kern_event.c revision 1.120 1 /* $NetBSD: kern_event.c,v 1.120 2021/09/21 14:54:02 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * Copyright (c) 2009 Apple, Inc
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.120 2021/09/21 14:54:02 christos Exp $");
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/kernel.h>
67 #include <sys/wait.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/select.h>
71 #include <sys/queue.h>
72 #include <sys/event.h>
73 #include <sys/eventvar.h>
74 #include <sys/poll.h>
75 #include <sys/kmem.h>
76 #include <sys/stat.h>
77 #include <sys/filedesc.h>
78 #include <sys/syscallargs.h>
79 #include <sys/kauth.h>
80 #include <sys/conf.h>
81 #include <sys/atomic.h>
82
83 static int kqueue_scan(file_t *, size_t, struct kevent *,
84 const struct timespec *, register_t *,
85 const struct kevent_ops *, struct kevent *,
86 size_t);
87 static int kqueue_ioctl(file_t *, u_long, void *);
88 static int kqueue_fcntl(file_t *, u_int, void *);
89 static int kqueue_poll(file_t *, int);
90 static int kqueue_kqfilter(file_t *, struct knote *);
91 static int kqueue_stat(file_t *, struct stat *);
92 static int kqueue_close(file_t *);
93 static void kqueue_restart(file_t *);
94 static int kqueue_register(struct kqueue *, struct kevent *);
95 static void kqueue_doclose(struct kqueue *, struct klist *, int);
96
97 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
98 static void knote_enqueue(struct knote *);
99 static void knote_activate(struct knote *);
100
101 static void filt_kqdetach(struct knote *);
102 static int filt_kqueue(struct knote *, long hint);
103 static int filt_procattach(struct knote *);
104 static void filt_procdetach(struct knote *);
105 static int filt_proc(struct knote *, long hint);
106 static int filt_fileattach(struct knote *);
107 static void filt_timerexpire(void *x);
108 static int filt_timerattach(struct knote *);
109 static void filt_timerdetach(struct knote *);
110 static int filt_timer(struct knote *, long hint);
111 static int filt_fsattach(struct knote *kn);
112 static void filt_fsdetach(struct knote *kn);
113 static int filt_fs(struct knote *kn, long hint);
114 static int filt_userattach(struct knote *);
115 static void filt_userdetach(struct knote *);
116 static int filt_user(struct knote *, long hint);
117 static void filt_usertouch(struct knote *, struct kevent *, long type);
118
119 static const struct fileops kqueueops = {
120 .fo_name = "kqueue",
121 .fo_read = (void *)enxio,
122 .fo_write = (void *)enxio,
123 .fo_ioctl = kqueue_ioctl,
124 .fo_fcntl = kqueue_fcntl,
125 .fo_poll = kqueue_poll,
126 .fo_stat = kqueue_stat,
127 .fo_close = kqueue_close,
128 .fo_kqfilter = kqueue_kqfilter,
129 .fo_restart = kqueue_restart,
130 };
131
132 static const struct filterops kqread_filtops = {
133 .f_isfd = 1,
134 .f_attach = NULL,
135 .f_detach = filt_kqdetach,
136 .f_event = filt_kqueue,
137 };
138
139 static const struct filterops proc_filtops = {
140 .f_isfd = 0,
141 .f_attach = filt_procattach,
142 .f_detach = filt_procdetach,
143 .f_event = filt_proc,
144 };
145
146 static const struct filterops file_filtops = {
147 .f_isfd = 1,
148 .f_attach = filt_fileattach,
149 .f_detach = NULL,
150 .f_event = NULL,
151 };
152
153 static const struct filterops timer_filtops = {
154 .f_isfd = 0,
155 .f_attach = filt_timerattach,
156 .f_detach = filt_timerdetach,
157 .f_event = filt_timer,
158 };
159
160 static const struct filterops fs_filtops = {
161 .f_isfd = 0,
162 .f_attach = filt_fsattach,
163 .f_detach = filt_fsdetach,
164 .f_event = filt_fs,
165 };
166
167 static const struct filterops user_filtops = {
168 .f_isfd = 0,
169 .f_attach = filt_userattach,
170 .f_detach = filt_userdetach,
171 .f_event = filt_user,
172 .f_touch = filt_usertouch,
173 };
174
175 static u_int kq_ncallouts = 0;
176 static int kq_calloutmax = (4 * 1024);
177
178 #define KN_HASHSIZE 64 /* XXX should be tunable */
179 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
180
181 extern const struct filterops sig_filtops;
182
183 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
184
185 /*
186 * Table for for all system-defined filters.
187 * These should be listed in the numeric order of the EVFILT_* defines.
188 * If filtops is NULL, the filter isn't implemented in NetBSD.
189 * End of list is when name is NULL.
190 *
191 * Note that 'refcnt' is meaningless for built-in filters.
192 */
193 struct kfilter {
194 const char *name; /* name of filter */
195 uint32_t filter; /* id of filter */
196 unsigned refcnt; /* reference count */
197 const struct filterops *filtops;/* operations for filter */
198 size_t namelen; /* length of name string */
199 };
200
201 /* System defined filters */
202 static struct kfilter sys_kfilters[] = {
203 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
204 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
205 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
206 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
207 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
208 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
209 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
210 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
211 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
212 { NULL, 0, 0, NULL, 0 },
213 };
214
215 /* User defined kfilters */
216 static struct kfilter *user_kfilters; /* array */
217 static int user_kfilterc; /* current offset */
218 static int user_kfiltermaxc; /* max size so far */
219 static size_t user_kfiltersz; /* size of allocated memory */
220
221 /*
222 * Global Locks.
223 *
224 * Lock order:
225 *
226 * kqueue_filter_lock
227 * -> kn_kq->kq_fdp->fd_lock
228 * -> object lock (e.g., device driver lock, kqueue_misc_lock, &c.)
229 * -> kn_kq->kq_lock
230 *
231 * Locking rules:
232 *
233 * f_attach: fdp->fd_lock, KERNEL_LOCK
234 * f_detach: fdp->fd_lock, KERNEL_LOCK
235 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
236 * f_event via knote: whatever caller guarantees
237 * Typically, f_event(NOTE_SUBMIT) via knote: object lock
238 * f_event(!NOTE_SUBMIT) via knote: nothing,
239 * acquires/releases object lock inside.
240 */
241 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
242 static kmutex_t kqueue_misc_lock; /* miscellaneous */
243
244 static kauth_listener_t kqueue_listener;
245
246 static int
247 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
248 void *arg0, void *arg1, void *arg2, void *arg3)
249 {
250 struct proc *p;
251 int result;
252
253 result = KAUTH_RESULT_DEFER;
254 p = arg0;
255
256 if (action != KAUTH_PROCESS_KEVENT_FILTER)
257 return result;
258
259 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
260 ISSET(p->p_flag, PK_SUGID)))
261 return result;
262
263 result = KAUTH_RESULT_ALLOW;
264
265 return result;
266 }
267
268 /*
269 * Initialize the kqueue subsystem.
270 */
271 void
272 kqueue_init(void)
273 {
274
275 rw_init(&kqueue_filter_lock);
276 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
277
278 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
279 kqueue_listener_cb, NULL);
280 }
281
282 /*
283 * Find kfilter entry by name, or NULL if not found.
