kern_event.c revision 1.1.1.1.2.3 1 /* $NetBSD: kern_event.c,v 1.1.1.1.2.3 2001/09/07 15:57:41 thorpej Exp $ */
2 /*-
3 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/fcntl.h>
38 #include <sys/select.h>
39 #include <sys/queue.h>
40 #include <sys/event.h>
41 #include <sys/eventvar.h>
42 #include <sys/poll.h>
43 #include <sys/pool.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/stat.h>
48 #include <sys/uio.h>
49 #include <sys/mount.h>
50 #include <sys/filedesc.h>
51 #include <sys/syscallargs.h>
52
53 static int kqueue_scan(struct file *fp, int maxevents,
54 struct kevent *ulistp, const struct timespec *timeout,
55 struct proc *p, register_t *retval);
56 static void kqueue_wakeup(struct kqueue *kq);
57
58 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
59 struct ucred *cred, int flags);
60 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
61 struct ucred *cred, int flags);
62 static int kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
63 struct proc *p);
64 static int kqueue_fcntl(struct file *fp, u_int com, caddr_t data,
65 struct proc *p);
66 static int kqueue_poll(struct file *fp, int events, struct proc *p);
67 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
68 static int kqueue_stat(struct file *fp, struct stat *sp, struct proc *p);
69 static int kqueue_close(struct file *fp, struct proc *p);
70
71 static struct fileops kqueueops = {
72 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
73 kqueue_stat, kqueue_close, kqueue_kqfilter
74 };
75
76 static void knote_attach(struct knote *kn, struct filedesc *fdp);
77 static void knote_drop(struct knote *kn, struct proc *p);
78 static void knote_enqueue(struct knote *kn);
79 static void knote_dequeue(struct knote *kn);
80
81 static void filt_kqdetach(struct knote *kn);
82 static int filt_kqueue(struct knote *kn, long hint);
83 static int filt_procattach(struct knote *kn);
84 static void filt_procdetach(struct knote *kn);
85 static int filt_proc(struct knote *kn, long hint);
86 static int filt_fileattach(struct knote *kn);
87
88 static struct filterops kqread_filtops =
89 { 1, NULL, filt_kqdetach, filt_kqueue };
90 static struct filterops proc_filtops =
91 { 0, filt_procattach, filt_procdetach, filt_proc };
92 static struct filterops file_filtops =
93 { 1, filt_fileattach, NULL, NULL };
94
95 struct pool kqueue_pool;
96 struct pool knote_pool;
97
98 #define KNOTE_ACTIVATE(kn) \
99 do { \
100 kn->kn_status |= KN_ACTIVE; \
101 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
102 knote_enqueue(kn); \
103 } while(0)
104
105 #define KN_HASHSIZE 64 /* XXX should be tunable */
106 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
107
108 extern struct filterops sig_filtops;
109
110 /*
111 * Table for for all system-defined filters.
112 * These should be listed in the numeric order of the EVFILT_* defines.
113 * If filtops is NULL, the filter isn't implemented in NetBSD.
114 * End of list is when name is NULL.
115 */
116 struct kfilter {
117 char *name; /* name of filter */
118 uint32_t filter; /* id of filter */
119 struct filterops *filtops; /* operations for filter */
120 };
121
122 /* System defined filters */
123 static struct kfilter sys_kfilters[] = {
124 { "EVFILT_READ", EVFILT_READ, &file_filtops },
125 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
126 { "EVFILT_AIO", EVFILT_AIO, NULL },
127 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
128 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
129 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
130 { NULL, 0, NULL }, /* end of list */
131 };
132
133 /* User defined kfilters */
134 static struct kfilter *user_kfilters; /* array */
135 static int user_kfilterc; /* current offset */
136 static int user_kfiltermaxc; /* max size so far */
137
138 static struct kfilter *kfilter_byname(const char *);
139 static struct kfilter *kfilter_byfilter(uint32_t);
140
141 /*
142 * kqueue_init:
143 *
144 * Initialize the kqueue/knote facility.
145 */
146 void
147 kqueue_init(void)
148 {
149
150 pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl",
151 0, pool_page_alloc_nointr, pool_page_free_nointr, M_KEVENT);
152 pool_init(&knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl",
153 0, pool_page_alloc_nointr, pool_page_free_nointr, M_KEVENT);
154 }
155
156 /*
157 * Find kfilter entry by name, or NULL if not found.
