kern_event.c revision 1.88 1 1.88 christos /* $NetBSD: kern_event.c,v 1.88 2016/07/14 18:16:51 christos Exp $ */
2 1.49 ad
3 1.49 ad /*-
4 1.64 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.49 ad * All rights reserved.
6 1.49 ad *
7 1.64 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.64 ad * by Andrew Doran.
9 1.64 ad *
10 1.49 ad * Redistribution and use in source and binary forms, with or without
11 1.49 ad * modification, are permitted provided that the following conditions
12 1.49 ad * are met:
13 1.49 ad * 1. Redistributions of source code must retain the above copyright
14 1.49 ad * notice, this list of conditions and the following disclaimer.
15 1.49 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.49 ad * notice, this list of conditions and the following disclaimer in the
17 1.49 ad * documentation and/or other materials provided with the distribution.
18 1.49 ad *
19 1.49 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.49 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.49 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.49 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.49 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.49 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.49 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.49 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.49 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.49 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.49 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.49 ad */
31 1.28 kardel
32 1.1 lukem /*-
33 1.1 lukem * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 1.1 lukem * All rights reserved.
35 1.1 lukem *
36 1.1 lukem * Redistribution and use in source and binary forms, with or without
37 1.1 lukem * modification, are permitted provided that the following conditions
38 1.1 lukem * are met:
39 1.1 lukem * 1. Redistributions of source code must retain the above copyright
40 1.1 lukem * notice, this list of conditions and the following disclaimer.
41 1.1 lukem * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 lukem * notice, this list of conditions and the following disclaimer in the
43 1.1 lukem * documentation and/or other materials provided with the distribution.
44 1.1 lukem *
45 1.1 lukem * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 lukem * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 lukem * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 lukem * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 lukem * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 lukem * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 lukem * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 lukem * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 lukem * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 lukem * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 lukem * SUCH DAMAGE.
56 1.1 lukem *
57 1.49 ad * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 1.1 lukem */
59 1.14 jdolecek
60 1.14 jdolecek #include <sys/cdefs.h>
61 1.88 christos __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.88 2016/07/14 18:16:51 christos Exp $");
62 1.1 lukem
63 1.1 lukem #include <sys/param.h>
64 1.1 lukem #include <sys/systm.h>
65 1.1 lukem #include <sys/kernel.h>
66 1.86 christos #include <sys/wait.h>
67 1.1 lukem #include <sys/proc.h>
68 1.1 lukem #include <sys/file.h>
69 1.3 jdolecek #include <sys/select.h>
70 1.1 lukem #include <sys/queue.h>
71 1.1 lukem #include <sys/event.h>
72 1.1 lukem #include <sys/eventvar.h>
73 1.1 lukem #include <sys/poll.h>
74 1.49 ad #include <sys/kmem.h>
75 1.1 lukem #include <sys/stat.h>
76 1.3 jdolecek #include <sys/filedesc.h>
77 1.3 jdolecek #include <sys/syscallargs.h>
78 1.27 elad #include <sys/kauth.h>
79 1.40 ad #include <sys/conf.h>
80 1.49 ad #include <sys/atomic.h>
81 1.1 lukem
82 1.49 ad static int kqueue_scan(file_t *, size_t, struct kevent *,
83 1.49 ad const struct timespec *, register_t *,
84 1.49 ad const struct kevent_ops *, struct kevent *,
85 1.49 ad size_t);
86 1.49 ad static int kqueue_ioctl(file_t *, u_long, void *);
87 1.49 ad static int kqueue_fcntl(file_t *, u_int, void *);
88 1.49 ad static int kqueue_poll(file_t *, int);
89 1.49 ad static int kqueue_kqfilter(file_t *, struct knote *);
90 1.49 ad static int kqueue_stat(file_t *, struct stat *);
91 1.49 ad static int kqueue_close(file_t *);
92 1.49 ad static int kqueue_register(struct kqueue *, struct kevent *);
93 1.49 ad static void kqueue_doclose(struct kqueue *, struct klist *, int);
94 1.49 ad
95 1.49 ad static void knote_detach(struct knote *, filedesc_t *fdp, bool);
96 1.49 ad static void knote_enqueue(struct knote *);
97 1.49 ad static void knote_activate(struct knote *);
98 1.49 ad
99 1.49 ad static void filt_kqdetach(struct knote *);
100 1.49 ad static int filt_kqueue(struct knote *, long hint);
101 1.49 ad static int filt_procattach(struct knote *);
102 1.49 ad static void filt_procdetach(struct knote *);
103 1.49 ad static int filt_proc(struct knote *, long hint);
104 1.49 ad static int filt_fileattach(struct knote *);
105 1.49 ad static void filt_timerexpire(void *x);
106 1.49 ad static int filt_timerattach(struct knote *);
107 1.49 ad static void filt_timerdetach(struct knote *);
108 1.49 ad static int filt_timer(struct knote *, long hint);
109 1.1 lukem
110 1.21 christos static const struct fileops kqueueops = {
111 1.64 ad .fo_read = (void *)enxio,
112 1.64 ad .fo_write = (void *)enxio,
113 1.64 ad .fo_ioctl = kqueue_ioctl,
114 1.64 ad .fo_fcntl = kqueue_fcntl,
115 1.64 ad .fo_poll = kqueue_poll,
116 1.64 ad .fo_stat = kqueue_stat,
117 1.64 ad .fo_close = kqueue_close,
118 1.64 ad .fo_kqfilter = kqueue_kqfilter,
119 1.68 dsl .fo_restart = fnullop_restart,
120 1.1 lukem };
121 1.1 lukem
122 1.3 jdolecek static const struct filterops kqread_filtops =
123 1.1 lukem { 1, NULL, filt_kqdetach, filt_kqueue };
124 1.3 jdolecek static const struct filterops proc_filtops =
125 1.1 lukem { 0, filt_procattach, filt_procdetach, filt_proc };
126 1.3 jdolecek static const struct filterops file_filtops =
127 1.1 lukem { 1, filt_fileattach, NULL, NULL };
128 1.26 yamt static const struct filterops timer_filtops =
129 1.8 jdolecek { 0, filt_timerattach, filt_timerdetach, filt_timer };
130 1.1 lukem
131 1.49 ad static u_int kq_ncallouts = 0;
132 1.8 jdolecek static int kq_calloutmax = (4 * 1024);
133 1.7 thorpej
134 1.1 lukem #define KN_HASHSIZE 64 /* XXX should be tunable */
135 1.3 jdolecek #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
136 1.1 lukem
137 1.3 jdolecek extern const struct filterops sig_filtops;
138 1.1 lukem
139 1.1 lukem /*
140 1.1 lukem * Table for for all system-defined filters.
141 1.3 jdolecek * These should be listed in the numeric order of the EVFILT_* defines.
142 1.3 jdolecek * If filtops is NULL, the filter isn't implemented in NetBSD.
143 1.3 jdolecek * End of list is when name is NULL.
144 1.49 ad *
145 1.49 ad * Note that 'refcnt' is meaningless for built-in filters.
146 1.1 lukem */
147 1.3 jdolecek struct kfilter {
148 1.49 ad const char *name; /* name of filter */
149 1.49 ad uint32_t filter; /* id of filter */
150 1.49 ad unsigned refcnt; /* reference count */
151 1.3 jdolecek const struct filterops *filtops;/* operations for filter */
152 1.49 ad size_t namelen; /* length of name string */
153 1.3 jdolecek };
154 1.3 jdolecek
155 1.49 ad /* System defined filters */
156 1.49 ad static struct kfilter sys_kfilters[] = {
157 1.49 ad { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
158 1.49 ad { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
159 1.49 ad { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
160 1.49 ad { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
161 1.49 ad { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
162 1.49 ad { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
163 1.49 ad { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
164 1.49 ad { NULL, 0, 0, NULL, 0 },
165 1.1 lukem };
166 1.1 lukem
167 1.49 ad /* User defined kfilters */
168 1.3 jdolecek static struct kfilter *user_kfilters; /* array */
169 1.3 jdolecek static int user_kfilterc; /* current offset */
170 1.3 jdolecek static int user_kfiltermaxc; /* max size so far */
171 1.49 ad static size_t user_kfiltersz; /* size of allocated memory */
172 1.49 ad
173 1.49 ad /* Locks */
174 1.49 ad static krwlock_t kqueue_filter_lock; /* lock on filter lists */
175 1.49 ad static kmutex_t kqueue_misc_lock; /* miscellaneous */
176 1.49 ad
177 1.66 elad static kauth_listener_t kqueue_listener;
178 1.66 elad
179 1.66 elad static int
180 1.66 elad kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
181 1.66 elad void *arg0, void *arg1, void *arg2, void *arg3)
182 1.66 elad {
183 1.66 elad struct proc *p;
184 1.66 elad int result;
185 1.66 elad
186 1.66 elad result = KAUTH_RESULT_DEFER;
187 1.66 elad p = arg0;
188 1.66 elad
189 1.66 elad if (action != KAUTH_PROCESS_KEVENT_FILTER)
190 1.66 elad return result;
191 1.66 elad
192 1.66 elad if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
193 1.66 elad ISSET(p->p_flag, PK_SUGID)))
194 1.66 elad return result;
195 1.66 elad
196 1.66 elad result = KAUTH_RESULT_ALLOW;
197 1.66 elad
198 1.66 elad return result;
199 1.66 elad }
200 1.66 elad
201 1.49 ad /*
202 1.49 ad * Initialize the kqueue subsystem.
203 1.49 ad */
204 1.49 ad void
205 1.49 ad kqueue_init(void)
206 1.49 ad {
207 1.49 ad
208 1.49 ad rw_init(&kqueue_filter_lock);
209 1.49 ad mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
210 1.66 elad
211 1.66 elad kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
212 1.66 elad kqueue_listener_cb, NULL);
213 1.49 ad }
214 1.3 jdolecek
215 1.3 jdolecek /*
216 1.3 jdolecek * Find kfilter entry by name, or NULL if not found.