284 */
285 static struct kfilter *
286 kfilter_byname_sys(const char *name)
287 {
288 int i;
289
290 KASSERT(rw_lock_held(&kqueue_filter_lock));
291
292 for (i = 0; sys_kfilters[i].name != NULL; i++) {
293 if (strcmp(name, sys_kfilters[i].name) == 0)
294 return &sys_kfilters[i];
295 }
296 return NULL;
297 }
298
299 static struct kfilter *
300 kfilter_byname_user(const char *name)
301 {
302 int i;
303
304 KASSERT(rw_lock_held(&kqueue_filter_lock));
305
306 /* user filter slots have a NULL name if previously deregistered */
307 for (i = 0; i < user_kfilterc ; i++) {
308 if (user_kfilters[i].name != NULL &&
309 strcmp(name, user_kfilters[i].name) == 0)
310 return &user_kfilters[i];
311 }
312 return NULL;
313 }
314
315 static struct kfilter *
316 kfilter_byname(const char *name)
317 {
318 struct kfilter *kfilter;
319
320 KASSERT(rw_lock_held(&kqueue_filter_lock));
321
322 if ((kfilter = kfilter_byname_sys(name)) != NULL)
323 return kfilter;
324
325 return kfilter_byname_user(name);
326 }
327
328 /*
329 * Find kfilter entry by filter id, or NULL if not found.
330 * Assumes entries are indexed in filter id order, for speed.
331 */
332 static struct kfilter *
333 kfilter_byfilter(uint32_t filter)
334 {
335 struct kfilter *kfilter;
336
337 KASSERT(rw_lock_held(&kqueue_filter_lock));
338
339 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
340 kfilter = &sys_kfilters[filter];
341 else if (user_kfilters != NULL &&
342 filter < EVFILT_SYSCOUNT + user_kfilterc)
343 /* it's a user filter */
344 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
345 else
346 return (NULL); /* out of range */
347 KASSERT(kfilter->filter == filter); /* sanity check! */
348 return (kfilter);
349 }
350
351 /*
352 * Register a new kfilter. Stores the entry in user_kfilters.
353 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
354 * If retfilter != NULL, the new filterid is returned in it.
355 */
356 int
357 kfilter_register(const char *name, const struct filterops *filtops,
358 int *retfilter)
359 {
360 struct kfilter *kfilter;
361 size_t len;
362 int i;
363
364 if (name == NULL || name[0] == '\0' || filtops == NULL)
365 return (EINVAL); /* invalid args */
366
367 rw_enter(&kqueue_filter_lock, RW_WRITER);
368 if (kfilter_byname(name) != NULL) {
369 rw_exit(&kqueue_filter_lock);
370 return (EEXIST); /* already exists */
371 }
372 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
373 rw_exit(&kqueue_filter_lock);
374 return (EINVAL); /* too many */
375 }
376
377 for (i = 0; i < user_kfilterc; i++) {
378 kfilter = &user_kfilters[i];
379 if (kfilter->name == NULL) {
380 /* Previously deregistered slot. Reuse. */
381 goto reuse;
382 }
383 }
384
385 /* check if need to grow user_kfilters */
386 if (user_kfilterc + 1 > user_kfiltermaxc) {
387 /* Grow in KFILTER_EXTENT chunks. */
388 user_kfiltermaxc += KFILTER_EXTENT;
389 len = user_kfiltermaxc * sizeof(*kfilter);
390 kfilter = kmem_alloc(len, KM_SLEEP);
391 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
392 if (user_kfilters != NULL) {
393 memcpy(kfilter, user_kfilters, user_kfiltersz);
394 kmem_free(user_kfilters, user_kfiltersz);
395 }
396 user_kfiltersz = len;
397 user_kfilters = kfilter;
398 }
399 /* Adding new slot */
400 kfilter = &user_kfilters[user_kfilterc++];
401 reuse:
402 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
403
404 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
405
406 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
407 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
408
409 if (retfilter != NULL)
410 *retfilter = kfilter->filter;
411 rw_exit(&kqueue_filter_lock);
412
413 return (0);
414 }
415
416 /*
417 * Unregister a kfilter previously registered with kfilter_register.
418 * This retains the filter id, but clears the name and frees filtops (filter
419 * operations), so that the number isn't reused during a boot.
420 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
421 */
422 int
423 kfilter_unregister(const char *name)
424 {
425 struct kfilter *kfilter;
426
427 if (name == NULL || name[0] == '\0')
428 return (EINVAL); /* invalid name */
429
430 rw_enter(&kqueue_filter_lock, RW_WRITER);
431 if (kfilter_byname_sys(name) != NULL) {
432 rw_exit(&kqueue_filter_lock);
433 return (EINVAL); /* can't detach system filters */
434 }
435
436 kfilter = kfilter_byname_user(name);
437 if (kfilter == NULL) {
438 rw_exit(&kqueue_filter_lock);
439 return (ENOENT);
440 }
441 if (kfilter->refcnt != 0) {
442 rw_exit(&kqueue_filter_lock);
443 return (EBUSY);
444 }
445
446 /* Cast away const (but we know it's safe. */
447 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
448 kfilter->name = NULL; /* mark as `not implemented' */
449
450 if (kfilter->filtops != NULL) {
451 /* Cast away const (but we know it's safe. */
452 kmem_free(__UNCONST(kfilter->filtops),
453 sizeof(*kfilter->filtops));
454 kfilter->filtops = NULL; /* mark as `not implemented' */
455 }
456 rw_exit(&kqueue_filter_lock);
457
458 return (0);
459 }
460
461
462 /*
463 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
464 * descriptors. Calls fileops kqfilter method for given file descriptor.
465 */
466 static int
467 filt_fileattach(struct knote *kn)
468 {
469 file_t *fp;
470
471 fp = kn->kn_obj;
472
473 return (*fp->f_ops->fo_kqfilter)(fp, kn);
474 }
475
476 /*
477 * Filter detach method for EVFILT_READ on kqueue descriptor.
478 */
479 static void
480 filt_kqdetach(struct knote *kn)
481 {
482 struct kqueue *kq;
483
484 kq = ((file_t *)kn->kn_obj)->f_kqueue;
485
486 mutex_spin_enter(&kq->kq_lock);
487 selremove_knote(&kq->kq_sel, kn);
488 mutex_spin_exit(&kq->kq_lock);
489 }
490
491 /*
492 * Filter event method for EVFILT_READ on kqueue descriptor.
493 */
494 /*ARGSUSED*/
495 static int
496 filt_kqueue(struct knote *kn, long hint)
497 {
498 struct kqueue *kq;
499 int rv;
500
501 kq = ((file_t *)kn->kn_obj)->f_kqueue;
502
503 if (hint != NOTE_SUBMIT)
504 mutex_spin_enter(&kq->kq_lock);
505 kn->kn_data = KQ_COUNT(kq);
506 rv = (kn->kn_data > 0);
507 if (hint != NOTE_SUBMIT)
508 mutex_spin_exit(&kq->kq_lock);
509
510 return rv;
511 }
512
513 /*
514 * Filter attach method for EVFILT_PROC.
515 */
516 static int
517 filt_procattach(struct knote *kn)
518 {
519 struct proc *p;
520 struct lwp *curl;
521
522 curl = curlwp;
523
524 mutex_enter(&proc_lock);
525 if (kn->kn_flags & EV_FLAG1) {
526 /*
527 * NOTE_TRACK attaches to the child process too early
528 * for proc_find, so do a raw look up and check the state
529 * explicitly.
