kern_event.c revision 1.1.1.1.2.15 1 /* $NetBSD: kern_event.c,v 1.1.1.1.2.15 2002/09/18 20:48:55 jdolecek Exp $ */
2 /*-
3 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/fcntl.h>
38 #include <sys/select.h>
39 #include <sys/queue.h>
40 #include <sys/event.h>
41 #include <sys/eventvar.h>
42 #include <sys/poll.h>
43 #include <sys/pool.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/stat.h>
48 #include <sys/uio.h>
49 #include <sys/mount.h>
50 #include <sys/filedesc.h>
51 #include <sys/syscallargs.h>
52
53 static int kqueue_scan(struct file *fp, size_t maxevents,
54 struct kevent *ulistp, const struct timespec *timeout,
55 struct proc *p, register_t *retval);
56 static void kqueue_wakeup(struct kqueue *kq);
57
58 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
59 struct ucred *cred, int flags);
60 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
61 struct ucred *cred, int flags);
62 static int kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
63 struct proc *p);
64 static int kqueue_fcntl(struct file *fp, u_int com, caddr_t data,
65 struct proc *p);
66 static int kqueue_poll(struct file *fp, int events, struct proc *p);
67 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
68 static int kqueue_stat(struct file *fp, struct stat *sp, struct proc *p);
69 static int kqueue_close(struct file *fp, struct proc *p);
70
71 static struct fileops kqueueops = {
72 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
73 kqueue_stat, kqueue_close, kqueue_kqfilter
74 };
75
76 static void knote_attach(struct knote *kn, struct filedesc *fdp);
77 static void knote_drop(struct knote *kn, struct proc *p);
78 static void knote_enqueue(struct knote *kn);
79 static void knote_dequeue(struct knote *kn);
80
81 static void filt_kqdetach(struct knote *kn);
82 static int filt_kqueue(struct knote *kn, long hint);
83 static int filt_procattach(struct knote *kn);
84 static void filt_procdetach(struct knote *kn);
85 static int filt_proc(struct knote *kn, long hint);
86 static int filt_fileattach(struct knote *kn);
87
88 static const struct filterops kqread_filtops =
89 { 1, NULL, filt_kqdetach, filt_kqueue };
90 static const struct filterops proc_filtops =
91 { 0, filt_procattach, filt_procdetach, filt_proc };
92 static const struct filterops file_filtops =
93 { 1, filt_fileattach, NULL, NULL };
94
95 struct pool kqueue_pool;
96 struct pool knote_pool;
97
98 #define KNOTE_ACTIVATE(kn) \
99 do { \
100 kn->kn_status |= KN_ACTIVE; \
101 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
102 knote_enqueue(kn); \
103 } while(0)
104
105 #define KN_HASHSIZE 64 /* XXX should be tunable */
106 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
107
108 extern const struct filterops sig_filtops;
109
110 /*
111 * Table for for all system-defined filters.
112 * These should be listed in the numeric order of the EVFILT_* defines.
113 * If filtops is NULL, the filter isn't implemented in NetBSD.
114 * End of list is when name is NULL.
115 */
116 struct kfilter {
117 const char *name; /* name of filter */
118 uint32_t filter; /* id of filter */
119 const struct filterops *filtops;/* operations for filter */
120 };
121
122 /* System defined filters */
123 static const struct kfilter sys_kfilters[] = {
124 { "EVFILT_READ", EVFILT_READ, &file_filtops },
125 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
126 { "EVFILT_AIO", EVFILT_AIO, NULL },
127 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
128 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
129 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
130 { NULL, 0, NULL }, /* end of list */
131 };
132
133 /* User defined kfilters */
134 static struct kfilter *user_kfilters; /* array */
135 static int user_kfilterc; /* current offset */
136 static int user_kfiltermaxc; /* max size so far */
137
138 /*
139 * kqueue_init:
140 *
141 * Initialize the kqueue/knote facility.
142 */
143 void
144 kqueue_init(void)
145 {
146
147 pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl",
148 NULL);
149 pool_init(&knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl",
150 NULL);
151 }
152
153 /*
154 * Find kfilter entry by name, or NULL if not found.
