kern_event.c revision 1.104.4.1 1 /* $NetBSD: kern_event.c,v 1.104.4.1 2021/02/04 16:57:25 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.104.4.1 2021/02/04 16:57:25 martin Exp $");
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/wait.h>
67 #include <sys/proc.h>
68 #include <sys/file.h>
69 #include <sys/select.h>
70 #include <sys/queue.h>
71 #include <sys/event.h>
72 #include <sys/eventvar.h>
73 #include <sys/poll.h>
74 #include <sys/kmem.h>
75 #include <sys/stat.h>
76 #include <sys/filedesc.h>
77 #include <sys/syscallargs.h>
78 #include <sys/kauth.h>
79 #include <sys/conf.h>
80 #include <sys/atomic.h>
81
82 static int kqueue_scan(file_t *, size_t, struct kevent *,
83 const struct timespec *, register_t *,
84 const struct kevent_ops *, struct kevent *,
85 size_t);
86 static int kqueue_ioctl(file_t *, u_long, void *);
87 static int kqueue_fcntl(file_t *, u_int, void *);
88 static int kqueue_poll(file_t *, int);
89 static int kqueue_kqfilter(file_t *, struct knote *);
90 static int kqueue_stat(file_t *, struct stat *);
91 static int kqueue_close(file_t *);
92 static int kqueue_register(struct kqueue *, struct kevent *);
93 static void kqueue_doclose(struct kqueue *, struct klist *, int);
94
95 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
96 static void knote_enqueue(struct knote *);
97 static void knote_activate(struct knote *);
98
99 static void filt_kqdetach(struct knote *);
100 static int filt_kqueue(struct knote *, long hint);
101 static int filt_procattach(struct knote *);
102 static void filt_procdetach(struct knote *);
103 static int filt_proc(struct knote *, long hint);
104 static int filt_fileattach(struct knote *);
105 static void filt_timerexpire(void *x);
106 static int filt_timerattach(struct knote *);
107 static void filt_timerdetach(struct knote *);
108 static int filt_timer(struct knote *, long hint);
109 static int filt_fsattach(struct knote *kn);
110 static void filt_fsdetach(struct knote *kn);
111 static int filt_fs(struct knote *kn, long hint);
112
113 static const struct fileops kqueueops = {
114 .fo_name = "kqueue",
115 .fo_read = (void *)enxio,
116 .fo_write = (void *)enxio,
117 .fo_ioctl = kqueue_ioctl,
118 .fo_fcntl = kqueue_fcntl,
119 .fo_poll = kqueue_poll,
120 .fo_stat = kqueue_stat,
121 .fo_close = kqueue_close,
122 .fo_kqfilter = kqueue_kqfilter,
123 .fo_restart = fnullop_restart,
124 };
125
126 static const struct filterops kqread_filtops = {
127 .f_isfd = 1,
128 .f_attach = NULL,
129 .f_detach = filt_kqdetach,
130 .f_event = filt_kqueue,
131 };
132
133 static const struct filterops proc_filtops = {
134 .f_isfd = 0,
135 .f_attach = filt_procattach,
136 .f_detach = filt_procdetach,
137 .f_event = filt_proc,
138 };
139
140 static const struct filterops file_filtops = {
141 .f_isfd = 1,
142 .f_attach = filt_fileattach,
143 .f_detach = NULL,
144 .f_event = NULL,
145 };
146
147 static const struct filterops timer_filtops = {
148 .f_isfd = 0,
149 .f_attach = filt_timerattach,
150 .f_detach = filt_timerdetach,
151 .f_event = filt_timer,
152 };
153
154 static const struct filterops fs_filtops = {
155 .f_isfd = 0,
156 .f_attach = filt_fsattach,
157 .f_detach = filt_fsdetach,
158 .f_event = filt_fs,
159 };
160
161 static u_int kq_ncallouts = 0;
162 static int kq_calloutmax = (4 * 1024);
163
164 #define KN_HASHSIZE 64 /* XXX should be tunable */
165 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
166
167 extern const struct filterops sig_filtops;
168
169 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
170
171 /*
172 * Table for for all system-defined filters.
173 * These should be listed in the numeric order of the EVFILT_* defines.
174 * If filtops is NULL, the filter isn't implemented in NetBSD.
175 * End of list is when name is NULL.
176 *
177 * Note that 'refcnt' is meaningless for built-in filters.
178 */
179 struct kfilter {
180 const char *name; /* name of filter */
181 uint32_t filter; /* id of filter */
182 unsigned refcnt; /* reference count */
183 const struct filterops *filtops;/* operations for filter */
184 size_t namelen; /* length of name string */
185 };
186
187 /* System defined filters */
188 static struct kfilter sys_kfilters[] = {
189 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
190 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
191 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
192 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
193 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
194 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
195 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
196 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
197 { NULL, 0, 0, NULL, 0 },
198 };
199
200 /* User defined kfilters */
201 static struct kfilter *user_kfilters; /* array */
202 static int user_kfilterc; /* current offset */
203 static int user_kfiltermaxc; /* max size so far */
204 static size_t user_kfiltersz; /* size of allocated memory */
205
206 /*
207 * Global Locks.
208 *
209 * Lock order:
210 *
211 * kqueue_filter_lock
212 * -> kn_kq->kq_fdp->fd_lock
213 * -> object lock (e.g., device driver lock, kqueue_misc_lock, &c.)
214 * -> kn_kq->kq_lock
215 *
216 * Locking rules:
217 *
218 * f_attach: fdp->fd_lock, KERNEL_LOCK
219 * f_detach: fdp->fd_lock, KERNEL_LOCK
220 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
221 * f_event via knote: whatever caller guarantees
222 * Typically, f_event(NOTE_SUBMIT) via knote: object lock
223 * f_event(!NOTE_SUBMIT) via knote: nothing,
224 * acquires/releases object lock inside.
225 */
226 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
227 static kmutex_t kqueue_misc_lock; /* miscellaneous */
228
229 static kauth_listener_t kqueue_listener;
230
231 static int
232 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
233 void *arg0, void *arg1, void *arg2, void *arg3)
234 {
235 struct proc *p;
236 int result;
237
238 result = KAUTH_RESULT_DEFER;
239 p = arg0;
240
241 if (action != KAUTH_PROCESS_KEVENT_FILTER)
242 return result;
243
244 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
245 ISSET(p->p_flag, PK_SUGID)))
246 return result;
247
248 result = KAUTH_RESULT_ALLOW;
249
250 return result;
251 }
252
253 /*
254 * Initialize the kqueue subsystem.
255 */
256 void
257 kqueue_init(void)
258 {
259
260 rw_init(&kqueue_filter_lock);
261 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
262
263 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
264 kqueue_listener_cb, NULL);
265 }
266
267 /*
268 * Find kfilter entry by name, or NULL if not found.