217 1.3 jdolecek */
218 1.49 ad static struct kfilter *
219 1.3 jdolecek kfilter_byname_sys(const char *name)
220 1.3 jdolecek {
221 1.3 jdolecek int i;
222 1.3 jdolecek
223 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
224 1.49 ad
225 1.3 jdolecek for (i = 0; sys_kfilters[i].name != NULL; i++) {
226 1.3 jdolecek if (strcmp(name, sys_kfilters[i].name) == 0)
227 1.49 ad return &sys_kfilters[i];
228 1.3 jdolecek }
229 1.49 ad return NULL;
230 1.3 jdolecek }
231 1.3 jdolecek
232 1.3 jdolecek static struct kfilter *
233 1.3 jdolecek kfilter_byname_user(const char *name)
234 1.3 jdolecek {
235 1.3 jdolecek int i;
236 1.3 jdolecek
237 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
238 1.49 ad
239 1.31 seanb /* user filter slots have a NULL name if previously deregistered */
240 1.31 seanb for (i = 0; i < user_kfilterc ; i++) {
241 1.31 seanb if (user_kfilters[i].name != NULL &&
242 1.3 jdolecek strcmp(name, user_kfilters[i].name) == 0)
243 1.49 ad return &user_kfilters[i];
244 1.3 jdolecek }
245 1.49 ad return NULL;
246 1.3 jdolecek }
247 1.3 jdolecek
248 1.49 ad static struct kfilter *
249 1.3 jdolecek kfilter_byname(const char *name)
250 1.3 jdolecek {
251 1.49 ad struct kfilter *kfilter;
252 1.49 ad
253 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
254 1.3 jdolecek
255 1.3 jdolecek if ((kfilter = kfilter_byname_sys(name)) != NULL)
256 1.49 ad return kfilter;
257 1.3 jdolecek
258 1.49 ad return kfilter_byname_user(name);
259 1.3 jdolecek }
260 1.3 jdolecek
261 1.3 jdolecek /*
262 1.3 jdolecek * Find kfilter entry by filter id, or NULL if not found.
263 1.3 jdolecek * Assumes entries are indexed in filter id order, for speed.
264 1.3 jdolecek */
265 1.49 ad static struct kfilter *
266 1.3 jdolecek kfilter_byfilter(uint32_t filter)
267 1.3 jdolecek {
268 1.49 ad struct kfilter *kfilter;
269 1.49 ad
270 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
271 1.3 jdolecek
272 1.3 jdolecek if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
273 1.3 jdolecek kfilter = &sys_kfilters[filter];
274 1.3 jdolecek else if (user_kfilters != NULL &&
275 1.3 jdolecek filter < EVFILT_SYSCOUNT + user_kfilterc)
276 1.3 jdolecek /* it's a user filter */
277 1.3 jdolecek kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
278 1.3 jdolecek else
279 1.3 jdolecek return (NULL); /* out of range */
280 1.3 jdolecek KASSERT(kfilter->filter == filter); /* sanity check! */
281 1.3 jdolecek return (kfilter);
282 1.3 jdolecek }
283 1.3 jdolecek
284 1.3 jdolecek /*
285 1.3 jdolecek * Register a new kfilter. Stores the entry in user_kfilters.
286 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
287 1.3 jdolecek * If retfilter != NULL, the new filterid is returned in it.
288 1.3 jdolecek */
289 1.3 jdolecek int
290 1.3 jdolecek kfilter_register(const char *name, const struct filterops *filtops,
291 1.49 ad int *retfilter)
292 1.1 lukem {
293 1.3 jdolecek struct kfilter *kfilter;
294 1.49 ad size_t len;
295 1.31 seanb int i;
296 1.3 jdolecek
297 1.3 jdolecek if (name == NULL || name[0] == '\0' || filtops == NULL)
298 1.3 jdolecek return (EINVAL); /* invalid args */
299 1.49 ad
300 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
301 1.49 ad if (kfilter_byname(name) != NULL) {
302 1.49 ad rw_exit(&kqueue_filter_lock);
303 1.3 jdolecek return (EEXIST); /* already exists */
304 1.49 ad }
305 1.49 ad if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
306 1.49 ad rw_exit(&kqueue_filter_lock);
307 1.3 jdolecek return (EINVAL); /* too many */
308 1.49 ad }
309 1.3 jdolecek
310 1.31 seanb for (i = 0; i < user_kfilterc; i++) {
311 1.31 seanb kfilter = &user_kfilters[i];
312 1.31 seanb if (kfilter->name == NULL) {
313 1.31 seanb /* Previously deregistered slot. Reuse. */
314 1.31 seanb goto reuse;
315 1.31 seanb }
316 1.31 seanb }
317 1.31 seanb
318 1.3 jdolecek /* check if need to grow user_kfilters */
319 1.3 jdolecek if (user_kfilterc + 1 > user_kfiltermaxc) {
320 1.49 ad /* Grow in KFILTER_EXTENT chunks. */
321 1.3 jdolecek user_kfiltermaxc += KFILTER_EXTENT;
322 1.69 dsl len = user_kfiltermaxc * sizeof(*kfilter);
323 1.49 ad kfilter = kmem_alloc(len, KM_SLEEP);
324 1.49 ad memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
325 1.49 ad if (user_kfilters != NULL) {
326 1.49 ad memcpy(kfilter, user_kfilters, user_kfiltersz);
327 1.49 ad kmem_free(user_kfilters, user_kfiltersz);
328 1.49 ad }
329 1.49 ad user_kfiltersz = len;
330 1.3 jdolecek user_kfilters = kfilter;
331 1.3 jdolecek }
332 1.31 seanb /* Adding new slot */
333 1.31 seanb kfilter = &user_kfilters[user_kfilterc++];
334 1.31 seanb reuse:
335 1.49 ad kfilter->namelen = strlen(name) + 1;
336 1.49 ad kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
337 1.49 ad memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
338 1.3 jdolecek
339 1.31 seanb kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
340 1.3 jdolecek
341 1.49 ad kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
342 1.49 ad memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
343 1.3 jdolecek
344 1.3 jdolecek if (retfilter != NULL)
345 1.31 seanb *retfilter = kfilter->filter;
346 1.49 ad rw_exit(&kqueue_filter_lock);
347 1.49 ad
348 1.3 jdolecek return (0);
349 1.1 lukem }
350 1.1 lukem
351 1.3 jdolecek /*
352 1.3 jdolecek * Unregister a kfilter previously registered with kfilter_register.
353 1.3 jdolecek * This retains the filter id, but clears the name and frees filtops (filter
354 1.3 jdolecek * operations), so that the number isn't reused during a boot.
355 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
356 1.3 jdolecek */
357 1.3 jdolecek int
358 1.3 jdolecek kfilter_unregister(const char *name)
359 1.1 lukem {
360 1.3 jdolecek struct kfilter *kfilter;
361 1.3 jdolecek
362 1.3 jdolecek if (name == NULL || name[0] == '\0')
363 1.3 jdolecek return (EINVAL); /* invalid name */
364 1.3 jdolecek
365 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
366 1.49 ad if (kfilter_byname_sys(name) != NULL) {
367 1.49 ad rw_exit(&kqueue_filter_lock);
368 1.3 jdolecek return (EINVAL); /* can't detach system filters */
369 1.49 ad }
370 1.1 lukem
371 1.3 jdolecek kfilter = kfilter_byname_user(name);
372 1.49 ad if (kfilter == NULL) {
373 1.49 ad rw_exit(&kqueue_filter_lock);
374 1.3 jdolecek return (ENOENT);
375 1.49 ad }
376 1.49 ad if (kfilter->refcnt != 0) {
377 1.49 ad rw_exit(&kqueue_filter_lock);
378 1.49 ad return (EBUSY);
379 1.49 ad }
380 1.1 lukem
381 1.49 ad /* Cast away const (but we know it's safe. */
382 1.49 ad kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
383 1.31 seanb kfilter->name = NULL; /* mark as `not implemented' */
384 1.31 seanb
385 1.3 jdolecek if (kfilter->filtops != NULL) {
386 1.49 ad /* Cast away const (but we know it's safe. */
387 1.49 ad kmem_free(__UNCONST(kfilter->filtops),
388 1.49 ad sizeof(*kfilter->filtops));
389 1.3 jdolecek kfilter->filtops = NULL; /* mark as `not implemented' */
390 1.3 jdolecek }
391 1.49 ad rw_exit(&kqueue_filter_lock);
392 1.49 ad
393 1.1 lukem return (0);
394 1.1 lukem }
395 1.1 lukem
396 1.3 jdolecek
397 1.3 jdolecek /*
398 1.3 jdolecek * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
399 1.49 ad * descriptors. Calls fileops kqfilter method for given file descriptor.
400 1.3 jdolecek */
401 1.3 jdolecek static int
402 1.3 jdolecek filt_fileattach(struct knote *kn)
403 1.3 jdolecek {
404 1.49 ad file_t *fp;
405 1.49 ad
406 1.49 ad fp = kn->kn_obj;
407 1.3 jdolecek
408 1.49 ad return (*fp->f_ops->fo_kqfilter)(fp, kn);
409 1.3 jdolecek }
410 1.3 jdolecek
411 1.3 jdolecek /*
412 1.3 jdolecek * Filter detach method for EVFILT_READ on kqueue descriptor.
