kern_event.c revision 1.1.1.1.2.4 1 /* $NetBSD: kern_event.c,v 1.1.1.1.2.4 2001/09/07 21:16:03 thorpej Exp $ */
2 /*-
3 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/fcntl.h>
38 #include <sys/select.h>
39 #include <sys/queue.h>
40 #include <sys/event.h>
41 #include <sys/eventvar.h>
42 #include <sys/poll.h>
43 #include <sys/pool.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/stat.h>
48 #include <sys/uio.h>
49 #include <sys/mount.h>
50 #include <sys/filedesc.h>
51 #include <sys/syscallargs.h>
52
53 static int kqueue_scan(struct file *fp, int maxevents,
54 struct kevent *ulistp, const struct timespec *timeout,
55 struct proc *p, register_t *retval);
56 static void kqueue_wakeup(struct kqueue *kq);
57
58 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
59 struct ucred *cred, int flags);
60 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
61 struct ucred *cred, int flags);
62 static int kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
63 struct proc *p);
64 static int kqueue_fcntl(struct file *fp, u_int com, caddr_t data,
65 struct proc *p);
66 static int kqueue_poll(struct file *fp, int events, struct proc *p);
67 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
68 static int kqueue_stat(struct file *fp, struct stat *sp, struct proc *p);
69 static int kqueue_close(struct file *fp, struct proc *p);
70
71 static struct fileops kqueueops = {
72 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
73 kqueue_stat, kqueue_close, kqueue_kqfilter
74 };
75
76 static void knote_attach(struct knote *kn, struct filedesc *fdp);
77 static void knote_drop(struct knote *kn, struct proc *p);
78 static void knote_enqueue(struct knote *kn);
79 static void knote_dequeue(struct knote *kn);
80
81 static void filt_kqdetach(struct knote *kn);
82 static int filt_kqueue(struct knote *kn, long hint);
83 static int filt_procattach(struct knote *kn);
84 static void filt_procdetach(struct knote *kn);
85 static int filt_proc(struct knote *kn, long hint);
86 static int filt_fileattach(struct knote *kn);
87
88 static struct filterops kqread_filtops =
89 { 1, NULL, filt_kqdetach, filt_kqueue };
90 static struct filterops proc_filtops =
91 { 0, filt_procattach, filt_procdetach, filt_proc };
92 static struct filterops file_filtops =
93 { 1, filt_fileattach, NULL, NULL };
94
95 struct pool kqueue_pool;
96 struct pool knote_pool;
97
98 #define KNOTE_ACTIVATE(kn) \
99 do { \
100 kn->kn_status |= KN_ACTIVE; \
101 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
102 knote_enqueue(kn); \
103 } while(0)
104
105 #define KN_HASHSIZE 64 /* XXX should be tunable */
106 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
107
108 extern struct filterops sig_filtops;
109
110 /*
111 * Table for for all system-defined filters.
112 * These should be listed in the numeric order of the EVFILT_* defines.
113 * If filtops is NULL, the filter isn't implemented in NetBSD.
114 * End of list is when name is NULL.
115 */
116 struct kfilter {
117 char *name; /* name of filter */
118 uint32_t filter; /* id of filter */
119 struct filterops *filtops; /* operations for filter */
120 };
121
122 /* System defined filters */
123 static const struct kfilter sys_kfilters[] = {
124 { "EVFILT_READ", EVFILT_READ, &file_filtops },
125 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
126 { "EVFILT_AIO", EVFILT_AIO, NULL },
127 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
128 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
129 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
130 { NULL, 0, NULL }, /* end of list */
131 };
132
133 /* User defined kfilters */
134 static struct kfilter *user_kfilters; /* array */
135 static int user_kfilterc; /* current offset */
136 static int user_kfiltermaxc; /* max size so far */
137
138 /*
139 * kqueue_init:
140 *
141 * Initialize the kqueue/knote facility.
142 */
143 void
144 kqueue_init(void)
145 {
146
147 pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl",
148 0, pool_page_alloc_nointr, pool_page_free_nointr, M_KEVENT);
149 pool_init(&knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl",
150 0, pool_page_alloc_nointr, pool_page_free_nointr, M_KEVENT);
151 }
152
153 /*
154 * Find kfilter entry by name, or NULL if not found.