155 */
156 static const struct kfilter *
157 kfilter_byname_sys(const char *name)
158 {
159 int i;
160
161 for (i = 0; sys_kfilters[i].name != NULL; i++) {
162 if (strcmp(name, sys_kfilters[i].name) == 0)
163 return (&sys_kfilters[i]);
164 }
165 return (NULL);
166 }
167
168 static struct kfilter *
169 kfilter_byname_user(const char *name)
170 {
171 int i;
172
173 /* user_kfilters[] could be NULL if no filters were registered */
174 if (!user_kfilters)
175 return (NULL);
176
177 for (i = 0; user_kfilters[i].name != NULL; i++) {
178 if (user_kfilters[i].name != '\0' &&
179 strcmp(name, user_kfilters[i].name) == 0)
180 return (&user_kfilters[i]);
181 }
182 return (NULL);
183 }
184
185 static const struct kfilter *
186 kfilter_byname(const char *name)
187 {
188 const struct kfilter *kfilter;
189
190 if ((kfilter = kfilter_byname_sys(name)) != NULL)
191 return (kfilter);
192
193 return (kfilter_byname_user(name));
194 }
195
196 /*
197 * Find kfilter entry by filter id, or NULL if not found.
198 * Assumes entries are indexed in filter id order, for speed.
199 */
200 static const struct kfilter *
201 kfilter_byfilter(uint32_t filter)
202 {
203 const struct kfilter *kfilter;
204
205 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
206 kfilter = &sys_kfilters[filter];
207 else if (user_kfilters != NULL &&
208 filter < EVFILT_SYSCOUNT + user_kfilterc)
209 /* it's a user filter */
210 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
211 else
212 return (NULL); /* out of range */
213 KASSERT(kfilter->filter == filter); /* sanity check! */
214 return (kfilter);
215 }
216
217 /*
218 * Register a new kfilter. Stores the entry in user_kfilters.
219 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
220 * If retfilter != NULL, the new filterid is returned in it.
221 */
222 int
223 kfilter_register(const char *name, const struct filterops *filtops,
224 int *retfilter)
225 {
226 struct kfilter *kfilter;
227 void *space;
228 int len;
229
230 if (name == NULL || name[0] == '\0' || filtops == NULL)
231 return (EINVAL); /* invalid args */
232 if (kfilter_byname(name) != NULL)
233 return (EEXIST); /* already exists */
234 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
235 return (EINVAL); /* too many */
236
237 /* check if need to grow user_kfilters */
238 if (user_kfilterc + 1 > user_kfiltermaxc) {
239 /*
240 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
241 * want to traverse user_kfilters as an array.
242 */
243 user_kfiltermaxc += KFILTER_EXTENT;
244 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
245 M_KEVENT, M_WAITOK);
246
247 /* copy existing user_kfilters */
248 if (user_kfilters != NULL)
249 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
250 user_kfilterc * sizeof(struct kfilter *));
251 /* zero new sections */
252 memset((caddr_t)kfilter +
253 user_kfilterc * sizeof(struct kfilter *), 0,
254 (user_kfiltermaxc - user_kfilterc) *
255 sizeof(struct kfilter *));
256 /* switch to new kfilter */
257 if (user_kfilters != NULL)
258 free(user_kfilters, M_KEVENT);
259 user_kfilters = kfilter;
260 }
261 len = strlen(name) + 1; /* copy name */
262 space = malloc(len, M_KEVENT, M_WAITOK);
263 memcpy(space, name, len);
264 user_kfilters[user_kfilterc].name = space;
265
266 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
267
268 len = sizeof(struct filterops); /* copy filtops */
269 space = malloc(len, M_KEVENT, M_WAITOK);
270 memcpy(space, filtops, len);
271 user_kfilters[user_kfilterc].filtops = space;
272
273 if (retfilter != NULL)
274 *retfilter = user_kfilters[user_kfilterc].filter;
275 user_kfilterc++; /* finally, increment count */
276 return (0);
277 }
278
279 /*
280 * Unregister a kfilter previously registered with kfilter_register.
281 * This retains the filter id, but clears the name and frees filtops (filter
282 * operations), so that the number isn't reused during a boot.
283 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
284 */
285 int
286 kfilter_unregister(const char *name)
287 {
288 struct kfilter *kfilter;
289
290 if (name == NULL || name[0] == '\0')
291 return (EINVAL); /* invalid name */
292
293 if (kfilter_byname_sys(name) != NULL)
294 return (EINVAL); /* can't detach system filters */
295
296 kfilter = kfilter_byname_user(name);
297 if (kfilter == NULL) /* not found */
298 return (ENOENT);
299
300 if (kfilter->name[0] != '\0') {
301 /* XXX Cast away const (but we know it's safe. */
302 free((void *) kfilter->name, M_KEVENT);
303 kfilter->name = ""; /* mark as `not implemented' */
304 }
305 if (kfilter->filtops != NULL) {
306 /* XXX Cast away const (but we know it's safe. */
307 free((void *) kfilter->filtops, M_KEVENT);
308 kfilter->filtops = NULL; /* mark as `not implemented' */
309 }
310 return (0);
311 }
312
313
314 /*
315 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
316 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
317 */
318 static int
319 filt_fileattach(struct knote *kn)
320 {
321 struct file *fp;
322
323 fp = kn->kn_fp;
324 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
325 }
326
327 /*
328 * Filter detach method for EVFILT_READ on kqueue descriptor.
