Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.108.2.2
      1 /*	$NetBSD: kern_event.c,v 1.108.2.2 2021/01/03 16:35:04 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
     34  * Copyright (c) 2009 Apple, Inc
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  *
     46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     56  * SUCH DAMAGE.
     57  *
     58  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.108.2.2 2021/01/03 16:35:04 thorpej Exp $");
     63 
     64 #include <sys/param.h>
     65 #include <sys/systm.h>
     66 #include <sys/kernel.h>
     67 #include <sys/wait.h>
     68 #include <sys/proc.h>
     69 #include <sys/file.h>
     70 #include <sys/select.h>
     71 #include <sys/queue.h>
     72 #include <sys/event.h>
     73 #include <sys/eventvar.h>
     74 #include <sys/poll.h>
     75 #include <sys/kmem.h>
     76 #include <sys/stat.h>
     77 #include <sys/filedesc.h>
     78 #include <sys/syscallargs.h>
     79 #include <sys/kauth.h>
     80 #include <sys/conf.h>
     81 #include <sys/atomic.h>
     82 
     83 static int	kqueue_scan(file_t *, size_t, struct kevent *,
     84 			    const struct timespec *, register_t *,
     85 			    const struct kevent_ops *, struct kevent *,
     86 			    size_t);
     87 static int	kqueue_ioctl(file_t *, u_long, void *);
     88 static int	kqueue_fcntl(file_t *, u_int, void *);
     89 static int	kqueue_poll(file_t *, int);
     90 static int	kqueue_kqfilter(file_t *, struct knote *);
     91 static int	kqueue_stat(file_t *, struct stat *);
     92 static int	kqueue_close(file_t *);
     93 static int	kqueue_register(struct kqueue *, struct kevent *);
     94 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
     95 
     96 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
     97 static void	knote_enqueue(struct knote *);
     98 static void	knote_activate(struct knote *);
     99 
    100 static void	filt_kqdetach(struct knote *);
    101 static int	filt_kqueue(struct knote *, long hint);
    102 static int	filt_procattach(struct knote *);
    103 static void	filt_procdetach(struct knote *);
    104 static int	filt_proc(struct knote *, long hint);
    105 static int	filt_fileattach(struct knote *);
    106 static void	filt_timerexpire(void *x);
    107 static int	filt_timerattach(struct knote *);
    108 static void	filt_timerdetach(struct knote *);
    109 static int	filt_timer(struct knote *, long hint);
    110 static int	filt_fsattach(struct knote *kn);
    111 static void	filt_fsdetach(struct knote *kn);
    112 static int	filt_fs(struct knote *kn, long hint);
    113 static int	filt_userattach(struct knote *);
    114 static void	filt_userdetach(struct knote *);
    115 static int	filt_user(struct knote *, long hint);
    116 static void	filt_usertouch(struct knote *, struct kevent *, long type);
    117 
    118 static const struct fileops kqueueops = {
    119 	.fo_name = "kqueue",
    120 	.fo_read = (void *)enxio,
    121 	.fo_write = (void *)enxio,
    122 	.fo_ioctl = kqueue_ioctl,
    123 	.fo_fcntl = kqueue_fcntl,
    124 	.fo_poll = kqueue_poll,
    125 	.fo_stat = kqueue_stat,
    126 	.fo_close = kqueue_close,
    127 	.fo_kqfilter = kqueue_kqfilter,
    128 	.fo_restart = fnullop_restart,
    129 };
    130 
    131 static const struct filterops kqread_filtops = {
    132 	.f_isfd = 1,
    133 	.f_attach = NULL,
    134 	.f_detach = filt_kqdetach,
    135 	.f_event = filt_kqueue,
    136 };
    137 
    138 static const struct filterops proc_filtops = {
    139 	.f_isfd = 0,
    140 	.f_attach = filt_procattach,
    141 	.f_detach = filt_procdetach,
    142 	.f_event = filt_proc,
    143 };
    144 
    145 static const struct filterops file_filtops = {
    146 	.f_isfd = 1,
    147 	.f_attach = filt_fileattach,
    148 	.f_detach = NULL,
    149 	.f_event = NULL,
    150 };
    151 
    152 static const struct filterops timer_filtops = {
    153 	.f_isfd = 0,
    154 	.f_attach = filt_timerattach,
    155 	.f_detach = filt_timerdetach,
    156 	.f_event = filt_timer,
    157 };
    158 
    159 static const struct filterops fs_filtops = {
    160 	.f_isfd = 0,
    161 	.f_attach = filt_fsattach,
    162 	.f_detach = filt_fsdetach,
    163 	.f_event = filt_fs,
    164 };
    165 
    166 static const struct filterops user_filtops = {
    167 	.f_isfd = 0,
    168 	.f_attach = filt_userattach,
    169 	.f_detach = filt_userdetach,
    170 	.f_event = filt_user,
    171 	.f_touch = filt_usertouch,
    172 };
    173 
    174 static u_int	kq_ncallouts = 0;
    175 static int	kq_calloutmax = (4 * 1024);
    176 
    177 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    178 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    179 
    180 extern const struct filterops sig_filtops;
    181 
    182 /*
    183  * Table for for all system-defined filters.
    184  * These should be listed in the numeric order of the EVFILT_* defines.
    185  * If filtops is NULL, the filter isn't implemented in NetBSD.
    186  * End of list is when name is NULL.
    187  *
    188  * Note that 'refcnt' is meaningless for built-in filters.
    189  */
    190 struct kfilter {
    191 	const char	*name;		/* name of filter */
    192 	uint32_t	filter;		/* id of filter */
    193 	unsigned	refcnt;		/* reference count */
    194 	const struct filterops *filtops;/* operations for filter */
    195 	size_t		namelen;	/* length of name string */
    196 };
    197 
    198 /* System defined filters */
    199 static struct kfilter sys_kfilters[] = {
    200 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
    201 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
    202 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
    203 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
    204 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
    205 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
    206 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
    207 	{ "EVFILT_FS",		EVFILT_FS,	0, &fs_filtops, 0 },
    208 	{ "EVFILT_USER",	EVFILT_USER,	0, &user_filtops, 0 },
    209 	{ NULL,			0,		0, NULL, 0 },
    210 };
    211 
    212 /* User defined kfilters */
    213 static struct kfilter	*user_kfilters;		/* array */
    214 static int		user_kfilterc;		/* current offset */
    215 static int		user_kfiltermaxc;	/* max size so far */
    216 static size_t		user_kfiltersz;		/* size of allocated memory */
    217 
    218 /*
    219  * Global Locks.
    220  *
    221  * Lock order:
    222  *
    223  *	kqueue_filter_lock
    224  *	-> kn_kq->kq_fdp->fd_lock
    225  *	-> object lock (e.g., device driver lock, kqueue_misc_lock, &c.)
    226  *	-> kn_kq->kq_lock
    227  *
    228  * Locking rules:
    229  *
    230  *	f_attach: fdp->fd_lock, KERNEL_LOCK
    231  *	f_detach: fdp->fd_lock, KERNEL_LOCK
    232  *	f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
    233  *	f_event via knote: whatever caller guarantees
    234  *		Typically,	f_event(NOTE_SUBMIT) via knote: object lock
    235  *				f_event(!NOTE_SUBMIT) via knote: nothing,
    236  *					acquires/releases object lock inside.
    237  */
    238 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
    239 static kmutex_t		kqueue_misc_lock;	/* miscellaneous */
    240 
    241 static kauth_listener_t	kqueue_listener;
    242 
    243 static int
    244 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    245     void *arg0, void *arg1, void *arg2, void *arg3)
    246 {
    247 	struct proc *p;
    248 	int result;
    249 
    250 	result = KAUTH_RESULT_DEFER;
    251 	p = arg0;
    252 
    253 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
    254 		return result;
    255 
    256 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
    257 	    ISSET(p->p_flag, PK_SUGID)))
    258 		return result;
    259 
    260 	result = KAUTH_RESULT_ALLOW;
    261 
    262 	return result;
    263 }
    264 
    265 /*
    266  * Initialize the kqueue subsystem.
    267  */
    268 void
    269 kqueue_init(void)
    270 {
    271 
    272 	rw_init(&kqueue_filter_lock);
    273 	mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    274 
    275 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    276 	    kqueue_listener_cb, NULL);
    277 }
    278 
    279 /*
    280  * Find kfilter entry by name, or NULL if not found.
