kern_event.c revision 1.1.1.1.2.8 1 /* $NetBSD: kern_event.c,v 1.1.1.1.2.8 2002/02/21 20:36:12 jdolecek Exp $ */
2 /*-
3 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/fcntl.h>
38 #include <sys/select.h>
39 #include <sys/queue.h>
40 #include <sys/event.h>
41 #include <sys/eventvar.h>
42 #include <sys/poll.h>
43 #include <sys/pool.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/stat.h>
48 #include <sys/uio.h>
49 #include <sys/mount.h>
50 #include <sys/filedesc.h>
51 #include <sys/syscallargs.h>
52
53 static int kqueue_scan(struct file *fp, int maxevents,
54 struct kevent *ulistp, const struct timespec *timeout,
55 struct proc *p, register_t *retval);
56 static void kqueue_wakeup(struct kqueue *kq);
57
58 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
59 struct ucred *cred, int flags);
60 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
61 struct ucred *cred, int flags);
62 static int kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
63 struct proc *p);
64 static int kqueue_fcntl(struct file *fp, u_int com, caddr_t data,
65 struct proc *p);
66 static int kqueue_poll(struct file *fp, int events, struct proc *p);
67 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
68 static int kqueue_stat(struct file *fp, struct stat *sp, struct proc *p);
69 static int kqueue_close(struct file *fp, struct proc *p);
70
71 static struct fileops kqueueops = {
72 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
73 kqueue_stat, kqueue_close, kqueue_kqfilter
74 };
75
76 static void knote_attach(struct knote *kn, struct filedesc *fdp);
77 static void knote_drop(struct knote *kn, struct proc *p);
78 static void knote_enqueue(struct knote *kn);
79 static void knote_dequeue(struct knote *kn);
80
81 static void filt_kqdetach(struct knote *kn);
82 static int filt_kqueue(struct knote *kn, long hint);
83 static int filt_procattach(struct knote *kn);
84 static void filt_procdetach(struct knote *kn);
85 static int filt_proc(struct knote *kn, long hint);
86 static int filt_fileattach(struct knote *kn);
87
88 static const struct filterops kqread_filtops =
89 { 1, NULL, filt_kqdetach, filt_kqueue };
90 static const struct filterops proc_filtops =
91 { 0, filt_procattach, filt_procdetach, filt_proc };
92 static const struct filterops file_filtops =
93 { 1, filt_fileattach, NULL, NULL };
94
95 struct pool kqueue_pool;
96 struct pool knote_pool;
97
98 #define KNOTE_ACTIVATE(kn) \
99 do { \
100 kn->kn_status |= KN_ACTIVE; \
101 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
102 knote_enqueue(kn); \
103 } while(0)
104
105 #define KN_HASHSIZE 64 /* XXX should be tunable */
106 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
107
108 extern const struct filterops sig_filtops;
109
110 /*
111 * Table for for all system-defined filters.
112 * These should be listed in the numeric order of the EVFILT_* defines.
113 * If filtops is NULL, the filter isn't implemented in NetBSD.
114 * End of list is when name is NULL.
115 */
116 struct kfilter {
117 const char *name; /* name of filter */
118 uint32_t filter; /* id of filter */
119 const struct filterops *filtops;/* operations for filter */
120 };
121
122 /* System defined filters */
123 static const struct kfilter sys_kfilters[] = {
124 { "EVFILT_READ", EVFILT_READ, &file_filtops },
125 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
126 { "EVFILT_AIO", EVFILT_AIO, NULL },
127 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
128 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
129 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
130 { NULL, 0, NULL }, /* end of list */
131 };
132
133 /* User defined kfilters */
134 static struct kfilter *user_kfilters; /* array */
135 static int user_kfilterc; /* current offset */
136 static int user_kfiltermaxc; /* max size so far */
137
138 /*
139 * kqueue_init:
140 *
141 * Initialize the kqueue/knote facility.
142 */
143 void
144 kqueue_init(void)
145 {
146
147 pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl",
148 0, pool_page_alloc_nointr, pool_page_free_nointr, M_KEVENT);
149 pool_init(&knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl",
150 0, pool_page_alloc_nointr, pool_page_free_nointr, M_KEVENT);
151 }
152
153 /*
154 * Find kfilter entry by name, or NULL if not found.