413 1.3 jdolecek */
414 1.1 lukem static void
415 1.1 lukem filt_kqdetach(struct knote *kn)
416 1.1 lukem {
417 1.3 jdolecek struct kqueue *kq;
418 1.1 lukem
419 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
420 1.49 ad
421 1.49 ad mutex_spin_enter(&kq->kq_lock);
422 1.5 christos SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
423 1.49 ad mutex_spin_exit(&kq->kq_lock);
424 1.1 lukem }
425 1.1 lukem
426 1.3 jdolecek /*
427 1.3 jdolecek * Filter event method for EVFILT_READ on kqueue descriptor.
428 1.3 jdolecek */
429 1.1 lukem /*ARGSUSED*/
430 1.1 lukem static int
431 1.33 yamt filt_kqueue(struct knote *kn, long hint)
432 1.1 lukem {
433 1.3 jdolecek struct kqueue *kq;
434 1.49 ad int rv;
435 1.49 ad
436 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
437 1.1 lukem
438 1.49 ad if (hint != NOTE_SUBMIT)
439 1.49 ad mutex_spin_enter(&kq->kq_lock);
440 1.1 lukem kn->kn_data = kq->kq_count;
441 1.49 ad rv = (kn->kn_data > 0);
442 1.49 ad if (hint != NOTE_SUBMIT)
443 1.49 ad mutex_spin_exit(&kq->kq_lock);
444 1.49 ad
445 1.49 ad return rv;
446 1.1 lukem }
447 1.1 lukem
448 1.3 jdolecek /*
449 1.3 jdolecek * Filter attach method for EVFILT_PROC.
450 1.3 jdolecek */
451 1.1 lukem static int
452 1.1 lukem filt_procattach(struct knote *kn)
453 1.1 lukem {
454 1.78 pooka struct proc *p;
455 1.30 ad struct lwp *curl;
456 1.30 ad
457 1.30 ad curl = curlwp;
458 1.1 lukem
459 1.56 ad mutex_enter(proc_lock);
460 1.77 joerg if (kn->kn_flags & EV_FLAG1) {
461 1.77 joerg /*
462 1.77 joerg * NOTE_TRACK attaches to the child process too early
463 1.77 joerg * for proc_find, so do a raw look up and check the state
464 1.77 joerg * explicitly.
465 1.77 joerg */
466 1.77 joerg p = proc_find_raw(kn->kn_id);
467 1.77 joerg if (p != NULL && p->p_stat != SIDL)
468 1.77 joerg p = NULL;
469 1.77 joerg } else {
470 1.77 joerg p = proc_find(kn->kn_id);
471 1.77 joerg }
472 1.77 joerg
473 1.49 ad if (p == NULL) {
474 1.56 ad mutex_exit(proc_lock);
475 1.49 ad return ESRCH;
476 1.49 ad }
477 1.3 jdolecek
478 1.3 jdolecek /*
479 1.3 jdolecek * Fail if it's not owned by you, or the last exec gave us
480 1.3 jdolecek * setuid/setgid privs (unless you're root).
481 1.3 jdolecek */
482 1.57 ad mutex_enter(p->p_lock);
483 1.56 ad mutex_exit(proc_lock);
484 1.46 elad if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
485 1.49 ad p, NULL, NULL, NULL) != 0) {
486 1.57 ad mutex_exit(p->p_lock);
487 1.49 ad return EACCES;
488 1.49 ad }
489 1.1 lukem
490 1.49 ad kn->kn_obj = p;
491 1.3 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
492 1.1 lukem
493 1.1 lukem /*
494 1.1 lukem * internal flag indicating registration done by kernel
495 1.1 lukem */
496 1.1 lukem if (kn->kn_flags & EV_FLAG1) {
497 1.3 jdolecek kn->kn_data = kn->kn_sdata; /* ppid */
498 1.1 lukem kn->kn_fflags = NOTE_CHILD;
499 1.1 lukem kn->kn_flags &= ~EV_FLAG1;
500 1.1 lukem }
501 1.1 lukem SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
502 1.57 ad mutex_exit(p->p_lock);
503 1.1 lukem
504 1.49 ad return 0;
505 1.1 lukem }
506 1.1 lukem
507 1.1 lukem /*
508 1.3 jdolecek * Filter detach method for EVFILT_PROC.
509 1.3 jdolecek *
510 1.1 lukem * The knote may be attached to a different process, which may exit,
511 1.1 lukem * leaving nothing for the knote to be attached to. So when the process
512 1.1 lukem * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
513 1.1 lukem * it will be deleted when read out. However, as part of the knote deletion,
514 1.1 lukem * this routine is called, so a check is needed to avoid actually performing
515 1.3 jdolecek * a detach, because the original process might not exist any more.
516 1.1 lukem */
517 1.1 lukem static void
518 1.1 lukem filt_procdetach(struct knote *kn)
519 1.1 lukem {
520 1.3 jdolecek struct proc *p;
521 1.1 lukem
522 1.1 lukem if (kn->kn_status & KN_DETACHED)
523 1.1 lukem return;
524 1.1 lukem
525 1.49 ad p = kn->kn_obj;
526 1.3 jdolecek
527 1.57 ad mutex_enter(p->p_lock);
528 1.1 lukem SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
529 1.57 ad mutex_exit(p->p_lock);
530 1.1 lukem }
531 1.1 lukem
532 1.3 jdolecek /*
533 1.3 jdolecek * Filter event method for EVFILT_PROC.
534 1.3 jdolecek */
535 1.1 lukem static int
536 1.1 lukem filt_proc(struct knote *kn, long hint)
537 1.1 lukem {
538 1.49 ad u_int event, fflag;
539 1.49 ad struct kevent kev;
540 1.49 ad struct kqueue *kq;
541 1.49 ad int error;
542 1.1 lukem
543 1.1 lukem event = (u_int)hint & NOTE_PCTRLMASK;
544 1.49 ad kq = kn->kn_kq;
545 1.49 ad fflag = 0;
546 1.1 lukem
547 1.49 ad /* If the user is interested in this event, record it. */
548 1.1 lukem if (kn->kn_sfflags & event)
549 1.49 ad fflag |= event;
550 1.1 lukem
551 1.1 lukem if (event == NOTE_EXIT) {
552 1.83 christos struct proc *p = kn->kn_obj;
553 1.83 christos
554 1.83 christos if (p != NULL)
555 1.86 christos kn->kn_data = P_WAITSTATUS(p);
556 1.3 jdolecek /*
557 1.49 ad * Process is gone, so flag the event as finished.
558 1.49 ad *
559 1.3 jdolecek * Detach the knote from watched process and mark
560 1.3 jdolecek * it as such. We can't leave this to kqueue_scan(),
561 1.3 jdolecek * since the process might not exist by then. And we
562 1.3 jdolecek * have to do this now, since psignal KNOTE() is called
563 1.3 jdolecek * also for zombies and we might end up reading freed
564 1.3 jdolecek * memory if the kevent would already be picked up
565 1.22 perry * and knote g/c'ed.
566 1.3 jdolecek */
567 1.49 ad filt_procdetach(kn);
568 1.49 ad
569 1.49 ad mutex_spin_enter(&kq->kq_lock);
570 1.1 lukem kn->kn_status |= KN_DETACHED;
571 1.3 jdolecek /* Mark as ONESHOT, so that the knote it g/c'ed when read */
572 1.22 perry kn->kn_flags |= (EV_EOF | EV_ONESHOT);
573 1.49 ad kn->kn_fflags |= fflag;
574 1.49 ad mutex_spin_exit(&kq->kq_lock);
575 1.49 ad
576 1.49 ad return 1;
577 1.1 lukem }
578 1.1 lukem
579 1.49 ad mutex_spin_enter(&kq->kq_lock);
580 1.1 lukem if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
581 1.1 lukem /*
582 1.49 ad * Process forked, and user wants to track the new process,
583 1.49 ad * so attach a new knote to it, and immediately report an
584 1.49 ad * event with the parent's pid. Register knote with new
585 1.49 ad * process.