    281  */
    282 static struct kfilter *
    283 kfilter_byname_sys(const char *name)
    284 {
    285 	int i;
    286 
    287 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    288 
    289 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    290 		if (strcmp(name, sys_kfilters[i].name) == 0)
    291 			return &sys_kfilters[i];
    292 	}
    293 	return NULL;
    294 }
    295 
    296 static struct kfilter *
    297 kfilter_byname_user(const char *name)
    298 {
    299 	int i;
    300 
    301 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    302 
    303 	/* user filter slots have a NULL name if previously deregistered */
    304 	for (i = 0; i < user_kfilterc ; i++) {
    305 		if (user_kfilters[i].name != NULL &&
    306 		    strcmp(name, user_kfilters[i].name) == 0)
    307 			return &user_kfilters[i];
    308 	}
    309 	return NULL;
    310 }
    311 
    312 static struct kfilter *
    313 kfilter_byname(const char *name)
    314 {
    315 	struct kfilter *kfilter;
    316 
    317 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    318 
    319 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    320 		return kfilter;
    321 
    322 	return kfilter_byname_user(name);
    323 }
    324 
    325 /*
    326  * Find kfilter entry by filter id, or NULL if not found.
    327  * Assumes entries are indexed in filter id order, for speed.
    328  */
    329 static struct kfilter *
    330 kfilter_byfilter(uint32_t filter)
    331 {
    332 	struct kfilter *kfilter;
    333 
    334 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    335 
    336 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    337 		kfilter = &sys_kfilters[filter];
    338 	else if (user_kfilters != NULL &&
    339 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    340 					/* it's a user filter */
    341 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    342 	else
    343 		return (NULL);		/* out of range */
    344 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    345 	return (kfilter);
    346 }
    347 
    348 /*
    349  * Register a new kfilter. Stores the entry in user_kfilters.
    350  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    351  * If retfilter != NULL, the new filterid is returned in it.
    352  */
    353 int
    354 kfilter_register(const char *name, const struct filterops *filtops,
    355 		 int *retfilter)
    356 {
    357 	struct kfilter *kfilter;
    358 	size_t len;
    359 	int i;
    360 
    361 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    362 		return (EINVAL);	/* invalid args */
    363 
    364 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    365 	if (kfilter_byname(name) != NULL) {
    366 		rw_exit(&kqueue_filter_lock);
    367 		return (EEXIST);	/* already exists */
    368 	}
    369 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
    370 		rw_exit(&kqueue_filter_lock);
    371 		return (EINVAL);	/* too many */
    372 	}
    373 
    374 	for (i = 0; i < user_kfilterc; i++) {
    375 		kfilter = &user_kfilters[i];
    376 		if (kfilter->name == NULL) {
    377 			/* Previously deregistered slot.  Reuse. */
    378 			goto reuse;
    379 		}
    380 	}
    381 
    382 	/* check if need to grow user_kfilters */
    383 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    384 		/* Grow in KFILTER_EXTENT chunks. */
    385 		user_kfiltermaxc += KFILTER_EXTENT;
    386 		len = user_kfiltermaxc * sizeof(*kfilter);
    387 		kfilter = kmem_alloc(len, KM_SLEEP);
    388 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
    389 		if (user_kfilters != NULL) {
    390 			memcpy(kfilter, user_kfilters, user_kfiltersz);
    391 			kmem_free(user_kfilters, user_kfiltersz);
    392 		}
    393 		user_kfiltersz = len;
    394 		user_kfilters = kfilter;
    395 	}
    396 	/* Adding new slot */
    397 	kfilter = &user_kfilters[user_kfilterc++];
    398 reuse:
    399 	kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
    400 
    401 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
    402 
    403 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
    404 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
    405 
    406 	if (retfilter != NULL)
    407 		*retfilter = kfilter->filter;
    408 	rw_exit(&kqueue_filter_lock);
    409 
    410 	return (0);
    411 }
    412 
    413 /*
    414  * Unregister a kfilter previously registered with kfilter_register.
    415  * This retains the filter id, but clears the name and frees filtops (filter
    416  * operations), so that the number isn't reused during a boot.
    417  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    418  */
    419 int
    420 kfilter_unregister(const char *name)
    421 {
    422 	struct kfilter *kfilter;
    423 
    424 	if (name == NULL || name[0] == '\0')
    425 		return (EINVAL);	/* invalid name */
    426 
    427 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    428 	if (kfilter_byname_sys(name) != NULL) {
    429 		rw_exit(&kqueue_filter_lock);
    430 		return (EINVAL);	/* can't detach system filters */
    431 	}
    432 
    433 	kfilter = kfilter_byname_user(name);
    434 	if (kfilter == NULL) {
    435 		rw_exit(&kqueue_filter_lock);
    436 		return (ENOENT);
    437 	}
    438 	if (kfilter->refcnt != 0) {
    439 		rw_exit(&kqueue_filter_lock);
    440 		return (EBUSY);
    441 	}
    442 
    443 	/* Cast away const (but we know it's safe. */
    444 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
    445 	kfilter->name = NULL;	/* mark as `not implemented' */
    446 
    447 	if (kfilter->filtops != NULL) {
    448 		/* Cast away const (but we know it's safe. */
    449 		kmem_free(__UNCONST(kfilter->filtops),
    450 		    sizeof(*kfilter->filtops));
    451 		kfilter->filtops = NULL; /* mark as `not implemented' */
    452 	}
    453 	rw_exit(&kqueue_filter_lock);
    454 
    455 	return (0);
    456 }
    457 
    458 
    459 /*
    460  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    461  * descriptors. Calls fileops kqfilter method for given file descriptor.
    462  */
    463 static int
    464 filt_fileattach(struct knote *kn)
    465 {
    466 	file_t *fp;
    467 
    468 	fp = kn->kn_obj;
    469 
    470 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
    471 }
    472 
    473 /*
    474  * Filter detach method for EVFILT_READ on kqueue descriptor.
    475  */
    476 static void
    477 filt_kqdetach(struct knote *kn)
    478 {
    479 	struct kqueue *kq;
    480 
    481 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    482 
    483 	mutex_spin_enter(&kq->kq_lock);
    484 	selremove_knote(&kq->kq_sel, kn);
    485 	mutex_spin_exit(&kq->kq_lock);
    486 }
    487 
    488 /*
    489  * Filter event method for EVFILT_READ on kqueue descriptor.
    490  */
    491 /*ARGSUSED*/
    492 static int
    493 filt_kqueue(struct knote *kn, long hint)
    494 {
    495 	struct kqueue *kq;
    496 	int rv;
    497 
    498 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    499 
    500 	if (hint != NOTE_SUBMIT)
    501 		mutex_spin_enter(&kq->kq_lock);
    502 	kn->kn_data = kq->kq_count;
    503 	rv = (kn->kn_data > 0);
    504 	if (hint != NOTE_SUBMIT)
    505 		mutex_spin_exit(&kq->kq_lock);
    506 
    507 	return rv;
    508 }
    509 
    510 /*
    511  * Filter attach method for EVFILT_PROC.
    512  */
    513 static int
    514 filt_procattach(struct knote *kn)
    515 {
    516 	struct proc *p;
    517 	struct lwp *curl;
    518 
    519 	curl = curlwp;
    520 
    521 	mutex_enter(&proc_lock);
    522 	if (kn->kn_flags & EV_FLAG1) {
    523 		/*
    524 		 * NOTE_TRACK attaches to the child process too early
    525 		 * for proc_find, so do a raw look up and check the state
    526 		 * explicitly.
    527 		 */
    528 		p = proc_find_raw(kn->kn_id);
    529 		if (p != NULL && p->p_stat != SIDL)
    530 			p = NULL;
    531 	} else {
    532 		p = proc_find(kn->kn_id);
    533 	}
    534 
    535 	if (p == NULL) {
    536 		mutex_exit(&proc_lock);
    537 		return ESRCH;
    538 	}
    539 
    540 	/*
    541 	 * Fail if it's not owned by you, or the last exec gave us
    542 	 * setuid/setgid privs (unless you're root).
