kern_event.c revision 1.108.2.1 1 /* $NetBSD: kern_event.c,v 1.108.2.1 2020/12/14 14:38:13 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * Copyright (c) 2009 Apple, Inc
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.108.2.1 2020/12/14 14:38:13 thorpej Exp $");
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/kernel.h>
67 #include <sys/wait.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/select.h>
71 #include <sys/queue.h>
72 #include <sys/event.h>
73 #include <sys/eventvar.h>
74 #include <sys/poll.h>
75 #include <sys/kmem.h>
76 #include <sys/stat.h>
77 #include <sys/filedesc.h>
78 #include <sys/syscallargs.h>
79 #include <sys/kauth.h>
80 #include <sys/conf.h>
81 #include <sys/atomic.h>
82
83 static int kqueue_scan(file_t *, size_t, struct kevent *,
84 const struct timespec *, register_t *,
85 const struct kevent_ops *, struct kevent *,
86 size_t);
87 static int kqueue_ioctl(file_t *, u_long, void *);
88 static int kqueue_fcntl(file_t *, u_int, void *);
89 static int kqueue_poll(file_t *, int);
90 static int kqueue_kqfilter(file_t *, struct knote *);
91 static int kqueue_stat(file_t *, struct stat *);
92 static int kqueue_close(file_t *);
93 static int kqueue_register(struct kqueue *, struct kevent *);
94 static void kqueue_doclose(struct kqueue *, struct klist *, int);
95
96 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
97 static void knote_enqueue(struct knote *);
98 static void knote_activate(struct knote *);
99
100 static void filt_kqdetach(struct knote *);
101 static int filt_kqueue(struct knote *, long hint);
102 static int filt_procattach(struct knote *);
103 static void filt_procdetach(struct knote *);
104 static int filt_proc(struct knote *, long hint);
105 static int filt_fileattach(struct knote *);
106 static void filt_timerexpire(void *x);
107 static int filt_timerattach(struct knote *);
108 static void filt_timerdetach(struct knote *);
109 static int filt_timer(struct knote *, long hint);
110 static int filt_fsattach(struct knote *kn);
111 static void filt_fsdetach(struct knote *kn);
112 static int filt_fs(struct knote *kn, long hint);
113 static int filt_userattach(struct knote *);
114 static void filt_userdetach(struct knote *);
115 static int filt_user(struct knote *, long hint);
116 static void filt_usertouch(struct knote *, struct kevent *, long type);
117
118 static const struct fileops kqueueops = {
119 .fo_name = "kqueue",
120 .fo_read = (void *)enxio,
121 .fo_write = (void *)enxio,
122 .fo_ioctl = kqueue_ioctl,
123 .fo_fcntl = kqueue_fcntl,
124 .fo_poll = kqueue_poll,
125 .fo_stat = kqueue_stat,
126 .fo_close = kqueue_close,
127 .fo_kqfilter = kqueue_kqfilter,
128 .fo_restart = fnullop_restart,
129 };
130
131 static const struct filterops kqread_filtops = {
132 .f_isfd = 1,
133 .f_attach = NULL,
134 .f_detach = filt_kqdetach,
135 .f_event = filt_kqueue,
136 };
137
138 static const struct filterops proc_filtops = {
139 .f_isfd = 0,
140 .f_attach = filt_procattach,
141 .f_detach = filt_procdetach,
142 .f_event = filt_proc,
143 };
144
145 static const struct filterops file_filtops = {
146 .f_isfd = 1,
147 .f_attach = filt_fileattach,
148 .f_detach = NULL,
149 .f_event = NULL,
150 };
151
152 static const struct filterops timer_filtops = {
153 .f_isfd = 0,
154 .f_attach = filt_timerattach,
155 .f_detach = filt_timerdetach,
156 .f_event = filt_timer,
157 };
158
159 static const struct filterops fs_filtops = {
160 .f_isfd = 0,
161 .f_attach = filt_fsattach,
162 .f_detach = filt_fsdetach,
163 .f_event = filt_fs,
164 };
165
166 static const struct filterops user_filtops = {
167 .f_isfd = 0,
168 .f_attach = filt_userattach,
169 .f_detach = filt_userdetach,
170 .f_event = filt_user,
171 .f_touch = filt_usertouch,
172 };
173
174 static u_int kq_ncallouts = 0;
175 static int kq_calloutmax = (4 * 1024);
176
177 #define KN_HASHSIZE 64 /* XXX should be tunable */
178 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
179
180 extern const struct filterops sig_filtops;
181
182 /*
183 * Table for for all system-defined filters.
184 * These should be listed in the numeric order of the EVFILT_* defines.
185 * If filtops is NULL, the filter isn't implemented in NetBSD.
186 * End of list is when name is NULL.
187 *
188 * Note that 'refcnt' is meaningless for built-in filters.
189 */
190 struct kfilter {
191 const char *name; /* name of filter */
192 uint32_t filter; /* id of filter */
193 unsigned refcnt; /* reference count */
194 const struct filterops *filtops;/* operations for filter */
195 size_t namelen; /* length of name string */
196 };
197
198 /* System defined filters */
199 static struct kfilter sys_kfilters[] = {
200 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
201 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
202 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
203 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
204 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
205 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
206 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
207 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
208 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
209 { NULL, 0, 0, NULL, 0 },
210 };
211
212 /* User defined kfilters */
213 static struct kfilter *user_kfilters; /* array */
214 static int user_kfilterc; /* current offset */
215 static int user_kfiltermaxc; /* max size so far */
216 static size_t user_kfiltersz; /* size of allocated memory */
217
218 /*
219 * Global Locks.
220 *
221 * Lock order:
222 *
223 * kqueue_filter_lock
224 * -> kn_kq->kq_fdp->fd_lock
225 * -> object lock (e.g., device driver lock, kqueue_misc_lock, &c.)
226 * -> kn_kq->kq_lock
227 *
228 * Locking rules:
229 *
230 * f_attach: fdp->fd_lock, KERNEL_LOCK
231 * f_detach: fdp->fd_lock, KERNEL_LOCK
232 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
233 * f_event via knote: whatever caller guarantees
234 * Typically, f_event(NOTE_SUBMIT) via knote: object lock
235 * f_event(!NOTE_SUBMIT) via knote: nothing,
236 * acquires/releases object lock inside.
237 */
238 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
239 static kmutex_t kqueue_misc_lock; /* miscellaneous */
240
241 static kauth_listener_t kqueue_listener;
242
243 static int
244 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
245 void *arg0, void *arg1, void *arg2, void *arg3)
246 {
247 struct proc *p;
248 int result;
249
250 result = KAUTH_RESULT_DEFER;
251 p = arg0;
252
253 if (action != KAUTH_PROCESS_KEVENT_FILTER)
254 return result;
255
256 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
257 ISSET(p->p_flag, PK_SUGID)))
258 return result;
259
260 result = KAUTH_RESULT_ALLOW;
261
262 return result;
263 }
264
265 /*
266 * Initialize the kqueue subsystem.
267 */
268 void
269 kqueue_init(void)
270 {
271
272 rw_init(&kqueue_filter_lock);
273 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
274
275 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
276 kqueue_listener_cb, NULL);
277 }
278
279 /*
280 * Find kfilter entry by name, or NULL if not found.
