Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.12
      1 /*	$NetBSD: kern_event.c,v 1.12 2003/02/23 22:05:35 pk Exp $	*/
      2 /*-
      3  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25  * SUCH DAMAGE.
     26  *
     27  * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
     28  */
     29 
     30 #include <sys/param.h>
     31 #include <sys/systm.h>
     32 #include <sys/kernel.h>
     33 #include <sys/proc.h>
     34 #include <sys/malloc.h>
     35 #include <sys/unistd.h>
     36 #include <sys/file.h>
     37 #include <sys/fcntl.h>
     38 #include <sys/select.h>
     39 #include <sys/queue.h>
     40 #include <sys/event.h>
     41 #include <sys/eventvar.h>
     42 #include <sys/poll.h>
     43 #include <sys/pool.h>
     44 #include <sys/protosw.h>
     45 #include <sys/socket.h>
     46 #include <sys/socketvar.h>
     47 #include <sys/stat.h>
     48 #include <sys/uio.h>
     49 #include <sys/mount.h>
     50 #include <sys/filedesc.h>
     51 #include <sys/sa.h>
     52 #include <sys/syscallargs.h>
     53 
     54 static int	kqueue_scan(struct file *fp, size_t maxevents,
     55 		    struct kevent *ulistp, const struct timespec *timeout,
     56 		    struct proc *p, register_t *retval);
     57 static void	kqueue_wakeup(struct kqueue *kq);
     58 
     59 static int	kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
     60 		    struct ucred *cred, int flags);
     61 static int	kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
     62 		    struct ucred *cred, int flags);
     63 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
     64 		    struct proc *p);
     65 static int	kqueue_fcntl(struct file *fp, u_int com, caddr_t data,
     66 		    struct proc *p);
     67 static int	kqueue_poll(struct file *fp, int events, struct proc *p);
     68 static int	kqueue_kqfilter(struct file *fp, struct knote *kn);
     69 static int	kqueue_stat(struct file *fp, struct stat *sp, struct proc *p);
     70 static int	kqueue_close(struct file *fp, struct proc *p);
     71 
     72 static struct fileops kqueueops = {
     73 	kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
     74 	kqueue_stat, kqueue_close, kqueue_kqfilter
     75 };
     76 
     77 static void	knote_attach(struct knote *kn, struct filedesc *fdp);
     78 static void	knote_drop(struct knote *kn, struct proc *p,
     79 		    struct filedesc *fdp);
     80 static void	knote_enqueue(struct knote *kn);
     81 static void	knote_dequeue(struct knote *kn);
     82 
     83 static void	filt_kqdetach(struct knote *kn);
     84 static int	filt_kqueue(struct knote *kn, long hint);
     85 static int	filt_procattach(struct knote *kn);
     86 static void	filt_procdetach(struct knote *kn);
     87 static int	filt_proc(struct knote *kn, long hint);
     88 static int	filt_fileattach(struct knote *kn);
     89 static void	filt_timerexpire(void *knx);
     90 static int	filt_timerattach(struct knote *kn);
     91 static void	filt_timerdetach(struct knote *kn);
     92 static int	filt_timer(struct knote *kn, long hint);
     93 
     94 static const struct filterops kqread_filtops =
     95 	{ 1, NULL, filt_kqdetach, filt_kqueue };
     96 static const struct filterops proc_filtops =
     97 	{ 0, filt_procattach, filt_procdetach, filt_proc };
     98 static const struct filterops file_filtops =
     99 	{ 1, filt_fileattach, NULL, NULL };
    100 static struct filterops timer_filtops =
    101 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
    102 
    103 struct pool	kqueue_pool;
    104 struct pool	knote_pool;
    105 static int	kq_ncallouts = 0;
    106 static int	kq_calloutmax = (4 * 1024);
    107 
    108 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");
    109 
    110 #define	KNOTE_ACTIVATE(kn)						\
    111 do {									\
    112 	kn->kn_status |= KN_ACTIVE;					\
    113 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
    114 		knote_enqueue(kn);					\
    115 } while(0)
    116 
    117 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    118 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    119 
    120 extern const struct filterops sig_filtops;
    121 
    122 /*
    123  * Table for for all system-defined filters.
    124  * These should be listed in the numeric order of the EVFILT_* defines.
    125  * If filtops is NULL, the filter isn't implemented in NetBSD.
    126  * End of list is when name is NULL.
    127  */
    128 struct kfilter {
    129 	const char	 *name;		/* name of filter */
    130 	uint32_t	  filter;	/* id of filter */
    131 	const struct filterops *filtops;/* operations for filter */
    132 };
    133 
    134 		/* System defined filters */
    135 static const struct kfilter sys_kfilters[] = {
    136 	{ "EVFILT_READ",	EVFILT_READ,	&file_filtops },
    137 	{ "EVFILT_WRITE",	EVFILT_WRITE,	&file_filtops },
    138 	{ "EVFILT_AIO",		EVFILT_AIO,	NULL },
    139 	{ "EVFILT_VNODE",	EVFILT_VNODE,	&file_filtops },
    140 	{ "EVFILT_PROC",	EVFILT_PROC,	&proc_filtops },
    141 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	&sig_filtops },
    142 	{ "EVFILT_TIMER",	EVFILT_TIMER,	&timer_filtops },
    143 	{ NULL,			0,		NULL },	/* end of list */
    144 };
    145 
    146 		/* User defined kfilters */
    147 static struct kfilter	*user_kfilters;		/* array */
    148 static int		user_kfilterc;		/* current offset */
    149 static int		user_kfiltermaxc;	/* max size so far */
    150 
    151 /*
    152  * kqueue_init:
    153  *
    154  *	Initialize the kqueue/knote facility.
    155  */
    156 void
    157 kqueue_init(void)
    158 {
    159 
    160 	pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl",
    161 	    NULL);
    162 	pool_init(&knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl",
    163 	    NULL);
    164 }
    165 
    166 /*
    167  * Find kfilter entry by name, or NULL if not found.
