kern_event.c revision 1.96 1 1.96 maya /* $NetBSD: kern_event.c,v 1.96 2017/10/25 08:12:39 maya Exp $ */
2 1.49 ad
3 1.49 ad /*-
4 1.64 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.49 ad * All rights reserved.
6 1.49 ad *
7 1.64 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.64 ad * by Andrew Doran.
9 1.64 ad *
10 1.49 ad * Redistribution and use in source and binary forms, with or without
11 1.49 ad * modification, are permitted provided that the following conditions
12 1.49 ad * are met:
13 1.49 ad * 1. Redistributions of source code must retain the above copyright
14 1.49 ad * notice, this list of conditions and the following disclaimer.
15 1.49 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.49 ad * notice, this list of conditions and the following disclaimer in the
17 1.49 ad * documentation and/or other materials provided with the distribution.
18 1.49 ad *
19 1.49 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.49 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.49 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.49 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.49 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.49 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.49 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.49 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.49 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.49 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.49 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.49 ad */
31 1.28 kardel
32 1.1 lukem /*-
33 1.1 lukem * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 1.1 lukem * All rights reserved.
35 1.1 lukem *
36 1.1 lukem * Redistribution and use in source and binary forms, with or without
37 1.1 lukem * modification, are permitted provided that the following conditions
38 1.1 lukem * are met:
39 1.1 lukem * 1. Redistributions of source code must retain the above copyright
40 1.1 lukem * notice, this list of conditions and the following disclaimer.
41 1.1 lukem * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 lukem * notice, this list of conditions and the following disclaimer in the
43 1.1 lukem * documentation and/or other materials provided with the distribution.
44 1.1 lukem *
45 1.1 lukem * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 1.1 lukem * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 lukem * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 lukem * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 1.1 lukem * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 lukem * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 lukem * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 lukem * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 lukem * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 lukem * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 lukem * SUCH DAMAGE.
56 1.1 lukem *
57 1.49 ad * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 1.1 lukem */
59 1.14 jdolecek
60 1.14 jdolecek #include <sys/cdefs.h>
61 1.96 maya __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.96 2017/10/25 08:12:39 maya Exp $");
62 1.1 lukem
63 1.1 lukem #include <sys/param.h>
64 1.1 lukem #include <sys/systm.h>
65 1.1 lukem #include <sys/kernel.h>
66 1.86 christos #include <sys/wait.h>
67 1.1 lukem #include <sys/proc.h>
68 1.1 lukem #include <sys/file.h>
69 1.3 jdolecek #include <sys/select.h>
70 1.1 lukem #include <sys/queue.h>
71 1.1 lukem #include <sys/event.h>
72 1.1 lukem #include <sys/eventvar.h>
73 1.1 lukem #include <sys/poll.h>
74 1.49 ad #include <sys/kmem.h>
75 1.1 lukem #include <sys/stat.h>
76 1.3 jdolecek #include <sys/filedesc.h>
77 1.3 jdolecek #include <sys/syscallargs.h>
78 1.27 elad #include <sys/kauth.h>
79 1.40 ad #include <sys/conf.h>
80 1.49 ad #include <sys/atomic.h>
81 1.1 lukem
82 1.49 ad static int kqueue_scan(file_t *, size_t, struct kevent *,
83 1.49 ad const struct timespec *, register_t *,
84 1.49 ad const struct kevent_ops *, struct kevent *,
85 1.49 ad size_t);
86 1.49 ad static int kqueue_ioctl(file_t *, u_long, void *);
87 1.49 ad static int kqueue_fcntl(file_t *, u_int, void *);
88 1.49 ad static int kqueue_poll(file_t *, int);
89 1.49 ad static int kqueue_kqfilter(file_t *, struct knote *);
90 1.49 ad static int kqueue_stat(file_t *, struct stat *);
91 1.49 ad static int kqueue_close(file_t *);
92 1.49 ad static int kqueue_register(struct kqueue *, struct kevent *);
93 1.49 ad static void kqueue_doclose(struct kqueue *, struct klist *, int);
94 1.49 ad
95 1.49 ad static void knote_detach(struct knote *, filedesc_t *fdp, bool);
96 1.49 ad static void knote_enqueue(struct knote *);
97 1.49 ad static void knote_activate(struct knote *);
98 1.49 ad
99 1.49 ad static void filt_kqdetach(struct knote *);
100 1.49 ad static int filt_kqueue(struct knote *, long hint);
101 1.49 ad static int filt_procattach(struct knote *);
102 1.49 ad static void filt_procdetach(struct knote *);
103 1.49 ad static int filt_proc(struct knote *, long hint);
104 1.49 ad static int filt_fileattach(struct knote *);
105 1.49 ad static void filt_timerexpire(void *x);
106 1.49 ad static int filt_timerattach(struct knote *);
107 1.49 ad static void filt_timerdetach(struct knote *);
108 1.49 ad static int filt_timer(struct knote *, long hint);
109 1.1 lukem
110 1.21 christos static const struct fileops kqueueops = {
111 1.64 ad .fo_read = (void *)enxio,
112 1.64 ad .fo_write = (void *)enxio,
113 1.64 ad .fo_ioctl = kqueue_ioctl,
114 1.64 ad .fo_fcntl = kqueue_fcntl,
115 1.64 ad .fo_poll = kqueue_poll,
116 1.64 ad .fo_stat = kqueue_stat,
117 1.64 ad .fo_close = kqueue_close,
118 1.64 ad .fo_kqfilter = kqueue_kqfilter,
119 1.68 dsl .fo_restart = fnullop_restart,
120 1.1 lukem };
121 1.1 lukem
122 1.96 maya static const struct filterops kqread_filtops = {
123 1.96 maya .f_isfd = 1,
124 1.96 maya .f_attach = NULL,
125 1.96 maya .f_detach = filt_kqdetach,
126 1.96 maya .f_event = filt_kqueue,
127 1.96 maya };
128 1.96 maya
129 1.96 maya static const struct filterops proc_filtops = {
130 1.96 maya .f_isfd = 0,
131 1.96 maya .f_attach = filt_procattach,
132 1.96 maya .f_detach = filt_procdetach,
133 1.96 maya .f_event = filt_proc,
134 1.96 maya };
135 1.96 maya
136 1.96 maya static const struct filterops file_filtops = {
137 1.96 maya .f_isfd = 1,
138 1.96 maya .f_attach = filt_fileattach,
139 1.96 maya .f_detach = NULL,
140 1.96 maya .f_event = NULL,
141 1.96 maya };
142 1.96 maya
143 1.96 maya static const struct filterops timer_filtops = {
144 1.96 maya .f_isfd = 0,
145 1.96 maya .f_attach = filt_timerattach,
146 1.96 maya .f_detach = filt_timerdetach,
147 1.96 maya .f_event = filt_timer,
148 1.96 maya };
149 1.1 lukem
150 1.49 ad static u_int kq_ncallouts = 0;
151 1.8 jdolecek static int kq_calloutmax = (4 * 1024);
152 1.7 thorpej
153 1.1 lukem #define KN_HASHSIZE 64 /* XXX should be tunable */
154 1.3 jdolecek #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
155 1.1 lukem
156 1.3 jdolecek extern const struct filterops sig_filtops;
157 1.1 lukem
158 1.1 lukem /*
159 1.1 lukem * Table for for all system-defined filters.
160 1.3 jdolecek * These should be listed in the numeric order of the EVFILT_* defines.
161 1.3 jdolecek * If filtops is NULL, the filter isn't implemented in NetBSD.
162 1.3 jdolecek * End of list is when name is NULL.
163 1.93 riastrad *
164 1.49 ad * Note that 'refcnt' is meaningless for built-in filters.
165 1.1 lukem */
166 1.3 jdolecek struct kfilter {
167 1.49 ad const char *name; /* name of filter */
168 1.49 ad uint32_t filter; /* id of filter */
169 1.49 ad unsigned refcnt; /* reference count */
170 1.3 jdolecek const struct filterops *filtops;/* operations for filter */
171 1.49 ad size_t namelen; /* length of name string */
172 1.3 jdolecek };
173 1.3 jdolecek
174 1.49 ad /* System defined filters */
175 1.49 ad static struct kfilter sys_kfilters[] = {
176 1.49 ad { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
177 1.49 ad { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
178 1.49 ad { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
179 1.49 ad { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
180 1.49 ad { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
181 1.49 ad { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
182 1.49 ad { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
183 1.49 ad { NULL, 0, 0, NULL, 0 },
184 1.1 lukem };
185 1.1 lukem
186 1.49 ad /* User defined kfilters */
187 1.3 jdolecek static struct kfilter *user_kfilters; /* array */
188 1.3 jdolecek static int user_kfilterc; /* current offset */
189 1.3 jdolecek static int user_kfiltermaxc; /* max size so far */
190 1.49 ad static size_t user_kfiltersz; /* size of allocated memory */
191 1.49 ad
192 1.95 riastrad /*
193 1.95 riastrad * Global Locks.
194 1.95 riastrad *
195 1.95 riastrad * Lock order:
196 1.95 riastrad *
197 1.95 riastrad * kqueue_filter_lock
198 1.95 riastrad * -> kn_kq->kq_fdp->fd_lock
199 1.95 riastrad * -> object lock (e.g., device driver lock, kqueue_misc_lock, &c.)
200 1.95 riastrad * -> kn_kq->kq_lock
201 1.95 riastrad *
202 1.95 riastrad * Locking rules:
203 1.95 riastrad *
204 1.95 riastrad * f_attach: fdp->fd_lock, KERNEL_LOCK
205 1.95 riastrad * f_detach: fdp->fd_lock, KERNEL_LOCK
206 1.95 riastrad * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
207 1.95 riastrad * f_event via knote: whatever caller guarantees
208 1.95 riastrad * Typically, f_event(NOTE_SUBMIT) via knote: object lock
209 1.95 riastrad * f_event(!NOTE_SUBMIT) via knote: nothing,
210 1.95 riastrad * acquires/releases object lock inside.