    543 	 */
    544 	mutex_enter(p->p_lock);
    545 	mutex_exit(&proc_lock);
    546 	if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
    547 	    p, NULL, NULL, NULL) != 0) {
    548 	    	mutex_exit(p->p_lock);
    549 		return EACCES;
    550 	}
    551 
    552 	kn->kn_obj = p;
    553 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    554 
    555 	/*
    556 	 * internal flag indicating registration done by kernel
    557 	 */
    558 	if (kn->kn_flags & EV_FLAG1) {
    559 		kn->kn_data = kn->kn_sdata;	/* ppid */
    560 		kn->kn_fflags = NOTE_CHILD;
    561 		kn->kn_flags &= ~EV_FLAG1;
    562 	}
    563 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
    564     	mutex_exit(p->p_lock);
    565 
    566 	return 0;
    567 }
    568 
    569 /*
    570  * Filter detach method for EVFILT_PROC.
    571  *
    572  * The knote may be attached to a different process, which may exit,
    573  * leaving nothing for the knote to be attached to.  So when the process
    574  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    575  * it will be deleted when read out.  However, as part of the knote deletion,
    576  * this routine is called, so a check is needed to avoid actually performing
    577  * a detach, because the original process might not exist any more.
    578  */
    579 static void
    580 filt_procdetach(struct knote *kn)
    581 {
    582 	struct proc *p;
    583 
    584 	if (kn->kn_status & KN_DETACHED)
    585 		return;
    586 
    587 	p = kn->kn_obj;
    588 
    589 	mutex_enter(p->p_lock);
    590 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
    591 	mutex_exit(p->p_lock);
    592 }
    593 
    594 /*
    595  * Filter event method for EVFILT_PROC.
    596  */
    597 static int
    598 filt_proc(struct knote *kn, long hint)
    599 {
    600 	u_int event, fflag;
    601 	struct kevent kev;
    602 	struct kqueue *kq;
    603 	int error;
    604 
    605 	event = (u_int)hint & NOTE_PCTRLMASK;
    606 	kq = kn->kn_kq;
    607 	fflag = 0;
    608 
    609 	/* If the user is interested in this event, record it. */
    610 	if (kn->kn_sfflags & event)
    611 		fflag |= event;
    612 
    613 	if (event == NOTE_EXIT) {
    614 		struct proc *p = kn->kn_obj;
    615 
    616 		if (p != NULL)
    617 			kn->kn_data = P_WAITSTATUS(p);
    618 		/*
    619 		 * Process is gone, so flag the event as finished.
    620 		 *
    621 		 * Detach the knote from watched process and mark
    622 		 * it as such. We can't leave this to kqueue_scan(),
    623 		 * since the process might not exist by then. And we
    624 		 * have to do this now, since psignal KNOTE() is called
    625 		 * also for zombies and we might end up reading freed
    626 		 * memory if the kevent would already be picked up
    627 		 * and knote g/c'ed.
    628 		 */
    629 		filt_procdetach(kn);
    630 
    631 		mutex_spin_enter(&kq->kq_lock);
    632 		kn->kn_status |= KN_DETACHED;
    633 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
    634 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
    635 		kn->kn_fflags |= fflag;
    636 		mutex_spin_exit(&kq->kq_lock);
    637 
    638 		return 1;
    639 	}
    640 
    641 	mutex_spin_enter(&kq->kq_lock);
    642 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
    643 		/*
    644 		 * Process forked, and user wants to track the new process,
    645 		 * so attach a new knote to it, and immediately report an
    646 		 * event with the parent's pid.  Register knote with new
    647 		 * process.
    648 		 */
    649 		memset(&kev, 0, sizeof(kev));
    650 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
    651 		kev.filter = kn->kn_filter;
    652 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
    653 		kev.fflags = kn->kn_sfflags;
    654 		kev.data = kn->kn_id;			/* parent */
    655 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
    656 		mutex_spin_exit(&kq->kq_lock);
    657 		error = kqueue_register(kq, &kev);
    658 		mutex_spin_enter(&kq->kq_lock);
    659 		if (error != 0)
    660 			kn->kn_fflags |= NOTE_TRACKERR;
    661 	}
    662 	kn->kn_fflags |= fflag;
    663 	fflag = kn->kn_fflags;
    664 	mutex_spin_exit(&kq->kq_lock);
    665 
    666 	return fflag != 0;
    667 }
    668 
    669 static void
    670 filt_timerexpire(void *knx)
    671 {
    672 	struct knote *kn = knx;
    673 	int tticks;
    674 
    675 	mutex_enter(&kqueue_misc_lock);
    676 	kn->kn_data++;
    677 	knote_activate(kn);
    678 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
    679 		tticks = mstohz(kn->kn_sdata);
    680 		if (tticks <= 0)
    681 			tticks = 1;
    682 		callout_schedule((callout_t *)kn->kn_hook, tticks);
    683 	}
    684 	mutex_exit(&kqueue_misc_lock);
    685 }
    686 
    687 /*
    688  * data contains amount of time to sleep, in milliseconds
    689  */
    690 static int
    691 filt_timerattach(struct knote *kn)
    692 {
    693 	callout_t *calloutp;
    694 	struct kqueue *kq;
    695 	int tticks;
    696 
    697 	tticks = mstohz(kn->kn_sdata);
    698 
    699 	/* if the supplied value is under our resolution, use 1 tick */
    700 	if (tticks == 0) {
    701 		if (kn->kn_sdata == 0)
    702 			return EINVAL;
    703 		tticks = 1;
    704 	}
    705 
    706 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
    707 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
    708 		atomic_dec_uint(&kq_ncallouts);
    709 		return ENOMEM;
    710 	}
    711 	callout_init(calloutp, CALLOUT_MPSAFE);
    712 
    713 	kq = kn->kn_kq;
    714 	mutex_spin_enter(&kq->kq_lock);
    715 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
    716 	kn->kn_hook = calloutp;
    717 	mutex_spin_exit(&kq->kq_lock);
    718 
    719 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
    720 
    721 	return (0);
    722 }
    723 
    724 static void
    725 filt_timerdetach(struct knote *kn)
    726 {
    727 	callout_t *calloutp;
    728 	struct kqueue *kq = kn->kn_kq;
    729 
    730 	mutex_spin_enter(&kq->kq_lock);
    731 	/* prevent rescheduling when we expire */
    732 	kn->kn_flags |= EV_ONESHOT;
    733 	mutex_spin_exit(&kq->kq_lock);
    734 
    735 	calloutp = (callout_t *)kn->kn_hook;
    736 	callout_halt(calloutp, NULL);
    737 	callout_destroy(calloutp);
    738 	kmem_free(calloutp, sizeof(*calloutp));
    739 	atomic_dec_uint(&kq_ncallouts);
    740 }
    741 
    742 static int
    743 filt_timer(struct knote *kn, long hint)
    744 {
    745 	int rv;
    746 
    747 	mutex_enter(&kqueue_misc_lock);
    748 	rv = (kn->kn_data != 0);
    749 	mutex_exit(&kqueue_misc_lock);
    750 
    751 	return rv;
    752 }
    753 
    754 /*
    755  * Filter event method for EVFILT_FS.
    756  */
    757 struct klist fs_klist = SLIST_HEAD_INITIALIZER(&fs_klist);
    758 
    759 static int
    760 filt_fsattach(struct knote *kn)
    761 {
    762 
    763 	mutex_enter(&kqueue_misc_lock);
    764 	kn->kn_flags |= EV_CLEAR;
    765 	SLIST_INSERT_HEAD(&fs_klist, kn, kn_selnext);
    766 	mutex_exit(&kqueue_misc_lock);
    767 
    768 	return 0;
    769 }
    770 
    771 static void
    772 filt_fsdetach(struct knote *kn)
    773 {
    774 
    775 	mutex_enter(&kqueue_misc_lock);
    776 	SLIST_REMOVE(&fs_klist, kn, knote, kn_selnext);
    777 	mutex_exit(&kqueue_misc_lock);
    778 }
    779 
    780 static int
    781 filt_fs(struct knote *kn, long hint)
    782 {
    783 	int rv;
    784 
    785 	mutex_enter(&kqueue_misc_lock);
    786 	kn->kn_fflags |= hint;
    787 	rv = (kn->kn_fflags != 0);
    788 	mutex_exit(&kqueue_misc_lock);
    789 
    790 	return rv;
    791 }
    792 
    793 static int
    794 filt_userattach(struct knote *kn)
    795 {
    796 	struct kqueue *kq = kn->kn_kq;
    797 
    798 	/*
    799 	 * EVFILT_USER knotes are not attached to anything in the kernel.