    168  */
    169 static const struct kfilter *
    170 kfilter_byname_sys(const char *name)
    171 {
    172 	int i;
    173 
    174 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    175 		if (strcmp(name, sys_kfilters[i].name) == 0)
    176 			return (&sys_kfilters[i]);
    177 	}
    178 	return (NULL);
    179 }
    180 
    181 static struct kfilter *
    182 kfilter_byname_user(const char *name)
    183 {
    184 	int i;
    185 
    186 	/* user_kfilters[] could be NULL if no filters were registered */
    187 	if (!user_kfilters)
    188 		return (NULL);
    189 
    190 	for (i = 0; user_kfilters[i].name != NULL; i++) {
    191 		if (user_kfilters[i].name != '\0' &&
    192 		    strcmp(name, user_kfilters[i].name) == 0)
    193 			return (&user_kfilters[i]);
    194 	}
    195 	return (NULL);
    196 }
    197 
    198 static const struct kfilter *
    199 kfilter_byname(const char *name)
    200 {
    201 	const struct kfilter *kfilter;
    202 
    203 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    204 		return (kfilter);
    205 
    206 	return (kfilter_byname_user(name));
    207 }
    208 
    209 /*
    210  * Find kfilter entry by filter id, or NULL if not found.
    211  * Assumes entries are indexed in filter id order, for speed.
    212  */
    213 static const struct kfilter *
    214 kfilter_byfilter(uint32_t filter)
    215 {
    216 	const struct kfilter *kfilter;
    217 
    218 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    219 		kfilter = &sys_kfilters[filter];
    220 	else if (user_kfilters != NULL &&
    221 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    222 					/* it's a user filter */
    223 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    224 	else
    225 		return (NULL);		/* out of range */
    226 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    227 	return (kfilter);
    228 }
    229 
    230 /*
    231  * Register a new kfilter. Stores the entry in user_kfilters.
    232  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    233  * If retfilter != NULL, the new filterid is returned in it.
    234  */
    235 int
    236 kfilter_register(const char *name, const struct filterops *filtops,
    237     int *retfilter)
    238 {
    239 	struct kfilter *kfilter;
    240 	void *space;
    241 	int len;
    242 
    243 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    244 		return (EINVAL);	/* invalid args */
    245 	if (kfilter_byname(name) != NULL)
    246 		return (EEXIST);	/* already exists */
    247 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
    248 		return (EINVAL);	/* too many */
    249 
    250 	/* check if need to grow user_kfilters */
    251 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    252 		/*
    253 		 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
    254 		 * want to traverse user_kfilters as an array.
    255 		 */
    256 		user_kfiltermaxc += KFILTER_EXTENT;
    257 		kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
    258 		    M_KEVENT, M_WAITOK);
    259 
    260 		/* copy existing user_kfilters */
    261 		if (user_kfilters != NULL)
    262 			memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
    263 			    user_kfilterc * sizeof(struct kfilter *));
    264 					/* zero new sections */
    265 		memset((caddr_t)kfilter +
    266 		    user_kfilterc * sizeof(struct kfilter *), 0,
    267 		    (user_kfiltermaxc - user_kfilterc) *
    268 		    sizeof(struct kfilter *));
    269 					/* switch to new kfilter */
    270 		if (user_kfilters != NULL)
    271 			free(user_kfilters, M_KEVENT);
    272 		user_kfilters = kfilter;
    273 	}
    274 	len = strlen(name) + 1;		/* copy name */
    275 	space = malloc(len, M_KEVENT, M_WAITOK);
    276 	memcpy(space, name, len);
    277 	user_kfilters[user_kfilterc].name = space;
    278 
    279 	user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
    280 
    281 	len = sizeof(struct filterops);	/* copy filtops */
    282 	space = malloc(len, M_KEVENT, M_WAITOK);
    283 	memcpy(space, filtops, len);
    284 	user_kfilters[user_kfilterc].filtops = space;
    285 
    286 	if (retfilter != NULL)
    287 		*retfilter = user_kfilters[user_kfilterc].filter;
    288 	user_kfilterc++;		/* finally, increment count */
    289 	return (0);
    290 }
    291 
    292 /*
    293  * Unregister a kfilter previously registered with kfilter_register.
    294  * This retains the filter id, but clears the name and frees filtops (filter
    295  * operations), so that the number isn't reused during a boot.
    296  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    297  */
    298 int
    299 kfilter_unregister(const char *name)
    300 {
    301 	struct kfilter *kfilter;
    302 
    303 	if (name == NULL || name[0] == '\0')
    304 		return (EINVAL);	/* invalid name */
    305 
    306 	if (kfilter_byname_sys(name) != NULL)
    307 		return (EINVAL);	/* can't detach system filters */
    308 
    309 	kfilter = kfilter_byname_user(name);
    310 	if (kfilter == NULL)		/* not found */
    311 		return (ENOENT);
    312 
    313 	if (kfilter->name[0] != '\0') {
    314 		/* XXX Cast away const (but we know it's safe. */
    315 		free((void *) kfilter->name, M_KEVENT);
    316 		kfilter->name = "";	/* mark as `not implemented' */
    317 	}
    318 	if (kfilter->filtops != NULL) {
    319 		/* XXX Cast away const (but we know it's safe. */
    320 		free((void *) kfilter->filtops, M_KEVENT);
    321 		kfilter->filtops = NULL; /* mark as `not implemented' */
    322 	}
    323 	return (0);
    324 }
    325 
    326 
    327 /*
    328  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    329  * descriptors. Calls struct fileops kqfilter method for given file descriptor.
    330  */
    331 static int
    332 filt_fileattach(struct knote *kn)
    333 {
    334 	struct file *fp;
    335 
    336 	fp = kn->kn_fp;
    337 	return ((*fp->f_ops->fo_kqfilter)(fp, kn));
    338 }
    339 
    340 /*
    341  * Filter detach method for EVFILT_READ on kqueue descriptor.
    342  */
    343 static void
    344 filt_kqdetach(struct knote *kn)
    345 {
    346 	struct kqueue *kq;
    347 
    348 	kq = (struct kqueue *)kn->kn_fp->f_data;
    349 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
    350 }
    351 
    352 /*
    353  * Filter event method for EVFILT_READ on kqueue descriptor.
