kern_event.c revision 1.1.1.1.2.12 1 /* $NetBSD: kern_event.c,v 1.1.1.1.2.12 2002/04/09 06:19:52 jdolecek Exp $ */
2 /*-
3 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/fcntl.h>
38 #include <sys/select.h>
39 #include <sys/queue.h>
40 #include <sys/event.h>
41 #include <sys/eventvar.h>
42 #include <sys/poll.h>
43 #include <sys/pool.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/stat.h>
48 #include <sys/uio.h>
49 #include <sys/mount.h>
50 #include <sys/filedesc.h>
51 #include <sys/syscallargs.h>
52
53 static int kqueue_scan(struct file *fp, int maxevents,
54 struct kevent *ulistp, const struct timespec *timeout,
55 struct proc *p, register_t *retval);
56 static void kqueue_wakeup(struct kqueue *kq);
57
58 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
59 struct ucred *cred, int flags);
60 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
61 struct ucred *cred, int flags);
62 static int kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
63 struct proc *p);
64 static int kqueue_fcntl(struct file *fp, u_int com, caddr_t data,
65 struct proc *p);
66 static int kqueue_poll(struct file *fp, int events, struct proc *p);
67 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
68 static int kqueue_stat(struct file *fp, struct stat *sp, struct proc *p);
69 static int kqueue_close(struct file *fp, struct proc *p);
70
71 static struct fileops kqueueops = {
72 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
73 kqueue_stat, kqueue_close, kqueue_kqfilter
74 };
75
76 static void knote_attach(struct knote *kn, struct filedesc *fdp);
77 static void knote_drop(struct knote *kn, struct proc *p);
78 static void knote_enqueue(struct knote *kn);
79 static void knote_dequeue(struct knote *kn);
80
81 static void filt_kqdetach(struct knote *kn);
82 static int filt_kqueue(struct knote *kn, long hint);
83 static int filt_procattach(struct knote *kn);
84 static void filt_procdetach(struct knote *kn);
85 static int filt_proc(struct knote *kn, long hint);
86 static int filt_fileattach(struct knote *kn);
87
88 static const struct filterops kqread_filtops =
89 { 1, NULL, filt_kqdetach, filt_kqueue };
90 static const struct filterops proc_filtops =
91 { 0, filt_procattach, filt_procdetach, filt_proc };
92 static const struct filterops file_filtops =
93 { 1, filt_fileattach, NULL, NULL };
94
95 struct pool kqueue_pool;
96 struct pool knote_pool;
97
98 #define KNOTE_ACTIVATE(kn) \
99 do { \
100 kn->kn_status |= KN_ACTIVE; \
101 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
102 knote_enqueue(kn); \
103 } while(0)
104
105 #define KN_HASHSIZE 64 /* XXX should be tunable */
106 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
107
108 extern const struct filterops sig_filtops;
109
110 /*
111 * Table for for all system-defined filters.
112 * These should be listed in the numeric order of the EVFILT_* defines.
113 * If filtops is NULL, the filter isn't implemented in NetBSD.
114 * End of list is when name is NULL.
115 */
116 struct kfilter {
117 const char *name; /* name of filter */
118 uint32_t filter; /* id of filter */
119 const struct filterops *filtops;/* operations for filter */
120 };
121
122 /* System defined filters */
123 static const struct kfilter sys_kfilters[] = {
124 { "EVFILT_READ", EVFILT_READ, &file_filtops },
125 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
126 { "EVFILT_AIO", EVFILT_AIO, NULL },
127 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
128 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
129 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
130 { NULL, 0, NULL }, /* end of list */
131 };
132
133 /* User defined kfilters */
134 static struct kfilter *user_kfilters; /* array */
135 static int user_kfilterc; /* current offset */
136 static int user_kfiltermaxc; /* max size so far */
137
138 /*
139 * kqueue_init:
140 *
141 * Initialize the kqueue/knote facility.
142 */
143 void
144 kqueue_init(void)
145 {
146
147 pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl",
148 NULL);
149 pool_init(&knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl",
150 NULL);
151 }
152
153 /*
154 * Find kfilter entry by name, or NULL if not found.