    800 	 */
    801 	mutex_spin_enter(&kq->kq_lock);
    802 	kn->kn_hook = NULL;
    803 	if (kn->kn_fflags & NOTE_TRIGGER)
    804 		kn->kn_hookid = 1;
    805 	else
    806 		kn->kn_hookid = 0;
    807 	mutex_spin_exit(&kq->kq_lock);
    808 	return (0);
    809 }
    810 
    811 static void
    812 filt_userdetach(struct knote *kn)
    813 {
    814 
    815 	/*
    816 	 * EVFILT_USER knotes are not attached to anything in the kernel.
    817 	 */
    818 }
    819 
    820 static int
    821 filt_user(struct knote *kn, long hint)
    822 {
    823 	struct kqueue *kq = kn->kn_kq;
    824 	int hookid;
    825 
    826 	mutex_spin_enter(&kq->kq_lock);
    827 	hookid = kn->kn_hookid;
    828 	mutex_spin_exit(&kq->kq_lock);
    829 
    830 	return hookid;
    831 }
    832 
    833 static void
    834 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
    835 {
    836 	struct kqueue *kq = kn->kn_kq;
    837 	int ffctrl;
    838 
    839 	mutex_spin_enter(&kq->kq_lock);
    840 	switch (type) {
    841 	case EVENT_REGISTER:
    842 		if (kev->fflags & NOTE_TRIGGER)
    843 			kn->kn_hookid = 1;
    844 
    845 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
    846 		kev->fflags &= NOTE_FFLAGSMASK;
    847 		switch (ffctrl) {
    848 		case NOTE_FFNOP:
    849 			break;
    850 
    851 		case NOTE_FFAND:
    852 			kn->kn_sfflags &= kev->fflags;
    853 			break;
    854 
    855 		case NOTE_FFOR:
    856 			kn->kn_sfflags |= kev->fflags;
    857 			break;
    858 
    859 		case NOTE_FFCOPY:
    860 			kn->kn_sfflags = kev->fflags;
    861 			break;
    862 
    863 		default:
    864 			/* XXX Return error? */
    865 			break;
    866 		}
    867 		kn->kn_sdata = kev->data;
    868 		if (kev->flags & EV_CLEAR) {
    869 			kn->kn_hookid = 0;
    870 			kn->kn_data = 0;
    871 			kn->kn_fflags = 0;
    872 		}
    873 		break;
    874 
    875 	case EVENT_PROCESS:
    876 		*kev = kn->kn_kevent;
    877 		kev->fflags = kn->kn_sfflags;
    878 		kev->data = kn->kn_sdata;
    879 		if (kn->kn_flags & EV_CLEAR) {
    880 			kn->kn_hookid = 0;
    881 			kn->kn_data = 0;
    882 			kn->kn_fflags = 0;
    883 		}
    884 		break;
    885 
    886 	default:
    887 		panic("filt_usertouch() - invalid type (%ld)", type);
    888 		break;
    889 	}
    890 	mutex_spin_exit(&kq->kq_lock);
    891 }
    892 
    893 /*
    894  * filt_seltrue:
    895  *
    896  *	This filter "event" routine simulates seltrue().
    897  */
    898 int
    899 filt_seltrue(struct knote *kn, long hint)
    900 {
    901 
    902 	/*
    903 	 * We don't know how much data can be read/written,
    904 	 * but we know that it *can* be.  This is about as
    905 	 * good as select/poll does as well.
    906 	 */
    907 	kn->kn_data = 0;
    908 	return (1);
    909 }
    910 
    911 /*
    912  * This provides full kqfilter entry for device switch tables, which
    913  * has same effect as filter using filt_seltrue() as filter method.
    914  */
    915 static void
    916 filt_seltruedetach(struct knote *kn)
    917 {
    918 	/* Nothing to do */
    919 }
    920 
    921 const struct filterops seltrue_filtops = {
    922 	.f_isfd = 1,
    923 	.f_attach = NULL,
    924 	.f_detach = filt_seltruedetach,
    925 	.f_event = filt_seltrue,
    926 	.f_touch = NULL,
    927 };
    928 
    929 int
    930 seltrue_kqfilter(dev_t dev, struct knote *kn)
    931 {
    932 	switch (kn->kn_filter) {
    933 	case EVFILT_READ:
    934 	case EVFILT_WRITE:
    935 		kn->kn_fop = &seltrue_filtops;
    936 		break;
    937 	default:
    938 		return (EINVAL);
    939 	}
    940 
    941 	/* Nothing more to do */
    942 	return (0);
    943 }
    944 
    945 /*
    946  * kqueue(2) system call.
    947  */
    948 static int
    949 kqueue1(struct lwp *l, int flags, register_t *retval)
    950 {
    951 	struct kqueue *kq;
    952 	file_t *fp;
    953 	int fd, error;
    954 
    955 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    956 		return error;
    957 	fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
    958 	fp->f_type = DTYPE_KQUEUE;
    959 	fp->f_ops = &kqueueops;
    960 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
    961 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
    962 	cv_init(&kq->kq_cv, "kqueue");
    963 	selinit(&kq->kq_sel);
    964 	TAILQ_INIT(&kq->kq_head);
    965 	fp->f_kqueue = kq;
    966 	*retval = fd;
    967 	kq->kq_fdp = curlwp->l_fd;
    968 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
    969 	fd_affix(curproc, fp, fd);
    970 	return error;
    971 }
    972 
    973 /*
    974  * kqueue(2) system call.
    975  */
    976 int
    977 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
    978 {
    979 	return kqueue1(l, 0, retval);
    980 }
    981 
    982 int
    983 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
    984     register_t *retval)
    985 {
    986 	/* {
    987 		syscallarg(int) flags;
    988 	} */
    989 	return kqueue1(l, SCARG(uap, flags), retval);
    990 }
    991 
    992 /*
    993  * kevent(2) system call.