155 */
156 static const struct kfilter *
157 kfilter_byname_sys(const char *name)
158 {
159 int i;
160
161 for (i = 0; sys_kfilters[i].name != NULL; i++) {
162 if (strcmp(name, sys_kfilters[i].name) == 0)
163 return (&sys_kfilters[i]);
164 }
165 return (NULL);
166 }
167
168 static struct kfilter *
169 kfilter_byname_user(const char *name)
170 {
171 int i;
172
173 for (i = 0; user_kfilters[i].name != NULL; i++) {
174 if (user_kfilters[i].name != '\0' &&
175 strcmp(name, user_kfilters[i].name) == 0)
176 return (&user_kfilters[i]);
177 }
178 return (NULL);
179 }
180
181 static const struct kfilter *
182 kfilter_byname(const char *name)
183 {
184 const struct kfilter *kfilter;
185
186 if ((kfilter = kfilter_byname_sys(name)) != NULL)
187 return (kfilter);
188
189 return (kfilter_byname_user(name));
190 }
191
192 /*
193 * Find kfilter entry by filter id, or NULL if not found.
194 * Assumes entries are indexed in filter id order, for speed.
195 */
196 static const struct kfilter *
197 kfilter_byfilter(uint32_t filter)
198 {
199 const struct kfilter *kfilter;
200
201 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
202 kfilter = &sys_kfilters[filter];
203 else if (user_kfilters != NULL &&
204 filter < EVFILT_SYSCOUNT + user_kfilterc)
205 /* it's a user filter */
206 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
207 else
208 return (NULL); /* out of range */
209 KASSERT(kfilter->filter == filter); /* sanity check! */
210 return (kfilter);
211 }
212
213 /*
214 * Register a new kfilter. Stores the entry in user_kfilters.
215 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
216 * If retfilter != NULL, the new filterid is returned in it.
217 */
218 int
219 kfilter_register(const char *name, struct filterops *filtops, int *retfilter)
220 {
221 struct kfilter *kfilter;
222 int len;
223
224 if (name == NULL || name[0] == '\0' || filtops == NULL)
225 return (EINVAL); /* invalid args */
226 if (kfilter_byname(name) != NULL)
227 return (EEXIST); /* already exists */
228 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
229 return (EINVAL); /* too many */
230
231 /* need to grow user_kfilters */
232 if (user_kfilterc + 1 > user_kfiltermaxc) {
233 /*
234 * grow in KFILTER_EXTENT chunks. use
235 * malloc(9), because we want to
236 * traverse user_kfilters as an array.
237 */
238 user_kfiltermaxc += KFILTER_EXTENT;
239 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
240 M_KEVENT, M_WAITOK);
241 /* copy existing user_kfilters */
242 if (user_kfilters != NULL)
243 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
244 user_kfilterc * sizeof(struct kfilter *));
245 /* zero new sections */
246 memset((caddr_t)kfilter +
247 user_kfilterc * sizeof(struct kfilter *), 0,
248 (user_kfiltermaxc - user_kfilterc) *
249 sizeof(struct kfilter *));
250 /* switch to new kfilter */
251 if (user_kfilters != NULL)
252 FREE(user_kfilters, M_KEVENT);
253 user_kfilters = kfilter;
254 }
255 len = strlen(name) + 1; /* copy name */
256 user_kfilters[user_kfilterc].name = (char *)
257 malloc(len, M_KEVENT, M_WAITOK);
258 memcpy(user_kfilters[user_kfilterc].name, name, len);
259 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
260 len = sizeof(struct filterops); /* copy filtops */
261 user_kfilters[user_kfilterc].filtops = (struct filterops *)
262 malloc(len, M_KEVENT, M_WAITOK);
263 memcpy(user_kfilters[user_kfilterc].filtops, filtops, len);
264 if (retfilter != NULL)
265 *retfilter = user_kfilters[user_kfilterc].filter;
266 user_kfilterc++; /* finally, increment count */
267 return (0);
268 }
269
270 /*
271 * Unregister a kfilter previously registered with kfilter_register.
272 * This retains the filter id, but clears the name and frees filtops (filter
273 * operations), so that the number isn't reused during a boot.
274 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
275 */
276 int
277 kfilter_unregister(const char *name)
278 {
279 struct kfilter *kfilter;
280
281 if (name == NULL || name[0] == '\0')
282 return (EINVAL); /* invalid name */
283
284 if (kfilter_byname_sys(name) != NULL)
285 return (EINVAL); /* can't detach system filters */
286
287 kfilter = kfilter_byname_user(name);
288 if (kfilter == NULL) /* not found */
289 return (ENOENT);
290
291 if (kfilter->name[0] != '\0') {
292 free(kfilter->name, M_KEVENT);
293 kfilter->name = ""; /* mark as `not implemented' */
294 }
295 if (kfilter->filtops != NULL) {
296 free(kfilter->filtops, M_KEVENT);
297 kfilter->filtops = NULL; /* mark as `not implemented' */
298 }
299 return (0);
300 }
301
302
303 /*
304 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
305 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
306 */
307 static int
308 filt_fileattach(struct knote *kn)
309 {
310 struct file *fp;
311
312 fp = kn->kn_fp;
313 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
314 }
315
316 /*
317 * Filter detach method for EVFILT_READ on kqueue descriptor.