155 */
156 static const struct kfilter *
157 kfilter_byname_sys(const char *name)
158 {
159 int i;
160
161 for (i = 0; sys_kfilters[i].name != NULL; i++) {
162 if (strcmp(name, sys_kfilters[i].name) == 0)
163 return (&sys_kfilters[i]);
164 }
165 return (NULL);
166 }
167
168 static struct kfilter *
169 kfilter_byname_user(const char *name)
170 {
171 int i;
172
173 for (i = 0; user_kfilters[i].name != NULL; i++) {
174 if (user_kfilters[i].name != '\0' &&
175 strcmp(name, user_kfilters[i].name) == 0)
176 return (&user_kfilters[i]);
177 }
178 return (NULL);
179 }
180
181 static const struct kfilter *
182 kfilter_byname(const char *name)
183 {
184 const struct kfilter *kfilter;
185
186 if ((kfilter = kfilter_byname_sys(name)) != NULL)
187 return (kfilter);
188
189 return (kfilter_byname_user(name));
190 }
191
192 /*
193 * Find kfilter entry by filter id, or NULL if not found.
194 * Assumes entries are indexed in filter id order, for speed.
195 */
196 static const struct kfilter *
197 kfilter_byfilter(uint32_t filter)
198 {
199 const struct kfilter *kfilter;
200
201 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
202 kfilter = &sys_kfilters[filter];
203 else if (user_kfilters != NULL &&
204 filter < EVFILT_SYSCOUNT + user_kfilterc)
205 /* it's a user filter */
206 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
207 else
208 return (NULL); /* out of range */
209 KASSERT(kfilter->filter == filter); /* sanity check! */
210 return (kfilter);
211 }
212
213 /*
214 * Register a new kfilter. Stores the entry in user_kfilters.
215 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
216 * If retfilter != NULL, the new filterid is returned in it.
217 */
218 int
219 kfilter_register(const char *name, const struct filterops *filtops,
220 int *retfilter)
221 {
222 struct kfilter *kfilter;
223 void *space;
224 int len;
225
226 if (name == NULL || name[0] == '\0' || filtops == NULL)
227 return (EINVAL); /* invalid args */
228 if (kfilter_byname(name) != NULL)
229 return (EEXIST); /* already exists */
230 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
231 return (EINVAL); /* too many */
232
233 /* check if need to grow user_kfilters */
234 if (user_kfilterc + 1 > user_kfiltermaxc) {
235 /*
236 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
237 * want to traverse user_kfilters as an array.
238 */
239 user_kfiltermaxc += KFILTER_EXTENT;
240 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
241 M_KEVENT, M_WAITOK);
242
243 /* copy existing user_kfilters */
244 if (user_kfilters != NULL)
245 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
246 user_kfilterc * sizeof(struct kfilter *));
247 /* zero new sections */
248 memset((caddr_t)kfilter +
249 user_kfilterc * sizeof(struct kfilter *), 0,
250 (user_kfiltermaxc - user_kfilterc) *
251 sizeof(struct kfilter *));
252 /* switch to new kfilter */
253 if (user_kfilters != NULL)
254 free(user_kfilters, M_KEVENT);
255 user_kfilters = kfilter;
256 }
257 len = strlen(name) + 1; /* copy name */
258 space = malloc(len, M_KEVENT, M_WAITOK);
259 memcpy(space, name, len);
260 user_kfilters[user_kfilterc].name = space;
261
262 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
263
264 len = sizeof(struct filterops); /* copy filtops */
265 space = malloc(len, M_KEVENT, M_WAITOK);
266 memcpy(space, filtops, len);
267 user_kfilters[user_kfilterc].filtops = space;
268
269 if (retfilter != NULL)
270 *retfilter = user_kfilters[user_kfilterc].filter;
271 user_kfilterc++; /* finally, increment count */
272 return (0);
273 }
274
275 /*
276 * Unregister a kfilter previously registered with kfilter_register.
277 * This retains the filter id, but clears the name and frees filtops (filter
278 * operations), so that the number isn't reused during a boot.
279 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
280 */
281 int
282 kfilter_unregister(const char *name)
283 {
284 struct kfilter *kfilter;
285
286 if (name == NULL || name[0] == '\0')
287 return (EINVAL); /* invalid name */
288
289 if (kfilter_byname_sys(name) != NULL)
290 return (EINVAL); /* can't detach system filters */
291
292 kfilter = kfilter_byname_user(name);
293 if (kfilter == NULL) /* not found */
294 return (ENOENT);
295
296 if (kfilter->name[0] != '\0') {
297 /* XXX Cast away const (but we know it's safe. */
298 free((void *) kfilter->name, M_KEVENT);
299 kfilter->name = ""; /* mark as `not implemented' */
300 }
301 if (kfilter->filtops != NULL) {
302 /* XXX Cast away const (but we know it's safe. */
303 free((void *) kfilter->filtops, M_KEVENT);
304 kfilter->filtops = NULL; /* mark as `not implemented' */
305 }
306 return (0);
307 }
308
309
310 /*
311 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
312 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
313 */
314 static int
315 filt_fileattach(struct knote *kn)
316 {
317 struct file *fp;
318
319 fp = kn->kn_fp;
320 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
321 }
322
323 /*
324 * Filter detach method for EVFILT_READ on kqueue descriptor.