211 1.95 riastrad */
212 1.49 ad static krwlock_t kqueue_filter_lock; /* lock on filter lists */
213 1.49 ad static kmutex_t kqueue_misc_lock; /* miscellaneous */
214 1.49 ad
215 1.66 elad static kauth_listener_t kqueue_listener;
216 1.66 elad
217 1.66 elad static int
218 1.66 elad kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
219 1.66 elad void *arg0, void *arg1, void *arg2, void *arg3)
220 1.66 elad {
221 1.66 elad struct proc *p;
222 1.66 elad int result;
223 1.66 elad
224 1.66 elad result = KAUTH_RESULT_DEFER;
225 1.66 elad p = arg0;
226 1.66 elad
227 1.66 elad if (action != KAUTH_PROCESS_KEVENT_FILTER)
228 1.66 elad return result;
229 1.66 elad
230 1.66 elad if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
231 1.66 elad ISSET(p->p_flag, PK_SUGID)))
232 1.66 elad return result;
233 1.66 elad
234 1.66 elad result = KAUTH_RESULT_ALLOW;
235 1.66 elad
236 1.66 elad return result;
237 1.66 elad }
238 1.66 elad
239 1.49 ad /*
240 1.49 ad * Initialize the kqueue subsystem.
241 1.49 ad */
242 1.49 ad void
243 1.49 ad kqueue_init(void)
244 1.49 ad {
245 1.49 ad
246 1.49 ad rw_init(&kqueue_filter_lock);
247 1.49 ad mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
248 1.66 elad
249 1.66 elad kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
250 1.66 elad kqueue_listener_cb, NULL);
251 1.49 ad }
252 1.3 jdolecek
253 1.3 jdolecek /*
254 1.3 jdolecek * Find kfilter entry by name, or NULL if not found.
255 1.3 jdolecek */
256 1.49 ad static struct kfilter *
257 1.3 jdolecek kfilter_byname_sys(const char *name)
258 1.3 jdolecek {
259 1.3 jdolecek int i;
260 1.3 jdolecek
261 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
262 1.49 ad
263 1.3 jdolecek for (i = 0; sys_kfilters[i].name != NULL; i++) {
264 1.3 jdolecek if (strcmp(name, sys_kfilters[i].name) == 0)
265 1.49 ad return &sys_kfilters[i];
266 1.3 jdolecek }
267 1.49 ad return NULL;
268 1.3 jdolecek }
269 1.3 jdolecek
270 1.3 jdolecek static struct kfilter *
271 1.3 jdolecek kfilter_byname_user(const char *name)
272 1.3 jdolecek {
273 1.3 jdolecek int i;
274 1.3 jdolecek
275 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
276 1.49 ad
277 1.31 seanb /* user filter slots have a NULL name if previously deregistered */
278 1.31 seanb for (i = 0; i < user_kfilterc ; i++) {
279 1.31 seanb if (user_kfilters[i].name != NULL &&
280 1.3 jdolecek strcmp(name, user_kfilters[i].name) == 0)
281 1.49 ad return &user_kfilters[i];
282 1.3 jdolecek }
283 1.49 ad return NULL;
284 1.3 jdolecek }
285 1.3 jdolecek
286 1.49 ad static struct kfilter *
287 1.3 jdolecek kfilter_byname(const char *name)
288 1.3 jdolecek {
289 1.49 ad struct kfilter *kfilter;
290 1.49 ad
291 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
292 1.3 jdolecek
293 1.3 jdolecek if ((kfilter = kfilter_byname_sys(name)) != NULL)
294 1.49 ad return kfilter;
295 1.3 jdolecek
296 1.49 ad return kfilter_byname_user(name);
297 1.3 jdolecek }
298 1.3 jdolecek
299 1.3 jdolecek /*
300 1.3 jdolecek * Find kfilter entry by filter id, or NULL if not found.
301 1.3 jdolecek * Assumes entries are indexed in filter id order, for speed.
302 1.3 jdolecek */
303 1.49 ad static struct kfilter *
304 1.3 jdolecek kfilter_byfilter(uint32_t filter)
305 1.3 jdolecek {
306 1.49 ad struct kfilter *kfilter;
307 1.49 ad
308 1.49 ad KASSERT(rw_lock_held(&kqueue_filter_lock));
309 1.3 jdolecek
310 1.3 jdolecek if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
311 1.3 jdolecek kfilter = &sys_kfilters[filter];
312 1.3 jdolecek else if (user_kfilters != NULL &&
313 1.3 jdolecek filter < EVFILT_SYSCOUNT + user_kfilterc)
314 1.3 jdolecek /* it's a user filter */
315 1.3 jdolecek kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
316 1.3 jdolecek else
317 1.3 jdolecek return (NULL); /* out of range */
318 1.3 jdolecek KASSERT(kfilter->filter == filter); /* sanity check! */
319 1.3 jdolecek return (kfilter);
320 1.3 jdolecek }
321 1.3 jdolecek
322 1.3 jdolecek /*
323 1.3 jdolecek * Register a new kfilter. Stores the entry in user_kfilters.
324 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
325 1.3 jdolecek * If retfilter != NULL, the new filterid is returned in it.
326 1.3 jdolecek */
327 1.3 jdolecek int
328 1.3 jdolecek kfilter_register(const char *name, const struct filterops *filtops,
329 1.49 ad int *retfilter)
330 1.1 lukem {
331 1.3 jdolecek struct kfilter *kfilter;
332 1.49 ad size_t len;
333 1.31 seanb int i;
334 1.3 jdolecek
335 1.3 jdolecek if (name == NULL || name[0] == '\0' || filtops == NULL)
336 1.3 jdolecek return (EINVAL); /* invalid args */
337 1.49 ad
338 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
339 1.49 ad if (kfilter_byname(name) != NULL) {
340 1.49 ad rw_exit(&kqueue_filter_lock);
341 1.3 jdolecek return (EEXIST); /* already exists */
342 1.49 ad }
343 1.49 ad if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
344 1.49 ad rw_exit(&kqueue_filter_lock);
345 1.3 jdolecek return (EINVAL); /* too many */
346 1.49 ad }
347 1.3 jdolecek
348 1.31 seanb for (i = 0; i < user_kfilterc; i++) {
349 1.31 seanb kfilter = &user_kfilters[i];
350 1.31 seanb if (kfilter->name == NULL) {
351 1.31 seanb /* Previously deregistered slot. Reuse. */
352 1.31 seanb goto reuse;
353 1.31 seanb }
354 1.31 seanb }
355 1.31 seanb
356 1.3 jdolecek /* check if need to grow user_kfilters */
357 1.3 jdolecek if (user_kfilterc + 1 > user_kfiltermaxc) {
358 1.49 ad /* Grow in KFILTER_EXTENT chunks. */
359 1.3 jdolecek user_kfiltermaxc += KFILTER_EXTENT;
360 1.69 dsl len = user_kfiltermaxc * sizeof(*kfilter);
361 1.49 ad kfilter = kmem_alloc(len, KM_SLEEP);
362 1.49 ad memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
363 1.49 ad if (user_kfilters != NULL) {
364 1.49 ad memcpy(kfilter, user_kfilters, user_kfiltersz);
365 1.49 ad kmem_free(user_kfilters, user_kfiltersz);
366 1.49 ad }
367 1.49 ad user_kfiltersz = len;
368 1.3 jdolecek user_kfilters = kfilter;
369 1.3 jdolecek }
370 1.31 seanb /* Adding new slot */
371 1.31 seanb kfilter = &user_kfilters[user_kfilterc++];
372 1.31 seanb reuse:
373 1.49 ad kfilter->namelen = strlen(name) + 1;
374 1.49 ad kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
375 1.49 ad memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
376 1.3 jdolecek
377 1.31 seanb kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
378 1.3 jdolecek
379 1.49 ad kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
380 1.49 ad memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
381 1.3 jdolecek
382 1.3 jdolecek if (retfilter != NULL)
383 1.31 seanb *retfilter = kfilter->filter;
384 1.49 ad rw_exit(&kqueue_filter_lock);
385 1.49 ad
386 1.3 jdolecek return (0);
387 1.1 lukem }
388 1.1 lukem
389 1.3 jdolecek /*
390 1.3 jdolecek * Unregister a kfilter previously registered with kfilter_register.
391 1.3 jdolecek * This retains the filter id, but clears the name and frees filtops (filter
392 1.3 jdolecek * operations), so that the number isn't reused during a boot.
393 1.3 jdolecek * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
394 1.3 jdolecek */
395 1.3 jdolecek int
396 1.3 jdolecek kfilter_unregister(const char *name)
397 1.1 lukem {
398 1.3 jdolecek struct kfilter *kfilter;
399 1.3 jdolecek
400 1.3 jdolecek if (name == NULL || name[0] == '\0')
401 1.3 jdolecek return (EINVAL); /* invalid name */
402 1.3 jdolecek
403 1.49 ad rw_enter(&kqueue_filter_lock, RW_WRITER);
404 1.49 ad if (kfilter_byname_sys(name) != NULL) {
405 1.49 ad rw_exit(&kqueue_filter_lock);
406 1.3 jdolecek return (EINVAL); /* can't detach system filters */
407 1.49 ad }
408 1.1 lukem
409 1.3 jdolecek kfilter = kfilter_byname_user(name);
410 1.49 ad if (kfilter == NULL) {
411 1.49 ad rw_exit(&kqueue_filter_lock);
412 1.3 jdolecek return (ENOENT);
413 1.49 ad }
414 1.49 ad if (kfilter->refcnt != 0) {
415 1.49 ad rw_exit(&kqueue_filter_lock);
416 1.49 ad return (EBUSY);
417 1.49 ad }
418 1.1 lukem
419 1.49 ad /* Cast away const (but we know it's safe. */
420 1.49 ad kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
421 1.31 seanb kfilter->name = NULL; /* mark as `not implemented' */
422 1.31 seanb
423 1.3 jdolecek if (kfilter->filtops != NULL) {
424 1.49 ad /* Cast away const (but we know it's safe. */
425 1.49 ad kmem_free(__UNCONST(kfilter->filtops),
426 1.49 ad sizeof(*kfilter->filtops));
427 1.3 jdolecek kfilter->filtops = NULL; /* mark as `not implemented' */
428 1.3 jdolecek }
429 1.49 ad rw_exit(&kqueue_filter_lock);
430 1.49 ad
431 1.1 lukem return (0);
432 1.1 lukem }
433 1.1 lukem
434 1.3 jdolecek
435 1.3 jdolecek /*
436 1.3 jdolecek * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
437 1.49 ad * descriptors. Calls fileops kqfilter method for given file descriptor.