158 */
159 static struct kfilter *
160 kfilter_byname(const char *name)
161 {
162 struct kfilter *kfilter;
163 int i;
164
165 kfilter = sys_kfilters; /* first look in system kfilters */
166 while (kfilter != NULL) {
167 for (i = 0; kfilter[i].name != NULL; i++) {
168 /* search for matching name */
169 if (kfilter[i].name[0] != '\0' &&
170 (strcmp(name, kfilter[i].name) == 0))
171 return (&kfilter[i]);
172 }
173 /* swap to user kfilters */
174 if (kfilter == sys_kfilters)
175 kfilter = user_kfilters;
176 else
177 kfilter = NULL;
178 }
179 return (NULL);
180 }
181
182 /*
183 * Find kfilter entry by filter id, or NULL if not found.
184 * Assumes entries are indexed in filter id order, for speed.
185 */
186 static struct kfilter *
187 kfilter_byfilter(uint32_t filter)
188 {
189 struct kfilter *kfilter;
190
191 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
192 kfilter = &sys_kfilters[filter];
193 else if (user_kfilters != NULL &&
194 filter < EVFILT_SYSCOUNT + user_kfilterc)
195 /* it's a user filter */
196 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
197 else
198 return (NULL); /* out of range */
199 KASSERT(kfilter->filter == filter); /* sanity check! */
200 return (kfilter);
201 }
202
203 /*
204 * Register a new kfilter. Stores the entry in user_kfilters.
205 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
206 * If retfilter != NULL, the new filterid is returned in it.
207 */
208 int
209 kfilter_register(const char *name, struct filterops *filtops, int *retfilter)
210 {
211 struct kfilter *kfilter;
212 int len;
213
214 if (name == NULL || name[0] == '\0' || filtops == NULL)
215 return (EINVAL); /* invalid args */
216 kfilter = kfilter_byname(name);
217 if (kfilter != NULL) /* already exists */
218 return (EEXIST);
219 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
220 return (EINVAL); /* too many */
221
222 /* need to grow user_kfilters */
223 if (user_kfilterc + 1 > user_kfiltermaxc) {
224 /*
225 * grow in KFILTER_EXTENT chunks. use
226 * malloc(9), because we want to
227 * traverse user_kfilters as an array.
228 */
229 user_kfiltermaxc += KFILTER_EXTENT;
230 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
231 M_KEVENT, M_WAITOK);
232 /* copy existing user_kfilters */
233 if (user_kfilters != NULL)
234 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
235 user_kfilterc * sizeof(struct kfilter *));
236 /* zero new sections */
237 memset((caddr_t)kfilter +
238 user_kfilterc * sizeof(struct kfilter *), 0,
239 (user_kfiltermaxc - user_kfilterc) *
240 sizeof(struct kfilter *));
241 /* switch to new kfilter */
242 if (user_kfilters != NULL)
243 FREE(user_kfilters, M_KEVENT);
244 user_kfilters = kfilter;
245 }
246 len = strlen(name) + 1; /* copy name */
247 user_kfilters[user_kfilterc].name = (char *)
248 malloc(len, M_KEVENT, M_WAITOK);
249 memcpy(user_kfilters[user_kfilterc].name, name, len);
250 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
251 len = sizeof(struct filterops); /* copy filtops */
252 user_kfilters[user_kfilterc].filtops = (struct filterops *)
253 malloc(len, M_KEVENT, M_WAITOK);
254 memcpy(user_kfilters[user_kfilterc].filtops, filtops, len);
255 if (retfilter != NULL)
256 *retfilter = user_kfilters[user_kfilterc].filter;
257 user_kfilterc++; /* finally, increment count */
258 return (0);
259 }
260
261 /*
262 * Unregister a kfilter previously registered with kfilter_register.
263 * This retains the filter id, but clears the name and frees filtops (filter
264 * operations), so that the number isn't reused during a boot.
265 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
266 */
267 int
268 kfilter_unregister(const char *name)
269 {
270 struct kfilter *kfilter;
271
272 if (name == NULL || name[0] == '\0')
273 return (EINVAL); /* invalid name */
274 kfilter = kfilter_byname(name);
275 if (kfilter == NULL) /* not found */
276 return (ENOENT);
277 if (kfilter->filter < EVFILT_SYSCOUNT)
278 return (EINVAL); /* can't detach system filters */
279
280 if (kfilter->name[0] != '\0') {
281 free(kfilter->name, M_KEVENT);
282 kfilter->name = ""; /* mark as `not implemented' */
283 }
284 if (kfilter->filtops != NULL) {
285 free(kfilter->filtops, M_KEVENT);
286 kfilter->filtops = NULL; /* mark as `not implemented' */
287 }
288 return (0);
289 }
290
291
292 /*
293 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
294 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
295 */
296 static int
297 filt_fileattach(struct knote *kn)
298 {
299 struct file *fp;
300
301 fp = kn->kn_fp;
302 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
303 }
304
305 /*
306 * Filter detach method for EVFILT_READ on kqueue descriptor.