318 */
319 static void
320 filt_kqdetach(struct knote *kn)
321 {
322 struct kqueue *kq;
323
324 kq = (struct kqueue *)kn->kn_fp->f_data;
325 SLIST_REMOVE(&kq->kq_sel.si_klist, kn, knote, kn_selnext);
326 }
327
328 /*
329 * Filter event method for EVFILT_READ on kqueue descriptor.
330 */
331 /*ARGSUSED*/
332 static int
333 filt_kqueue(struct knote *kn, long hint)
334 {
335 struct kqueue *kq;
336
337 kq = (struct kqueue *)kn->kn_fp->f_data;
338 kn->kn_data = kq->kq_count;
339 return (kn->kn_data > 0);
340 }
341
342 /*
343 * Filter attach method for EVFILT_PROC.
344 */
345 static int
346 filt_procattach(struct knote *kn)
347 {
348 struct proc *p;
349
350 p = pfind(kn->kn_id);
351 if (p == NULL)
352 return (ESRCH);
353
354 kn->kn_ptr.p_proc = p;
355 kn->kn_flags |= EV_CLEAR; /* automatically set */
356
357 /*
358 * internal flag indicating registration done by kernel
359 */
360 if (kn->kn_flags & EV_FLAG1) {
361 kn->kn_data = kn->kn_sdata; /* ppid */
362 kn->kn_fflags = NOTE_CHILD;
363 kn->kn_flags &= ~EV_FLAG1;
364 }
365
366 /* XXXLUKEM */
367 /* XXX lock the proc here while adding to the list? */
368 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
369
370 return (0);
371 }
372
373 /*
374 * Filter detach method for EVFILT_PROC.
375 *
376 * The knote may be attached to a different process, which may exit,
377 * leaving nothing for the knote to be attached to. So when the process
378 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
379 * it will be deleted when read out. However, as part of the knote deletion,
380 * this routine is called, so a check is needed to avoid actually performing
381 * a detach, because the original process does not exist any more.
382 */
383 static void
384 filt_procdetach(struct knote *kn)
385 {
386 struct proc *p;
387
388 p = kn->kn_ptr.p_proc;
389 if (kn->kn_status & KN_DETACHED)
390 return;
391
392 /* XXXLUKEM */
393 /* XXX locking? this might modify another process. */
394 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
395 }
396
397 /*
398 * Filter event method for EVFILT_PROC.
399 */
400 static int
401 filt_proc(struct knote *kn, long hint)
402 {
403 u_int event;
404
405 /*
406 * mask off extra data
407 */
408 event = (u_int)hint & NOTE_PCTRLMASK;
409
410 /*
411 * if the user is interested in this event, record it.
412 */
413 if (kn->kn_sfflags & event)
414 kn->kn_fflags |= event;
415
416 /*
417 * process is gone, so flag the event as finished.
418 */
419 if (event == NOTE_EXIT) {
420 kn->kn_status |= KN_DETACHED;
421 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
422 return (1);
423 }
424
425 /*
426 * process forked, and user wants to track the new process,
427 * so attach a new knote to it, and immediately report an
428 * event with the parent's pid.
429 */
430 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
431 struct kevent kev;
432 int error;
433
434 /*
435 * register knote with new process.
436 */
437 kev.ident = hint & NOTE_PDATAMASK; /* pid */
438 kev.filter = kn->kn_filter;
439 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
440 kev.fflags = kn->kn_sfflags;
441 kev.data = kn->kn_id; /* parent */
442 kev.udata = kn->kn_kevent.udata; /* preserve udata */
443 error = kqueue_register(kn->kn_kq, &kev, NULL);
444 if (error)
445 kn->kn_fflags |= NOTE_TRACKERR;
446 }
447
448 return (kn->kn_fflags != 0);
449 }
450
451 /*
452 * kqueue(2) system call.
453 */
454 int
455 sys_kqueue(struct proc *p, void *v, register_t *retval)
456 {
457 struct filedesc *fdp;
458 struct kqueue *kq;
459 struct file *fp;
460 int fd, error;
461
462 fdp = p->p_fd;
463 error = falloc(p, &fp, &fd); /* setup a new file descriptor */
464 if (error)
465 return (error);
466 fp->f_flag = FREAD | FWRITE;
467 fp->f_type = DTYPE_KQUEUE;
468 fp->f_ops = &kqueueops;
469 kq = pool_get(&kqueue_pool, PR_WAITOK);
470 memset((char *)kq, 0, sizeof(struct kqueue));
471 TAILQ_INIT(&kq->kq_head);
472 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
473 *retval = fd;
474 if (fdp->fd_knlistsize < 0)
475 fdp->fd_knlistsize = 0; /* this process has a kq */
476 kq->kq_fdp = fdp;
477 FILE_SET_MATURE(fp);
478 FILE_UNUSE(fp, p); /* falloc() does FILE_USE() */
479 return (error);
480 }
481
482 /*
483 * kevent(2) system call.