586 1.1 lukem */
587 1.1 lukem kev.ident = hint & NOTE_PDATAMASK; /* pid */
588 1.1 lukem kev.filter = kn->kn_filter;
589 1.1 lukem kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
590 1.1 lukem kev.fflags = kn->kn_sfflags;
591 1.1 lukem kev.data = kn->kn_id; /* parent */
592 1.1 lukem kev.udata = kn->kn_kevent.udata; /* preserve udata */
593 1.49 ad mutex_spin_exit(&kq->kq_lock);
594 1.49 ad error = kqueue_register(kq, &kev);
595 1.49 ad mutex_spin_enter(&kq->kq_lock);
596 1.49 ad if (error != 0)
597 1.1 lukem kn->kn_fflags |= NOTE_TRACKERR;
598 1.1 lukem }
599 1.49 ad kn->kn_fflags |= fflag;
600 1.49 ad fflag = kn->kn_fflags;
601 1.49 ad mutex_spin_exit(&kq->kq_lock);
602 1.1 lukem
603 1.49 ad return fflag != 0;
604 1.8 jdolecek }
605 1.8 jdolecek
606 1.8 jdolecek static void
607 1.8 jdolecek filt_timerexpire(void *knx)
608 1.8 jdolecek {
609 1.8 jdolecek struct knote *kn = knx;
610 1.8 jdolecek int tticks;
611 1.8 jdolecek
612 1.49 ad mutex_enter(&kqueue_misc_lock);
613 1.8 jdolecek kn->kn_data++;
614 1.49 ad knote_activate(kn);
615 1.8 jdolecek if ((kn->kn_flags & EV_ONESHOT) == 0) {
616 1.8 jdolecek tticks = mstohz(kn->kn_sdata);
617 1.73 christos if (tticks <= 0)
618 1.73 christos tticks = 1;
619 1.39 ad callout_schedule((callout_t *)kn->kn_hook, tticks);
620 1.8 jdolecek }
621 1.49 ad mutex_exit(&kqueue_misc_lock);
622 1.8 jdolecek }
623 1.8 jdolecek
624 1.8 jdolecek /*
625 1.8 jdolecek * data contains amount of time to sleep, in milliseconds
626 1.22 perry */
627 1.8 jdolecek static int
628 1.8 jdolecek filt_timerattach(struct knote *kn)
629 1.8 jdolecek {
630 1.39 ad callout_t *calloutp;
631 1.49 ad struct kqueue *kq;
632 1.8 jdolecek int tticks;
633 1.8 jdolecek
634 1.8 jdolecek tticks = mstohz(kn->kn_sdata);
635 1.8 jdolecek
636 1.8 jdolecek /* if the supplied value is under our resolution, use 1 tick */
637 1.8 jdolecek if (tticks == 0) {
638 1.8 jdolecek if (kn->kn_sdata == 0)
639 1.49 ad return EINVAL;
640 1.8 jdolecek tticks = 1;
641 1.8 jdolecek }
642 1.8 jdolecek
643 1.49 ad if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
644 1.49 ad (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
645 1.49 ad atomic_dec_uint(&kq_ncallouts);
646 1.49 ad return ENOMEM;
647 1.49 ad }
648 1.54 ad callout_init(calloutp, CALLOUT_MPSAFE);
649 1.49 ad
650 1.49 ad kq = kn->kn_kq;
651 1.49 ad mutex_spin_enter(&kq->kq_lock);
652 1.8 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
653 1.49 ad kn->kn_hook = calloutp;
654 1.49 ad mutex_spin_exit(&kq->kq_lock);
655 1.49 ad
656 1.8 jdolecek callout_reset(calloutp, tticks, filt_timerexpire, kn);
657 1.8 jdolecek
658 1.8 jdolecek return (0);
659 1.8 jdolecek }
660 1.8 jdolecek
661 1.8 jdolecek static void
662 1.8 jdolecek filt_timerdetach(struct knote *kn)
663 1.8 jdolecek {
664 1.39 ad callout_t *calloutp;
665 1.8 jdolecek
666 1.39 ad calloutp = (callout_t *)kn->kn_hook;
667 1.55 ad callout_halt(calloutp, NULL);
668 1.39 ad callout_destroy(calloutp);
669 1.49 ad kmem_free(calloutp, sizeof(*calloutp));
670 1.49 ad atomic_dec_uint(&kq_ncallouts);
671 1.8 jdolecek }
672 1.8 jdolecek
673 1.8 jdolecek static int
674 1.33 yamt filt_timer(struct knote *kn, long hint)
675 1.8 jdolecek {
676 1.49 ad int rv;
677 1.49 ad
678 1.49 ad mutex_enter(&kqueue_misc_lock);
679 1.49 ad rv = (kn->kn_data != 0);
680 1.49 ad mutex_exit(&kqueue_misc_lock);
681 1.49 ad
682 1.49 ad return rv;
683 1.1 lukem }
684 1.1 lukem
685 1.3 jdolecek /*
686 1.3 jdolecek * filt_seltrue:
687 1.3 jdolecek *
688 1.3 jdolecek * This filter "event" routine simulates seltrue().
689 1.3 jdolecek */
690 1.1 lukem int
691 1.33 yamt filt_seltrue(struct knote *kn, long hint)
692 1.1 lukem {
693 1.1 lukem
694 1.3 jdolecek /*
695 1.3 jdolecek * We don't know how much data can be read/written,
696 1.3 jdolecek * but we know that it *can* be. This is about as
697 1.3 jdolecek * good as select/poll does as well.
698 1.3 jdolecek */
699 1.3 jdolecek kn->kn_data = 0;
700 1.3 jdolecek return (1);
701 1.3 jdolecek }
702 1.3 jdolecek
703 1.3 jdolecek /*
704 1.3 jdolecek * This provides full kqfilter entry for device switch tables, which
705 1.3 jdolecek * has same effect as filter using filt_seltrue() as filter method.
706 1.3 jdolecek */
707 1.3 jdolecek static void
708 1.33 yamt filt_seltruedetach(struct knote *kn)
709 1.3 jdolecek {
710 1.3 jdolecek /* Nothing to do */
711 1.3 jdolecek }
712 1.3 jdolecek
713 1.42 pooka const struct filterops seltrue_filtops =
714 1.3 jdolecek { 1, NULL, filt_seltruedetach, filt_seltrue };
715 1.3 jdolecek
716 1.3 jdolecek int
717 1.33 yamt seltrue_kqfilter(dev_t dev, struct knote *kn)
718 1.3 jdolecek {
719 1.3 jdolecek switch (kn->kn_filter) {
720 1.3 jdolecek case EVFILT_READ:
721 1.3 jdolecek case EVFILT_WRITE:
722 1.3 jdolecek kn->kn_fop = &seltrue_filtops;
723 1.3 jdolecek break;
724 1.3 jdolecek default:
725 1.43 pooka return (EINVAL);
726 1.3 jdolecek }
727 1.3 jdolecek
728 1.3 jdolecek /* Nothing more to do */
729 1.3 jdolecek return (0);
730 1.3 jdolecek }
731 1.3 jdolecek
732 1.3 jdolecek /*
733 1.3 jdolecek * kqueue(2) system call.
734 1.3 jdolecek */
735 1.72 christos static int
736 1.72 christos kqueue1(struct lwp *l, int flags, register_t *retval)
737 1.3 jdolecek {
738 1.49 ad struct kqueue *kq;
739 1.49 ad file_t *fp;
740 1.49 ad int fd, error;
741 1.3 jdolecek
742 1.49 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
743 1.49 ad return error;
744 1.75 christos fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
745 1.1 lukem fp->f_type = DTYPE_KQUEUE;
746 1.1 lukem fp->f_ops = &kqueueops;
747 1.49 ad kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
748 1.49 ad mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
749 1.49 ad cv_init(&kq->kq_cv, "kqueue");
750 1.49 ad selinit(&kq->kq_sel);
751 1.1 lukem TAILQ_INIT(&kq->kq_head);
752 1.82 matt fp->f_kqueue = kq;
753 1.3 jdolecek *retval = fd;
754 1.49 ad kq->kq_fdp = curlwp->l_fd;
755 1.72 christos fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
756 1.49 ad fd_affix(curproc, fp, fd);
757 1.49 ad return error;
758 1.1 lukem }
759 1.1 lukem
760 1.3 jdolecek /*
761 1.72 christos * kqueue(2) system call.
762 1.72 christos */
763 1.72 christos int
764 1.72 christos sys_kqueue(struct lwp *l, const void *v, register_t *retval)
765 1.72 christos {
766 1.72 christos return kqueue1(l, 0, retval);
767 1.72 christos }
768 1.72 christos
769 1.72 christos int
770 1.72 christos sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
771 1.72 christos register_t *retval)
772 1.72 christos {
773 1.72 christos /* {
774 1.72 christos syscallarg(int) flags;
775 1.72 christos } */
776 1.72 christos return kqueue1(l, SCARG(uap, flags), retval);
777 1.72 christos }
778 1.72 christos
779 1.72 christos /*
780 1.3 jdolecek * kevent(2) system call.