269 */
270 static struct kfilter *
271 kfilter_byname_sys(const char *name)
272 {
273 int i;
274
275 KASSERT(rw_lock_held(&kqueue_filter_lock));
276
277 for (i = 0; sys_kfilters[i].name != NULL; i++) {
278 if (strcmp(name, sys_kfilters[i].name) == 0)
279 return &sys_kfilters[i];
280 }
281 return NULL;
282 }
283
284 static struct kfilter *
285 kfilter_byname_user(const char *name)
286 {
287 int i;
288
289 KASSERT(rw_lock_held(&kqueue_filter_lock));
290
291 /* user filter slots have a NULL name if previously deregistered */
292 for (i = 0; i < user_kfilterc ; i++) {
293 if (user_kfilters[i].name != NULL &&
294 strcmp(name, user_kfilters[i].name) == 0)
295 return &user_kfilters[i];
296 }
297 return NULL;
298 }
299
300 static struct kfilter *
301 kfilter_byname(const char *name)
302 {
303 struct kfilter *kfilter;
304
305 KASSERT(rw_lock_held(&kqueue_filter_lock));
306
307 if ((kfilter = kfilter_byname_sys(name)) != NULL)
308 return kfilter;
309
310 return kfilter_byname_user(name);
311 }
312
313 /*
314 * Find kfilter entry by filter id, or NULL if not found.
315 * Assumes entries are indexed in filter id order, for speed.
316 */
317 static struct kfilter *
318 kfilter_byfilter(uint32_t filter)
319 {
320 struct kfilter *kfilter;
321
322 KASSERT(rw_lock_held(&kqueue_filter_lock));
323
324 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
325 kfilter = &sys_kfilters[filter];
326 else if (user_kfilters != NULL &&
327 filter < EVFILT_SYSCOUNT + user_kfilterc)
328 /* it's a user filter */
329 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
330 else
331 return (NULL); /* out of range */
332 KASSERT(kfilter->filter == filter); /* sanity check! */
333 return (kfilter);
334 }
335
336 /*
337 * Register a new kfilter. Stores the entry in user_kfilters.
338 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
339 * If retfilter != NULL, the new filterid is returned in it.
340 */
341 int
342 kfilter_register(const char *name, const struct filterops *filtops,
343 int *retfilter)
344 {
345 struct kfilter *kfilter;
346 size_t len;
347 int i;
348
349 if (name == NULL || name[0] == '\0' || filtops == NULL)
350 return (EINVAL); /* invalid args */
351
352 rw_enter(&kqueue_filter_lock, RW_WRITER);
353 if (kfilter_byname(name) != NULL) {
354 rw_exit(&kqueue_filter_lock);
355 return (EEXIST); /* already exists */
356 }
357 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
358 rw_exit(&kqueue_filter_lock);
359 return (EINVAL); /* too many */
360 }
361
362 for (i = 0; i < user_kfilterc; i++) {
363 kfilter = &user_kfilters[i];
364 if (kfilter->name == NULL) {
365 /* Previously deregistered slot. Reuse. */
366 goto reuse;
367 }
368 }
369
370 /* check if need to grow user_kfilters */
371 if (user_kfilterc + 1 > user_kfiltermaxc) {
372 /* Grow in KFILTER_EXTENT chunks. */
373 user_kfiltermaxc += KFILTER_EXTENT;
374 len = user_kfiltermaxc * sizeof(*kfilter);
375 kfilter = kmem_alloc(len, KM_SLEEP);
376 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
377 if (user_kfilters != NULL) {
378 memcpy(kfilter, user_kfilters, user_kfiltersz);
379 kmem_free(user_kfilters, user_kfiltersz);
380 }
381 user_kfiltersz = len;
382 user_kfilters = kfilter;
383 }
384 /* Adding new slot */
385 kfilter = &user_kfilters[user_kfilterc++];
386 reuse:
387 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
388
389 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
390
391 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
392 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
393
394 if (retfilter != NULL)
395 *retfilter = kfilter->filter;
396 rw_exit(&kqueue_filter_lock);
397
398 return (0);
399 }
400
401 /*
402 * Unregister a kfilter previously registered with kfilter_register.
403 * This retains the filter id, but clears the name and frees filtops (filter
404 * operations), so that the number isn't reused during a boot.
405 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
406 */
407 int
408 kfilter_unregister(const char *name)
409 {
410 struct kfilter *kfilter;
411
412 if (name == NULL || name[0] == '\0')
413 return (EINVAL); /* invalid name */
414
415 rw_enter(&kqueue_filter_lock, RW_WRITER);
416 if (kfilter_byname_sys(name) != NULL) {
417 rw_exit(&kqueue_filter_lock);
418 return (EINVAL); /* can't detach system filters */
419 }
420
421 kfilter = kfilter_byname_user(name);
422 if (kfilter == NULL) {
423 rw_exit(&kqueue_filter_lock);
424 return (ENOENT);
425 }
426 if (kfilter->refcnt != 0) {
427 rw_exit(&kqueue_filter_lock);
428 return (EBUSY);
429 }
430
431 /* Cast away const (but we know it's safe. */
432 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
433 kfilter->name = NULL; /* mark as `not implemented' */
434
435 if (kfilter->filtops != NULL) {
436 /* Cast away const (but we know it's safe. */
437 kmem_free(__UNCONST(kfilter->filtops),
438 sizeof(*kfilter->filtops));
439 kfilter->filtops = NULL; /* mark as `not implemented' */
440 }
441 rw_exit(&kqueue_filter_lock);
442
443 return (0);
444 }
445
446
447 /*
448 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
449 * descriptors. Calls fileops kqfilter method for given file descriptor.
450 */
451 static int
452 filt_fileattach(struct knote *kn)
453 {
454 file_t *fp;
455
456 fp = kn->kn_obj;
457
458 return (*fp->f_ops->fo_kqfilter)(fp, kn);
459 }
460
461 /*
462 * Filter detach method for EVFILT_READ on kqueue descriptor.
463 */
464 static void
465 filt_kqdetach(struct knote *kn)
466 {
467 struct kqueue *kq;
468
469 kq = ((file_t *)kn->kn_obj)->f_kqueue;
470
471 mutex_spin_enter(&kq->kq_lock);
472 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
473 mutex_spin_exit(&kq->kq_lock);
474 }
475
476 /*
477 * Filter event method for EVFILT_READ on kqueue descriptor.
478 */
479 /*ARGSUSED*/
480 static int
481 filt_kqueue(struct knote *kn, long hint)
482 {
483 struct kqueue *kq;
484 int rv;
485
486 kq = ((file_t *)kn->kn_obj)->f_kqueue;
487
488 if (hint != NOTE_SUBMIT)
489 mutex_spin_enter(&kq->kq_lock);
490 kn->kn_data = kq->kq_count;
491 rv = (kn->kn_data > 0);
492 if (hint != NOTE_SUBMIT)
493 mutex_spin_exit(&kq->kq_lock);
494
495 return rv;
496 }
497
498 /*
499 * Filter attach method for EVFILT_PROC.