484 */
485 int
486 sys_kevent(struct proc *p, void *v, register_t *retval)
487 {
488 struct sys_kevent_args /* {
489 syscallarg(int) fd;
490 syscallarg(const struct kevent *) changelist;
491 syscallarg(int) nchanges;
492 syscallarg(struct kevent *) eventlist;
493 syscallarg(int) nevents;
494 syscallarg(const struct timespec *) timeout;
495 } */ *uap = v;
496 struct filedesc *fdp;
497 struct kevent *kevp;
498 struct kqueue *kq;
499 struct file *fp;
500 struct timespec ts;
501 int i, n, nerrors, error;
502
503 fdp = p->p_fd; /* check that we're dealing with a kq */
504 if ((u_int)SCARG(uap, fd) >= fdp->fd_nfiles ||
505 (fp = fdp->fd_ofiles[SCARG(uap, fd)]) == NULL ||
506 (fp->f_type != DTYPE_KQUEUE))
507 return (EBADF);
508
509 FILE_USE(fp);
510
511 if (SCARG(uap, timeout) != NULL) {
512 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
513 if (error)
514 goto done;
515 SCARG(uap, timeout) = &ts;
516 }
517
518 kq = (struct kqueue *)fp->f_data;
519 nerrors = 0;
520
521 /* traverse list of events to register */
522 while (SCARG(uap, nchanges) > 0) {
523 /* copyin a maximum of KQ_EVENTS at each pass */
524 n = MIN(SCARG(uap, nchanges), KQ_NEVENTS);
525 error = copyin(SCARG(uap, changelist), kq->kq_kev,
526 n * sizeof(struct kevent));
527 if (error)
528 goto done;
529 for (i = 0; i < n; i++) {
530 kevp = &kq->kq_kev[i];
531 kevp->flags &= ~EV_SYSFLAGS;
532 /* register each knote */
533 error = kqueue_register(kq, kevp, p);
534 if (error) {
535 if (SCARG(uap, nevents) != 0) {
536 kevp->flags = EV_ERROR;
537 kevp->data = error;
538 error = copyout((caddr_t)kevp,
539 (caddr_t)SCARG(uap, eventlist),
540 sizeof(*kevp));
541 if (error)
542 goto done;
543 SCARG(uap, eventlist)++;
544 SCARG(uap, nevents)--;
545 nerrors++;
546 } else {
547 goto done;
548 }
549 }
550 }
551 SCARG(uap, nchanges) -= n; /* update the results */
552 SCARG(uap, changelist) += n;
553 }
554 if (nerrors) {
555 *retval = nerrors;
556 error = 0;
557 goto done;
558 }
559
560 /* actually scan through the events */
561 error = kqueue_scan(fp, SCARG(uap, nevents), SCARG(uap, eventlist),
562 SCARG(uap, timeout), p, retval);
563 done:
564 FILE_UNUSE(fp, p);
565 return (error);
566 }
567
568 /*
569 * Register a given kevent kev onto the kqueue
570 */
571 int
572 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
573 {
574 const struct kfilter *kfilter;
575 struct filedesc *fdp;
576 struct file *fp;
577 struct knote *kn;
578 int s, error;
579
580 fdp = kq->kq_fdp;
581 fp = NULL;
582 kn = NULL;
583 error = 0;
584 kfilter = kfilter_byfilter(kev->filter);
585 if (kfilter == NULL || kfilter->filtops == NULL)
586 return (EINVAL); /* filter not found nor implemented */
587
588 /* search if knote already exists */
589 if (kfilter->filtops->f_isfd) { /* monitoring a file descriptor */
590 if ((u_int)kev->ident >= fdp->fd_nfiles ||
591 (fp = fdp->fd_ofiles[kev->ident]) == NULL)
592 return (EBADF); /* validate descriptor */
593 FILE_USE(fp);
594
595 if (kev->ident < fdp->fd_knlistsize) {
596 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
597 if (kq == kn->kn_kq &&
598 kev->filter == kn->kn_filter)
599 break;
600 }
601 } else {
602 /*
603 * not monitoring a file descriptor, so
604 * lookup knotes in internal hash table
605 */
606 if (fdp->fd_knhashmask != 0) {
607 struct klist *list;
608
609 list = &fdp->fd_knhash[
610 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
611 SLIST_FOREACH(kn, list, kn_link)
612 if (kev->ident == kn->kn_id &&
613 kq == kn->kn_kq &&
614 kev->filter == kn->kn_filter)
615 break;
616 }
617 }
618
619 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
620 error = ENOENT; /* filter not found */
621 goto done;
622 }
623
624 /*
625 * kn now contains the matching knote, or NULL if no match
626 */
627 if (kev->flags & EV_ADD) { /* add knote */
628
629 if (kn == NULL) { /* create new knote */
630 kn = pool_get(&knote_pool, PR_WAITOK);
631 if (kn == NULL) {
632 error = ENOMEM;
633 goto done;
634 }
635 kn->kn_fp = fp;
636 kn->kn_kq = kq;
637 kn->kn_fop = kfilter->filtops;
638
639 /*
640 * apply reference count to knote structure, and
641 * do not release it at the end of this routine.
