kern_event.c revision 1.112 1 /* $NetBSD: kern_event.c,v 1.112 2021/01/21 18:09:23 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * Copyright (c) 2009 Apple, Inc
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.112 2021/01/21 18:09:23 jdolecek Exp $");
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/kernel.h>
67 #include <sys/wait.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/select.h>
71 #include <sys/queue.h>
72 #include <sys/event.h>
73 #include <sys/eventvar.h>
74 #include <sys/poll.h>
75 #include <sys/kmem.h>
76 #include <sys/stat.h>
77 #include <sys/filedesc.h>
78 #include <sys/syscallargs.h>
79 #include <sys/kauth.h>
80 #include <sys/conf.h>
81 #include <sys/atomic.h>
82
83 static int kqueue_scan(file_t *, size_t, struct kevent *,
84 const struct timespec *, register_t *,
85 const struct kevent_ops *, struct kevent *,
86 size_t);
87 static int kqueue_ioctl(file_t *, u_long, void *);
88 static int kqueue_fcntl(file_t *, u_int, void *);
89 static int kqueue_poll(file_t *, int);
90 static int kqueue_kqfilter(file_t *, struct knote *);
91 static int kqueue_stat(file_t *, struct stat *);
92 static int kqueue_close(file_t *);
93 static int kqueue_register(struct kqueue *, struct kevent *);
94 static void kqueue_doclose(struct kqueue *, struct klist *, int);
95
96 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
97 static void knote_enqueue(struct knote *);
98 static void knote_activate(struct knote *);
99
100 static void filt_kqdetach(struct knote *);
101 static int filt_kqueue(struct knote *, long hint);
102 static int filt_procattach(struct knote *);
103 static void filt_procdetach(struct knote *);
104 static int filt_proc(struct knote *, long hint);
105 static int filt_fileattach(struct knote *);
106 static void filt_timerexpire(void *x);
107 static int filt_timerattach(struct knote *);
108 static void filt_timerdetach(struct knote *);
109 static int filt_timer(struct knote *, long hint);
110 static int filt_fsattach(struct knote *kn);
111 static void filt_fsdetach(struct knote *kn);
112 static int filt_fs(struct knote *kn, long hint);
113 static int filt_userattach(struct knote *);
114 static void filt_userdetach(struct knote *);
115 static int filt_user(struct knote *, long hint);
116 static void filt_usertouch(struct knote *, struct kevent *, long type);
117
118 static const struct fileops kqueueops = {
119 .fo_name = "kqueue",
120 .fo_read = (void *)enxio,
121 .fo_write = (void *)enxio,
122 .fo_ioctl = kqueue_ioctl,
123 .fo_fcntl = kqueue_fcntl,
124 .fo_poll = kqueue_poll,
125 .fo_stat = kqueue_stat,
126 .fo_close = kqueue_close,
127 .fo_kqfilter = kqueue_kqfilter,
128 .fo_restart = fnullop_restart,
129 };
130
131 static const struct filterops kqread_filtops = {
132 .f_isfd = 1,
133 .f_attach = NULL,
134 .f_detach = filt_kqdetach,
135 .f_event = filt_kqueue,
136 };
137
138 static const struct filterops proc_filtops = {
139 .f_isfd = 0,
140 .f_attach = filt_procattach,
141 .f_detach = filt_procdetach,
142 .f_event = filt_proc,
143 };
144
145 static const struct filterops file_filtops = {
146 .f_isfd = 1,
147 .f_attach = filt_fileattach,
148 .f_detach = NULL,
149 .f_event = NULL,
150 };
151
152 static const struct filterops timer_filtops = {
153 .f_isfd = 0,
154 .f_attach = filt_timerattach,
155 .f_detach = filt_timerdetach,
156 .f_event = filt_timer,
157 };
158
159 static const struct filterops fs_filtops = {
160 .f_isfd = 0,
161 .f_attach = filt_fsattach,
162 .f_detach = filt_fsdetach,
163 .f_event = filt_fs,
164 };
165
166 static const struct filterops user_filtops = {
167 .f_isfd = 0,
168 .f_attach = filt_userattach,
169 .f_detach = filt_userdetach,
170 .f_event = filt_user,
171 .f_touch = filt_usertouch,
172 };
173
174 static u_int kq_ncallouts = 0;
175 static int kq_calloutmax = (4 * 1024);
176
177 #define KN_HASHSIZE 64 /* XXX should be tunable */
178 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
179
180 extern const struct filterops sig_filtops;
181
182 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
183
184 /*
185 * Table for for all system-defined filters.
186 * These should be listed in the numeric order of the EVFILT_* defines.
187 * If filtops is NULL, the filter isn't implemented in NetBSD.
188 * End of list is when name is NULL.
189 *
190 * Note that 'refcnt' is meaningless for built-in filters.
191 */
192 struct kfilter {
193 const char *name; /* name of filter */
194 uint32_t filter; /* id of filter */
195 unsigned refcnt; /* reference count */
196 const struct filterops *filtops;/* operations for filter */
197 size_t namelen; /* length of name string */
198 };
199
200 /* System defined filters */
201 static struct kfilter sys_kfilters[] = {
202 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
203 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
204 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
205 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
206 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
207 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
208 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
209 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
210 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
211 { NULL, 0, 0, NULL, 0 },
212 };
213
214 /* User defined kfilters */
215 static struct kfilter *user_kfilters; /* array */
216 static int user_kfilterc; /* current offset */
217 static int user_kfiltermaxc; /* max size so far */
218 static size_t user_kfiltersz; /* size of allocated memory */
219
220 /*
221 * Global Locks.
222 *
223 * Lock order:
224 *
225 * kqueue_filter_lock
226 * -> kn_kq->kq_fdp->fd_lock
227 * -> object lock (e.g., device driver lock, kqueue_misc_lock, &c.)
228 * -> kn_kq->kq_lock
229 *
230 * Locking rules:
231 *
232 * f_attach: fdp->fd_lock, KERNEL_LOCK
233 * f_detach: fdp->fd_lock, KERNEL_LOCK
234 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
235 * f_event via knote: whatever caller guarantees
236 * Typically, f_event(NOTE_SUBMIT) via knote: object lock
237 * f_event(!NOTE_SUBMIT) via knote: nothing,
238 * acquires/releases object lock inside.
239 */
240 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
241 static kmutex_t kqueue_misc_lock; /* miscellaneous */
242
243 static kauth_listener_t kqueue_listener;
244
245 static int
246 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
247 void *arg0, void *arg1, void *arg2, void *arg3)
248 {
249 struct proc *p;
250 int result;
251
252 result = KAUTH_RESULT_DEFER;
253 p = arg0;
254
255 if (action != KAUTH_PROCESS_KEVENT_FILTER)
256 return result;
257
258 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
259 ISSET(p->p_flag, PK_SUGID)))
260 return result;
261
262 result = KAUTH_RESULT_ALLOW;
263
264 return result;
265 }
266
267 /*
268 * Initialize the kqueue subsystem.
269 */
270 void
271 kqueue_init(void)
272 {
273
274 rw_init(&kqueue_filter_lock);
275 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
276
277 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
278 kqueue_listener_cb, NULL);
279 }
280
281 /*
282 * Find kfilter entry by name, or NULL if not found.