438 1.3 jdolecek */
439 1.3 jdolecek static int
440 1.3 jdolecek filt_fileattach(struct knote *kn)
441 1.3 jdolecek {
442 1.49 ad file_t *fp;
443 1.49 ad
444 1.49 ad fp = kn->kn_obj;
445 1.3 jdolecek
446 1.49 ad return (*fp->f_ops->fo_kqfilter)(fp, kn);
447 1.3 jdolecek }
448 1.3 jdolecek
449 1.3 jdolecek /*
450 1.3 jdolecek * Filter detach method for EVFILT_READ on kqueue descriptor.
451 1.3 jdolecek */
452 1.1 lukem static void
453 1.1 lukem filt_kqdetach(struct knote *kn)
454 1.1 lukem {
455 1.3 jdolecek struct kqueue *kq;
456 1.1 lukem
457 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
458 1.49 ad
459 1.49 ad mutex_spin_enter(&kq->kq_lock);
460 1.5 christos SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
461 1.49 ad mutex_spin_exit(&kq->kq_lock);
462 1.1 lukem }
463 1.1 lukem
464 1.3 jdolecek /*
465 1.3 jdolecek * Filter event method for EVFILT_READ on kqueue descriptor.
466 1.3 jdolecek */
467 1.1 lukem /*ARGSUSED*/
468 1.1 lukem static int
469 1.33 yamt filt_kqueue(struct knote *kn, long hint)
470 1.1 lukem {
471 1.3 jdolecek struct kqueue *kq;
472 1.49 ad int rv;
473 1.49 ad
474 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
475 1.1 lukem
476 1.49 ad if (hint != NOTE_SUBMIT)
477 1.49 ad mutex_spin_enter(&kq->kq_lock);
478 1.1 lukem kn->kn_data = kq->kq_count;
479 1.49 ad rv = (kn->kn_data > 0);
480 1.49 ad if (hint != NOTE_SUBMIT)
481 1.49 ad mutex_spin_exit(&kq->kq_lock);
482 1.49 ad
483 1.49 ad return rv;
484 1.1 lukem }
485 1.1 lukem
486 1.3 jdolecek /*
487 1.3 jdolecek * Filter attach method for EVFILT_PROC.
488 1.3 jdolecek */
489 1.1 lukem static int
490 1.1 lukem filt_procattach(struct knote *kn)
491 1.1 lukem {
492 1.78 pooka struct proc *p;
493 1.30 ad struct lwp *curl;
494 1.30 ad
495 1.30 ad curl = curlwp;
496 1.1 lukem
497 1.56 ad mutex_enter(proc_lock);
498 1.77 joerg if (kn->kn_flags & EV_FLAG1) {
499 1.77 joerg /*
500 1.77 joerg * NOTE_TRACK attaches to the child process too early
501 1.77 joerg * for proc_find, so do a raw look up and check the state
502 1.77 joerg * explicitly.
503 1.77 joerg */
504 1.77 joerg p = proc_find_raw(kn->kn_id);
505 1.77 joerg if (p != NULL && p->p_stat != SIDL)
506 1.77 joerg p = NULL;
507 1.77 joerg } else {
508 1.77 joerg p = proc_find(kn->kn_id);
509 1.77 joerg }
510 1.77 joerg
511 1.49 ad if (p == NULL) {
512 1.56 ad mutex_exit(proc_lock);
513 1.49 ad return ESRCH;
514 1.49 ad }
515 1.3 jdolecek
516 1.3 jdolecek /*
517 1.3 jdolecek * Fail if it's not owned by you, or the last exec gave us
518 1.3 jdolecek * setuid/setgid privs (unless you're root).
519 1.3 jdolecek */
520 1.57 ad mutex_enter(p->p_lock);
521 1.56 ad mutex_exit(proc_lock);
522 1.46 elad if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
523 1.49 ad p, NULL, NULL, NULL) != 0) {
524 1.57 ad mutex_exit(p->p_lock);
525 1.49 ad return EACCES;
526 1.49 ad }
527 1.1 lukem
528 1.49 ad kn->kn_obj = p;
529 1.3 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
530 1.1 lukem
531 1.1 lukem /*
532 1.1 lukem * internal flag indicating registration done by kernel
533 1.1 lukem */
534 1.1 lukem if (kn->kn_flags & EV_FLAG1) {
535 1.3 jdolecek kn->kn_data = kn->kn_sdata; /* ppid */
536 1.1 lukem kn->kn_fflags = NOTE_CHILD;
537 1.1 lukem kn->kn_flags &= ~EV_FLAG1;
538 1.1 lukem }
539 1.1 lukem SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
540 1.57 ad mutex_exit(p->p_lock);
541 1.1 lukem
542 1.49 ad return 0;
543 1.1 lukem }
544 1.1 lukem
545 1.1 lukem /*
546 1.3 jdolecek * Filter detach method for EVFILT_PROC.
547 1.3 jdolecek *
548 1.1 lukem * The knote may be attached to a different process, which may exit,
549 1.1 lukem * leaving nothing for the knote to be attached to. So when the process
550 1.1 lukem * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
551 1.1 lukem * it will be deleted when read out. However, as part of the knote deletion,
552 1.1 lukem * this routine is called, so a check is needed to avoid actually performing
553 1.3 jdolecek * a detach, because the original process might not exist any more.
554 1.1 lukem */
555 1.1 lukem static void
556 1.1 lukem filt_procdetach(struct knote *kn)
557 1.1 lukem {
558 1.3 jdolecek struct proc *p;
559 1.1 lukem
560 1.1 lukem if (kn->kn_status & KN_DETACHED)
561 1.1 lukem return;
562 1.1 lukem
563 1.49 ad p = kn->kn_obj;
564 1.3 jdolecek
565 1.57 ad mutex_enter(p->p_lock);
566 1.1 lukem SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
567 1.57 ad mutex_exit(p->p_lock);
568 1.1 lukem }
569 1.1 lukem
570 1.3 jdolecek /*
571 1.3 jdolecek * Filter event method for EVFILT_PROC.
572 1.3 jdolecek */
573 1.1 lukem static int
574 1.1 lukem filt_proc(struct knote *kn, long hint)
575 1.1 lukem {
576 1.49 ad u_int event, fflag;
577 1.49 ad struct kevent kev;
578 1.49 ad struct kqueue *kq;
579 1.49 ad int error;
580 1.1 lukem
581 1.1 lukem event = (u_int)hint & NOTE_PCTRLMASK;
582 1.49 ad kq = kn->kn_kq;
583 1.49 ad fflag = 0;
584 1.1 lukem
585 1.49 ad /* If the user is interested in this event, record it. */
586 1.1 lukem if (kn->kn_sfflags & event)
587 1.49 ad fflag |= event;
588 1.1 lukem
589 1.1 lukem if (event == NOTE_EXIT) {
590 1.83 christos struct proc *p = kn->kn_obj;
591 1.83 christos
592 1.83 christos if (p != NULL)
593 1.86 christos kn->kn_data = P_WAITSTATUS(p);
594 1.3 jdolecek /*
595 1.49 ad * Process is gone, so flag the event as finished.
596 1.49 ad *
597 1.3 jdolecek * Detach the knote from watched process and mark
598 1.3 jdolecek * it as such. We can't leave this to kqueue_scan(),
599 1.3 jdolecek * since the process might not exist by then. And we
600 1.3 jdolecek * have to do this now, since psignal KNOTE() is called
601 1.3 jdolecek * also for zombies and we might end up reading freed
602 1.3 jdolecek * memory if the kevent would already be picked up
603 1.22 perry * and knote g/c'ed.
604 1.3 jdolecek */
605 1.49 ad filt_procdetach(kn);
606 1.49 ad
607 1.49 ad mutex_spin_enter(&kq->kq_lock);
608 1.1 lukem kn->kn_status |= KN_DETACHED;
609 1.3 jdolecek /* Mark as ONESHOT, so that the knote it g/c'ed when read */
610 1.22 perry kn->kn_flags |= (EV_EOF | EV_ONESHOT);
611 1.49 ad kn->kn_fflags |= fflag;
612 1.49 ad mutex_spin_exit(&kq->kq_lock);
613 1.49 ad
614 1.49 ad return 1;
615 1.1 lukem }
616 1.1 lukem
617 1.49 ad mutex_spin_enter(&kq->kq_lock);
618 1.1 lukem if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
619 1.1 lukem /*
620 1.49 ad * Process forked, and user wants to track the new process,
621 1.49 ad * so attach a new knote to it, and immediately report an
622 1.49 ad * event with the parent's pid. Register knote with new
623 1.49 ad * process.