530 */
531 p = proc_find_raw(kn->kn_id);
532 if (p != NULL && p->p_stat != SIDL)
533 p = NULL;
534 } else {
535 p = proc_find(kn->kn_id);
536 }
537
538 if (p == NULL) {
539 mutex_exit(&proc_lock);
540 return ESRCH;
541 }
542
543 /*
544 * Fail if it's not owned by you, or the last exec gave us
545 * setuid/setgid privs (unless you're root).
546 */
547 mutex_enter(p->p_lock);
548 mutex_exit(&proc_lock);
549 if (kauth_authorize_process(curl->l_cred,
550 KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
551 mutex_exit(p->p_lock);
552 return EACCES;
553 }
554
555 kn->kn_obj = p;
556 kn->kn_flags |= EV_CLEAR; /* automatically set */
557
558 /*
559 * internal flag indicating registration done by kernel
560 */
561 if (kn->kn_flags & EV_FLAG1) {
562 kn->kn_data = kn->kn_sdata; /* ppid */
563 kn->kn_fflags = NOTE_CHILD;
564 kn->kn_flags &= ~EV_FLAG1;
565 }
566 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
567 mutex_exit(p->p_lock);
568
569 return 0;
570 }
571
572 /*
573 * Filter detach method for EVFILT_PROC.
574 *
575 * The knote may be attached to a different process, which may exit,
576 * leaving nothing for the knote to be attached to. So when the process
577 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
578 * it will be deleted when read out. However, as part of the knote deletion,
579 * this routine is called, so a check is needed to avoid actually performing
580 * a detach, because the original process might not exist any more.
581 */
582 static void
583 filt_procdetach(struct knote *kn)
584 {
585 struct proc *p;
586
587 if (kn->kn_status & KN_DETACHED)
588 return;
589
590 p = kn->kn_obj;
591
592 mutex_enter(p->p_lock);
593 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
594 mutex_exit(p->p_lock);
595 }
596
597 /*
598 * Filter event method for EVFILT_PROC.
599 */
600 static int
601 filt_proc(struct knote *kn, long hint)
602 {
603 u_int event, fflag;
604 struct kevent kev;
605 struct kqueue *kq;
606 int error;
607
608 event = (u_int)hint & NOTE_PCTRLMASK;
609 kq = kn->kn_kq;
610 fflag = 0;
611
612 /* If the user is interested in this event, record it. */
613 if (kn->kn_sfflags & event)
614 fflag |= event;
615
616 if (event == NOTE_EXIT) {
617 struct proc *p = kn->kn_obj;
618
619 if (p != NULL)
620 kn->kn_data = P_WAITSTATUS(p);
621 /*
622 * Process is gone, so flag the event as finished.
623 *
624 * Detach the knote from watched process and mark
625 * it as such. We can't leave this to kqueue_scan(),
626 * since the process might not exist by then. And we
627 * have to do this now, since psignal KNOTE() is called
628 * also for zombies and we might end up reading freed
629 * memory if the kevent would already be picked up
630 * and knote g/c'ed.
631 */
632 filt_procdetach(kn);
633
634 mutex_spin_enter(&kq->kq_lock);
635 kn->kn_status |= KN_DETACHED;
636 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
637 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
638 kn->kn_fflags |= fflag;
639 mutex_spin_exit(&kq->kq_lock);
640
641 return 1;
642 }
643
644 mutex_spin_enter(&kq->kq_lock);
645 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
646 /*
647 * Process forked, and user wants to track the new process,
648 * so attach a new knote to it, and immediately report an
649 * event with the parent's pid. Register knote with new
650 * process.
651 */
652 memset(&kev, 0, sizeof(kev));
653 kev.ident = hint & NOTE_PDATAMASK; /* pid */
654 kev.filter = kn->kn_filter;
655 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
656 kev.fflags = kn->kn_sfflags;
657 kev.data = kn->kn_id; /* parent */
658 kev.udata = kn->kn_kevent.udata; /* preserve udata */
659 mutex_spin_exit(&kq->kq_lock);
660 error = kqueue_register(kq, &kev);
661 mutex_spin_enter(&kq->kq_lock);
662 if (error != 0)
663 kn->kn_fflags |= NOTE_TRACKERR;
664 }
665 kn->kn_fflags |= fflag;
666 fflag = kn->kn_fflags;
667 mutex_spin_exit(&kq->kq_lock);
668
669 return fflag != 0;
670 }
671
672 static void
673 filt_timerexpire(void *knx)
674 {
675 struct knote *kn = knx;
676 int tticks;
677
678 mutex_enter(&kqueue_misc_lock);
679 kn->kn_data++;
680 knote_activate(kn);
681 if ((kn->kn_flags & EV_ONESHOT) == 0) {
682 tticks = mstohz(kn->kn_sdata);
683 if (tticks <= 0)
684 tticks = 1;
685 callout_schedule((callout_t *)kn->kn_hook, tticks);
686 }
687 mutex_exit(&kqueue_misc_lock);
688 }
689
690 /*
691 * data contains amount of time to sleep, in milliseconds
692 */
693 static int
694 filt_timerattach(struct knote *kn)
695 {
696 callout_t *calloutp;
697 struct kqueue *kq;
698 int tticks;
699
700 tticks = mstohz(kn->kn_sdata);
701
702 /* if the supplied value is under our resolution, use 1 tick */
703 if (tticks == 0) {
704 if (kn->kn_sdata == 0)
705 return EINVAL;
706 tticks = 1;
707 }
708
709 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
710 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
711 atomic_dec_uint(&kq_ncallouts);
712 return ENOMEM;
713 }
714 callout_init(calloutp, CALLOUT_MPSAFE);
715
716 kq = kn->kn_kq;
717 mutex_spin_enter(&kq->kq_lock);
718 kn->kn_flags |= EV_CLEAR; /* automatically set */
719 kn->kn_hook = calloutp;
720 mutex_spin_exit(&kq->kq_lock);
721
722 callout_reset(calloutp, tticks, filt_timerexpire, kn);
723
724 return (0);
725 }
726
727 static void
728 filt_timerdetach(struct knote *kn)
729 {
730 callout_t *calloutp;
731 struct kqueue *kq = kn->kn_kq;
732
733 mutex_spin_enter(&kq->kq_lock);
734 /* prevent rescheduling when we expire */
735 kn->kn_flags |= EV_ONESHOT;
736 mutex_spin_exit(&kq->kq_lock);
737
738 calloutp = (callout_t *)kn->kn_hook;
739 callout_halt(calloutp, NULL);
740 callout_destroy(calloutp);
741 kmem_free(calloutp, sizeof(*calloutp));
742 atomic_dec_uint(&kq_ncallouts);
743 }
744
745 static int
746 filt_timer(struct knote *kn, long hint)
747 {
748 int rv;
749
750 mutex_enter(&kqueue_misc_lock);
751 rv = (kn->kn_data != 0);
752 mutex_exit(&kqueue_misc_lock);
753
754 return rv;
755 }
756
757 /*
758 * Filter event method for EVFILT_FS.
