1.24 cube if (nevents != 0) {
872 1.1 lukem kevp->flags = EV_ERROR;
873 1.1 lukem kevp->data = error;
874 1.24 cube error = (*keops->keo_put_events)
875 1.24 cube (keops->keo_private, kevp,
876 1.24 cube eventlist, nerrors, 1);
877 1.3 jdolecek if (error)
878 1.3 jdolecek goto done;
879 1.24 cube nevents--;
880 1.1 lukem nerrors++;
881 1.1 lukem } else {
882 1.1 lukem goto done;
883 1.1 lukem }
884 1.1 lukem }
885 1.1 lukem }
886 1.24 cube nchanges -= n; /* update the results */
887 1.24 cube ichange += n;
888 1.1 lukem }
889 1.1 lukem if (nerrors) {
890 1.3 jdolecek *retval = nerrors;
891 1.1 lukem error = 0;
892 1.1 lukem goto done;
893 1.1 lukem }
894 1.1 lukem
895 1.3 jdolecek /* actually scan through the events */
896 1.49 ad error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
897 1.49 ad kevbuf, __arraycount(kevbuf));
898 1.3 jdolecek done:
899 1.49 ad fd_putfile(fd);
900 1.1 lukem return (error);
901 1.1 lukem }
902 1.1 lukem
903 1.3 jdolecek /*
904 1.3 jdolecek * Register a given kevent kev onto the kqueue
905 1.3 jdolecek */
906 1.49 ad static int
907 1.49 ad kqueue_register(struct kqueue *kq, struct kevent *kev)
908 1.1 lukem {
909 1.49 ad struct kfilter *kfilter;
910 1.49 ad filedesc_t *fdp;
911 1.49 ad file_t *fp;
912 1.49 ad fdfile_t *ff;
913 1.49 ad struct knote *kn, *newkn;
914 1.49 ad struct klist *list;
915 1.49 ad int error, fd, rv;
916 1.3 jdolecek
917 1.3 jdolecek fdp = kq->kq_fdp;
918 1.3 jdolecek fp = NULL;
919 1.3 jdolecek kn = NULL;
920 1.3 jdolecek error = 0;
921 1.49 ad fd = 0;
922 1.49 ad
923 1.49 ad newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
924 1.49 ad
925 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
926 1.3 jdolecek kfilter = kfilter_byfilter(kev->filter);
927 1.3 jdolecek if (kfilter == NULL || kfilter->filtops == NULL) {
928 1.3 jdolecek /* filter not found nor implemented */
929 1.49 ad rw_exit(&kqueue_filter_lock);
930 1.49 ad kmem_free(newkn, sizeof(*newkn));
931 1.1 lukem return (EINVAL);
932 1.1 lukem }
933 1.1 lukem
934 1.3 jdolecek /* search if knote already exists */
935 1.3 jdolecek if (kfilter->filtops->f_isfd) {
936 1.3 jdolecek /* monitoring a file descriptor */
937 1.49 ad fd = kev->ident;
938 1.49 ad if ((fp = fd_getfile(fd)) == NULL) {
939 1.49 ad rw_exit(&kqueue_filter_lock);
940 1.49 ad kmem_free(newkn, sizeof(*newkn));
941 1.49 ad return EBADF;
942 1.49 ad }
943 1.74 rmind mutex_enter(&fdp->fd_lock);
944 1.65 ad ff = fdp->fd_dt->dt_ff[fd];
945 1.49 ad if (fd <= fdp->fd_lastkqfile) {
946 1.49 ad SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
947 1.1 lukem if (kq == kn->kn_kq &&
948 1.1 lukem kev->filter == kn->kn_filter)
949 1.1 lukem break;
950 1.49 ad }
951 1.1 lukem }
952 1.1 lukem } else {
953 1.3 jdolecek /*
954 1.3 jdolecek * not monitoring a file descriptor, so
955 1.3 jdolecek * lookup knotes in internal hash table
956 1.3 jdolecek */
957 1.74 rmind mutex_enter(&fdp->fd_lock);
958 1.1 lukem if (fdp->fd_knhashmask != 0) {
959 1.1 lukem list = &fdp->fd_knhash[
960 1.1 lukem KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
961 1.49 ad SLIST_FOREACH(kn, list, kn_link) {
962 1.1 lukem if (kev->ident == kn->kn_id &&
963 1.1 lukem kq == kn->kn_kq &&
964 1.1 lukem kev->filter == kn->kn_filter)
965 1.1 lukem break;
966 1.49 ad }
967 1.1 lukem }
968 1.1 lukem }
969 1.1 lukem
970 1.1 lukem /*
971 1.1 lukem * kn now contains the matching knote, or NULL if no match
972 1.1 lukem */
973 1.1 lukem if (kev->flags & EV_ADD) {
974 1.1 lukem if (kn == NULL) {
975 1.3 jdolecek /* create new knote */
976 1.49 ad kn = newkn;
977 1.49 ad newkn = NULL;
978 1.49 ad kn->kn_obj = fp;
979 1.79 christos kn->kn_id = kev->ident;
980 1.1 lukem kn->kn_kq = kq;
981 1.3 jdolecek kn->kn_fop = kfilter->filtops;
982 1.49 ad kn->kn_kfilter = kfilter;
983 1.49 ad kn->kn_sfflags = kev->fflags;
984 1.49 ad kn->kn_sdata = kev->data;
985 1.49 ad kev->fflags = 0;
986 1.49 ad kev->data = 0;
987 1.49 ad kn->kn_kevent = *kev;
988 1.1 lukem
989 1.85 christos KASSERT(kn->kn_fop != NULL);
990 1.1 lukem /*
991 1.1 lukem * apply reference count to knote structure, and
992 1.1 lukem * do not release it at the end of this routine.