329 */
330 static void
331 filt_kqdetach(struct knote *kn)
332 {
333 struct kqueue *kq;
334
335 kq = (struct kqueue *)kn->kn_fp->f_data;
336 SLIST_REMOVE(&kq->kq_sel.si_klist, kn, knote, kn_selnext);
337 }
338
339 /*
340 * Filter event method for EVFILT_READ on kqueue descriptor.
341 */
342 /*ARGSUSED*/
343 static int
344 filt_kqueue(struct knote *kn, long hint)
345 {
346 struct kqueue *kq;
347
348 kq = (struct kqueue *)kn->kn_fp->f_data;
349 kn->kn_data = kq->kq_count;
350 return (kn->kn_data > 0);
351 }
352
353 /*
354 * Filter attach method for EVFILT_PROC.
355 */
356 static int
357 filt_procattach(struct knote *kn)
358 {
359 struct proc *p;
360
361 p = pfind(kn->kn_id);
362 if (p == NULL)
363 return (ESRCH);
364
365 kn->kn_ptr.p_proc = p;
366 kn->kn_flags |= EV_CLEAR; /* automatically set */
367
368 /*
369 * internal flag indicating registration done by kernel
370 */
371 if (kn->kn_flags & EV_FLAG1) {
372 kn->kn_data = kn->kn_sdata; /* ppid */
373 kn->kn_fflags = NOTE_CHILD;
374 kn->kn_flags &= ~EV_FLAG1;
375 }
376
377 /* XXXSMP lock the process? */
378 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
379
380 return (0);
381 }
382
383 /*
384 * Filter detach method for EVFILT_PROC.
385 *
386 * The knote may be attached to a different process, which may exit,
387 * leaving nothing for the knote to be attached to. So when the process
388 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
389 * it will be deleted when read out. However, as part of the knote deletion,
390 * this routine is called, so a check is needed to avoid actually performing
391 * a detach, because the original process might not exist any more.
392 */
393 static void
394 filt_procdetach(struct knote *kn)
395 {
396 struct proc *p;
397
398 if (kn->kn_status & KN_DETACHED)
399 return;
400
401 p = kn->kn_ptr.p_proc;
402 KASSERT(p->p_stat == SDEAD || pfind(kn->kn_id) == p);
403
404 /* XXXSMP lock the process? */
405 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
406 }
407
408 /*
409 * Filter event method for EVFILT_PROC.
410 */
411 static int
412 filt_proc(struct knote *kn, long hint)
413 {
414 u_int event;
415
416 /*
417 * mask off extra data
418 */
419 event = (u_int)hint & NOTE_PCTRLMASK;
420
421 /*
422 * if the user is interested in this event, record it.
423 */
424 if (kn->kn_sfflags & event)
425 kn->kn_fflags |= event;
426
427 /*
428 * process is gone, so flag the event as finished.
429 */
430 if (event == NOTE_EXIT) {
431 /*
432 * Detach the knote from watched process and mark
433 * it as such. We can't leave this to kqueue_scan(),
434 * since the process might not exist by then. And we
435 * have to do this now, since psignal KNOTE() is called
436 * also for zombies and we might end up reading freed
437 * memory if the kevent would already be picked up
438 * and knote g/c'ed.
439 */
440 kn->kn_fop->f_detach(kn);
441 kn->kn_status |= KN_DETACHED;
442
443 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
444 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
445 return (1);
446 }
447
448 /*
449 * process forked, and user wants to track the new process,
450 * so attach a new knote to it, and immediately report an
451 * event with the parent's pid.
452 */
453 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
454 struct kevent kev;
455 int error;
456
457 /*
458 * register knote with new process.
459 */
460 kev.ident = hint & NOTE_PDATAMASK; /* pid */
461 kev.filter = kn->kn_filter;
462 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
463 kev.fflags = kn->kn_sfflags;
464 kev.data = kn->kn_id; /* parent */
465 kev.udata = kn->kn_kevent.udata; /* preserve udata */
466 error = kqueue_register(kn->kn_kq, &kev, NULL);
467 if (error)
468 kn->kn_fflags |= NOTE_TRACKERR;
469 }
470
471 return (kn->kn_fflags != 0);
472 }
473
474 /*
475 * filt_seltrue:
476 *
477 * This filter "event" routine simulates seltrue().
478 */
479 int
480 filt_seltrue(struct knote *kn, long hint)
481 {
482
483 /*
484 * We don't know how much data can be read/written,
485 * but we know that it *can* be. This is about as
486 * good as select/poll does as well.