155 */
156 static const struct kfilter *
157 kfilter_byname_sys(const char *name)
158 {
159 int i;
160
161 for (i = 0; sys_kfilters[i].name != NULL; i++) {
162 if (strcmp(name, sys_kfilters[i].name) == 0)
163 return (&sys_kfilters[i]);
164 }
165 return (NULL);
166 }
167
168 static struct kfilter *
169 kfilter_byname_user(const char *name)
170 {
171 int i;
172
173 for (i = 0; user_kfilters[i].name != NULL; i++) {
174 if (user_kfilters[i].name != '\0' &&
175 strcmp(name, user_kfilters[i].name) == 0)
176 return (&user_kfilters[i]);
177 }
178 return (NULL);
179 }
180
181 static const struct kfilter *
182 kfilter_byname(const char *name)
183 {
184 const struct kfilter *kfilter;
185
186 if ((kfilter = kfilter_byname_sys(name)) != NULL)
187 return (kfilter);
188
189 return (kfilter_byname_user(name));
190 }
191
192 /*
193 * Find kfilter entry by filter id, or NULL if not found.
194 * Assumes entries are indexed in filter id order, for speed.
195 */
196 static const struct kfilter *
197 kfilter_byfilter(uint32_t filter)
198 {
199 const struct kfilter *kfilter;
200
201 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
202 kfilter = &sys_kfilters[filter];
203 else if (user_kfilters != NULL &&
204 filter < EVFILT_SYSCOUNT + user_kfilterc)
205 /* it's a user filter */
206 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
207 else
208 return (NULL); /* out of range */
209 KASSERT(kfilter->filter == filter); /* sanity check! */
210 return (kfilter);
211 }
212
213 /*
214 * Register a new kfilter. Stores the entry in user_kfilters.
215 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
216 * If retfilter != NULL, the new filterid is returned in it.
217 */
218 int
219 kfilter_register(const char *name, const struct filterops *filtops,
220 int *retfilter)
221 {
222 struct kfilter *kfilter;
223 void *space;
224 int len;
225
226 if (name == NULL || name[0] == '\0' || filtops == NULL)
227 return (EINVAL); /* invalid args */
228 if (kfilter_byname(name) != NULL)
229 return (EEXIST); /* already exists */
230 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
231 return (EINVAL); /* too many */
232
233 /* need to grow user_kfilters */
234 if (user_kfilterc + 1 > user_kfiltermaxc) {
235 /*
236 * grow in KFILTER_EXTENT chunks. use
237 * malloc(9), because we want to
238 * traverse user_kfilters as an array.
239 */
240 user_kfiltermaxc += KFILTER_EXTENT;
241 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
242 M_KEVENT, M_WAITOK);
243 /* copy existing user_kfilters */
244 if (user_kfilters != NULL)
245 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
246 user_kfilterc * sizeof(struct kfilter *));
247 /* zero new sections */
248 memset((caddr_t)kfilter +
249 user_kfilterc * sizeof(struct kfilter *), 0,
250 (user_kfiltermaxc - user_kfilterc) *
251 sizeof(struct kfilter *));
252 /* switch to new kfilter */
253 if (user_kfilters != NULL)
254 FREE(user_kfilters, M_KEVENT);
255 user_kfilters = kfilter;
256 }
257 len = strlen(name) + 1; /* copy name */
258 space = malloc(len, M_KEVENT, M_WAITOK);
259 memcpy(space, name, len);
260 user_kfilters[user_kfilterc].name = space;
261
262 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
263
264 len = sizeof(struct filterops); /* copy filtops */
265 space = malloc(len, M_KEVENT, M_WAITOK);
266 memcpy(space, filtops, len);
267 user_kfilters[user_kfilterc].filtops = space;
268
269 if (retfilter != NULL)
270 *retfilter = user_kfilters[user_kfilterc].filter;
271 user_kfilterc++; /* finally, increment count */
272 return (0);
273 }
274
275 /*
276 * Unregister a kfilter previously registered with kfilter_register.
277 * This retains the filter id, but clears the name and frees filtops (filter
278 * operations), so that the number isn't reused during a boot.
279 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
280 */
281 int
282 kfilter_unregister(const char *name)
283 {
284 struct kfilter *kfilter;
285
286 if (name == NULL || name[0] == '\0')
287 return (EINVAL); /* invalid name */
288
289 if (kfilter_byname_sys(name) != NULL)
290 return (EINVAL); /* can't detach system filters */
291
292 kfilter = kfilter_byname_user(name);
293 if (kfilter == NULL) /* not found */
294 return (ENOENT);
295
296 if (kfilter->name[0] != '\0') {
297 /* XXX Cast away const (but we know it's safe. */
298 free((void *) kfilter->name, M_KEVENT);
299 kfilter->name = ""; /* mark as `not implemented' */
300 }
301 if (kfilter->filtops != NULL) {
302 /* XXX Cast away const (but we know it's safe. */
303 free((void *) kfilter->filtops, M_KEVENT);
304 kfilter->filtops = NULL; /* mark as `not implemented' */
305 }
306 return (0);
307 }
308
309
310 /*
311 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
312 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
313 */
314 static int
315 filt_fileattach(struct knote *kn)
316 {
317 struct file *fp;
318
319 fp = kn->kn_fp;
320 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
321 }
322
323 /*
324 * Filter detach method for EVFILT_READ on kqueue descriptor.