281 */
282 static struct kfilter *
283 kfilter_byname_sys(const char *name)
284 {
285 int i;
286
287 KASSERT(rw_lock_held(&kqueue_filter_lock));
288
289 for (i = 0; sys_kfilters[i].name != NULL; i++) {
290 if (strcmp(name, sys_kfilters[i].name) == 0)
291 return &sys_kfilters[i];
292 }
293 return NULL;
294 }
295
296 static struct kfilter *
297 kfilter_byname_user(const char *name)
298 {
299 int i;
300
301 KASSERT(rw_lock_held(&kqueue_filter_lock));
302
303 /* user filter slots have a NULL name if previously deregistered */
304 for (i = 0; i < user_kfilterc ; i++) {
305 if (user_kfilters[i].name != NULL &&
306 strcmp(name, user_kfilters[i].name) == 0)
307 return &user_kfilters[i];
308 }
309 return NULL;
310 }
311
312 static struct kfilter *
313 kfilter_byname(const char *name)
314 {
315 struct kfilter *kfilter;
316
317 KASSERT(rw_lock_held(&kqueue_filter_lock));
318
319 if ((kfilter = kfilter_byname_sys(name)) != NULL)
320 return kfilter;
321
322 return kfilter_byname_user(name);
323 }
324
325 /*
326 * Find kfilter entry by filter id, or NULL if not found.
327 * Assumes entries are indexed in filter id order, for speed.
328 */
329 static struct kfilter *
330 kfilter_byfilter(uint32_t filter)
331 {
332 struct kfilter *kfilter;
333
334 KASSERT(rw_lock_held(&kqueue_filter_lock));
335
336 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
337 kfilter = &sys_kfilters[filter];
338 else if (user_kfilters != NULL &&
339 filter < EVFILT_SYSCOUNT + user_kfilterc)
340 /* it's a user filter */
341 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
342 else
343 return (NULL); /* out of range */
344 KASSERT(kfilter->filter == filter); /* sanity check! */
345 return (kfilter);
346 }
347
348 /*
349 * Register a new kfilter. Stores the entry in user_kfilters.
350 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
351 * If retfilter != NULL, the new filterid is returned in it.
352 */
353 int
354 kfilter_register(const char *name, const struct filterops *filtops,
355 int *retfilter)
356 {
357 struct kfilter *kfilter;
358 size_t len;
359 int i;
360
361 if (name == NULL || name[0] == '\0' || filtops == NULL)
362 return (EINVAL); /* invalid args */
363
364 rw_enter(&kqueue_filter_lock, RW_WRITER);
365 if (kfilter_byname(name) != NULL) {
366 rw_exit(&kqueue_filter_lock);
367 return (EEXIST); /* already exists */
368 }
369 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
370 rw_exit(&kqueue_filter_lock);
371 return (EINVAL); /* too many */
372 }
373
374 for (i = 0; i < user_kfilterc; i++) {
375 kfilter = &user_kfilters[i];
376 if (kfilter->name == NULL) {
377 /* Previously deregistered slot. Reuse. */
378 goto reuse;
379 }
380 }
381
382 /* check if need to grow user_kfilters */
383 if (user_kfilterc + 1 > user_kfiltermaxc) {
384 /* Grow in KFILTER_EXTENT chunks. */
385 user_kfiltermaxc += KFILTER_EXTENT;
386 len = user_kfiltermaxc * sizeof(*kfilter);
387 kfilter = kmem_alloc(len, KM_SLEEP);
388 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
389 if (user_kfilters != NULL) {
390 memcpy(kfilter, user_kfilters, user_kfiltersz);
391 kmem_free(user_kfilters, user_kfiltersz);
392 }
393 user_kfiltersz = len;
394 user_kfilters = kfilter;
395 }
396 /* Adding new slot */
397 kfilter = &user_kfilters[user_kfilterc++];
398 reuse:
399 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
400
401 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
402
403 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
404 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
405
406 if (retfilter != NULL)
407 *retfilter = kfilter->filter;
408 rw_exit(&kqueue_filter_lock);
409
410 return (0);
411 }
412
413 /*
414 * Unregister a kfilter previously registered with kfilter_register.
415 * This retains the filter id, but clears the name and frees filtops (filter
416 * operations), so that the number isn't reused during a boot.
417 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
418 */
419 int
420 kfilter_unregister(const char *name)
421 {
422 struct kfilter *kfilter;
423
424 if (name == NULL || name[0] == '\0')
425 return (EINVAL); /* invalid name */
426
427 rw_enter(&kqueue_filter_lock, RW_WRITER);
428 if (kfilter_byname_sys(name) != NULL) {
429 rw_exit(&kqueue_filter_lock);
430 return (EINVAL); /* can't detach system filters */
431 }
432
433 kfilter = kfilter_byname_user(name);
434 if (kfilter == NULL) {
435 rw_exit(&kqueue_filter_lock);
436 return (ENOENT);
437 }
438 if (kfilter->refcnt != 0) {
439 rw_exit(&kqueue_filter_lock);
440 return (EBUSY);
441 }
442
443 /* Cast away const (but we know it's safe. */
444 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
445 kfilter->name = NULL; /* mark as `not implemented' */
446
447 if (kfilter->filtops != NULL) {
448 /* Cast away const (but we know it's safe. */
449 kmem_free(__UNCONST(kfilter->filtops),
450 sizeof(*kfilter->filtops));
451 kfilter->filtops = NULL; /* mark as `not implemented' */
452 }
453 rw_exit(&kqueue_filter_lock);
454
455 return (0);
456 }
457
458
459 /*
460 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
461 * descriptors. Calls fileops kqfilter method for given file descriptor.
462 */
463 static int
464 filt_fileattach(struct knote *kn)
465 {
466 file_t *fp;
467
468 fp = kn->kn_obj;
469
470 return (*fp->f_ops->fo_kqfilter)(fp, kn);
471 }
472
473 /*
474 * Filter detach method for EVFILT_READ on kqueue descriptor.
475 */
476 static void
477 filt_kqdetach(struct knote *kn)
478 {
479 struct kqueue *kq;
480
481 kq = ((file_t *)kn->kn_obj)->f_kqueue;
482
483 mutex_spin_enter(&kq->kq_lock);
484 selremove_knote(&kq->kq_sel, kn);
485 mutex_spin_exit(&kq->kq_lock);
486 }
487
488 /*
489 * Filter event method for EVFILT_READ on kqueue descriptor.
490 */
491 /*ARGSUSED*/
492 static int
493 filt_kqueue(struct knote *kn, long hint)
494 {
495 struct kqueue *kq;
496 int rv;
497
498 kq = ((file_t *)kn->kn_obj)->f_kqueue;
499
500 if (hint != NOTE_SUBMIT)
501 mutex_spin_enter(&kq->kq_lock);
502 kn->kn_data = kq->kq_count;
503 rv = (kn->kn_data > 0);
504 if (hint != NOTE_SUBMIT)
505 mutex_spin_exit(&kq->kq_lock);
506
507 return rv;
508 }
509
510 /*
511 * Filter attach method for EVFILT_PROC.
512 */
513 static int
514 filt_procattach(struct knote *kn)
515 {
516 struct proc *p;
517 struct lwp *curl;
518
519 curl = curlwp;
520
521 mutex_enter(&proc_lock);
522 if (kn->kn_flags & EV_FLAG1) {
523 /*
524 * NOTE_TRACK attaches to the child process too early
525 * for proc_find, so do a raw look up and check the state
526 * explicitly.