759 */
760 struct klist fs_klist = SLIST_HEAD_INITIALIZER(&fs_klist);
761
762 static int
763 filt_fsattach(struct knote *kn)
764 {
765
766 mutex_enter(&kqueue_misc_lock);
767 kn->kn_flags |= EV_CLEAR;
768 SLIST_INSERT_HEAD(&fs_klist, kn, kn_selnext);
769 mutex_exit(&kqueue_misc_lock);
770
771 return 0;
772 }
773
774 static void
775 filt_fsdetach(struct knote *kn)
776 {
777
778 mutex_enter(&kqueue_misc_lock);
779 SLIST_REMOVE(&fs_klist, kn, knote, kn_selnext);
780 mutex_exit(&kqueue_misc_lock);
781 }
782
783 static int
784 filt_fs(struct knote *kn, long hint)
785 {
786 int rv;
787
788 mutex_enter(&kqueue_misc_lock);
789 kn->kn_fflags |= hint;
790 rv = (kn->kn_fflags != 0);
791 mutex_exit(&kqueue_misc_lock);
792
793 return rv;
794 }
795
796 static int
797 filt_userattach(struct knote *kn)
798 {
799 struct kqueue *kq = kn->kn_kq;
800
801 /*
802 * EVFILT_USER knotes are not attached to anything in the kernel.
803 */
804 mutex_spin_enter(&kq->kq_lock);
805 kn->kn_hook = NULL;
806 if (kn->kn_fflags & NOTE_TRIGGER)
807 kn->kn_hookid = 1;
808 else
809 kn->kn_hookid = 0;
810 mutex_spin_exit(&kq->kq_lock);
811 return (0);
812 }
813
814 static void
815 filt_userdetach(struct knote *kn)
816 {
817
818 /*
819 * EVFILT_USER knotes are not attached to anything in the kernel.
820 */
821 }
822
823 static int
824 filt_user(struct knote *kn, long hint)
825 {
826 struct kqueue *kq = kn->kn_kq;
827 int hookid;
828
829 mutex_spin_enter(&kq->kq_lock);
830 hookid = kn->kn_hookid;
831 mutex_spin_exit(&kq->kq_lock);
832
833 return hookid;
834 }
835
836 static void
837 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
838 {
839 int ffctrl;
840
841 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
842
843 switch (type) {
844 case EVENT_REGISTER:
845 if (kev->fflags & NOTE_TRIGGER)
846 kn->kn_hookid = 1;
847
848 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
849 kev->fflags &= NOTE_FFLAGSMASK;
850 switch (ffctrl) {
851 case NOTE_FFNOP:
852 break;
853
854 case NOTE_FFAND:
855 kn->kn_sfflags &= kev->fflags;
856 break;
857
858 case NOTE_FFOR:
859 kn->kn_sfflags |= kev->fflags;
860 break;
861
862 case NOTE_FFCOPY:
863 kn->kn_sfflags = kev->fflags;
864 break;
865
866 default:
867 /* XXX Return error? */
868 break;
869 }
870 kn->kn_sdata = kev->data;
871 if (kev->flags & EV_CLEAR) {
872 kn->kn_hookid = 0;
873 kn->kn_data = 0;
874 kn->kn_fflags = 0;
875 }
876 break;
877
878 case EVENT_PROCESS:
879 *kev = kn->kn_kevent;
880 kev->fflags = kn->kn_sfflags;
881 kev->data = kn->kn_sdata;
882 if (kn->kn_flags & EV_CLEAR) {
883 kn->kn_hookid = 0;
884 kn->kn_data = 0;
885 kn->kn_fflags = 0;
886 }
887 break;
888
889 default:
890 panic("filt_usertouch() - invalid type (%ld)", type);
891 break;
892 }
893 }
894
895 /*
896 * filt_seltrue:
897 *
898 * This filter "event" routine simulates seltrue().
899 */
900 int
901 filt_seltrue(struct knote *kn, long hint)
902 {
903
904 /*
905 * We don't know how much data can be read/written,
906 * but we know that it *can* be. This is about as
907 * good as select/poll does as well.
908 */
909 kn->kn_data = 0;
910 return (1);
911 }
912
913 /*
914 * This provides full kqfilter entry for device switch tables, which
915 * has same effect as filter using filt_seltrue() as filter method.
916 */
917 static void
918 filt_seltruedetach(struct knote *kn)
919 {
920 /* Nothing to do */
921 }
922
923 const struct filterops seltrue_filtops = {
924 .f_isfd = 1,
925 .f_attach = NULL,
926 .f_detach = filt_seltruedetach,
927 .f_event = filt_seltrue,
928 };
929
930 int
931 seltrue_kqfilter(dev_t dev, struct knote *kn)
932 {
933 switch (kn->kn_filter) {
934 case EVFILT_READ:
935 case EVFILT_WRITE:
936 kn->kn_fop = &seltrue_filtops;
937 break;
938 default:
939 return (EINVAL);
940 }
941
942 /* Nothing more to do */
943 return (0);
944 }
945
946 /*
947 * kqueue(2) system call.
948 */
949 static int
950 kqueue1(struct lwp *l, int flags, register_t *retval)
951 {
952 struct kqueue *kq;
953 file_t *fp;
954 int fd, error;
955
956 if ((error = fd_allocfile(&fp, &fd)) != 0)
957 return error;
958 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
959 fp->f_type = DTYPE_KQUEUE;
960 fp->f_ops = &kqueueops;
961 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
962 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
963 cv_init(&kq->kq_cv, "kqueue");
964 selinit(&kq->kq_sel);
965 TAILQ_INIT(&kq->kq_head);
966 fp->f_kqueue = kq;
967 *retval = fd;
968 kq->kq_fdp = curlwp->l_fd;
969 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
970 fd_affix(curproc, fp, fd);
971 return error;
972 }
973
974 /*
975 * kqueue(2) system call.
976 */
977 int
978 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
979 {
980 return kqueue1(l, 0, retval);
981 }
982
983 int
984 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
985 register_t *retval)
986 {
987 /* {
988 syscallarg(int) flags;
989 } */
990 return kqueue1(l, SCARG(uap, flags), retval);
991 }
992
993 /*
994 * kevent(2) system call.