500 */
501 static int
502 filt_procattach(struct knote *kn)
503 {
504 struct proc *p;
505 struct lwp *curl;
506
507 curl = curlwp;
508
509 mutex_enter(proc_lock);
510 if (kn->kn_flags & EV_FLAG1) {
511 /*
512 * NOTE_TRACK attaches to the child process too early
513 * for proc_find, so do a raw look up and check the state
514 * explicitly.
515 */
516 p = proc_find_raw(kn->kn_id);
517 if (p != NULL && p->p_stat != SIDL)
518 p = NULL;
519 } else {
520 p = proc_find(kn->kn_id);
521 }
522
523 if (p == NULL) {
524 mutex_exit(proc_lock);
525 return ESRCH;
526 }
527
528 /*
529 * Fail if it's not owned by you, or the last exec gave us
530 * setuid/setgid privs (unless you're root).
531 */
532 mutex_enter(p->p_lock);
533 mutex_exit(proc_lock);
534 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
535 p, NULL, NULL, NULL) != 0) {
536 mutex_exit(p->p_lock);
537 return EACCES;
538 }
539
540 kn->kn_obj = p;
541 kn->kn_flags |= EV_CLEAR; /* automatically set */
542
543 /*
544 * internal flag indicating registration done by kernel
545 */
546 if (kn->kn_flags & EV_FLAG1) {
547 kn->kn_data = kn->kn_sdata; /* ppid */
548 kn->kn_fflags = NOTE_CHILD;
549 kn->kn_flags &= ~EV_FLAG1;
550 }
551 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
552 mutex_exit(p->p_lock);
553
554 return 0;
555 }
556
557 /*
558 * Filter detach method for EVFILT_PROC.
559 *
560 * The knote may be attached to a different process, which may exit,
561 * leaving nothing for the knote to be attached to. So when the process
562 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
563 * it will be deleted when read out. However, as part of the knote deletion,
564 * this routine is called, so a check is needed to avoid actually performing
565 * a detach, because the original process might not exist any more.
566 */
567 static void
568 filt_procdetach(struct knote *kn)
569 {
570 struct proc *p;
571
572 if (kn->kn_status & KN_DETACHED)
573 return;
574
575 p = kn->kn_obj;
576
577 mutex_enter(p->p_lock);
578 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
579 mutex_exit(p->p_lock);
580 }
581
582 /*
583 * Filter event method for EVFILT_PROC.
584 */
585 static int
586 filt_proc(struct knote *kn, long hint)
587 {
588 u_int event, fflag;
589 struct kevent kev;
590 struct kqueue *kq;
591 int error;
592
593 event = (u_int)hint & NOTE_PCTRLMASK;
594 kq = kn->kn_kq;
595 fflag = 0;
596
597 /* If the user is interested in this event, record it. */
598 if (kn->kn_sfflags & event)
599 fflag |= event;
600
601 if (event == NOTE_EXIT) {
602 struct proc *p = kn->kn_obj;
603
604 if (p != NULL)
605 kn->kn_data = P_WAITSTATUS(p);
606 /*
607 * Process is gone, so flag the event as finished.
608 *
609 * Detach the knote from watched process and mark
610 * it as such. We can't leave this to kqueue_scan(),
611 * since the process might not exist by then. And we
612 * have to do this now, since psignal KNOTE() is called
613 * also for zombies and we might end up reading freed
614 * memory if the kevent would already be picked up
615 * and knote g/c'ed.
616 */
617 filt_procdetach(kn);
618
619 mutex_spin_enter(&kq->kq_lock);
620 kn->kn_status |= KN_DETACHED;
621 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
622 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
623 kn->kn_fflags |= fflag;
624 mutex_spin_exit(&kq->kq_lock);
625
626 return 1;
627 }
628
629 mutex_spin_enter(&kq->kq_lock);
630 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
631 /*
632 * Process forked, and user wants to track the new process,
633 * so attach a new knote to it, and immediately report an
634 * event with the parent's pid. Register knote with new
635 * process.
636 */
637 memset(&kev, 0, sizeof(kev));
638 kev.ident = hint & NOTE_PDATAMASK; /* pid */
639 kev.filter = kn->kn_filter;
640 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
641 kev.fflags = kn->kn_sfflags;
642 kev.data = kn->kn_id; /* parent */
643 kev.udata = kn->kn_kevent.udata; /* preserve udata */
644 mutex_spin_exit(&kq->kq_lock);
645 error = kqueue_register(kq, &kev);
646 mutex_spin_enter(&kq->kq_lock);
647 if (error != 0)
648 kn->kn_fflags |= NOTE_TRACKERR;
649 }
650 kn->kn_fflags |= fflag;
651 fflag = kn->kn_fflags;
652 mutex_spin_exit(&kq->kq_lock);
653
654 return fflag != 0;
655 }
656
657 static void
658 filt_timerexpire(void *knx)
659 {
660 struct knote *kn = knx;
661 int tticks;
662
663 mutex_enter(&kqueue_misc_lock);
664 kn->kn_data++;
665 knote_activate(kn);
666 if ((kn->kn_flags & EV_ONESHOT) == 0) {
667 tticks = mstohz(kn->kn_sdata);
668 if (tticks <= 0)
669 tticks = 1;
670 callout_schedule((callout_t *)kn->kn_hook, tticks);
671 }
672 mutex_exit(&kqueue_misc_lock);
673 }
674
675 /*
676 * data contains amount of time to sleep, in milliseconds
677 */
678 static int
679 filt_timerattach(struct knote *kn)
680 {
681 callout_t *calloutp;
682 struct kqueue *kq;
683 int tticks;
684
685 tticks = mstohz(kn->kn_sdata);
686
687 /* if the supplied value is under our resolution, use 1 tick */
688 if (tticks == 0) {
689 if (kn->kn_sdata == 0)
690 return EINVAL;
691 tticks = 1;
692 }
693
694 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
695 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
696 atomic_dec_uint(&kq_ncallouts);
697 return ENOMEM;
698 }
699 callout_init(calloutp, CALLOUT_MPSAFE);
700
701 kq = kn->kn_kq;
702 mutex_spin_enter(&kq->kq_lock);
703 kn->kn_flags |= EV_CLEAR; /* automatically set */
704 kn->kn_hook = calloutp;
705 mutex_spin_exit(&kq->kq_lock);
706
707 callout_reset(calloutp, tticks, filt_timerexpire, kn);
708
709 return (0);
710 }
711
712 static void
713 filt_timerdetach(struct knote *kn)
714 {
715 callout_t *calloutp;
716 struct kqueue *kq = kn->kn_kq;
717
718 mutex_spin_enter(&kq->kq_lock);
719 /* prevent rescheduling when we expire */
720 kn->kn_flags |= EV_ONESHOT;
721 mutex_spin_exit(&kq->kq_lock);
722
723 calloutp = (callout_t *)kn->kn_hook;
724 callout_halt(calloutp, NULL);
725 callout_destroy(calloutp);
726 kmem_free(calloutp, sizeof(*calloutp));
727 atomic_dec_uint(&kq_ncallouts);
728 }
729
730 static int
731 filt_timer(struct knote *kn, long hint)
732 {
733 int rv;
734
735 mutex_enter(&kqueue_misc_lock);
736 rv = (kn->kn_data != 0);
737 mutex_exit(&kqueue_misc_lock);
738
739 return rv;
740 }
741
742 /*
743 * Filter event method for EVFILT_FS.