307 */
308 static void
309 filt_kqdetach(struct knote *kn)
310 {
311 struct kqueue *kq;
312
313 kq = (struct kqueue *)kn->kn_fp->f_data;
314 SLIST_REMOVE(&kq->kq_sel.si_klist, kn, knote, kn_selnext);
315 }
316
317 /*
318 * Filter event method for EVFILT_READ on kqueue descriptor.
319 */
320 /*ARGSUSED*/
321 static int
322 filt_kqueue(struct knote *kn, long hint)
323 {
324 struct kqueue *kq;
325
326 kq = (struct kqueue *)kn->kn_fp->f_data;
327 kn->kn_data = kq->kq_count;
328 return (kn->kn_data > 0);
329 }
330
331 /*
332 * Filter attach method for EVFILT_PROC.
333 */
334 static int
335 filt_procattach(struct knote *kn)
336 {
337 struct proc *p;
338
339 p = pfind(kn->kn_id);
340 if (p == NULL)
341 return (ESRCH);
342
343 kn->kn_ptr.p_proc = p;
344 kn->kn_flags |= EV_CLEAR; /* automatically set */
345
346 /*
347 * internal flag indicating registration done by kernel
348 */
349 if (kn->kn_flags & EV_FLAG1) {
350 kn->kn_data = kn->kn_sdata; /* ppid */
351 kn->kn_fflags = NOTE_CHILD;
352 kn->kn_flags &= ~EV_FLAG1;
353 }
354
355 /* XXXLUKEM */
356 /* XXX lock the proc here while adding to the list? */
357 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
358
359 return (0);
360 }
361
362 /*
363 * Filter detach method for EVFILT_PROC.
364 *
365 * The knote may be attached to a different process, which may exit,
366 * leaving nothing for the knote to be attached to. So when the process
367 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
368 * it will be deleted when read out. However, as part of the knote deletion,
369 * this routine is called, so a check is needed to avoid actually performing
370 * a detach, because the original process does not exist any more.
371 */
372 static void
373 filt_procdetach(struct knote *kn)
374 {
375 struct proc *p;
376
377 p = kn->kn_ptr.p_proc;
378 if (kn->kn_status & KN_DETACHED)
379 return;
380
381 /* XXXLUKEM */
382 /* XXX locking? this might modify another process. */
383 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
384 }
385
386 /*
387 * Filter event method for EVFILT_PROC.
388 */
389 static int
390 filt_proc(struct knote *kn, long hint)
391 {
392 u_int event;
393
394 /*
395 * mask off extra data
396 */
397 event = (u_int)hint & NOTE_PCTRLMASK;
398
399 /*
400 * if the user is interested in this event, record it.
401 */
402 if (kn->kn_sfflags & event)
403 kn->kn_fflags |= event;
404
405 /*
406 * process is gone, so flag the event as finished.
407 */
408 if (event == NOTE_EXIT) {
409 kn->kn_status |= KN_DETACHED;
410 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
411 return (1);
412 }
413
414 /*
415 * process forked, and user wants to track the new process,
416 * so attach a new knote to it, and immediately report an
417 * event with the parent's pid.
418 */
419 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
420 struct kevent kev;
421 int error;
422
423 /*
424 * register knote with new process.
425 */
426 kev.ident = hint & NOTE_PDATAMASK; /* pid */
427 kev.filter = kn->kn_filter;
428 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
429 kev.fflags = kn->kn_sfflags;
430 kev.data = kn->kn_id; /* parent */
431 kev.udata = kn->kn_kevent.udata; /* preserve udata */
432 error = kqueue_register(kn->kn_kq, &kev, NULL);
433 if (error)
434 kn->kn_fflags |= NOTE_TRACKERR;
435 }
436
437 return (kn->kn_fflags != 0);
438 }
439
440 /*
441 * kqueue(2) system call.
442 */
443 int
444 sys_kqueue(struct proc *p, void *v, register_t *retval)
445 {
446 struct filedesc *fdp;
447 struct kqueue *kq;
448 struct file *fp;
449 int fd, error;
450
451 fdp = p->p_fd;
452 error = falloc(p, &fp, &fd); /* setup a new file descriptor */
453 if (error)
454 return (error);
455 fp->f_flag = FREAD | FWRITE;
456 fp->f_type = DTYPE_KQUEUE;
457 fp->f_ops = &kqueueops;
458 kq = pool_get(&kqueue_pool, PR_WAITOK);
459 memset((char *)kq, 0, sizeof(struct kqueue));
460 TAILQ_INIT(&kq->kq_head);
461 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
462 *retval = fd;
463 if (fdp->fd_knlistsize < 0)
464 fdp->fd_knlistsize = 0; /* this process has a kq */
465 kq->kq_fdp = fdp;
466 FILE_SET_MATURE(fp);
467 FILE_UNUSE(fp, p); /* falloc() does FILE_USE() */
468 return (error);
469 }
470
471 /*
472 * kevent(2) system call.