283 */
284 static struct kfilter *
285 kfilter_byname_sys(const char *name)
286 {
287 int i;
288
289 KASSERT(rw_lock_held(&kqueue_filter_lock));
290
291 for (i = 0; sys_kfilters[i].name != NULL; i++) {
292 if (strcmp(name, sys_kfilters[i].name) == 0)
293 return &sys_kfilters[i];
294 }
295 return NULL;
296 }
297
298 static struct kfilter *
299 kfilter_byname_user(const char *name)
300 {
301 int i;
302
303 KASSERT(rw_lock_held(&kqueue_filter_lock));
304
305 /* user filter slots have a NULL name if previously deregistered */
306 for (i = 0; i < user_kfilterc ; i++) {
307 if (user_kfilters[i].name != NULL &&
308 strcmp(name, user_kfilters[i].name) == 0)
309 return &user_kfilters[i];
310 }
311 return NULL;
312 }
313
314 static struct kfilter *
315 kfilter_byname(const char *name)
316 {
317 struct kfilter *kfilter;
318
319 KASSERT(rw_lock_held(&kqueue_filter_lock));
320
321 if ((kfilter = kfilter_byname_sys(name)) != NULL)
322 return kfilter;
323
324 return kfilter_byname_user(name);
325 }
326
327 /*
328 * Find kfilter entry by filter id, or NULL if not found.
329 * Assumes entries are indexed in filter id order, for speed.
330 */
331 static struct kfilter *
332 kfilter_byfilter(uint32_t filter)
333 {
334 struct kfilter *kfilter;
335
336 KASSERT(rw_lock_held(&kqueue_filter_lock));
337
338 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
339 kfilter = &sys_kfilters[filter];
340 else if (user_kfilters != NULL &&
341 filter < EVFILT_SYSCOUNT + user_kfilterc)
342 /* it's a user filter */
343 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
344 else
345 return (NULL); /* out of range */
346 KASSERT(kfilter->filter == filter); /* sanity check! */
347 return (kfilter);
348 }
349
350 /*
351 * Register a new kfilter. Stores the entry in user_kfilters.
352 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
353 * If retfilter != NULL, the new filterid is returned in it.
354 */
355 int
356 kfilter_register(const char *name, const struct filterops *filtops,
357 int *retfilter)
358 {
359 struct kfilter *kfilter;
360 size_t len;
361 int i;
362
363 if (name == NULL || name[0] == '\0' || filtops == NULL)
364 return (EINVAL); /* invalid args */
365
366 rw_enter(&kqueue_filter_lock, RW_WRITER);
367 if (kfilter_byname(name) != NULL) {
368 rw_exit(&kqueue_filter_lock);
369 return (EEXIST); /* already exists */
370 }
371 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
372 rw_exit(&kqueue_filter_lock);
373 return (EINVAL); /* too many */
374 }
375
376 for (i = 0; i < user_kfilterc; i++) {
377 kfilter = &user_kfilters[i];
378 if (kfilter->name == NULL) {
379 /* Previously deregistered slot. Reuse. */
380 goto reuse;
381 }
382 }
383
384 /* check if need to grow user_kfilters */
385 if (user_kfilterc + 1 > user_kfiltermaxc) {
386 /* Grow in KFILTER_EXTENT chunks. */
387 user_kfiltermaxc += KFILTER_EXTENT;
388 len = user_kfiltermaxc * sizeof(*kfilter);
389 kfilter = kmem_alloc(len, KM_SLEEP);
390 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
391 if (user_kfilters != NULL) {
392 memcpy(kfilter, user_kfilters, user_kfiltersz);
393 kmem_free(user_kfilters, user_kfiltersz);
394 }
395 user_kfiltersz = len;
396 user_kfilters = kfilter;
397 }
398 /* Adding new slot */
399 kfilter = &user_kfilters[user_kfilterc++];
400 reuse:
401 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
402
403 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
404
405 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
406 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
407
408 if (retfilter != NULL)
409 *retfilter = kfilter->filter;
410 rw_exit(&kqueue_filter_lock);
411
412 return (0);
413 }
414
415 /*
416 * Unregister a kfilter previously registered with kfilter_register.
417 * This retains the filter id, but clears the name and frees filtops (filter
418 * operations), so that the number isn't reused during a boot.
419 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
420 */
421 int
422 kfilter_unregister(const char *name)
423 {
424 struct kfilter *kfilter;
425
426 if (name == NULL || name[0] == '\0')
427 return (EINVAL); /* invalid name */
428
429 rw_enter(&kqueue_filter_lock, RW_WRITER);
430 if (kfilter_byname_sys(name) != NULL) {
431 rw_exit(&kqueue_filter_lock);
432 return (EINVAL); /* can't detach system filters */
433 }
434
435 kfilter = kfilter_byname_user(name);
436 if (kfilter == NULL) {
437 rw_exit(&kqueue_filter_lock);
438 return (ENOENT);
439 }
440 if (kfilter->refcnt != 0) {
441 rw_exit(&kqueue_filter_lock);
442 return (EBUSY);
443 }
444
445 /* Cast away const (but we know it's safe. */
446 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
447 kfilter->name = NULL; /* mark as `not implemented' */
448
449 if (kfilter->filtops != NULL) {
450 /* Cast away const (but we know it's safe. */
451 kmem_free(__UNCONST(kfilter->filtops),
452 sizeof(*kfilter->filtops));
453 kfilter->filtops = NULL; /* mark as `not implemented' */
454 }
455 rw_exit(&kqueue_filter_lock);
456
457 return (0);
458 }
459
460
461 /*
462 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
463 * descriptors. Calls fileops kqfilter method for given file descriptor.
464 */
465 static int
466 filt_fileattach(struct knote *kn)
467 {
468 file_t *fp;
469
470 fp = kn->kn_obj;
471
472 return (*fp->f_ops->fo_kqfilter)(fp, kn);
473 }
474
475 /*
476 * Filter detach method for EVFILT_READ on kqueue descriptor.
477 */
478 static void
479 filt_kqdetach(struct knote *kn)
480 {
481 struct kqueue *kq;
482
483 kq = ((file_t *)kn->kn_obj)->f_kqueue;
484
485 mutex_spin_enter(&kq->kq_lock);
486 selremove_knote(&kq->kq_sel, kn);
487 mutex_spin_exit(&kq->kq_lock);
488 }
489
490 /*
491 * Filter event method for EVFILT_READ on kqueue descriptor.
492 */
493 /*ARGSUSED*/
494 static int
495 filt_kqueue(struct knote *kn, long hint)
496 {
497 struct kqueue *kq;
498 int rv;
499
500 kq = ((file_t *)kn->kn_obj)->f_kqueue;
501
502 if (hint != NOTE_SUBMIT)
503 mutex_spin_enter(&kq->kq_lock);
504 kn->kn_data = kq->kq_count;
505 rv = (kn->kn_data > 0);
506 if (hint != NOTE_SUBMIT)
507 mutex_spin_exit(&kq->kq_lock);
508
509 return rv;
510 }
511
512 /*
513 * Filter attach method for EVFILT_PROC.
514 */
515 static int
516 filt_procattach(struct knote *kn)
517 {
518 struct proc *p;
519 struct lwp *curl;
520
521 curl = curlwp;
522
523 mutex_enter(&proc_lock);
524 if (kn->kn_flags & EV_FLAG1) {
525 /*
526 * NOTE_TRACK attaches to the child process too early
527 * for proc_find, so do a raw look up and check the state
528 * explicitly.