    354  */
    355 /*ARGSUSED*/
    356 static int
    357 filt_kqueue(struct knote *kn, long hint)
    358 {
    359 	struct kqueue *kq;
    360 
    361 	kq = (struct kqueue *)kn->kn_fp->f_data;
    362 	kn->kn_data = kq->kq_count;
    363 	return (kn->kn_data > 0);
    364 }
    365 
    366 /*
    367  * Filter attach method for EVFILT_PROC.
    368  */
    369 static int
    370 filt_procattach(struct knote *kn)
    371 {
    372 	struct proc *p;
    373 
    374 	p = pfind(kn->kn_id);
    375 	if (p == NULL)
    376 		return (ESRCH);
    377 
    378 	/*
    379 	 * Fail if it's not owned by you, or the last exec gave us
    380 	 * setuid/setgid privs (unless you're root).
    381 	 */
    382 	if ((p->p_cred->p_ruid != curproc->p_cred->p_ruid ||
    383 		(p->p_flag & P_SUGID))
    384 	    && suser(curproc->p_ucred, &curproc->p_acflag) != 0)
    385 		return (EACCES);
    386 
    387 	kn->kn_ptr.p_proc = p;
    388 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    389 
    390 	/*
    391 	 * internal flag indicating registration done by kernel
    392 	 */
    393 	if (kn->kn_flags & EV_FLAG1) {
    394 		kn->kn_data = kn->kn_sdata;	/* ppid */
    395 		kn->kn_fflags = NOTE_CHILD;
    396 		kn->kn_flags &= ~EV_FLAG1;
    397 	}
    398 
    399 	/* XXXSMP lock the process? */
    400 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
    401 
    402 	return (0);
    403 }
    404 
    405 /*
    406  * Filter detach method for EVFILT_PROC.
    407  *
    408  * The knote may be attached to a different process, which may exit,
    409  * leaving nothing for the knote to be attached to.  So when the process
    410  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    411  * it will be deleted when read out.  However, as part of the knote deletion,
    412  * this routine is called, so a check is needed to avoid actually performing
    413  * a detach, because the original process might not exist any more.
    414  */
    415 static void
    416 filt_procdetach(struct knote *kn)
    417 {
    418 	struct proc *p;
    419 
    420 	if (kn->kn_status & KN_DETACHED)
    421 		return;
    422 
    423 	p = kn->kn_ptr.p_proc;
    424 	KASSERT(p->p_stat == SDEAD || pfind(kn->kn_id) == p);
    425 
    426 	/* XXXSMP lock the process? */
    427 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
    428 }
    429 
    430 /*
    431  * Filter event method for EVFILT_PROC.
    432  */
    433 static int
    434 filt_proc(struct knote *kn, long hint)
    435 {
    436 	u_int event;
    437 
    438 	/*
    439 	 * mask off extra data
    440 	 */
    441 	event = (u_int)hint & NOTE_PCTRLMASK;
    442 
    443 	/*
    444 	 * if the user is interested in this event, record it.
    445 	 */
    446 	if (kn->kn_sfflags & event)
    447 		kn->kn_fflags |= event;
    448 
    449 	/*
    450 	 * process is gone, so flag the event as finished.
    451 	 */
    452 	if (event == NOTE_EXIT) {
    453 		/*
    454 		 * Detach the knote from watched process and mark
    455 		 * it as such. We can't leave this to kqueue_scan(),
    456 		 * since the process might not exist by then. And we
    457 		 * have to do this now, since psignal KNOTE() is called
    458 		 * also for zombies and we might end up reading freed
    459 		 * memory if the kevent would already be picked up
    460 		 * and knote g/c'ed.
    461 		 */
    462 		kn->kn_fop->f_detach(kn);
    463 		kn->kn_status |= KN_DETACHED;
    464 
    465 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
    466 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
    467 		return (1);
    468 	}
    469 
    470 	/*
    471 	 * process forked, and user wants to track the new process,
    472 	 * so attach a new knote to it, and immediately report an
    473 	 * event with the parent's pid.
    474 	 */
    475 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
    476 		struct kevent kev;
    477 		int error;
    478 
    479 		/*
    480 		 * register knote with new process.
    481 		 */
    482 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
    483 		kev.filter = kn->kn_filter;
    484 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
    485 		kev.fflags = kn->kn_sfflags;
    486 		kev.data = kn->kn_id;			/* parent */
    487 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
    488 		error = kqueue_register(kn->kn_kq, &kev, NULL);
    489 		if (error)
    490 			kn->kn_fflags |= NOTE_TRACKERR;
    491 	}
    492 
    493 	return (kn->kn_fflags != 0);
    494 }
    495 
    496 static void
    497 filt_timerexpire(void *knx)
    498 {
    499 	struct knote *kn = knx;
    500 	int tticks;
    501 
    502 	kn->kn_data++;
    503 	KNOTE_ACTIVATE(kn);
    504 
    505 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
    506 		tticks = mstohz(kn->kn_sdata);
    507 		callout_schedule((struct callout *)kn->kn_hook, tticks);
    508 	}
    509 }
    510 
    511 /*
    512  * data contains amount of time to sleep, in milliseconds
    513  */
    514 static int
    515 filt_timerattach(struct knote *kn)
    516 {
    517 	struct callout *calloutp;
    518 	int tticks;
    519 
    520 	if (kq_ncallouts >= kq_calloutmax)
    521 		return (ENOMEM);
    522 	kq_ncallouts++;
    523 
    524 	tticks = mstohz(kn->kn_sdata);
    525 
    526 	/* if the supplied value is under our resolution, use 1 tick */
    527 	if (tticks == 0) {
    528 		if (kn->kn_sdata == 0)
    529 			return (EINVAL);
    530 		tticks = 1;
    531 	}
    532 
    533 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
    534 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
    535 	    M_KEVENT, 0);
    536 	callout_init(calloutp);
    537 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
    538 	kn->kn_hook = calloutp;
    539 
    540 	return (0);
    541 }
    542 
    543 static void
    544 filt_timerdetach(struct knote *kn)
    545 {
    546 	struct callout *calloutp;
    547 
    548 	calloutp = (struct callout *)kn->kn_hook;
    549 	callout_stop(calloutp);
    550 	FREE(calloutp, M_KEVENT);
    551 	kq_ncallouts--;
    552 }
    553 
    554 static int
    555 filt_timer(struct knote *kn, long hint)
    556 {
    557 	return (kn->kn_data != 0);
    558 }
    559 
    560 /*
    561  * filt_seltrue:
    562  *
    563  *	This filter "event" routine simulates seltrue().