325 */
326 static void
327 filt_kqdetach(struct knote *kn)
328 {
329 struct kqueue *kq;
330
331 kq = (struct kqueue *)kn->kn_fp->f_data;
332 SLIST_REMOVE(&kq->kq_sel.si_klist, kn, knote, kn_selnext);
333 }
334
335 /*
336 * Filter event method for EVFILT_READ on kqueue descriptor.
337 */
338 /*ARGSUSED*/
339 static int
340 filt_kqueue(struct knote *kn, long hint)
341 {
342 struct kqueue *kq;
343
344 kq = (struct kqueue *)kn->kn_fp->f_data;
345 kn->kn_data = kq->kq_count;
346 return (kn->kn_data > 0);
347 }
348
349 /*
350 * Filter attach method for EVFILT_PROC.
351 */
352 static int
353 filt_procattach(struct knote *kn)
354 {
355 struct proc *p;
356
357 p = pfind(kn->kn_id);
358 if (p == NULL)
359 return (ESRCH);
360
361 kn->kn_ptr.p_proc = p;
362 kn->kn_flags |= EV_CLEAR; /* automatically set */
363
364 /*
365 * internal flag indicating registration done by kernel
366 */
367 if (kn->kn_flags & EV_FLAG1) {
368 kn->kn_data = kn->kn_sdata; /* ppid */
369 kn->kn_fflags = NOTE_CHILD;
370 kn->kn_flags &= ~EV_FLAG1;
371 }
372
373 /* XXXSMP lock the process? */
374 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
375
376 return (0);
377 }
378
379 /*
380 * Filter detach method for EVFILT_PROC.
381 *
382 * The knote may be attached to a different process, which may exit,
383 * leaving nothing for the knote to be attached to. So when the process
384 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
385 * it will be deleted when read out. However, as part of the knote deletion,
386 * this routine is called, so a check is needed to avoid actually performing
387 * a detach, because the original process might not exist any more.
388 */
389 static void
390 filt_procdetach(struct knote *kn)
391 {
392 struct proc *p;
393
394 if (kn->kn_status & KN_DETACHED)
395 return;
396
397 p = kn->kn_ptr.p_proc;
398 KASSERT(p->p_stat == SDEAD || pfind(kn->kn_id) == p);
399
400 /* XXXSMP lock the process? */
401 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
402 }
403
404 /*
405 * Filter event method for EVFILT_PROC.
406 */
407 static int
408 filt_proc(struct knote *kn, long hint)
409 {
410 u_int event;
411
412 /*
413 * mask off extra data
414 */
415 event = (u_int)hint & NOTE_PCTRLMASK;
416
417 /*
418 * if the user is interested in this event, record it.
419 */
420 if (kn->kn_sfflags & event)
421 kn->kn_fflags |= event;
422
423 /*
424 * process is gone, so flag the event as finished.
425 */
426 if (event == NOTE_EXIT) {
427 kn->kn_status |= KN_DETACHED;
428 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
429 return (1);
430 }
431
432 /*
433 * process forked, and user wants to track the new process,
434 * so attach a new knote to it, and immediately report an
435 * event with the parent's pid.
436 */
437 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
438 struct kevent kev;
439 int error;
440
441 /*
442 * register knote with new process.
443 */
444 kev.ident = hint & NOTE_PDATAMASK; /* pid */
445 kev.filter = kn->kn_filter;
446 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
447 kev.fflags = kn->kn_sfflags;
448 kev.data = kn->kn_id; /* parent */
449 kev.udata = kn->kn_kevent.udata; /* preserve udata */
450 error = kqueue_register(kn->kn_kq, &kev, NULL);
451 if (error)
452 kn->kn_fflags |= NOTE_TRACKERR;
453 }
454
455 return (kn->kn_fflags != 0);
456 }
457
458 /*
459 * filt_seltrue:
460 *
461 * This filter "event" routine simulates seltrue().
462 */
463 int
464 filt_seltrue(struct knote *kn, long hint)
465 {
466
467 /*
468 * We don't know how much data can be read/written,
469 * but we know that it *can* be. This is about as
470 * good as select/poll does as well.
471 */
472 kn->kn_data = 0;
473 return (1);
474 }
475
476 /*
477 * kqueue(2) system call.