529 */
530 p = proc_find_raw(kn->kn_id);
531 if (p != NULL && p->p_stat != SIDL)
532 p = NULL;
533 } else {
534 p = proc_find(kn->kn_id);
535 }
536
537 if (p == NULL) {
538 mutex_exit(&proc_lock);
539 return ESRCH;
540 }
541
542 /*
543 * Fail if it's not owned by you, or the last exec gave us
544 * setuid/setgid privs (unless you're root).
545 */
546 mutex_enter(p->p_lock);
547 mutex_exit(&proc_lock);
548 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
549 p, NULL, NULL, NULL) != 0) {
550 mutex_exit(p->p_lock);
551 return EACCES;
552 }
553
554 kn->kn_obj = p;
555 kn->kn_flags |= EV_CLEAR; /* automatically set */
556
557 /*
558 * internal flag indicating registration done by kernel
559 */
560 if (kn->kn_flags & EV_FLAG1) {
561 kn->kn_data = kn->kn_sdata; /* ppid */
562 kn->kn_fflags = NOTE_CHILD;
563 kn->kn_flags &= ~EV_FLAG1;
564 }
565 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
566 mutex_exit(p->p_lock);
567
568 return 0;
569 }
570
571 /*
572 * Filter detach method for EVFILT_PROC.
573 *
574 * The knote may be attached to a different process, which may exit,
575 * leaving nothing for the knote to be attached to. So when the process
576 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
577 * it will be deleted when read out. However, as part of the knote deletion,
578 * this routine is called, so a check is needed to avoid actually performing
579 * a detach, because the original process might not exist any more.
580 */
581 static void
582 filt_procdetach(struct knote *kn)
583 {
584 struct proc *p;
585
586 if (kn->kn_status & KN_DETACHED)
587 return;
588
589 p = kn->kn_obj;
590
591 mutex_enter(p->p_lock);
592 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
593 mutex_exit(p->p_lock);
594 }
595
596 /*
597 * Filter event method for EVFILT_PROC.
598 */
599 static int
600 filt_proc(struct knote *kn, long hint)
601 {
602 u_int event, fflag;
603 struct kevent kev;
604 struct kqueue *kq;
605 int error;
606
607 event = (u_int)hint & NOTE_PCTRLMASK;
608 kq = kn->kn_kq;
609 fflag = 0;
610
611 /* If the user is interested in this event, record it. */
612 if (kn->kn_sfflags & event)
613 fflag |= event;
614
615 if (event == NOTE_EXIT) {
616 struct proc *p = kn->kn_obj;
617
618 if (p != NULL)
619 kn->kn_data = P_WAITSTATUS(p);
620 /*
621 * Process is gone, so flag the event as finished.
622 *
623 * Detach the knote from watched process and mark
624 * it as such. We can't leave this to kqueue_scan(),
625 * since the process might not exist by then. And we
626 * have to do this now, since psignal KNOTE() is called
627 * also for zombies and we might end up reading freed
628 * memory if the kevent would already be picked up
629 * and knote g/c'ed.
630 */
631 filt_procdetach(kn);
632
633 mutex_spin_enter(&kq->kq_lock);
634 kn->kn_status |= KN_DETACHED;
635 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
636 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
637 kn->kn_fflags |= fflag;
638 mutex_spin_exit(&kq->kq_lock);
639
640 return 1;
641 }
642
643 mutex_spin_enter(&kq->kq_lock);
644 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
645 /*
646 * Process forked, and user wants to track the new process,
647 * so attach a new knote to it, and immediately report an
648 * event with the parent's pid. Register knote with new
649 * process.
650 */
651 memset(&kev, 0, sizeof(kev));
652 kev.ident = hint & NOTE_PDATAMASK; /* pid */
653 kev.filter = kn->kn_filter;
654 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
655 kev.fflags = kn->kn_sfflags;
656 kev.data = kn->kn_id; /* parent */
657 kev.udata = kn->kn_kevent.udata; /* preserve udata */
658 mutex_spin_exit(&kq->kq_lock);
659 error = kqueue_register(kq, &kev);
660 mutex_spin_enter(&kq->kq_lock);
661 if (error != 0)
662 kn->kn_fflags |= NOTE_TRACKERR;
663 }
664 kn->kn_fflags |= fflag;
665 fflag = kn->kn_fflags;
666 mutex_spin_exit(&kq->kq_lock);
667
668 return fflag != 0;
669 }
670
671 static void
672 filt_timerexpire(void *knx)
673 {
674 struct knote *kn = knx;
675 int tticks;
676
677 mutex_enter(&kqueue_misc_lock);
678 kn->kn_data++;
679 knote_activate(kn);
680 if ((kn->kn_flags & EV_ONESHOT) == 0) {
681 tticks = mstohz(kn->kn_sdata);
682 if (tticks <= 0)
683 tticks = 1;
684 callout_schedule((callout_t *)kn->kn_hook, tticks);
685 }
686 mutex_exit(&kqueue_misc_lock);
687 }
688
689 /*
690 * data contains amount of time to sleep, in milliseconds
691 */
692 static int
693 filt_timerattach(struct knote *kn)
694 {
695 callout_t *calloutp;
696 struct kqueue *kq;
697 int tticks;
698
699 tticks = mstohz(kn->kn_sdata);
700
701 /* if the supplied value is under our resolution, use 1 tick */
702 if (tticks == 0) {
703 if (kn->kn_sdata == 0)
704 return EINVAL;
705 tticks = 1;
706 }
707
708 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
709 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
710 atomic_dec_uint(&kq_ncallouts);
711 return ENOMEM;
712 }
713 callout_init(calloutp, CALLOUT_MPSAFE);
714
715 kq = kn->kn_kq;
716 mutex_spin_enter(&kq->kq_lock);
717 kn->kn_flags |= EV_CLEAR; /* automatically set */
718 kn->kn_hook = calloutp;
719 mutex_spin_exit(&kq->kq_lock);
720
721 callout_reset(calloutp, tticks, filt_timerexpire, kn);
722
723 return (0);
724 }
725
726 static void
727 filt_timerdetach(struct knote *kn)
728 {
729 callout_t *calloutp;
730 struct kqueue *kq = kn->kn_kq;
731
732 mutex_spin_enter(&kq->kq_lock);
733 /* prevent rescheduling when we expire */
734 kn->kn_flags |= EV_ONESHOT;
735 mutex_spin_exit(&kq->kq_lock);
736
737 calloutp = (callout_t *)kn->kn_hook;
738 callout_halt(calloutp, NULL);
739 callout_destroy(calloutp);
740 kmem_free(calloutp, sizeof(*calloutp));
741 atomic_dec_uint(&kq_ncallouts);
742 }
743
744 static int
745 filt_timer(struct knote *kn, long hint)
746 {
747 int rv;
748
749 mutex_enter(&kqueue_misc_lock);
750 rv = (kn->kn_data != 0);
751 mutex_exit(&kqueue_misc_lock);
752
753 return rv;
754 }
755
756 /*
757 * Filter event method for EVFILT_FS.