    564  */
    565 int
    566 filt_seltrue(struct knote *kn, long hint)
    567 {
    568 
    569 	/*
    570 	 * We don't know how much data can be read/written,
    571 	 * but we know that it *can* be.  This is about as
    572 	 * good as select/poll does as well.
    573 	 */
    574 	kn->kn_data = 0;
    575 	return (1);
    576 }
    577 
    578 /*
    579  * This provides full kqfilter entry for device switch tables, which
    580  * has same effect as filter using filt_seltrue() as filter method.
    581  */
    582 static void
    583 filt_seltruedetach(struct knote *kn)
    584 {
    585 	/* Nothing to do */
    586 }
    587 
    588 static const struct filterops seltrue_filtops =
    589 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
    590 
    591 int
    592 seltrue_kqfilter(dev_t dev, struct knote *kn)
    593 {
    594 	switch (kn->kn_filter) {
    595 	case EVFILT_READ:
    596 	case EVFILT_WRITE:
    597 		kn->kn_fop = &seltrue_filtops;
    598 		break;
    599 	default:
    600 		return (1);
    601 	}
    602 
    603 	/* Nothing more to do */
    604 	return (0);
    605 }
    606 
    607 /*
    608  * kqueue(2) system call.
    609  */
    610 int
    611 sys_kqueue(struct lwp *l, void *v, register_t *retval)
    612 {
    613 	struct filedesc	*fdp;
    614 	struct kqueue	*kq;
    615 	struct file	*fp;
    616 	struct proc	*p;
    617 	int		fd, error;
    618 
    619 	p = l->l_proc;
    620 	fdp = p->p_fd;
    621 	error = falloc(p, &fp, &fd);	/* setup a new file descriptor */
    622 	if (error)
    623 		return (error);
    624 	fp->f_flag = FREAD | FWRITE;
    625 	fp->f_type = DTYPE_KQUEUE;
    626 	fp->f_ops = &kqueueops;
    627 	kq = pool_get(&kqueue_pool, PR_WAITOK);
    628 	memset((char *)kq, 0, sizeof(struct kqueue));
    629 	simple_lock_init(&kq->kq_lock);
    630 	TAILQ_INIT(&kq->kq_head);
    631 	fp->f_data = (caddr_t)kq;	/* store the kqueue with the fp */
    632 	*retval = fd;
    633 	if (fdp->fd_knlistsize < 0)
    634 		fdp->fd_knlistsize = 0;	/* this process has a kq */
    635 	kq->kq_fdp = fdp;
    636 	FILE_SET_MATURE(fp);
    637 	FILE_UNUSE(fp, p);		/* falloc() does FILE_USE() */
    638 	return (error);
    639 }
    640 
    641 /*
    642  * kevent(2) system call.
    643  */
    644 int
    645 sys_kevent(struct lwp *l, void *v, register_t *retval)
    646 {
    647 	struct sys_kevent_args /* {
    648 		syscallarg(int) fd;
    649 		syscallarg(const struct kevent *) changelist;
    650 		syscallarg(size_t) nchanges;
    651 		syscallarg(struct kevent *) eventlist;
    652 		syscallarg(size_t) nevents;
    653 		syscallarg(const struct timespec *) timeout;
    654 	} */ *uap = v;
    655 	struct kevent	*kevp;
    656 	struct kqueue	*kq;
    657 	struct file	*fp;
    658 	struct timespec	ts;
    659 	struct proc	*p;
    660 	size_t		i, n;
    661 	int		nerrors, error;
    662 
    663 	p = l->l_proc;
    664 	/* check that we're dealing with a kq */
    665 	fp = fd_getfile(p->p_fd, SCARG(uap, fd));
    666 	if (fp == NULL)
    667 		return (EBADF);
    668 
    669 	if (fp->f_type != DTYPE_KQUEUE) {
    670 		simple_unlock(&fp->f_slock);
    671 		return (EBADF);
    672 	}
    673 
    674 	FILE_USE(fp);
    675 
    676 	if (SCARG(uap, timeout) != NULL) {
    677 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
    678 		if (error)
    679 			goto done;
    680 		SCARG(uap, timeout) = &ts;
    681 	}
    682 
    683 	kq = (struct kqueue *)fp->f_data;
    684 	nerrors = 0;
    685 
    686 	/* traverse list of events to register */
    687 	while (SCARG(uap, nchanges) > 0) {
    688 		/* copyin a maximum of KQ_EVENTS at each pass */
    689 		n = MIN(SCARG(uap, nchanges), KQ_NEVENTS);
    690 		error = copyin(SCARG(uap, changelist), kq->kq_kev,
    691 		    n * sizeof(struct kevent));
    692 		if (error)
    693 			goto done;
    694 		for (i = 0; i < n; i++) {
    695 			kevp = &kq->kq_kev[i];
    696 			kevp->flags &= ~EV_SYSFLAGS;
    697 			/* register each knote */
    698 			error = kqueue_register(kq, kevp, p);
    699 			if (error) {
    700 				if (SCARG(uap, nevents) != 0) {
    701 					kevp->flags = EV_ERROR;
    702 					kevp->data = error;
    703 					error = copyout((caddr_t)kevp,
    704 					    (caddr_t)SCARG(uap, eventlist),
    705 					    sizeof(*kevp));
    706 					if (error)
    707 						goto done;
    708 					SCARG(uap, eventlist)++;
    709 					SCARG(uap, nevents)--;
    710 					nerrors++;
    711 				} else {
    712 					goto done;
    713 				}
    714 			}
    715 		}
    716 		SCARG(uap, nchanges) -= n;	/* update the results */
    717 		SCARG(uap, changelist) += n;
    718 	}
    719 	if (nerrors) {
    720 		*retval = nerrors;
    721 		error = 0;