527 */
528 p = proc_find_raw(kn->kn_id);
529 if (p != NULL && p->p_stat != SIDL)
530 p = NULL;
531 } else {
532 p = proc_find(kn->kn_id);
533 }
534
535 if (p == NULL) {
536 mutex_exit(&proc_lock);
537 return ESRCH;
538 }
539
540 /*
541 * Fail if it's not owned by you, or the last exec gave us
542 * setuid/setgid privs (unless you're root).
543 */
544 mutex_enter(p->p_lock);
545 mutex_exit(&proc_lock);
546 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
547 p, NULL, NULL, NULL) != 0) {
548 mutex_exit(p->p_lock);
549 return EACCES;
550 }
551
552 kn->kn_obj = p;
553 kn->kn_flags |= EV_CLEAR; /* automatically set */
554
555 /*
556 * internal flag indicating registration done by kernel
557 */
558 if (kn->kn_flags & EV_FLAG1) {
559 kn->kn_data = kn->kn_sdata; /* ppid */
560 kn->kn_fflags = NOTE_CHILD;
561 kn->kn_flags &= ~EV_FLAG1;
562 }
563 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
564 mutex_exit(p->p_lock);
565
566 return 0;
567 }
568
569 /*
570 * Filter detach method for EVFILT_PROC.
571 *
572 * The knote may be attached to a different process, which may exit,
573 * leaving nothing for the knote to be attached to. So when the process
574 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
575 * it will be deleted when read out. However, as part of the knote deletion,
576 * this routine is called, so a check is needed to avoid actually performing
577 * a detach, because the original process might not exist any more.
578 */
579 static void
580 filt_procdetach(struct knote *kn)
581 {
582 struct proc *p;
583
584 if (kn->kn_status & KN_DETACHED)
585 return;
586
587 p = kn->kn_obj;
588
589 mutex_enter(p->p_lock);
590 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
591 mutex_exit(p->p_lock);
592 }
593
594 /*
595 * Filter event method for EVFILT_PROC.
596 */
597 static int
598 filt_proc(struct knote *kn, long hint)
599 {
600 u_int event, fflag;
601 struct kevent kev;
602 struct kqueue *kq;
603 int error;
604
605 event = (u_int)hint & NOTE_PCTRLMASK;
606 kq = kn->kn_kq;
607 fflag = 0;
608
609 /* If the user is interested in this event, record it. */
610 if (kn->kn_sfflags & event)
611 fflag |= event;
612
613 if (event == NOTE_EXIT) {
614 struct proc *p = kn->kn_obj;
615
616 if (p != NULL)
617 kn->kn_data = P_WAITSTATUS(p);
618 /*
619 * Process is gone, so flag the event as finished.
620 *
621 * Detach the knote from watched process and mark
622 * it as such. We can't leave this to kqueue_scan(),
623 * since the process might not exist by then. And we
624 * have to do this now, since psignal KNOTE() is called
625 * also for zombies and we might end up reading freed
626 * memory if the kevent would already be picked up
627 * and knote g/c'ed.
628 */
629 filt_procdetach(kn);
630
631 mutex_spin_enter(&kq->kq_lock);
632 kn->kn_status |= KN_DETACHED;
633 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
634 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
635 kn->kn_fflags |= fflag;
636 mutex_spin_exit(&kq->kq_lock);
637
638 return 1;
639 }
640
641 mutex_spin_enter(&kq->kq_lock);
642 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
643 /*
644 * Process forked, and user wants to track the new process,
645 * so attach a new knote to it, and immediately report an
646 * event with the parent's pid. Register knote with new
647 * process.
648 */
649 memset(&kev, 0, sizeof(kev));
650 kev.ident = hint & NOTE_PDATAMASK; /* pid */
651 kev.filter = kn->kn_filter;
652 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
653 kev.fflags = kn->kn_sfflags;
654 kev.data = kn->kn_id; /* parent */
655 kev.udata = kn->kn_kevent.udata; /* preserve udata */
656 mutex_spin_exit(&kq->kq_lock);
657 error = kqueue_register(kq, &kev);
658 mutex_spin_enter(&kq->kq_lock);
659 if (error != 0)
660 kn->kn_fflags |= NOTE_TRACKERR;
661 }
662 kn->kn_fflags |= fflag;
663 fflag = kn->kn_fflags;
664 mutex_spin_exit(&kq->kq_lock);
665
666 return fflag != 0;
667 }
668
669 static void
670 filt_timerexpire(void *knx)
671 {
672 struct knote *kn = knx;
673 int tticks;
674
675 mutex_enter(&kqueue_misc_lock);
676 kn->kn_data++;
677 knote_activate(kn);
678 if ((kn->kn_flags & EV_ONESHOT) == 0) {
679 tticks = mstohz(kn->kn_sdata);
680 if (tticks <= 0)
681 tticks = 1;
682 callout_schedule((callout_t *)kn->kn_hook, tticks);
683 }
684 mutex_exit(&kqueue_misc_lock);
685 }
686
687 /*
688 * data contains amount of time to sleep, in milliseconds
689 */
690 static int
691 filt_timerattach(struct knote *kn)
692 {
693 callout_t *calloutp;
694 struct kqueue *kq;
695 int tticks;
696
697 tticks = mstohz(kn->kn_sdata);
698
699 /* if the supplied value is under our resolution, use 1 tick */
700 if (tticks == 0) {
701 if (kn->kn_sdata == 0)
702 return EINVAL;
703 tticks = 1;
704 }
705
706 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
707 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
708 atomic_dec_uint(&kq_ncallouts);
709 return ENOMEM;
710 }
711 callout_init(calloutp, CALLOUT_MPSAFE);
712
713 kq = kn->kn_kq;
714 mutex_spin_enter(&kq->kq_lock);
715 kn->kn_flags |= EV_CLEAR; /* automatically set */
716 kn->kn_hook = calloutp;
717 mutex_spin_exit(&kq->kq_lock);
718
719 callout_reset(calloutp, tticks, filt_timerexpire, kn);
720
721 return (0);
722 }
723
724 static void
725 filt_timerdetach(struct knote *kn)
726 {
727 callout_t *calloutp;
728 struct kqueue *kq = kn->kn_kq;
729
730 mutex_spin_enter(&kq->kq_lock);
731 /* prevent rescheduling when we expire */
732 kn->kn_flags |= EV_ONESHOT;
733 mutex_spin_exit(&kq->kq_lock);
734
735 calloutp = (callout_t *)kn->kn_hook;
736 callout_halt(calloutp, NULL);
737 callout_destroy(calloutp);
738 kmem_free(calloutp, sizeof(*calloutp));
739 atomic_dec_uint(&kq_ncallouts);
740 }
741
742 static int
743 filt_timer(struct knote *kn, long hint)
744 {
745 int rv;
746
747 mutex_enter(&kqueue_misc_lock);
748 rv = (kn->kn_data != 0);
749 mutex_exit(&kqueue_misc_lock);
750
751 return rv;
752 }
753
754 /*
755 * Filter event method for EVFILT_FS.