993 1.1 lukem */
994 1.1 lukem fp = NULL;
995 1.1 lukem
996 1.49 ad if (!kn->kn_fop->f_isfd) {
997 1.49 ad /*
998 1.49 ad * If knote is not on an fd, store on
999 1.49 ad * internal hash table.
1000 1.49 ad */
1001 1.49 ad if (fdp->fd_knhashmask == 0) {
1002 1.49 ad /* XXXAD can block with fd_lock held */
1003 1.49 ad fdp->fd_knhash = hashinit(KN_HASHSIZE,
1004 1.59 ad HASH_LIST, true,
1005 1.49 ad &fdp->fd_knhashmask);
1006 1.49 ad }
1007 1.49 ad list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1008 1.49 ad fdp->fd_knhashmask)];
1009 1.49 ad } else {
1010 1.49 ad /* Otherwise, knote is on an fd. */
1011 1.49 ad list = (struct klist *)
1012 1.65 ad &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1013 1.49 ad if ((int)kn->kn_id > fdp->fd_lastkqfile)
1014 1.49 ad fdp->fd_lastkqfile = kn->kn_id;
1015 1.49 ad }
1016 1.49 ad SLIST_INSERT_HEAD(list, kn, kn_link);
1017 1.1 lukem
1018 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1019 1.49 ad error = (*kfilter->filtops->f_attach)(kn);
1020 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1021 1.49 ad if (error != 0) {
1022 1.79 christos #ifdef DIAGNOSTIC
1023 1.79 christos printf("%s: event not supported for file type"
1024 1.79 christos " %d\n", __func__, fp ? fp->f_type : -1);
1025 1.79 christos #endif
1026 1.49 ad /* knote_detach() drops fdp->fd_lock */
1027 1.49 ad knote_detach(kn, fdp, false);
1028 1.1 lukem goto done;
1029 1.1 lukem }
1030 1.49 ad atomic_inc_uint(&kfilter->refcnt);
1031 1.1 lukem } else {
1032 1.1 lukem /*
1033 1.1 lukem * The user may change some filter values after the
1034 1.22 perry * initial EV_ADD, but doing so will not reset any
1035 1.1 lukem * filter which have already been triggered.
1036 1.1 lukem */
1037 1.1 lukem kn->kn_sfflags = kev->fflags;
1038 1.1 lukem kn->kn_sdata = kev->data;
1039 1.1 lukem kn->kn_kevent.udata = kev->udata;
1040 1.1 lukem }
1041 1.79 christos /*
1042 1.79 christos * We can get here if we are trying to attach
1043 1.79 christos * an event to a file descriptor that does not
1044 1.79 christos * support events, and the attach routine is
1045 1.79 christos * broken and does not return an error.