624 1.1 lukem */
625 1.1 lukem kev.ident = hint & NOTE_PDATAMASK; /* pid */
626 1.1 lukem kev.filter = kn->kn_filter;
627 1.1 lukem kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
628 1.1 lukem kev.fflags = kn->kn_sfflags;
629 1.1 lukem kev.data = kn->kn_id; /* parent */
630 1.1 lukem kev.udata = kn->kn_kevent.udata; /* preserve udata */
631 1.49 ad mutex_spin_exit(&kq->kq_lock);
632 1.49 ad error = kqueue_register(kq, &kev);
633 1.49 ad mutex_spin_enter(&kq->kq_lock);
634 1.49 ad if (error != 0)
635 1.1 lukem kn->kn_fflags |= NOTE_TRACKERR;
636 1.1 lukem }
637 1.49 ad kn->kn_fflags |= fflag;
638 1.49 ad fflag = kn->kn_fflags;
639 1.49 ad mutex_spin_exit(&kq->kq_lock);
640 1.1 lukem
641 1.49 ad return fflag != 0;
642 1.8 jdolecek }
643 1.8 jdolecek
644 1.8 jdolecek static void
645 1.8 jdolecek filt_timerexpire(void *knx)
646 1.8 jdolecek {
647 1.8 jdolecek struct knote *kn = knx;
648 1.8 jdolecek int tticks;
649 1.8 jdolecek
650 1.49 ad mutex_enter(&kqueue_misc_lock);
651 1.8 jdolecek kn->kn_data++;
652 1.49 ad knote_activate(kn);
653 1.8 jdolecek if ((kn->kn_flags & EV_ONESHOT) == 0) {
654 1.8 jdolecek tticks = mstohz(kn->kn_sdata);
655 1.73 christos if (tticks <= 0)
656 1.73 christos tticks = 1;
657 1.39 ad callout_schedule((callout_t *)kn->kn_hook, tticks);
658 1.8 jdolecek }
659 1.49 ad mutex_exit(&kqueue_misc_lock);
660 1.8 jdolecek }
661 1.8 jdolecek
662 1.8 jdolecek /*
663 1.8 jdolecek * data contains amount of time to sleep, in milliseconds
664 1.22 perry */
665 1.8 jdolecek static int
666 1.8 jdolecek filt_timerattach(struct knote *kn)
667 1.8 jdolecek {
668 1.39 ad callout_t *calloutp;
669 1.49 ad struct kqueue *kq;
670 1.8 jdolecek int tticks;
671 1.8 jdolecek
672 1.8 jdolecek tticks = mstohz(kn->kn_sdata);
673 1.8 jdolecek
674 1.8 jdolecek /* if the supplied value is under our resolution, use 1 tick */
675 1.8 jdolecek if (tticks == 0) {
676 1.8 jdolecek if (kn->kn_sdata == 0)
677 1.49 ad return EINVAL;
678 1.8 jdolecek tticks = 1;
679 1.8 jdolecek }
680 1.8 jdolecek
681 1.49 ad if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
682 1.49 ad (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
683 1.49 ad atomic_dec_uint(&kq_ncallouts);
684 1.49 ad return ENOMEM;
685 1.49 ad }
686 1.54 ad callout_init(calloutp, CALLOUT_MPSAFE);
687 1.49 ad
688 1.49 ad kq = kn->kn_kq;
689 1.49 ad mutex_spin_enter(&kq->kq_lock);
690 1.8 jdolecek kn->kn_flags |= EV_CLEAR; /* automatically set */
691 1.49 ad kn->kn_hook = calloutp;
692 1.49 ad mutex_spin_exit(&kq->kq_lock);
693 1.49 ad
694 1.8 jdolecek callout_reset(calloutp, tticks, filt_timerexpire, kn);
695 1.8 jdolecek
696 1.8 jdolecek return (0);
697 1.8 jdolecek }
698 1.8 jdolecek
699 1.8 jdolecek static void
700 1.8 jdolecek filt_timerdetach(struct knote *kn)
701 1.8 jdolecek {
702 1.39 ad callout_t *calloutp;
703 1.8 jdolecek
704 1.39 ad calloutp = (callout_t *)kn->kn_hook;
705 1.55 ad callout_halt(calloutp, NULL);
706 1.39 ad callout_destroy(calloutp);
707 1.49 ad kmem_free(calloutp, sizeof(*calloutp));
708 1.49 ad atomic_dec_uint(&kq_ncallouts);
709 1.8 jdolecek }
710 1.8 jdolecek
711 1.8 jdolecek static int
712 1.33 yamt filt_timer(struct knote *kn, long hint)
713 1.8 jdolecek {
714 1.49 ad int rv;
715 1.49 ad
716 1.49 ad mutex_enter(&kqueue_misc_lock);
717 1.49 ad rv = (kn->kn_data != 0);
718 1.49 ad mutex_exit(&kqueue_misc_lock);
719 1.49 ad
720 1.49 ad return rv;
721 1.1 lukem }
722 1.1 lukem
723 1.3 jdolecek /*
724 1.3 jdolecek * filt_seltrue:
725 1.3 jdolecek *
726 1.3 jdolecek * This filter "event" routine simulates seltrue().
727 1.3 jdolecek */
728 1.1 lukem int
729 1.33 yamt filt_seltrue(struct knote *kn, long hint)
730 1.1 lukem {
731 1.1 lukem
732 1.3 jdolecek /*
733 1.3 jdolecek * We don't know how much data can be read/written,
734 1.3 jdolecek * but we know that it *can* be. This is about as
735 1.3 jdolecek * good as select/poll does as well.
736 1.3 jdolecek */
737 1.3 jdolecek kn->kn_data = 0;
738 1.3 jdolecek return (1);
739 1.3 jdolecek }
740 1.3 jdolecek
741 1.3 jdolecek /*
742 1.3 jdolecek * This provides full kqfilter entry for device switch tables, which
743 1.3 jdolecek * has same effect as filter using filt_seltrue() as filter method.
744 1.3 jdolecek */
745 1.3 jdolecek static void
746 1.33 yamt filt_seltruedetach(struct knote *kn)
747 1.3 jdolecek {
748 1.3 jdolecek /* Nothing to do */
749 1.3 jdolecek }
750 1.3 jdolecek
751 1.96 maya const struct filterops seltrue_filtops = {
752 1.96 maya .f_isfd = 1,
753 1.96 maya .f_attach = NULL,
754 1.96 maya .f_detach = filt_seltruedetach,
755 1.96 maya .f_event = filt_seltrue,
756 1.96 maya };
757 1.3 jdolecek
758 1.3 jdolecek int
759 1.33 yamt seltrue_kqfilter(dev_t dev, struct knote *kn)
760 1.3 jdolecek {
761 1.3 jdolecek switch (kn->kn_filter) {
762 1.3 jdolecek case EVFILT_READ:
763 1.3 jdolecek case EVFILT_WRITE:
764 1.3 jdolecek kn->kn_fop = &seltrue_filtops;
765 1.3 jdolecek break;
766 1.3 jdolecek default:
767 1.43 pooka return (EINVAL);
768 1.3 jdolecek }
769 1.3 jdolecek
770 1.3 jdolecek /* Nothing more to do */
771 1.3 jdolecek return (0);
772 1.3 jdolecek }
773 1.3 jdolecek
774 1.3 jdolecek /*
775 1.3 jdolecek * kqueue(2) system call.
776 1.3 jdolecek */
777 1.72 christos static int
778 1.72 christos kqueue1(struct lwp *l, int flags, register_t *retval)
779 1.3 jdolecek {
780 1.49 ad struct kqueue *kq;
781 1.49 ad file_t *fp;
782 1.49 ad int fd, error;
783 1.3 jdolecek
784 1.49 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
785 1.49 ad return error;
786 1.75 christos fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
787 1.1 lukem fp->f_type = DTYPE_KQUEUE;
788 1.1 lukem fp->f_ops = &kqueueops;
789 1.49 ad kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
790 1.49 ad mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
791 1.49 ad cv_init(&kq->kq_cv, "kqueue");
792 1.49 ad selinit(&kq->kq_sel);
793 1.1 lukem TAILQ_INIT(&kq->kq_head);
794 1.82 matt fp->f_kqueue = kq;
795 1.3 jdolecek *retval = fd;
796 1.49 ad kq->kq_fdp = curlwp->l_fd;
797 1.72 christos fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
798 1.49 ad fd_affix(curproc, fp, fd);
799 1.49 ad return error;
800 1.1 lukem }
801 1.1 lukem
802 1.3 jdolecek /*
803 1.72 christos * kqueue(2) system call.
804 1.72 christos */
805 1.72 christos int
806 1.72 christos sys_kqueue(struct lwp *l, const void *v, register_t *retval)
807 1.72 christos {
808 1.72 christos return kqueue1(l, 0, retval);
809 1.72 christos }
810 1.72 christos
811 1.72 christos int
812 1.72 christos sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
813 1.72 christos register_t *retval)
814 1.72 christos {
815 1.72 christos /* {
816 1.72 christos syscallarg(int) flags;
817 1.72 christos } */
818 1.72 christos return kqueue1(l, SCARG(uap, flags), retval);
819 1.72 christos }
820 1.72 christos
821 1.72 christos /*
822 1.3 jdolecek * kevent(2) system call.