    722 		goto done;
    723 	}
    724 
    725 	/* actually scan through the events */
    726 	error = kqueue_scan(fp, SCARG(uap, nevents), SCARG(uap, eventlist),
    727 	    SCARG(uap, timeout), p, retval);
    728  done:
    729 	FILE_UNUSE(fp, p);
    730 	return (error);
    731 }
    732 
    733 /*
    734  * Register a given kevent kev onto the kqueue
    735  */
    736 int
    737 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
    738 {
    739 	const struct kfilter *kfilter;
    740 	struct filedesc	*fdp;
    741 	struct file	*fp;
    742 	struct knote	*kn;
    743 	int		s, error;
    744 
    745 	fdp = kq->kq_fdp;
    746 	fp = NULL;
    747 	kn = NULL;
    748 	error = 0;
    749 	kfilter = kfilter_byfilter(kev->filter);
    750 	if (kfilter == NULL || kfilter->filtops == NULL) {
    751 		/* filter not found nor implemented */
    752 		return (EINVAL);
    753 	}
    754 
    755 	/* search if knote already exists */
    756 	if (kfilter->filtops->f_isfd) {
    757 		/* monitoring a file descriptor */
    758 		if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
    759 			return (EBADF);	/* validate descriptor */
    760 		FILE_USE(fp);
    761 
    762 		if (kev->ident < fdp->fd_knlistsize) {
    763 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
    764 				if (kq == kn->kn_kq &&
    765 				    kev->filter == kn->kn_filter)
    766 					break;
    767 		}
    768 	} else {
    769 		/*
    770 		 * not monitoring a file descriptor, so
    771 		 * lookup knotes in internal hash table
    772 		 */
    773 		if (fdp->fd_knhashmask != 0) {
    774 			struct klist *list;
    775 
    776 			list = &fdp->fd_knhash[
    777 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
    778 			SLIST_FOREACH(kn, list, kn_link)
    779 				if (kev->ident == kn->kn_id &&
    780 				    kq == kn->kn_kq &&
    781 				    kev->filter == kn->kn_filter)
    782 					break;
    783 		}
    784 	}
    785 
    786 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
    787 		error = ENOENT;		/* filter not found */
    788 		goto done;
    789 	}
    790 
    791 	/*
    792 	 * kn now contains the matching knote, or NULL if no match
    793 	 */
    794 	if (kev->flags & EV_ADD) {
    795 		/* add knote */
    796 
    797 		if (kn == NULL) {
    798 			/* create new knote */
    799 			kn = pool_get(&knote_pool, PR_WAITOK);
    800 			if (kn == NULL) {
    801 				error = ENOMEM;
    802 				goto done;
    803 			}
    804 			kn->kn_fp = fp;
    805 			kn->kn_kq = kq;
    806 			kn->kn_fop = kfilter->filtops;
    807 
    808 			/*
    809 			 * apply reference count to knote structure, and
    810 			 * do not release it at the end of this routine.
    811 			 */
    812 			fp = NULL;
    813 
    814 			kn->kn_sfflags = kev->fflags;
    815 			kn->kn_sdata = kev->data;
    816 			kev->fflags = 0;
    817 			kev->data = 0;
    818 			kn->kn_kevent = *kev;
    819 
    820 			knote_attach(kn, fdp);
    821 			if ((error = kfilter->filtops->f_attach(kn)) != 0) {
    822 				knote_drop(kn, p, fdp);
    823 				goto done;
    824 			}
    825 		} else {
    826 			/* modify existing knote */
    827 
    828 			/*
    829 			 * The user may change some filter values after the
    830 			 * initial EV_ADD, but doing so will not reset any
    831 			 * filter which have already been triggered.
    832 			 */
    833 			kn->kn_sfflags = kev->fflags;
    834 			kn->kn_sdata = kev->data;
    835 			kn->kn_kevent.udata = kev->udata;
    836 		}
    837 
    838 		s = splsched();
    839 		if (kn->kn_fop->f_event(kn, 0))
    840 			KNOTE_ACTIVATE(kn);
    841 		splx(s);
    842 
    843 	} else if (kev->flags & EV_DELETE) {	/* delete knote */
    844 		kn->kn_fop->f_detach(kn);
    845 		knote_drop(kn, p, fdp);
    846 		goto done;
    847 	}
    848 
    849 	/* disable knote */
    850 	if ((kev->flags & EV_DISABLE) &&
    851 	    ((kn->kn_status & KN_DISABLED) == 0)) {
    852 		s = splsched();
    853 		kn->kn_status |= KN_DISABLED;
    854 		splx(s);
    855 	}
    856 
    857 	/* enable knote */
    858 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
    859 		s = splsched();
    860 		kn->kn_status &= ~KN_DISABLED;
    861 		if ((kn->kn_status & KN_ACTIVE) &&
    862 		    ((kn->kn_status & KN_QUEUED) == 0))
    863 			knote_enqueue(kn);
    864 		splx(s);
    865 	}
    866 
    867  done:
    868 	if (fp != NULL)
    869 		FILE_UNUSE(fp, p);
    870 	return (error);
    871 }
    872 
    873 /*
    874  * Scan through the list of events on fp (for a maximum of maxevents),
    875  * returning the results in to ulistp. Timeout is determined by tsp; if
    876  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
    877  * as appropriate.