1046 1.79 christos */
1047 1.85 christos KASSERT(kn->kn_fop != NULL);
1048 1.79 christos KASSERT(kn->kn_fop->f_event != NULL);
1049 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1050 1.49 ad rv = (*kn->kn_fop->f_event)(kn, 0);
1051 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1052 1.49 ad if (rv)
1053 1.49 ad knote_activate(kn);
1054 1.49 ad } else {
1055 1.49 ad if (kn == NULL) {
1056 1.49 ad error = ENOENT;
1057 1.49 ad mutex_exit(&fdp->fd_lock);
1058 1.49 ad goto done;
1059 1.49 ad }
1060 1.49 ad if (kev->flags & EV_DELETE) {
1061 1.49 ad /* knote_detach() drops fdp->fd_lock */
1062 1.49 ad knote_detach(kn, fdp, true);
1063 1.49 ad goto done;
1064 1.49 ad }
1065 1.1 lukem }
1066 1.1 lukem
1067 1.3 jdolecek /* disable knote */
1068 1.49 ad if ((kev->flags & EV_DISABLE)) {
1069 1.49 ad mutex_spin_enter(&kq->kq_lock);
1070 1.49 ad if ((kn->kn_status & KN_DISABLED) == 0)
1071 1.49 ad kn->kn_status |= KN_DISABLED;
1072 1.49 ad mutex_spin_exit(&kq->kq_lock);
1073 1.1 lukem }
1074 1.1 lukem
1075 1.3 jdolecek /* enable knote */
1076 1.49 ad if ((kev->flags & EV_ENABLE)) {
1077 1.49 ad knote_enqueue(kn);
1078 1.1 lukem }
1079 1.49 ad mutex_exit(&fdp->fd_lock);
1080 1.3 jdolecek done:
1081 1.49 ad rw_exit(&kqueue_filter_lock);
1082 1.49 ad if (newkn != NULL)
1083 1.49 ad kmem_free(newkn, sizeof(*newkn));
1084 1.1 lukem if (fp != NULL)
1085 1.49 ad fd_putfile(fd);
1086 1.1 lukem return (error);
1087 1.1 lukem }
1088 1.1 lukem
1089 1.52 yamt #if defined(DEBUG)
1090 1.52 yamt static void
1091 1.52 yamt kq_check(struct kqueue *kq)
1092 1.52 yamt {
1093 1.52 yamt const struct knote *kn;
1094 1.52 yamt int count;
1095 1.52 yamt int nmarker;
1096 1.52 yamt
1097 1.52 yamt KASSERT(mutex_owned(&kq->kq_lock));
1098 1.52 yamt KASSERT(kq->kq_count >= 0);
1099 1.52 yamt
1100 1.52 yamt count = 0;
1101 1.52 yamt nmarker = 0;
1102 1.52 yamt TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1103 1.52 yamt if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1104 1.52 yamt panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1105 1.52 yamt }
1106 1.52 yamt if ((kn->kn_status & KN_MARKER) == 0) {
1107 1.52 yamt if (kn->kn_kq != kq) {
1108 1.52 yamt panic("%s: kq=%p kn=%p inconsist 2",
1109 1.52 yamt __func__, kq, kn);
1110 1.52 yamt }
1111 1.52 yamt if ((kn->kn_status & KN_ACTIVE) == 0) {
1112 1.52 yamt panic("%s: kq=%p kn=%p: not active",
1113 1.52 yamt __func__, kq, kn);
1114 1.52 yamt }
1115 1.52 yamt count++;
1116 1.52 yamt if (count > kq->kq_count) {
1117 1.52 yamt goto bad;
1118 1.52 yamt }
1119 1.52 yamt } else {
1120 1.52 yamt nmarker++;
1121 1.52 yamt #if 0
1122 1.52 yamt if (nmarker > 10000) {
1123 1.52 yamt panic("%s: kq=%p too many markers: %d != %d, "
1124 1.52 yamt "nmarker=%d",
1125 1.52 yamt __func__, kq, kq->kq_count, count, nmarker);
1126 1.52 yamt }
1127 1.52 yamt #endif
1128 1.52 yamt }
1129 1.52 yamt }
1130 1.52 yamt if (kq->kq_count != count) {
1131 1.52 yamt bad:
1132 1.52 yamt panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1133 1.52 yamt __func__, kq, kq->kq_count, count, nmarker);
1134 1.52 yamt }
1135 1.52 yamt }
1136 1.52 yamt #else /* defined(DEBUG) */
1137 1.52 yamt #define kq_check(a) /* nothing */
1138 1.52 yamt #endif /* defined(DEBUG) */
1139 1.52 yamt
1140 1.3 jdolecek /*
1141 1.3 jdolecek * Scan through the list of events on fp (for a maximum of maxevents),
1142 1.3 jdolecek * returning the results in to ulistp. Timeout is determined by tsp; if
1143 1.3 jdolecek * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1144 1.3 jdolecek * as appropriate.