478 */
479 int
480 sys_kqueue(struct proc *p, void *v, register_t *retval)
481 {
482 struct filedesc *fdp;
483 struct kqueue *kq;
484 struct file *fp;
485 int fd, error;
486
487 fdp = p->p_fd;
488 error = falloc(p, &fp, &fd); /* setup a new file descriptor */
489 if (error)
490 return (error);
491 fp->f_flag = FREAD | FWRITE;
492 fp->f_type = DTYPE_KQUEUE;
493 fp->f_ops = &kqueueops;
494 kq = pool_get(&kqueue_pool, PR_WAITOK);
495 memset((char *)kq, 0, sizeof(struct kqueue));
496 TAILQ_INIT(&kq->kq_head);
497 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
498 *retval = fd;
499 if (fdp->fd_knlistsize < 0)
500 fdp->fd_knlistsize = 0; /* this process has a kq */
501 kq->kq_fdp = fdp;
502 FILE_SET_MATURE(fp);
503 FILE_UNUSE(fp, p); /* falloc() does FILE_USE() */
504 return (error);
505 }
506
507 /*
508 * kevent(2) system call.
509 */
510 int
511 sys_kevent(struct proc *p, void *v, register_t *retval)
512 {
513 struct sys_kevent_args /* {
514 syscallarg(int) fd;
515 syscallarg(const struct kevent *) changelist;
516 syscallarg(int) nchanges;
517 syscallarg(struct kevent *) eventlist;
518 syscallarg(int) nevents;
519 syscallarg(const struct timespec *) timeout;
520 } */ *uap = v;
521 struct kevent *kevp;
522 struct kqueue *kq;
523 struct file *fp;
524 struct timespec ts;
525 int i, n, nerrors, error;
526
527 /* check that we're dealing with a kq */
528 fp = fd_getfile(p->p_fd, SCARG(uap, fd));
529 if (!fp || fp->f_type != DTYPE_KQUEUE)
530 return (EBADF);
531
532 FILE_USE(fp);
533
534 if (SCARG(uap, timeout) != NULL) {
535 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
536 if (error)
537 goto done;
538 SCARG(uap, timeout) = &ts;
539 }
540
541 kq = (struct kqueue *)fp->f_data;
542 nerrors = 0;
543
544 /* traverse list of events to register */
545 while (SCARG(uap, nchanges) > 0) {
546 /* copyin a maximum of KQ_EVENTS at each pass */
547 n = MIN(SCARG(uap, nchanges), KQ_NEVENTS);
548 error = copyin(SCARG(uap, changelist), kq->kq_kev,
549 n * sizeof(struct kevent));
550 if (error)
551 goto done;
552 for (i = 0; i < n; i++) {
553 kevp = &kq->kq_kev[i];
554 kevp->flags &= ~EV_SYSFLAGS;
555 /* register each knote */
556 error = kqueue_register(kq, kevp, p);
557 if (error) {
558 if (SCARG(uap, nevents) != 0) {
559 kevp->flags = EV_ERROR;
560 kevp->data = error;
561 error = copyout((caddr_t)kevp,
562 (caddr_t)SCARG(uap, eventlist),
563 sizeof(*kevp));
564 if (error)
565 goto done;
566 SCARG(uap, eventlist)++;
567 SCARG(uap, nevents)--;
568 nerrors++;
569 } else {
570 goto done;
571 }
572 }
573 }
574 SCARG(uap, nchanges) -= n; /* update the results */
575 SCARG(uap, changelist) += n;
576 }
577 if (nerrors) {
578 *retval = nerrors;
579 error = 0;
580 goto done;
581 }
582
583 /* actually scan through the events */
584 error = kqueue_scan(fp, SCARG(uap, nevents), SCARG(uap, eventlist),
585 SCARG(uap, timeout), p, retval);
586 done:
587 FILE_UNUSE(fp, p);
588 return (error);
589 }
590
591 /*
592 * Register a given kevent kev onto the kqueue
593 */
594 int
595 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
596 {
597 const struct kfilter *kfilter;
598 struct filedesc *fdp;
599 struct file *fp;
600 struct knote *kn;
601 int s, error;
602
603 fdp = kq->kq_fdp;
604 fp = NULL;
605 kn = NULL;
606 error = 0;
607 kfilter = kfilter_byfilter(kev->filter);
608 if (kfilter == NULL || kfilter->filtops == NULL) {
609 /* filter not found nor implemented */
610 return (EINVAL);
611 }
612
613 /* search if knote already exists */
614 if (kfilter->filtops->f_isfd) {
615 /* monitoring a file descriptor */
616 if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
617 return (EBADF); /* validate descriptor */
618 FILE_USE(fp);
619
620 if (kev->ident < fdp->fd_knlistsize) {
621 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
622 if (kq == kn->kn_kq &&
623 kev->filter == kn->kn_filter)
624 break;
625 }
626 } else {
627 /*
628 * not monitoring a file descriptor, so
629 * lookup knotes in internal hash table
630 */
631 if (fdp->fd_knhashmask != 0) {
632 struct klist *list;
633
634 list = &fdp->fd_knhash[
635 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
636 SLIST_FOREACH(kn, list, kn_link)
637 if (kev->ident == kn->kn_id &&
638 kq == kn->kn_kq &&
639 kev->filter == kn->kn_filter)
640 break;
641 }
642 }
643
644 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
645 error = ENOENT; /* filter not found */
646 goto done;
647 }
648
649 /*
650 * kn now contains the matching knote, or NULL if no match
651 */
652 if (kev->flags & EV_ADD) {
653 /* add knote */
654
655 if (kn == NULL) {
656 /* create new knote */
657 kn = pool_get(&knote_pool, PR_WAITOK);
658 if (kn == NULL) {
659 error = ENOMEM;
660 goto done;
661 }
662 kn->kn_fp = fp;
663 kn->kn_kq = kq;
664 kn->kn_fop = kfilter->filtops;
665
666 /*
667 * apply reference count to knote structure, and
668 * do not release it at the end of this routine.