    878  */
    879 static int
    880 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
    881 	const struct timespec *tsp, struct proc *p, register_t *retval)
    882 {
    883 	struct kqueue	*kq;
    884 	struct kevent	*kevp;
    885 	struct timeval	atv;
    886 	struct knote	*kn, marker;
    887 	size_t		count, nkev;
    888 	int		s, timeout, error;
    889 
    890 	kq = (struct kqueue *)fp->f_data;
    891 	count = maxevents;
    892 	nkev = error = 0;
    893 	if (count == 0)
    894 		goto done;
    895 
    896 	if (tsp) {				/* timeout supplied */
    897 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
    898 		if (itimerfix(&atv)) {
    899 			error = EINVAL;
    900 			goto done;
    901 		}
    902 		s = splclock();
    903 		timeradd(&atv, &time, &atv);	/* calc. time to wait until */
    904 		splx(s);
    905 		timeout = hzto(&atv);
    906 		if (timeout <= 0)
    907 			timeout = -1;		/* do poll */
    908 	} else {
    909 		/* no timeout, wait forever */
    910 		timeout = 0;
    911 	}
    912 	goto start;
    913 
    914  retry:
    915 	if (tsp) {
    916 		/*
    917 		 * We have to recalculate the timeout on every retry.
    918 		 */
    919 		timeout = hzto(&atv);
    920 		if (timeout <= 0)
    921 			goto done;
    922 	}
    923 
    924  start:
    925 	kevp = kq->kq_kev;
    926 	s = splsched();
    927 	simple_lock(&kq->kq_lock);
    928 	if (kq->kq_count == 0) {
    929 		if (timeout < 0) {
    930 			error = EWOULDBLOCK;
    931 		} else {
    932 			kq->kq_state |= KQ_SLEEP;
    933 			error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK,
    934 					"kqread", timeout, &kq->kq_lock);
    935 		}
    936 		splx(s);
    937 		if (error == 0)
    938 			goto retry;
    939 		/* don't restart after signals... */
    940 		if (error == ERESTART)
    941 			error = EINTR;
    942 		else if (error == EWOULDBLOCK)
    943 			error = 0;
    944 		goto done;
    945 	}
    946 
    947 	/* mark end of knote list */
    948 	TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
    949 	simple_unlock(&kq->kq_lock);
    950 
    951 	while (count) {				/* while user wants data ... */
    952 		simple_lock(&kq->kq_lock);
    953 		kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
    954 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
    955 		if (kn == &marker) {		/* if it's our marker, stop */
    956 			/* What if it's some else's marker? */
    957 			simple_unlock(&kq->kq_lock);
    958 			splx(s);
    959 			if (count == maxevents)
    960 				goto retry;
    961 			goto done;
    962 		}
    963 		kq->kq_count--;
    964 		simple_unlock(&kq->kq_lock);
    965 
    966 		if (kn->kn_status & KN_DISABLED) {
    967 			/* don't want disabled events */
    968 			kn->kn_status &= ~KN_QUEUED;
    969 			continue;
    970 		}
    971 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
    972 		    kn->kn_fop->f_event(kn, 0) == 0) {
    973 			/*
    974 			 * non-ONESHOT event that hasn't
    975 			 * triggered again, so de-queue.
    976 			 */
    977 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
    978 			continue;
    979 		}
    980 		*kevp = kn->kn_kevent;
    981 		kevp++;
    982 		nkev++;
    983 		if (kn->kn_flags & EV_ONESHOT) {
    984 			/* delete ONESHOT events after retrieval */
    985 			kn->kn_status &= ~KN_QUEUED;
    986 			splx(s);
    987 			kn->kn_fop->f_detach(kn);
    988 			knote_drop(kn, p, p->p_fd);
    989 			s = splsched();
    990 		} else if (kn->kn_flags & EV_CLEAR) {
    991 			/* clear state after retrieval */
    992 			kn->kn_data = 0;
    993 			kn->kn_fflags = 0;
    994 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
    995 		} else {
    996 			/* add event back on list */
    997 			simple_lock(&kq->kq_lock);
    998 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
    999 			kq->kq_count++;
   1000 			simple_unlock(&kq->kq_lock);
   1001 		}
   1002 		count--;
   1003 		if (nkev == KQ_NEVENTS) {
   1004 			/* do copyouts in KQ_NEVENTS chunks */
   1005 			splx(s);
   1006 			error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
   1007 			    sizeof(struct kevent) * nkev);
   1008 			ulistp += nkev;
   1009 			nkev = 0;
   1010 			kevp = kq->kq_kev;
   1011 			s = splsched();
   1012 			if (error)
   1013 				break;
   1014 		}
   1015 	}
   1016 
   1017 	/* remove marker */
   1018 	simple_lock(&kq->kq_lock);
   1019 	TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
   1020 	simple_unlock(&kq->kq_lock);
   1021 	splx(s);
   1022  done:
   1023 	if (nkev != 0) {
   1024 		/* copyout remaining events */
   1025 		error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
   1026 		    sizeof(struct kevent) * nkev);
   1027 	}
   1028 	*retval = maxevents - count;
   1029 
   1030 	return (error);
   1031 }
   1032 
   1033 /*
   1034  * struct fileops read method for a kqueue descriptor.
   1035  * Not implemented.
   1036  * XXX: This could be expanded to call kqueue_scan, if desired.
   1037  */
   1038 /*ARGSUSED*/
   1039 static int
   1040 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
   1041 	struct ucred *cred, int flags)
   1042 {
   1043 
   1044 	return (ENXIO);
   1045 }
   1046 
   1047 /*
   1048  * struct fileops write method for a kqueue descriptor.
   1049  * Not implemented.
   1050  */
   1051 /*ARGSUSED*/
   1052 static int
   1053 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
   1054 	struct ucred *cred, int flags)
   1055 {
   1056 
   1057 	return (ENXIO);
   1058 }
   1059 
   1060 /*
   1061  * struct fileops ioctl method for a kqueue descriptor.
   1062  *
   1063  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   1064  *	KFILTER_BYNAME		find name for filter, and return result in
   1065  *				name, which is of size len.