642 */
643 fp = NULL;
644
645 kn->kn_sfflags = kev->fflags;
646 kn->kn_sdata = kev->data;
647 kev->fflags = 0;
648 kev->data = 0;
649 kn->kn_kevent = *kev;
650
651 knote_attach(kn, fdp);
652 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
653 knote_drop(kn, p);
654 goto done;
655 }
656 } else { /* modify existing knote */
657 /*
658 * The user may change some filter values after the
659 * initial EV_ADD, but doing so will not reset any
660 * filter which have already been triggered.
661 */
662 kn->kn_sfflags = kev->fflags;
663 kn->kn_sdata = kev->data;
664 kn->kn_kevent.udata = kev->udata;
665 }
666
667 s = splhigh();
668 if (kn->kn_fop->f_event(kn, 0))
669 KNOTE_ACTIVATE(kn);
670 splx(s);
671
672 } else if (kev->flags & EV_DELETE) { /* delete knote */
673 kn->kn_fop->f_detach(kn);
674 knote_drop(kn, p);
675 goto done;
676 }
677
678 /* disable knote */
679 if ((kev->flags & EV_DISABLE) &&
680 ((kn->kn_status & KN_DISABLED) == 0)) {
681 s = splhigh();
682 kn->kn_status |= KN_DISABLED;
683 splx(s);
684 }
685
686 /* enable knote */
687 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
688 s = splhigh();
689 kn->kn_status &= ~KN_DISABLED;
690 if ((kn->kn_status & KN_ACTIVE) &&
691 ((kn->kn_status & KN_QUEUED) == 0))
692 knote_enqueue(kn);
693 splx(s);
694 }
695
696 done:
697 if (fp != NULL)
698 FILE_UNUSE(fp, p);
699 return (error);
700 }
701
702 /*
703 * Scan through the list of events on fp (for a maximum of maxevents),
704 * returning the results in to ulistp. Timeout is determined by tsp; if
705 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
706 * as appropriate.
707 */
708 static int
709 kqueue_scan(struct file *fp, int maxevents, struct kevent *ulistp,
710 const struct timespec *tsp, struct proc *p, register_t *retval)
711 {
712 struct kqueue *kq;
713 struct kevent *kevp;
714 struct timeval atv;
715 struct knote *kn, marker;
716 int s, count, timeout, nkev, error;
717
718 kq = (struct kqueue *)fp->f_data;
719 count = maxevents;
720 nkev = error = 0;
721 if (count == 0)
722 goto done;
723
724 if (tsp != NULL) { /* timeout supplied */
725 TIMESPEC_TO_TIMEVAL(&atv, tsp);
726 if (itimerfix(&atv)) {
727 error = EINVAL;
728 goto done;
729 }
730 s = splclock();
731 timeradd(&atv, &time, &atv); /* calc. time to wait until */
732 splx(s);
733 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
734 timeout = -1; /* perform a poll */
735 else
736 timeout = hzto(&atv); /* calculate hz till timeout */
737 } else {
738 atv.tv_sec = 0; /* no timeout, wait forever */
739 atv.tv_usec = 0;
740 timeout = 0;
741 }
742 goto start;
743
744 retry:
745 if (atv.tv_sec || atv.tv_usec) { /* timeout requested */
746 s = splclock();
747 if (timercmp(&time, &atv, >=)) {
748 splx(s);
749 goto done; /* timeout reached */
750 }
751 splx(s);
752 timeout = hzto(&atv); /* recalc. timeout remaining */
753 }
754
755 start:
756 kevp = kq->kq_kev;
757 s = splhigh();
758 if (kq->kq_count == 0) {
759 if (timeout < 0) {
760 error = EWOULDBLOCK;
761 } else {
762 kq->kq_state |= KQ_SLEEP;
763 error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
764 }
765 splx(s);
766 if (error == 0)
767 goto retry;
768 /* don't restart after signals... */
769 if (error == ERESTART)
770 error = EINTR;
771 else if (error == EWOULDBLOCK)
772 error = 0;
773 goto done;
774 }
775
776 TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
777 /* mark end of knote list */
778 while (count) { /* while user wants data ... */
779 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
780 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
781 if (kn == &marker) { /* if it's our marker, stop */
782 splx(s);
783 if (count == maxevents)
784 goto retry;
785 goto done;
786 }
787 if (kn->kn_status & KN_DISABLED) {
788 /* don't want disabled events */
789 kn->kn_status &= ~KN_QUEUED;
790 kq->kq_count--;
791 continue;
792 }
793 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
794 kn->kn_fop->f_event(kn, 0) == 0) {
795 /*
796 * non-ONESHOT event that hasn't
797 * triggered again, so de-queue.