473 */
474 int
475 sys_kevent(struct proc *p, void *v, register_t *retval)
476 {
477 struct sys_kevent_args /* {
478 syscallarg(int) fd;
479 syscallarg(const struct kevent *) changelist;
480 syscallarg(int) nchanges;
481 syscallarg(struct kevent *) eventlist;
482 syscallarg(int) nevents;
483 syscallarg(const struct timespec *) timeout;
484 } */ *uap = v;
485 struct filedesc *fdp;
486 struct kevent *kevp;
487 struct kqueue *kq;
488 struct file *fp;
489 struct timespec ts;
490 int i, n, nerrors, error;
491
492 fdp = p->p_fd; /* check that we're dealing with a kq */
493 if ((u_int)SCARG(uap, fd) >= fdp->fd_nfiles ||
494 (fp = fdp->fd_ofiles[SCARG(uap, fd)]) == NULL ||
495 (fp->f_type != DTYPE_KQUEUE))
496 return (EBADF);
497
498 FILE_USE(fp);
499
500 if (SCARG(uap, timeout) != NULL) {
501 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
502 if (error)
503 goto done;
504 SCARG(uap, timeout) = &ts;
505 }
506
507 kq = (struct kqueue *)fp->f_data;
508 nerrors = 0;
509
510 /* traverse list of events to register */
511 while (SCARG(uap, nchanges) > 0) {
512 /* copyin a maximum of KQ_EVENTS at each pass */
513 n = MIN(SCARG(uap, nchanges), KQ_NEVENTS);
514 error = copyin(SCARG(uap, changelist), kq->kq_kev,
515 n * sizeof(struct kevent));
516 if (error)
517 goto done;
518 for (i = 0; i < n; i++) {
519 kevp = &kq->kq_kev[i];
520 kevp->flags &= ~EV_SYSFLAGS;
521 /* register each knote */
522 error = kqueue_register(kq, kevp, p);
523 if (error) {
524 if (SCARG(uap, nevents) != 0) {
525 kevp->flags = EV_ERROR;
526 kevp->data = error;
527 error = copyout((caddr_t)kevp,
528 (caddr_t)SCARG(uap, eventlist),
529 sizeof(*kevp));
530 if (error)
531 goto done;
532 SCARG(uap, eventlist)++;
533 SCARG(uap, nevents)--;
534 nerrors++;
535 } else {
536 goto done;
537 }
538 }
539 }
540 SCARG(uap, nchanges) -= n; /* update the results */
541 SCARG(uap, changelist) += n;
542 }
543 if (nerrors) {
544 *retval = nerrors;
545 error = 0;
546 goto done;
547 }
548
549 /* actually scan through the events */
550 error = kqueue_scan(fp, SCARG(uap, nevents), SCARG(uap, eventlist),
551 SCARG(uap, timeout), p, retval);
552 done:
553 FILE_UNUSE(fp, p);
554 return (error);
555 }
556
557 /*
558 * Register a given kevent kev onto the kqueue
559 */
560 int
561 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
562 {
563 struct filedesc *fdp;
564 struct kfilter *kfilter;
565 struct file *fp;
566 struct knote *kn;
567 int s, error;
568
569 fdp = kq->kq_fdp;
570 fp = NULL;
571 kn = NULL;
572 error = 0;
573 kfilter = kfilter_byfilter(kev->filter);
574 if (kfilter == NULL || kfilter->filtops == NULL)
575 return (EINVAL); /* filter not found nor implemented */
576
577 /* search if knote already exists */
578 if (kfilter->filtops->f_isfd) { /* monitoring a file descriptor */
579 if ((u_int)kev->ident >= fdp->fd_nfiles ||
580 (fp = fdp->fd_ofiles[kev->ident]) == NULL)
581 return (EBADF); /* validate descriptor */
582 FILE_USE(fp);
583
584 if (kev->ident < fdp->fd_knlistsize) {
585 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
586 if (kq == kn->kn_kq &&
587 kev->filter == kn->kn_filter)
588 break;
589 }
590 } else {
591 /*
592 * not monitoring a file descriptor, so
593 * lookup knotes in internal hash table
594 */
595 if (fdp->fd_knhashmask != 0) {
596 struct klist *list;
597
598 list = &fdp->fd_knhash[
599 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
600 SLIST_FOREACH(kn, list, kn_link)
601 if (kev->ident == kn->kn_id &&
602 kq == kn->kn_kq &&
603 kev->filter == kn->kn_filter)
604 break;
605 }
606 }
607
608 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
609 error = ENOENT; /* filter not found */
610 goto done;
611 }
612
613 /*
614 * kn now contains the matching knote, or NULL if no match
615 */
616 if (kev->flags & EV_ADD) { /* add knote */
617
618 if (kn == NULL) { /* create new knote */
619 kn = pool_get(&knote_pool, PR_WAITOK);
620 if (kn == NULL) {
621 error = ENOMEM;
622 goto done;
623 }
624 kn->kn_fp = fp;
625 kn->kn_kq = kq;
626 kn->kn_fop = kfilter->filtops;
627
628 /*
629 * apply reference count to knote structure, and
630 * do not release it at the end of this routine.