1145 1.3 jdolecek */
1146 1.1 lukem static int
1147 1.49 ad kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1148 1.49 ad const struct timespec *tsp, register_t *retval,
1149 1.49 ad const struct kevent_ops *keops, struct kevent *kevbuf,
1150 1.49 ad size_t kevcnt)
1151 1.1 lukem {
1152 1.3 jdolecek struct kqueue *kq;
1153 1.3 jdolecek struct kevent *kevp;
1154 1.62 christos struct timespec ats, sleepts;
1155 1.85 christos struct knote *kn, *marker, morker;
1156 1.24 cube size_t count, nkev, nevents;
1157 1.49 ad int timeout, error, rv;
1158 1.49 ad filedesc_t *fdp;
1159 1.1 lukem
1160 1.49 ad fdp = curlwp->l_fd;
1161 1.82 matt kq = fp->f_kqueue;
1162 1.1 lukem count = maxevents;
1163 1.24 cube nkev = nevents = error = 0;
1164 1.49 ad if (count == 0) {
1165 1.49 ad *retval = 0;
1166 1.49 ad return 0;
1167 1.49 ad }
1168 1.1 lukem
1169 1.9 jdolecek if (tsp) { /* timeout supplied */
1170 1.63 christos ats = *tsp;
1171 1.62 christos if (inittimeleft(&ats, &sleepts) == -1) {
1172 1.49 ad *retval = maxevents;
1173 1.49 ad return EINVAL;
1174 1.1 lukem }
1175 1.62 christos timeout = tstohz(&ats);
1176 1.9 jdolecek if (timeout <= 0)
1177 1.29 kardel timeout = -1; /* do poll */
1178 1.1 lukem } else {
1179 1.9 jdolecek /* no timeout, wait forever */
1180 1.1 lukem timeout = 0;
1181 1.49 ad }
1182 1.1 lukem
1183 1.85 christos memset(&morker, 0, sizeof(morker));
1184 1.85 christos marker = &morker;
1185 1.49 ad marker->kn_status = KN_MARKER;
1186 1.49 ad mutex_spin_enter(&kq->kq_lock);
1187 1.3 jdolecek retry:
1188 1.49 ad kevp = kevbuf;
1189 1.1 lukem if (kq->kq_count == 0) {
1190 1.49 ad if (timeout >= 0) {
1191 1.49 ad error = cv_timedwait_sig(&kq->kq_cv,
1192 1.49 ad &kq->kq_lock, timeout);
1193 1.49 ad if (error == 0) {
1194 1.49 ad if (tsp == NULL || (timeout =
1195 1.62 christos gettimeleft(&ats, &sleepts)) > 0)
1196 1.49 ad goto retry;
1197 1.49 ad } else {
1198 1.49 ad /* don't restart after signals... */
1199 1.49 ad if (error == ERESTART)
1200 1.49 ad error = EINTR;
1201 1.49 ad if (error == EWOULDBLOCK)
1202 1.49 ad error = 0;
1203 1.49 ad }
1204 1.1 lukem }
1205 1.49 ad } else {
1206 1.49 ad /* mark end of knote list */
1207 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1208 1.1 lukem
1209 1.49 ad while (count != 0) {
1210 1.49 ad kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1211 1.51 yamt while ((kn->kn_status & KN_MARKER) != 0) {
1212 1.51 yamt if (kn == marker) {
1213 1.51 yamt /* it's our marker, stop */
1214 1.51 yamt TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1215 1.51 yamt if (count < maxevents || (tsp != NULL &&
1216 1.62 christos (timeout = gettimeleft(&ats,
1217 1.62 christos &sleepts)) <= 0))
1218 1.51 yamt goto done;
1219 1.51 yamt goto retry;
1220 1.51 yamt }
1221 1.49 ad /* someone else's marker. */
1222 1.49 ad kn = TAILQ_NEXT(kn, kn_tqe);
1223 1.49 ad }
1224 1.52 yamt kq_check(kq);
1225 1.85 christos kq->kq_count--;
1226 1.49 ad TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1227 1.1 lukem kn->kn_status &= ~KN_QUEUED;
1228 1.85 christos kn->kn_status |= KN_BUSY;
1229 1.52 yamt kq_check(kq);
1230 1.49 ad if (kn->kn_status & KN_DISABLED) {
1231 1.85 christos kn->kn_status &= ~KN_BUSY;
1232 1.49 ad /* don't want disabled events */
1233 1.49 ad continue;
1234 1.49 ad }
1235 1.49 ad if ((kn->kn_flags & EV_ONESHOT) == 0) {
1236 1.49 ad mutex_spin_exit(&kq->kq_lock);
1237 1.85 christos KASSERT(kn->kn_fop != NULL);
1238 1.84 christos KASSERT(kn->kn_fop->f_event != NULL);
1239 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1240 1.49 ad rv = (*kn->kn_fop->f_event)(kn, 0);
1241 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1242 1.53 ad mutex_spin_enter(&kq->kq_lock);
1243 1.53 ad /* Re-poll if note was re-enqueued. */
1244 1.85 christos if ((kn->kn_status & KN_QUEUED) != 0) {
1245 1.85 christos kn->kn_status &= ~KN_BUSY;
1246 1.53 ad continue;
1247 1.85 christos }
1248 1.49 ad if (rv == 0) {
1249 1.49 ad /*
1250 1.49 ad * non-ONESHOT event that hasn't
1251 1.49 ad * triggered again, so de-queue.