487 */
488 kn->kn_data = 0;
489 return (1);
490 }
491
492 /*
493 * kqueue(2) system call.
494 */
495 int
496 sys_kqueue(struct proc *p, void *v, register_t *retval)
497 {
498 struct filedesc *fdp;
499 struct kqueue *kq;
500 struct file *fp;
501 int fd, error;
502
503 fdp = p->p_fd;
504 error = falloc(p, &fp, &fd); /* setup a new file descriptor */
505 if (error)
506 return (error);
507 fp->f_flag = FREAD | FWRITE;
508 fp->f_type = DTYPE_KQUEUE;
509 fp->f_ops = &kqueueops;
510 kq = pool_get(&kqueue_pool, PR_WAITOK);
511 memset((char *)kq, 0, sizeof(struct kqueue));
512 TAILQ_INIT(&kq->kq_head);
513 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
514 *retval = fd;
515 if (fdp->fd_knlistsize < 0)
516 fdp->fd_knlistsize = 0; /* this process has a kq */
517 kq->kq_fdp = fdp;
518 FILE_SET_MATURE(fp);
519 FILE_UNUSE(fp, p); /* falloc() does FILE_USE() */
520 return (error);
521 }
522
523 /*
524 * kevent(2) system call.
525 */
526 int
527 sys_kevent(struct proc *p, void *v, register_t *retval)
528 {
529 struct sys_kevent_args /* {
530 syscallarg(int) fd;
531 syscallarg(const struct kevent *) changelist;
532 syscallarg(size_t) nchanges;
533 syscallarg(struct kevent *) eventlist;
534 syscallarg(size_t) nevents;
535 syscallarg(const struct timespec *) timeout;
536 } */ *uap = v;
537 struct kevent *kevp;
538 struct kqueue *kq;
539 struct file *fp;
540 struct timespec ts;
541 size_t i, n;
542 int nerrors, error;
543
544 /* check that we're dealing with a kq */
545 fp = fd_getfile(p->p_fd, SCARG(uap, fd));
546 if (!fp || fp->f_type != DTYPE_KQUEUE)
547 return (EBADF);
548
549 FILE_USE(fp);
550
551 if (SCARG(uap, timeout) != NULL) {
552 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
553 if (error)
554 goto done;
555 SCARG(uap, timeout) = &ts;
556 }
557
558 kq = (struct kqueue *)fp->f_data;
559 nerrors = 0;
560
561 /* traverse list of events to register */
562 while (SCARG(uap, nchanges) > 0) {
563 /* copyin a maximum of KQ_EVENTS at each pass */
564 n = MIN(SCARG(uap, nchanges), KQ_NEVENTS);
565 error = copyin(SCARG(uap, changelist), kq->kq_kev,
566 n * sizeof(struct kevent));
567 if (error)
568 goto done;
569 for (i = 0; i < n; i++) {
570 kevp = &kq->kq_kev[i];
571 kevp->flags &= ~EV_SYSFLAGS;
572 /* register each knote */
573 error = kqueue_register(kq, kevp, p);
574 if (error) {
575 if (SCARG(uap, nevents) != 0) {
576 kevp->flags = EV_ERROR;
577 kevp->data = error;
578 error = copyout((caddr_t)kevp,
579 (caddr_t)SCARG(uap, eventlist),
580 sizeof(*kevp));
581 if (error)
582 goto done;
583 SCARG(uap, eventlist)++;
584 SCARG(uap, nevents)--;
585 nerrors++;
586 } else {
587 goto done;
588 }
589 }
590 }
591 SCARG(uap, nchanges) -= n; /* update the results */
592 SCARG(uap, changelist) += n;
593 }
594 if (nerrors) {
595 *retval = nerrors;
596 error = 0;
597 goto done;
598 }
599
600 /* actually scan through the events */
601 error = kqueue_scan(fp, SCARG(uap, nevents), SCARG(uap, eventlist),
602 SCARG(uap, timeout), p, retval);
603 done:
604 FILE_UNUSE(fp, p);
605 return (error);
606 }
607
608 /*
609 * Register a given kevent kev onto the kqueue
610 */
611 int
612 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
613 {
614 const struct kfilter *kfilter;
615 struct filedesc *fdp;
616 struct file *fp;
617 struct knote *kn;
618 int s, error;
619
620 fdp = kq->kq_fdp;
621 fp = NULL;
622 kn = NULL;
623 error = 0;
624 kfilter = kfilter_byfilter(kev->filter);
625 if (kfilter == NULL || kfilter->filtops == NULL) {
626 /* filter not found nor implemented */
627 return (EINVAL);
628 }
629
630 /* search if knote already exists */
631 if (kfilter->filtops->f_isfd) {
632 /* monitoring a file descriptor */
633 if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
634 return (EBADF); /* validate descriptor */
635 FILE_USE(fp);
636
637 if (kev->ident < fdp->fd_knlistsize) {
638 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
639 if (kq == kn->kn_kq &&
640 kev->filter == kn->kn_filter)
641 break;
642 }
643 } else {
644 /*
645 * not monitoring a file descriptor, so
646 * lookup knotes in internal hash table
647 */
648 if (fdp->fd_knhashmask != 0) {
649 struct klist *list;
650
651 list = &fdp->fd_knhash[
652 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
653 SLIST_FOREACH(kn, list, kn_link)
654 if (kev->ident == kn->kn_id &&
655 kq == kn->kn_kq &&
656 kev->filter == kn->kn_filter)
657 break;
658 }
659 }
660
661 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
662 error = ENOENT; /* filter not found */
663 goto done;
664 }
665
666 /*
667 * kn now contains the matching knote, or NULL if no match
668 */
669 if (kev->flags & EV_ADD) {
670 /* add knote */
671
672 if (kn == NULL) {
673 /* create new knote */
674 kn = pool_get(&knote_pool, PR_WAITOK);
675 if (kn == NULL) {
676 error = ENOMEM;
677 goto done;
678 }
679 kn->kn_fp = fp;
680 kn->kn_kq = kq;
681 kn->kn_fop = kfilter->filtops;
682
683 /*
684 * apply reference count to knote structure, and
685 * do not release it at the end of this routine.