798 */
799 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
800 kq->kq_count--;
801 continue;
802 }
803 *kevp = kn->kn_kevent;
804 kevp++;
805 nkev++;
806 if (kn->kn_flags & EV_ONESHOT) {
807 /* delete ONESHOT events after retrieval */
808 kn->kn_status &= ~KN_QUEUED;
809 kq->kq_count--;
810 splx(s);
811 kn->kn_fop->f_detach(kn);
812 knote_drop(kn, p);
813 s = splhigh();
814 } else if (kn->kn_flags & EV_CLEAR) {
815 /* clear state after retrieval */
816 kn->kn_data = 0;
817 kn->kn_fflags = 0;
818 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
819 kq->kq_count--;
820 } else {
821 /* add event back on list */
822 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
823 }
824 count--;
825 if (nkev == KQ_NEVENTS) {
826 /* do copyouts in KQ_NEVENTS chunks */
827 splx(s);
828 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
829 sizeof(struct kevent) * nkev);
830 ulistp += nkev;
831 nkev = 0;
832 kevp = kq->kq_kev;
833 s = splhigh();
834 if (error)
835 break;
836 }
837 }
838 /* remove marker */
839 TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
840 splx(s);
841 done:
842 if (nkev != 0) /* copyout remaining events */
843 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
844 sizeof(struct kevent) * nkev);
845 *retval = maxevents - count;
846 return (error);
847 }
848
849 /*
850 * struct fileops read method for a kqueue descriptor.
851 * Not implemented.
852 * XXX: This could be expanded to call kqueue_scan, if desired.
853 */
854 /*ARGSUSED*/
855 static int
856 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
857 struct ucred *cred, int flags)
858 {
859
860 return (ENXIO);
861 }
862
863 /*
864 * struct fileops write method for a kqueue descriptor.
865 * Not implemented.
866 */
867 /*ARGSUSED*/
868 static int
869 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
870 struct ucred *cred, int flags)
871 {
872
873 return (ENXIO);
874 }
875
876 /*
877 * struct fileops ioctl method for a kqueue descriptor.
878 *
879 * Two ioctls are currently supported. They both use struct kfilter_mapping:
880 * KFILTER_BYNAME find name for filter, and return result in
881 * name, which is of size len.
882 * KFILTER_BYFILTER find filter for name. len is ignored.
883 */
884 /*ARGSUSED*/
885 static int
886 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
887 {
888 struct kfilter_mapping *km;
889 const struct kfilter *kfilter;
890 char *name;
891 int error;
892
893 km = (struct kfilter_mapping *)data;
894 error = 0;
895
896 switch (com) {
897 case KFILTER_BYFILTER: /* convert filter -> name */
898 kfilter = kfilter_byfilter(km->filter);
899 if (kfilter != NULL)
900 error = copyoutstr(kfilter->name, km->name, km->len,
901 NULL);
902 else
903 error = ENOENT;
904 break;
905
906 case KFILTER_BYNAME: /* convert name -> filter */
907 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
908 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
909 if (error) {
910 free(name, M_KEVENT);
911 break;
912 }
913 kfilter = kfilter_byname(name);
914 if (kfilter != NULL)
915 km->filter = kfilter->filter;
916 else
917 error = ENOENT;
918 free(name, M_KEVENT);
919 break;
920
921 #if 1 /* XXXLUKEM - test register & unregister */
922 case KFILTER_REGISTER:
923 case KFILTER_UNREGISTER:
924 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
925 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
926 if (error) {
927 free(name, M_KEVENT);
928 break;
929 }
930 if (com == KFILTER_REGISTER) {
931 kfilter = kfilter_byfilter(km->filter);
932 if (kfilter != NULL) {
933 error = kfilter_register(name,
934 kfilter->filtops, &km->filter);
935 } else
936 error = ENOENT;
937 } else
938 error = kfilter_unregister(name);
939 free(name, M_KEVENT);
940 break;
941 #endif
942
943 default:
944 error = ENOTTY;
945
946 }
947 return (error);
948 }
949
950 /*
951 * struct fileops fcntl method for a kqueue descriptor.
952 * Not implemented.