   1066  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   1067  */
   1068 /*ARGSUSED*/
   1069 static int
   1070 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
   1071 {
   1072 	struct kfilter_mapping	*km;
   1073 	const struct kfilter	*kfilter;
   1074 	char			*name;
   1075 	int			error;
   1076 
   1077 	km = (struct kfilter_mapping *)data;
   1078 	error = 0;
   1079 
   1080 	switch (com) {
   1081 	case KFILTER_BYFILTER:	/* convert filter -> name */
   1082 		kfilter = kfilter_byfilter(km->filter);
   1083 		if (kfilter != NULL)
   1084 			error = copyoutstr(kfilter->name, km->name, km->len,
   1085 			    NULL);
   1086 		else
   1087 			error = ENOENT;
   1088 		break;
   1089 
   1090 	case KFILTER_BYNAME:	/* convert name -> filter */
   1091 		MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
   1092 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   1093 		if (error) {
   1094 			FREE(name, M_KEVENT);
   1095 			break;
   1096 		}
   1097 		kfilter = kfilter_byname(name);
   1098 		if (kfilter != NULL)
   1099 			km->filter = kfilter->filter;
   1100 		else
   1101 			error = ENOENT;
   1102 		FREE(name, M_KEVENT);
   1103 		break;
   1104 
   1105 	default:
   1106 		error = ENOTTY;
   1107 
   1108 	}
   1109 	return (error);
   1110 }
   1111 
   1112 /*
   1113  * struct fileops fcntl method for a kqueue descriptor.
   1114  * Not implemented.
   1115  */
   1116 /*ARGSUSED*/
   1117 static int
   1118 kqueue_fcntl(struct file *fp, u_int com, caddr_t data, struct proc *p)
   1119 {
   1120 
   1121 	return (ENOTTY);
   1122 }
   1123 
   1124 /*
   1125  * struct fileops poll method for a kqueue descriptor.
   1126  * Determine if kqueue has events pending.
   1127  */
   1128 static int
   1129 kqueue_poll(struct file *fp, int events, struct proc *p)
   1130 {
   1131 	struct kqueue	*kq;
   1132 	int		revents;
   1133 
   1134 	kq = (struct kqueue *)fp->f_data;
   1135 	revents = 0;
   1136 	if (events & (POLLIN | POLLRDNORM)) {
   1137 		if (kq->kq_count) {
   1138 			revents |= events & (POLLIN | POLLRDNORM);
   1139 		} else {
   1140 			selrecord(p, &kq->kq_sel);
   1141 		}
   1142 	}
   1143 	return (revents);
   1144 }
   1145 
   1146 /*
   1147  * struct fileops stat method for a kqueue descriptor.
   1148  * Returns dummy info, with st_size being number of events pending.
   1149  */
   1150 static int
   1151 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
   1152 {
   1153 	struct kqueue	*kq;
   1154 
   1155 	kq = (struct kqueue *)fp->f_data;
   1156 	memset((void *)st, 0, sizeof(*st));
   1157 	st->st_size = kq->kq_count;
   1158 	st->st_blksize = sizeof(struct kevent);
   1159 	st->st_mode = S_IFIFO;
   1160 	return (0);
   1161 }
   1162 
   1163 /*
   1164  * struct fileops close method for a kqueue descriptor.
   1165  * Cleans up kqueue.
   1166  */
   1167 static int
   1168 kqueue_close(struct file *fp, struct proc *p)
   1169 {
   1170 	struct kqueue	*kq;
   1171 	struct filedesc	*fdp;
   1172 	struct knote	**knp, *kn, *kn0;
   1173 	int		i;
   1174 
   1175 	kq = (struct kqueue *)fp->f_data;
   1176 	fdp = p->p_fd;
   1177 	for (i = 0; i < fdp->fd_knlistsize; i++) {
   1178 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
   1179 		kn = *knp;
   1180 		while (kn != NULL) {
   1181 			kn0 = SLIST_NEXT(kn, kn_link);
   1182 			if (kq == kn->kn_kq) {
   1183 				kn->kn_fop->f_detach(kn);
   1184 				FILE_UNUSE(kn->kn_fp, p);
   1185 				pool_put(&knote_pool, kn);
   1186 				*knp = kn0;
   1187 			} else {
   1188 				knp = &SLIST_NEXT(kn, kn_link);
   1189 			}
   1190 			kn = kn0;
   1191 		}
   1192 	}
   1193 	if (fdp->fd_knhashmask != 0) {
   1194 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   1195 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
   1196 			kn = *knp;
   1197 			while (kn != NULL) {
   1198 				kn0 = SLIST_NEXT(kn, kn_link);
   1199 				if (kq == kn->kn_kq) {
   1200 					kn->kn_fop->f_detach(kn);
   1201 					/* XXX non-fd release of kn->kn_ptr */
   1202 					pool_put(&knote_pool, kn);
   1203 					*knp = kn0;
   1204 				} else {
   1205 					knp = &SLIST_NEXT(kn, kn_link);
   1206 				}
   1207 				kn = kn0;
   1208 			}
   1209 		}
   1210 	}
   1211 	pool_put(&kqueue_pool, kq);
   1212 	fp->f_data = NULL;
   1213 
   1214 	return (0);
   1215 }
   1216 
   1217 /*
   1218  * wakeup a kqueue
   1219  */
   1220 static void
   1221 kqueue_wakeup(struct kqueue *kq)
   1222 {
   1223 	int s;
   1224 
   1225 	s = splsched();
   1226 	simple_lock(&kq->kq_lock);
   1227 	if (kq->kq_state & KQ_SLEEP) {		/* if currently sleeping ...  */
   1228 		kq->kq_state &= ~KQ_SLEEP;
   1229 		wakeup(kq);			/* ... wakeup */
   1230 	}
   1231 
   1232 	/* Notify select/poll and kevent. */
   1233 	selnotify(&kq->kq_sel, 0);
   1234 	simple_unlock(&kq->kq_lock);
   1235 	splx(s);
   1236 }
   1237 
   1238 /*
   1239  * struct fileops kqfilter method for a kqueue descriptor.
   1240  * Event triggered when monitored kqueue changes.
   1241  */
   1242 /*ARGSUSED*/
   1243 static int
   1244 kqueue_kqfilter(struct file *fp, struct knote *kn)
   1245 {
   1246 	struct kqueue *kq;
   1247 
   1248 	KASSERT(fp == kn->kn_fp);
   1249 	kq = (struct kqueue *)kn->kn_fp->f_data;
   1250 	if (kn->kn_filter != EVFILT_READ)
   1251 		return (1);
   1252 	kn->kn_fop = &kqread_filtops;
   1253 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
   1254 	return (0);
   1255 }
   1256 
   1257 
   1258 /*
   1259  * Walk down a list of knotes, activating them if their event has triggered.