781 1.3 jdolecek */
782 1.61 christos int
783 1.81 matt kevent_fetch_changes(void *ctx, const struct kevent *changelist,
784 1.61 christos struct kevent *changes, size_t index, int n)
785 1.24 cube {
786 1.49 ad
787 1.24 cube return copyin(changelist + index, changes, n * sizeof(*changes));
788 1.24 cube }
789 1.24 cube
790 1.61 christos int
791 1.81 matt kevent_put_events(void *ctx, struct kevent *events,
792 1.61 christos struct kevent *eventlist, size_t index, int n)
793 1.24 cube {
794 1.49 ad
795 1.24 cube return copyout(events, eventlist + index, n * sizeof(*events));
796 1.24 cube }
797 1.24 cube
798 1.24 cube static const struct kevent_ops kevent_native_ops = {
799 1.60 gmcgarry .keo_private = NULL,
800 1.60 gmcgarry .keo_fetch_timeout = copyin,
801 1.60 gmcgarry .keo_fetch_changes = kevent_fetch_changes,
802 1.60 gmcgarry .keo_put_events = kevent_put_events,
803 1.24 cube };
804 1.24 cube
805 1.1 lukem int
806 1.61 christos sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
807 1.61 christos register_t *retval)
808 1.1 lukem {
809 1.44 dsl /* {
810 1.3 jdolecek syscallarg(int) fd;
811 1.3 jdolecek syscallarg(const struct kevent *) changelist;
812 1.3 jdolecek syscallarg(size_t) nchanges;
813 1.3 jdolecek syscallarg(struct kevent *) eventlist;
814 1.3 jdolecek syscallarg(size_t) nevents;
815 1.3 jdolecek syscallarg(const struct timespec *) timeout;
816 1.44 dsl } */
817 1.24 cube
818 1.49 ad return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
819 1.24 cube SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
820 1.24 cube SCARG(uap, timeout), &kevent_native_ops);
821 1.24 cube }
822 1.24 cube
823 1.24 cube int
824 1.49 ad kevent1(register_t *retval, int fd,
825 1.49 ad const struct kevent *changelist, size_t nchanges,
826 1.49 ad struct kevent *eventlist, size_t nevents,
827 1.49 ad const struct timespec *timeout,
828 1.49 ad const struct kevent_ops *keops)
829 1.24 cube {
830 1.49 ad struct kevent *kevp;
831 1.49 ad struct kqueue *kq;
832 1.3 jdolecek struct timespec ts;
833 1.49 ad size_t i, n, ichange;
834 1.49 ad int nerrors, error;
835 1.80 maxv struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
836 1.49 ad file_t *fp;
837 1.3 jdolecek
838 1.3 jdolecek /* check that we're dealing with a kq */
839 1.49 ad fp = fd_getfile(fd);
840 1.10 pk if (fp == NULL)
841 1.1 lukem return (EBADF);
842 1.10 pk
843 1.10 pk if (fp->f_type != DTYPE_KQUEUE) {
844 1.49 ad fd_putfile(fd);
845 1.10 pk return (EBADF);
846 1.10 pk }
847 1.1 lukem
848 1.24 cube if (timeout != NULL) {
849 1.24 cube error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
850 1.1 lukem if (error)
851 1.1 lukem goto done;
852 1.24 cube timeout = &ts;
853 1.1 lukem }
854 1.1 lukem
855 1.82 matt kq = fp->f_kqueue;
856 1.1 lukem nerrors = 0;
857 1.24 cube ichange = 0;
858 1.1 lukem
859 1.3 jdolecek /* traverse list of events to register */
860 1.24 cube while (nchanges > 0) {
861 1.49 ad n = MIN(nchanges, __arraycount(kevbuf));
862 1.24 cube error = (*keops->keo_fetch_changes)(keops->keo_private,
863 1.49 ad changelist, kevbuf, ichange, n);
864 1.1 lukem if (error)
865 1.1 lukem goto done;
866 1.1 lukem for (i = 0; i < n; i++) {
867 1.49 ad kevp = &kevbuf[i];
868 1.1 lukem kevp->flags &= ~EV_SYSFLAGS;
869 1.3 jdolecek /* register each knote */
870 1.49 ad error = kqueue_register(kq, kevp);
871 1.84 christos if (error || (kevp->flags & EV_RECEIPT)) {
872 1.24 cube if (nevents != 0) {
873 1.1 lukem kevp->flags = EV_ERROR;
874 1.1 lukem kevp->data = error;
875 1.24 cube error = (*keops->keo_put_events)
876 1.24 cube (keops->keo_private, kevp,
877 1.24 cube eventlist, nerrors, 1);
878 1.3 jdolecek if (error)
879 1.3 jdolecek goto done;
880 1.24 cube nevents--;
881 1.1 lukem nerrors++;
882 1.1 lukem } else {
883 1.1 lukem goto done;
884 1.1 lukem }
885 1.1 lukem }
886 1.1 lukem }
887 1.24 cube nchanges -= n; /* update the results */
888 1.24 cube ichange += n;
889 1.1 lukem }
890 1.1 lukem if (nerrors) {
891 1.3 jdolecek *retval = nerrors;
892 1.1 lukem error = 0;
893 1.1 lukem goto done;
894 1.1 lukem }
895 1.1 lukem
896 1.3 jdolecek /* actually scan through the events */
897 1.49 ad error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
898 1.49 ad kevbuf, __arraycount(kevbuf));
899 1.3 jdolecek done:
900 1.49 ad fd_putfile(fd);
901 1.1 lukem return (error);
902 1.1 lukem }
903 1.1 lukem
904 1.3 jdolecek /*
905 1.3 jdolecek * Register a given kevent kev onto the kqueue
906 1.3 jdolecek */
907 1.49 ad static int
908 1.49 ad kqueue_register(struct kqueue *kq, struct kevent *kev)
909 1.1 lukem {
910 1.49 ad struct kfilter *kfilter;
911 1.49 ad filedesc_t *fdp;
912 1.49 ad file_t *fp;
913 1.49 ad fdfile_t *ff;
914 1.49 ad struct knote *kn, *newkn;
915 1.49 ad struct klist *list;
916 1.49 ad int error, fd, rv;
917 1.3 jdolecek
918 1.3 jdolecek fdp = kq->kq_fdp;
919 1.3 jdolecek fp = NULL;
920 1.3 jdolecek kn = NULL;
921 1.3 jdolecek error = 0;
922 1.49 ad fd = 0;
923 1.49 ad
924 1.49 ad newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
925 1.49 ad
926 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
927 1.3 jdolecek kfilter = kfilter_byfilter(kev->filter);
928 1.3 jdolecek if (kfilter == NULL || kfilter->filtops == NULL) {
929 1.3 jdolecek /* filter not found nor implemented */
930 1.49 ad rw_exit(&kqueue_filter_lock);
931 1.49 ad kmem_free(newkn, sizeof(*newkn));
932 1.1 lukem return (EINVAL);
933 1.1 lukem }
934 1.1 lukem
935 1.3 jdolecek /* search if knote already exists */
936 1.3 jdolecek if (kfilter->filtops->f_isfd) {
937 1.3 jdolecek /* monitoring a file descriptor */
938 1.87 christos /* validate descriptor */
939 1.88 christos if (kev->ident > INT_MAX
940 1.88 christos || (fp = fd_getfile(fd = kev->ident)) == NULL) {
941 1.49 ad rw_exit(&kqueue_filter_lock);
942 1.49 ad kmem_free(newkn, sizeof(*newkn));
943 1.49 ad return EBADF;
944 1.49 ad }
945 1.74 rmind mutex_enter(&fdp->fd_lock);
946 1.65 ad ff = fdp->fd_dt->dt_ff[fd];
947 1.49 ad if (fd <= fdp->fd_lastkqfile) {
948 1.49 ad SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
949 1.1 lukem if (kq == kn->kn_kq &&
950 1.1 lukem kev->filter == kn->kn_filter)
951 1.1 lukem break;
952 1.49 ad }
953 1.1 lukem }
954 1.1 lukem } else {
955 1.3 jdolecek /*
956 1.3 jdolecek * not monitoring a file descriptor, so
957 1.3 jdolecek * lookup knotes in internal hash table
958 1.3 jdolecek */
959 1.74 rmind mutex_enter(&fdp->fd_lock);
960 1.1 lukem if (fdp->fd_knhashmask != 0) {
961 1.1 lukem list = &fdp->fd_knhash[
962 1.1 lukem KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
963 1.49 ad SLIST_FOREACH(kn, list, kn_link) {
964 1.1 lukem if (kev->ident == kn->kn_id &&
965 1.1 lukem kq == kn->kn_kq &&
966 1.1 lukem kev->filter == kn->kn_filter)
967 1.1 lukem break;
968 1.49 ad }
969 1.1 lukem }
970 1.1 lukem }
971 1.1 lukem
972 1.1 lukem /*
973 1.1 lukem * kn now contains the matching knote, or NULL if no match
974 1.1 lukem */
975 1.1 lukem if (kev->flags & EV_ADD) {
976 1.1 lukem if (kn == NULL) {
977 1.3 jdolecek /* create new knote */
978 1.49 ad kn = newkn;
979 1.49 ad newkn = NULL;
980 1.49 ad kn->kn_obj = fp;
981 1.79 christos kn->kn_id = kev->ident;
982 1.1 lukem kn->kn_kq = kq;
983 1.3 jdolecek kn->kn_fop = kfilter->filtops;
984 1.49 ad kn->kn_kfilter = kfilter;
985 1.49 ad kn->kn_sfflags = kev->fflags;
986 1.49 ad kn->kn_sdata = kev->data;
987 1.49 ad kev->fflags = 0;
988 1.49 ad kev->data = 0;
989 1.49 ad kn->kn_kevent = *kev;
990 1.1 lukem
991 1.85 christos KASSERT(kn->kn_fop != NULL);
992 1.1 lukem /*
993 1.1 lukem * apply reference count to knote structure, and
994 1.1 lukem * do not release it at the end of this routine.
995 1.1 lukem */
996 1.1 lukem fp = NULL;
997 1.1 lukem
998 1.49 ad if (!kn->kn_fop->f_isfd) {
999 1.49 ad /*
1000 1.49 ad * If knote is not on an fd, store on
1001 1.49 ad * internal hash table.
1002 1.49 ad */
1003 1.49 ad if (fdp->fd_knhashmask == 0) {
1004 1.49 ad /* XXXAD can block with fd_lock held */
1005 1.49 ad fdp->fd_knhash = hashinit(KN_HASHSIZE,
1006 1.59 ad HASH_LIST, true,
1007 1.49 ad &fdp->fd_knhashmask);
1008 1.49 ad }
1009 1.49 ad list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1010 1.49 ad fdp->fd_knhashmask)];
1011 1.49 ad } else {
1012 1.49 ad /* Otherwise, knote is on an fd. */
1013 1.49 ad list = (struct klist *)
1014 1.65 ad &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1015 1.49 ad if ((int)kn->kn_id > fdp->fd_lastkqfile)
1016 1.49 ad fdp->fd_lastkqfile = kn->kn_id;
1017 1.49 ad }
1018 1.49 ad SLIST_INSERT_HEAD(list, kn, kn_link);
1019 1.1 lukem
1020 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1021 1.49 ad error = (*kfilter->filtops->f_attach)(kn);
1022 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1023 1.49 ad if (error != 0) {
1024 1.79 christos #ifdef DIAGNOSTIC
1025 1.79 christos printf("%s: event not supported for file type"
1026 1.79 christos " %d\n", __func__, fp ? fp->f_type : -1);
1027 1.79 christos #endif
1028 1.49 ad /* knote_detach() drops fdp->fd_lock */
1029 1.49 ad knote_detach(kn, fdp, false);
1030 1.1 lukem goto done;
1031 1.1 lukem }
1032 1.49 ad atomic_inc_uint(&kfilter->refcnt);
1033 1.1 lukem } else {
1034 1.1 lukem /*
1035 1.1 lukem * The user may change some filter values after the
1036 1.22 perry * initial EV_ADD, but doing so will not reset any
1037 1.1 lukem * filter which have already been triggered.
1038 1.1 lukem */
1039 1.1 lukem kn->kn_sfflags = kev->fflags;
1040 1.1 lukem kn->kn_sdata = kev->data;
1041 1.1 lukem kn->kn_kevent.udata = kev->udata;
1042 1.1 lukem }
1043 1.79 christos /*
1044 1.79 christos * We can get here if we are trying to attach
1045 1.79 christos * an event to a file descriptor that does not
1046 1.79 christos * support events, and the attach routine is
1047 1.79 christos * broken and does not return an error.