686 */
687 fp = NULL;
688
689 kn->kn_sfflags = kev->fflags;
690 kn->kn_sdata = kev->data;
691 kev->fflags = 0;
692 kev->data = 0;
693 kn->kn_kevent = *kev;
694
695 knote_attach(kn, fdp);
696 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
697 knote_drop(kn, p);
698 goto done;
699 }
700 } else {
701 /* modify existing knote */
702
703 /*
704 * The user may change some filter values after the
705 * initial EV_ADD, but doing so will not reset any
706 * filter which have already been triggered.
707 */
708 kn->kn_sfflags = kev->fflags;
709 kn->kn_sdata = kev->data;
710 kn->kn_kevent.udata = kev->udata;
711 }
712
713 s = splhigh();
714 if (kn->kn_fop->f_event(kn, 0))
715 KNOTE_ACTIVATE(kn);
716 splx(s);
717
718 } else if (kev->flags & EV_DELETE) { /* delete knote */
719 kn->kn_fop->f_detach(kn);
720 knote_drop(kn, p);
721 goto done;
722 }
723
724 /* disable knote */
725 if ((kev->flags & EV_DISABLE) &&
726 ((kn->kn_status & KN_DISABLED) == 0)) {
727 s = splhigh();
728 kn->kn_status |= KN_DISABLED;
729 splx(s);
730 }
731
732 /* enable knote */
733 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
734 s = splhigh();
735 kn->kn_status &= ~KN_DISABLED;
736 if ((kn->kn_status & KN_ACTIVE) &&
737 ((kn->kn_status & KN_QUEUED) == 0))
738 knote_enqueue(kn);
739 splx(s);
740 }
741
742 done:
743 if (fp != NULL)
744 FILE_UNUSE(fp, p);
745 return (error);
746 }
747
748 /*
749 * Scan through the list of events on fp (for a maximum of maxevents),
750 * returning the results in to ulistp. Timeout is determined by tsp; if
751 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
752 * as appropriate.
753 */
754 static int
755 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
756 const struct timespec *tsp, struct proc *p, register_t *retval)
757 {
758 struct kqueue *kq;
759 struct kevent *kevp;
760 struct timeval atv;
761 struct knote *kn, marker;
762 size_t count, nkev;
763 int s, timeout, error;
764
765 kq = (struct kqueue *)fp->f_data;
766 count = maxevents;
767 nkev = error = 0;
768 if (count == 0)
769 goto done;
770
771 if (tsp != NULL) { /* timeout supplied */
772 TIMESPEC_TO_TIMEVAL(&atv, tsp);
773 if (itimerfix(&atv)) {
774 error = EINVAL;
775 goto done;
776 }
777 s = splclock();
778 timeradd(&atv, &time, &atv); /* calc. time to wait until */
779 splx(s);
780 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
781 timeout = -1; /* perform a poll */
782 else
783 timeout = hzto(&atv); /* calculate hz till timeout */
784 } else {
785 atv.tv_sec = 0; /* no timeout, wait forever */
786 atv.tv_usec = 0;
787 timeout = 0;
788 }
789 goto start;
790
791 retry:
792 if (atv.tv_sec || atv.tv_usec) { /* timeout requested */
793 s = splclock();
794 if (timercmp(&time, &atv, >=)) {
795 splx(s);
796 goto done; /* timeout reached */
797 }
798 splx(s);
799 timeout = hzto(&atv); /* recalc. timeout remaining */
800 }
801
802 start:
803 kevp = kq->kq_kev;
804 s = splhigh();
805 if (kq->kq_count == 0) {
806 if (timeout < 0) {
807 error = EWOULDBLOCK;
808 } else {
809 kq->kq_state |= KQ_SLEEP;
810 error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
811 }
812 splx(s);
813 if (error == 0)
814 goto retry;
815 /* don't restart after signals... */
816 if (error == ERESTART)
817 error = EINTR;
818 else if (error == EWOULDBLOCK)
819 error = 0;
820 goto done;
821 }
822
823 /* mark end of knote list */
824 TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
825
826 while (count) { /* while user wants data ... */
827 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
828 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
829 if (kn == &marker) { /* if it's our marker, stop */
830 splx(s);
831 if (count == maxevents)
832 goto retry;
833 goto done;
834 }
835 if (kn->kn_status & KN_DISABLED) {
836 /* don't want disabled events */
837 kn->kn_status &= ~KN_QUEUED;
838 kq->kq_count--;
839 continue;
840 }
841 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
842 kn->kn_fop->f_event(kn, 0) == 0) {
843 /*
844 * non-ONESHOT event that hasn't
845 * triggered again, so de-queue.