1252 1.49 ad */
1253 1.85 christos kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1254 1.49 ad continue;
1255 1.49 ad }
1256 1.49 ad }
1257 1.53 ad /* XXXAD should be got from f_event if !oneshot. */
1258 1.49 ad *kevp++ = kn->kn_kevent;
1259 1.49 ad nkev++;
1260 1.49 ad if (kn->kn_flags & EV_ONESHOT) {
1261 1.49 ad /* delete ONESHOT events after retrieval */
1262 1.49 ad mutex_spin_exit(&kq->kq_lock);
1263 1.49 ad mutex_enter(&fdp->fd_lock);
1264 1.85 christos kn->kn_status &= ~KN_BUSY;
1265 1.49 ad knote_detach(kn, fdp, true);
1266 1.49 ad mutex_spin_enter(&kq->kq_lock);
1267 1.49 ad } else if (kn->kn_flags & EV_CLEAR) {
1268 1.49 ad /* clear state after retrieval */
1269 1.49 ad kn->kn_data = 0;
1270 1.49 ad kn->kn_fflags = 0;
1271 1.85 christos kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1272 1.84 christos } else if (kn->kn_flags & EV_DISPATCH) {
1273 1.84 christos kn->kn_status |= KN_DISABLED;
1274 1.85 christos kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1275 1.49 ad } else {
1276 1.49 ad /* add event back on list */
1277 1.52 yamt kq_check(kq);
1278 1.85 christos kn->kn_status |= KN_QUEUED;
1279 1.85 christos kn->kn_status &= ~KN_BUSY;
1280 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1281 1.49 ad kq->kq_count++;
1282 1.52 yamt kq_check(kq);
1283 1.49 ad }
1284 1.49 ad if (nkev == kevcnt) {
1285 1.49 ad /* do copyouts in kevcnt chunks */
1286 1.49 ad mutex_spin_exit(&kq->kq_lock);
1287 1.50 yamt error = (*keops->keo_put_events)
1288 1.50 yamt (keops->keo_private,
1289 1.49 ad kevbuf, ulistp, nevents, nkev);
1290 1.49 ad mutex_spin_enter(&kq->kq_lock);
1291 1.49 ad nevents += nkev;
1292 1.49 ad nkev = 0;
1293 1.49 ad kevp = kevbuf;
1294 1.49 ad }
1295 1.49 ad count--;
1296 1.49 ad if (error != 0 || count == 0) {
1297 1.49 ad /* remove marker */
1298 1.49 ad TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1299 1.1 lukem break;
1300 1.49 ad }
1301 1.1 lukem }
1302 1.1 lukem }
1303 1.51 yamt done:
1304 1.49 ad mutex_spin_exit(&kq->kq_lock);
1305 1.49 ad if (nkev != 0) {
1306 1.3 jdolecek /* copyout remaining events */
1307 1.24 cube error = (*keops->keo_put_events)(keops->keo_private,
1308 1.49 ad kevbuf, ulistp, nevents, nkev);
1309 1.49 ad }
1310 1.3 jdolecek *retval = maxevents - count;
1311 1.3 jdolecek
1312 1.49 ad return error;
1313 1.1 lukem }
1314 1.1 lukem
1315 1.1 lukem /*
1316 1.49 ad * fileops ioctl method for a kqueue descriptor.
1317 1.3 jdolecek *
1318 1.3 jdolecek * Two ioctls are currently supported. They both use struct kfilter_mapping:
1319 1.3 jdolecek * KFILTER_BYNAME find name for filter, and return result in
1320 1.3 jdolecek * name, which is of size len.
1321 1.3 jdolecek * KFILTER_BYFILTER find filter for name. len is ignored.