995 */
996 int
997 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
998 struct kevent *changes, size_t index, int n)
999 {
1000
1001 return copyin(changelist + index, changes, n * sizeof(*changes));
1002 }
1003
1004 int
1005 kevent_put_events(void *ctx, struct kevent *events,
1006 struct kevent *eventlist, size_t index, int n)
1007 {
1008
1009 return copyout(events, eventlist + index, n * sizeof(*events));
1010 }
1011
1012 static const struct kevent_ops kevent_native_ops = {
1013 .keo_private = NULL,
1014 .keo_fetch_timeout = copyin,
1015 .keo_fetch_changes = kevent_fetch_changes,
1016 .keo_put_events = kevent_put_events,
1017 };
1018
1019 int
1020 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1021 register_t *retval)
1022 {
1023 /* {
1024 syscallarg(int) fd;
1025 syscallarg(const struct kevent *) changelist;
1026 syscallarg(size_t) nchanges;
1027 syscallarg(struct kevent *) eventlist;
1028 syscallarg(size_t) nevents;
1029 syscallarg(const struct timespec *) timeout;
1030 } */
1031
1032 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1033 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1034 SCARG(uap, timeout), &kevent_native_ops);
1035 }
1036
1037 int
1038 kevent1(register_t *retval, int fd,
1039 const struct kevent *changelist, size_t nchanges,
1040 struct kevent *eventlist, size_t nevents,
1041 const struct timespec *timeout,
1042 const struct kevent_ops *keops)
1043 {
1044 struct kevent *kevp;
1045 struct kqueue *kq;
1046 struct timespec ts;
1047 size_t i, n, ichange;
1048 int nerrors, error;
1049 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
1050 file_t *fp;
1051
1052 /* check that we're dealing with a kq */
1053 fp = fd_getfile(fd);
1054 if (fp == NULL)
1055 return (EBADF);
1056
1057 if (fp->f_type != DTYPE_KQUEUE) {
1058 fd_putfile(fd);
1059 return (EBADF);
1060 }
1061
1062 if (timeout != NULL) {
1063 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1064 if (error)
1065 goto done;
1066 timeout = &ts;
1067 }
1068
1069 kq = fp->f_kqueue;
1070 nerrors = 0;
1071 ichange = 0;
1072
1073 /* traverse list of events to register */
1074 while (nchanges > 0) {
1075 n = MIN(nchanges, __arraycount(kevbuf));
1076 error = (*keops->keo_fetch_changes)(keops->keo_private,
1077 changelist, kevbuf, ichange, n);
1078 if (error)
1079 goto done;
1080 for (i = 0; i < n; i++) {
1081 kevp = &kevbuf[i];
1082 kevp->flags &= ~EV_SYSFLAGS;
1083 /* register each knote */
1084 error = kqueue_register(kq, kevp);
1085 if (!error && !(kevp->flags & EV_RECEIPT))
1086 continue;
1087 if (nevents == 0)
1088 goto done;
1089 kevp->flags = EV_ERROR;
1090 kevp->data = error;
1091 error = (*keops->keo_put_events)
1092 (keops->keo_private, kevp,
1093 eventlist, nerrors, 1);
1094 if (error)
1095 goto done;
1096 nevents--;
1097 nerrors++;
1098 }
1099 nchanges -= n; /* update the results */
1100 ichange += n;
1101 }
1102 if (nerrors) {
1103 *retval = nerrors;
1104 error = 0;
1105 goto done;
1106 }
1107
1108 /* actually scan through the events */
1109 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1110 kevbuf, __arraycount(kevbuf));
1111 done:
1112 fd_putfile(fd);
1113 return (error);
1114 }
1115
1116 /*
1117 * Register a given kevent kev onto the kqueue
1118 */
1119 static int
1120 kqueue_register(struct kqueue *kq, struct kevent *kev)
1121 {
1122 struct kfilter *kfilter;
1123 filedesc_t *fdp;
1124 file_t *fp;
1125 fdfile_t *ff;
1126 struct knote *kn, *newkn;
1127 struct klist *list;
1128 int error, fd, rv;
1129
1130 fdp = kq->kq_fdp;
1131 fp = NULL;
1132 kn = NULL;
1133 error = 0;
1134 fd = 0;
1135
1136 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1137
1138 rw_enter(&kqueue_filter_lock, RW_READER);
1139 kfilter = kfilter_byfilter(kev->filter);
1140 if (kfilter == NULL || kfilter->filtops == NULL) {
1141 /* filter not found nor implemented */
1142 rw_exit(&kqueue_filter_lock);
1143 kmem_free(newkn, sizeof(*newkn));
1144 return (EINVAL);
1145 }
1146
1147 /* search if knote already exists */
1148 if (kfilter->filtops->f_isfd) {
1149 /* monitoring a file descriptor */
1150 /* validate descriptor */
1151 if (kev->ident > INT_MAX
1152 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1153 rw_exit(&kqueue_filter_lock);
1154 kmem_free(newkn, sizeof(*newkn));
1155 return EBADF;
1156 }
1157 mutex_enter(&fdp->fd_lock);
1158 ff = fdp->fd_dt->dt_ff[fd];
1159 if (ff->ff_refcnt & FR_CLOSING) {
1160 error = EBADF;
1161 goto doneunlock;
1162 }
1163 if (fd <= fdp->fd_lastkqfile) {
1164 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1165 if (kq == kn->kn_kq &&
1166 kev->filter == kn->kn_filter)
1167 break;
1168 }
1169 }
1170 } else {
1171 /*
1172 * not monitoring a file descriptor, so
1173 * lookup knotes in internal hash table
1174 */
1175 mutex_enter(&fdp->fd_lock);
1176 if (fdp->fd_knhashmask != 0) {
1177 list = &fdp->fd_knhash[
1178 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1179 SLIST_FOREACH(kn, list, kn_link) {
1180 if (kev->ident == kn->kn_id &&
1181 kq == kn->kn_kq &&
1182 kev->filter == kn->kn_filter)
1183 break;
1184 }
1185 }
1186 }
1187
1188 /*
1189 * kn now contains the matching knote, or NULL if no match
1190 */
1191 if (kn == NULL) {
1192 if (kev->flags & EV_ADD) {
1193 /* create new knote */
1194 kn = newkn;
1195 newkn = NULL;
1196 kn->kn_obj = fp;
1197 kn->kn_id = kev->ident;
1198 kn->kn_kq = kq;
1199 kn->kn_fop = kfilter->filtops;
1200 kn->kn_kfilter = kfilter;
1201 kn->kn_sfflags = kev->fflags;
1202 kn->kn_sdata = kev->data;
1203 kev->fflags = 0;
1204 kev->data = 0;
1205 kn->kn_kevent = *kev;
1206
1207 KASSERT(kn->kn_fop != NULL);
1208 /*
1209 * apply reference count to knote structure, and
1210 * do not release it at the end of this routine.
1211 */
1212 fp = NULL;
1213
1214 if (!kn->kn_fop->f_isfd) {
1215 /*
1216 * If knote is not on an fd, store on
1217 * internal hash table.
1218 */
1219 if (fdp->fd_knhashmask == 0) {
1220 /* XXXAD can block with fd_lock held */
1221 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1222 HASH_LIST, true,
1223 &fdp->fd_knhashmask);
1224 }
1225 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1226 fdp->fd_knhashmask)];
1227 } else {
1228 /* Otherwise, knote is on an fd. */
1229 list = (struct klist *)
1230 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1231 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1232 fdp->fd_lastkqfile = kn->kn_id;
1233 }
1234 SLIST_INSERT_HEAD(list, kn, kn_link);
1235
1236 KERNEL_LOCK(1, NULL); /* XXXSMP */
1237 error = (*kfilter->filtops->f_attach)(kn);
1238 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1239 if (error != 0) {
1240 #ifdef DEBUG
1241 struct proc *p = curlwp->l_proc;
1242 const file_t *ft = kn->kn_obj;
1243 printf("%s: %s[%d]: event type %d not "
1244 "supported for file type %d/%s "
1245 "(error %d)\n", __func__,
1246 p->p_comm, p->p_pid,
1247 kn->kn_filter, ft ? ft->f_type : -1,
1248 ft ? ft->f_ops->fo_name : "?", error);
1249 #endif
1250
1251 /* knote_detach() drops fdp->fd_lock */
1252 knote_detach(kn, fdp, false);
1253 goto done;
1254 }
1255 atomic_inc_uint(&kfilter->refcnt);
1256 goto done_ev_add;
1257 } else {
1258 /* No matching knote and the EV_ADD flag is not set. */
1259 error = ENOENT;
1260 goto doneunlock;
1261 }
1262 }
1263
1264 if (kev->flags & EV_DELETE) {
1265 /* knote_detach() drops fdp->fd_lock */
1266 knote_detach(kn, fdp, true);
1267 goto done;
1268 }
1269
1270 /*
1271 * The user may change some filter values after the
1272 * initial EV_ADD, but doing so will not reset any
1273 * filter which have already been triggered.