756 */
757 struct klist fs_klist = SLIST_HEAD_INITIALIZER(&fs_klist);
758
759 static int
760 filt_fsattach(struct knote *kn)
761 {
762
763 mutex_enter(&kqueue_misc_lock);
764 kn->kn_flags |= EV_CLEAR;
765 SLIST_INSERT_HEAD(&fs_klist, kn, kn_selnext);
766 mutex_exit(&kqueue_misc_lock);
767
768 return 0;
769 }
770
771 static void
772 filt_fsdetach(struct knote *kn)
773 {
774
775 mutex_enter(&kqueue_misc_lock);
776 SLIST_REMOVE(&fs_klist, kn, knote, kn_selnext);
777 mutex_exit(&kqueue_misc_lock);
778 }
779
780 static int
781 filt_fs(struct knote *kn, long hint)
782 {
783 int rv;
784
785 mutex_enter(&kqueue_misc_lock);
786 kn->kn_fflags |= hint;
787 rv = (kn->kn_fflags != 0);
788 mutex_exit(&kqueue_misc_lock);
789
790 return rv;
791 }
792
793 static int
794 filt_userattach(struct knote *kn)
795 {
796 struct kqueue *kq = kn->kn_kq;
797
798 /*
799 * EVFILT_USER knotes are not attached to anything in the kernel.
800 */
801 mutex_spin_enter(&kq->kq_lock);
802 kn->kn_hook = NULL;
803 if (kn->kn_fflags & NOTE_TRIGGER)
804 kn->kn_hookid = 1;
805 else
806 kn->kn_hookid = 0;
807 mutex_spin_exit(&kq->kq_lock);
808 return (0);
809 }
810
811 static void
812 filt_userdetach(struct knote *kn)
813 {
814
815 /*
816 * EVFILT_USER knotes are not attached to anything in the kernel.
817 */
818 }
819
820 static int
821 filt_user(struct knote *kn, long hint)
822 {
823 struct kqueue *kq = kn->kn_kq;
824 int hookid;
825
826 mutex_spin_enter(&kq->kq_lock);
827 hookid = kn->kn_hookid;
828 mutex_spin_exit(&kq->kq_lock);
829
830 return hookid;
831 }
832
833 static void
834 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
835 {
836 struct kqueue *kq = kn->kn_kq;
837 int ffctrl;
838
839 mutex_spin_enter(&kq->kq_lock);
840 switch (type) {
841 case EVENT_REGISTER:
842 if (kev->fflags & NOTE_TRIGGER)
843 kn->kn_hookid = 1;
844
845 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
846 kev->fflags &= NOTE_FFLAGSMASK;
847 switch (ffctrl) {
848 case NOTE_FFNOP:
849 break;
850
851 case NOTE_FFAND:
852 kn->kn_sfflags &= kev->fflags;
853 break;
854
855 case NOTE_FFOR:
856 kn->kn_sfflags |= kev->fflags;
857 break;
858
859 case NOTE_FFCOPY:
860 kn->kn_sfflags = kev->fflags;
861 break;
862
863 default:
864 /* XXX Return error? */
865 break;
866 }
867 kn->kn_sdata = kev->data;
868 if (kev->flags & EV_CLEAR) {
869 kn->kn_hookid = 0;
870 kn->kn_data = 0;
871 kn->kn_fflags = 0;
872 }
873 break;
874
875 case EVENT_PROCESS:
876 *kev = kn->kn_kevent;
877 kev->fflags = kn->kn_sfflags;
878 kev->data = kn->kn_sdata;
879 if (kn->kn_flags & EV_CLEAR) {
880 kn->kn_hookid = 0;
881 kn->kn_data = 0;
882 kn->kn_fflags = 0;
883 }
884 break;
885
886 default:
887 panic("filt_usertouch() - invalid type (%ld)", type);
888 break;
889 }
890 mutex_spin_exit(&kq->kq_lock);
891 }
892
893 /*
894 * filt_seltrue:
895 *
896 * This filter "event" routine simulates seltrue().
897 */
898 int
899 filt_seltrue(struct knote *kn, long hint)
900 {
901
902 /*
903 * We don't know how much data can be read/written,
904 * but we know that it *can* be. This is about as
905 * good as select/poll does as well.
906 */
907 kn->kn_data = 0;
908 return (1);
909 }
910
911 /*
912 * This provides full kqfilter entry for device switch tables, which
913 * has same effect as filter using filt_seltrue() as filter method.
914 */
915 static void
916 filt_seltruedetach(struct knote *kn)
917 {
918 /* Nothing to do */
919 }
920
921 const struct filterops seltrue_filtops = {
922 .f_isfd = 1,
923 .f_attach = NULL,
924 .f_detach = filt_seltruedetach,
925 .f_event = filt_seltrue,
926 .f_touch = NULL,
927 };
928
929 int
930 seltrue_kqfilter(dev_t dev, struct knote *kn)
931 {
932 switch (kn->kn_filter) {
933 case EVFILT_READ:
934 case EVFILT_WRITE:
935 kn->kn_fop = &seltrue_filtops;
936 break;
937 default:
938 return (EINVAL);
939 }
940
941 /* Nothing more to do */
942 return (0);
943 }
944
945 /*
946 * kqueue(2) system call.
947 */
948 static int
949 kqueue1(struct lwp *l, int flags, register_t *retval)
950 {
951 struct kqueue *kq;
952 file_t *fp;
953 int fd, error;
954
955 if ((error = fd_allocfile(&fp, &fd)) != 0)
956 return error;
957 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
958 fp->f_type = DTYPE_KQUEUE;
959 fp->f_ops = &kqueueops;
960 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
961 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
962 cv_init(&kq->kq_cv, "kqueue");
963 selinit(&kq->kq_sel);
964 TAILQ_INIT(&kq->kq_head);
965 fp->f_kqueue = kq;
966 *retval = fd;
967 kq->kq_fdp = curlwp->l_fd;
968 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
969 fd_affix(curproc, fp, fd);
970 return error;
971 }
972
973 /*
974 * kqueue(2) system call.
975 */
976 int
977 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
978 {
979 return kqueue1(l, 0, retval);
980 }
981
982 int
983 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
984 register_t *retval)
985 {
986 /* {
987 syscallarg(int) flags;
988 } */
989 return kqueue1(l, SCARG(uap, flags), retval);
990 }
991
992 /*
993 * kevent(2) system call.