846 */
847 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
848 kq->kq_count--;
849 continue;
850 }
851 *kevp = kn->kn_kevent;
852 kevp++;
853 nkev++;
854 if (kn->kn_flags & EV_ONESHOT) {
855 /* delete ONESHOT events after retrieval */
856 kn->kn_status &= ~KN_QUEUED;
857 kq->kq_count--;
858 splx(s);
859 kn->kn_fop->f_detach(kn);
860 knote_drop(kn, p);
861 s = splhigh();
862 } else if (kn->kn_flags & EV_CLEAR) {
863 /* clear state after retrieval */
864 kn->kn_data = 0;
865 kn->kn_fflags = 0;
866 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
867 kq->kq_count--;
868 } else {
869 /* add event back on list */
870 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
871 }
872 count--;
873 if (nkev == KQ_NEVENTS) {
874 /* do copyouts in KQ_NEVENTS chunks */
875 splx(s);
876 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
877 sizeof(struct kevent) * nkev);
878 ulistp += nkev;
879 nkev = 0;
880 kevp = kq->kq_kev;
881 s = splhigh();
882 if (error)
883 break;
884 }
885 }
886
887 /* remove marker */
888 TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
889 splx(s);
890 done:
891 if (nkev != 0) {
892 /* copyout remaining events */
893 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
894 sizeof(struct kevent) * nkev);
895 }
896 *retval = maxevents - count;
897
898 return (error);
899 }
900
901 /*
902 * struct fileops read method for a kqueue descriptor.
903 * Not implemented.
904 * XXX: This could be expanded to call kqueue_scan, if desired.
905 */
906 /*ARGSUSED*/
907 static int
908 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
909 struct ucred *cred, int flags)
910 {
911
912 return (ENXIO);
913 }
914
915 /*
916 * struct fileops write method for a kqueue descriptor.
917 * Not implemented.
918 */
919 /*ARGSUSED*/
920 static int
921 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
922 struct ucred *cred, int flags)
923 {
924
925 return (ENXIO);
926 }
927
928 /*
929 * struct fileops ioctl method for a kqueue descriptor.
930 *
931 * Two ioctls are currently supported. They both use struct kfilter_mapping:
932 * KFILTER_BYNAME find name for filter, and return result in
933 * name, which is of size len.
934 * KFILTER_BYFILTER find filter for name. len is ignored.
935 */
936 /*ARGSUSED*/
937 static int
938 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
939 {
940 struct kfilter_mapping *km;
941 const struct kfilter *kfilter;
942 char *name;
943 int error;
944
945 km = (struct kfilter_mapping *)data;
946 error = 0;
947
948 switch (com) {
949 case KFILTER_BYFILTER: /* convert filter -> name */
950 kfilter = kfilter_byfilter(km->filter);
951 if (kfilter != NULL)
952 error = copyoutstr(kfilter->name, km->name, km->len,
953 NULL);
954 else
955 error = ENOENT;
956 break;
957
958 case KFILTER_BYNAME: /* convert name -> filter */
959 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
960 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
961 if (error) {
962 FREE(name, M_KEVENT);
963 break;
964 }
965 kfilter = kfilter_byname(name);
966 if (kfilter != NULL)
967 km->filter = kfilter->filter;
968 else
969 error = ENOENT;
970 FREE(name, M_KEVENT);
971 break;
972
973 default:
974 error = ENOTTY;
975
976 }
977 return (error);
978 }
979
980 /*
981 * struct fileops fcntl method for a kqueue descriptor.