669 */
670 fp = NULL;
671
672 kn->kn_sfflags = kev->fflags;
673 kn->kn_sdata = kev->data;
674 kev->fflags = 0;
675 kev->data = 0;
676 kn->kn_kevent = *kev;
677
678 knote_attach(kn, fdp);
679 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
680 knote_drop(kn, p);
681 goto done;
682 }
683 } else {
684 /* modify existing knote */
685
686 /*
687 * The user may change some filter values after the
688 * initial EV_ADD, but doing so will not reset any
689 * filter which have already been triggered.
690 */
691 kn->kn_sfflags = kev->fflags;
692 kn->kn_sdata = kev->data;
693 kn->kn_kevent.udata = kev->udata;
694 }
695
696 s = splhigh();
697 if (kn->kn_fop->f_event(kn, 0))
698 KNOTE_ACTIVATE(kn);
699 splx(s);
700
701 } else if (kev->flags & EV_DELETE) { /* delete knote */
702 kn->kn_fop->f_detach(kn);
703 knote_drop(kn, p);
704 goto done;
705 }
706
707 /* disable knote */
708 if ((kev->flags & EV_DISABLE) &&
709 ((kn->kn_status & KN_DISABLED) == 0)) {
710 s = splhigh();
711 kn->kn_status |= KN_DISABLED;
712 splx(s);
713 }
714
715 /* enable knote */
716 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
717 s = splhigh();
718 kn->kn_status &= ~KN_DISABLED;
719 if ((kn->kn_status & KN_ACTIVE) &&
720 ((kn->kn_status & KN_QUEUED) == 0))
721 knote_enqueue(kn);
722 splx(s);
723 }
724
725 done:
726 if (fp != NULL)
727 FILE_UNUSE(fp, p);
728 return (error);
729 }
730
731 /*
732 * Scan through the list of events on fp (for a maximum of maxevents),
733 * returning the results in to ulistp. Timeout is determined by tsp; if
734 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
735 * as appropriate.
736 */
737 static int
738 kqueue_scan(struct file *fp, int maxevents, struct kevent *ulistp,
739 const struct timespec *tsp, struct proc *p, register_t *retval)
740 {
741 struct kqueue *kq;
742 struct kevent *kevp;
743 struct timeval atv;
744 struct knote *kn, marker;
745 int s, count, timeout, nkev, error;
746
747 kq = (struct kqueue *)fp->f_data;
748 count = maxevents;
749 nkev = error = 0;
750 if (count == 0)
751 goto done;
752
753 if (tsp != NULL) { /* timeout supplied */
754 TIMESPEC_TO_TIMEVAL(&atv, tsp);
755 if (itimerfix(&atv)) {
756 error = EINVAL;
757 goto done;
758 }
759 s = splclock();
760 timeradd(&atv, &time, &atv); /* calc. time to wait until */
761 splx(s);
762 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
763 timeout = -1; /* perform a poll */
764 else
765 timeout = hzto(&atv); /* calculate hz till timeout */
766 } else {
767 atv.tv_sec = 0; /* no timeout, wait forever */
768 atv.tv_usec = 0;
769 timeout = 0;
770 }
771 goto start;
772
773 retry:
774 if (atv.tv_sec || atv.tv_usec) { /* timeout requested */
775 s = splclock();
776 if (timercmp(&time, &atv, >=)) {
777 splx(s);
778 goto done; /* timeout reached */
779 }
780 splx(s);
781 timeout = hzto(&atv); /* recalc. timeout remaining */
782 }
783
784 start:
785 kevp = kq->kq_kev;
786 s = splhigh();
787 if (kq->kq_count == 0) {
788 if (timeout < 0) {
789 error = EWOULDBLOCK;
790 } else {
791 kq->kq_state |= KQ_SLEEP;
792 error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
793 }
794 splx(s);
795 if (error == 0)
796 goto retry;
797 /* don't restart after signals... */
798 if (error == ERESTART)
799 error = EINTR;
800 else if (error == EWOULDBLOCK)
801 error = 0;
802 goto done;
803 }
804
805 /* mark end of knote list */
806 TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
807
808 while (count) { /* while user wants data ... */
809 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
810 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
811 if (kn == &marker) { /* if it's our marker, stop */
812 splx(s);
813 if (count == maxevents)
814 goto retry;
815 goto done;
816 }
817 if (kn->kn_status & KN_DISABLED) {
818 /* don't want disabled events */
819 kn->kn_status &= ~KN_QUEUED;
820 kq->kq_count--;
821 continue;
822 }
823 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
824 kn->kn_fop->f_event(kn, 0) == 0) {
825 /*
826 * non-ONESHOT event that hasn't
827 * triggered again, so de-queue.