325 */
326 static void
327 filt_kqdetach(struct knote *kn)
328 {
329 struct kqueue *kq;
330
331 kq = (struct kqueue *)kn->kn_fp->f_data;
332 SLIST_REMOVE(&kq->kq_sel.si_klist, kn, knote, kn_selnext);
333 }
334
335 /*
336 * Filter event method for EVFILT_READ on kqueue descriptor.
337 */
338 /*ARGSUSED*/
339 static int
340 filt_kqueue(struct knote *kn, long hint)
341 {
342 struct kqueue *kq;
343
344 kq = (struct kqueue *)kn->kn_fp->f_data;
345 kn->kn_data = kq->kq_count;
346 return (kn->kn_data > 0);
347 }
348
349 /*
350 * Filter attach method for EVFILT_PROC.
351 */
352 static int
353 filt_procattach(struct knote *kn)
354 {
355 struct proc *p;
356
357 p = pfind(kn->kn_id);
358 if (p == NULL)
359 return (ESRCH);
360
361 kn->kn_ptr.p_proc = p;
362 kn->kn_flags |= EV_CLEAR; /* automatically set */
363
364 /*
365 * internal flag indicating registration done by kernel
366 */
367 if (kn->kn_flags & EV_FLAG1) {
368 kn->kn_data = kn->kn_sdata; /* ppid */
369 kn->kn_fflags = NOTE_CHILD;
370 kn->kn_flags &= ~EV_FLAG1;
371 }
372
373 /* XXXLUKEM */
374 /* XXX lock the proc here while adding to the list? */
375 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
376
377 return (0);
378 }
379
380 /*
381 * Filter detach method for EVFILT_PROC.
382 *
383 * The knote may be attached to a different process, which may exit,
384 * leaving nothing for the knote to be attached to. So when the process
385 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
386 * it will be deleted when read out. However, as part of the knote deletion,
387 * this routine is called, so a check is needed to avoid actually performing
388 * a detach, because the original process does not exist any more.
389 */
390 static void
391 filt_procdetach(struct knote *kn)
392 {
393 struct proc *p;
394
395 p = kn->kn_ptr.p_proc;
396 if (kn->kn_status & KN_DETACHED)
397 return;
398
399 /* XXXLUKEM */
400 /* XXX locking? this might modify another process. */
401 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
402 }
403
404 /*
405 * Filter event method for EVFILT_PROC.
406 */
407 static int
408 filt_proc(struct knote *kn, long hint)
409 {
410 u_int event;
411
412 /*
413 * mask off extra data
414 */
415 event = (u_int)hint & NOTE_PCTRLMASK;
416
417 /*
418 * if the user is interested in this event, record it.
419 */
420 if (kn->kn_sfflags & event)
421 kn->kn_fflags |= event;
422
423 /*
424 * process is gone, so flag the event as finished.
425 */
426 if (event == NOTE_EXIT) {
427 kn->kn_status |= KN_DETACHED;
428 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
429 return (1);
430 }
431
432 /*
433 * process forked, and user wants to track the new process,
434 * so attach a new knote to it, and immediately report an
435 * event with the parent's pid.
436 */
437 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
438 struct kevent kev;
439 int error;
440
441 /*
442 * register knote with new process.
443 */
444 kev.ident = hint & NOTE_PDATAMASK; /* pid */
445 kev.filter = kn->kn_filter;
446 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
447 kev.fflags = kn->kn_sfflags;
448 kev.data = kn->kn_id; /* parent */
449 kev.udata = kn->kn_kevent.udata; /* preserve udata */
450 error = kqueue_register(kn->kn_kq, &kev, NULL);
451 if (error)
452 kn->kn_fflags |= NOTE_TRACKERR;
453 }
454
455 return (kn->kn_fflags != 0);
456 }
457
458 /*
459 * filt_seltrue:
460 *
461 * This filter "event" routine simulates seltrue().
462 */
463 int
464 filt_seltrue(struct knote *kn, long hint)
465 {
466
467 /*
468 * We don't know how much data can be read/written,
469 * but we know that it *can* be. This is about as
470 * good as select/poll does as well.
471 */
472 kn->kn_data = 0;
473 return (1);
474 }
475
476 /*
477 * kqueue(2) system call.