758 */
759 struct klist fs_klist = SLIST_HEAD_INITIALIZER(&fs_klist);
760
761 static int
762 filt_fsattach(struct knote *kn)
763 {
764
765 mutex_enter(&kqueue_misc_lock);
766 kn->kn_flags |= EV_CLEAR;
767 SLIST_INSERT_HEAD(&fs_klist, kn, kn_selnext);
768 mutex_exit(&kqueue_misc_lock);
769
770 return 0;
771 }
772
773 static void
774 filt_fsdetach(struct knote *kn)
775 {
776
777 mutex_enter(&kqueue_misc_lock);
778 SLIST_REMOVE(&fs_klist, kn, knote, kn_selnext);
779 mutex_exit(&kqueue_misc_lock);
780 }
781
782 static int
783 filt_fs(struct knote *kn, long hint)
784 {
785 int rv;
786
787 mutex_enter(&kqueue_misc_lock);
788 kn->kn_fflags |= hint;
789 rv = (kn->kn_fflags != 0);
790 mutex_exit(&kqueue_misc_lock);
791
792 return rv;
793 }
794
795 static int
796 filt_userattach(struct knote *kn)
797 {
798 struct kqueue *kq = kn->kn_kq;
799
800 /*
801 * EVFILT_USER knotes are not attached to anything in the kernel.
802 */
803 mutex_spin_enter(&kq->kq_lock);
804 kn->kn_hook = NULL;
805 if (kn->kn_fflags & NOTE_TRIGGER)
806 kn->kn_hookid = 1;
807 else
808 kn->kn_hookid = 0;
809 mutex_spin_exit(&kq->kq_lock);
810 return (0);
811 }
812
813 static void
814 filt_userdetach(struct knote *kn)
815 {
816
817 /*
818 * EVFILT_USER knotes are not attached to anything in the kernel.
819 */
820 }
821
822 static int
823 filt_user(struct knote *kn, long hint)
824 {
825 struct kqueue *kq = kn->kn_kq;
826 int hookid;
827
828 mutex_spin_enter(&kq->kq_lock);
829 hookid = kn->kn_hookid;
830 mutex_spin_exit(&kq->kq_lock);
831
832 return hookid;
833 }
834
835 static void
836 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
837 {
838 struct kqueue *kq = kn->kn_kq;
839 int ffctrl;
840
841 mutex_spin_enter(&kq->kq_lock);
842 switch (type) {
843 case EVENT_REGISTER:
844 if (kev->fflags & NOTE_TRIGGER)
845 kn->kn_hookid = 1;
846
847 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
848 kev->fflags &= NOTE_FFLAGSMASK;
849 switch (ffctrl) {
850 case NOTE_FFNOP:
851 break;
852
853 case NOTE_FFAND:
854 kn->kn_sfflags &= kev->fflags;
855 break;
856
857 case NOTE_FFOR:
858 kn->kn_sfflags |= kev->fflags;
859 break;
860
861 case NOTE_FFCOPY:
862 kn->kn_sfflags = kev->fflags;
863 break;
864
865 default:
866 /* XXX Return error? */
867 break;
868 }
869 kn->kn_sdata = kev->data;
870 if (kev->flags & EV_CLEAR) {
871 kn->kn_hookid = 0;
872 kn->kn_data = 0;
873 kn->kn_fflags = 0;
874 }
875 break;
876
877 case EVENT_PROCESS:
878 *kev = kn->kn_kevent;
879 kev->fflags = kn->kn_sfflags;
880 kev->data = kn->kn_sdata;
881 if (kn->kn_flags & EV_CLEAR) {
882 kn->kn_hookid = 0;
883 kn->kn_data = 0;
884 kn->kn_fflags = 0;
885 }
886 break;
887
888 default:
889 panic("filt_usertouch() - invalid type (%ld)", type);
890 break;
891 }
892 mutex_spin_exit(&kq->kq_lock);
893 }
894
895 /*
896 * filt_seltrue:
897 *
898 * This filter "event" routine simulates seltrue().
899 */
900 int
901 filt_seltrue(struct knote *kn, long hint)
902 {
903
904 /*
905 * We don't know how much data can be read/written,
906 * but we know that it *can* be. This is about as
907 * good as select/poll does as well.
908 */
909 kn->kn_data = 0;
910 return (1);
911 }
912
913 /*
914 * This provides full kqfilter entry for device switch tables, which
915 * has same effect as filter using filt_seltrue() as filter method.
916 */
917 static void
918 filt_seltruedetach(struct knote *kn)
919 {
920 /* Nothing to do */
921 }
922
923 const struct filterops seltrue_filtops = {
924 .f_isfd = 1,
925 .f_attach = NULL,
926 .f_detach = filt_seltruedetach,
927 .f_event = filt_seltrue,
928 .f_touch = NULL,
929 };
930
931 int
932 seltrue_kqfilter(dev_t dev, struct knote *kn)
933 {
934 switch (kn->kn_filter) {
935 case EVFILT_READ:
936 case EVFILT_WRITE:
937 kn->kn_fop = &seltrue_filtops;
938 break;
939 default:
940 return (EINVAL);
941 }
942
943 /* Nothing more to do */
944 return (0);
945 }
946
947 /*
948 * kqueue(2) system call.
949 */
950 static int
951 kqueue1(struct lwp *l, int flags, register_t *retval)
952 {
953 struct kqueue *kq;
954 file_t *fp;
955 int fd, error;
956
957 if ((error = fd_allocfile(&fp, &fd)) != 0)
958 return error;
959 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
960 fp->f_type = DTYPE_KQUEUE;
961 fp->f_ops = &kqueueops;
962 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
963 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
964 cv_init(&kq->kq_cv, "kqueue");
965 selinit(&kq->kq_sel);
966 TAILQ_INIT(&kq->kq_head);
967 fp->f_kqueue = kq;
968 *retval = fd;
969 kq->kq_fdp = curlwp->l_fd;
970 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
971 fd_affix(curproc, fp, fd);
972 return error;
973 }
974
975 /*
976 * kqueue(2) system call.
977 */
978 int
979 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
980 {
981 return kqueue1(l, 0, retval);
982 }
983
984 int
985 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
986 register_t *retval)
987 {
988 /* {
989 syscallarg(int) flags;
990 } */
991 return kqueue1(l, SCARG(uap, flags), retval);
992 }
993
994 /*
995 * kevent(2) system call.