953 */
954 /*ARGSUSED*/
955 static int
956 kqueue_fcntl(struct file *fp, u_int com, caddr_t data, struct proc *p)
957 {
958
959 return (ENOTTY);
960 }
961
962 /*
963 * struct fileops poll method for a kqueue descriptor.
964 * Determine if kqueue has events pending.
965 */
966 /*ARGSUSED*/
967 static int
968 kqueue_poll(struct file *fp, int events, struct proc *p)
969 {
970 struct kqueue *kq;
971 int revents, s;
972
973 kq = (struct kqueue *)fp->f_data;
974 revents = 0;
975 s = splnet(); /* XXXLUKEM: is this correct? */
976 if (events & (POLLIN | POLLRDNORM)) {
977 if (kq->kq_count) {
978 revents |= events & (POLLIN | POLLRDNORM);
979 } else {
980 /* XXXLUKEM: splsched() for next? */
981 selrecord(p, &kq->kq_sel);
982 kq->kq_state |= KQ_SEL;
983 }
984 }
985 splx(s);
986 return (revents);
987 }
988
989 /*
990 * struct fileops stat method for a kqueue descriptor.
991 * Returns dummy info, with st_size being number of events pending.
992 */
993 /*ARGSUSED*/
994 static int
995 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
996 {
997 struct kqueue *kq;
998
999 kq = (struct kqueue *)fp->f_data;
1000 memset((void *)st, 0, sizeof(*st));
1001 st->st_size = kq->kq_count;
1002 st->st_blksize = sizeof(struct kevent);
1003 st->st_mode = S_IFIFO;
1004 return (0);
1005 }
1006
1007 /*
1008 * struct fileops close method for a kqueue descriptor.
1009 * Cleans up kqueue.
1010 */
1011 /*ARGSUSED*/
1012 static int
1013 kqueue_close(struct file *fp, struct proc *p)
1014 {
1015 struct kqueue *kq;
1016 struct filedesc *fdp;
1017 struct knote **knp, *kn, *kn0;
1018 int i;
1019
1020 kq = (struct kqueue *)fp->f_data;
1021 fdp = p->p_fd;
1022 for (i = 0; i < fdp->fd_knlistsize; i++) {
1023 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1024 kn = *knp;
1025 while (kn != NULL) {
1026 kn0 = SLIST_NEXT(kn, kn_link);
1027 if (kq == kn->kn_kq) {
1028 kn->kn_fop->f_detach(kn);
1029 FILE_UNUSE(kn->kn_fp, p);
1030 pool_put(&knote_pool, kn);
1031 *knp = kn0;
1032 } else {
1033 knp = &SLIST_NEXT(kn, kn_link);
1034 }
1035 kn = kn0;
1036 }
1037 }
1038 if (fdp->fd_knhashmask != 0) {
1039 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1040 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1041 kn = *knp;
1042 while (kn != NULL) {
1043 kn0 = SLIST_NEXT(kn, kn_link);
1044 if (kq == kn->kn_kq) {
1045 kn->kn_fop->f_detach(kn);
1046 /* XXX non-fd release of kn->kn_ptr */
1047 pool_put(&knote_pool, kn);
1048 *knp = kn0;
1049 } else {
1050 knp = &SLIST_NEXT(kn, kn_link);
1051 }
1052 kn = kn0;
1053 }
1054 }
1055 }
1056 pool_put(&kqueue_pool, kq);
1057 fp->f_data = NULL;
1058
1059 return (0);
1060 }
1061
1062 /*
1063 * wakeup a kqueue
1064 */
1065 static void
1066 kqueue_wakeup(struct kqueue *kq)
1067 {
1068
1069 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1070 kq->kq_state &= ~KQ_SLEEP;
1071 wakeup(kq); /* ... wakeup */
1072 }
1073 if (kq->kq_state & KQ_SEL) { /* if currently polling ... */
1074 kq->kq_state &= ~KQ_SEL;
1075 selwakeup(&kq->kq_sel); /* ... selwakeup */
1076 }
1077 KNOTE(&kq->kq_sel.si_klist, 0);
1078 }
1079
1080 /*
1081 * struct fileops kqfilter method for a kqueue descriptor.
1082 * Event triggered when monitored kqueue changes.
1083 */
1084 /*ARGSUSED*/
1085 static int
1086 kqueue_kqfilter(struct file *fp, struct knote *kn)
1087 {
1088 struct kqueue *kq;
1089
1090 kq = (struct kqueue *)kn->kn_fp->f_data;
1091 if (kn->kn_filter != EVFILT_READ)
1092 return (1);
1093 kn->kn_fop = &kqread_filtops;
1094 SLIST_INSERT_HEAD(&kq->kq_sel.si_klist, kn, kn_selnext);
1095 return (0);
1096 }
1097
1098
1099 /*
1100 * Walk down a list of knotes, activating them if their event has triggered.