994 */
995 int
996 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
997 struct kevent *changes, size_t index, int n)
998 {
999
1000 return copyin(changelist + index, changes, n * sizeof(*changes));
1001 }
1002
1003 int
1004 kevent_put_events(void *ctx, struct kevent *events,
1005 struct kevent *eventlist, size_t index, int n)
1006 {
1007
1008 return copyout(events, eventlist + index, n * sizeof(*events));
1009 }
1010
1011 static const struct kevent_ops kevent_native_ops = {
1012 .keo_private = NULL,
1013 .keo_fetch_timeout = copyin,
1014 .keo_fetch_changes = kevent_fetch_changes,
1015 .keo_put_events = kevent_put_events,
1016 };
1017
1018 int
1019 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1020 register_t *retval)
1021 {
1022 /* {
1023 syscallarg(int) fd;
1024 syscallarg(const struct kevent *) changelist;
1025 syscallarg(size_t) nchanges;
1026 syscallarg(struct kevent *) eventlist;
1027 syscallarg(size_t) nevents;
1028 syscallarg(const struct timespec *) timeout;
1029 } */
1030
1031 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1032 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1033 SCARG(uap, timeout), &kevent_native_ops);
1034 }
1035
1036 int
1037 kevent1(register_t *retval, int fd,
1038 const struct kevent *changelist, size_t nchanges,
1039 struct kevent *eventlist, size_t nevents,
1040 const struct timespec *timeout,
1041 const struct kevent_ops *keops)
1042 {
1043 struct kevent *kevp;
1044 struct kqueue *kq;
1045 struct timespec ts;
1046 size_t i, n, ichange;
1047 int nerrors, error;
1048 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
1049 file_t *fp;
1050
1051 /* check that we're dealing with a kq */
1052 fp = fd_getfile(fd);
1053 if (fp == NULL)
1054 return (EBADF);
1055
1056 if (fp->f_type != DTYPE_KQUEUE) {
1057 fd_putfile(fd);
1058 return (EBADF);
1059 }
1060
1061 if (timeout != NULL) {
1062 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1063 if (error)
1064 goto done;
1065 timeout = &ts;
1066 }
1067
1068 kq = fp->f_kqueue;
1069 nerrors = 0;
1070 ichange = 0;
1071
1072 /* traverse list of events to register */
1073 while (nchanges > 0) {
1074 n = MIN(nchanges, __arraycount(kevbuf));
1075 error = (*keops->keo_fetch_changes)(keops->keo_private,
1076 changelist, kevbuf, ichange, n);
1077 if (error)
1078 goto done;
1079 for (i = 0; i < n; i++) {
1080 kevp = &kevbuf[i];
1081 kevp->flags &= ~EV_SYSFLAGS;
1082 /* register each knote */
1083 error = kqueue_register(kq, kevp);
1084 if (!error && !(kevp->flags & EV_RECEIPT))
1085 continue;
1086 if (nevents == 0)
1087 goto done;
1088 kevp->flags = EV_ERROR;
1089 kevp->data = error;
1090 error = (*keops->keo_put_events)
1091 (keops->keo_private, kevp,
1092 eventlist, nerrors, 1);
1093 if (error)
1094 goto done;
1095 nevents--;
1096 nerrors++;
1097 }
1098 nchanges -= n; /* update the results */
1099 ichange += n;
1100 }
1101 if (nerrors) {
1102 *retval = nerrors;
1103 error = 0;
1104 goto done;
1105 }
1106
1107 /* actually scan through the events */
1108 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1109 kevbuf, __arraycount(kevbuf));
1110 done:
1111 fd_putfile(fd);
1112 return (error);
1113 }
1114
1115 /*
1116 * Register a given kevent kev onto the kqueue
1117 */
1118 static int
1119 kqueue_register(struct kqueue *kq, struct kevent *kev)
1120 {
1121 struct kfilter *kfilter;
1122 filedesc_t *fdp;
1123 file_t *fp;
1124 fdfile_t *ff;
1125 struct knote *kn, *newkn;
1126 struct klist *list;
1127 int error, fd, rv;
1128
1129 fdp = kq->kq_fdp;
1130 fp = NULL;
1131 kn = NULL;
1132 error = 0;
1133 fd = 0;
1134
1135 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1136
1137 rw_enter(&kqueue_filter_lock, RW_READER);
1138 kfilter = kfilter_byfilter(kev->filter);
1139 if (kfilter == NULL || kfilter->filtops == NULL) {
1140 /* filter not found nor implemented */
1141 rw_exit(&kqueue_filter_lock);
1142 kmem_free(newkn, sizeof(*newkn));
1143 return (EINVAL);
1144 }
1145
1146 /* search if knote already exists */
1147 if (kfilter->filtops->f_isfd) {
1148 /* monitoring a file descriptor */
1149 /* validate descriptor */
1150 if (kev->ident > INT_MAX
1151 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1152 rw_exit(&kqueue_filter_lock);
1153 kmem_free(newkn, sizeof(*newkn));
1154 return EBADF;
1155 }
1156 mutex_enter(&fdp->fd_lock);
1157 ff = fdp->fd_dt->dt_ff[fd];
1158 if (ff->ff_refcnt & FR_CLOSING) {
1159 error = EBADF;
1160 goto doneunlock;
1161 }
1162 if (fd <= fdp->fd_lastkqfile) {
1163 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1164 if (kq == kn->kn_kq &&
1165 kev->filter == kn->kn_filter)
1166 break;
1167 }
1168 }
1169 } else {
1170 /*
1171 * not monitoring a file descriptor, so
1172 * lookup knotes in internal hash table
1173 */
1174 mutex_enter(&fdp->fd_lock);
1175 if (fdp->fd_knhashmask != 0) {
1176 list = &fdp->fd_knhash[
1177 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1178 SLIST_FOREACH(kn, list, kn_link) {
1179 if (kev->ident == kn->kn_id &&
1180 kq == kn->kn_kq &&
1181 kev->filter == kn->kn_filter)
1182 break;
1183 }
1184 }
1185 }
1186
1187 /*
1188 * kn now contains the matching knote, or NULL if no match
1189 */
1190 if (kn == NULL) {
1191 if (kev->flags & EV_ADD) {
1192 /* create new knote */
1193 kn = newkn;
1194 newkn = NULL;
1195 kn->kn_obj = fp;
1196 kn->kn_id = kev->ident;
1197 kn->kn_kq = kq;
1198 kn->kn_fop = kfilter->filtops;
1199 kn->kn_kfilter = kfilter;
1200 kn->kn_sfflags = kev->fflags;
1201 kn->kn_sdata = kev->data;
1202 kev->fflags = 0;
1203 kev->data = 0;
1204 kn->kn_kevent = *kev;
1205
1206 KASSERT(kn->kn_fop != NULL);
1207 /*
1208 * apply reference count to knote structure, and
1209 * do not release it at the end of this routine.
1210 */
1211 fp = NULL;
1212
1213 if (!kn->kn_fop->f_isfd) {
1214 /*
1215 * If knote is not on an fd, store on
1216 * internal hash table.
1217 */
1218 if (fdp->fd_knhashmask == 0) {
1219 /* XXXAD can block with fd_lock held */
1220 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1221 HASH_LIST, true,
1222 &fdp->fd_knhashmask);
1223 }
1224 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1225 fdp->fd_knhashmask)];
1226 } else {
1227 /* Otherwise, knote is on an fd. */
1228 list = (struct klist *)
1229 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1230 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1231 fdp->fd_lastkqfile = kn->kn_id;
1232 }
1233 SLIST_INSERT_HEAD(list, kn, kn_link);
1234
1235 KERNEL_LOCK(1, NULL); /* XXXSMP */
1236 error = (*kfilter->filtops->f_attach)(kn);
1237 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1238 if (error != 0) {
1239 #ifdef DEBUG
1240 struct proc *p = curlwp->l_proc;
1241 const file_t *ft = kn->kn_obj;
1242 printf("%s: %s[%d]: event type %d not "
1243 "supported for file type %d/%s "
1244 "(error %d)\n", __func__,
1245 p->p_comm, p->p_pid,
1246 kn->kn_filter, ft ? ft->f_type : -1,
1247 ft ? ft->f_ops->fo_name : "?", error);
1248 #endif
1249
1250 /* knote_detach() drops fdp->fd_lock */
1251 knote_detach(kn, fdp, false);
1252 goto done;
1253 }
1254 atomic_inc_uint(&kfilter->refcnt);
1255 goto done_ev_add;
1256 } else {
1257 /* No matching knote and the EV_ADD flag is not set. */
1258 error = ENOENT;
1259 goto doneunlock;
1260 }
1261 }
1262
1263 if (kev->flags & EV_DELETE) {
1264 /* knote_detach() drops fdp->fd_lock */
1265 knote_detach(kn, fdp, true);
1266 goto done;
1267 }
1268
1269 /*
1270 * The user may change some filter values after the
1271 * initial EV_ADD, but doing so will not reset any
1272 * filter which have already been triggered.