744 */
745 struct klist fs_klist = SLIST_HEAD_INITIALIZER(&fs_klist);
746
747 static int
748 filt_fsattach(struct knote *kn)
749 {
750
751 mutex_enter(&kqueue_misc_lock);
752 kn->kn_flags |= EV_CLEAR;
753 SLIST_INSERT_HEAD(&fs_klist, kn, kn_selnext);
754 mutex_exit(&kqueue_misc_lock);
755
756 return 0;
757 }
758
759 static void
760 filt_fsdetach(struct knote *kn)
761 {
762
763 mutex_enter(&kqueue_misc_lock);
764 SLIST_REMOVE(&fs_klist, kn, knote, kn_selnext);
765 mutex_exit(&kqueue_misc_lock);
766 }
767
768 static int
769 filt_fs(struct knote *kn, long hint)
770 {
771 int rv;
772
773 mutex_enter(&kqueue_misc_lock);
774 kn->kn_fflags |= hint;
775 rv = (kn->kn_fflags != 0);
776 mutex_exit(&kqueue_misc_lock);
777
778 return rv;
779 }
780
781 /*
782 * filt_seltrue:
783 *
784 * This filter "event" routine simulates seltrue().
785 */
786 int
787 filt_seltrue(struct knote *kn, long hint)
788 {
789
790 /*
791 * We don't know how much data can be read/written,
792 * but we know that it *can* be. This is about as
793 * good as select/poll does as well.
794 */
795 kn->kn_data = 0;
796 return (1);
797 }
798
799 /*
800 * This provides full kqfilter entry for device switch tables, which
801 * has same effect as filter using filt_seltrue() as filter method.
802 */
803 static void
804 filt_seltruedetach(struct knote *kn)
805 {
806 /* Nothing to do */
807 }
808
809 const struct filterops seltrue_filtops = {
810 .f_isfd = 1,
811 .f_attach = NULL,
812 .f_detach = filt_seltruedetach,
813 .f_event = filt_seltrue,
814 };
815
816 int
817 seltrue_kqfilter(dev_t dev, struct knote *kn)
818 {
819 switch (kn->kn_filter) {
820 case EVFILT_READ:
821 case EVFILT_WRITE:
822 kn->kn_fop = &seltrue_filtops;
823 break;
824 default:
825 return (EINVAL);
826 }
827
828 /* Nothing more to do */
829 return (0);
830 }
831
832 /*
833 * kqueue(2) system call.
834 */
835 static int
836 kqueue1(struct lwp *l, int flags, register_t *retval)
837 {
838 struct kqueue *kq;
839 file_t *fp;
840 int fd, error;
841
842 if ((error = fd_allocfile(&fp, &fd)) != 0)
843 return error;
844 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
845 fp->f_type = DTYPE_KQUEUE;
846 fp->f_ops = &kqueueops;
847 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
848 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
849 cv_init(&kq->kq_cv, "kqueue");
850 selinit(&kq->kq_sel);
851 TAILQ_INIT(&kq->kq_head);
852 fp->f_kqueue = kq;
853 *retval = fd;
854 kq->kq_fdp = curlwp->l_fd;
855 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
856 fd_affix(curproc, fp, fd);
857 return error;
858 }
859
860 /*
861 * kqueue(2) system call.
862 */
863 int
864 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
865 {
866 return kqueue1(l, 0, retval);
867 }
868
869 int
870 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
871 register_t *retval)
872 {
873 /* {
874 syscallarg(int) flags;
875 } */
876 return kqueue1(l, SCARG(uap, flags), retval);
877 }
878
879 /*
880 * kevent(2) system call.
881 */
882 int
883 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
884 struct kevent *changes, size_t index, int n)
885 {
886
887 return copyin(changelist + index, changes, n * sizeof(*changes));
888 }
889
890 int
891 kevent_put_events(void *ctx, struct kevent *events,
892 struct kevent *eventlist, size_t index, int n)
893 {
894
895 return copyout(events, eventlist + index, n * sizeof(*events));
896 }
897
898 static const struct kevent_ops kevent_native_ops = {
899 .keo_private = NULL,
900 .keo_fetch_timeout = copyin,
901 .keo_fetch_changes = kevent_fetch_changes,
902 .keo_put_events = kevent_put_events,
903 };
904
905 int
906 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
907 register_t *retval)
908 {
909 /* {
910 syscallarg(int) fd;
911 syscallarg(const struct kevent *) changelist;
912 syscallarg(size_t) nchanges;
913 syscallarg(struct kevent *) eventlist;
914 syscallarg(size_t) nevents;
915 syscallarg(const struct timespec *) timeout;
916 } */
917
918 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
919 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
920 SCARG(uap, timeout), &kevent_native_ops);
921 }
922
923 int
924 kevent1(register_t *retval, int fd,
925 const struct kevent *changelist, size_t nchanges,
926 struct kevent *eventlist, size_t nevents,
927 const struct timespec *timeout,
928 const struct kevent_ops *keops)
929 {
930 struct kevent *kevp;
931 struct kqueue *kq;
932 struct timespec ts;
933 size_t i, n, ichange;
934 int nerrors, error;
935 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
936 file_t *fp;
937
938 /* check that we're dealing with a kq */
939 fp = fd_getfile(fd);
940 if (fp == NULL)
941 return (EBADF);
942
943 if (fp->f_type != DTYPE_KQUEUE) {
944 fd_putfile(fd);
945 return (EBADF);
946 }
947
948 if (timeout != NULL) {
949 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
950 if (error)
951 goto done;
952 timeout = &ts;
953 }
954
955 kq = fp->f_kqueue;
956 nerrors = 0;
957 ichange = 0;
958
959 /* traverse list of events to register */
960 while (nchanges > 0) {
961 n = MIN(nchanges, __arraycount(kevbuf));
962 error = (*keops->keo_fetch_changes)(keops->keo_private,
963 changelist, kevbuf, ichange, n);