1101 */
1102 void
1103 knote(struct klist *list, long hint)
1104 {
1105 struct knote *kn;
1106
1107 SLIST_FOREACH(kn, list, kn_selnext)
1108 if (kn->kn_fop->f_event(kn, hint))
1109 KNOTE_ACTIVATE(kn);
1110 }
1111
1112 /*
1113 * Remove all knotes from a specified klist
1114 */
1115 void
1116 knote_remove(struct proc *p, struct klist *list)
1117 {
1118 struct knote *kn;
1119
1120 while ((kn = SLIST_FIRST(list)) != NULL) {
1121 kn->kn_fop->f_detach(kn);
1122 knote_drop(kn, p);
1123 }
1124 }
1125
1126 /*
1127 * Remove all knotes referencing a specified fd
1128 */
1129 void
1130 knote_fdclose(struct proc *p, int fd)
1131 {
1132 struct filedesc *fdp;
1133 struct klist *list;
1134
1135 fdp = p->p_fd;
1136 list = &fdp->fd_knlist[fd];
1137 knote_remove(p, list);
1138 }
1139
1140 /*
1141 * Attach a new knote to a file descriptor
1142 */
1143 static void
1144 knote_attach(struct knote *kn, struct filedesc *fdp)
1145 {
1146 struct klist *list;
1147 int size;
1148
1149 if (! kn->kn_fop->f_isfd) {
1150 /*
1151 * if knote is not on an fd, store
1152 * on internal hash table.
1153 */
1154 if (fdp->fd_knhashmask == 0)
1155 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1156 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1157 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1158 goto done;
1159 }
1160
1161 /*
1162 * otherwise, knote is on an fd.
1163 * knotes are stored in fd_knlist
1164 * indexed by kn->kn_id.
1165 */
1166 if (fdp->fd_knlistsize <= kn->kn_id) {
1167 /* expand list if too small */
1168 size = fdp->fd_knlistsize;
1169 while (size <= kn->kn_id)
1170 size += KQ_EXTENT; /* grow in KQ_EXTENT chunks */
1171 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1172 /* copy existing knlist */
1173 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1174 fdp->fd_knlistsize * sizeof(struct klist *));
1175 /* zero new sections */
1176 memset((caddr_t)list +
1177 fdp->fd_knlistsize * sizeof(struct klist *), 0,
1178 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1179 if (fdp->fd_knlist != NULL) /* switch to new knlist */
1180 FREE(fdp->fd_knlist, M_KEVENT);
1181 fdp->fd_knlistsize = size;
1182 fdp->fd_knlist = list;
1183 }
1184 list = &fdp->fd_knlist[kn->kn_id]; /* get list head for this fd */
1185 done:
1186 SLIST_INSERT_HEAD(list, kn, kn_link); /* add new knote */
1187 kn->kn_status = 0;
1188 }
1189
1190 /*
1191 * Drop knote.
1192 * Should be called at spl == 0, since we don't want to hold spl
1193 * while calling FILE_UNUSE and free.
1194 */
1195 static void
1196 knote_drop(struct knote *kn, struct proc *p)
1197 {
1198 struct filedesc *fdp;
1199 struct klist *list;
1200
1201 fdp = p->p_fd;
1202 if (kn->kn_fop->f_isfd)
1203 list = &fdp->fd_knlist[kn->kn_id];
1204 else
1205 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1206
1207 SLIST_REMOVE(list, kn, knote, kn_link);
1208 if (kn->kn_status & KN_QUEUED)
1209 knote_dequeue(kn);
1210 if (kn->kn_fop->f_isfd)
1211 FILE_UNUSE(kn->kn_fp, p);
1212 pool_put(&knote_pool, kn);
1213 }
1214
1215
1216 /*
1217 * Queue new event for knote.
1218 */
1219 static void
1220 knote_enqueue(struct knote *kn)
1221 {
1222 struct kqueue *kq;
1223 int s;
1224
1225 kq = kn->kn_kq;
1226 s = splhigh();
1227 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1228
1229 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1230 kn->kn_status |= KN_QUEUED;
1231 kq->kq_count++;
1232 splx(s);
1233 kqueue_wakeup(kq);
1234 }
1235
1236 /*
1237 * Dequeue event for knote.
1238 */
1239 static void
1240 knote_dequeue(struct knote *kn)
1241 {
1242 struct kqueue *kq;
1243 int s;
1244
1245 kq = kn->kn_kq;
1246 s = splhigh();
1247 KASSERT(kn->kn_status & KN_QUEUED);
1248
1249 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1250 kn->kn_status &= ~KN_QUEUED;
1251 kq->kq_count--;
1252 splx(s);
1253 }
1254