996 */
997 int
998 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
999 struct kevent *changes, size_t index, int n)
1000 {
1001
1002 return copyin(changelist + index, changes, n * sizeof(*changes));
1003 }
1004
1005 int
1006 kevent_put_events(void *ctx, struct kevent *events,
1007 struct kevent *eventlist, size_t index, int n)
1008 {
1009
1010 return copyout(events, eventlist + index, n * sizeof(*events));
1011 }
1012
1013 static const struct kevent_ops kevent_native_ops = {
1014 .keo_private = NULL,
1015 .keo_fetch_timeout = copyin,
1016 .keo_fetch_changes = kevent_fetch_changes,
1017 .keo_put_events = kevent_put_events,
1018 };
1019
1020 int
1021 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1022 register_t *retval)
1023 {
1024 /* {
1025 syscallarg(int) fd;
1026 syscallarg(const struct kevent *) changelist;
1027 syscallarg(size_t) nchanges;
1028 syscallarg(struct kevent *) eventlist;
1029 syscallarg(size_t) nevents;
1030 syscallarg(const struct timespec *) timeout;
1031 } */
1032
1033 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1034 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1035 SCARG(uap, timeout), &kevent_native_ops);
1036 }
1037
1038 int
1039 kevent1(register_t *retval, int fd,
1040 const struct kevent *changelist, size_t nchanges,
1041 struct kevent *eventlist, size_t nevents,
1042 const struct timespec *timeout,
1043 const struct kevent_ops *keops)
1044 {
1045 struct kevent *kevp;
1046 struct kqueue *kq;
1047 struct timespec ts;
1048 size_t i, n, ichange;
1049 int nerrors, error;
1050 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
1051 file_t *fp;
1052
1053 /* check that we're dealing with a kq */
1054 fp = fd_getfile(fd);
1055 if (fp == NULL)
1056 return (EBADF);
1057
1058 if (fp->f_type != DTYPE_KQUEUE) {
1059 fd_putfile(fd);
1060 return (EBADF);
1061 }
1062
1063 if (timeout != NULL) {
1064 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1065 if (error)
1066 goto done;
1067 timeout = &ts;
1068 }
1069
1070 kq = fp->f_kqueue;
1071 nerrors = 0;
1072 ichange = 0;
1073
1074 /* traverse list of events to register */
1075 while (nchanges > 0) {
1076 n = MIN(nchanges, __arraycount(kevbuf));
1077 error = (*keops->keo_fetch_changes)(keops->keo_private,
1078 changelist, kevbuf, ichange, n);
1079 if (error)
1080 goto done;
1081 for (i = 0; i < n; i++) {
1082 kevp = &kevbuf[i];
1083 kevp->flags &= ~EV_SYSFLAGS;
1084 /* register each knote */
1085 error = kqueue_register(kq, kevp);
1086 if (!error && !(kevp->flags & EV_RECEIPT))
1087 continue;
1088 if (nevents == 0)
1089 goto done;
1090 kevp->flags = EV_ERROR;
1091 kevp->data = error;
1092 error = (*keops->keo_put_events)
1093 (keops->keo_private, kevp,
1094 eventlist, nerrors, 1);
1095 if (error)
1096 goto done;
1097 nevents--;
1098 nerrors++;
1099 }
1100 nchanges -= n; /* update the results */
1101 ichange += n;
1102 }
1103 if (nerrors) {
1104 *retval = nerrors;
1105 error = 0;
1106 goto done;
1107 }
1108
1109 /* actually scan through the events */
1110 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1111 kevbuf, __arraycount(kevbuf));
1112 done:
1113 fd_putfile(fd);
1114 return (error);
1115 }
1116
1117 /*
1118 * Register a given kevent kev onto the kqueue
1119 */
1120 static int
1121 kqueue_register(struct kqueue *kq, struct kevent *kev)
1122 {
1123 struct kfilter *kfilter;
1124 filedesc_t *fdp;
1125 file_t *fp;
1126 fdfile_t *ff;
1127 struct knote *kn, *newkn;
1128 struct klist *list;
1129 int error, fd, rv;
1130
1131 fdp = kq->kq_fdp;
1132 fp = NULL;
1133 kn = NULL;
1134 error = 0;
1135 fd = 0;
1136
1137 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1138
1139 rw_enter(&kqueue_filter_lock, RW_READER);
1140 kfilter = kfilter_byfilter(kev->filter);
1141 if (kfilter == NULL || kfilter->filtops == NULL) {
1142 /* filter not found nor implemented */
1143 rw_exit(&kqueue_filter_lock);
1144 kmem_free(newkn, sizeof(*newkn));
1145 return (EINVAL);
1146 }
1147
1148 /* search if knote already exists */
1149 if (kfilter->filtops->f_isfd) {
1150 /* monitoring a file descriptor */
1151 /* validate descriptor */
1152 if (kev->ident > INT_MAX
1153 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1154 rw_exit(&kqueue_filter_lock);
1155 kmem_free(newkn, sizeof(*newkn));
1156 return EBADF;
1157 }
1158 mutex_enter(&fdp->fd_lock);
1159 ff = fdp->fd_dt->dt_ff[fd];
1160 if (ff->ff_refcnt & FR_CLOSING) {
1161 error = EBADF;
1162 goto doneunlock;
1163 }
1164 if (fd <= fdp->fd_lastkqfile) {
1165 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1166 if (kq == kn->kn_kq &&
1167 kev->filter == kn->kn_filter)
1168 break;
1169 }
1170 }
1171 } else {
1172 /*
1173 * not monitoring a file descriptor, so
1174 * lookup knotes in internal hash table
1175 */
1176 mutex_enter(&fdp->fd_lock);
1177 if (fdp->fd_knhashmask != 0) {
1178 list = &fdp->fd_knhash[
1179 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1180 SLIST_FOREACH(kn, list, kn_link) {
1181 if (kev->ident == kn->kn_id &&
1182 kq == kn->kn_kq &&
1183 kev->filter == kn->kn_filter)
1184 break;
1185 }
1186 }
1187 }
1188
1189 /*
1190 * kn now contains the matching knote, or NULL if no match
1191 */
1192 if (kn == NULL) {
1193 if (kev->flags & EV_ADD) {
1194 /* create new knote */
1195 kn = newkn;
1196 newkn = NULL;
1197 kn->kn_obj = fp;
1198 kn->kn_id = kev->ident;
1199 kn->kn_kq = kq;
1200 kn->kn_fop = kfilter->filtops;
1201 kn->kn_kfilter = kfilter;
1202 kn->kn_sfflags = kev->fflags;
1203 kn->kn_sdata = kev->data;
1204 kev->fflags = 0;
1205 kev->data = 0;
1206 kn->kn_kevent = *kev;
1207
1208 KASSERT(kn->kn_fop != NULL);
1209 /*
1210 * apply reference count to knote structure, and
1211 * do not release it at the end of this routine.
1212 */
1213 fp = NULL;
1214
1215 if (!kn->kn_fop->f_isfd) {
1216 /*
1217 * If knote is not on an fd, store on
1218 * internal hash table.
1219 */
1220 if (fdp->fd_knhashmask == 0) {
1221 /* XXXAD can block with fd_lock held */
1222 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1223 HASH_LIST, true,
1224 &fdp->fd_knhashmask);
1225 }
1226 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1227 fdp->fd_knhashmask)];
1228 } else {
1229 /* Otherwise, knote is on an fd. */
1230 list = (struct klist *)
1231 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1232 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1233 fdp->fd_lastkqfile = kn->kn_id;
1234 }
1235 SLIST_INSERT_HEAD(list, kn, kn_link);
1236
1237 KERNEL_LOCK(1, NULL); /* XXXSMP */
1238 error = (*kfilter->filtops->f_attach)(kn);
1239 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1240 if (error != 0) {
1241 #ifdef DEBUG
1242 struct proc *p = curlwp->l_proc;
1243 const file_t *ft = kn->kn_obj;
1244 printf("%s: %s[%d]: event type %d not "
1245 "supported for file type %d/%s "
1246 "(error %d)\n", __func__,
1247 p->p_comm, p->p_pid,
1248 kn->kn_filter, ft ? ft->f_type : -1,
1249 ft ? ft->f_ops->fo_name : "?", error);
1250 #endif
1251
1252 /* knote_detach() drops fdp->fd_lock */
1253 knote_detach(kn, fdp, false);
1254 goto done;
1255 }
1256 atomic_inc_uint(&kfilter->refcnt);
1257 goto done_ev_add;
1258 } else {
1259 /* No matching knote and the EV_ADD flag is not set. */
1260 error = ENOENT;
1261 goto doneunlock;
1262 }
1263 }
1264
1265 if (kev->flags & EV_DELETE) {
1266 /* knote_detach() drops fdp->fd_lock */
1267 knote_detach(kn, fdp, true);
1268 goto done;
1269 }
1270
1271 /*
1272 * The user may change some filter values after the
1273 * initial EV_ADD, but doing so will not reset any
1274 * filter which have already been triggered.