1274 */
1275 kn->kn_kevent.udata = kev->udata;
1276 KASSERT(kn->kn_fop != NULL);
1277 if (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL) {
1278 mutex_spin_enter(&kq->kq_lock);
1279 (*kn->kn_fop->f_touch)(kn, kev, EVENT_REGISTER);
1280 mutex_spin_exit(&kq->kq_lock);
1281 } else {
1282 kn->kn_sfflags = kev->fflags;
1283 kn->kn_sdata = kev->data;
1284 }
1285
1286 /*
1287 * We can get here if we are trying to attach
1288 * an event to a file descriptor that does not
1289 * support events, and the attach routine is
1290 * broken and does not return an error.
1291 */
1292 done_ev_add:
1293 KASSERT(kn->kn_fop != NULL);
1294 KASSERT(kn->kn_fop->f_event != NULL);
1295 KERNEL_LOCK(1, NULL); /* XXXSMP */
1296 rv = (*kn->kn_fop->f_event)(kn, 0);
1297 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1298 if (rv)
1299 knote_activate(kn);
1300
1301 /* disable knote */
1302 if ((kev->flags & EV_DISABLE)) {
1303 mutex_spin_enter(&kq->kq_lock);
1304 if ((kn->kn_status & KN_DISABLED) == 0)
1305 kn->kn_status |= KN_DISABLED;
1306 mutex_spin_exit(&kq->kq_lock);
1307 }
1308
1309 /* enable knote */
1310 if ((kev->flags & EV_ENABLE)) {
1311 knote_enqueue(kn);
1312 }
1313 doneunlock:
1314 mutex_exit(&fdp->fd_lock);
1315 done:
1316 rw_exit(&kqueue_filter_lock);
1317 if (newkn != NULL)
1318 kmem_free(newkn, sizeof(*newkn));
1319 if (fp != NULL)
1320 fd_putfile(fd);
1321 return (error);
1322 }
1323
1324 #if defined(DEBUG)
1325 #define KN_FMT(buf, kn) \
1326 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1327
1328 static void
1329 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1330 {
1331 const struct knote *kn;
1332 u_int count;
1333 int nmarker;
1334 char buf[128];
1335
1336 KASSERT(mutex_owned(&kq->kq_lock));
1337 KASSERT(KQ_COUNT(kq) < UINT_MAX / 2);
1338
1339 count = 0;
1340 nmarker = 0;
1341 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1342 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1343 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1344 func, line, kq, kn, KN_FMT(buf, kn));
1345 }
1346 if ((kn->kn_status & KN_MARKER) == 0) {
1347 if (kn->kn_kq != kq) {
1348 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1349 func, line, kq, kn, kn->kn_kq,
1350 KN_FMT(buf, kn));
1351 }
1352 if ((kn->kn_status & KN_ACTIVE) == 0) {
1353 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1354 func, line, kq, kn, KN_FMT(buf, kn));
1355 }
1356 count++;
1357 if (count > KQ_COUNT(kq)) {
1358 panic("%s,%zu: kq=%p kq->kq_count(%d) != "
1359 "count(%d), nmarker=%d",
1360 func, line, kq, KQ_COUNT(kq), count,
1361 nmarker);
1362 }
1363 } else {
1364 nmarker++;
1365 }
1366 }
1367 }
1368 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1369 #else /* defined(DEBUG) */
1370 #define kq_check(a) /* nothing */
1371 #endif /* defined(DEBUG) */
1372
1373 static void
1374 kqueue_restart(file_t *fp)
1375 {
1376 struct kqueue *kq = fp->f_kqueue;
1377 KASSERT(kq != NULL);
1378
1379 mutex_spin_enter(&kq->kq_lock);
1380 kq->kq_count |= KQ_RESTART;
1381 cv_broadcast(&kq->kq_cv);
1382 mutex_spin_exit(&kq->kq_lock);
1383 }
1384
1385 /*
1386 * Scan through the list of events on fp (for a maximum of maxevents),
1387 * returning the results in to ulistp. Timeout is determined by tsp; if
1388 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1389 * as appropriate.
1390 */
1391 static int
1392 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1393 const struct timespec *tsp, register_t *retval,
1394 const struct kevent_ops *keops, struct kevent *kevbuf,
1395 size_t kevcnt)
1396 {
1397 struct kqueue *kq;
1398 struct kevent *kevp;
1399 struct timespec ats, sleepts;
1400 struct knote *kn, *marker, morker;
1401 size_t count, nkev, nevents;
1402 int timeout, error, touch, rv, influx;
1403 filedesc_t *fdp;
1404
1405 fdp = curlwp->l_fd;
1406 kq = fp->f_kqueue;
1407 count = maxevents;
1408 nkev = nevents = error = 0;
1409 if (count == 0) {
1410 *retval = 0;
1411 return 0;
1412 }
1413
1414 if (tsp) { /* timeout supplied */
1415 ats = *tsp;
1416 if (inittimeleft(&ats, &sleepts) == -1) {
1417 *retval = maxevents;
1418 return EINVAL;
1419 }
1420 timeout = tstohz(&ats);
1421 if (timeout <= 0)
1422 timeout = -1; /* do poll */
1423 } else {
1424 /* no timeout, wait forever */
1425 timeout = 0;
1426 }
1427
1428 memset(&morker, 0, sizeof(morker));
1429 marker = &morker;
1430 marker->kn_status = KN_MARKER;
1431 mutex_spin_enter(&kq->kq_lock);
1432 retry:
1433 kevp = kevbuf;
1434 if (KQ_COUNT(kq) == 0) {
1435 if (timeout >= 0) {
1436 error = cv_timedwait_sig(&kq->kq_cv,
1437 &kq->kq_lock, timeout);
1438 if (error == 0) {
1439 if (KQ_COUNT(kq) == 0 &&
1440 (kq->kq_count & KQ_RESTART)) {
1441 /* return to clear file reference */
1442 error = ERESTART;
1443 } else if (tsp == NULL || (timeout =
1444 gettimeleft(&ats, &sleepts)) > 0) {
1445 goto retry;
1446 }
1447 } else {
1448 /* don't restart after signals... */
1449 if (error == ERESTART)
1450 error = EINTR;
1451 if (error == EWOULDBLOCK)
1452 error = 0;
1453 }
1454 }
1455 mutex_spin_exit(&kq->kq_lock);
1456 goto done;
1457 }
1458
1459 /* mark end of knote list */
1460 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1461 influx = 0;
1462
1463 /*
1464 * Acquire the fdp->fd_lock interlock to avoid races with
1465 * file creation/destruction from other threads.