982 * Not implemented.
983 */
984 /*ARGSUSED*/
985 static int
986 kqueue_fcntl(struct file *fp, u_int com, caddr_t data, struct proc *p)
987 {
988
989 return (ENOTTY);
990 }
991
992 /*
993 * struct fileops poll method for a kqueue descriptor.
994 * Determine if kqueue has events pending.
995 */
996 static int
997 kqueue_poll(struct file *fp, int events, struct proc *p)
998 {
999 struct kqueue *kq;
1000 int revents;
1001
1002 kq = (struct kqueue *)fp->f_data;
1003 revents = 0;
1004 if (events & (POLLIN | POLLRDNORM)) {
1005 if (kq->kq_count) {
1006 revents |= events & (POLLIN | POLLRDNORM);
1007 } else {
1008 selrecord(p, &kq->kq_sel);
1009 }
1010 }
1011 return (revents);
1012 }
1013
1014 /*
1015 * struct fileops stat method for a kqueue descriptor.
1016 * Returns dummy info, with st_size being number of events pending.
1017 */
1018 static int
1019 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
1020 {
1021 struct kqueue *kq;
1022
1023 kq = (struct kqueue *)fp->f_data;
1024 memset((void *)st, 0, sizeof(*st));
1025 st->st_size = kq->kq_count;
1026 st->st_blksize = sizeof(struct kevent);
1027 st->st_mode = S_IFIFO;
1028 return (0);
1029 }
1030
1031 /*
1032 * struct fileops close method for a kqueue descriptor.
1033 * Cleans up kqueue.
1034 */
1035 static int
1036 kqueue_close(struct file *fp, struct proc *p)
1037 {
1038 struct kqueue *kq;
1039 struct filedesc *fdp;
1040 struct knote **knp, *kn, *kn0;
1041 int i;
1042
1043 kq = (struct kqueue *)fp->f_data;
1044 fdp = p->p_fd;
1045 for (i = 0; i < fdp->fd_knlistsize; i++) {
1046 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1047 kn = *knp;
1048 while (kn != NULL) {
1049 kn0 = SLIST_NEXT(kn, kn_link);
1050 if (kq == kn->kn_kq) {
1051 kn->kn_fop->f_detach(kn);
1052 FILE_UNUSE(kn->kn_fp, p);
1053 pool_put(&knote_pool, kn);
1054 *knp = kn0;
1055 } else {
1056 knp = &SLIST_NEXT(kn, kn_link);
1057 }
1058 kn = kn0;
1059 }
1060 }
1061 if (fdp->fd_knhashmask != 0) {
1062 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1063 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1064 kn = *knp;
1065 while (kn != NULL) {
1066 kn0 = SLIST_NEXT(kn, kn_link);
1067 if (kq == kn->kn_kq) {
1068 kn->kn_fop->f_detach(kn);
1069 /* XXX non-fd release of kn->kn_ptr */
1070 pool_put(&knote_pool, kn);
1071 *knp = kn0;
1072 } else {
1073 knp = &SLIST_NEXT(kn, kn_link);
1074 }
1075 kn = kn0;
1076 }
1077 }
1078 }
1079 pool_put(&kqueue_pool, kq);
1080 fp->f_data = NULL;
1081
1082 return (0);
1083 }
1084
1085 /*
1086 * wakeup a kqueue
1087 */
1088 static void
1089 kqueue_wakeup(struct kqueue *kq)
1090 {
1091
1092 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1093 kq->kq_state &= ~KQ_SLEEP;
1094 wakeup(kq); /* ... wakeup */
1095 }
1096
1097 /* Notify select/poll and kevent. */
1098 selnotify(&kq->kq_sel, 0);
1099 }
1100
1101 /*
1102 * struct fileops kqfilter method for a kqueue descriptor.
1103 * Event triggered when monitored kqueue changes.
1104 */
1105 /*ARGSUSED*/
1106 static int
1107 kqueue_kqfilter(struct file *fp, struct knote *kn)
1108 {
1109 struct kqueue *kq;
1110
1111 KASSERT(fp == kn->kn_fp);
1112 kq = (struct kqueue *)kn->kn_fp->f_data;
1113 if (kn->kn_filter != EVFILT_READ)
1114 return (1);
1115 kn->kn_fop = &kqread_filtops;
1116 SLIST_INSERT_HEAD(&kq->kq_sel.si_klist, kn, kn_selnext);
1117 return (0);
1118 }
1119
1120
1121 /*
1122 * Walk down a list of knotes, activating them if their event has triggered.