1275 */
1276 kn->kn_kevent.udata = kev->udata;
1277 KASSERT(kn->kn_fop != NULL);
1278 if (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL) {
1279 KERNEL_LOCK(1, NULL); /* XXXSMP */
1280 (*kn->kn_fop->f_touch)(kn, kev, EVENT_REGISTER);
1281 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1282 } else {
1283 kn->kn_sfflags = kev->fflags;
1284 kn->kn_sdata = kev->data;
1285 }
1286
1287 /*
1288 * We can get here if we are trying to attach
1289 * an event to a file descriptor that does not
1290 * support events, and the attach routine is
1291 * broken and does not return an error.
1292 */
1293 done_ev_add:
1294 KASSERT(kn->kn_fop != NULL);
1295 KASSERT(kn->kn_fop->f_event != NULL);
1296 KERNEL_LOCK(1, NULL); /* XXXSMP */
1297 rv = (*kn->kn_fop->f_event)(kn, 0);
1298 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1299 if (rv)
1300 knote_activate(kn);
1301
1302 /* disable knote */
1303 if ((kev->flags & EV_DISABLE)) {
1304 mutex_spin_enter(&kq->kq_lock);
1305 if ((kn->kn_status & KN_DISABLED) == 0)
1306 kn->kn_status |= KN_DISABLED;
1307 mutex_spin_exit(&kq->kq_lock);
1308 }
1309
1310 /* enable knote */
1311 if ((kev->flags & EV_ENABLE)) {
1312 knote_enqueue(kn);
1313 }
1314 doneunlock:
1315 mutex_exit(&fdp->fd_lock);
1316 done:
1317 rw_exit(&kqueue_filter_lock);
1318 if (newkn != NULL)
1319 kmem_free(newkn, sizeof(*newkn));
1320 if (fp != NULL)
1321 fd_putfile(fd);
1322 return (error);
1323 }
1324
1325 #define DEBUG
1326 #if defined(DEBUG)
1327 #define KN_FMT(buf, kn) \
1328 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1329
1330 static void
1331 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1332 {
1333 const struct knote *kn;
1334 int count;
1335 int nmarker;
1336 char buf[128];
1337
1338 KASSERT(mutex_owned(&kq->kq_lock));
1339 KASSERT(kq->kq_count >= 0);
1340
1341 count = 0;
1342 nmarker = 0;
1343 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1344 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1345 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1346 func, line, kq, kn, KN_FMT(buf, kn));
1347 }
1348 if ((kn->kn_status & KN_MARKER) == 0) {
1349 if (kn->kn_kq != kq) {
1350 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1351 func, line, kq, kn, kn->kn_kq,
1352 KN_FMT(buf, kn));
1353 }
1354 if ((kn->kn_status & KN_ACTIVE) == 0) {
1355 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1356 func, line, kq, kn, KN_FMT(buf, kn));
1357 }
1358 count++;
1359 if (count > kq->kq_count) {
1360 panic("%s,%zu: kq=%p kq->kq_count(%d) != "
1361 "count(%d), nmarker=%d",
1362 func, line, kq, kq->kq_count, count,
1363 nmarker);
1364 }
1365 } else {
1366 nmarker++;
1367 #if 0
1368 if (nmarker > 10000) {
1369 panic("%s,%zu: kq=%p too many markers: "
1370 "%d != %d, nmarker=%d",
1371 func, line, kq, kq->kq_count, count,
1372 nmarker);
1373 }
1374 #endif
1375 }
1376 }
1377 }
1378 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1379 #else /* defined(DEBUG) */
1380 #define kq_check(a) /* nothing */
1381 #endif /* defined(DEBUG) */
1382
1383 /*
1384 * Scan through the list of events on fp (for a maximum of maxevents),
1385 * returning the results in to ulistp. Timeout is determined by tsp; if
1386 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1387 * as appropriate.
1388 */
1389 static int
1390 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1391 const struct timespec *tsp, register_t *retval,
1392 const struct kevent_ops *keops, struct kevent *kevbuf,
1393 size_t kevcnt)
1394 {
1395 struct kqueue *kq;
1396 struct kevent *kevp;
1397 struct timespec ats, sleepts;
1398 struct knote *kn, *marker, morker;
1399 size_t count, nkev, nevents;
1400 int timeout, error, touch, rv, influx;
1401 filedesc_t *fdp;
1402
1403 fdp = curlwp->l_fd;
1404 kq = fp->f_kqueue;
1405 count = maxevents;
1406 nkev = nevents = error = 0;
1407 if (count == 0) {
1408 *retval = 0;
1409 return 0;
1410 }
1411
1412 if (tsp) { /* timeout supplied */
1413 ats = *tsp;
1414 if (inittimeleft(&ats, &sleepts) == -1) {
1415 *retval = maxevents;
1416 return EINVAL;
1417 }
1418 timeout = tstohz(&ats);
1419 if (timeout <= 0)
1420 timeout = -1; /* do poll */
1421 } else {
1422 /* no timeout, wait forever */
1423 timeout = 0;
1424 }
1425
1426 memset(&morker, 0, sizeof(morker));
1427 marker = &morker;
1428 marker->kn_status = KN_MARKER;
1429 mutex_spin_enter(&kq->kq_lock);
1430 retry:
1431 kevp = kevbuf;
1432 if (kq->kq_count == 0) {
1433 if (timeout >= 0) {
1434 error = cv_timedwait_sig(&kq->kq_cv,
1435 &kq->kq_lock, timeout);
1436 if (error == 0) {
1437 if (tsp == NULL || (timeout =
1438 gettimeleft(&ats, &sleepts)) > 0)
1439 goto retry;
1440 } else {
1441 /* don't restart after signals... */
1442 if (error == ERESTART)
1443 error = EINTR;
1444 if (error == EWOULDBLOCK)
1445 error = 0;
1446 }
1447 }
1448 mutex_spin_exit(&kq->kq_lock);
1449 goto done;
1450 }
1451
1452 /* mark end of knote list */
1453 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1454 influx = 0;
1455
1456 /*
1457 * Acquire the fdp->fd_lock interlock to avoid races with
1458 * file creation/destruction from other threads.
1459 */
1460 relock:
1461 mutex_spin_exit(&kq->kq_lock);
1462 mutex_enter(&fdp->fd_lock);
1463 mutex_spin_enter(&kq->kq_lock);
1464
1465 while (count != 0) {
1466 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1467
1468 if ((kn->kn_status & KN_MARKER) != 0 && kn != marker) {
1469 if (influx) {
1470 influx = 0;
1471 KQ_FLUX_WAKEUP(kq);
1472 }
1473 mutex_exit(&fdp->fd_lock);
1474 (void)cv_wait_sig(&kq->kq_cv, &kq->kq_lock);
1475 goto relock;
1476 }
1477
1478 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1479 if (kn == marker) {
1480 /* it's our marker, stop */
1481 KQ_FLUX_WAKEUP(kq);
1482 if (count == maxevents) {
1483 mutex_exit(&fdp->fd_lock);
1484 goto retry;
1485 }
1486 break;
1487 }
1488 KASSERT((kn->kn_status & KN_BUSY) == 0);
1489
1490 kq_check(kq);
1491 kn->kn_status |= KN_BUSY;
1492 kq_check(kq);
1493 if (kn->kn_status & KN_DISABLED) {
1494 kq->kq_count--;
1495 kn->kn_status &= ~(KN_QUEUED|KN_BUSY);
1496 /* don't want disabled events */
1497 continue;
1498 }
1499 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1500 mutex_spin_exit(&kq->kq_lock);
1501 KASSERT(kn->kn_fop != NULL);
1502 KASSERT(kn->kn_fop->f_event != NULL);
1503 KERNEL_LOCK(1, NULL); /* XXXSMP */
1504 KASSERT(mutex_owned(&fdp->fd_lock));
1505 rv = (*kn->kn_fop->f_event)(kn, 0);
1506 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1507 mutex_spin_enter(&kq->kq_lock);
1508 if (rv == 0) {
1509 /*
1510 * non-ONESHOT event that hasn't
1511 * triggered again, so de-queue.