964 if (error)
965 goto done;
966 for (i = 0; i < n; i++) {
967 kevp = &kevbuf[i];
968 kevp->flags &= ~EV_SYSFLAGS;
969 /* register each knote */
970 error = kqueue_register(kq, kevp);
971 if (!error && !(kevp->flags & EV_RECEIPT))
972 continue;
973 if (nevents == 0)
974 goto done;
975 kevp->flags = EV_ERROR;
976 kevp->data = error;
977 error = (*keops->keo_put_events)
978 (keops->keo_private, kevp,
979 eventlist, nerrors, 1);
980 if (error)
981 goto done;
982 nevents--;
983 nerrors++;
984 }
985 nchanges -= n; /* update the results */
986 ichange += n;
987 }
988 if (nerrors) {
989 *retval = nerrors;
990 error = 0;
991 goto done;
992 }
993
994 /* actually scan through the events */
995 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
996 kevbuf, __arraycount(kevbuf));
997 done:
998 fd_putfile(fd);
999 return (error);
1000 }
1001
1002 /*
1003 * Register a given kevent kev onto the kqueue
1004 */
1005 static int
1006 kqueue_register(struct kqueue *kq, struct kevent *kev)
1007 {
1008 struct kfilter *kfilter;
1009 filedesc_t *fdp;
1010 file_t *fp;
1011 fdfile_t *ff;
1012 struct knote *kn, *newkn;
1013 struct klist *list;
1014 int error, fd, rv;
1015
1016 fdp = kq->kq_fdp;
1017 fp = NULL;
1018 kn = NULL;
1019 error = 0;
1020 fd = 0;
1021
1022 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1023
1024 rw_enter(&kqueue_filter_lock, RW_READER);
1025 kfilter = kfilter_byfilter(kev->filter);
1026 if (kfilter == NULL || kfilter->filtops == NULL) {
1027 /* filter not found nor implemented */
1028 rw_exit(&kqueue_filter_lock);
1029 kmem_free(newkn, sizeof(*newkn));
1030 return (EINVAL);
1031 }
1032
1033 /* search if knote already exists */
1034 if (kfilter->filtops->f_isfd) {
1035 /* monitoring a file descriptor */
1036 /* validate descriptor */
1037 if (kev->ident > INT_MAX
1038 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1039 rw_exit(&kqueue_filter_lock);
1040 kmem_free(newkn, sizeof(*newkn));
1041 return EBADF;
1042 }
1043 mutex_enter(&fdp->fd_lock);
1044 ff = fdp->fd_dt->dt_ff[fd];
1045 if (ff->ff_refcnt & FR_CLOSING) {
1046 error = EBADF;
1047 goto doneunlock;
1048 }
1049 if (fd <= fdp->fd_lastkqfile) {
1050 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1051 if (kq == kn->kn_kq &&
1052 kev->filter == kn->kn_filter)
1053 break;
1054 }
1055 }
1056 } else {
1057 /*
1058 * not monitoring a file descriptor, so
1059 * lookup knotes in internal hash table
1060 */
1061 mutex_enter(&fdp->fd_lock);
1062 if (fdp->fd_knhashmask != 0) {
1063 list = &fdp->fd_knhash[
1064 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1065 SLIST_FOREACH(kn, list, kn_link) {
1066 if (kev->ident == kn->kn_id &&
1067 kq == kn->kn_kq &&
1068 kev->filter == kn->kn_filter)
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * kn now contains the matching knote, or NULL if no match
1076 */
1077 if (kev->flags & EV_ADD) {
1078 if (kn == NULL) {
1079 /* create new knote */
1080 kn = newkn;
1081 newkn = NULL;
1082 kn->kn_obj = fp;
1083 kn->kn_id = kev->ident;
1084 kn->kn_kq = kq;
1085 kn->kn_fop = kfilter->filtops;
1086 kn->kn_kfilter = kfilter;
1087 kn->kn_sfflags = kev->fflags;
1088 kn->kn_sdata = kev->data;
1089 kev->fflags = 0;
1090 kev->data = 0;
1091 kn->kn_kevent = *kev;
1092
1093 KASSERT(kn->kn_fop != NULL);
1094 /*
1095 * apply reference count to knote structure, and
1096 * do not release it at the end of this routine.
1097 */
1098 fp = NULL;
1099
1100 if (!kn->kn_fop->f_isfd) {
1101 /*
1102 * If knote is not on an fd, store on
1103 * internal hash table.
1104 */
1105 if (fdp->fd_knhashmask == 0) {
1106 /* XXXAD can block with fd_lock held */
1107 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1108 HASH_LIST, true,
1109 &fdp->fd_knhashmask);
1110 }
1111 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1112 fdp->fd_knhashmask)];
1113 } else {
1114 /* Otherwise, knote is on an fd. */
1115 list = (struct klist *)
1116 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1117 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1118 fdp->fd_lastkqfile = kn->kn_id;
1119 }
1120 SLIST_INSERT_HEAD(list, kn, kn_link);
1121
1122 KERNEL_LOCK(1, NULL); /* XXXSMP */
1123 error = (*kfilter->filtops->f_attach)(kn);
1124 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1125 if (error != 0) {
1126 #ifdef DEBUG
1127 const file_t *ft = kn->kn_obj;
1128 uprintf("%s: event type %d not supported for "
1129 "file type %d/%s (error %d)\n", __func__,
1130 kn->kn_filter, ft ? ft->f_type : -1,
1131 ft ? ft->f_ops->fo_name : "?", error);
1132 #endif
1133
1134 /* knote_detach() drops fdp->fd_lock */
1135 knote_detach(kn, fdp, false);
1136 goto done;
1137 }
1138 atomic_inc_uint(&kfilter->refcnt);
1139 } else {
1140 /*
1141 * The user may change some filter values after the
1142 * initial EV_ADD, but doing so will not reset any
1143 * filter which have already been triggered.
1144 */
1145 kn->kn_sfflags = kev->fflags;
1146 kn->kn_sdata = kev->data;
1147 kn->kn_kevent.udata = kev->udata;
1148 }
1149 /*
1150 * We can get here if we are trying to attach
1151 * an event to a file descriptor that does not
1152 * support events, and the attach routine is
1153 * broken and does not return an error.