631 */
632 fp = NULL;
633
634 kn->kn_sfflags = kev->fflags;
635 kn->kn_sdata = kev->data;
636 kev->fflags = 0;
637 kev->data = 0;
638 kn->kn_kevent = *kev;
639
640 knote_attach(kn, fdp);
641 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
642 knote_drop(kn, p);
643 goto done;
644 }
645 } else { /* modify existing knote */
646 /*
647 * The user may change some filter values after the
648 * initial EV_ADD, but doing so will not reset any
649 * filter which have already been triggered.
650 */
651 kn->kn_sfflags = kev->fflags;
652 kn->kn_sdata = kev->data;
653 kn->kn_kevent.udata = kev->udata;
654 }
655
656 s = splhigh();
657 if (kn->kn_fop->f_event(kn, 0))
658 KNOTE_ACTIVATE(kn);
659 splx(s);
660
661 } else if (kev->flags & EV_DELETE) { /* delete knote */
662 kn->kn_fop->f_detach(kn);
663 knote_drop(kn, p);
664 goto done;
665 }
666
667 /* disable knote */
668 if ((kev->flags & EV_DISABLE) &&
669 ((kn->kn_status & KN_DISABLED) == 0)) {
670 s = splhigh();
671 kn->kn_status |= KN_DISABLED;
672 splx(s);
673 }
674
675 /* enable knote */
676 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
677 s = splhigh();
678 kn->kn_status &= ~KN_DISABLED;
679 if ((kn->kn_status & KN_ACTIVE) &&
680 ((kn->kn_status & KN_QUEUED) == 0))
681 knote_enqueue(kn);
682 splx(s);
683 }
684
685 done:
686 if (fp != NULL)
687 FILE_UNUSE(fp, p);
688 return (error);
689 }
690
691 /*
692 * Scan through the list of events on fp (for a maximum of maxevents),
693 * returning the results in to ulistp. Timeout is determined by tsp; if
694 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
695 * as appropriate.
696 */
697 static int
698 kqueue_scan(struct file *fp, int maxevents, struct kevent *ulistp,
699 const struct timespec *tsp, struct proc *p, register_t *retval)
700 {
701 struct kqueue *kq;
702 struct kevent *kevp;
703 struct timeval atv;
704 struct knote *kn, marker;
705 int s, count, timeout, nkev, error;
706
707 kq = (struct kqueue *)fp->f_data;
708 count = maxevents;
709 nkev = error = 0;
710 if (count == 0)
711 goto done;
712
713 if (tsp != NULL) { /* timeout supplied */
714 TIMESPEC_TO_TIMEVAL(&atv, tsp);
715 if (itimerfix(&atv)) {
716 error = EINVAL;
717 goto done;
718 }
719 s = splclock();
720 timeradd(&atv, &time, &atv); /* calc. time to wait until */
721 splx(s);
722 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
723 timeout = -1; /* perform a poll */
724 else
725 timeout = hzto(&atv); /* calculate hz till timeout */
726 } else {
727 atv.tv_sec = 0; /* no timeout, wait forever */
728 atv.tv_usec = 0;
729 timeout = 0;
730 }
731 goto start;
732
733 retry:
734 if (atv.tv_sec || atv.tv_usec) { /* timeout requested */
735 s = splclock();
736 if (timercmp(&time, &atv, >=)) {
737 splx(s);
738 goto done; /* timeout reached */
739 }
740 splx(s);
741 timeout = hzto(&atv); /* recalc. timeout remaining */
742 }
743
744 start:
745 kevp = kq->kq_kev;
746 s = splhigh();
747 if (kq->kq_count == 0) {
748 if (timeout < 0) {
749 error = EWOULDBLOCK;
750 } else {
751 kq->kq_state |= KQ_SLEEP;
752 error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
753 }
754 splx(s);
755 if (error == 0)
756 goto retry;
757 /* don't restart after signals... */
758 if (error == ERESTART)
759 error = EINTR;
760 else if (error == EWOULDBLOCK)
761 error = 0;
762 goto done;
763 }
764
765 TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
766 /* mark end of knote list */
767 while (count) { /* while user wants data ... */
768 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
769 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
770 if (kn == &marker) { /* if it's our marker, stop */
771 splx(s);
772 if (count == maxevents)
773 goto retry;
774 goto done;
775 }
776 if (kn->kn_status & KN_DISABLED) {
777 /* don't want disabled events */
778 kn->kn_status &= ~KN_QUEUED;
779 kq->kq_count--;
780 continue;
781 }
782 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
783 kn->kn_fop->f_event(kn, 0) == 0) {
784 /*
785 * non-ONESHOT event that hasn't
786 * triggered again, so de-queue.