   1260  */
   1261 void
   1262 knote(struct klist *list, long hint)
   1263 {
   1264 	struct knote *kn;
   1265 
   1266 	SLIST_FOREACH(kn, list, kn_selnext)
   1267 		if (kn->kn_fop->f_event(kn, hint))
   1268 			KNOTE_ACTIVATE(kn);
   1269 }
   1270 
   1271 /*
   1272  * Remove all knotes from a specified klist
   1273  */
   1274 void
   1275 knote_remove(struct proc *p, struct klist *list)
   1276 {
   1277 	struct knote *kn;
   1278 
   1279 	while ((kn = SLIST_FIRST(list)) != NULL) {
   1280 		kn->kn_fop->f_detach(kn);
   1281 		knote_drop(kn, p, p->p_fd);
   1282 	}
   1283 }
   1284 
   1285 /*
   1286  * Remove all knotes referencing a specified fd
   1287  */
   1288 void
   1289 knote_fdclose(struct proc *p, int fd)
   1290 {
   1291 	struct filedesc	*fdp;
   1292 	struct klist	*list;
   1293 
   1294 	fdp = p->p_fd;
   1295 	list = &fdp->fd_knlist[fd];
   1296 	knote_remove(p, list);
   1297 }
   1298 
   1299 /*
   1300  * Attach a new knote to a file descriptor
   1301  */
   1302 static void
   1303 knote_attach(struct knote *kn, struct filedesc *fdp)
   1304 {
   1305 	struct klist	*list;
   1306 	int		size;
   1307 
   1308 	if (! kn->kn_fop->f_isfd) {
   1309 		/* if knote is not on an fd, store on internal hash table */
   1310 		if (fdp->fd_knhashmask == 0)
   1311 			fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
   1312 			    M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
   1313 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1314 		goto done;
   1315 	}
   1316 
   1317 	/*
   1318 	 * otherwise, knote is on an fd.
   1319 	 * knotes are stored in fd_knlist indexed by kn->kn_id.
   1320 	 */
   1321 	if (fdp->fd_knlistsize <= kn->kn_id) {
   1322 		/* expand list, it's too small */
   1323 		size = fdp->fd_knlistsize;
   1324 		while (size <= kn->kn_id) {
   1325 			/* grow in KQ_EXTENT chunks */
   1326 			size += KQ_EXTENT;
   1327 		}
   1328 		list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
   1329 		if (fdp->fd_knlist) {
   1330 			/* copy existing knlist */
   1331 			memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
   1332 			    fdp->fd_knlistsize * sizeof(struct klist *));
   1333 		}
   1334 		/*
   1335 		 * Zero new memory. Stylistically, SLIST_INIT() should be
   1336 		 * used here, but that does same thing as the memset() anyway.
   1337 		 */
   1338 		memset(&list[fdp->fd_knlistsize], 0,
   1339 		    (size - fdp->fd_knlistsize) * sizeof(struct klist *));
   1340 
   1341 		/* switch to new knlist */
   1342 		if (fdp->fd_knlist != NULL)
   1343 			free(fdp->fd_knlist, M_KEVENT);
   1344 		fdp->fd_knlistsize = size;
   1345 		fdp->fd_knlist = list;
   1346 	}
   1347 
   1348 	/* get list head for this fd */
   1349 	list = &fdp->fd_knlist[kn->kn_id];
   1350  done:
   1351 	/* add new knote */
   1352 	SLIST_INSERT_HEAD(list, kn, kn_link);
   1353 	kn->kn_status = 0;
   1354 }
   1355 
   1356 /*
   1357  * Drop knote.
   1358  * Should be called at spl == 0, since we don't want to hold spl
   1359  * while calling FILE_UNUSE and free.
   1360  */
   1361 static void
   1362 knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp)
   1363 {
   1364 	struct klist	*list;
   1365 
   1366 	if (kn->kn_fop->f_isfd)
   1367 		list = &fdp->fd_knlist[kn->kn_id];
   1368 	else
   1369 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1370 
   1371 	SLIST_REMOVE(list, kn, knote, kn_link);
   1372 	if (kn->kn_status & KN_QUEUED)
   1373 		knote_dequeue(kn);
   1374 	if (kn->kn_fop->f_isfd)
   1375 		FILE_UNUSE(kn->kn_fp, p);
   1376 	pool_put(&knote_pool, kn);
   1377 }
   1378 
   1379 
   1380 /*
   1381  * Queue new event for knote.
   1382  */
   1383 static void
   1384 knote_enqueue(struct knote *kn)
   1385 {
   1386 	struct kqueue	*kq;
   1387 	int		s;
   1388 
   1389 	kq = kn->kn_kq;
   1390 	KASSERT((kn->kn_status & KN_QUEUED) == 0);
   1391 
   1392 	s = splsched();
   1393 	simple_lock(&kq->kq_lock);
   1394 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1395 	kn->kn_status |= KN_QUEUED;
   1396 	kq->kq_count++;
   1397 	simple_unlock(&kq->kq_lock);
   1398 	splx(s);
   1399 	kqueue_wakeup(kq);
   1400 }
   1401 
   1402 /*
   1403  * Dequeue event for knote.
   1404  */
   1405 static void
   1406 knote_dequeue(struct knote *kn)
   1407 {
   1408 	struct kqueue	*kq;
   1409 	int		s;
   1410 
   1411 	KASSERT(kn->kn_status & KN_QUEUED);
   1412 	kq = kn->kn_kq;
   1413 
   1414 	s = splsched();
   1415 	simple_lock(&kq->kq_lock);
   1416 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1417 	kn->kn_status &= ~KN_QUEUED;
   1418 	kq->kq_count--;
   1419 	simple_unlock(&kq->kq_lock);
   1420 	splx(s);
   1421 }
   1422