1048 1.79 christos */
1049 1.85 christos KASSERT(kn->kn_fop != NULL);
1050 1.79 christos KASSERT(kn->kn_fop->f_event != NULL);
1051 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1052 1.49 ad rv = (*kn->kn_fop->f_event)(kn, 0);
1053 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1054 1.49 ad if (rv)
1055 1.49 ad knote_activate(kn);
1056 1.49 ad } else {
1057 1.49 ad if (kn == NULL) {
1058 1.49 ad error = ENOENT;
1059 1.49 ad mutex_exit(&fdp->fd_lock);
1060 1.49 ad goto done;
1061 1.49 ad }
1062 1.49 ad if (kev->flags & EV_DELETE) {
1063 1.49 ad /* knote_detach() drops fdp->fd_lock */
1064 1.49 ad knote_detach(kn, fdp, true);
1065 1.49 ad goto done;
1066 1.49 ad }
1067 1.1 lukem }
1068 1.1 lukem
1069 1.3 jdolecek /* disable knote */
1070 1.49 ad if ((kev->flags & EV_DISABLE)) {
1071 1.49 ad mutex_spin_enter(&kq->kq_lock);
1072 1.49 ad if ((kn->kn_status & KN_DISABLED) == 0)
1073 1.49 ad kn->kn_status |= KN_DISABLED;
1074 1.49 ad mutex_spin_exit(&kq->kq_lock);
1075 1.1 lukem }
1076 1.1 lukem
1077 1.3 jdolecek /* enable knote */
1078 1.49 ad if ((kev->flags & EV_ENABLE)) {
1079 1.49 ad knote_enqueue(kn);
1080 1.1 lukem }
1081 1.49 ad mutex_exit(&fdp->fd_lock);
1082 1.3 jdolecek done:
1083 1.49 ad rw_exit(&kqueue_filter_lock);
1084 1.49 ad if (newkn != NULL)
1085 1.49 ad kmem_free(newkn, sizeof(*newkn));
1086 1.1 lukem if (fp != NULL)
1087 1.49 ad fd_putfile(fd);
1088 1.1 lukem return (error);
1089 1.1 lukem }
1090 1.1 lukem
1091 1.52 yamt #if defined(DEBUG)
1092 1.52 yamt static void
1093 1.52 yamt kq_check(struct kqueue *kq)
1094 1.52 yamt {
1095 1.52 yamt const struct knote *kn;
1096 1.52 yamt int count;
1097 1.52 yamt int nmarker;
1098 1.52 yamt
1099 1.52 yamt KASSERT(mutex_owned(&kq->kq_lock));
1100 1.52 yamt KASSERT(kq->kq_count >= 0);
1101 1.52 yamt
1102 1.52 yamt count = 0;
1103 1.52 yamt nmarker = 0;
1104 1.52 yamt TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1105 1.52 yamt if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1106 1.52 yamt panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1107 1.52 yamt }
1108 1.52 yamt if ((kn->kn_status & KN_MARKER) == 0) {
1109 1.52 yamt if (kn->kn_kq != kq) {
1110 1.52 yamt panic("%s: kq=%p kn=%p inconsist 2",
1111 1.52 yamt __func__, kq, kn);
1112 1.52 yamt }
1113 1.52 yamt if ((kn->kn_status & KN_ACTIVE) == 0) {
1114 1.52 yamt panic("%s: kq=%p kn=%p: not active",
1115 1.52 yamt __func__, kq, kn);
1116 1.52 yamt }
1117 1.52 yamt count++;
1118 1.52 yamt if (count > kq->kq_count) {
1119 1.52 yamt goto bad;
1120 1.52 yamt }
1121 1.52 yamt } else {
1122 1.52 yamt nmarker++;
1123 1.52 yamt #if 0
1124 1.52 yamt if (nmarker > 10000) {
1125 1.52 yamt panic("%s: kq=%p too many markers: %d != %d, "
1126 1.52 yamt "nmarker=%d",
1127 1.52 yamt __func__, kq, kq->kq_count, count, nmarker);
1128 1.52 yamt }
1129 1.52 yamt #endif
1130 1.52 yamt }
1131 1.52 yamt }
1132 1.52 yamt if (kq->kq_count != count) {
1133 1.52 yamt bad:
1134 1.52 yamt panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1135 1.52 yamt __func__, kq, kq->kq_count, count, nmarker);
1136 1.52 yamt }
1137 1.52 yamt }
1138 1.52 yamt #else /* defined(DEBUG) */
1139 1.52 yamt #define kq_check(a) /* nothing */
1140 1.52 yamt #endif /* defined(DEBUG) */
1141 1.52 yamt
1142 1.3 jdolecek /*
1143 1.3 jdolecek * Scan through the list of events on fp (for a maximum of maxevents),
1144 1.3 jdolecek * returning the results in to ulistp. Timeout is determined by tsp; if
1145 1.3 jdolecek * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1146 1.3 jdolecek * as appropriate.
1147 1.3 jdolecek */
1148 1.1 lukem static int
1149 1.49 ad kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1150 1.49 ad const struct timespec *tsp, register_t *retval,
1151 1.49 ad const struct kevent_ops *keops, struct kevent *kevbuf,
1152 1.49 ad size_t kevcnt)
1153 1.1 lukem {
1154 1.3 jdolecek struct kqueue *kq;
1155 1.3 jdolecek struct kevent *kevp;
1156 1.62 christos struct timespec ats, sleepts;
1157 1.85 christos struct knote *kn, *marker, morker;
1158 1.24 cube size_t count, nkev, nevents;
1159 1.49 ad int timeout, error, rv;
1160 1.49 ad filedesc_t *fdp;
1161 1.1 lukem
1162 1.49 ad fdp = curlwp->l_fd;
1163 1.82 matt kq = fp->f_kqueue;
1164 1.1 lukem count = maxevents;
1165 1.24 cube nkev = nevents = error = 0;
1166 1.49 ad if (count == 0) {
1167 1.49 ad *retval = 0;
1168 1.49 ad return 0;
1169 1.49 ad }
1170 1.1 lukem
1171 1.9 jdolecek if (tsp) { /* timeout supplied */
1172 1.63 christos ats = *tsp;
1173 1.62 christos if (inittimeleft(&ats, &sleepts) == -1) {
1174 1.49 ad *retval = maxevents;
1175 1.49 ad return EINVAL;
1176 1.1 lukem }
1177 1.62 christos timeout = tstohz(&ats);
1178 1.9 jdolecek if (timeout <= 0)
1179 1.29 kardel timeout = -1; /* do poll */
1180 1.1 lukem } else {
1181 1.9 jdolecek /* no timeout, wait forever */
1182 1.1 lukem timeout = 0;
1183 1.49 ad }
1184 1.1 lukem
1185 1.85 christos memset(&morker, 0, sizeof(morker));
1186 1.85 christos marker = &morker;
1187 1.49 ad marker->kn_status = KN_MARKER;
1188 1.49 ad mutex_spin_enter(&kq->kq_lock);
1189 1.3 jdolecek retry:
1190 1.49 ad kevp = kevbuf;
1191 1.1 lukem if (kq->kq_count == 0) {
1192 1.49 ad if (timeout >= 0) {
1193 1.49 ad error = cv_timedwait_sig(&kq->kq_cv,
1194 1.49 ad &kq->kq_lock, timeout);
1195 1.49 ad if (error == 0) {
1196 1.49 ad if (tsp == NULL || (timeout =
1197 1.62 christos gettimeleft(&ats, &sleepts)) > 0)
1198 1.49 ad goto retry;
1199 1.49 ad } else {
1200 1.49 ad /* don't restart after signals... */
1201 1.49 ad if (error == ERESTART)
1202 1.49 ad error = EINTR;
1203 1.49 ad if (error == EWOULDBLOCK)
1204 1.49 ad error = 0;
1205 1.49 ad }
1206 1.1 lukem }
1207 1.49 ad } else {
1208 1.49 ad /* mark end of knote list */
1209 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1210 1.1 lukem
1211 1.49 ad while (count != 0) {
1212 1.49 ad kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1213 1.51 yamt while ((kn->kn_status & KN_MARKER) != 0) {
1214 1.51 yamt if (kn == marker) {
1215 1.51 yamt /* it's our marker, stop */
1216 1.51 yamt TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1217 1.51 yamt if (count < maxevents || (tsp != NULL &&
1218 1.62 christos (timeout = gettimeleft(&ats,
1219 1.62 christos &sleepts)) <= 0))
1220 1.51 yamt goto done;
1221 1.51 yamt goto retry;
1222 1.51 yamt }
1223 1.49 ad /* someone else's marker. */
1224 1.49 ad kn = TAILQ_NEXT(kn, kn_tqe);
1225 1.49 ad }
1226 1.52 yamt kq_check(kq);
1227 1.85 christos kq->kq_count--;
1228 1.49 ad TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1229 1.1 lukem kn->kn_status &= ~KN_QUEUED;
1230 1.85 christos kn->kn_status |= KN_BUSY;
1231 1.52 yamt kq_check(kq);
1232 1.49 ad if (kn->kn_status & KN_DISABLED) {
1233 1.85 christos kn->kn_status &= ~KN_BUSY;
1234 1.49 ad /* don't want disabled events */
1235 1.49 ad continue;
1236 1.49 ad }
1237 1.49 ad if ((kn->kn_flags & EV_ONESHOT) == 0) {
1238 1.49 ad mutex_spin_exit(&kq->kq_lock);
1239 1.85 christos KASSERT(kn->kn_fop != NULL);
1240 1.84 christos KASSERT(kn->kn_fop->f_event != NULL);
1241 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1242 1.49 ad rv = (*kn->kn_fop->f_event)(kn, 0);
1243 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1244 1.53 ad mutex_spin_enter(&kq->kq_lock);
1245 1.53 ad /* Re-poll if note was re-enqueued. */
1246 1.85 christos if ((kn->kn_status & KN_QUEUED) != 0) {
1247 1.85 christos kn->kn_status &= ~KN_BUSY;
1248 1.53 ad continue;
1249 1.85 christos }
1250 1.49 ad if (rv == 0) {
1251 1.49 ad /*
1252 1.49 ad * non-ONESHOT event that hasn't
1253 1.49 ad * triggered again, so de-queue.