1322 1.3 jdolecek */
1323 1.1 lukem /*ARGSUSED*/
1324 1.1 lukem static int
1325 1.49 ad kqueue_ioctl(file_t *fp, u_long com, void *data)
1326 1.1 lukem {
1327 1.3 jdolecek struct kfilter_mapping *km;
1328 1.3 jdolecek const struct kfilter *kfilter;
1329 1.3 jdolecek char *name;
1330 1.3 jdolecek int error;
1331 1.3 jdolecek
1332 1.49 ad km = data;
1333 1.3 jdolecek error = 0;
1334 1.49 ad name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1335 1.3 jdolecek
1336 1.3 jdolecek switch (com) {
1337 1.3 jdolecek case KFILTER_BYFILTER: /* convert filter -> name */
1338 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
1339 1.3 jdolecek kfilter = kfilter_byfilter(km->filter);
1340 1.49 ad if (kfilter != NULL) {
1341 1.49 ad strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1342 1.49 ad rw_exit(&kqueue_filter_lock);
1343 1.49 ad error = copyoutstr(name, km->name, km->len, NULL);
1344 1.49 ad } else {
1345 1.49 ad rw_exit(&kqueue_filter_lock);
1346 1.3 jdolecek error = ENOENT;
1347 1.49 ad }
1348 1.3 jdolecek break;
1349 1.3 jdolecek
1350 1.3 jdolecek case KFILTER_BYNAME: /* convert name -> filter */
1351 1.3 jdolecek error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1352 1.3 jdolecek if (error) {
1353 1.3 jdolecek break;
1354 1.3 jdolecek }
1355 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
1356 1.3 jdolecek kfilter = kfilter_byname(name);
1357 1.3 jdolecek if (kfilter != NULL)
1358 1.3 jdolecek km->filter = kfilter->filter;
1359 1.3 jdolecek else
1360 1.3 jdolecek error = ENOENT;
1361 1.49 ad rw_exit(&kqueue_filter_lock);
1362 1.3 jdolecek break;
1363 1.3 jdolecek
1364 1.3 jdolecek default:
1365 1.3 jdolecek error = ENOTTY;
1366 1.49 ad break;
1367 1.3 jdolecek
1368 1.3 jdolecek }
1369 1.49 ad kmem_free(name, KFILTER_MAXNAME);
1370 1.3 jdolecek return (error);
1371 1.3 jdolecek }
1372 1.3 jdolecek
1373 1.3 jdolecek /*
1374 1.49 ad * fileops fcntl method for a kqueue descriptor.
1375 1.3 jdolecek */
1376 1.3 jdolecek static int
1377 1.49 ad kqueue_fcntl(file_t *fp, u_int com, void *data)
1378 1.3 jdolecek {
1379 1.3 jdolecek
1380 1.1 lukem return (ENOTTY);
1381 1.1 lukem }
1382 1.1 lukem
1383 1.3 jdolecek /*
1384 1.49 ad * fileops poll method for a kqueue descriptor.
1385 1.3 jdolecek * Determine if kqueue has events pending.
1386 1.3 jdolecek */
1387 1.1 lukem static int
1388 1.49 ad kqueue_poll(file_t *fp, int events)
1389 1.1 lukem {
1390 1.3 jdolecek struct kqueue *kq;
1391 1.3 jdolecek int revents;
1392 1.3 jdolecek
1393 1.82 matt kq = fp->f_kqueue;
1394 1.49 ad
1395 1.3 jdolecek revents = 0;
1396 1.3 jdolecek if (events & (POLLIN | POLLRDNORM)) {
1397 1.49 ad mutex_spin_enter(&kq->kq_lock);
1398 1.49 ad if (kq->kq_count != 0) {
1399 1.3 jdolecek revents |= events & (POLLIN | POLLRDNORM);
1400 1.1 lukem } else {
1401 1.49 ad selrecord(curlwp, &kq->kq_sel);
1402 1.1 lukem }
1403 1.52 yamt kq_check(kq);
1404 1.49 ad mutex_spin_exit(&kq->kq_lock);
1405 1.1 lukem }
1406 1.49 ad
1407 1.49 ad return revents;
1408 1.1 lukem }
1409 1.1 lukem
1410 1.3 jdolecek /*
1411 1.49 ad * fileops stat method for a kqueue descriptor.
1412 1.3 jdolecek * Returns dummy info, with st_size being number of events pending.
1413 1.3 jdolecek */
1414 1.1 lukem static int
1415 1.49 ad kqueue_stat(file_t *fp, struct stat *st)
1416 1.1 lukem {
1417 1.49 ad struct kqueue *kq;
1418 1.49 ad
1419 1.82 matt kq = fp->f_kqueue;
1420 1.1 lukem
1421 1.49 ad memset(st, 0, sizeof(*st));
1422 1.1 lukem st->st_size = kq->kq_count;
1423 1.1 lukem st->st_blksize = sizeof(struct kevent);
1424 1.1 lukem st->st_mode = S_IFIFO;
1425 1.49 ad
1426 1.49 ad return 0;
1427 1.49 ad }
1428 1.49 ad
1429 1.49 ad static void
1430 1.49 ad kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1431 1.49 ad {
1432 1.49 ad struct knote *kn;
1433 1.49 ad filedesc_t *fdp;
1434 1.49 ad
1435 1.49 ad fdp = kq->kq_fdp;
1436 1.49 ad
1437 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
1438 1.49 ad
1439 1.49 ad for (kn = SLIST_FIRST(list); kn != NULL;) {
1440 1.49 ad if (kq != kn->kn_kq) {
1441 1.49 ad kn = SLIST_NEXT(kn, kn_link);
1442 1.49 ad continue;
1443 1.49 ad }
1444 1.49 ad knote_detach(kn, fdp, true);
1445 1.49 ad mutex_enter(&fdp->fd_lock);
1446 1.49 ad kn = SLIST_FIRST(list);
1447 1.49 ad }
1448 1.1 lukem }
1449 1.1 lukem
1450 1.49 ad
1451 1.3 jdolecek /*
1452 1.49 ad * fileops close method for a kqueue descriptor.