823 1.3 jdolecek */
824 1.61 christos int
825 1.81 matt kevent_fetch_changes(void *ctx, const struct kevent *changelist,
826 1.61 christos struct kevent *changes, size_t index, int n)
827 1.24 cube {
828 1.49 ad
829 1.24 cube return copyin(changelist + index, changes, n * sizeof(*changes));
830 1.24 cube }
831 1.24 cube
832 1.61 christos int
833 1.81 matt kevent_put_events(void *ctx, struct kevent *events,
834 1.61 christos struct kevent *eventlist, size_t index, int n)
835 1.24 cube {
836 1.49 ad
837 1.24 cube return copyout(events, eventlist + index, n * sizeof(*events));
838 1.24 cube }
839 1.24 cube
840 1.24 cube static const struct kevent_ops kevent_native_ops = {
841 1.60 gmcgarry .keo_private = NULL,
842 1.60 gmcgarry .keo_fetch_timeout = copyin,
843 1.60 gmcgarry .keo_fetch_changes = kevent_fetch_changes,
844 1.60 gmcgarry .keo_put_events = kevent_put_events,
845 1.24 cube };
846 1.24 cube
847 1.1 lukem int
848 1.61 christos sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
849 1.61 christos register_t *retval)
850 1.1 lukem {
851 1.44 dsl /* {
852 1.3 jdolecek syscallarg(int) fd;
853 1.3 jdolecek syscallarg(const struct kevent *) changelist;
854 1.3 jdolecek syscallarg(size_t) nchanges;
855 1.3 jdolecek syscallarg(struct kevent *) eventlist;
856 1.3 jdolecek syscallarg(size_t) nevents;
857 1.3 jdolecek syscallarg(const struct timespec *) timeout;
858 1.44 dsl } */
859 1.24 cube
860 1.49 ad return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
861 1.24 cube SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
862 1.24 cube SCARG(uap, timeout), &kevent_native_ops);
863 1.24 cube }
864 1.24 cube
865 1.24 cube int
866 1.49 ad kevent1(register_t *retval, int fd,
867 1.49 ad const struct kevent *changelist, size_t nchanges,
868 1.49 ad struct kevent *eventlist, size_t nevents,
869 1.49 ad const struct timespec *timeout,
870 1.49 ad const struct kevent_ops *keops)
871 1.24 cube {
872 1.49 ad struct kevent *kevp;
873 1.49 ad struct kqueue *kq;
874 1.3 jdolecek struct timespec ts;
875 1.49 ad size_t i, n, ichange;
876 1.49 ad int nerrors, error;
877 1.80 maxv struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
878 1.49 ad file_t *fp;
879 1.3 jdolecek
880 1.3 jdolecek /* check that we're dealing with a kq */
881 1.49 ad fp = fd_getfile(fd);
882 1.10 pk if (fp == NULL)
883 1.1 lukem return (EBADF);
884 1.10 pk
885 1.10 pk if (fp->f_type != DTYPE_KQUEUE) {
886 1.49 ad fd_putfile(fd);
887 1.10 pk return (EBADF);
888 1.10 pk }
889 1.1 lukem
890 1.24 cube if (timeout != NULL) {
891 1.24 cube error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
892 1.1 lukem if (error)
893 1.1 lukem goto done;
894 1.24 cube timeout = &ts;
895 1.1 lukem }
896 1.1 lukem
897 1.82 matt kq = fp->f_kqueue;
898 1.1 lukem nerrors = 0;
899 1.24 cube ichange = 0;
900 1.1 lukem
901 1.3 jdolecek /* traverse list of events to register */
902 1.24 cube while (nchanges > 0) {
903 1.49 ad n = MIN(nchanges, __arraycount(kevbuf));
904 1.24 cube error = (*keops->keo_fetch_changes)(keops->keo_private,
905 1.49 ad changelist, kevbuf, ichange, n);
906 1.1 lukem if (error)
907 1.1 lukem goto done;
908 1.1 lukem for (i = 0; i < n; i++) {
909 1.49 ad kevp = &kevbuf[i];
910 1.1 lukem kevp->flags &= ~EV_SYSFLAGS;
911 1.3 jdolecek /* register each knote */
912 1.49 ad error = kqueue_register(kq, kevp);
913 1.89 abhinav if (!error && !(kevp->flags & EV_RECEIPT))
914 1.89 abhinav continue;
915 1.89 abhinav if (nevents == 0)
916 1.89 abhinav goto done;
917 1.89 abhinav kevp->flags = EV_ERROR;
918 1.89 abhinav kevp->data = error;
919 1.89 abhinav error = (*keops->keo_put_events)
920 1.89 abhinav (keops->keo_private, kevp,
921 1.89 abhinav eventlist, nerrors, 1);
922 1.89 abhinav if (error)
923 1.89 abhinav goto done;
924 1.89 abhinav nevents--;
925 1.89 abhinav nerrors++;
926 1.1 lukem }
927 1.24 cube nchanges -= n; /* update the results */
928 1.24 cube ichange += n;
929 1.1 lukem }
930 1.1 lukem if (nerrors) {
931 1.3 jdolecek *retval = nerrors;
932 1.1 lukem error = 0;
933 1.1 lukem goto done;
934 1.1 lukem }
935 1.1 lukem
936 1.3 jdolecek /* actually scan through the events */
937 1.49 ad error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
938 1.49 ad kevbuf, __arraycount(kevbuf));
939 1.3 jdolecek done:
940 1.49 ad fd_putfile(fd);
941 1.1 lukem return (error);
942 1.1 lukem }
943 1.1 lukem
944 1.3 jdolecek /*
945 1.3 jdolecek * Register a given kevent kev onto the kqueue
946 1.3 jdolecek */
947 1.49 ad static int
948 1.49 ad kqueue_register(struct kqueue *kq, struct kevent *kev)
949 1.1 lukem {
950 1.49 ad struct kfilter *kfilter;
951 1.49 ad filedesc_t *fdp;
952 1.49 ad file_t *fp;
953 1.49 ad fdfile_t *ff;
954 1.49 ad struct knote *kn, *newkn;
955 1.49 ad struct klist *list;
956 1.49 ad int error, fd, rv;
957 1.3 jdolecek
958 1.3 jdolecek fdp = kq->kq_fdp;
959 1.3 jdolecek fp = NULL;
960 1.3 jdolecek kn = NULL;
961 1.3 jdolecek error = 0;
962 1.49 ad fd = 0;
963 1.49 ad
964 1.49 ad newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
965 1.49 ad
966 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
967 1.3 jdolecek kfilter = kfilter_byfilter(kev->filter);
968 1.3 jdolecek if (kfilter == NULL || kfilter->filtops == NULL) {
969 1.3 jdolecek /* filter not found nor implemented */
970 1.49 ad rw_exit(&kqueue_filter_lock);
971 1.49 ad kmem_free(newkn, sizeof(*newkn));
972 1.1 lukem return (EINVAL);
973 1.1 lukem }
974 1.1 lukem
975 1.3 jdolecek /* search if knote already exists */
976 1.3 jdolecek if (kfilter->filtops->f_isfd) {
977 1.3 jdolecek /* monitoring a file descriptor */
978 1.87 christos /* validate descriptor */
979 1.88 christos if (kev->ident > INT_MAX
980 1.88 christos || (fp = fd_getfile(fd = kev->ident)) == NULL) {
981 1.49 ad rw_exit(&kqueue_filter_lock);
982 1.49 ad kmem_free(newkn, sizeof(*newkn));
983 1.49 ad return EBADF;
984 1.49 ad }
985 1.74 rmind mutex_enter(&fdp->fd_lock);
986 1.65 ad ff = fdp->fd_dt->dt_ff[fd];
987 1.49 ad if (fd <= fdp->fd_lastkqfile) {
988 1.49 ad SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
989 1.1 lukem if (kq == kn->kn_kq &&
990 1.1 lukem kev->filter == kn->kn_filter)
991 1.1 lukem break;
992 1.49 ad }
993 1.1 lukem }
994 1.1 lukem } else {
995 1.3 jdolecek /*
996 1.3 jdolecek * not monitoring a file descriptor, so
997 1.3 jdolecek * lookup knotes in internal hash table
998 1.3 jdolecek */
999 1.74 rmind mutex_enter(&fdp->fd_lock);
1000 1.1 lukem if (fdp->fd_knhashmask != 0) {
1001 1.1 lukem list = &fdp->fd_knhash[
1002 1.1 lukem KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1003 1.49 ad SLIST_FOREACH(kn, list, kn_link) {
1004 1.1 lukem if (kev->ident == kn->kn_id &&
1005 1.1 lukem kq == kn->kn_kq &&
1006 1.1 lukem kev->filter == kn->kn_filter)
1007 1.1 lukem break;
1008 1.49 ad }
1009 1.1 lukem }
1010 1.1 lukem }
1011 1.1 lukem
1012 1.1 lukem /*
1013 1.1 lukem * kn now contains the matching knote, or NULL if no match
1014 1.1 lukem */
1015 1.1 lukem if (kev->flags & EV_ADD) {
1016 1.1 lukem if (kn == NULL) {
1017 1.3 jdolecek /* create new knote */
1018 1.49 ad kn = newkn;
1019 1.49 ad newkn = NULL;
1020 1.49 ad kn->kn_obj = fp;
1021 1.79 christos kn->kn_id = kev->ident;
1022 1.1 lukem kn->kn_kq = kq;
1023 1.3 jdolecek kn->kn_fop = kfilter->filtops;
1024 1.49 ad kn->kn_kfilter = kfilter;
1025 1.49 ad kn->kn_sfflags = kev->fflags;
1026 1.49 ad kn->kn_sdata = kev->data;
1027 1.49 ad kev->fflags = 0;
1028 1.49 ad kev->data = 0;
1029 1.49 ad kn->kn_kevent = *kev;
1030 1.1 lukem
1031 1.85 christos KASSERT(kn->kn_fop != NULL);
1032 1.1 lukem /*
1033 1.1 lukem * apply reference count to knote structure, and
1034 1.1 lukem * do not release it at the end of this routine.
1035 1.1 lukem */
1036 1.1 lukem fp = NULL;
1037 1.1 lukem
1038 1.49 ad if (!kn->kn_fop->f_isfd) {
1039 1.49 ad /*
1040 1.49 ad * If knote is not on an fd, store on
1041 1.49 ad * internal hash table.
1042 1.49 ad */
1043 1.49 ad if (fdp->fd_knhashmask == 0) {
1044 1.49 ad /* XXXAD can block with fd_lock held */
1045 1.49 ad fdp->fd_knhash = hashinit(KN_HASHSIZE,
1046 1.59 ad HASH_LIST, true,
1047 1.49 ad &fdp->fd_knhashmask);
1048 1.49 ad }
1049 1.49 ad list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1050 1.49 ad fdp->fd_knhashmask)];
1051 1.49 ad } else {
1052 1.49 ad /* Otherwise, knote is on an fd. */
1053 1.49 ad list = (struct klist *)
1054 1.65 ad &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1055 1.49 ad if ((int)kn->kn_id > fdp->fd_lastkqfile)
1056 1.49 ad fdp->fd_lastkqfile = kn->kn_id;
1057 1.49 ad }
1058 1.49 ad SLIST_INSERT_HEAD(list, kn, kn_link);
1059 1.1 lukem
1060 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1061 1.49 ad error = (*kfilter->filtops->f_attach)(kn);
1062 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1063 1.49 ad if (error != 0) {
1064 1.79 christos #ifdef DIAGNOSTIC
1065 1.92 christos printf("%s: event type %d not supported for "
1066 1.92 christos "file type %d (error %d)\n", __func__,
1067 1.92 christos kn->kn_filter, kn->kn_obj ?
1068 1.91 christos ((file_t *)kn->kn_obj)->f_type : -1, error);
1069 1.79 christos #endif
1070 1.49 ad /* knote_detach() drops fdp->fd_lock */
1071 1.49 ad knote_detach(kn, fdp, false);
1072 1.1 lukem goto done;
1073 1.1 lukem }
1074 1.49 ad atomic_inc_uint(&kfilter->refcnt);
1075 1.1 lukem } else {
1076 1.1 lukem /*
1077 1.1 lukem * The user may change some filter values after the
1078 1.22 perry * initial EV_ADD, but doing so will not reset any
1079 1.1 lukem * filter which have already been triggered.
1080 1.1 lukem */
1081 1.1 lukem kn->kn_sfflags = kev->fflags;
1082 1.1 lukem kn->kn_sdata = kev->data;
1083 1.1 lukem kn->kn_kevent.udata = kev->udata;
1084 1.1 lukem }
1085 1.79 christos /*
1086 1.79 christos * We can get here if we are trying to attach
1087 1.79 christos * an event to a file descriptor that does not
1088 1.79 christos * support events, and the attach routine is
1089 1.79 christos * broken and does not return an error.