1512 */
1513 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1514 kq->kq_count--;
1515 influx = 1;
1516 continue;
1517 }
1518 }
1519 KASSERT(kn->kn_fop != NULL);
1520 touch = (!kn->kn_fop->f_isfd &&
1521 kn->kn_fop->f_touch != NULL);
1522 /* XXXAD should be got from f_event if !oneshot. */
1523 if (touch) {
1524 mutex_spin_exit(&kq->kq_lock);
1525 KERNEL_LOCK(1, NULL); /* XXXSMP */
1526 (*kn->kn_fop->f_touch)(kn, kevp, EVENT_PROCESS);
1527 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1528 mutex_spin_enter(&kq->kq_lock);
1529 } else {
1530 *kevp = kn->kn_kevent;
1531 }
1532 kevp++;
1533 nkev++;
1534 influx = 1;
1535 if (kn->kn_flags & EV_ONESHOT) {
1536 /* delete ONESHOT events after retrieval */
1537 kn->kn_status &= ~(KN_QUEUED|KN_BUSY);
1538 kq->kq_count--;
1539 mutex_spin_exit(&kq->kq_lock);
1540 knote_detach(kn, fdp, true);
1541 mutex_enter(&fdp->fd_lock);
1542 mutex_spin_enter(&kq->kq_lock);
1543 } else if (kn->kn_flags & EV_CLEAR) {
1544 /* clear state after retrieval */
1545 kn->kn_data = 0;
1546 kn->kn_fflags = 0;
1547 /*
1548 * Manually clear knotes who weren't
1549 * 'touch'ed.
1550 */
1551 if (touch == 0) {
1552 kn->kn_data = 0;
1553 kn->kn_fflags = 0;
1554 }
1555 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1556 kq->kq_count--;
1557 } else if (kn->kn_flags & EV_DISPATCH) {
1558 kn->kn_status |= KN_DISABLED;
1559 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1560 kq->kq_count--;
1561 } else {
1562 /* add event back on list */
1563 kq_check(kq);
1564 kn->kn_status &= ~KN_BUSY;
1565 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1566 kq_check(kq);
1567 }
1568
1569 if (nkev == kevcnt) {
1570 /* do copyouts in kevcnt chunks */
1571 influx = 0;
1572 KQ_FLUX_WAKEUP(kq);
1573 mutex_spin_exit(&kq->kq_lock);
1574 mutex_exit(&fdp->fd_lock);
1575 error = (*keops->keo_put_events)
1576 (keops->keo_private,
1577 kevbuf, ulistp, nevents, nkev);
1578 mutex_enter(&fdp->fd_lock);
1579 mutex_spin_enter(&kq->kq_lock);
1580 nevents += nkev;
1581 nkev = 0;
1582 kevp = kevbuf;
1583 }
1584 count--;
1585 if (error != 0 || count == 0) {
1586 /* remove marker */
1587 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1588 break;
1589 }
1590 }
1591 KQ_FLUX_WAKEUP(kq);
1592 mutex_spin_exit(&kq->kq_lock);
1593 mutex_exit(&fdp->fd_lock);
1594
1595 done:
1596 if (nkev != 0) {
1597 /* copyout remaining events */
1598 error = (*keops->keo_put_events)(keops->keo_private,
1599 kevbuf, ulistp, nevents, nkev);
1600 }
1601 *retval = maxevents - count;
1602
1603 return error;
1604 }
1605
1606 /*
1607 * fileops ioctl method for a kqueue descriptor.
1608 *
1609 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1610 * KFILTER_BYNAME find name for filter, and return result in
1611 * name, which is of size len.
1612 * KFILTER_BYFILTER find filter for name. len is ignored.
1613 */
1614 /*ARGSUSED*/
1615 static int
1616 kqueue_ioctl(file_t *fp, u_long com, void *data)
1617 {
1618 struct kfilter_mapping *km;
1619 const struct kfilter *kfilter;
1620 char *name;
1621 int error;
1622
1623 km = data;
1624 error = 0;
1625 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1626
1627 switch (com) {
1628 case KFILTER_BYFILTER: /* convert filter -> name */
1629 rw_enter(&kqueue_filter_lock, RW_READER);
1630 kfilter = kfilter_byfilter(km->filter);
1631 if (kfilter != NULL) {
1632 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1633 rw_exit(&kqueue_filter_lock);
1634 error = copyoutstr(name, km->name, km->len, NULL);
1635 } else {
1636 rw_exit(&kqueue_filter_lock);
1637 error = ENOENT;
1638 }
1639 break;
1640
1641 case KFILTER_BYNAME: /* convert name -> filter */
1642 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1643 if (error) {
1644 break;
1645 }
1646 rw_enter(&kqueue_filter_lock, RW_READER);
1647 kfilter = kfilter_byname(name);
1648 if (kfilter != NULL)
1649 km->filter = kfilter->filter;
1650 else
1651 error = ENOENT;
1652 rw_exit(&kqueue_filter_lock);
1653 break;
1654
1655 default:
1656 error = ENOTTY;
1657 break;
1658
1659 }
1660 kmem_free(name, KFILTER_MAXNAME);
1661 return (error);
1662 }
1663
1664 /*
1665 * fileops fcntl method for a kqueue descriptor.
1666 */
1667 static int
1668 kqueue_fcntl(file_t *fp, u_int com, void *data)
1669 {
1670
1671 return (ENOTTY);
1672 }
1673
1674 /*
1675 * fileops poll method for a kqueue descriptor.
1676 * Determine if kqueue has events pending.
1677 */
1678 static int
1679 kqueue_poll(file_t *fp, int events)
1680 {
1681 struct kqueue *kq;
1682 int revents;
1683
1684 kq = fp->f_kqueue;
1685
1686 revents = 0;
1687 if (events & (POLLIN | POLLRDNORM)) {
1688 mutex_spin_enter(&kq->kq_lock);
1689 if (kq->kq_count != 0) {
1690 revents |= events & (POLLIN | POLLRDNORM);
1691 } else {
1692 selrecord(curlwp, &kq->kq_sel);
1693 }
1694 kq_check(kq);
1695 mutex_spin_exit(&kq->kq_lock);
1696 }
1697
1698 return revents;
1699 }
1700
1701 /*
1702 * fileops stat method for a kqueue descriptor.
1703 * Returns dummy info, with st_size being number of events pending.