1154 */
1155 KASSERT(kn->kn_fop != NULL);
1156 KASSERT(kn->kn_fop->f_event != NULL);
1157 KERNEL_LOCK(1, NULL); /* XXXSMP */
1158 rv = (*kn->kn_fop->f_event)(kn, 0);
1159 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1160 if (rv)
1161 knote_activate(kn);
1162 } else {
1163 if (kn == NULL) {
1164 error = ENOENT;
1165 goto doneunlock;
1166 }
1167 if (kev->flags & EV_DELETE) {
1168 /* knote_detach() drops fdp->fd_lock */
1169 knote_detach(kn, fdp, true);
1170 goto done;
1171 }
1172 }
1173
1174 /* disable knote */
1175 if ((kev->flags & EV_DISABLE)) {
1176 mutex_spin_enter(&kq->kq_lock);
1177 if ((kn->kn_status & KN_DISABLED) == 0)
1178 kn->kn_status |= KN_DISABLED;
1179 mutex_spin_exit(&kq->kq_lock);
1180 }
1181
1182 /* enable knote */
1183 if ((kev->flags & EV_ENABLE)) {
1184 knote_enqueue(kn);
1185 }
1186 doneunlock:
1187 mutex_exit(&fdp->fd_lock);
1188 done:
1189 rw_exit(&kqueue_filter_lock);
1190 if (newkn != NULL)
1191 kmem_free(newkn, sizeof(*newkn));
1192 if (fp != NULL)
1193 fd_putfile(fd);
1194 return (error);
1195 }
1196
1197 #if defined(DEBUG)
1198 #define KN_FMT(buf, kn) \
1199 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1200
1201 static void
1202 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1203 {
1204 const struct knote *kn;
1205 int count;
1206 int nmarker;
1207 char buf[128];
1208
1209 KASSERT(mutex_owned(&kq->kq_lock));
1210 KASSERT(kq->kq_count >= 0);
1211
1212 count = 0;
1213 nmarker = 0;
1214 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1215 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1216 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1217 func, line, kq, kn, KN_FMT(buf, kn));
1218 }
1219 if ((kn->kn_status & KN_MARKER) == 0) {
1220 if (kn->kn_kq != kq) {
1221 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1222 func, line, kq, kn, kn->kn_kq,
1223 KN_FMT(buf, kn));
1224 }
1225 if ((kn->kn_status & KN_ACTIVE) == 0) {
1226 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1227 func, line, kq, kn, KN_FMT(buf, kn));
1228 }
1229 count++;
1230 if (count > kq->kq_count) {
1231 panic("%s,%zu: kq=%p kq->kq_count(%d) != "
1232 "count(%d), nmarker=%d",
1233 func, line, kq, kq->kq_count, count,
1234 nmarker);
1235 }
1236 } else {
1237 nmarker++;
1238 #if 0
1239 if (nmarker > 10000) {
1240 panic("%s,%zu: kq=%p too many markers: "
1241 "%d != %d, nmarker=%d",
1242 func, line, kq, kq->kq_count, count,
1243 nmarker);
1244 }
1245 #endif
1246 }
1247 }
1248 }
1249 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1250 #else /* defined(DEBUG) */
1251 #define kq_check(a) /* nothing */
1252 #endif /* defined(DEBUG) */
1253
1254 /*
1255 * Scan through the list of events on fp (for a maximum of maxevents),
1256 * returning the results in to ulistp. Timeout is determined by tsp; if
1257 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1258 * as appropriate.
1259 */
1260 static int
1261 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1262 const struct timespec *tsp, register_t *retval,
1263 const struct kevent_ops *keops, struct kevent *kevbuf,
1264 size_t kevcnt)
1265 {
1266 struct kqueue *kq;
1267 struct kevent *kevp;
1268 struct timespec ats, sleepts;
1269 struct knote *kn, *marker, morker;
1270 size_t count, nkev, nevents;
1271 int timeout, error, rv, influx;
1272 filedesc_t *fdp;
1273
1274 fdp = curlwp->l_fd;
1275 kq = fp->f_kqueue;
1276 count = maxevents;
1277 nkev = nevents = error = 0;
1278 if (count == 0) {
1279 *retval = 0;
1280 return 0;
1281 }
1282
1283 if (tsp) { /* timeout supplied */
1284 ats = *tsp;
1285 if (inittimeleft(&ats, &sleepts) == -1) {
1286 *retval = maxevents;
1287 return EINVAL;
1288 }
1289 timeout = tstohz(&ats);
1290 if (timeout <= 0)
1291 timeout = -1; /* do poll */
1292 } else {
1293 /* no timeout, wait forever */
1294 timeout = 0;
1295 }
1296
1297 memset(&morker, 0, sizeof(morker));
1298 marker = &morker;
1299 marker->kn_status = KN_MARKER;
1300 mutex_spin_enter(&kq->kq_lock);
1301 retry:
1302 kevp = kevbuf;
1303 if (kq->kq_count == 0) {
1304 if (timeout >= 0) {
1305 error = cv_timedwait_sig(&kq->kq_cv,
1306 &kq->kq_lock, timeout);
1307 if (error == 0) {
1308 if (tsp == NULL || (timeout =
1309 gettimeleft(&ats, &sleepts)) > 0)
1310 goto retry;
1311 } else {
1312 /* don't restart after signals... */
1313 if (error == ERESTART)
1314 error = EINTR;
1315 if (error == EWOULDBLOCK)
1316 error = 0;
1317 }
1318 }
1319 mutex_spin_exit(&kq->kq_lock);
1320 goto done;
1321 }
1322
1323 /* mark end of knote list */
1324 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1325 influx = 0;
1326
1327 /*
1328 * Acquire the fdp->fd_lock interlock to avoid races with
1329 * file creation/destruction from other threads.
1330 */
1331 relock:
1332 mutex_spin_exit(&kq->kq_lock);
1333 mutex_enter(&fdp->fd_lock);
1334 mutex_spin_enter(&kq->kq_lock);
1335
1336 while (count != 0) {
1337 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1338
1339 if ((kn->kn_status & KN_MARKER) != 0 && kn != marker) {
1340 if (influx) {
1341 influx = 0;
1342 KQ_FLUX_WAKEUP(kq);
1343 }
1344 mutex_exit(&fdp->fd_lock);
1345 (void)cv_wait(&kq->kq_cv, &kq->kq_lock);
1346 goto relock;
1347 }
1348
1349 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1350 if (kn == marker) {
1351 /* it's our marker, stop */
1352 KQ_FLUX_WAKEUP(kq);
1353 if (count == maxevents) {
1354 mutex_exit(&fdp->fd_lock);
1355 goto retry;
1356 }
1357 break;
1358 }
1359 KASSERT((kn->kn_status & KN_BUSY) == 0);
1360
1361 kq_check(kq);
1362 kn->kn_status &= ~KN_QUEUED;
1363 kn->kn_status |= KN_BUSY;
1364 kq_check(kq);
1365 if (kn->kn_status & KN_DISABLED) {
1366 kn->kn_status &= ~KN_BUSY;
1367 kq->kq_count--;
1368 /* don't want disabled events */
1369 continue;
1370 }
1371 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1372 mutex_spin_exit(&kq->kq_lock);
1373 KASSERT(kn->kn_fop != NULL);
1374 KASSERT(kn->kn_fop->f_event != NULL);
1375 KERNEL_LOCK(1, NULL); /* XXXSMP */
1376 KASSERT(mutex_owned(&fdp->fd_lock));
1377 rv = (*kn->kn_fop->f_event)(kn, 0);
1378 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1379 mutex_spin_enter(&kq->kq_lock);
1380 /* Re-poll if note was re-enqueued. */
1381 if ((kn->kn_status & KN_QUEUED) != 0) {
1382 kn->kn_status &= ~KN_BUSY;
1383 /* Re-enqueue raised kq_count, lower it again */
1384 kq->kq_count--;
1385 influx = 1;
1386 continue;
1387 }
1388 if (rv == 0) {
1389 /*
1390 * non-ONESHOT event that hasn't
1391 * triggered again, so de-queue.