1254 1.49 ad */
1255 1.85 christos kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1256 1.49 ad continue;
1257 1.49 ad }
1258 1.49 ad }
1259 1.53 ad /* XXXAD should be got from f_event if !oneshot. */
1260 1.49 ad *kevp++ = kn->kn_kevent;
1261 1.49 ad nkev++;
1262 1.49 ad if (kn->kn_flags & EV_ONESHOT) {
1263 1.49 ad /* delete ONESHOT events after retrieval */
1264 1.49 ad mutex_spin_exit(&kq->kq_lock);
1265 1.49 ad mutex_enter(&fdp->fd_lock);
1266 1.85 christos kn->kn_status &= ~KN_BUSY;
1267 1.49 ad knote_detach(kn, fdp, true);
1268 1.49 ad mutex_spin_enter(&kq->kq_lock);
1269 1.49 ad } else if (kn->kn_flags & EV_CLEAR) {
1270 1.49 ad /* clear state after retrieval */
1271 1.49 ad kn->kn_data = 0;
1272 1.49 ad kn->kn_fflags = 0;
1273 1.85 christos kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1274 1.84 christos } else if (kn->kn_flags & EV_DISPATCH) {
1275 1.84 christos kn->kn_status |= KN_DISABLED;
1276 1.85 christos kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1277 1.49 ad } else {
1278 1.49 ad /* add event back on list */
1279 1.52 yamt kq_check(kq);
1280 1.85 christos kn->kn_status |= KN_QUEUED;
1281 1.85 christos kn->kn_status &= ~KN_BUSY;
1282 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1283 1.49 ad kq->kq_count++;
1284 1.52 yamt kq_check(kq);
1285 1.49 ad }
1286 1.49 ad if (nkev == kevcnt) {
1287 1.49 ad /* do copyouts in kevcnt chunks */
1288 1.49 ad mutex_spin_exit(&kq->kq_lock);
1289 1.50 yamt error = (*keops->keo_put_events)
1290 1.50 yamt (keops->keo_private,
1291 1.49 ad kevbuf, ulistp, nevents, nkev);
1292 1.49 ad mutex_spin_enter(&kq->kq_lock);
1293 1.49 ad nevents += nkev;
1294 1.49 ad nkev = 0;
1295 1.49 ad kevp = kevbuf;
1296 1.49 ad }
1297 1.49 ad count--;
1298 1.49 ad if (error != 0 || count == 0) {
1299 1.49 ad /* remove marker */
1300 1.49 ad TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1301 1.1 lukem break;
1302 1.49 ad }
1303 1.1 lukem }
1304 1.1 lukem }
1305 1.51 yamt done:
1306 1.49 ad mutex_spin_exit(&kq->kq_lock);
1307 1.49 ad if (nkev != 0) {
1308 1.3 jdolecek /* copyout remaining events */
1309 1.24 cube error = (*keops->keo_put_events)(keops->keo_private,
1310 1.49 ad kevbuf, ulistp, nevents, nkev);
1311 1.49 ad }
1312 1.3 jdolecek *retval = maxevents - count;
1313 1.3 jdolecek
1314 1.49 ad return error;
1315 1.1 lukem }
1316 1.1 lukem
1317 1.1 lukem /*
1318 1.49 ad * fileops ioctl method for a kqueue descriptor.
1319 1.3 jdolecek *
1320 1.3 jdolecek * Two ioctls are currently supported. They both use struct kfilter_mapping:
1321 1.3 jdolecek * KFILTER_BYNAME find name for filter, and return result in
1322 1.3 jdolecek * name, which is of size len.
1323 1.3 jdolecek * KFILTER_BYFILTER find filter for name. len is ignored.
1324 1.3 jdolecek */
1325 1.1 lukem /*ARGSUSED*/
1326 1.1 lukem static int
1327 1.49 ad kqueue_ioctl(file_t *fp, u_long com, void *data)
1328 1.1 lukem {
1329 1.3 jdolecek struct kfilter_mapping *km;
1330 1.3 jdolecek const struct kfilter *kfilter;
1331 1.3 jdolecek char *name;
1332 1.3 jdolecek int error;
1333 1.3 jdolecek
1334 1.49 ad km = data;
1335 1.3 jdolecek error = 0;
1336 1.49 ad name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1337 1.3 jdolecek
1338 1.3 jdolecek switch (com) {
1339 1.3 jdolecek case KFILTER_BYFILTER: /* convert filter -> name */
1340 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
1341 1.3 jdolecek kfilter = kfilter_byfilter(km->filter);
1342 1.49 ad if (kfilter != NULL) {
1343 1.49 ad strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1344 1.49 ad rw_exit(&kqueue_filter_lock);
1345 1.49 ad error = copyoutstr(name, km->name, km->len, NULL);
1346 1.49 ad } else {
1347 1.49 ad rw_exit(&kqueue_filter_lock);
1348 1.3 jdolecek error = ENOENT;
1349 1.49 ad }
1350 1.3 jdolecek break;
1351 1.3 jdolecek
1352 1.3 jdolecek case KFILTER_BYNAME: /* convert name -> filter */
1353 1.3 jdolecek error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1354 1.3 jdolecek if (error) {
1355 1.3 jdolecek break;
1356 1.3 jdolecek }
1357 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
1358 1.3 jdolecek kfilter = kfilter_byname(name);
1359 1.3 jdolecek if (kfilter != NULL)
1360 1.3 jdolecek km->filter = kfilter->filter;
1361 1.3 jdolecek else
1362 1.3 jdolecek error = ENOENT;
1363 1.49 ad rw_exit(&kqueue_filter_lock);
1364 1.3 jdolecek break;
1365 1.3 jdolecek
1366 1.3 jdolecek default:
1367 1.3 jdolecek error = ENOTTY;
1368 1.49 ad break;
1369 1.3 jdolecek
1370 1.3 jdolecek }
1371 1.49 ad kmem_free(name, KFILTER_MAXNAME);
1372 1.3 jdolecek return (error);
1373 1.3 jdolecek }
1374 1.3 jdolecek
1375 1.3 jdolecek /*
1376 1.49 ad * fileops fcntl method for a kqueue descriptor.
1377 1.3 jdolecek */
1378 1.3 jdolecek static int
1379 1.49 ad kqueue_fcntl(file_t *fp, u_int com, void *data)
1380 1.3 jdolecek {
1381 1.3 jdolecek
1382 1.1 lukem return (ENOTTY);
1383 1.1 lukem }
1384 1.1 lukem
1385 1.3 jdolecek /*
1386 1.49 ad * fileops poll method for a kqueue descriptor.
1387 1.3 jdolecek * Determine if kqueue has events pending.
1388 1.3 jdolecek */
1389 1.1 lukem static int
1390 1.49 ad kqueue_poll(file_t *fp, int events)
1391 1.1 lukem {
1392 1.3 jdolecek struct kqueue *kq;
1393 1.3 jdolecek int revents;
1394 1.3 jdolecek
1395 1.82 matt kq = fp->f_kqueue;
1396 1.49 ad
1397 1.3 jdolecek revents = 0;
1398 1.3 jdolecek if (events & (POLLIN | POLLRDNORM)) {
1399 1.49 ad mutex_spin_enter(&kq->kq_lock);
1400 1.49 ad if (kq->kq_count != 0) {
1401 1.3 jdolecek revents |= events & (POLLIN | POLLRDNORM);
1402 1.1 lukem } else {
1403 1.49 ad selrecord(curlwp, &kq->kq_sel);
1404 1.1 lukem }
1405 1.52 yamt kq_check(kq);
1406 1.49 ad mutex_spin_exit(&kq->kq_lock);
1407 1.1 lukem }
1408 1.49 ad
1409 1.49 ad return revents;
1410 1.1 lukem }
1411 1.1 lukem
1412 1.3 jdolecek /*
1413 1.49 ad * fileops stat method for a kqueue descriptor.
1414 1.3 jdolecek * Returns dummy info, with st_size being number of events pending.
1415 1.3 jdolecek */
1416 1.1 lukem static int
1417 1.49 ad kqueue_stat(file_t *fp, struct stat *st)
1418 1.1 lukem {
1419 1.49 ad struct kqueue *kq;
1420 1.49 ad
1421 1.82 matt kq = fp->f_kqueue;
1422 1.1 lukem
1423 1.49 ad memset(st, 0, sizeof(*st));
1424 1.1 lukem st->st_size = kq->kq_count;
1425 1.1 lukem st->st_blksize = sizeof(struct kevent);
1426 1.1 lukem st->st_mode = S_IFIFO;
1427 1.49 ad
1428 1.49 ad return 0;
1429 1.49 ad }
1430 1.49 ad
1431 1.49 ad static void
1432 1.49 ad kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1433 1.49 ad {
1434 1.49 ad struct knote *kn;
1435 1.49 ad filedesc_t *fdp;
1436 1.49 ad
1437 1.49 ad fdp = kq->kq_fdp;
1438 1.49 ad
1439 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
1440 1.49 ad
1441 1.49 ad for (kn = SLIST_FIRST(list); kn != NULL;) {
1442 1.49 ad if (kq != kn->kn_kq) {
1443 1.49 ad kn = SLIST_NEXT(kn, kn_link);
1444 1.49 ad continue;
1445 1.49 ad }
1446 1.49 ad knote_detach(kn, fdp, true);
1447 1.49 ad mutex_enter(&fdp->fd_lock);
1448 1.49 ad kn = SLIST_FIRST(list);
1449 1.49 ad }
1450 1.1 lukem }
1451 1.1 lukem
1452 1.49 ad
1453 1.3 jdolecek /*
1454 1.49 ad * fileops close method for a kqueue descriptor.