1123 */
1124 void
1125 knote(struct klist *list, long hint)
1126 {
1127 struct knote *kn;
1128
1129 SLIST_FOREACH(kn, list, kn_selnext)
1130 if (kn->kn_fop->f_event(kn, hint))
1131 KNOTE_ACTIVATE(kn);
1132 }
1133
1134 /*
1135 * Remove all knotes from a specified klist
1136 */
1137 void
1138 knote_remove(struct proc *p, struct klist *list)
1139 {
1140 struct knote *kn;
1141
1142 while ((kn = SLIST_FIRST(list)) != NULL) {
1143 kn->kn_fop->f_detach(kn);
1144 knote_drop(kn, p);
1145 }
1146 }
1147
1148 /*
1149 * Remove all knotes referencing a specified fd
1150 */
1151 void
1152 knote_fdclose(struct proc *p, int fd)
1153 {
1154 struct filedesc *fdp;
1155 struct klist *list;
1156
1157 fdp = p->p_fd;
1158 list = &fdp->fd_knlist[fd];
1159 knote_remove(p, list);
1160 }
1161
1162 /*
1163 * Attach a new knote to a file descriptor
1164 */
1165 static void
1166 knote_attach(struct knote *kn, struct filedesc *fdp)
1167 {
1168 struct klist *list;
1169 int size;
1170
1171 if (! kn->kn_fop->f_isfd) {
1172 /* if knote is not on an fd, store on internal hash table */
1173 if (fdp->fd_knhashmask == 0)
1174 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1175 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1176 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1177 goto done;
1178 }
1179
1180 /*
1181 * otherwise, knote is on an fd.
1182 * knotes are stored in fd_knlist indexed by kn->kn_id.
1183 */
1184 if (fdp->fd_knlistsize <= kn->kn_id) {
1185 /* expand list, it's too small */
1186 size = fdp->fd_knlistsize;
1187 while (size <= kn->kn_id) {
1188 /* grow in KQ_EXTENT chunks */
1189 size += KQ_EXTENT;
1190 }
1191 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1192 if (fdp->fd_knlist) {
1193 /* copy existing knlist */
1194 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1195 fdp->fd_knlistsize * sizeof(struct klist *));
1196 }
1197 /*
1198 * Zero new memory. Stylistically, SLIST_INIT() should be
1199 * used here, but that does same thing as the memset() anyway.
1200 */
1201 memset(&list[fdp->fd_knlistsize], 0,
1202 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1203
1204 /* switch to new knlist */
1205 if (fdp->fd_knlist != NULL)
1206 free(fdp->fd_knlist, M_KEVENT);
1207 fdp->fd_knlistsize = size;
1208 fdp->fd_knlist = list;
1209 }
1210
1211 /* get list head for this fd */
1212 list = &fdp->fd_knlist[kn->kn_id];
1213 done:
1214 /* add new knote */
1215 SLIST_INSERT_HEAD(list, kn, kn_link);
1216 kn->kn_status = 0;
1217 }
1218
1219 /*
1220 * Drop knote.
1221 * Should be called at spl == 0, since we don't want to hold spl
1222 * while calling FILE_UNUSE and free.
1223 */
1224 static void
1225 knote_drop(struct knote *kn, struct proc *p)
1226 {
1227 struct filedesc *fdp;
1228 struct klist *list;
1229
1230 fdp = p->p_fd;
1231 if (kn->kn_fop->f_isfd)
1232 list = &fdp->fd_knlist[kn->kn_id];
1233 else
1234 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1235
1236 SLIST_REMOVE(list, kn, knote, kn_link);
1237 if (kn->kn_status & KN_QUEUED)
1238 knote_dequeue(kn);
1239 if (kn->kn_fop->f_isfd)
1240 FILE_UNUSE(kn->kn_fp, p);
1241 pool_put(&knote_pool, kn);
1242 }
1243
1244
1245 /*
1246 * Queue new event for knote.
1247 */
1248 static void
1249 knote_enqueue(struct knote *kn)
1250 {
1251 struct kqueue *kq;
1252 int s;
1253
1254 kq = kn->kn_kq;
1255 s = splhigh();
1256 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1257
1258 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1259 kn->kn_status |= KN_QUEUED;
1260 kq->kq_count++;
1261 splx(s);
1262 kqueue_wakeup(kq);
1263 }
1264
1265 /*
1266 * Dequeue event for knote.
1267 */
1268 static void
1269 knote_dequeue(struct knote *kn)
1270 {
1271 struct kqueue *kq;
1272 int s;
1273
1274 kq = kn->kn_kq;
1275 s = splhigh();
1276 KASSERT(kn->kn_status & KN_QUEUED);
1277
1278 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1279 kn->kn_status &= ~KN_QUEUED;
1280 kq->kq_count--;
1281 splx(s);
1282 }
1283