787 */
788 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
789 kq->kq_count--;
790 continue;
791 }
792 *kevp = kn->kn_kevent;
793 kevp++;
794 nkev++;
795 if (kn->kn_flags & EV_ONESHOT) {
796 /* delete ONESHOT events after retrieval */
797 kn->kn_status &= ~KN_QUEUED;
798 kq->kq_count--;
799 splx(s);
800 kn->kn_fop->f_detach(kn);
801 knote_drop(kn, p);
802 s = splhigh();
803 } else if (kn->kn_flags & EV_CLEAR) {
804 /* clear state after retrieval */
805 kn->kn_data = 0;
806 kn->kn_fflags = 0;
807 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
808 kq->kq_count--;
809 } else {
810 /* add event back on list */
811 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
812 }
813 count--;
814 if (nkev == KQ_NEVENTS) {
815 /* do copyouts in KQ_NEVENTS chunks */
816 splx(s);
817 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
818 sizeof(struct kevent) * nkev);
819 ulistp += nkev;
820 nkev = 0;
821 kevp = kq->kq_kev;
822 s = splhigh();
823 if (error)
824 break;
825 }
826 }
827 /* remove marker */
828 TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
829 splx(s);
830 done:
831 if (nkev != 0) /* copyout remaining events */
832 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
833 sizeof(struct kevent) * nkev);
834 *retval = maxevents - count;
835 return (error);
836 }
837
838 /*
839 * struct fileops read method for a kqueue descriptor.
840 * Not implemented.
841 * XXX: This could be expanded to call kqueue_scan, if desired.
842 */
843 /*ARGSUSED*/
844 static int
845 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
846 struct ucred *cred, int flags)
847 {
848
849 return (ENXIO);
850 }
851
852 /*
853 * struct fileops write method for a kqueue descriptor.
854 * Not implemented.
855 */
856 /*ARGSUSED*/
857 static int
858 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
859 struct ucred *cred, int flags)
860 {
861
862 return (ENXIO);
863 }
864
865 /*
866 * struct fileops ioctl method for a kqueue descriptor.
867 *
868 * Two ioctls are currently supported. They both use struct kfilter_mapping:
869 * KFILTER_BYNAME find name for filter, and return result in
870 * name, which is of size len.
871 * KFILTER_BYFILTER find filter for name. len is ignored.
872 */
873 /*ARGSUSED*/
874 static int
875 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
876 {
877 struct kfilter_mapping *km;
878 struct kfilter *kfilter;
879 char *name;
880 int error;
881
882 km = (struct kfilter_mapping *)data;
883 error = 0;
884
885 switch (com) {
886 case KFILTER_BYFILTER: /* convert filter -> name */
887 kfilter = kfilter_byfilter(km->filter);
888 if (kfilter != NULL)
889 error = copyoutstr(kfilter->name, km->name, km->len,
890 NULL);
891 else
892 error = ENOENT;
893 break;
894
895 case KFILTER_BYNAME: /* convert name -> filter */
896 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
897 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
898 if (error) {
899 free(name, M_KEVENT);
900 break;
901 }
902 kfilter = kfilter_byname(name);
903 if (kfilter != NULL)
904 km->filter = kfilter->filter;
905 else
906 error = ENOENT;
907 free(name, M_KEVENT);
908 break;
909
910 #if 1 /* XXXLUKEM - test register & unregister */
911 case KFILTER_REGISTER:
912 case KFILTER_UNREGISTER:
913 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
914 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
915 if (error) {
916 free(name, M_KEVENT);
917 break;
918 }
919 if (com == KFILTER_REGISTER) {
920 kfilter = kfilter_byfilter(km->filter);
921 if (kfilter != NULL) {
922 error = kfilter_register(name,
923 kfilter->filtops, &km->filter);
924 } else
925 error = ENOENT;
926 } else
927 error = kfilter_unregister(name);
928 free(name, M_KEVENT);
929 break;
930 #endif
931
932 default:
933 error = ENOTTY;
934
935 }
936 return (error);
937 }
938
939 /*
940 * struct fileops fcntl method for a kqueue descriptor.
941 * Not implemented.