1090 1.79 christos */
1091 1.85 christos KASSERT(kn->kn_fop != NULL);
1092 1.79 christos KASSERT(kn->kn_fop->f_event != NULL);
1093 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1094 1.49 ad rv = (*kn->kn_fop->f_event)(kn, 0);
1095 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1096 1.49 ad if (rv)
1097 1.49 ad knote_activate(kn);
1098 1.49 ad } else {
1099 1.49 ad if (kn == NULL) {
1100 1.49 ad error = ENOENT;
1101 1.49 ad mutex_exit(&fdp->fd_lock);
1102 1.49 ad goto done;
1103 1.49 ad }
1104 1.49 ad if (kev->flags & EV_DELETE) {
1105 1.49 ad /* knote_detach() drops fdp->fd_lock */
1106 1.49 ad knote_detach(kn, fdp, true);
1107 1.49 ad goto done;
1108 1.49 ad }
1109 1.1 lukem }
1110 1.1 lukem
1111 1.3 jdolecek /* disable knote */
1112 1.49 ad if ((kev->flags & EV_DISABLE)) {
1113 1.49 ad mutex_spin_enter(&kq->kq_lock);
1114 1.49 ad if ((kn->kn_status & KN_DISABLED) == 0)
1115 1.49 ad kn->kn_status |= KN_DISABLED;
1116 1.49 ad mutex_spin_exit(&kq->kq_lock);
1117 1.1 lukem }
1118 1.1 lukem
1119 1.3 jdolecek /* enable knote */
1120 1.49 ad if ((kev->flags & EV_ENABLE)) {
1121 1.49 ad knote_enqueue(kn);
1122 1.1 lukem }
1123 1.49 ad mutex_exit(&fdp->fd_lock);
1124 1.3 jdolecek done:
1125 1.49 ad rw_exit(&kqueue_filter_lock);
1126 1.49 ad if (newkn != NULL)
1127 1.49 ad kmem_free(newkn, sizeof(*newkn));
1128 1.1 lukem if (fp != NULL)
1129 1.49 ad fd_putfile(fd);
1130 1.1 lukem return (error);
1131 1.1 lukem }
1132 1.1 lukem
1133 1.52 yamt #if defined(DEBUG)
1134 1.94 christos #define KN_FMT(buf, kn) \
1135 1.94 christos (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1136 1.94 christos
1137 1.52 yamt static void
1138 1.94 christos kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1139 1.52 yamt {
1140 1.52 yamt const struct knote *kn;
1141 1.52 yamt int count;
1142 1.52 yamt int nmarker;
1143 1.94 christos char buf[128];
1144 1.52 yamt
1145 1.52 yamt KASSERT(mutex_owned(&kq->kq_lock));
1146 1.52 yamt KASSERT(kq->kq_count >= 0);
1147 1.52 yamt
1148 1.52 yamt count = 0;
1149 1.52 yamt nmarker = 0;
1150 1.52 yamt TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1151 1.52 yamt if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1152 1.94 christos panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1153 1.94 christos func, line, kq, kn, KN_FMT(buf, kn));
1154 1.52 yamt }
1155 1.52 yamt if ((kn->kn_status & KN_MARKER) == 0) {
1156 1.52 yamt if (kn->kn_kq != kq) {
1157 1.94 christos panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1158 1.94 christos func, line, kq, kn, kn->kn_kq,
1159 1.94 christos KN_FMT(buf, kn));
1160 1.52 yamt }
1161 1.52 yamt if ((kn->kn_status & KN_ACTIVE) == 0) {
1162 1.94 christos panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1163 1.94 christos func, line, kq, kn, KN_FMT(buf, kn));
1164 1.52 yamt }
1165 1.52 yamt count++;
1166 1.52 yamt if (count > kq->kq_count) {
1167 1.52 yamt goto bad;
1168 1.52 yamt }
1169 1.52 yamt } else {
1170 1.52 yamt nmarker++;
1171 1.52 yamt #if 0
1172 1.52 yamt if (nmarker > 10000) {
1173 1.94 christos panic("%s,%zu: kq=%p too many markers: "
1174 1.94 christos "%d != %d, nmarker=%d",
1175 1.94 christos func, line, kq, kq->kq_count, count,
1176 1.94 christos nmarker);
1177 1.52 yamt }
1178 1.52 yamt #endif
1179 1.52 yamt }
1180 1.52 yamt }
1181 1.52 yamt if (kq->kq_count != count) {
1182 1.52 yamt bad:
1183 1.94 christos panic("%s,%zu: kq=%p kq->kq_count(%d) != count(%d), nmarker=%d",
1184 1.94 christos func, line, kq, kq->kq_count, count, nmarker);
1185 1.52 yamt }
1186 1.52 yamt }
1187 1.94 christos #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1188 1.52 yamt #else /* defined(DEBUG) */
1189 1.52 yamt #define kq_check(a) /* nothing */
1190 1.52 yamt #endif /* defined(DEBUG) */
1191 1.52 yamt
1192 1.3 jdolecek /*
1193 1.3 jdolecek * Scan through the list of events on fp (for a maximum of maxevents),
1194 1.3 jdolecek * returning the results in to ulistp. Timeout is determined by tsp; if
1195 1.3 jdolecek * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1196 1.3 jdolecek * as appropriate.
1197 1.3 jdolecek */
1198 1.1 lukem static int
1199 1.49 ad kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1200 1.49 ad const struct timespec *tsp, register_t *retval,
1201 1.49 ad const struct kevent_ops *keops, struct kevent *kevbuf,
1202 1.49 ad size_t kevcnt)
1203 1.1 lukem {
1204 1.3 jdolecek struct kqueue *kq;
1205 1.3 jdolecek struct kevent *kevp;
1206 1.62 christos struct timespec ats, sleepts;
1207 1.85 christos struct knote *kn, *marker, morker;
1208 1.24 cube size_t count, nkev, nevents;
1209 1.49 ad int timeout, error, rv;
1210 1.49 ad filedesc_t *fdp;
1211 1.1 lukem
1212 1.49 ad fdp = curlwp->l_fd;
1213 1.82 matt kq = fp->f_kqueue;
1214 1.1 lukem count = maxevents;
1215 1.24 cube nkev = nevents = error = 0;
1216 1.49 ad if (count == 0) {
1217 1.49 ad *retval = 0;
1218 1.49 ad return 0;
1219 1.49 ad }
1220 1.1 lukem
1221 1.9 jdolecek if (tsp) { /* timeout supplied */
1222 1.63 christos ats = *tsp;
1223 1.62 christos if (inittimeleft(&ats, &sleepts) == -1) {
1224 1.49 ad *retval = maxevents;
1225 1.49 ad return EINVAL;
1226 1.1 lukem }
1227 1.62 christos timeout = tstohz(&ats);
1228 1.9 jdolecek if (timeout <= 0)
1229 1.29 kardel timeout = -1; /* do poll */
1230 1.1 lukem } else {
1231 1.9 jdolecek /* no timeout, wait forever */
1232 1.1 lukem timeout = 0;
1233 1.93 riastrad }
1234 1.1 lukem
1235 1.85 christos memset(&morker, 0, sizeof(morker));
1236 1.85 christos marker = &morker;
1237 1.49 ad marker->kn_status = KN_MARKER;
1238 1.49 ad mutex_spin_enter(&kq->kq_lock);
1239 1.3 jdolecek retry:
1240 1.49 ad kevp = kevbuf;
1241 1.1 lukem if (kq->kq_count == 0) {
1242 1.49 ad if (timeout >= 0) {
1243 1.49 ad error = cv_timedwait_sig(&kq->kq_cv,
1244 1.49 ad &kq->kq_lock, timeout);
1245 1.49 ad if (error == 0) {
1246 1.49 ad if (tsp == NULL || (timeout =
1247 1.62 christos gettimeleft(&ats, &sleepts)) > 0)
1248 1.49 ad goto retry;
1249 1.49 ad } else {
1250 1.49 ad /* don't restart after signals... */
1251 1.49 ad if (error == ERESTART)
1252 1.49 ad error = EINTR;
1253 1.49 ad if (error == EWOULDBLOCK)
1254 1.49 ad error = 0;
1255 1.49 ad }
1256 1.1 lukem }
1257 1.92 christos mutex_spin_exit(&kq->kq_lock);
1258 1.49 ad } else {
1259 1.49 ad /* mark end of knote list */
1260 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1261 1.1 lukem
1262 1.92 christos /*
1263 1.92 christos * Acquire the fdp->fd_lock interlock to avoid races with
1264 1.92 christos * file creation/destruction from other threads.
1265 1.92 christos */
1266 1.92 christos mutex_spin_exit(&kq->kq_lock);
1267 1.92 christos mutex_enter(&fdp->fd_lock);
1268 1.92 christos mutex_spin_enter(&kq->kq_lock);
1269 1.92 christos
1270 1.49 ad while (count != 0) {
1271 1.49 ad kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1272 1.51 yamt while ((kn->kn_status & KN_MARKER) != 0) {
1273 1.51 yamt if (kn == marker) {
1274 1.51 yamt /* it's our marker, stop */
1275 1.51 yamt TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1276 1.51 yamt if (count < maxevents || (tsp != NULL &&
1277 1.62 christos (timeout = gettimeleft(&ats,
1278 1.62 christos &sleepts)) <= 0))
1279 1.51 yamt goto done;
1280 1.92 christos mutex_exit(&fdp->fd_lock);
1281 1.51 yamt goto retry;
1282 1.51 yamt }
1283 1.49 ad /* someone else's marker. */
1284 1.49 ad kn = TAILQ_NEXT(kn, kn_tqe);
1285 1.49 ad }
1286 1.52 yamt kq_check(kq);
1287 1.85 christos kq->kq_count--;
1288 1.49 ad TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1289 1.1 lukem kn->kn_status &= ~KN_QUEUED;
1290 1.85 christos kn->kn_status |= KN_BUSY;
1291 1.52 yamt kq_check(kq);
1292 1.49 ad if (kn->kn_status & KN_DISABLED) {
1293 1.85 christos kn->kn_status &= ~KN_BUSY;
1294 1.49 ad /* don't want disabled events */
1295 1.49 ad continue;
1296 1.49 ad }
1297 1.49 ad if ((kn->kn_flags & EV_ONESHOT) == 0) {
1298 1.49 ad mutex_spin_exit(&kq->kq_lock);
1299 1.85 christos KASSERT(kn->kn_fop != NULL);
1300 1.84 christos KASSERT(kn->kn_fop->f_event != NULL);
1301 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1302 1.92 christos KASSERT(mutex_owned(&fdp->fd_lock));
1303 1.49 ad rv = (*kn->kn_fop->f_event)(kn, 0);
1304 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1305 1.53 ad mutex_spin_enter(&kq->kq_lock);
1306 1.53 ad /* Re-poll if note was re-enqueued. */
1307 1.85 christos if ((kn->kn_status & KN_QUEUED) != 0) {
1308 1.85 christos kn->kn_status &= ~KN_BUSY;
1309 1.53 ad continue;
1310 1.85 christos }
1311 1.49 ad if (rv == 0) {
1312 1.49 ad /*
1313 1.49 ad * non-ONESHOT event that hasn't
1314 1.49 ad * triggered again, so de-queue.