    994  */
    995 int
    996 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
    997     struct kevent *changes, size_t index, int n)
    998 {
    999 
   1000 	return copyin(changelist + index, changes, n * sizeof(*changes));
   1001 }
   1002 
   1003 int
   1004 kevent_put_events(void *ctx, struct kevent *events,
   1005     struct kevent *eventlist, size_t index, int n)
   1006 {
   1007 
   1008 	return copyout(events, eventlist + index, n * sizeof(*events));
   1009 }
   1010 
   1011 static const struct kevent_ops kevent_native_ops = {
   1012 	.keo_private = NULL,
   1013 	.keo_fetch_timeout = copyin,
   1014 	.keo_fetch_changes = kevent_fetch_changes,
   1015 	.keo_put_events = kevent_put_events,
   1016 };
   1017 
   1018 int
   1019 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
   1020     register_t *retval)
   1021 {
   1022 	/* {
   1023 		syscallarg(int) fd;
   1024 		syscallarg(const struct kevent *) changelist;
   1025 		syscallarg(size_t) nchanges;
   1026 		syscallarg(struct kevent *) eventlist;
   1027 		syscallarg(size_t) nevents;
   1028 		syscallarg(const struct timespec *) timeout;
   1029 	} */
   1030 
   1031 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
   1032 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
   1033 	    SCARG(uap, timeout), &kevent_native_ops);
   1034 }
   1035 
   1036 int
   1037 kevent1(register_t *retval, int fd,
   1038 	const struct kevent *changelist, size_t nchanges,
   1039 	struct kevent *eventlist, size_t nevents,
   1040 	const struct timespec *timeout,
   1041 	const struct kevent_ops *keops)
   1042 {
   1043 	struct kevent *kevp;
   1044 	struct kqueue *kq;
   1045 	struct timespec	ts;
   1046 	size_t i, n, ichange;
   1047 	int nerrors, error;
   1048 	struct kevent kevbuf[KQ_NEVENTS];	/* approx 300 bytes on 64-bit */
   1049 	file_t *fp;
   1050 
   1051 	/* check that we're dealing with a kq */
   1052 	fp = fd_getfile(fd);
   1053 	if (fp == NULL)
   1054 		return (EBADF);
   1055 
   1056 	if (fp->f_type != DTYPE_KQUEUE) {
   1057 		fd_putfile(fd);
   1058 		return (EBADF);
   1059 	}
   1060 
   1061 	if (timeout != NULL) {
   1062 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
   1063 		if (error)
   1064 			goto done;
   1065 		timeout = &ts;
   1066 	}
   1067 
   1068 	kq = fp->f_kqueue;
   1069 	nerrors = 0;
   1070 	ichange = 0;
   1071 
   1072 	/* traverse list of events to register */
   1073 	while (nchanges > 0) {
   1074 		n = MIN(nchanges, __arraycount(kevbuf));
   1075 		error = (*keops->keo_fetch_changes)(keops->keo_private,
   1076 		    changelist, kevbuf, ichange, n);
   1077 		if (error)
   1078 			goto done;
   1079 		for (i = 0; i < n; i++) {
   1080 			kevp = &kevbuf[i];
   1081 			kevp->flags &= ~EV_SYSFLAGS;
   1082 			/* register each knote */
   1083 			error = kqueue_register(kq, kevp);
   1084 			if (!error && !(kevp->flags & EV_RECEIPT))
   1085 				continue;
   1086 			if (nevents == 0)
   1087 				goto done;
   1088 			kevp->flags = EV_ERROR;
   1089 			kevp->data = error;
   1090 			error = (*keops->keo_put_events)
   1091 				(keops->keo_private, kevp,
   1092 				 eventlist, nerrors, 1);
   1093 			if (error)
   1094 				goto done;
   1095 			nevents--;
   1096 			nerrors++;
   1097 		}
   1098 		nchanges -= n;	/* update the results */
   1099 		ichange += n;
   1100 	}
   1101 	if (nerrors) {
   1102 		*retval = nerrors;
   1103 		error = 0;
   1104 		goto done;
   1105 	}
   1106 
   1107 	/* actually scan through the events */
   1108 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
   1109 	    kevbuf, __arraycount(kevbuf));
   1110  done:
   1111 	fd_putfile(fd);
   1112 	return (error);
   1113 }
   1114 
   1115 /*
   1116  * Register a given kevent kev onto the kqueue
   1117  */
   1118 static int
   1119 kqueue_register(struct kqueue *kq, struct kevent *kev)
   1120 {
   1121 	struct kfilter *kfilter;
   1122 	filedesc_t *fdp;
   1123 	file_t *fp;
   1124 	fdfile_t *ff;
   1125 	struct knote *kn, *newkn;
   1126 	struct klist *list;
   1127 	int error, fd, rv;
   1128 
   1129 	fdp = kq->kq_fdp;
   1130 	fp = NULL;
   1131 	kn = NULL;
   1132 	error = 0;
   1133 	fd = 0;
   1134 
   1135 	newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
   1136 
   1137 	rw_enter(&kqueue_filter_lock, RW_READER);
   1138 	kfilter = kfilter_byfilter(kev->filter);
   1139 	if (kfilter == NULL || kfilter->filtops == NULL) {
   1140 		/* filter not found nor implemented */
   1141 		rw_exit(&kqueue_filter_lock);
   1142 		kmem_free(newkn, sizeof(*newkn));
   1143 		return (EINVAL);
   1144 	}
   1145 
   1146 	/* search if knote already exists */
   1147 	if (kfilter->filtops->f_isfd) {
   1148 		/* monitoring a file descriptor */
   1149 		/* validate descriptor */
   1150 		if (kev->ident > INT_MAX
   1151 		    || (fp = fd_getfile(fd = kev->ident)) == NULL) {
   1152 			rw_exit(&kqueue_filter_lock);
   1153 			kmem_free(newkn, sizeof(*newkn));
   1154 			return EBADF;
   1155 		}
   1156 		mutex_enter(&fdp->fd_lock);
   1157 		ff = fdp->fd_dt->dt_ff[fd];
   1158 		if (ff->ff_refcnt & FR_CLOSING) {
   1159 			error = EBADF;
   1160 			goto doneunlock;
   1161 		}
   1162 		if (fd <= fdp->fd_lastkqfile) {
   1163 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
   1164 				if (kq == kn->kn_kq &&
   1165 				    kev->filter == kn->kn_filter)
   1166 					break;
   1167 			}
   1168 		}
   1169 	} else {
   1170 		/*
   1171 		 * not monitoring a file descriptor, so
   1172 		 * lookup knotes in internal hash table
   1173 		 */
   1174 		mutex_enter(&fdp->fd_lock);
   1175 		if (fdp->fd_knhashmask != 0) {
   1176 			list = &fdp->fd_knhash[
   1177 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
   1178 			SLIST_FOREACH(kn, list, kn_link) {
   1179 				if (kev->ident == kn->kn_id &&
   1180 				    kq == kn->kn_kq &&
   1181 				    kev->filter == kn->kn_filter)
   1182 					break;
   1183 			}
   1184 		}
   1185 	}
   1186 
   1187 	/*
   1188 	 * kn now contains the matching knote, or NULL if no match
   1189 	 */
   1190 	if (kn == NULL) {
   1191 		if (kev->flags & EV_ADD) {
   1192 			/* create new knote */
   1193 			kn = newkn;
   1194 			newkn = NULL;
   1195 			kn->kn_obj = fp;
   1196 			kn->kn_id = kev->ident;
   1197 			kn->kn_kq = kq;
   1198 			kn->kn_fop = kfilter->filtops;
   1199 			kn->kn_kfilter = kfilter;
   1200 			kn->kn_sfflags = kev->fflags;
   1201 			kn->kn_sdata = kev->data;
   1202 			kev->fflags = 0;
   1203 			kev->data = 0;
   1204 			kn->kn_kevent = *kev;
   1205 
   1206 			KASSERT(kn->kn_fop != NULL);
   1207 			/*
   1208 			 * apply reference count to knote structure, and
   1209 			 * do not release it at the end of this routine.
   1210 			 */
   1211 			fp = NULL;
   1212 
   1213 			if (!kn->kn_fop->f_isfd) {
   1214 				/*
   1215 				 * If knote is not on an fd, store on
   1216 				 * internal hash table.
   1217 				 */
   1218 				if (fdp->fd_knhashmask == 0) {
   1219 					/* XXXAD can block with fd_lock held */
   1220 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
   1221 					    HASH_LIST, true,
   1222 					    &fdp->fd_knhashmask);
   1223 				}
   1224 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
   1225 				    fdp->fd_knhashmask)];
   1226 			} else {
   1227 				/* Otherwise, knote is on an fd. */
   1228 				list = (struct klist *)
   1229 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   1230 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
   1231 					fdp->fd_lastkqfile = kn->kn_id;
   1232 			}
   1233 			SLIST_INSERT_HEAD(list, kn, kn_link);
   1234 
   1235 			KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1236 			error = (*kfilter->filtops->f_attach)(kn);
   1237 			KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1238 			if (error != 0) {
   1239 #ifdef DEBUG
   1240 				struct proc *p = curlwp->l_proc;
   1241 				const file_t *ft = kn->kn_obj;
   1242 				printf("%s: %s[%d]: event type %d not "
   1243 				    "supported for file type %d/%s "
   1244 				    "(error %d)\n", __func__,
   1245 				    p->p_comm, p->p_pid,
   1246 				    kn->kn_filter, ft ? ft->f_type : -1,
   1247 				    ft ? ft->f_ops->fo_name : "?", error);
   1248 #endif
   1249 
   1250 				/* knote_detach() drops fdp->fd_lock */
   1251 				knote_detach(kn, fdp, false);
   1252 				goto done;
   1253 			}
   1254 			atomic_inc_uint(&kfilter->refcnt);
   1255 			goto done_ev_add;
   1256 		} else {
   1257 			/* No matching knote and the EV_ADD flag is not set. */
   1258 			error = ENOENT;
   1259 			goto doneunlock;
   1260 		}
   1261 	}
   1262 
   1263 	if (kev->flags & EV_DELETE) {
   1264 		/* knote_detach() drops fdp->fd_lock */
   1265 		knote_detach(kn, fdp, true);
   1266 		goto done;
   1267 	}
   1268 
   1269 	/*
   1270 	 * The user may change some filter values after the
   1271 	 * initial EV_ADD, but doing so will not reset any
   1272 	 * filter which have already been triggered.