1453 1.3 jdolecek */
1454 1.1 lukem static int
1455 1.49 ad kqueue_close(file_t *fp)
1456 1.1 lukem {
1457 1.49 ad struct kqueue *kq;
1458 1.49 ad filedesc_t *fdp;
1459 1.49 ad fdfile_t *ff;
1460 1.49 ad int i;
1461 1.49 ad
1462 1.82 matt kq = fp->f_kqueue;
1463 1.82 matt fp->f_kqueue = NULL;
1464 1.79 christos fp->f_type = 0;
1465 1.49 ad fdp = curlwp->l_fd;
1466 1.1 lukem
1467 1.49 ad mutex_enter(&fdp->fd_lock);
1468 1.49 ad for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1469 1.65 ad if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1470 1.49 ad continue;
1471 1.49 ad kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1472 1.1 lukem }
1473 1.1 lukem if (fdp->fd_knhashmask != 0) {
1474 1.1 lukem for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1475 1.49 ad kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1476 1.1 lukem }
1477 1.1 lukem }
1478 1.49 ad mutex_exit(&fdp->fd_lock);
1479 1.49 ad
1480 1.49 ad KASSERT(kq->kq_count == 0);
1481 1.49 ad mutex_destroy(&kq->kq_lock);
1482 1.49 ad cv_destroy(&kq->kq_cv);
1483 1.48 rmind seldestroy(&kq->kq_sel);
1484 1.49 ad kmem_free(kq, sizeof(*kq));
1485 1.1 lukem
1486 1.1 lukem return (0);
1487 1.1 lukem }
1488 1.1 lukem
1489 1.3 jdolecek /*
1490 1.3 jdolecek * struct fileops kqfilter method for a kqueue descriptor.
1491 1.3 jdolecek * Event triggered when monitored kqueue changes.
1492 1.3 jdolecek */
1493 1.3 jdolecek static int
1494 1.49 ad kqueue_kqfilter(file_t *fp, struct knote *kn)
1495 1.3 jdolecek {
1496 1.3 jdolecek struct kqueue *kq;
1497 1.49 ad
1498 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
1499 1.49 ad
1500 1.49 ad KASSERT(fp == kn->kn_obj);
1501 1.3 jdolecek
1502 1.3 jdolecek if (kn->kn_filter != EVFILT_READ)
1503 1.49 ad return 1;
1504 1.49 ad
1505 1.3 jdolecek kn->kn_fop = &kqread_filtops;
1506 1.49 ad mutex_enter(&kq->kq_lock);
1507 1.5 christos SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1508 1.49 ad mutex_exit(&kq->kq_lock);
1509 1.49 ad
1510 1.49 ad return 0;
1511 1.3 jdolecek }
1512 1.3 jdolecek
1513 1.3 jdolecek
1514 1.3 jdolecek /*
1515 1.49 ad * Walk down a list of knotes, activating them if their event has
1516 1.49 ad * triggered. The caller's object lock (e.g. device driver lock)
1517 1.49 ad * must be held.
1518 1.1 lukem */
1519 1.1 lukem void
1520 1.1 lukem knote(struct klist *list, long hint)
1521 1.1 lukem {
1522 1.71 drochner struct knote *kn, *tmpkn;
1523 1.1 lukem
1524 1.71 drochner SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1525 1.85 christos KASSERT(kn->kn_fop != NULL);
1526 1.84 christos KASSERT(kn->kn_fop->f_event != NULL);
1527 1.49 ad if ((*kn->kn_fop->f_event)(kn, hint))
1528 1.49 ad knote_activate(kn);
1529 1.49 ad }
1530 1.1 lukem }
1531 1.1 lukem
1532 1.1 lukem /*
1533 1.49 ad * Remove all knotes referencing a specified fd
1534 1.1 lukem */
1535 1.1 lukem void
1536 1.49 ad knote_fdclose(int fd)
1537 1.1 lukem {
1538 1.49 ad struct klist *list;
1539 1.1 lukem struct knote *kn;
1540 1.49 ad filedesc_t *fdp;
1541 1.1 lukem
1542 1.49 ad fdp = curlwp->l_fd;
1543 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1544 1.49 ad mutex_enter(&fdp->fd_lock);
1545 1.1 lukem while ((kn = SLIST_FIRST(list)) != NULL) {
1546 1.49 ad knote_detach(kn, fdp, true);
1547 1.49 ad mutex_enter(&fdp->fd_lock);
1548 1.1 lukem }
1549 1.49 ad mutex_exit(&fdp->fd_lock);
1550 1.1 lukem }
1551 1.1 lukem
1552 1.1 lukem /*
1553 1.49 ad * Drop knote. Called with fdp->fd_lock held, and will drop before
1554 1.49 ad * returning.