478 */
479 int
480 sys_kqueue(struct proc *p, void *v, register_t *retval)
481 {
482 struct filedesc *fdp;
483 struct kqueue *kq;
484 struct file *fp;
485 int fd, error;
486
487 fdp = p->p_fd;
488 error = falloc(p, &fp, &fd); /* setup a new file descriptor */
489 if (error)
490 return (error);
491 fp->f_flag = FREAD | FWRITE;
492 fp->f_type = DTYPE_KQUEUE;
493 fp->f_ops = &kqueueops;
494 kq = pool_get(&kqueue_pool, PR_WAITOK);
495 memset((char *)kq, 0, sizeof(struct kqueue));
496 TAILQ_INIT(&kq->kq_head);
497 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
498 *retval = fd;
499 if (fdp->fd_knlistsize < 0)
500 fdp->fd_knlistsize = 0; /* this process has a kq */
501 kq->kq_fdp = fdp;
502 FILE_SET_MATURE(fp);
503 FILE_UNUSE(fp, p); /* falloc() does FILE_USE() */
504 return (error);
505 }
506
507 /*
508 * kevent(2) system call.
509 */
510 int
511 sys_kevent(struct proc *p, void *v, register_t *retval)
512 {
513 struct sys_kevent_args /* {
514 syscallarg(int) fd;
515 syscallarg(const struct kevent *) changelist;
516 syscallarg(int) nchanges;
517 syscallarg(struct kevent *) eventlist;
518 syscallarg(int) nevents;
519 syscallarg(const struct timespec *) timeout;
520 } */ *uap = v;
521 struct filedesc *fdp;
522 struct kevent *kevp;
523 struct kqueue *kq;
524 struct file *fp;
525 struct timespec ts;
526 int i, n, nerrors, error;
527
528 fdp = p->p_fd; /* check that we're dealing with a kq */
529 if ((u_int)SCARG(uap, fd) >= fdp->fd_nfiles ||
530 (fp = fdp->fd_ofiles[SCARG(uap, fd)]) == NULL ||
531 (fp->f_type != DTYPE_KQUEUE))
532 return (EBADF);
533
534 FILE_USE(fp);
535
536 if (SCARG(uap, timeout) != NULL) {
537 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
538 if (error)
539 goto done;
540 SCARG(uap, timeout) = &ts;
541 }
542
543 kq = (struct kqueue *)fp->f_data;
544 nerrors = 0;
545
546 /* traverse list of events to register */
547 while (SCARG(uap, nchanges) > 0) {
548 /* copyin a maximum of KQ_EVENTS at each pass */
549 n = MIN(SCARG(uap, nchanges), KQ_NEVENTS);
550 error = copyin(SCARG(uap, changelist), kq->kq_kev,
551 n * sizeof(struct kevent));
552 if (error)
553 goto done;
554 for (i = 0; i < n; i++) {
555 kevp = &kq->kq_kev[i];
556 kevp->flags &= ~EV_SYSFLAGS;
557 /* register each knote */
558 error = kqueue_register(kq, kevp, p);
559 if (error) {
560 if (SCARG(uap, nevents) != 0) {
561 kevp->flags = EV_ERROR;
562 kevp->data = error;
563 error = copyout((caddr_t)kevp,
564 (caddr_t)SCARG(uap, eventlist),
565 sizeof(*kevp));
566 if (error)
567 goto done;
568 SCARG(uap, eventlist)++;
569 SCARG(uap, nevents)--;
570 nerrors++;
571 } else {
572 goto done;
573 }
574 }
575 }
576 SCARG(uap, nchanges) -= n; /* update the results */
577 SCARG(uap, changelist) += n;
578 }
579 if (nerrors) {
580 *retval = nerrors;
581 error = 0;
582 goto done;
583 }
584
585 /* actually scan through the events */
586 error = kqueue_scan(fp, SCARG(uap, nevents), SCARG(uap, eventlist),
587 SCARG(uap, timeout), p, retval);
588 done:
589 FILE_UNUSE(fp, p);
590 return (error);
591 }
592
593 /*
594 * Register a given kevent kev onto the kqueue
595 */
596 int
597 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
598 {
599 const struct kfilter *kfilter;
600 struct filedesc *fdp;
601 struct file *fp;
602 struct knote *kn;
603 int s, error;
604
605 fdp = kq->kq_fdp;
606 fp = NULL;
607 kn = NULL;
608 error = 0;
609 kfilter = kfilter_byfilter(kev->filter);
610 if (kfilter == NULL || kfilter->filtops == NULL)
611 return (EINVAL); /* filter not found nor implemented */
612
613 /* search if knote already exists */
614 if (kfilter->filtops->f_isfd) { /* monitoring a file descriptor */
615 if ((u_int)kev->ident >= fdp->fd_nfiles ||
616 (fp = fdp->fd_ofiles[kev->ident]) == NULL)
617 return (EBADF); /* validate descriptor */
618 FILE_USE(fp);
619
620 if (kev->ident < fdp->fd_knlistsize) {
621 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
622 if (kq == kn->kn_kq &&
623 kev->filter == kn->kn_filter)
624 break;
625 }
626 } else {
627 /*
628 * not monitoring a file descriptor, so
629 * lookup knotes in internal hash table
630 */
631 if (fdp->fd_knhashmask != 0) {
632 struct klist *list;
633
634 list = &fdp->fd_knhash[
635 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
636 SLIST_FOREACH(kn, list, kn_link)
637 if (kev->ident == kn->kn_id &&
638 kq == kn->kn_kq &&
639 kev->filter == kn->kn_filter)
640 break;
641 }
642 }
643
644 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
645 error = ENOENT; /* filter not found */
646 goto done;
647 }
648
649 /*
650 * kn now contains the matching knote, or NULL if no match
651 */
652 if (kev->flags & EV_ADD) { /* add knote */
653
654 if (kn == NULL) { /* create new knote */
655 kn = pool_get(&knote_pool, PR_WAITOK);
656 if (kn == NULL) {
657 error = ENOMEM;
658 goto done;
659 }
660 kn->kn_fp = fp;
661 kn->kn_kq = kq;
662 kn->kn_fop = kfilter->filtops;
663
664 /*
665 * apply reference count to knote structure, and
666 * do not release it at the end of this routine.