1455 1.3 jdolecek */
1456 1.1 lukem static int
1457 1.49 ad kqueue_close(file_t *fp)
1458 1.1 lukem {
1459 1.49 ad struct kqueue *kq;
1460 1.49 ad filedesc_t *fdp;
1461 1.49 ad fdfile_t *ff;
1462 1.49 ad int i;
1463 1.49 ad
1464 1.82 matt kq = fp->f_kqueue;
1465 1.82 matt fp->f_kqueue = NULL;
1466 1.79 christos fp->f_type = 0;
1467 1.49 ad fdp = curlwp->l_fd;
1468 1.1 lukem
1469 1.49 ad mutex_enter(&fdp->fd_lock);
1470 1.49 ad for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1471 1.65 ad if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1472 1.49 ad continue;
1473 1.49 ad kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1474 1.1 lukem }
1475 1.1 lukem if (fdp->fd_knhashmask != 0) {
1476 1.1 lukem for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1477 1.49 ad kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1478 1.1 lukem }
1479 1.1 lukem }
1480 1.49 ad mutex_exit(&fdp->fd_lock);
1481 1.49 ad
1482 1.49 ad KASSERT(kq->kq_count == 0);
1483 1.49 ad mutex_destroy(&kq->kq_lock);
1484 1.49 ad cv_destroy(&kq->kq_cv);
1485 1.48 rmind seldestroy(&kq->kq_sel);
1486 1.49 ad kmem_free(kq, sizeof(*kq));
1487 1.1 lukem
1488 1.1 lukem return (0);
1489 1.1 lukem }
1490 1.1 lukem
1491 1.3 jdolecek /*
1492 1.3 jdolecek * struct fileops kqfilter method for a kqueue descriptor.
1493 1.3 jdolecek * Event triggered when monitored kqueue changes.
1494 1.3 jdolecek */
1495 1.3 jdolecek static int
1496 1.49 ad kqueue_kqfilter(file_t *fp, struct knote *kn)
1497 1.3 jdolecek {
1498 1.3 jdolecek struct kqueue *kq;
1499 1.49 ad
1500 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
1501 1.49 ad
1502 1.49 ad KASSERT(fp == kn->kn_obj);
1503 1.3 jdolecek
1504 1.3 jdolecek if (kn->kn_filter != EVFILT_READ)
1505 1.49 ad return 1;
1506 1.49 ad
1507 1.3 jdolecek kn->kn_fop = &kqread_filtops;
1508 1.49 ad mutex_enter(&kq->kq_lock);
1509 1.5 christos SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1510 1.49 ad mutex_exit(&kq->kq_lock);
1511 1.49 ad
1512 1.49 ad return 0;
1513 1.3 jdolecek }
1514 1.3 jdolecek
1515 1.3 jdolecek
1516 1.3 jdolecek /*
1517 1.49 ad * Walk down a list of knotes, activating them if their event has
1518 1.49 ad * triggered. The caller's object lock (e.g. device driver lock)
1519 1.49 ad * must be held.
1520 1.1 lukem */
1521 1.1 lukem void
1522 1.1 lukem knote(struct klist *list, long hint)
1523 1.1 lukem {
1524 1.71 drochner struct knote *kn, *tmpkn;
1525 1.1 lukem
1526 1.71 drochner SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1527 1.85 christos KASSERT(kn->kn_fop != NULL);
1528 1.84 christos KASSERT(kn->kn_fop->f_event != NULL);
1529 1.49 ad if ((*kn->kn_fop->f_event)(kn, hint))
1530 1.49 ad knote_activate(kn);
1531 1.49 ad }
1532 1.1 lukem }
1533 1.1 lukem
1534 1.1 lukem /*
1535 1.49 ad * Remove all knotes referencing a specified fd
1536 1.1 lukem */
1537 1.1 lukem void
1538 1.49 ad knote_fdclose(int fd)
1539 1.1 lukem {
1540 1.49 ad struct klist *list;
1541 1.1 lukem struct knote *kn;
1542 1.49 ad filedesc_t *fdp;
1543 1.1 lukem
1544 1.49 ad fdp = curlwp->l_fd;
1545 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1546 1.49 ad mutex_enter(&fdp->fd_lock);
1547 1.1 lukem while ((kn = SLIST_FIRST(list)) != NULL) {
1548 1.49 ad knote_detach(kn, fdp, true);
1549 1.49 ad mutex_enter(&fdp->fd_lock);
1550 1.1 lukem }
1551 1.49 ad mutex_exit(&fdp->fd_lock);
1552 1.1 lukem }
1553 1.1 lukem
1554 1.1 lukem /*
1555 1.49 ad * Drop knote. Called with fdp->fd_lock held, and will drop before
1556 1.49 ad * returning.
1557 1.3 jdolecek */
1558 1.1 lukem static void
1559 1.49 ad knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1560 1.1 lukem {
1561 1.49 ad struct klist *list;
1562 1.53 ad struct kqueue *kq;
1563 1.53 ad
1564 1.53 ad kq = kn->kn_kq;
1565 1.1 lukem
1566 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
1567 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
1568 1.3 jdolecek
1569 1.85 christos KASSERT(kn->kn_fop != NULL);
1570 1.53 ad /* Remove from monitored object. */
1571 1.49 ad if (dofop) {
1572 1.85 christos KASSERT(kn->kn_fop->f_detach != NULL);
1573 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1574 1.49 ad (*kn->kn_fop->f_detach)(kn);
1575 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1576 1.1 lukem }
1577 1.3 jdolecek
1578 1.53 ad /* Remove from descriptor table. */
1579 1.1 lukem if (kn->kn_fop->f_isfd)
1580 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1581 1.1 lukem else
1582 1.1 lukem list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1583 1.1 lukem
1584 1.1 lukem SLIST_REMOVE(list, kn, knote, kn_link);
1585 1.53 ad
1586 1.53 ad /* Remove from kqueue. */
1587 1.85 christos again:
1588 1.53 ad mutex_spin_enter(&kq->kq_lock);
1589 1.53 ad if ((kn->kn_status & KN_QUEUED) != 0) {
1590 1.53 ad kq_check(kq);
1591 1.85 christos kq->kq_count--;
1592 1.53 ad TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1593 1.53 ad kn->kn_status &= ~KN_QUEUED;
1594 1.53 ad kq_check(kq);
1595 1.85 christos } else if (kn->kn_status & KN_BUSY) {
1596 1.85 christos mutex_spin_exit(&kq->kq_lock);
1597 1.85 christos goto again;
1598 1.53 ad }
1599 1.53 ad mutex_spin_exit(&kq->kq_lock);
1600 1.53 ad
1601 1.49 ad mutex_exit(&fdp->fd_lock);
1602 1.49 ad if (kn->kn_fop->f_isfd)
1603 1.49 ad fd_putfile(kn->kn_id);
1604 1.49 ad atomic_dec_uint(&kn->kn_kfilter->refcnt);
1605 1.49 ad kmem_free(kn, sizeof(*kn));
1606 1.1 lukem }
1607 1.1 lukem
1608 1.3 jdolecek /*
1609 1.3 jdolecek * Queue new event for knote.
1610 1.3 jdolecek */
1611 1.1 lukem static void
1612 1.1 lukem knote_enqueue(struct knote *kn)
1613 1.1 lukem {
1614 1.49 ad struct kqueue *kq;
1615 1.49 ad
1616 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
1617 1.1 lukem
1618 1.3 jdolecek kq = kn->kn_kq;
1619 1.1 lukem
1620 1.49 ad mutex_spin_enter(&kq->kq_lock);
1621 1.49 ad if ((kn->kn_status & KN_DISABLED) != 0) {
1622 1.49 ad kn->kn_status &= ~KN_DISABLED;
1623 1.49 ad }
1624 1.49 ad if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1625 1.52 yamt kq_check(kq);
1626 1.85 christos kn->kn_status |= KN_QUEUED;
1627 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1628 1.49 ad kq->kq_count++;
1629 1.52 yamt kq_check(kq);
1630 1.49 ad cv_broadcast(&kq->kq_cv);
1631 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1632 1.49 ad }
1633 1.49 ad mutex_spin_exit(&kq->kq_lock);
1634 1.1 lukem }
1635 1.49 ad /*
1636 1.49 ad * Queue new event for knote.
1637 1.49 ad */
1638 1.49 ad static void
1639 1.49 ad knote_activate(struct knote *kn)
1640 1.49 ad {
1641 1.49 ad struct kqueue *kq;
1642 1.49 ad
1643 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
1644 1.1 lukem
1645 1.3 jdolecek kq = kn->kn_kq;
1646 1.12 pk
1647 1.49 ad mutex_spin_enter(&kq->kq_lock);
1648 1.49 ad kn->kn_status |= KN_ACTIVE;
1649 1.49 ad if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1650 1.52 yamt kq_check(kq);
1651 1.85 christos kn->kn_status |= KN_QUEUED;
1652 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1653 1.49 ad kq->kq_count++;
1654 1.52 yamt kq_check(kq);
1655 1.49 ad cv_broadcast(&kq->kq_cv);
1656 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1657 1.49 ad }
1658 1.49 ad mutex_spin_exit(&kq->kq_lock);
1659 1.1 lukem }
1660