1466 */
1467 relock:
1468 mutex_spin_exit(&kq->kq_lock);
1469 mutex_enter(&fdp->fd_lock);
1470 mutex_spin_enter(&kq->kq_lock);
1471
1472 while (count != 0) {
1473 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1474
1475 if ((kn->kn_status & KN_MARKER) != 0 && kn != marker) {
1476 if (influx) {
1477 influx = 0;
1478 KQ_FLUX_WAKEUP(kq);
1479 }
1480 mutex_exit(&fdp->fd_lock);
1481 (void)cv_wait(&kq->kq_cv, &kq->kq_lock);
1482 goto relock;
1483 }
1484
1485 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1486 if (kn == marker) {
1487 /* it's our marker, stop */
1488 KQ_FLUX_WAKEUP(kq);
1489 if (count == maxevents) {
1490 mutex_exit(&fdp->fd_lock);
1491 goto retry;
1492 }
1493 break;
1494 }
1495 KASSERT((kn->kn_status & KN_BUSY) == 0);
1496
1497 kq_check(kq);
1498 kn->kn_status &= ~KN_QUEUED;
1499 kn->kn_status |= KN_BUSY;
1500 kq_check(kq);
1501 if (kn->kn_status & KN_DISABLED) {
1502 kn->kn_status &= ~KN_BUSY;
1503 kq->kq_count--;
1504 /* don't want disabled events */
1505 continue;
1506 }
1507 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1508 mutex_spin_exit(&kq->kq_lock);
1509 KASSERT(kn->kn_fop != NULL);
1510 KASSERT(kn->kn_fop->f_event != NULL);
1511 KERNEL_LOCK(1, NULL); /* XXXSMP */
1512 KASSERT(mutex_owned(&fdp->fd_lock));
1513 rv = (*kn->kn_fop->f_event)(kn, 0);
1514 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1515 mutex_spin_enter(&kq->kq_lock);
1516 /* Re-poll if note was re-enqueued. */
1517 if ((kn->kn_status & KN_QUEUED) != 0) {
1518 kn->kn_status &= ~KN_BUSY;
1519 /* Re-enqueue raised kq_count, lower it again */
1520 kq->kq_count--;
1521 influx = 1;
1522 continue;
1523 }
1524 if (rv == 0) {
1525 /*
1526 * non-ONESHOT event that hasn't
1527 * triggered again, so de-queue.
1528 */
1529 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1530 kq->kq_count--;
1531 influx = 1;
1532 continue;
1533 }
1534 }
1535 KASSERT(kn->kn_fop != NULL);
1536 touch = (!kn->kn_fop->f_isfd &&
1537 kn->kn_fop->f_touch != NULL);
1538 /* XXXAD should be got from f_event if !oneshot. */
1539 if (touch) {
1540 (*kn->kn_fop->f_touch)(kn, kevp, EVENT_PROCESS);
1541 } else {
1542 *kevp = kn->kn_kevent;
1543 }
1544 kevp++;
1545 nkev++;
1546 influx = 1;
1547 if (kn->kn_flags & EV_ONESHOT) {
1548 /* delete ONESHOT events after retrieval */
1549 kn->kn_status &= ~KN_BUSY;
1550 kq->kq_count--;
1551 mutex_spin_exit(&kq->kq_lock);
1552 knote_detach(kn, fdp, true);
1553 mutex_enter(&fdp->fd_lock);
1554 mutex_spin_enter(&kq->kq_lock);
1555 } else if (kn->kn_flags & EV_CLEAR) {
1556 /* clear state after retrieval */
1557 kn->kn_data = 0;
1558 kn->kn_fflags = 0;
1559 /*
1560 * Manually clear knotes who weren't
1561 * 'touch'ed.
1562 */
1563 if (touch == 0) {
1564 kn->kn_data = 0;
1565 kn->kn_fflags = 0;
1566 }
1567 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1568 kq->kq_count--;
1569 } else if (kn->kn_flags & EV_DISPATCH) {
1570 kn->kn_status |= KN_DISABLED;
1571 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1572 kq->kq_count--;
1573 } else {
1574 /* add event back on list */
1575 kq_check(kq);
1576 kn->kn_status |= KN_QUEUED;
1577 kn->kn_status &= ~KN_BUSY;
1578 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1579 kq_check(kq);
1580 }
1581
1582 if (nkev == kevcnt) {
1583 /* do copyouts in kevcnt chunks */
1584 influx = 0;
1585 KQ_FLUX_WAKEUP(kq);
1586 mutex_spin_exit(&kq->kq_lock);
1587 mutex_exit(&fdp->fd_lock);
1588 error = (*keops->keo_put_events)
1589 (keops->keo_private,
1590 kevbuf, ulistp, nevents, nkev);
1591 mutex_enter(&fdp->fd_lock);
1592 mutex_spin_enter(&kq->kq_lock);
1593 nevents += nkev;
1594 nkev = 0;
1595 kevp = kevbuf;
1596 }
1597 count--;
1598 if (error != 0 || count == 0) {
1599 /* remove marker */
1600 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1601 break;
1602 }
1603 }
1604 KQ_FLUX_WAKEUP(kq);
1605 mutex_spin_exit(&kq->kq_lock);
1606 mutex_exit(&fdp->fd_lock);
1607
1608 done:
1609 if (nkev != 0) {
1610 /* copyout remaining events */
1611 error = (*keops->keo_put_events)(keops->keo_private,
1612 kevbuf, ulistp, nevents, nkev);
1613 }
1614 *retval = maxevents - count;
1615
1616 return error;
1617 }
1618
1619 /*
1620 * fileops ioctl method for a kqueue descriptor.
1621 *
1622 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1623 * KFILTER_BYNAME find name for filter, and return result in
1624 * name, which is of size len.
1625 * KFILTER_BYFILTER find filter for name. len is ignored.
1626 */
1627 /*ARGSUSED*/
1628 static int
1629 kqueue_ioctl(file_t *fp, u_long com, void *data)
1630 {
1631 struct kfilter_mapping *km;
1632 const struct kfilter *kfilter;
1633 char *name;
1634 int error;
1635
1636 km = data;
1637 error = 0;
1638 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1639
1640 switch (com) {
1641 case KFILTER_BYFILTER: /* convert filter -> name */
1642 rw_enter(&kqueue_filter_lock, RW_READER);
1643 kfilter = kfilter_byfilter(km->filter);
1644 if (kfilter != NULL) {
1645 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1646 rw_exit(&kqueue_filter_lock);
1647 error = copyoutstr(name, km->name, km->len, NULL);
1648 } else {
1649 rw_exit(&kqueue_filter_lock);
1650 error = ENOENT;
1651 }
1652 break;
1653
1654 case KFILTER_BYNAME: /* convert name -> filter */
1655 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1656 if (error) {
1657 break;
1658 }
1659 rw_enter(&kqueue_filter_lock, RW_READER);
1660 kfilter = kfilter_byname(name);
1661 if (kfilter != NULL)
1662 km->filter = kfilter->filter;
1663 else
1664 error = ENOENT;
1665 rw_exit(&kqueue_filter_lock);
1666 break;
1667
1668 default:
1669 error = ENOTTY;
1670 break;
1671
1672 }
1673 kmem_free(name, KFILTER_MAXNAME);
1674 return (error);
1675 }
1676
1677 /*
1678 * fileops fcntl method for a kqueue descriptor.
1679 */
1680 static int
1681 kqueue_fcntl(file_t *fp, u_int com, void *data)
1682 {
1683
1684 return (ENOTTY);
1685 }
1686
1687 /*
1688 * fileops poll method for a kqueue descriptor.
1689 * Determine if kqueue has events pending.
1690 */
1691 static int
1692 kqueue_poll(file_t *fp, int events)
1693 {
1694 struct kqueue *kq;
1695 int revents;
1696
1697 kq = fp->f_kqueue;
1698
1699 revents = 0;
1700 if (events & (POLLIN | POLLRDNORM)) {
1701 mutex_spin_enter(&kq->kq_lock);
1702 if (KQ_COUNT(kq) != 0) {
1703 revents |= events & (POLLIN | POLLRDNORM);
1704 } else {
1705 selrecord(curlwp, &kq->kq_sel);
1706 }
1707 kq_check(kq);
1708 mutex_spin_exit(&kq->kq_lock);
1709 }
1710
1711 return revents;
1712 }
1713
1714 /*
1715 * fileops stat method for a kqueue descriptor.
1716 * Returns dummy info, with st_size being number of events pending.