667 */
668 fp = NULL;
669
670 kn->kn_sfflags = kev->fflags;
671 kn->kn_sdata = kev->data;
672 kev->fflags = 0;
673 kev->data = 0;
674 kn->kn_kevent = *kev;
675
676 knote_attach(kn, fdp);
677 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
678 knote_drop(kn, p);
679 goto done;
680 }
681 } else { /* modify existing knote */
682 /*
683 * The user may change some filter values after the
684 * initial EV_ADD, but doing so will not reset any
685 * filter which have already been triggered.
686 */
687 kn->kn_sfflags = kev->fflags;
688 kn->kn_sdata = kev->data;
689 kn->kn_kevent.udata = kev->udata;
690 }
691
692 s = splhigh();
693 if (kn->kn_fop->f_event(kn, 0))
694 KNOTE_ACTIVATE(kn);
695 splx(s);
696
697 } else if (kev->flags & EV_DELETE) { /* delete knote */
698 kn->kn_fop->f_detach(kn);
699 knote_drop(kn, p);
700 goto done;
701 }
702
703 /* disable knote */
704 if ((kev->flags & EV_DISABLE) &&
705 ((kn->kn_status & KN_DISABLED) == 0)) {
706 s = splhigh();
707 kn->kn_status |= KN_DISABLED;
708 splx(s);
709 }
710
711 /* enable knote */
712 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
713 s = splhigh();
714 kn->kn_status &= ~KN_DISABLED;
715 if ((kn->kn_status & KN_ACTIVE) &&
716 ((kn->kn_status & KN_QUEUED) == 0))
717 knote_enqueue(kn);
718 splx(s);
719 }
720
721 done:
722 if (fp != NULL)
723 FILE_UNUSE(fp, p);
724 return (error);
725 }
726
727 /*
728 * Scan through the list of events on fp (for a maximum of maxevents),
729 * returning the results in to ulistp. Timeout is determined by tsp; if
730 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
731 * as appropriate.
732 */
733 static int
734 kqueue_scan(struct file *fp, int maxevents, struct kevent *ulistp,
735 const struct timespec *tsp, struct proc *p, register_t *retval)
736 {
737 struct kqueue *kq;
738 struct kevent *kevp;
739 struct timeval atv;
740 struct knote *kn, marker;
741 int s, count, timeout, nkev, error;
742
743 kq = (struct kqueue *)fp->f_data;
744 count = maxevents;
745 nkev = error = 0;
746 if (count == 0)
747 goto done;
748
749 if (tsp != NULL) { /* timeout supplied */
750 TIMESPEC_TO_TIMEVAL(&atv, tsp);
751 if (itimerfix(&atv)) {
752 error = EINVAL;
753 goto done;
754 }
755 s = splclock();
756 timeradd(&atv, &time, &atv); /* calc. time to wait until */
757 splx(s);
758 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
759 timeout = -1; /* perform a poll */
760 else
761 timeout = hzto(&atv); /* calculate hz till timeout */
762 } else {
763 atv.tv_sec = 0; /* no timeout, wait forever */
764 atv.tv_usec = 0;
765 timeout = 0;
766 }
767 goto start;
768
769 retry:
770 if (atv.tv_sec || atv.tv_usec) { /* timeout requested */
771 s = splclock();
772 if (timercmp(&time, &atv, >=)) {
773 splx(s);
774 goto done; /* timeout reached */
775 }
776 splx(s);
777 timeout = hzto(&atv); /* recalc. timeout remaining */
778 }
779
780 start:
781 kevp = kq->kq_kev;
782 s = splhigh();
783 if (kq->kq_count == 0) {
784 if (timeout < 0) {
785 error = EWOULDBLOCK;
786 } else {
787 kq->kq_state |= KQ_SLEEP;
788 error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
789 }
790 splx(s);
791 if (error == 0)
792 goto retry;
793 /* don't restart after signals... */
794 if (error == ERESTART)
795 error = EINTR;
796 else if (error == EWOULDBLOCK)
797 error = 0;
798 goto done;
799 }
800
801 TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
802 /* mark end of knote list */
803 while (count) { /* while user wants data ... */
804 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
805 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
806 if (kn == &marker) { /* if it's our marker, stop */
807 splx(s);
808 if (count == maxevents)
809 goto retry;
810 goto done;
811 }
812 if (kn->kn_status & KN_DISABLED) {
813 /* don't want disabled events */
814 kn->kn_status &= ~KN_QUEUED;
815 kq->kq_count--;
816 continue;
817 }
818 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
819 kn->kn_fop->f_event(kn, 0) == 0) {
820 /*
821 * non-ONESHOT event that hasn't
822 * triggered again, so de-queue.