1392 */
1393 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1394 kq->kq_count--;
1395 influx = 1;
1396 continue;
1397 }
1398 }
1399 /* XXXAD should be got from f_event if !oneshot. */
1400 *kevp++ = kn->kn_kevent;
1401 nkev++;
1402 if (kn->kn_flags & EV_ONESHOT) {
1403 /* delete ONESHOT events after retrieval */
1404 kn->kn_status &= ~KN_BUSY;
1405 mutex_spin_exit(&kq->kq_lock);
1406 knote_detach(kn, fdp, true);
1407 mutex_enter(&fdp->fd_lock);
1408 mutex_spin_enter(&kq->kq_lock);
1409 } else if (kn->kn_flags & EV_CLEAR) {
1410 /* clear state after retrieval */
1411 kn->kn_data = 0;
1412 kn->kn_fflags = 0;
1413 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1414 kq->kq_count--;
1415 } else if (kn->kn_flags & EV_DISPATCH) {
1416 kn->kn_status |= KN_DISABLED;
1417 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1418 kq->kq_count--;
1419 } else {
1420 /* add event back on list */
1421 kq_check(kq);
1422 kn->kn_status |= KN_QUEUED;
1423 kn->kn_status &= ~KN_BUSY;
1424 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1425 kq_check(kq);
1426 }
1427 if (nkev == kevcnt) {
1428 /* do copyouts in kevcnt chunks */
1429 influx = 0;
1430 KQ_FLUX_WAKEUP(kq);
1431 mutex_spin_exit(&kq->kq_lock);
1432 mutex_exit(&fdp->fd_lock);
1433 error = (*keops->keo_put_events)
1434 (keops->keo_private,
1435 kevbuf, ulistp, nevents, nkev);
1436 mutex_enter(&fdp->fd_lock);
1437 mutex_spin_enter(&kq->kq_lock);
1438 nevents += nkev;
1439 nkev = 0;
1440 kevp = kevbuf;
1441 }
1442 count--;
1443 if (error != 0 || count == 0) {
1444 /* remove marker */
1445 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1446 break;
1447 }
1448 }
1449 KQ_FLUX_WAKEUP(kq);
1450 mutex_spin_exit(&kq->kq_lock);
1451 mutex_exit(&fdp->fd_lock);
1452
1453 done:
1454 if (nkev != 0) {
1455 /* copyout remaining events */
1456 error = (*keops->keo_put_events)(keops->keo_private,
1457 kevbuf, ulistp, nevents, nkev);
1458 }
1459 *retval = maxevents - count;
1460
1461 return error;
1462 }
1463
1464 /*
1465 * fileops ioctl method for a kqueue descriptor.
1466 *
1467 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1468 * KFILTER_BYNAME find name for filter, and return result in
1469 * name, which is of size len.
1470 * KFILTER_BYFILTER find filter for name. len is ignored.
1471 */
1472 /*ARGSUSED*/
1473 static int
1474 kqueue_ioctl(file_t *fp, u_long com, void *data)
1475 {
1476 struct kfilter_mapping *km;
1477 const struct kfilter *kfilter;
1478 char *name;
1479 int error;
1480
1481 km = data;
1482 error = 0;
1483 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1484
1485 switch (com) {
1486 case KFILTER_BYFILTER: /* convert filter -> name */
1487 rw_enter(&kqueue_filter_lock, RW_READER);
1488 kfilter = kfilter_byfilter(km->filter);
1489 if (kfilter != NULL) {
1490 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1491 rw_exit(&kqueue_filter_lock);
1492 error = copyoutstr(name, km->name, km->len, NULL);
1493 } else {
1494 rw_exit(&kqueue_filter_lock);
1495 error = ENOENT;
1496 }
1497 break;
1498
1499 case KFILTER_BYNAME: /* convert name -> filter */
1500 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1501 if (error) {
1502 break;
1503 }
1504 rw_enter(&kqueue_filter_lock, RW_READER);
1505 kfilter = kfilter_byname(name);
1506 if (kfilter != NULL)
1507 km->filter = kfilter->filter;
1508 else
1509 error = ENOENT;
1510 rw_exit(&kqueue_filter_lock);
1511 break;
1512
1513 default:
1514 error = ENOTTY;
1515 break;
1516
1517 }
1518 kmem_free(name, KFILTER_MAXNAME);
1519 return (error);
1520 }
1521
1522 /*
1523 * fileops fcntl method for a kqueue descriptor.
1524 */
1525 static int
1526 kqueue_fcntl(file_t *fp, u_int com, void *data)
1527 {
1528
1529 return (ENOTTY);
1530 }
1531
1532 /*
1533 * fileops poll method for a kqueue descriptor.
1534 * Determine if kqueue has events pending.
1535 */
1536 static int
1537 kqueue_poll(file_t *fp, int events)
1538 {
1539 struct kqueue *kq;
1540 int revents;
1541
1542 kq = fp->f_kqueue;
1543
1544 revents = 0;
1545 if (events & (POLLIN | POLLRDNORM)) {
1546 mutex_spin_enter(&kq->kq_lock);
1547 if (kq->kq_count != 0) {
1548 revents |= events & (POLLIN | POLLRDNORM);
1549 } else {
1550 selrecord(curlwp, &kq->kq_sel);
1551 }
1552 kq_check(kq);
1553 mutex_spin_exit(&kq->kq_lock);
1554 }
1555
1556 return revents;
1557 }
1558
1559 /*
1560 * fileops stat method for a kqueue descriptor.
1561 * Returns dummy info, with st_size being number of events pending.
1562 */
1563 static int
1564 kqueue_stat(file_t *fp, struct stat *st)
1565 {
1566 struct kqueue *kq;
1567
1568 kq = fp->f_kqueue;
1569
1570 memset(st, 0, sizeof(*st));
1571 st->st_size = kq->kq_count;
1572 st->st_blksize = sizeof(struct kevent);
1573 st->st_mode = S_IFIFO;
1574
1575 return 0;
1576 }
1577
1578 static void
1579 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1580 {
1581 struct knote *kn;
1582 filedesc_t *fdp;
1583
1584 fdp = kq->kq_fdp;
1585
1586 KASSERT(mutex_owned(&fdp->fd_lock));
1587
1588 for (kn = SLIST_FIRST(list); kn != NULL;) {
1589 if (kq != kn->kn_kq) {
1590 kn = SLIST_NEXT(kn, kn_link);
1591 continue;
1592 }
1593 knote_detach(kn, fdp, true);
1594 mutex_enter(&fdp->fd_lock);
1595 kn = SLIST_FIRST(list);
1596 }
1597 }
1598
1599
1600 /*
1601 * fileops close method for a kqueue descriptor.