942 */
943 /*ARGSUSED*/
944 static int
945 kqueue_fcntl(struct file *fp, u_int com, caddr_t data, struct proc *p)
946 {
947
948 return (ENOTTY);
949 }
950
951 /*
952 * struct fileops poll method for a kqueue descriptor.
953 * Determine if kqueue has events pending.
954 */
955 /*ARGSUSED*/
956 static int
957 kqueue_poll(struct file *fp, int events, struct proc *p)
958 {
959 struct kqueue *kq;
960 int revents, s;
961
962 kq = (struct kqueue *)fp->f_data;
963 revents = 0;
964 s = splnet(); /* XXXLUKEM: is this correct? */
965 if (events & (POLLIN | POLLRDNORM)) {
966 if (kq->kq_count) {
967 revents |= events & (POLLIN | POLLRDNORM);
968 } else {
969 /* XXXLUKEM: splsched() for next? */
970 selrecord(p, &kq->kq_sel);
971 kq->kq_state |= KQ_SEL;
972 }
973 }
974 splx(s);
975 return (revents);
976 }
977
978 /*
979 * struct fileops stat method for a kqueue descriptor.
980 * Returns dummy info, with st_size being number of events pending.
981 */
982 /*ARGSUSED*/
983 static int
984 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
985 {
986 struct kqueue *kq;
987
988 kq = (struct kqueue *)fp->f_data;
989 memset((void *)st, 0, sizeof(*st));
990 st->st_size = kq->kq_count;
991 st->st_blksize = sizeof(struct kevent);
992 st->st_mode = S_IFIFO;
993 return (0);
994 }
995
996 /*
997 * struct fileops close method for a kqueue descriptor.
998 * Cleans up kqueue.
999 */
1000 /*ARGSUSED*/
1001 static int
1002 kqueue_close(struct file *fp, struct proc *p)
1003 {
1004 struct kqueue *kq;
1005 struct filedesc *fdp;
1006 struct knote **knp, *kn, *kn0;
1007 int i;
1008
1009 kq = (struct kqueue *)fp->f_data;
1010 fdp = p->p_fd;
1011 for (i = 0; i < fdp->fd_knlistsize; i++) {
1012 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1013 kn = *knp;
1014 while (kn != NULL) {
1015 kn0 = SLIST_NEXT(kn, kn_link);
1016 if (kq == kn->kn_kq) {
1017 kn->kn_fop->f_detach(kn);
1018 FILE_UNUSE(kn->kn_fp, p);
1019 pool_put(&knote_pool, kn);
1020 *knp = kn0;
1021 } else {
1022 knp = &SLIST_NEXT(kn, kn_link);
1023 }
1024 kn = kn0;
1025 }
1026 }
1027 if (fdp->fd_knhashmask != 0) {
1028 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1029 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1030 kn = *knp;
1031 while (kn != NULL) {
1032 kn0 = SLIST_NEXT(kn, kn_link);
1033 if (kq == kn->kn_kq) {
1034 kn->kn_fop->f_detach(kn);
1035 /* XXX non-fd release of kn->kn_ptr */
1036 pool_put(&knote_pool, kn);
1037 *knp = kn0;
1038 } else {
1039 knp = &SLIST_NEXT(kn, kn_link);
1040 }
1041 kn = kn0;
1042 }
1043 }
1044 }
1045 pool_put(&kqueue_pool, kq);
1046 fp->f_data = NULL;
1047
1048 return (0);
1049 }
1050
1051 /*
1052 * wakeup a kqueue
1053 */
1054 static void
1055 kqueue_wakeup(struct kqueue *kq)
1056 {
1057
1058 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1059 kq->kq_state &= ~KQ_SLEEP;
1060 wakeup(kq); /* ... wakeup */
1061 }
1062 if (kq->kq_state & KQ_SEL) { /* if currently polling ... */
1063 kq->kq_state &= ~KQ_SEL;
1064 selwakeup(&kq->kq_sel); /* ... selwakeup */
1065 }
1066 KNOTE(&kq->kq_sel.si_klist, 0);
1067 }
1068
1069 /*
1070 * struct fileops kqfilter method for a kqueue descriptor.
1071 * Event triggered when monitored kqueue changes.
1072 */
1073 /*ARGSUSED*/
1074 static int
1075 kqueue_kqfilter(struct file *fp, struct knote *kn)
1076 {
1077 struct kqueue *kq;
1078
1079 kq = (struct kqueue *)kn->kn_fp->f_data;
1080 if (kn->kn_filter != EVFILT_READ)
1081 return (1);
1082 kn->kn_fop = &kqread_filtops;
1083 SLIST_INSERT_HEAD(&kq->kq_sel.si_klist, kn, kn_selnext);
1084 return (0);
1085 }
1086
1087
1088 /*
1089 * Walk down a list of knotes, activating them if their event has triggered.