823 */
824 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
825 kq->kq_count--;
826 continue;
827 }
828 *kevp = kn->kn_kevent;
829 kevp++;
830 nkev++;
831 if (kn->kn_flags & EV_ONESHOT) {
832 /* delete ONESHOT events after retrieval */
833 kn->kn_status &= ~KN_QUEUED;
834 kq->kq_count--;
835 splx(s);
836 kn->kn_fop->f_detach(kn);
837 knote_drop(kn, p);
838 s = splhigh();
839 } else if (kn->kn_flags & EV_CLEAR) {
840 /* clear state after retrieval */
841 kn->kn_data = 0;
842 kn->kn_fflags = 0;
843 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
844 kq->kq_count--;
845 } else {
846 /* add event back on list */
847 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
848 }
849 count--;
850 if (nkev == KQ_NEVENTS) {
851 /* do copyouts in KQ_NEVENTS chunks */
852 splx(s);
853 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
854 sizeof(struct kevent) * nkev);
855 ulistp += nkev;
856 nkev = 0;
857 kevp = kq->kq_kev;
858 s = splhigh();
859 if (error)
860 break;
861 }
862 }
863 /* remove marker */
864 TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
865 splx(s);
866 done:
867 if (nkev != 0) /* copyout remaining events */
868 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
869 sizeof(struct kevent) * nkev);
870 *retval = maxevents - count;
871 return (error);
872 }
873
874 /*
875 * struct fileops read method for a kqueue descriptor.
876 * Not implemented.
877 * XXX: This could be expanded to call kqueue_scan, if desired.
878 */
879 /*ARGSUSED*/
880 static int
881 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
882 struct ucred *cred, int flags)
883 {
884
885 return (ENXIO);
886 }
887
888 /*
889 * struct fileops write method for a kqueue descriptor.
890 * Not implemented.
891 */
892 /*ARGSUSED*/
893 static int
894 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
895 struct ucred *cred, int flags)
896 {
897
898 return (ENXIO);
899 }
900
901 /*
902 * struct fileops ioctl method for a kqueue descriptor.
903 *
904 * Two ioctls are currently supported. They both use struct kfilter_mapping:
905 * KFILTER_BYNAME find name for filter, and return result in
906 * name, which is of size len.
907 * KFILTER_BYFILTER find filter for name. len is ignored.
908 */
909 /*ARGSUSED*/
910 static int
911 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
912 {
913 struct kfilter_mapping *km;
914 const struct kfilter *kfilter;
915 char *name;
916 int error;
917
918 km = (struct kfilter_mapping *)data;
919 error = 0;
920
921 switch (com) {
922 case KFILTER_BYFILTER: /* convert filter -> name */
923 kfilter = kfilter_byfilter(km->filter);
924 if (kfilter != NULL)
925 error = copyoutstr(kfilter->name, km->name, km->len,
926 NULL);
927 else
928 error = ENOENT;
929 break;
930
931 case KFILTER_BYNAME: /* convert name -> filter */
932 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
933 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
934 if (error) {
935 FREE(name, M_KEVENT);
936 break;
937 }
938 kfilter = kfilter_byname(name);
939 if (kfilter != NULL)
940 km->filter = kfilter->filter;
941 else
942 error = ENOENT;
943 FREE(name, M_KEVENT);
944 break;
945
946 #if 1 /* XXXLUKEM - debug only; remove from production code */
947 case KFILTER_REGISTER:
948 case KFILTER_UNREGISTER:
949 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
950 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
951 if (error) {
952 FREE(name, M_KEVENT);
953 break;
954 }
955 if (com == KFILTER_REGISTER) {
956 kfilter = kfilter_byfilter(km->filter);
957 if (kfilter != NULL) {
958 error = kfilter_register(name,
959 kfilter->filtops, &km->filter);
960 } else
961 error = ENOENT;
962 } else
963 error = kfilter_unregister(name);
964 FREE(name, M_KEVENT);
965 break;
966 #endif
967
968 default:
969 error = ENOTTY;
970
971 }
972 return (error);
973 }
974
975 /*
976 * struct fileops fcntl method for a kqueue descriptor.