1315 1.49 ad */
1316 1.85 christos kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1317 1.49 ad continue;
1318 1.49 ad }
1319 1.49 ad }
1320 1.53 ad /* XXXAD should be got from f_event if !oneshot. */
1321 1.49 ad *kevp++ = kn->kn_kevent;
1322 1.49 ad nkev++;
1323 1.49 ad if (kn->kn_flags & EV_ONESHOT) {
1324 1.49 ad /* delete ONESHOT events after retrieval */
1325 1.92 christos kn->kn_status &= ~KN_BUSY;
1326 1.49 ad mutex_spin_exit(&kq->kq_lock);
1327 1.92 christos knote_detach(kn, fdp, true);
1328 1.49 ad mutex_enter(&fdp->fd_lock);
1329 1.49 ad mutex_spin_enter(&kq->kq_lock);
1330 1.49 ad } else if (kn->kn_flags & EV_CLEAR) {
1331 1.49 ad /* clear state after retrieval */
1332 1.49 ad kn->kn_data = 0;
1333 1.49 ad kn->kn_fflags = 0;
1334 1.85 christos kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1335 1.84 christos } else if (kn->kn_flags & EV_DISPATCH) {
1336 1.84 christos kn->kn_status |= KN_DISABLED;
1337 1.85 christos kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1338 1.49 ad } else {
1339 1.49 ad /* add event back on list */
1340 1.52 yamt kq_check(kq);
1341 1.85 christos kn->kn_status |= KN_QUEUED;
1342 1.85 christos kn->kn_status &= ~KN_BUSY;
1343 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1344 1.49 ad kq->kq_count++;
1345 1.52 yamt kq_check(kq);
1346 1.49 ad }
1347 1.49 ad if (nkev == kevcnt) {
1348 1.49 ad /* do copyouts in kevcnt chunks */
1349 1.49 ad mutex_spin_exit(&kq->kq_lock);
1350 1.92 christos mutex_exit(&fdp->fd_lock);
1351 1.50 yamt error = (*keops->keo_put_events)
1352 1.50 yamt (keops->keo_private,
1353 1.49 ad kevbuf, ulistp, nevents, nkev);
1354 1.92 christos mutex_enter(&fdp->fd_lock);
1355 1.49 ad mutex_spin_enter(&kq->kq_lock);
1356 1.49 ad nevents += nkev;
1357 1.49 ad nkev = 0;
1358 1.49 ad kevp = kevbuf;
1359 1.49 ad }
1360 1.49 ad count--;
1361 1.49 ad if (error != 0 || count == 0) {
1362 1.49 ad /* remove marker */
1363 1.49 ad TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1364 1.1 lukem break;
1365 1.49 ad }
1366 1.1 lukem }
1367 1.92 christos done:
1368 1.92 christos mutex_spin_exit(&kq->kq_lock);
1369 1.92 christos mutex_exit(&fdp->fd_lock);
1370 1.1 lukem }
1371 1.49 ad if (nkev != 0) {
1372 1.3 jdolecek /* copyout remaining events */
1373 1.24 cube error = (*keops->keo_put_events)(keops->keo_private,
1374 1.49 ad kevbuf, ulistp, nevents, nkev);
1375 1.49 ad }
1376 1.3 jdolecek *retval = maxevents - count;
1377 1.3 jdolecek
1378 1.49 ad return error;
1379 1.1 lukem }
1380 1.1 lukem
1381 1.1 lukem /*
1382 1.49 ad * fileops ioctl method for a kqueue descriptor.
1383 1.3 jdolecek *
1384 1.3 jdolecek * Two ioctls are currently supported. They both use struct kfilter_mapping:
1385 1.3 jdolecek * KFILTER_BYNAME find name for filter, and return result in
1386 1.3 jdolecek * name, which is of size len.
1387 1.3 jdolecek * KFILTER_BYFILTER find filter for name. len is ignored.
1388 1.3 jdolecek */
1389 1.1 lukem /*ARGSUSED*/
1390 1.1 lukem static int
1391 1.49 ad kqueue_ioctl(file_t *fp, u_long com, void *data)
1392 1.1 lukem {
1393 1.3 jdolecek struct kfilter_mapping *km;
1394 1.3 jdolecek const struct kfilter *kfilter;
1395 1.3 jdolecek char *name;
1396 1.3 jdolecek int error;
1397 1.3 jdolecek
1398 1.49 ad km = data;
1399 1.3 jdolecek error = 0;
1400 1.49 ad name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1401 1.3 jdolecek
1402 1.3 jdolecek switch (com) {
1403 1.3 jdolecek case KFILTER_BYFILTER: /* convert filter -> name */
1404 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
1405 1.3 jdolecek kfilter = kfilter_byfilter(km->filter);
1406 1.49 ad if (kfilter != NULL) {
1407 1.49 ad strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1408 1.49 ad rw_exit(&kqueue_filter_lock);
1409 1.49 ad error = copyoutstr(name, km->name, km->len, NULL);
1410 1.49 ad } else {
1411 1.49 ad rw_exit(&kqueue_filter_lock);
1412 1.3 jdolecek error = ENOENT;
1413 1.49 ad }
1414 1.3 jdolecek break;
1415 1.3 jdolecek
1416 1.3 jdolecek case KFILTER_BYNAME: /* convert name -> filter */
1417 1.3 jdolecek error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1418 1.3 jdolecek if (error) {
1419 1.3 jdolecek break;
1420 1.3 jdolecek }
1421 1.49 ad rw_enter(&kqueue_filter_lock, RW_READER);
1422 1.3 jdolecek kfilter = kfilter_byname(name);
1423 1.3 jdolecek if (kfilter != NULL)
1424 1.3 jdolecek km->filter = kfilter->filter;
1425 1.3 jdolecek else
1426 1.3 jdolecek error = ENOENT;
1427 1.49 ad rw_exit(&kqueue_filter_lock);
1428 1.3 jdolecek break;
1429 1.3 jdolecek
1430 1.3 jdolecek default:
1431 1.3 jdolecek error = ENOTTY;
1432 1.49 ad break;
1433 1.3 jdolecek
1434 1.3 jdolecek }
1435 1.49 ad kmem_free(name, KFILTER_MAXNAME);
1436 1.3 jdolecek return (error);
1437 1.3 jdolecek }
1438 1.3 jdolecek
1439 1.3 jdolecek /*
1440 1.49 ad * fileops fcntl method for a kqueue descriptor.
1441 1.3 jdolecek */
1442 1.3 jdolecek static int
1443 1.49 ad kqueue_fcntl(file_t *fp, u_int com, void *data)
1444 1.3 jdolecek {
1445 1.3 jdolecek
1446 1.1 lukem return (ENOTTY);
1447 1.1 lukem }
1448 1.1 lukem
1449 1.3 jdolecek /*
1450 1.49 ad * fileops poll method for a kqueue descriptor.
1451 1.3 jdolecek * Determine if kqueue has events pending.
1452 1.3 jdolecek */
1453 1.1 lukem static int
1454 1.49 ad kqueue_poll(file_t *fp, int events)
1455 1.1 lukem {
1456 1.3 jdolecek struct kqueue *kq;
1457 1.3 jdolecek int revents;
1458 1.3 jdolecek
1459 1.82 matt kq = fp->f_kqueue;
1460 1.49 ad
1461 1.3 jdolecek revents = 0;
1462 1.3 jdolecek if (events & (POLLIN | POLLRDNORM)) {
1463 1.49 ad mutex_spin_enter(&kq->kq_lock);
1464 1.49 ad if (kq->kq_count != 0) {
1465 1.3 jdolecek revents |= events & (POLLIN | POLLRDNORM);
1466 1.1 lukem } else {
1467 1.49 ad selrecord(curlwp, &kq->kq_sel);
1468 1.1 lukem }
1469 1.52 yamt kq_check(kq);
1470 1.49 ad mutex_spin_exit(&kq->kq_lock);
1471 1.1 lukem }
1472 1.49 ad
1473 1.49 ad return revents;
1474 1.1 lukem }
1475 1.1 lukem
1476 1.3 jdolecek /*
1477 1.49 ad * fileops stat method for a kqueue descriptor.
1478 1.3 jdolecek * Returns dummy info, with st_size being number of events pending.
1479 1.3 jdolecek */
1480 1.1 lukem static int
1481 1.49 ad kqueue_stat(file_t *fp, struct stat *st)
1482 1.1 lukem {
1483 1.49 ad struct kqueue *kq;
1484 1.49 ad
1485 1.82 matt kq = fp->f_kqueue;
1486 1.1 lukem
1487 1.49 ad memset(st, 0, sizeof(*st));
1488 1.1 lukem st->st_size = kq->kq_count;
1489 1.1 lukem st->st_blksize = sizeof(struct kevent);
1490 1.1 lukem st->st_mode = S_IFIFO;
1491 1.49 ad
1492 1.49 ad return 0;
1493 1.49 ad }
1494 1.49 ad
1495 1.49 ad static void
1496 1.49 ad kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1497 1.49 ad {
1498 1.49 ad struct knote *kn;
1499 1.49 ad filedesc_t *fdp;
1500 1.49 ad
1501 1.49 ad fdp = kq->kq_fdp;
1502 1.49 ad
1503 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
1504 1.49 ad
1505 1.49 ad for (kn = SLIST_FIRST(list); kn != NULL;) {
1506 1.49 ad if (kq != kn->kn_kq) {
1507 1.49 ad kn = SLIST_NEXT(kn, kn_link);
1508 1.49 ad continue;
1509 1.49 ad }
1510 1.49 ad knote_detach(kn, fdp, true);
1511 1.49 ad mutex_enter(&fdp->fd_lock);
1512 1.49 ad kn = SLIST_FIRST(list);
1513 1.49 ad }
1514 1.1 lukem }
1515 1.1 lukem
1516 1.49 ad
1517 1.3 jdolecek /*
1518 1.49 ad * fileops close method for a kqueue descriptor.