1090 */
1091 void
1092 knote(struct klist *list, long hint)
1093 {
1094 struct knote *kn;
1095
1096 SLIST_FOREACH(kn, list, kn_selnext)
1097 if (kn->kn_fop->f_event(kn, hint))
1098 KNOTE_ACTIVATE(kn);
1099 }
1100
1101 /*
1102 * Remove all knotes from a specified klist
1103 */
1104 void
1105 knote_remove(struct proc *p, struct klist *list)
1106 {
1107 struct knote *kn;
1108
1109 while ((kn = SLIST_FIRST(list)) != NULL) {
1110 kn->kn_fop->f_detach(kn);
1111 knote_drop(kn, p);
1112 }
1113 }
1114
1115 /*
1116 * Remove all knotes referencing a specified fd
1117 */
1118 void
1119 knote_fdclose(struct proc *p, int fd)
1120 {
1121 struct filedesc *fdp;
1122 struct klist *list;
1123
1124 fdp = p->p_fd;
1125 list = &fdp->fd_knlist[fd];
1126 knote_remove(p, list);
1127 }
1128
1129 /*
1130 * Attach a new knote to a file descriptor
1131 */
1132 static void
1133 knote_attach(struct knote *kn, struct filedesc *fdp)
1134 {
1135 struct klist *list;
1136 int size;
1137
1138 if (! kn->kn_fop->f_isfd) {
1139 /*
1140 * if knote is not on an fd, store
1141 * on internal hash table.
1142 */
1143 if (fdp->fd_knhashmask == 0)
1144 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1145 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1146 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1147 goto done;
1148 }
1149
1150 /*
1151 * otherwise, knote is on an fd.
1152 * knotes are stored in fd_knlist
1153 * indexed by kn->kn_id.
1154 */
1155 if (fdp->fd_knlistsize <= kn->kn_id) {
1156 /* expand list if too small */
1157 size = fdp->fd_knlistsize;
1158 while (size <= kn->kn_id)
1159 size += KQ_EXTENT; /* grow in KQ_EXTENT chunks */
1160 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1161 /* copy existing knlist */
1162 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1163 fdp->fd_knlistsize * sizeof(struct klist *));
1164 /* zero new sections */
1165 memset((caddr_t)list +
1166 fdp->fd_knlistsize * sizeof(struct klist *), 0,
1167 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1168 if (fdp->fd_knlist != NULL) /* switch to new knlist */
1169 FREE(fdp->fd_knlist, M_KEVENT);
1170 fdp->fd_knlistsize = size;
1171 fdp->fd_knlist = list;
1172 }
1173 list = &fdp->fd_knlist[kn->kn_id]; /* get list head for this fd */
1174 done:
1175 SLIST_INSERT_HEAD(list, kn, kn_link); /* add new knote */
1176 kn->kn_status = 0;
1177 }
1178
1179 /*
1180 * Drop knote.
1181 * Should be called at spl == 0, since we don't want to hold spl
1182 * while calling FILE_UNUSE and free.
1183 */
1184 static void
1185 knote_drop(struct knote *kn, struct proc *p)
1186 {
1187 struct filedesc *fdp;
1188 struct klist *list;
1189
1190 fdp = p->p_fd;
1191 if (kn->kn_fop->f_isfd)
1192 list = &fdp->fd_knlist[kn->kn_id];
1193 else
1194 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1195
1196 SLIST_REMOVE(list, kn, knote, kn_link);
1197 if (kn->kn_status & KN_QUEUED)
1198 knote_dequeue(kn);
1199 if (kn->kn_fop->f_isfd)
1200 FILE_UNUSE(kn->kn_fp, p);
1201 pool_put(&knote_pool, kn);
1202 }
1203
1204
1205 /*
1206 * Queue new event for knote.
1207 */
1208 static void
1209 knote_enqueue(struct knote *kn)
1210 {
1211 struct kqueue *kq;
1212 int s;
1213
1214 kq = kn->kn_kq;
1215 s = splhigh();
1216 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1217
1218 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1219 kn->kn_status |= KN_QUEUED;
1220 kq->kq_count++;
1221 splx(s);
1222 kqueue_wakeup(kq);
1223 }
1224
1225 /*
1226 * Dequeue event for knote.
1227 */
1228 static void
1229 knote_dequeue(struct knote *kn)
1230 {
1231 struct kqueue *kq;
1232 int s;
1233
1234 kq = kn->kn_kq;
1235 s = splhigh();
1236 KASSERT(kn->kn_status & KN_QUEUED);
1237
1238 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1239 kn->kn_status &= ~KN_QUEUED;
1240 kq->kq_count--;
1241 splx(s);
1242 }
1243