977 * Not implemented.
978 */
979 /*ARGSUSED*/
980 static int
981 kqueue_fcntl(struct file *fp, u_int com, caddr_t data, struct proc *p)
982 {
983
984 return (ENOTTY);
985 }
986
987 /*
988 * struct fileops poll method for a kqueue descriptor.
989 * Determine if kqueue has events pending.
990 */
991 /*ARGSUSED*/
992 static int
993 kqueue_poll(struct file *fp, int events, struct proc *p)
994 {
995 struct kqueue *kq;
996 int revents, s;
997
998 kq = (struct kqueue *)fp->f_data;
999 revents = 0;
1000 s = splnet(); /* XXXLUKEM: is this correct? */
1001 if (events & (POLLIN | POLLRDNORM)) {
1002 if (kq->kq_count) {
1003 revents |= events & (POLLIN | POLLRDNORM);
1004 } else {
1005 /* XXXLUKEM: splsched() for next? */
1006 selrecord(p, &kq->kq_sel);
1007 }
1008 }
1009 splx(s);
1010 return (revents);
1011 }
1012
1013 /*
1014 * struct fileops stat method for a kqueue descriptor.
1015 * Returns dummy info, with st_size being number of events pending.
1016 */
1017 /*ARGSUSED*/
1018 static int
1019 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
1020 {
1021 struct kqueue *kq;
1022
1023 kq = (struct kqueue *)fp->f_data;
1024 memset((void *)st, 0, sizeof(*st));
1025 st->st_size = kq->kq_count;
1026 st->st_blksize = sizeof(struct kevent);
1027 st->st_mode = S_IFIFO;
1028 return (0);
1029 }
1030
1031 /*
1032 * struct fileops close method for a kqueue descriptor.
1033 * Cleans up kqueue.
1034 */
1035 /*ARGSUSED*/
1036 static int
1037 kqueue_close(struct file *fp, struct proc *p)
1038 {
1039 struct kqueue *kq;
1040 struct filedesc *fdp;
1041 struct knote **knp, *kn, *kn0;
1042 int i;
1043
1044 kq = (struct kqueue *)fp->f_data;
1045 fdp = p->p_fd;
1046 for (i = 0; i < fdp->fd_knlistsize; i++) {
1047 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1048 kn = *knp;
1049 while (kn != NULL) {
1050 kn0 = SLIST_NEXT(kn, kn_link);
1051 if (kq == kn->kn_kq) {
1052 kn->kn_fop->f_detach(kn);
1053 FILE_UNUSE(kn->kn_fp, p);
1054 pool_put(&knote_pool, kn);
1055 *knp = kn0;
1056 } else {
1057 knp = &SLIST_NEXT(kn, kn_link);
1058 }
1059 kn = kn0;
1060 }
1061 }
1062 if (fdp->fd_knhashmask != 0) {
1063 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1064 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1065 kn = *knp;
1066 while (kn != NULL) {
1067 kn0 = SLIST_NEXT(kn, kn_link);
1068 if (kq == kn->kn_kq) {
1069 kn->kn_fop->f_detach(kn);
1070 /* XXX non-fd release of kn->kn_ptr */
1071 pool_put(&knote_pool, kn);
1072 *knp = kn0;
1073 } else {
1074 knp = &SLIST_NEXT(kn, kn_link);
1075 }
1076 kn = kn0;
1077 }
1078 }
1079 }
1080 pool_put(&kqueue_pool, kq);
1081 fp->f_data = NULL;
1082
1083 return (0);
1084 }
1085
1086 /*
1087 * wakeup a kqueue
1088 */
1089 static void
1090 kqueue_wakeup(struct kqueue *kq)
1091 {
1092
1093 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1094 kq->kq_state &= ~KQ_SLEEP;
1095 wakeup(kq); /* ... wakeup */
1096 }
1097
1098 /* Notify select/poll and kevent. */
1099 selnotify(&kq->kq_sel, 0);
1100 }
1101
1102 /*
1103 * struct fileops kqfilter method for a kqueue descriptor.
1104 * Event triggered when monitored kqueue changes.
1105 */
1106 /*ARGSUSED*/
1107 static int
1108 kqueue_kqfilter(struct file *fp, struct knote *kn)
1109 {
1110 struct kqueue *kq;
1111
1112 kq = (struct kqueue *)kn->kn_fp->f_data;
1113 if (kn->kn_filter != EVFILT_READ)
1114 return (1);
1115 kn->kn_fop = &kqread_filtops;
1116 SLIST_INSERT_HEAD(&kq->kq_sel.si_klist, kn, kn_selnext);
1117 return (0);
1118 }
1119
1120
1121 /*
1122 * Walk down a list of knotes, activating them if their event has triggered.