   1273 	 */
   1274 	kn->kn_kevent.udata = kev->udata;
   1275 	KASSERT(kn->kn_fop != NULL);
   1276 	if (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL) {
   1277 		KERNEL_LOCK(1, NULL);			/* XXXSMP */
   1278 		(*kn->kn_fop->f_touch)(kn, kev, EVENT_REGISTER);
   1279 		KERNEL_UNLOCK_ONE(NULL);		/* XXXSMP */
   1280 	} else {
   1281 		kn->kn_sfflags = kev->fflags;
   1282 		kn->kn_sdata = kev->data;
   1283 	}
   1284 
   1285 	/*
   1286 	 * We can get here if we are trying to attach
   1287 	 * an event to a file descriptor that does not
   1288 	 * support events, and the attach routine is
   1289 	 * broken and does not return an error.
   1290 	 */
   1291 done_ev_add:
   1292 	KASSERT(kn->kn_fop != NULL);
   1293 	KASSERT(kn->kn_fop->f_event != NULL);
   1294 	KERNEL_LOCK(1, NULL);			/* XXXSMP */
   1295 	rv = (*kn->kn_fop->f_event)(kn, 0);
   1296 	KERNEL_UNLOCK_ONE(NULL);		/* XXXSMP */
   1297 	if (rv)
   1298 		knote_activate(kn);
   1299 
   1300 	/* disable knote */
   1301 	if ((kev->flags & EV_DISABLE)) {
   1302 		mutex_spin_enter(&kq->kq_lock);
   1303 		if ((kn->kn_status & KN_DISABLED) == 0)
   1304 			kn->kn_status |= KN_DISABLED;
   1305 		mutex_spin_exit(&kq->kq_lock);
   1306 	}
   1307 
   1308 	/* enable knote */
   1309 	if ((kev->flags & EV_ENABLE)) {
   1310 		knote_enqueue(kn);
   1311 	}
   1312 doneunlock:
   1313 	mutex_exit(&fdp->fd_lock);
   1314  done:
   1315 	rw_exit(&kqueue_filter_lock);
   1316 	if (newkn != NULL)
   1317 		kmem_free(newkn, sizeof(*newkn));
   1318 	if (fp != NULL)
   1319 		fd_putfile(fd);
   1320 	return (error);
   1321 }
   1322 
   1323 #if defined(DEBUG)
   1324 #define KN_FMT(buf, kn) \
   1325     (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
   1326 
   1327 static void
   1328 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
   1329 {
   1330 	const struct knote *kn;
   1331 	int count;
   1332 	int nmarker;
   1333 	char buf[128];
   1334 
   1335 	KASSERT(mutex_owned(&kq->kq_lock));
   1336 	KASSERT(kq->kq_count >= 0);
   1337 
   1338 	count = 0;
   1339 	nmarker = 0;
   1340 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   1341 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
   1342 			panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
   1343 			    func, line, kq, kn, KN_FMT(buf, kn));
   1344 		}
   1345 		if ((kn->kn_status & KN_MARKER) == 0) {
   1346 			if (kn->kn_kq != kq) {
   1347 				panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
   1348 				    func, line, kq, kn, kn->kn_kq,
   1349 				    KN_FMT(buf, kn));
   1350 			}
   1351 			if ((kn->kn_status & KN_ACTIVE) == 0) {
   1352 				panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
   1353 				    func, line, kq, kn, KN_FMT(buf, kn));
   1354 			}
   1355 			count++;
   1356 			if (count > kq->kq_count) {
   1357 				goto bad;
   1358 			}
   1359 		} else {
   1360 			nmarker++;
   1361 #if 0
   1362 			if (nmarker > 10000) {
   1363 				panic("%s,%zu: kq=%p too many markers: "
   1364 				    "%d != %d, nmarker=%d",
   1365 				    func, line, kq, kq->kq_count, count,
   1366 				    nmarker);
   1367 			}
   1368 #endif
   1369 		}
   1370 	}
   1371 	if (kq->kq_count != count) {
   1372 bad:
   1373 		panic("%s,%zu: kq=%p kq->kq_count(%d) != count(%d), nmarker=%d",
   1374 		    func, line, kq, kq->kq_count, count, nmarker);
   1375 	}
   1376 }
   1377 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
   1378 #else /* defined(DEBUG) */
   1379 #define	kq_check(a)	/* nothing */
   1380 #endif /* defined(DEBUG) */
   1381 
   1382 /*
   1383  * Scan through the list of events on fp (for a maximum of maxevents),
   1384  * returning the results in to ulistp. Timeout is determined by tsp; if
   1385  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
   1386  * as appropriate.
   1387  */
   1388 static int
   1389 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
   1390 	    const struct timespec *tsp, register_t *retval,
   1391 	    const struct kevent_ops *keops, struct kevent *kevbuf,
   1392 	    size_t kevcnt)
   1393 {
   1394 	struct kqueue	*kq;
   1395 	struct kevent	*kevp;
   1396 	struct timespec	ats, sleepts;
   1397 	struct knote	*kn, *marker, morker;
   1398 	size_t		count, nkev, nevents;
   1399 	int		timeout, error, touch, rv;
   1400 	filedesc_t	*fdp;
   1401 
   1402 	fdp = curlwp->l_fd;
   1403 	kq = fp->f_kqueue;
   1404 	count = maxevents;
   1405 	nkev = nevents = error = 0;
   1406 	if (count == 0) {
   1407 		*retval = 0;
   1408 		return 0;
   1409 	}
   1410 
   1411 	if (tsp) {				/* timeout supplied */
   1412 		ats = *tsp;
   1413 		if (inittimeleft(&ats, &sleepts) == -1) {
   1414 			*retval = maxevents;
   1415 			return EINVAL;
   1416 		}
   1417 		timeout = tstohz(&ats);
   1418 		if (timeout <= 0)
   1419 			timeout = -1;           /* do poll */
   1420 	} else {
   1421 		/* no timeout, wait forever */
   1422 		timeout = 0;
   1423 	}
   1424 
   1425 	memset(&morker, 0, sizeof(morker));
   1426 	marker = &morker;
   1427 	marker->kn_status = KN_MARKER;
   1428 	mutex_spin_enter(&kq->kq_lock);
   1429  retry:
   1430 	kevp = kevbuf;
   1431 	if (kq->kq_count == 0) {
   1432 		if (timeout >= 0) {
   1433 			error = cv_timedwait_sig(&kq->kq_cv,
   1434 			    &kq->kq_lock, timeout);
   1435 			if (error == 0) {
   1436 				 if (tsp == NULL || (timeout =
   1437 				     gettimeleft(&ats, &sleepts)) > 0)
   1438 					goto retry;
   1439 			} else {
   1440 				/* don't restart after signals... */
   1441 				if (error == ERESTART)
   1442 					error = EINTR;
   1443 				if (error == EWOULDBLOCK)
   1444 					error = 0;
   1445 			}
   1446 		}
   1447 		mutex_spin_exit(&kq->kq_lock);
   1448 		goto done;
   1449 	}
   1450 
   1451 	/* mark end of knote list */
   1452 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
   1453 
   1454 	/*
   1455 	 * Acquire the fdp->fd_lock interlock to avoid races with
   1456 	 * file creation/destruction from other threads.