1519 1.3 jdolecek */
1520 1.1 lukem static int
1521 1.49 ad kqueue_close(file_t *fp)
1522 1.1 lukem {
1523 1.49 ad struct kqueue *kq;
1524 1.49 ad filedesc_t *fdp;
1525 1.49 ad fdfile_t *ff;
1526 1.49 ad int i;
1527 1.49 ad
1528 1.82 matt kq = fp->f_kqueue;
1529 1.82 matt fp->f_kqueue = NULL;
1530 1.79 christos fp->f_type = 0;
1531 1.49 ad fdp = curlwp->l_fd;
1532 1.1 lukem
1533 1.49 ad mutex_enter(&fdp->fd_lock);
1534 1.49 ad for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1535 1.65 ad if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1536 1.49 ad continue;
1537 1.49 ad kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1538 1.1 lukem }
1539 1.1 lukem if (fdp->fd_knhashmask != 0) {
1540 1.1 lukem for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1541 1.49 ad kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1542 1.1 lukem }
1543 1.1 lukem }
1544 1.49 ad mutex_exit(&fdp->fd_lock);
1545 1.49 ad
1546 1.49 ad KASSERT(kq->kq_count == 0);
1547 1.49 ad mutex_destroy(&kq->kq_lock);
1548 1.49 ad cv_destroy(&kq->kq_cv);
1549 1.48 rmind seldestroy(&kq->kq_sel);
1550 1.49 ad kmem_free(kq, sizeof(*kq));
1551 1.1 lukem
1552 1.1 lukem return (0);
1553 1.1 lukem }
1554 1.1 lukem
1555 1.3 jdolecek /*
1556 1.3 jdolecek * struct fileops kqfilter method for a kqueue descriptor.
1557 1.3 jdolecek * Event triggered when monitored kqueue changes.
1558 1.3 jdolecek */
1559 1.3 jdolecek static int
1560 1.49 ad kqueue_kqfilter(file_t *fp, struct knote *kn)
1561 1.3 jdolecek {
1562 1.3 jdolecek struct kqueue *kq;
1563 1.49 ad
1564 1.82 matt kq = ((file_t *)kn->kn_obj)->f_kqueue;
1565 1.49 ad
1566 1.49 ad KASSERT(fp == kn->kn_obj);
1567 1.3 jdolecek
1568 1.3 jdolecek if (kn->kn_filter != EVFILT_READ)
1569 1.49 ad return 1;
1570 1.49 ad
1571 1.3 jdolecek kn->kn_fop = &kqread_filtops;
1572 1.49 ad mutex_enter(&kq->kq_lock);
1573 1.5 christos SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1574 1.49 ad mutex_exit(&kq->kq_lock);
1575 1.49 ad
1576 1.49 ad return 0;
1577 1.3 jdolecek }
1578 1.3 jdolecek
1579 1.3 jdolecek
1580 1.3 jdolecek /*
1581 1.49 ad * Walk down a list of knotes, activating them if their event has
1582 1.49 ad * triggered. The caller's object lock (e.g. device driver lock)
1583 1.49 ad * must be held.
1584 1.1 lukem */
1585 1.1 lukem void
1586 1.1 lukem knote(struct klist *list, long hint)
1587 1.1 lukem {
1588 1.71 drochner struct knote *kn, *tmpkn;
1589 1.1 lukem
1590 1.71 drochner SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1591 1.85 christos KASSERT(kn->kn_fop != NULL);
1592 1.84 christos KASSERT(kn->kn_fop->f_event != NULL);
1593 1.49 ad if ((*kn->kn_fop->f_event)(kn, hint))
1594 1.49 ad knote_activate(kn);
1595 1.49 ad }
1596 1.1 lukem }
1597 1.1 lukem
1598 1.1 lukem /*
1599 1.49 ad * Remove all knotes referencing a specified fd
1600 1.1 lukem */
1601 1.1 lukem void
1602 1.49 ad knote_fdclose(int fd)
1603 1.1 lukem {
1604 1.49 ad struct klist *list;
1605 1.1 lukem struct knote *kn;
1606 1.49 ad filedesc_t *fdp;
1607 1.1 lukem
1608 1.49 ad fdp = curlwp->l_fd;
1609 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1610 1.49 ad mutex_enter(&fdp->fd_lock);
1611 1.1 lukem while ((kn = SLIST_FIRST(list)) != NULL) {
1612 1.49 ad knote_detach(kn, fdp, true);
1613 1.49 ad mutex_enter(&fdp->fd_lock);
1614 1.1 lukem }
1615 1.49 ad mutex_exit(&fdp->fd_lock);
1616 1.1 lukem }
1617 1.1 lukem
1618 1.1 lukem /*
1619 1.49 ad * Drop knote. Called with fdp->fd_lock held, and will drop before
1620 1.49 ad * returning.
1621 1.3 jdolecek */
1622 1.1 lukem static void
1623 1.49 ad knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1624 1.1 lukem {
1625 1.49 ad struct klist *list;
1626 1.53 ad struct kqueue *kq;
1627 1.53 ad
1628 1.53 ad kq = kn->kn_kq;
1629 1.1 lukem
1630 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
1631 1.49 ad KASSERT(mutex_owned(&fdp->fd_lock));
1632 1.3 jdolecek
1633 1.85 christos KASSERT(kn->kn_fop != NULL);
1634 1.53 ad /* Remove from monitored object. */
1635 1.49 ad if (dofop) {
1636 1.85 christos KASSERT(kn->kn_fop->f_detach != NULL);
1637 1.49 ad KERNEL_LOCK(1, NULL); /* XXXSMP */
1638 1.49 ad (*kn->kn_fop->f_detach)(kn);
1639 1.49 ad KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1640 1.1 lukem }
1641 1.3 jdolecek
1642 1.53 ad /* Remove from descriptor table. */
1643 1.1 lukem if (kn->kn_fop->f_isfd)
1644 1.65 ad list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1645 1.1 lukem else
1646 1.1 lukem list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1647 1.1 lukem
1648 1.1 lukem SLIST_REMOVE(list, kn, knote, kn_link);
1649 1.53 ad
1650 1.53 ad /* Remove from kqueue. */
1651 1.85 christos again:
1652 1.53 ad mutex_spin_enter(&kq->kq_lock);
1653 1.53 ad if ((kn->kn_status & KN_QUEUED) != 0) {
1654 1.53 ad kq_check(kq);
1655 1.85 christos kq->kq_count--;
1656 1.53 ad TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1657 1.53 ad kn->kn_status &= ~KN_QUEUED;
1658 1.53 ad kq_check(kq);
1659 1.85 christos } else if (kn->kn_status & KN_BUSY) {
1660 1.85 christos mutex_spin_exit(&kq->kq_lock);
1661 1.85 christos goto again;
1662 1.53 ad }
1663 1.53 ad mutex_spin_exit(&kq->kq_lock);
1664 1.53 ad
1665 1.49 ad mutex_exit(&fdp->fd_lock);
1666 1.93 riastrad if (kn->kn_fop->f_isfd)
1667 1.49 ad fd_putfile(kn->kn_id);
1668 1.49 ad atomic_dec_uint(&kn->kn_kfilter->refcnt);
1669 1.49 ad kmem_free(kn, sizeof(*kn));
1670 1.1 lukem }
1671 1.1 lukem
1672 1.3 jdolecek /*
1673 1.3 jdolecek * Queue new event for knote.
1674 1.3 jdolecek */
1675 1.1 lukem static void
1676 1.1 lukem knote_enqueue(struct knote *kn)
1677 1.1 lukem {
1678 1.49 ad struct kqueue *kq;
1679 1.49 ad
1680 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
1681 1.1 lukem
1682 1.3 jdolecek kq = kn->kn_kq;
1683 1.1 lukem
1684 1.49 ad mutex_spin_enter(&kq->kq_lock);
1685 1.49 ad if ((kn->kn_status & KN_DISABLED) != 0) {
1686 1.49 ad kn->kn_status &= ~KN_DISABLED;
1687 1.49 ad }
1688 1.49 ad if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1689 1.52 yamt kq_check(kq);
1690 1.85 christos kn->kn_status |= KN_QUEUED;
1691 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1692 1.49 ad kq->kq_count++;
1693 1.52 yamt kq_check(kq);
1694 1.49 ad cv_broadcast(&kq->kq_cv);
1695 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1696 1.49 ad }
1697 1.49 ad mutex_spin_exit(&kq->kq_lock);
1698 1.1 lukem }
1699 1.49 ad /*
1700 1.49 ad * Queue new event for knote.
1701 1.49 ad */
1702 1.49 ad static void
1703 1.49 ad knote_activate(struct knote *kn)
1704 1.49 ad {
1705 1.49 ad struct kqueue *kq;
1706 1.49 ad
1707 1.49 ad KASSERT((kn->kn_status & KN_MARKER) == 0);
1708 1.1 lukem
1709 1.3 jdolecek kq = kn->kn_kq;
1710 1.12 pk
1711 1.49 ad mutex_spin_enter(&kq->kq_lock);
1712 1.49 ad kn->kn_status |= KN_ACTIVE;
1713 1.49 ad if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1714 1.52 yamt kq_check(kq);
1715 1.85 christos kn->kn_status |= KN_QUEUED;
1716 1.49 ad TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1717 1.49 ad kq->kq_count++;
1718 1.52 yamt kq_check(kq);
1719 1.49 ad cv_broadcast(&kq->kq_cv);
1720 1.49 ad selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1721 1.49 ad }
1722 1.49 ad mutex_spin_exit(&kq->kq_lock);
1723 1.1 lukem }
1724