1123 */
1124 void
1125 knote(struct klist *list, long hint)
1126 {
1127 struct knote *kn;
1128
1129 SLIST_FOREACH(kn, list, kn_selnext)
1130 if (kn->kn_fop->f_event(kn, hint))
1131 KNOTE_ACTIVATE(kn);
1132 }
1133
1134 /*
1135 * Remove all knotes from a specified klist
1136 */
1137 void
1138 knote_remove(struct proc *p, struct klist *list)
1139 {
1140 struct knote *kn;
1141
1142 while ((kn = SLIST_FIRST(list)) != NULL) {
1143 kn->kn_fop->f_detach(kn);
1144 knote_drop(kn, p);
1145 }
1146 }
1147
1148 /*
1149 * Remove all knotes referencing a specified fd
1150 */
1151 void
1152 knote_fdclose(struct proc *p, int fd)
1153 {
1154 struct filedesc *fdp;
1155 struct klist *list;
1156
1157 fdp = p->p_fd;
1158 list = &fdp->fd_knlist[fd];
1159 knote_remove(p, list);
1160 }
1161
1162 /*
1163 * Attach a new knote to a file descriptor
1164 */
1165 static void
1166 knote_attach(struct knote *kn, struct filedesc *fdp)
1167 {
1168 struct klist *list;
1169 int size;
1170
1171 if (! kn->kn_fop->f_isfd) {
1172 /*
1173 * if knote is not on an fd, store
1174 * on internal hash table.
1175 */
1176 if (fdp->fd_knhashmask == 0)
1177 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1178 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1179 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1180 goto done;
1181 }
1182
1183 /*
1184 * otherwise, knote is on an fd.
1185 * knotes are stored in fd_knlist
1186 * indexed by kn->kn_id.
1187 */
1188 if (fdp->fd_knlistsize <= kn->kn_id) {
1189 /* expand list if too small */
1190 size = fdp->fd_knlistsize;
1191 while (size <= kn->kn_id)
1192 size += KQ_EXTENT; /* grow in KQ_EXTENT chunks */
1193 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1194 /* copy existing knlist */
1195 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1196 fdp->fd_knlistsize * sizeof(struct klist *));
1197 /* zero new sections */
1198 memset((caddr_t)list +
1199 fdp->fd_knlistsize * sizeof(struct klist *), 0,
1200 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1201 if (fdp->fd_knlist != NULL) /* switch to new knlist */
1202 FREE(fdp->fd_knlist, M_KEVENT);
1203 fdp->fd_knlistsize = size;
1204 fdp->fd_knlist = list;
1205 }
1206 list = &fdp->fd_knlist[kn->kn_id]; /* get list head for this fd */
1207 done:
1208 SLIST_INSERT_HEAD(list, kn, kn_link); /* add new knote */
1209 kn->kn_status = 0;
1210 }
1211
1212 /*
1213 * Drop knote.
1214 * Should be called at spl == 0, since we don't want to hold spl
1215 * while calling FILE_UNUSE and free.
1216 */
1217 static void
1218 knote_drop(struct knote *kn, struct proc *p)
1219 {
1220 struct filedesc *fdp;
1221 struct klist *list;
1222
1223 fdp = p->p_fd;
1224 if (kn->kn_fop->f_isfd)
1225 list = &fdp->fd_knlist[kn->kn_id];
1226 else
1227 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1228
1229 SLIST_REMOVE(list, kn, knote, kn_link);
1230 if (kn->kn_status & KN_QUEUED)
1231 knote_dequeue(kn);
1232 if (kn->kn_fop->f_isfd)
1233 FILE_UNUSE(kn->kn_fp, p);
1234 pool_put(&knote_pool, kn);
1235 }
1236
1237
1238 /*
1239 * Queue new event for knote.
1240 */
1241 static void
1242 knote_enqueue(struct knote *kn)
1243 {
1244 struct kqueue *kq;
1245 int s;
1246
1247 kq = kn->kn_kq;
1248 s = splhigh();
1249 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1250
1251 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1252 kn->kn_status |= KN_QUEUED;
1253 kq->kq_count++;
1254 splx(s);
1255 kqueue_wakeup(kq);
1256 }
1257
1258 /*
1259 * Dequeue event for knote.
1260 */
1261 static void
1262 knote_dequeue(struct knote *kn)
1263 {
1264 struct kqueue *kq;
1265 int s;
1266
1267 kq = kn->kn_kq;
1268 s = splhigh();
1269 KASSERT(kn->kn_status & KN_QUEUED);
1270
1271 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1272 kn->kn_status &= ~KN_QUEUED;
1273 kq->kq_count--;
1274 splx(s);
1275 }
1276