1717 */
1718 static int
1719 kqueue_stat(file_t *fp, struct stat *st)
1720 {
1721 struct kqueue *kq;
1722
1723 kq = fp->f_kqueue;
1724
1725 memset(st, 0, sizeof(*st));
1726 st->st_size = KQ_COUNT(kq);
1727 st->st_blksize = sizeof(struct kevent);
1728 st->st_mode = S_IFIFO;
1729
1730 return 0;
1731 }
1732
1733 static void
1734 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1735 {
1736 struct knote *kn;
1737 filedesc_t *fdp;
1738
1739 fdp = kq->kq_fdp;
1740
1741 KASSERT(mutex_owned(&fdp->fd_lock));
1742
1743 for (kn = SLIST_FIRST(list); kn != NULL;) {
1744 if (kq != kn->kn_kq) {
1745 kn = SLIST_NEXT(kn, kn_link);
1746 continue;
1747 }
1748 knote_detach(kn, fdp, true);
1749 mutex_enter(&fdp->fd_lock);
1750 kn = SLIST_FIRST(list);
1751 }
1752 }
1753
1754
1755 /*
1756 * fileops close method for a kqueue descriptor.
1757 */
1758 static int
1759 kqueue_close(file_t *fp)
1760 {
1761 struct kqueue *kq;
1762 filedesc_t *fdp;
1763 fdfile_t *ff;
1764 int i;
1765
1766 kq = fp->f_kqueue;
1767 fp->f_kqueue = NULL;
1768 fp->f_type = 0;
1769 fdp = curlwp->l_fd;
1770
1771 mutex_enter(&fdp->fd_lock);
1772 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1773 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1774 continue;
1775 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1776 }
1777 if (fdp->fd_knhashmask != 0) {
1778 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1779 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1780 }
1781 }
1782 mutex_exit(&fdp->fd_lock);
1783
1784 KASSERT(KQ_COUNT(kq) == 0);
1785 mutex_destroy(&kq->kq_lock);
1786 cv_destroy(&kq->kq_cv);
1787 seldestroy(&kq->kq_sel);
1788 kmem_free(kq, sizeof(*kq));
1789
1790 return (0);
1791 }
1792
1793 /*
1794 * struct fileops kqfilter method for a kqueue descriptor.
1795 * Event triggered when monitored kqueue changes.
1796 */
1797 static int
1798 kqueue_kqfilter(file_t *fp, struct knote *kn)
1799 {
1800 struct kqueue *kq;
1801
1802 kq = ((file_t *)kn->kn_obj)->f_kqueue;
1803
1804 KASSERT(fp == kn->kn_obj);
1805
1806 if (kn->kn_filter != EVFILT_READ)
1807 return 1;
1808
1809 kn->kn_fop = &kqread_filtops;
1810 mutex_enter(&kq->kq_lock);
1811 selrecord_knote(&kq->kq_sel, kn);
1812 mutex_exit(&kq->kq_lock);
1813
1814 return 0;
1815 }
1816
1817
1818 /*
1819 * Walk down a list of knotes, activating them if their event has
1820 * triggered. The caller's object lock (e.g. device driver lock)
1821 * must be held.
1822 */
1823 void
1824 knote(struct klist *list, long hint)
1825 {
1826 struct knote *kn, *tmpkn;
1827
1828 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1829 KASSERT(kn->kn_fop != NULL);
1830 KASSERT(kn->kn_fop->f_event != NULL);
1831 if ((*kn->kn_fop->f_event)(kn, hint))
1832 knote_activate(kn);
1833 }
1834 }
1835
1836 /*
1837 * Remove all knotes referencing a specified fd
1838 */
1839 void
1840 knote_fdclose(int fd)
1841 {
1842 struct klist *list;
1843 struct knote *kn;
1844 filedesc_t *fdp;
1845
1846 fdp = curlwp->l_fd;
1847 mutex_enter(&fdp->fd_lock);
1848 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1849 while ((kn = SLIST_FIRST(list)) != NULL) {
1850 knote_detach(kn, fdp, true);
1851 mutex_enter(&fdp->fd_lock);
1852 }
1853 mutex_exit(&fdp->fd_lock);
1854 }
1855
1856 /*
1857 * Drop knote. Called with fdp->fd_lock held, and will drop before
1858 * returning.
1859 */
1860 static void
1861 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1862 {
1863 struct klist *list;
1864 struct kqueue *kq;
1865
1866 kq = kn->kn_kq;
1867
1868 KASSERT((kn->kn_status & KN_MARKER) == 0);
1869 KASSERT(mutex_owned(&fdp->fd_lock));
1870
1871 KASSERT(kn->kn_fop != NULL);
1872 /* Remove from monitored object. */
1873 if (dofop) {
1874 KASSERT(kn->kn_fop->f_detach != NULL);
1875 KERNEL_LOCK(1, NULL); /* XXXSMP */
1876 (*kn->kn_fop->f_detach)(kn);
1877 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1878 }
1879
1880 /* Remove from descriptor table. */
1881 if (kn->kn_fop->f_isfd)
1882 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1883 else
1884 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1885
1886 SLIST_REMOVE(list, kn, knote, kn_link);
1887
1888 /* Remove from kqueue. */
1889 again:
1890 mutex_spin_enter(&kq->kq_lock);
1891 if ((kn->kn_status & KN_QUEUED) != 0) {
1892 kq_check(kq);
1893 kq->kq_count--;
1894 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1895 kn->kn_status &= ~KN_QUEUED;
1896 kq_check(kq);
1897 } else if (kn->kn_status & KN_BUSY) {
1898 mutex_spin_exit(&kq->kq_lock);
1899 goto again;
1900 }
1901 mutex_spin_exit(&kq->kq_lock);
1902
1903 mutex_exit(&fdp->fd_lock);
1904 if (kn->kn_fop->f_isfd)
1905 fd_putfile(kn->kn_id);
1906 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1907 kmem_free(kn, sizeof(*kn));
1908 }
1909
1910 /*
1911 * Queue new event for knote.
1912 */
1913 static void
1914 knote_enqueue(struct knote *kn)
1915 {
1916 struct kqueue *kq;
1917
1918 KASSERT((kn->kn_status & KN_MARKER) == 0);
1919
1920 kq = kn->kn_kq;
1921
1922 mutex_spin_enter(&kq->kq_lock);
1923 if ((kn->kn_status & KN_DISABLED) != 0) {
1924 kn->kn_status &= ~KN_DISABLED;
1925 }
1926 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1927 kq_check(kq);
1928 kn->kn_status |= KN_QUEUED;
1929 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1930 kq->kq_count++;
1931 kq_check(kq);
1932 cv_broadcast(&kq->kq_cv);
1933 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1934 }
1935 mutex_spin_exit(&kq->kq_lock);
1936 }
1937 /*
1938 * Queue new event for knote.
1939 */
1940 static void
1941 knote_activate(struct knote *kn)
1942 {
1943 struct kqueue *kq;
1944
1945 KASSERT((kn->kn_status & KN_MARKER) == 0);
1946
1947 kq = kn->kn_kq;
1948
1949 mutex_spin_enter(&kq->kq_lock);
1950 kn->kn_status |= KN_ACTIVE;
1951 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1952 kq_check(kq);
1953 kn->kn_status |= KN_QUEUED;
1954 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1955 kq->kq_count++;
1956 kq_check(kq);
1957 cv_broadcast(&kq->kq_cv);
1958 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1959 }
1960 mutex_spin_exit(&kq->kq_lock);
1961 }
1962