1273 */
1274 kn->kn_kevent.udata = kev->udata;
1275 KASSERT(kn->kn_fop != NULL);
1276 if (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL) {
1277 KERNEL_LOCK(1, NULL); /* XXXSMP */
1278 (*kn->kn_fop->f_touch)(kn, kev, EVENT_REGISTER);
1279 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1280 } else {
1281 kn->kn_sfflags = kev->fflags;
1282 kn->kn_sdata = kev->data;
1283 }
1284
1285 /*
1286 * We can get here if we are trying to attach
1287 * an event to a file descriptor that does not
1288 * support events, and the attach routine is
1289 * broken and does not return an error.
1290 */
1291 done_ev_add:
1292 KASSERT(kn->kn_fop != NULL);
1293 KASSERT(kn->kn_fop->f_event != NULL);
1294 KERNEL_LOCK(1, NULL); /* XXXSMP */
1295 rv = (*kn->kn_fop->f_event)(kn, 0);
1296 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1297 if (rv)
1298 knote_activate(kn);
1299
1300 /* disable knote */
1301 if ((kev->flags & EV_DISABLE)) {
1302 mutex_spin_enter(&kq->kq_lock);
1303 if ((kn->kn_status & KN_DISABLED) == 0)
1304 kn->kn_status |= KN_DISABLED;
1305 mutex_spin_exit(&kq->kq_lock);
1306 }
1307
1308 /* enable knote */
1309 if ((kev->flags & EV_ENABLE)) {
1310 knote_enqueue(kn);
1311 }
1312 doneunlock:
1313 mutex_exit(&fdp->fd_lock);
1314 done:
1315 rw_exit(&kqueue_filter_lock);
1316 if (newkn != NULL)
1317 kmem_free(newkn, sizeof(*newkn));
1318 if (fp != NULL)
1319 fd_putfile(fd);
1320 return (error);
1321 }
1322
1323 #if defined(DEBUG)
1324 #define KN_FMT(buf, kn) \
1325 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1326
1327 static void
1328 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1329 {
1330 const struct knote *kn;
1331 int count;
1332 int nmarker;
1333 char buf[128];
1334
1335 KASSERT(mutex_owned(&kq->kq_lock));
1336 KASSERT(kq->kq_count >= 0);
1337
1338 count = 0;
1339 nmarker = 0;
1340 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1341 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1342 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1343 func, line, kq, kn, KN_FMT(buf, kn));
1344 }
1345 if ((kn->kn_status & KN_MARKER) == 0) {
1346 if (kn->kn_kq != kq) {
1347 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1348 func, line, kq, kn, kn->kn_kq,
1349 KN_FMT(buf, kn));
1350 }
1351 if ((kn->kn_status & KN_ACTIVE) == 0) {
1352 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1353 func, line, kq, kn, KN_FMT(buf, kn));
1354 }
1355 count++;
1356 if (count > kq->kq_count) {
1357 goto bad;
1358 }
1359 } else {
1360 nmarker++;
1361 #if 0
1362 if (nmarker > 10000) {
1363 panic("%s,%zu: kq=%p too many markers: "
1364 "%d != %d, nmarker=%d",
1365 func, line, kq, kq->kq_count, count,
1366 nmarker);
1367 }
1368 #endif
1369 }
1370 }
1371 if (kq->kq_count != count) {
1372 bad:
1373 panic("%s,%zu: kq=%p kq->kq_count(%d) != count(%d), nmarker=%d",
1374 func, line, kq, kq->kq_count, count, nmarker);
1375 }
1376 }
1377 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1378 #else /* defined(DEBUG) */
1379 #define kq_check(a) /* nothing */
1380 #endif /* defined(DEBUG) */
1381
1382 /*
1383 * Scan through the list of events on fp (for a maximum of maxevents),
1384 * returning the results in to ulistp. Timeout is determined by tsp; if
1385 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1386 * as appropriate.
1387 */
1388 static int
1389 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1390 const struct timespec *tsp, register_t *retval,
1391 const struct kevent_ops *keops, struct kevent *kevbuf,
1392 size_t kevcnt)
1393 {
1394 struct kqueue *kq;
1395 struct kevent *kevp;
1396 struct timespec ats, sleepts;
1397 struct knote *kn, *marker, morker;
1398 size_t count, nkev, nevents;
1399 int timeout, error, touch, rv;
1400 filedesc_t *fdp;
1401
1402 fdp = curlwp->l_fd;
1403 kq = fp->f_kqueue;
1404 count = maxevents;
1405 nkev = nevents = error = 0;
1406 if (count == 0) {
1407 *retval = 0;
1408 return 0;
1409 }
1410
1411 if (tsp) { /* timeout supplied */
1412 ats = *tsp;
1413 if (inittimeleft(&ats, &sleepts) == -1) {
1414 *retval = maxevents;
1415 return EINVAL;
1416 }
1417 timeout = tstohz(&ats);
1418 if (timeout <= 0)
1419 timeout = -1; /* do poll */
1420 } else {
1421 /* no timeout, wait forever */
1422 timeout = 0;
1423 }
1424
1425 memset(&morker, 0, sizeof(morker));
1426 marker = &morker;
1427 marker->kn_status = KN_MARKER;
1428 mutex_spin_enter(&kq->kq_lock);
1429 retry:
1430 kevp = kevbuf;
1431 if (kq->kq_count == 0) {
1432 if (timeout >= 0) {
1433 error = cv_timedwait_sig(&kq->kq_cv,
1434 &kq->kq_lock, timeout);
1435 if (error == 0) {
1436 if (tsp == NULL || (timeout =
1437 gettimeleft(&ats, &sleepts)) > 0)
1438 goto retry;
1439 } else {
1440 /* don't restart after signals... */
1441 if (error == ERESTART)
1442 error = EINTR;
1443 if (error == EWOULDBLOCK)
1444 error = 0;
1445 }
1446 }
1447 mutex_spin_exit(&kq->kq_lock);
1448 } else {
1449 /* mark end of knote list */
1450 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1451
1452 /*
1453 * Acquire the fdp->fd_lock interlock to avoid races with
1454 * file creation/destruction from other threads.