828 */
829 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
830 kq->kq_count--;
831 continue;
832 }
833 *kevp = kn->kn_kevent;
834 kevp++;
835 nkev++;
836 if (kn->kn_flags & EV_ONESHOT) {
837 /* delete ONESHOT events after retrieval */
838 kn->kn_status &= ~KN_QUEUED;
839 kq->kq_count--;
840 splx(s);
841 kn->kn_fop->f_detach(kn);
842 knote_drop(kn, p);
843 s = splhigh();
844 } else if (kn->kn_flags & EV_CLEAR) {
845 /* clear state after retrieval */
846 kn->kn_data = 0;
847 kn->kn_fflags = 0;
848 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
849 kq->kq_count--;
850 } else {
851 /* add event back on list */
852 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
853 }
854 count--;
855 if (nkev == KQ_NEVENTS) {
856 /* do copyouts in KQ_NEVENTS chunks */
857 splx(s);
858 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
859 sizeof(struct kevent) * nkev);
860 ulistp += nkev;
861 nkev = 0;
862 kevp = kq->kq_kev;
863 s = splhigh();
864 if (error)
865 break;
866 }
867 }
868
869 /* remove marker */
870 TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
871 splx(s);
872 done:
873 if (nkev != 0) {
874 /* copyout remaining events */
875 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
876 sizeof(struct kevent) * nkev);
877 }
878 *retval = maxevents - count;
879
880 return (error);
881 }
882
883 /*
884 * struct fileops read method for a kqueue descriptor.
885 * Not implemented.
886 * XXX: This could be expanded to call kqueue_scan, if desired.
887 */
888 /*ARGSUSED*/
889 static int
890 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
891 struct ucred *cred, int flags)
892 {
893
894 return (ENXIO);
895 }
896
897 /*
898 * struct fileops write method for a kqueue descriptor.
899 * Not implemented.
900 */
901 /*ARGSUSED*/
902 static int
903 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
904 struct ucred *cred, int flags)
905 {
906
907 return (ENXIO);
908 }
909
910 /*
911 * struct fileops ioctl method for a kqueue descriptor.
912 *
913 * Two ioctls are currently supported. They both use struct kfilter_mapping:
914 * KFILTER_BYNAME find name for filter, and return result in
915 * name, which is of size len.
916 * KFILTER_BYFILTER find filter for name. len is ignored.
917 */
918 /*ARGSUSED*/
919 static int
920 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
921 {
922 struct kfilter_mapping *km;
923 const struct kfilter *kfilter;
924 char *name;
925 int error;
926
927 km = (struct kfilter_mapping *)data;
928 error = 0;
929
930 switch (com) {
931 case KFILTER_BYFILTER: /* convert filter -> name */
932 kfilter = kfilter_byfilter(km->filter);
933 if (kfilter != NULL)
934 error = copyoutstr(kfilter->name, km->name, km->len,
935 NULL);
936 else
937 error = ENOENT;
938 break;
939
940 case KFILTER_BYNAME: /* convert name -> filter */
941 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
942 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
943 if (error) {
944 FREE(name, M_KEVENT);
945 break;
946 }
947 kfilter = kfilter_byname(name);
948 if (kfilter != NULL)
949 km->filter = kfilter->filter;
950 else
951 error = ENOENT;
952 FREE(name, M_KEVENT);
953 break;
954
955 default:
956 error = ENOTTY;
957
958 }
959 return (error);
960 }
961
962 /*
963 * struct fileops fcntl method for a kqueue descriptor.