   1457 	 */
   1458 	mutex_spin_exit(&kq->kq_lock);
   1459 	mutex_enter(&fdp->fd_lock);
   1460 	mutex_spin_enter(&kq->kq_lock);
   1461 
   1462 	while (count != 0) {
   1463 		kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
   1464 		while ((kn->kn_status & KN_MARKER) != 0) {
   1465 			if (kn == marker) {
   1466 				/* it's our marker, stop */
   1467 				TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1468 				if (count < maxevents || (tsp != NULL &&
   1469 				    (timeout = gettimeleft(&ats,
   1470 				    &sleepts)) <= 0))
   1471 					goto queue_processed;
   1472 				mutex_exit(&fdp->fd_lock);
   1473 				goto retry;
   1474 			}
   1475 			/* someone else's marker. */
   1476 			kn = TAILQ_NEXT(kn, kn_tqe);
   1477 		}
   1478 		kq_check(kq);
   1479 		kq->kq_count--;
   1480 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1481 		kn->kn_status &= ~KN_QUEUED;
   1482 		kn->kn_status |= KN_BUSY;
   1483 		kq_check(kq);
   1484 		if (kn->kn_status & KN_DISABLED) {
   1485 			kn->kn_status &= ~KN_BUSY;
   1486 			/* don't want disabled events */
   1487 			continue;
   1488 		}
   1489 		if ((kn->kn_flags & EV_ONESHOT) == 0) {
   1490 			mutex_spin_exit(&kq->kq_lock);
   1491 			KASSERT(kn->kn_fop != NULL);
   1492 			KASSERT(kn->kn_fop->f_event != NULL);
   1493 			KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1494 			KASSERT(mutex_owned(&fdp->fd_lock));
   1495 			rv = (*kn->kn_fop->f_event)(kn, 0);
   1496 			KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1497 			mutex_spin_enter(&kq->kq_lock);
   1498 			/* Re-poll if note was re-enqueued. */
   1499 			if ((kn->kn_status & KN_QUEUED) != 0) {
   1500 				kn->kn_status &= ~KN_BUSY;
   1501 				continue;
   1502 			}
   1503 			if (rv == 0) {
   1504 				/*
   1505 				 * non-ONESHOT event that hasn't
   1506 				 * triggered again, so de-queue.
   1507 				 */
   1508 				kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   1509 				continue;
   1510 			}
   1511 		}
   1512 		KASSERT(kn->kn_fop != NULL);
   1513 		touch = (!kn->kn_fop->f_isfd &&
   1514 				kn->kn_fop->f_touch != NULL);
   1515 		/* XXXAD should be got from f_event if !oneshot. */
   1516 		if (touch) {
   1517 			mutex_spin_exit(&kq->kq_lock);
   1518 			KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1519 			(*kn->kn_fop->f_touch)(kn, kevp, EVENT_PROCESS);
   1520 			KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1521 			mutex_spin_enter(&kq->kq_lock);
   1522 		} else {
   1523 			*kevp = kn->kn_kevent;
   1524 		}
   1525 		kevp++;
   1526 		nkev++;
   1527 		if (kn->kn_flags & EV_ONESHOT) {
   1528 			/* delete ONESHOT events after retrieval */
   1529 			kn->kn_status &= ~KN_BUSY;
   1530 			mutex_spin_exit(&kq->kq_lock);
   1531 			knote_detach(kn, fdp, true);
   1532 			mutex_enter(&fdp->fd_lock);
   1533 			mutex_spin_enter(&kq->kq_lock);
   1534 		} else if (kn->kn_flags & EV_CLEAR) {
   1535 			/* clear state after retrieval */
   1536 			kn->kn_data = 0;
   1537 			kn->kn_fflags = 0;
   1538 			/*
   1539 			 * Manually clear knotes who weren't
   1540 			 * 'touch'ed.
   1541 			 */
   1542 			if (touch == 0) {
   1543 				kn->kn_data = 0;
   1544 				kn->kn_fflags = 0;
   1545 			}
   1546 			kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
   1547 		} else if (kn->kn_flags & EV_DISPATCH) {
   1548 			kn->kn_status |= KN_DISABLED;
   1549 			kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
   1550 		} else {
   1551 			/* add event back on list */
   1552 			kq_check(kq);
   1553 			kn->kn_status |= KN_QUEUED;
   1554 			kn->kn_status &= ~KN_BUSY;
   1555 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1556 			kq->kq_count++;
   1557 			kq_check(kq);
   1558 		}
   1559 		if (nkev == kevcnt) {
   1560 			/* do copyouts in kevcnt chunks */
   1561 			mutex_spin_exit(&kq->kq_lock);
   1562 			mutex_exit(&fdp->fd_lock);
   1563 			error = (*keops->keo_put_events)
   1564 			    (keops->keo_private,
   1565 			    kevbuf, ulistp, nevents, nkev);
   1566 			mutex_enter(&fdp->fd_lock);
   1567 			mutex_spin_enter(&kq->kq_lock);
   1568 			nevents += nkev;
   1569 			nkev = 0;
   1570 			kevp = kevbuf;
   1571 		}
   1572 		count--;
   1573 		if (error != 0 || count == 0) {
   1574 			/* remove marker */
   1575 			TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   1576 			break;
   1577 		}
   1578 	}
   1579 queue_processed:
   1580 	mutex_spin_exit(&kq->kq_lock);
   1581 	mutex_exit(&fdp->fd_lock);
   1582 
   1583 done:
   1584 	if (nkev != 0) {
   1585 		/* copyout remaining events */
   1586 		error = (*keops->keo_put_events)(keops->keo_private,
   1587 		    kevbuf, ulistp, nevents, nkev);
   1588 	}
   1589 	*retval = maxevents - count;
   1590 
   1591 	return error;
   1592 }
   1593 
   1594 /*
   1595  * fileops ioctl method for a kqueue descriptor.
   1596  *
   1597  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   1598  *	KFILTER_BYNAME		find name for filter, and return result in
   1599  *				name, which is of size len.
   1600  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   1601  */
   1602 /*ARGSUSED*/
   1603 static int
   1604 kqueue_ioctl(file_t *fp, u_long com, void *data)
   1605 {
   1606 	struct kfilter_mapping	*km;
   1607 	const struct kfilter	*kfilter;
   1608 	char			*name;
   1609 	int			error;
   1610 
   1611 	km = data;
   1612 	error = 0;
   1613 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
   1614 
   1615 	switch (com) {
   1616 	case KFILTER_BYFILTER:	/* convert filter -> name */
   1617 		rw_enter(&kqueue_filter_lock, RW_READER);
   1618 		kfilter = kfilter_byfilter(km->filter);
   1619 		if (kfilter != NULL) {
   1620 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
   1621 			rw_exit(&kqueue_filter_lock);
   1622 			error = copyoutstr(name, km->name, km->len, NULL);
   1623 		} else {
   1624 			rw_exit(&kqueue_filter_lock);
   1625 			error = ENOENT;
   1626 		}
   1627 		break;
   1628 
   1629 	case KFILTER_BYNAME:	/* convert name -> filter */
   1630 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   1631 		if (error) {
   1632 			break;
   1633 		}
   1634 		rw_enter(&kqueue_filter_lock, RW_READER);
   1635 		kfilter = kfilter_byname(name);
   1636 		if (kfilter != NULL)
   1637 			km->filter = kfilter->filter;
   1638 		else
   1639 			error = ENOENT;
   1640 		rw_exit(&kqueue_filter_lock);
   1641 		break;
   1642 
   1643 	default:
   1644 		error = ENOTTY;
   1645 		break;
   1646 
   1647 	}
   1648 	kmem_free(name, KFILTER_MAXNAME);
   1649 	return (error);
   1650 }
   1651 
   1652 /*
   1653  * fileops fcntl method for a kqueue descriptor.
   1654  */
   1655 static int
   1656 kqueue_fcntl(file_t *fp, u_int com, void *data)
   1657 {
   1658 
   1659 	return (ENOTTY);
   1660 }
   1661 
   1662 /*
   1663  * fileops poll method for a kqueue descriptor.
   1664  * Determine if kqueue has events pending.
   1665  */
   1666 static int
   1667 kqueue_poll(file_t *fp, int events)
   1668 {
   1669 	struct kqueue	*kq;
   1670 	int		revents;
   1671 
   1672 	kq = fp->f_kqueue;
   1673 
   1674 	revents = 0;
   1675 	if (events & (POLLIN | POLLRDNORM)) {
   1676 		mutex_spin_enter(&kq->kq_lock);
   1677 		if (kq->kq_count != 0) {
   1678 			revents |= events & (POLLIN | POLLRDNORM);
   1679 		} else {
   1680 			selrecord(curlwp, &kq->kq_sel);
   1681 		}
   1682 		kq_check(kq);
   1683 		mutex_spin_exit(&kq->kq_lock);
   1684 	}
   1685 
   1686 	return revents;
   1687 }
   1688 
   1689 /*
   1690  * fileops stat method for a kqueue descriptor.