1455 */
1456 mutex_spin_exit(&kq->kq_lock);
1457 mutex_enter(&fdp->fd_lock);
1458 mutex_spin_enter(&kq->kq_lock);
1459
1460 while (count != 0) {
1461 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1462 while ((kn->kn_status & KN_MARKER) != 0) {
1463 if (kn == marker) {
1464 /* it's our marker, stop */
1465 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1466 if (count < maxevents || (tsp != NULL &&
1467 (timeout = gettimeleft(&ats,
1468 &sleepts)) <= 0))
1469 goto done;
1470 mutex_exit(&fdp->fd_lock);
1471 goto retry;
1472 }
1473 /* someone else's marker. */
1474 kn = TAILQ_NEXT(kn, kn_tqe);
1475 }
1476 kq_check(kq);
1477 kq->kq_count--;
1478 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1479 kn->kn_status &= ~KN_QUEUED;
1480 kn->kn_status |= KN_BUSY;
1481 kq_check(kq);
1482 if (kn->kn_status & KN_DISABLED) {
1483 kn->kn_status &= ~KN_BUSY;
1484 /* don't want disabled events */
1485 continue;
1486 }
1487 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1488 mutex_spin_exit(&kq->kq_lock);
1489 KASSERT(kn->kn_fop != NULL);
1490 KASSERT(kn->kn_fop->f_event != NULL);
1491 KERNEL_LOCK(1, NULL); /* XXXSMP */
1492 KASSERT(mutex_owned(&fdp->fd_lock));
1493 rv = (*kn->kn_fop->f_event)(kn, 0);
1494 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1495 mutex_spin_enter(&kq->kq_lock);
1496 /* Re-poll if note was re-enqueued. */
1497 if ((kn->kn_status & KN_QUEUED) != 0) {
1498 kn->kn_status &= ~KN_BUSY;
1499 continue;
1500 }
1501 if (rv == 0) {
1502 /*
1503 * non-ONESHOT event that hasn't
1504 * triggered again, so de-queue.
1505 */
1506 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1507 continue;
1508 }
1509 }
1510 KASSERT(kn->kn_fop != NULL);
1511 touch = (!kn->kn_fop->f_isfd &&
1512 kn->kn_fop->f_touch != NULL);
1513 /* XXXAD should be got from f_event if !oneshot. */
1514 if (touch) {
1515 mutex_spin_exit(&kq->kq_lock);
1516 KERNEL_LOCK(1, NULL); /* XXXSMP */
1517 (*kn->kn_fop->f_touch)(kn, kevp, EVENT_PROCESS);
1518 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1519 mutex_spin_enter(&kq->kq_lock);
1520 } else {
1521 *kevp = kn->kn_kevent;
1522 }
1523 kevp++;
1524 nkev++;
1525 if (kn->kn_flags & EV_ONESHOT) {
1526 /* delete ONESHOT events after retrieval */
1527 kn->kn_status &= ~KN_BUSY;
1528 mutex_spin_exit(&kq->kq_lock);
1529 knote_detach(kn, fdp, true);
1530 mutex_enter(&fdp->fd_lock);
1531 mutex_spin_enter(&kq->kq_lock);
1532 } else if (kn->kn_flags & EV_CLEAR) {
1533 /* clear state after retrieval */
1534 kn->kn_data = 0;
1535 kn->kn_fflags = 0;
1536 /*
1537 * Manually clear knotes who weren't
1538 * 'touch'ed.
1539 */
1540 if (touch == 0) {
1541 kn->kn_data = 0;
1542 kn->kn_fflags = 0;
1543 }
1544 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1545 } else if (kn->kn_flags & EV_DISPATCH) {
1546 kn->kn_status |= KN_DISABLED;
1547 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1548 } else {
1549 /* add event back on list */
1550 kq_check(kq);
1551 kn->kn_status |= KN_QUEUED;
1552 kn->kn_status &= ~KN_BUSY;
1553 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1554 kq->kq_count++;
1555 kq_check(kq);
1556 }
1557 if (nkev == kevcnt) {
1558 /* do copyouts in kevcnt chunks */
1559 mutex_spin_exit(&kq->kq_lock);
1560 mutex_exit(&fdp->fd_lock);
1561 error = (*keops->keo_put_events)
1562 (keops->keo_private,
1563 kevbuf, ulistp, nevents, nkev);
1564 mutex_enter(&fdp->fd_lock);
1565 mutex_spin_enter(&kq->kq_lock);
1566 nevents += nkev;
1567 nkev = 0;
1568 kevp = kevbuf;
1569 }
1570 count--;
1571 if (error != 0 || count == 0) {
1572 /* remove marker */
1573 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1574 break;
1575 }
1576 }
1577 done:
1578 mutex_spin_exit(&kq->kq_lock);
1579 mutex_exit(&fdp->fd_lock);
1580 }
1581 if (nkev != 0) {
1582 /* copyout remaining events */
1583 error = (*keops->keo_put_events)(keops->keo_private,
1584 kevbuf, ulistp, nevents, nkev);
1585 }
1586 *retval = maxevents - count;
1587
1588 return error;
1589 }
1590
1591 /*
1592 * fileops ioctl method for a kqueue descriptor.
1593 *
1594 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1595 * KFILTER_BYNAME find name for filter, and return result in
1596 * name, which is of size len.
1597 * KFILTER_BYFILTER find filter for name. len is ignored.
1598 */
1599 /*ARGSUSED*/
1600 static int
1601 kqueue_ioctl(file_t *fp, u_long com, void *data)
1602 {
1603 struct kfilter_mapping *km;
1604 const struct kfilter *kfilter;
1605 char *name;
1606 int error;
1607
1608 km = data;
1609 error = 0;
1610 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1611
1612 switch (com) {
1613 case KFILTER_BYFILTER: /* convert filter -> name */
1614 rw_enter(&kqueue_filter_lock, RW_READER);
1615 kfilter = kfilter_byfilter(km->filter);
1616 if (kfilter != NULL) {
1617 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1618 rw_exit(&kqueue_filter_lock);
1619 error = copyoutstr(name, km->name, km->len, NULL);
1620 } else {
1621 rw_exit(&kqueue_filter_lock);
1622 error = ENOENT;
1623 }
1624 break;
1625
1626 case KFILTER_BYNAME: /* convert name -> filter */
1627 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1628 if (error) {
1629 break;
1630 }
1631 rw_enter(&kqueue_filter_lock, RW_READER);
1632 kfilter = kfilter_byname(name);
1633 if (kfilter != NULL)
1634 km->filter = kfilter->filter;
1635 else
1636 error = ENOENT;
1637 rw_exit(&kqueue_filter_lock);
1638 break;
1639
1640 default:
1641 error = ENOTTY;
1642 break;
1643
1644 }
1645 kmem_free(name, KFILTER_MAXNAME);
1646 return (error);
1647 }
1648
1649 /*
1650 * fileops fcntl method for a kqueue descriptor.
1651 */
1652 static int
1653 kqueue_fcntl(file_t *fp, u_int com, void *data)
1654 {
1655
1656 return (ENOTTY);
1657 }
1658
1659 /*
1660 * fileops poll method for a kqueue descriptor.
1661 * Determine if kqueue has events pending.
1662 */
1663 static int
1664 kqueue_poll(file_t *fp, int events)
1665 {
1666 struct kqueue *kq;
1667 int revents;
1668
1669 kq = fp->f_kqueue;
1670
1671 revents = 0;
1672 if (events & (POLLIN | POLLRDNORM)) {
1673 mutex_spin_enter(&kq->kq_lock);
1674 if (kq->kq_count != 0) {
1675 revents |= events & (POLLIN | POLLRDNORM);
1676 } else {
1677 selrecord(curlwp, &kq->kq_sel);
1678 }
1679 kq_check(kq);
1680 mutex_spin_exit(&kq->kq_lock);
1681 }
1682
1683 return revents;
1684 }
1685
1686 /*
1687 * fileops stat method for a kqueue descriptor.
1688 * Returns dummy info, with st_size being number of events pending.