1555 1.3 jdolecek */
1556 1.1 lukem static void
1557 1.49 ad knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1558 1.1 lukem {
1559 1.49 ad struct klist *list;
1560 1.53 ad struct kqueue *kq;
1561 1.53 ad
1562 1.53 ad kq = kn->kn_kq;
1563 1.1 lukem
1564 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
1565 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
1566 1.3 jdolecek
1567 1.85 christos KASSERT(kn->kn_fop != NULL);
1568 1.53 ad /* Remove from monitored object. */
1569 1.49 ad if (dofop) {
1570 1.85 christos KASSERT(kn->kn_fop->f_detach != NULL);
1571 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1572 1.49 ad (*kn->kn_fop->f_detach)(kn);
1573 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1574 1.1 lukem }
1575 1.3 jdolecek
1576 1.53 ad /* Remove from descriptor table. */
1577 1.1 lukem if (kn->kn_fop->f_isfd)
1578 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1579 1.1 lukem else
1580 1.1 lukem list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1581 1.1 lukem
1582 1.1 lukem SLIST_REMOVE(list, kn, knote, kn_link);
1583 1.53 ad
1584 1.53 ad /* Remove from kqueue. */
1585 1.85 christos again:
1586 1.53 ad mutex_spin_enter(&kq->kq_lock);
1587 1.53 ad if ((kn->kn_status & KN_QUEUED) != 0) {
1588 1.53 ad kq_check(kq);
1589 1.85 christos kq->kq_count--;
1590 1.53 ad TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1591 1.53 ad kn->kn_status &= ~KN_QUEUED;
1592 1.53 ad kq_check(kq);
1593 1.85 christos } else if (kn->kn_status & KN_BUSY) {
1594 1.85 christos mutex_spin_exit(&kq->kq_lock);
1595 1.85 christos goto again;
1596 1.53 ad }
1597 1.53 ad mutex_spin_exit(&kq->kq_lock);
1598 1.53 ad
1599 1.49 ad mutex_exit(&fdp->fd_lock);
1600 1.49 ad if (kn->kn_fop->f_isfd)
1601 1.49 ad fd_putfile(kn->kn_id);
1602 1.49 ad atomic_dec_uint(&kn->kn_kfilter->refcnt);
1603 1.49 ad kmem_free(kn, sizeof(*kn));
1604 1.1 lukem }
1605 1.1 lukem
1606 1.3 jdolecek /*
1607 1.3 jdolecek * Queue new event for knote.
1608 1.3 jdolecek */
1609 1.1 lukem static void
1610 1.1 lukem knote_enqueue(struct knote *kn)
1611 1.1 lukem {
1612 1.49 ad struct kqueue *kq;
1613 1.49 ad
1614 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
1615 1.1 lukem
1616 1.3 jdolecek kq = kn->kn_kq;
1617 1.1 lukem
1618 1.49 ad mutex_spin_enter(&kq->kq_lock);
1619 1.49 ad if ((kn->kn_status & KN_DISABLED) != 0) {
1620 1.49 ad kn->kn_status &= ~KN_DISABLED;
1621 1.49 ad }
1622 1.49 ad if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1623 1.52 yamt kq_check(kq);
1624 1.85 christos kn->kn_status |= KN_QUEUED;
1625 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1626 1.49 ad kq->kq_count++;
1627 1.52 yamt kq_check(kq);
1628 1.49 ad cv_broadcast(&kq->kq_cv);
1629 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1630 1.49 ad }
1631 1.49 ad mutex_spin_exit(&kq->kq_lock);
1632 1.1 lukem }
1633 1.49 ad /*
1634 1.49 ad * Queue new event for knote.
1635 1.49 ad */
1636 1.49 ad static void
1637 1.49 ad knote_activate(struct knote *kn)
1638 1.49 ad {
1639 1.49 ad struct kqueue *kq;
1640 1.49 ad
1641 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
1642 1.1 lukem
1643 1.3 jdolecek kq = kn->kn_kq;
1644 1.12 pk
1645 1.49 ad mutex_spin_enter(&kq->kq_lock);
1646 1.49 ad kn->kn_status |= KN_ACTIVE;
1647 1.49 ad if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1648 1.52 yamt kq_check(kq);
1649 1.85 christos kn->kn_status |= KN_QUEUED;
1650 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1651 1.49 ad kq->kq_count++;
1652 1.52 yamt kq_check(kq);
1653 1.49 ad cv_broadcast(&kq->kq_cv);
1654 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1655 1.49 ad }
1656 1.49 ad mutex_spin_exit(&kq->kq_lock);
1657 1.1 lukem }
1658