   1691  * Returns dummy info, with st_size being number of events pending.
   1692  */
   1693 static int
   1694 kqueue_stat(file_t *fp, struct stat *st)
   1695 {
   1696 	struct kqueue *kq;
   1697 
   1698 	kq = fp->f_kqueue;
   1699 
   1700 	memset(st, 0, sizeof(*st));
   1701 	st->st_size = kq->kq_count;
   1702 	st->st_blksize = sizeof(struct kevent);
   1703 	st->st_mode = S_IFIFO;
   1704 
   1705 	return 0;
   1706 }
   1707 
   1708 static void
   1709 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
   1710 {
   1711 	struct knote *kn;
   1712 	filedesc_t *fdp;
   1713 
   1714 	fdp = kq->kq_fdp;
   1715 
   1716 	KASSERT(mutex_owned(&fdp->fd_lock));
   1717 
   1718 	for (kn = SLIST_FIRST(list); kn != NULL;) {
   1719 		if (kq != kn->kn_kq) {
   1720 			kn = SLIST_NEXT(kn, kn_link);
   1721 			continue;
   1722 		}
   1723 		knote_detach(kn, fdp, true);
   1724 		mutex_enter(&fdp->fd_lock);
   1725 		kn = SLIST_FIRST(list);
   1726 	}
   1727 }
   1728 
   1729 
   1730 /*
   1731  * fileops close method for a kqueue descriptor.
   1732  */
   1733 static int
   1734 kqueue_close(file_t *fp)
   1735 {
   1736 	struct kqueue *kq;
   1737 	filedesc_t *fdp;
   1738 	fdfile_t *ff;
   1739 	int i;
   1740 
   1741 	kq = fp->f_kqueue;
   1742 	fp->f_kqueue = NULL;
   1743 	fp->f_type = 0;
   1744 	fdp = curlwp->l_fd;
   1745 
   1746 	mutex_enter(&fdp->fd_lock);
   1747 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
   1748 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
   1749 			continue;
   1750 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
   1751 	}
   1752 	if (fdp->fd_knhashmask != 0) {
   1753 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   1754 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
   1755 		}
   1756 	}
   1757 	mutex_exit(&fdp->fd_lock);
   1758 
   1759 	KASSERT(kq->kq_count == 0);
   1760 	mutex_destroy(&kq->kq_lock);
   1761 	cv_destroy(&kq->kq_cv);
   1762 	seldestroy(&kq->kq_sel);
   1763 	kmem_free(kq, sizeof(*kq));
   1764 
   1765 	return (0);
   1766 }
   1767 
   1768 /*
   1769  * struct fileops kqfilter method for a kqueue descriptor.
   1770  * Event triggered when monitored kqueue changes.
   1771  */
   1772 static int
   1773 kqueue_kqfilter(file_t *fp, struct knote *kn)
   1774 {
   1775 	struct kqueue *kq;
   1776 
   1777 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
   1778 
   1779 	KASSERT(fp == kn->kn_obj);
   1780 
   1781 	if (kn->kn_filter != EVFILT_READ)
   1782 		return 1;
   1783 
   1784 	kn->kn_fop = &kqread_filtops;
   1785 	mutex_enter(&kq->kq_lock);
   1786 	selrecord_knote(&kq->kq_sel, kn);
   1787 	mutex_exit(&kq->kq_lock);
   1788 
   1789 	return 0;
   1790 }
   1791 
   1792 
   1793 /*
   1794  * Walk down a list of knotes, activating them if their event has
   1795  * triggered.  The caller's object lock (e.g. device driver lock)
   1796  * must be held.
   1797  */
   1798 void
   1799 knote(struct klist *list, long hint)
   1800 {
   1801 	struct knote *kn, *tmpkn;
   1802 
   1803 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
   1804 		KASSERT(kn->kn_fop != NULL);
   1805 		KASSERT(kn->kn_fop->f_event != NULL);
   1806 		if ((*kn->kn_fop->f_event)(kn, hint))
   1807 			knote_activate(kn);
   1808 	}
   1809 }
   1810 
   1811 /*
   1812  * Remove all knotes referencing a specified fd
   1813  */
   1814 void
   1815 knote_fdclose(int fd)
   1816 {
   1817 	struct klist *list;
   1818 	struct knote *kn;
   1819 	filedesc_t *fdp;
   1820 
   1821 	fdp = curlwp->l_fd;
   1822 	mutex_enter(&fdp->fd_lock);
   1823 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
   1824 	while ((kn = SLIST_FIRST(list)) != NULL) {
   1825 		knote_detach(kn, fdp, true);
   1826 		mutex_enter(&fdp->fd_lock);
   1827 	}
   1828 	mutex_exit(&fdp->fd_lock);
   1829 }
   1830 
   1831 /*
   1832  * Drop knote.  Called with fdp->fd_lock held, and will drop before
   1833  * returning.
   1834  */
   1835 static void
   1836 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
   1837 {
   1838 	struct klist *list;
   1839 	struct kqueue *kq;
   1840 
   1841 	kq = kn->kn_kq;
   1842 
   1843 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1844 	KASSERT(mutex_owned(&fdp->fd_lock));
   1845 
   1846 	KASSERT(kn->kn_fop != NULL);
   1847 	/* Remove from monitored object. */
   1848 	if (dofop) {
   1849 		KASSERT(kn->kn_fop->f_detach != NULL);
   1850 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1851 		(*kn->kn_fop->f_detach)(kn);
   1852 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1853 	}
   1854 
   1855 	/* Remove from descriptor table. */
   1856 	if (kn->kn_fop->f_isfd)
   1857 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   1858 	else
   1859 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1860 
   1861 	SLIST_REMOVE(list, kn, knote, kn_link);
   1862 
   1863 	/* Remove from kqueue. */
   1864 again:
   1865 	mutex_spin_enter(&kq->kq_lock);
   1866 	if ((kn->kn_status & KN_QUEUED) != 0) {
   1867 		kq_check(kq);
   1868 		kq->kq_count--;
   1869 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1870 		kn->kn_status &= ~KN_QUEUED;
   1871 		kq_check(kq);
   1872 	} else if (kn->kn_status & KN_BUSY) {
   1873 		mutex_spin_exit(&kq->kq_lock);
   1874 		goto again;
   1875 	}
   1876 	mutex_spin_exit(&kq->kq_lock);
   1877 
   1878 	mutex_exit(&fdp->fd_lock);
   1879 	if (kn->kn_fop->f_isfd)
   1880 		fd_putfile(kn->kn_id);
   1881 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
   1882 	kmem_free(kn, sizeof(*kn));
   1883 }
   1884 
   1885 /*
   1886  * Queue new event for knote.
   1887  */
   1888 static void
   1889 knote_enqueue(struct knote *kn)
   1890 {
   1891 	struct kqueue *kq;
   1892 
   1893 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1894 
   1895 	kq = kn->kn_kq;
   1896 
   1897 	mutex_spin_enter(&kq->kq_lock);
   1898 	if ((kn->kn_status & KN_DISABLED) != 0) {
   1899 		kn->kn_status &= ~KN_DISABLED;
   1900 	}
   1901 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
   1902 		kq_check(kq);
   1903 		kn->kn_status |= KN_QUEUED;
   1904 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1905 		kq->kq_count++;
   1906 		kq_check(kq);
   1907 		cv_broadcast(&kq->kq_cv);
   1908 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   1909 	}
   1910 	mutex_spin_exit(&kq->kq_lock);
   1911 }
   1912 /*
   1913  * Queue new event for knote.
   1914  */
   1915 static void
   1916 knote_activate(struct knote *kn)
   1917 {
   1918 	struct kqueue *kq;
   1919 
   1920 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1921 
   1922 	kq = kn->kn_kq;
   1923 
   1924 	mutex_spin_enter(&kq->kq_lock);
   1925 	kn->kn_status |= KN_ACTIVE;
   1926 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
   1927 		kq_check(kq);
   1928 		kn->kn_status |= KN_QUEUED;
   1929 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1930 		kq->kq_count++;
   1931 		kq_check(kq);
   1932 		cv_broadcast(&kq->kq_cv);
   1933 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   1934 	}
   1935 	mutex_spin_exit(&kq->kq_lock);
   1936 }
   1937