964 * Not implemented.
965 */
966 /*ARGSUSED*/
967 static int
968 kqueue_fcntl(struct file *fp, u_int com, caddr_t data, struct proc *p)
969 {
970
971 return (ENOTTY);
972 }
973
974 /*
975 * struct fileops poll method for a kqueue descriptor.
976 * Determine if kqueue has events pending.
977 */
978 static int
979 kqueue_poll(struct file *fp, int events, struct proc *p)
980 {
981 struct kqueue *kq;
982 int revents;
983
984 kq = (struct kqueue *)fp->f_data;
985 revents = 0;
986 if (events & (POLLIN | POLLRDNORM)) {
987 if (kq->kq_count) {
988 revents |= events & (POLLIN | POLLRDNORM);
989 } else {
990 selrecord(p, &kq->kq_sel);
991 }
992 }
993 return (revents);
994 }
995
996 /*
997 * struct fileops stat method for a kqueue descriptor.
998 * Returns dummy info, with st_size being number of events pending.
999 */
1000 static int
1001 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
1002 {
1003 struct kqueue *kq;
1004
1005 kq = (struct kqueue *)fp->f_data;
1006 memset((void *)st, 0, sizeof(*st));
1007 st->st_size = kq->kq_count;
1008 st->st_blksize = sizeof(struct kevent);
1009 st->st_mode = S_IFIFO;
1010 return (0);
1011 }
1012
1013 /*
1014 * struct fileops close method for a kqueue descriptor.
1015 * Cleans up kqueue.
1016 */
1017 static int
1018 kqueue_close(struct file *fp, struct proc *p)
1019 {
1020 struct kqueue *kq;
1021 struct filedesc *fdp;
1022 struct knote **knp, *kn, *kn0;
1023 int i;
1024
1025 kq = (struct kqueue *)fp->f_data;
1026 fdp = p->p_fd;
1027 for (i = 0; i < fdp->fd_knlistsize; i++) {
1028 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1029 kn = *knp;
1030 while (kn != NULL) {
1031 kn0 = SLIST_NEXT(kn, kn_link);
1032 if (kq == kn->kn_kq) {
1033 kn->kn_fop->f_detach(kn);
1034 FILE_UNUSE(kn->kn_fp, p);
1035 pool_put(&knote_pool, kn);
1036 *knp = kn0;
1037 } else {
1038 knp = &SLIST_NEXT(kn, kn_link);
1039 }
1040 kn = kn0;
1041 }
1042 }
1043 if (fdp->fd_knhashmask != 0) {
1044 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1045 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1046 kn = *knp;
1047 while (kn != NULL) {
1048 kn0 = SLIST_NEXT(kn, kn_link);
1049 if (kq == kn->kn_kq) {
1050 kn->kn_fop->f_detach(kn);
1051 /* XXX non-fd release of kn->kn_ptr */
1052 pool_put(&knote_pool, kn);
1053 *knp = kn0;
1054 } else {
1055 knp = &SLIST_NEXT(kn, kn_link);
1056 }
1057 kn = kn0;
1058 }
1059 }
1060 }
1061 pool_put(&kqueue_pool, kq);
1062 fp->f_data = NULL;
1063
1064 return (0);
1065 }
1066
1067 /*
1068 * wakeup a kqueue
1069 */
1070 static void
1071 kqueue_wakeup(struct kqueue *kq)
1072 {
1073
1074 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1075 kq->kq_state &= ~KQ_SLEEP;
1076 wakeup(kq); /* ... wakeup */
1077 }
1078
1079 /* Notify select/poll and kevent. */
1080 selnotify(&kq->kq_sel, 0);
1081 }
1082
1083 /*
1084 * struct fileops kqfilter method for a kqueue descriptor.
1085 * Event triggered when monitored kqueue changes.
1086 */
1087 /*ARGSUSED*/
1088 static int
1089 kqueue_kqfilter(struct file *fp, struct knote *kn)
1090 {
1091 struct kqueue *kq;
1092
1093 KASSERT(fp == kn->kn_fp);
1094 kq = (struct kqueue *)kn->kn_fp->f_data;
1095 if (kn->kn_filter != EVFILT_READ)
1096 return (1);
1097 kn->kn_fop = &kqread_filtops;
1098 SLIST_INSERT_HEAD(&kq->kq_sel.si_klist, kn, kn_selnext);
1099 return (0);
1100 }
1101
1102
1103 /*
1104 * Walk down a list of knotes, activating them if their event has triggered.