1704 */
1705 static int
1706 kqueue_stat(file_t *fp, struct stat *st)
1707 {
1708 struct kqueue *kq;
1709
1710 kq = fp->f_kqueue;
1711
1712 memset(st, 0, sizeof(*st));
1713 st->st_size = kq->kq_count;
1714 st->st_blksize = sizeof(struct kevent);
1715 st->st_mode = S_IFIFO;
1716
1717 return 0;
1718 }
1719
1720 static void
1721 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1722 {
1723 struct knote *kn;
1724 filedesc_t *fdp;
1725
1726 fdp = kq->kq_fdp;
1727
1728 KASSERT(mutex_owned(&fdp->fd_lock));
1729
1730 for (kn = SLIST_FIRST(list); kn != NULL;) {
1731 if (kq != kn->kn_kq) {
1732 kn = SLIST_NEXT(kn, kn_link);
1733 continue;
1734 }
1735 knote_detach(kn, fdp, true);
1736 mutex_enter(&fdp->fd_lock);
1737 kn = SLIST_FIRST(list);
1738 }
1739 }
1740
1741
1742 /*
1743 * fileops close method for a kqueue descriptor.
1744 */
1745 static int
1746 kqueue_close(file_t *fp)
1747 {
1748 struct kqueue *kq;
1749 filedesc_t *fdp;
1750 fdfile_t *ff;
1751 int i;
1752
1753 kq = fp->f_kqueue;
1754 fp->f_kqueue = NULL;
1755 fp->f_type = 0;
1756 fdp = curlwp->l_fd;
1757
1758 mutex_enter(&fdp->fd_lock);
1759 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1760 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1761 continue;
1762 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1763 }
1764 if (fdp->fd_knhashmask != 0) {
1765 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1766 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1767 }
1768 }
1769 mutex_exit(&fdp->fd_lock);
1770
1771 KASSERT(kq->kq_count == 0);
1772 mutex_destroy(&kq->kq_lock);
1773 cv_destroy(&kq->kq_cv);
1774 seldestroy(&kq->kq_sel);
1775 kmem_free(kq, sizeof(*kq));
1776
1777 return (0);
1778 }
1779
1780 /*
1781 * struct fileops kqfilter method for a kqueue descriptor.
1782 * Event triggered when monitored kqueue changes.
1783 */
1784 static int
1785 kqueue_kqfilter(file_t *fp, struct knote *kn)
1786 {
1787 struct kqueue *kq;
1788
1789 kq = ((file_t *)kn->kn_obj)->f_kqueue;
1790
1791 KASSERT(fp == kn->kn_obj);
1792
1793 if (kn->kn_filter != EVFILT_READ)
1794 return 1;
1795
1796 kn->kn_fop = &kqread_filtops;
1797 mutex_enter(&kq->kq_lock);
1798 selrecord_knote(&kq->kq_sel, kn);
1799 mutex_exit(&kq->kq_lock);
1800
1801 return 0;
1802 }
1803
1804
1805 /*
1806 * Walk down a list of knotes, activating them if their event has
1807 * triggered. The caller's object lock (e.g. device driver lock)
1808 * must be held.
1809 */
1810 void
1811 knote(struct klist *list, long hint)
1812 {
1813 struct knote *kn, *tmpkn;
1814
1815 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1816 KASSERT(kn->kn_fop != NULL);
1817 KASSERT(kn->kn_fop->f_event != NULL);
1818 if ((*kn->kn_fop->f_event)(kn, hint))
1819 knote_activate(kn);
1820 }
1821 }
1822
1823 /*
1824 * Remove all knotes referencing a specified fd
1825 */
1826 void
1827 knote_fdclose(int fd)
1828 {
1829 struct klist *list;
1830 struct knote *kn;
1831 filedesc_t *fdp;
1832
1833 fdp = curlwp->l_fd;
1834 mutex_enter(&fdp->fd_lock);
1835 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1836 while ((kn = SLIST_FIRST(list)) != NULL) {
1837 knote_detach(kn, fdp, true);
1838 mutex_enter(&fdp->fd_lock);
1839 }
1840 mutex_exit(&fdp->fd_lock);
1841 }
1842
1843 /*
1844 * Drop knote. Called with fdp->fd_lock held, and will drop before
1845 * returning.
1846 */
1847 static void
1848 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1849 {
1850 struct klist *list;
1851 struct kqueue *kq;
1852
1853 kq = kn->kn_kq;
1854
1855 KASSERT((kn->kn_status & KN_MARKER) == 0);
1856 KASSERT(mutex_owned(&fdp->fd_lock));
1857
1858 KASSERT(kn->kn_fop != NULL);
1859 /* Remove from monitored object. */
1860 if (dofop) {
1861 KASSERT(kn->kn_fop->f_detach != NULL);
1862 KERNEL_LOCK(1, NULL); /* XXXSMP */
1863 (*kn->kn_fop->f_detach)(kn);
1864 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1865 }
1866
1867 /* Remove from descriptor table. */
1868 if (kn->kn_fop->f_isfd)
1869 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1870 else
1871 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1872
1873 SLIST_REMOVE(list, kn, knote, kn_link);
1874
1875 /* Remove from kqueue. */
1876 again:
1877 mutex_spin_enter(&kq->kq_lock);
1878 if ((kn->kn_status & KN_QUEUED) != 0) {
1879 kq_check(kq);
1880 kq->kq_count--;
1881 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1882 kn->kn_status &= ~KN_QUEUED;
1883 kq_check(kq);
1884 } else if (kn->kn_status & KN_BUSY) {
1885 mutex_spin_exit(&kq->kq_lock);
1886 goto again;
1887 }
1888 mutex_spin_exit(&kq->kq_lock);
1889
1890 mutex_exit(&fdp->fd_lock);
1891 if (kn->kn_fop->f_isfd)
1892 fd_putfile(kn->kn_id);
1893 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1894 kmem_free(kn, sizeof(*kn));
1895 }
1896
1897 /*
1898 * Queue new event for knote.
1899 */
1900 static void
1901 knote_enqueue(struct knote *kn)
1902 {
1903 struct kqueue *kq;
1904
1905 KASSERT((kn->kn_status & KN_MARKER) == 0);
1906
1907 kq = kn->kn_kq;
1908
1909 mutex_spin_enter(&kq->kq_lock);
1910 if ((kn->kn_status & KN_DISABLED) != 0) {
1911 kn->kn_status &= ~KN_DISABLED;
1912 }
1913 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1914 kq_check(kq);
1915 kn->kn_status |= KN_QUEUED;
1916 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1917 kq->kq_count++;
1918 kq_check(kq);
1919 cv_broadcast(&kq->kq_cv);
1920 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1921 }
1922 mutex_spin_exit(&kq->kq_lock);
1923 }
1924 /*
1925 * Queue new event for knote.
1926 */
1927 static void
1928 knote_activate(struct knote *kn)
1929 {
1930 struct kqueue *kq;
1931
1932 KASSERT((kn->kn_status & KN_MARKER) == 0);
1933
1934 kq = kn->kn_kq;
1935
1936 mutex_spin_enter(&kq->kq_lock);
1937 kn->kn_status |= KN_ACTIVE;
1938 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1939 kq_check(kq);
1940 kn->kn_status |= KN_QUEUED;
1941 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1942 kq->kq_count++;
1943 kq_check(kq);
1944 cv_broadcast(&kq->kq_cv);
1945 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1946 }
1947 mutex_spin_exit(&kq->kq_lock);
1948 }
1949