1689 */
1690 static int
1691 kqueue_stat(file_t *fp, struct stat *st)
1692 {
1693 struct kqueue *kq;
1694
1695 kq = fp->f_kqueue;
1696
1697 memset(st, 0, sizeof(*st));
1698 st->st_size = kq->kq_count;
1699 st->st_blksize = sizeof(struct kevent);
1700 st->st_mode = S_IFIFO;
1701
1702 return 0;
1703 }
1704
1705 static void
1706 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1707 {
1708 struct knote *kn;
1709 filedesc_t *fdp;
1710
1711 fdp = kq->kq_fdp;
1712
1713 KASSERT(mutex_owned(&fdp->fd_lock));
1714
1715 for (kn = SLIST_FIRST(list); kn != NULL;) {
1716 if (kq != kn->kn_kq) {
1717 kn = SLIST_NEXT(kn, kn_link);
1718 continue;
1719 }
1720 knote_detach(kn, fdp, true);
1721 mutex_enter(&fdp->fd_lock);
1722 kn = SLIST_FIRST(list);
1723 }
1724 }
1725
1726
1727 /*
1728 * fileops close method for a kqueue descriptor.
1729 */
1730 static int
1731 kqueue_close(file_t *fp)
1732 {
1733 struct kqueue *kq;
1734 filedesc_t *fdp;
1735 fdfile_t *ff;
1736 int i;
1737
1738 kq = fp->f_kqueue;
1739 fp->f_kqueue = NULL;
1740 fp->f_type = 0;
1741 fdp = curlwp->l_fd;
1742
1743 mutex_enter(&fdp->fd_lock);
1744 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1745 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1746 continue;
1747 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1748 }
1749 if (fdp->fd_knhashmask != 0) {
1750 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1751 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1752 }
1753 }
1754 mutex_exit(&fdp->fd_lock);
1755
1756 KASSERT(kq->kq_count == 0);
1757 mutex_destroy(&kq->kq_lock);
1758 cv_destroy(&kq->kq_cv);
1759 seldestroy(&kq->kq_sel);
1760 kmem_free(kq, sizeof(*kq));
1761
1762 return (0);
1763 }
1764
1765 /*
1766 * struct fileops kqfilter method for a kqueue descriptor.
1767 * Event triggered when monitored kqueue changes.
1768 */
1769 static int
1770 kqueue_kqfilter(file_t *fp, struct knote *kn)
1771 {
1772 struct kqueue *kq;
1773
1774 kq = ((file_t *)kn->kn_obj)->f_kqueue;
1775
1776 KASSERT(fp == kn->kn_obj);
1777
1778 if (kn->kn_filter != EVFILT_READ)
1779 return 1;
1780
1781 kn->kn_fop = &kqread_filtops;
1782 mutex_enter(&kq->kq_lock);
1783 selrecord_knote(&kq->kq_sel, kn);
1784 mutex_exit(&kq->kq_lock);
1785
1786 return 0;
1787 }
1788
1789
1790 /*
1791 * Walk down a list of knotes, activating them if their event has
1792 * triggered. The caller's object lock (e.g. device driver lock)
1793 * must be held.
1794 */
1795 void
1796 knote(struct klist *list, long hint)
1797 {
1798 struct knote *kn, *tmpkn;
1799
1800 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1801 KASSERT(kn->kn_fop != NULL);
1802 KASSERT(kn->kn_fop->f_event != NULL);
1803 if ((*kn->kn_fop->f_event)(kn, hint))
1804 knote_activate(kn);
1805 }
1806 }
1807
1808 /*
1809 * Remove all knotes referencing a specified fd
1810 */
1811 void
1812 knote_fdclose(int fd)
1813 {
1814 struct klist *list;
1815 struct knote *kn;
1816 filedesc_t *fdp;
1817
1818 fdp = curlwp->l_fd;
1819 mutex_enter(&fdp->fd_lock);
1820 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1821 while ((kn = SLIST_FIRST(list)) != NULL) {
1822 knote_detach(kn, fdp, true);
1823 mutex_enter(&fdp->fd_lock);
1824 }
1825 mutex_exit(&fdp->fd_lock);
1826 }
1827
1828 /*
1829 * Drop knote. Called with fdp->fd_lock held, and will drop before
1830 * returning.
1831 */
1832 static void
1833 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1834 {
1835 struct klist *list;
1836 struct kqueue *kq;
1837
1838 kq = kn->kn_kq;
1839
1840 KASSERT((kn->kn_status & KN_MARKER) == 0);
1841 KASSERT(mutex_owned(&fdp->fd_lock));
1842
1843 KASSERT(kn->kn_fop != NULL);
1844 /* Remove from monitored object. */
1845 if (dofop) {
1846 KASSERT(kn->kn_fop->f_detach != NULL);
1847 KERNEL_LOCK(1, NULL); /* XXXSMP */
1848 (*kn->kn_fop->f_detach)(kn);
1849 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1850 }
1851
1852 /* Remove from descriptor table. */
1853 if (kn->kn_fop->f_isfd)
1854 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1855 else
1856 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1857
1858 SLIST_REMOVE(list, kn, knote, kn_link);
1859
1860 /* Remove from kqueue. */
1861 again:
1862 mutex_spin_enter(&kq->kq_lock);
1863 if ((kn->kn_status & KN_QUEUED) != 0) {
1864 kq_check(kq);
1865 kq->kq_count--;
1866 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1867 kn->kn_status &= ~KN_QUEUED;
1868 kq_check(kq);
1869 } else if (kn->kn_status & KN_BUSY) {
1870 mutex_spin_exit(&kq->kq_lock);
1871 goto again;
1872 }
1873 mutex_spin_exit(&kq->kq_lock);
1874
1875 mutex_exit(&fdp->fd_lock);
1876 if (kn->kn_fop->f_isfd)
1877 fd_putfile(kn->kn_id);
1878 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1879 kmem_free(kn, sizeof(*kn));
1880 }
1881
1882 /*
1883 * Queue new event for knote.
1884 */
1885 static void
1886 knote_enqueue(struct knote *kn)
1887 {
1888 struct kqueue *kq;
1889
1890 KASSERT((kn->kn_status & KN_MARKER) == 0);
1891
1892 kq = kn->kn_kq;
1893
1894 mutex_spin_enter(&kq->kq_lock);
1895 if ((kn->kn_status & KN_DISABLED) != 0) {
1896 kn->kn_status &= ~KN_DISABLED;
1897 }
1898 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1899 kq_check(kq);
1900 kn->kn_status |= KN_QUEUED;
1901 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1902 kq->kq_count++;
1903 kq_check(kq);
1904 cv_broadcast(&kq->kq_cv);
1905 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1906 }
1907 mutex_spin_exit(&kq->kq_lock);
1908 }
1909 /*
1910 * Queue new event for knote.
1911 */
1912 static void
1913 knote_activate(struct knote *kn)
1914 {
1915 struct kqueue *kq;
1916
1917 KASSERT((kn->kn_status & KN_MARKER) == 0);
1918
1919 kq = kn->kn_kq;
1920
1921 mutex_spin_enter(&kq->kq_lock);
1922 kn->kn_status |= KN_ACTIVE;
1923 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1924 kq_check(kq);
1925 kn->kn_status |= KN_QUEUED;
1926 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1927 kq->kq_count++;
1928 kq_check(kq);
1929 cv_broadcast(&kq->kq_cv);
1930 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1931 }
1932 mutex_spin_exit(&kq->kq_lock);
1933 }
1934