1602 */
1603 static int
1604 kqueue_close(file_t *fp)
1605 {
1606 struct kqueue *kq;
1607 filedesc_t *fdp;
1608 fdfile_t *ff;
1609 int i;
1610
1611 kq = fp->f_kqueue;
1612 fp->f_kqueue = NULL;
1613 fp->f_type = 0;
1614 fdp = curlwp->l_fd;
1615
1616 mutex_enter(&fdp->fd_lock);
1617 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1618 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1619 continue;
1620 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1621 }
1622 if (fdp->fd_knhashmask != 0) {
1623 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1624 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1625 }
1626 }
1627 mutex_exit(&fdp->fd_lock);
1628
1629 KASSERT(kq->kq_count == 0);
1630 mutex_destroy(&kq->kq_lock);
1631 cv_destroy(&kq->kq_cv);
1632 seldestroy(&kq->kq_sel);
1633 kmem_free(kq, sizeof(*kq));
1634
1635 return (0);
1636 }
1637
1638 /*
1639 * struct fileops kqfilter method for a kqueue descriptor.
1640 * Event triggered when monitored kqueue changes.
1641 */
1642 static int
1643 kqueue_kqfilter(file_t *fp, struct knote *kn)
1644 {
1645 struct kqueue *kq;
1646
1647 kq = ((file_t *)kn->kn_obj)->f_kqueue;
1648
1649 KASSERT(fp == kn->kn_obj);
1650
1651 if (kn->kn_filter != EVFILT_READ)
1652 return 1;
1653
1654 kn->kn_fop = &kqread_filtops;
1655 mutex_enter(&kq->kq_lock);
1656 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1657 mutex_exit(&kq->kq_lock);
1658
1659 return 0;
1660 }
1661
1662
1663 /*
1664 * Walk down a list of knotes, activating them if their event has
1665 * triggered. The caller's object lock (e.g. device driver lock)
1666 * must be held.
1667 */
1668 void
1669 knote(struct klist *list, long hint)
1670 {
1671 struct knote *kn, *tmpkn;
1672
1673 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1674 KASSERT(kn->kn_fop != NULL);
1675 KASSERT(kn->kn_fop->f_event != NULL);
1676 if ((*kn->kn_fop->f_event)(kn, hint))
1677 knote_activate(kn);
1678 }
1679 }
1680
1681 /*
1682 * Remove all knotes referencing a specified fd
1683 */
1684 void
1685 knote_fdclose(int fd)
1686 {
1687 struct klist *list;
1688 struct knote *kn;
1689 filedesc_t *fdp;
1690
1691 fdp = curlwp->l_fd;
1692 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1693 mutex_enter(&fdp->fd_lock);
1694 while ((kn = SLIST_FIRST(list)) != NULL) {
1695 knote_detach(kn, fdp, true);
1696 mutex_enter(&fdp->fd_lock);
1697 }
1698 mutex_exit(&fdp->fd_lock);
1699 }
1700
1701 /*
1702 * Drop knote. Called with fdp->fd_lock held, and will drop before
1703 * returning.
1704 */
1705 static void
1706 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1707 {
1708 struct klist *list;
1709 struct kqueue *kq;
1710
1711 kq = kn->kn_kq;
1712
1713 KASSERT((kn->kn_status & KN_MARKER) == 0);
1714 KASSERT(mutex_owned(&fdp->fd_lock));
1715
1716 KASSERT(kn->kn_fop != NULL);
1717 /* Remove from monitored object. */
1718 if (dofop) {
1719 KASSERT(kn->kn_fop->f_detach != NULL);
1720 KERNEL_LOCK(1, NULL); /* XXXSMP */
1721 (*kn->kn_fop->f_detach)(kn);
1722 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1723 }
1724
1725 /* Remove from descriptor table. */
1726 if (kn->kn_fop->f_isfd)
1727 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1728 else
1729 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1730
1731 SLIST_REMOVE(list, kn, knote, kn_link);
1732
1733 /* Remove from kqueue. */
1734 again:
1735 mutex_spin_enter(&kq->kq_lock);
1736 if ((kn->kn_status & KN_QUEUED) != 0) {
1737 kq_check(kq);
1738 kq->kq_count--;
1739 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1740 kn->kn_status &= ~KN_QUEUED;
1741 kq_check(kq);
1742 } else if (kn->kn_status & KN_BUSY) {
1743 mutex_spin_exit(&kq->kq_lock);
1744 goto again;
1745 }
1746 mutex_spin_exit(&kq->kq_lock);
1747
1748 mutex_exit(&fdp->fd_lock);
1749 if (kn->kn_fop->f_isfd)
1750 fd_putfile(kn->kn_id);
1751 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1752 kmem_free(kn, sizeof(*kn));
1753 }
1754
1755 /*
1756 * Queue new event for knote.
1757 */
1758 static void
1759 knote_enqueue(struct knote *kn)
1760 {
1761 struct kqueue *kq;
1762
1763 KASSERT((kn->kn_status & KN_MARKER) == 0);
1764
1765 kq = kn->kn_kq;
1766
1767 mutex_spin_enter(&kq->kq_lock);
1768 if ((kn->kn_status & KN_DISABLED) != 0) {
1769 kn->kn_status &= ~KN_DISABLED;
1770 }
1771 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1772 kq_check(kq);
1773 kn->kn_status |= KN_QUEUED;
1774 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1775 kq->kq_count++;
1776 kq_check(kq);
1777 cv_broadcast(&kq->kq_cv);
1778 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1779 }
1780 mutex_spin_exit(&kq->kq_lock);
1781 }
1782 /*
1783 * Queue new event for knote.
1784 */
1785 static void
1786 knote_activate(struct knote *kn)
1787 {
1788 struct kqueue *kq;
1789
1790 KASSERT((kn->kn_status & KN_MARKER) == 0);
1791
1792 kq = kn->kn_kq;
1793
1794 mutex_spin_enter(&kq->kq_lock);
1795 kn->kn_status |= KN_ACTIVE;
1796 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1797 kq_check(kq);
1798 kn->kn_status |= KN_QUEUED;
1799 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1800 kq->kq_count++;
1801 kq_check(kq);
1802 cv_broadcast(&kq->kq_cv);
1803 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1804 }
1805 mutex_spin_exit(&kq->kq_lock);
1806 }
1807