1105 */
1106 void
1107 knote(struct klist *list, long hint)
1108 {
1109 struct knote *kn;
1110
1111 SLIST_FOREACH(kn, list, kn_selnext)
1112 if (kn->kn_fop->f_event(kn, hint))
1113 KNOTE_ACTIVATE(kn);
1114 }
1115
1116 /*
1117 * Remove all knotes from a specified klist
1118 */
1119 void
1120 knote_remove(struct proc *p, struct klist *list)
1121 {
1122 struct knote *kn;
1123
1124 while ((kn = SLIST_FIRST(list)) != NULL) {
1125 kn->kn_fop->f_detach(kn);
1126 knote_drop(kn, p);
1127 }
1128 }
1129
1130 /*
1131 * Remove all knotes referencing a specified fd
1132 */
1133 void
1134 knote_fdclose(struct proc *p, int fd)
1135 {
1136 struct filedesc *fdp;
1137 struct klist *list;
1138
1139 fdp = p->p_fd;
1140 list = &fdp->fd_knlist[fd];
1141 knote_remove(p, list);
1142 }
1143
1144 /*
1145 * Attach a new knote to a file descriptor
1146 */
1147 static void
1148 knote_attach(struct knote *kn, struct filedesc *fdp)
1149 {
1150 struct klist *list;
1151 int size;
1152
1153 if (! kn->kn_fop->f_isfd) {
1154 /* if knote is not on an fd, store on internal hash table */
1155 if (fdp->fd_knhashmask == 0)
1156 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1157 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1158 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1159 goto done;
1160 }
1161
1162 /*
1163 * otherwise, knote is on an fd.
1164 * knotes are stored in fd_knlist indexed by kn->kn_id.
1165 */
1166 if (fdp->fd_knlistsize <= kn->kn_id) {
1167 /* expand list, it's too small */
1168 size = fdp->fd_knlistsize;
1169 while (size <= kn->kn_id) {
1170 /* grow in KQ_EXTENT chunks */
1171 size += KQ_EXTENT;
1172 }
1173 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1174 if (fdp->fd_knlist) {
1175 /* copy existing knlist */
1176 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1177 fdp->fd_knlistsize * sizeof(struct klist *));
1178 }
1179 /*
1180 * Zero new memory. Stylistically, SLIST_INIT() should be
1181 * used here, but that does same thing as the memset() anyway.
1182 */
1183 memset(&list[fdp->fd_knlistsize], 0,
1184 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1185
1186 /* switch to new knlist */
1187 if (fdp->fd_knlist != NULL)
1188 free(fdp->fd_knlist, M_KEVENT);
1189 fdp->fd_knlistsize = size;
1190 fdp->fd_knlist = list;
1191 }
1192
1193 /* get list head for this fd */
1194 list = &fdp->fd_knlist[kn->kn_id];
1195 done:
1196 /* add new knote */
1197 SLIST_INSERT_HEAD(list, kn, kn_link);
1198 kn->kn_status = 0;
1199 }
1200
1201 /*
1202 * Drop knote.
1203 * Should be called at spl == 0, since we don't want to hold spl
1204 * while calling FILE_UNUSE and free.
1205 */
1206 static void
1207 knote_drop(struct knote *kn, struct proc *p)
1208 {
1209 struct filedesc *fdp;
1210 struct klist *list;
1211
1212 fdp = p->p_fd;
1213 if (kn->kn_fop->f_isfd)
1214 list = &fdp->fd_knlist[kn->kn_id];
1215 else
1216 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1217
1218 SLIST_REMOVE(list, kn, knote, kn_link);
1219 if (kn->kn_status & KN_QUEUED)
1220 knote_dequeue(kn);
1221 if (kn->kn_fop->f_isfd)
1222 FILE_UNUSE(kn->kn_fp, p);
1223 pool_put(&knote_pool, kn);
1224 }
1225
1226
1227 /*
1228 * Queue new event for knote.
1229 */
1230 static void
1231 knote_enqueue(struct knote *kn)
1232 {
1233 struct kqueue *kq;
1234 int s;
1235
1236 kq = kn->kn_kq;
1237 s = splhigh();
1238 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1239
1240 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1241 kn->kn_status |= KN_QUEUED;
1242 kq->kq_count++;
1243 splx(s);
1244 kqueue_wakeup(kq);
1245 }
1246
1247 /*
1248 * Dequeue event for knote.
1249 */
1250 static void
1251 knote_dequeue(struct knote *kn)
1252 {
1253 struct kqueue *kq;
1254 int s;
1255
1256 kq = kn->kn_kq;
1257 s = splhigh();
1258 KASSERT(kn->kn_status & KN_QUEUED);
1259
1260 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1261 kn->kn_status &= ~KN_QUEUED;
1262 kq->kq_count--;
1263 splx(s);
1264 }
1265