kern_event.c revision 1.122 1 /* $NetBSD: kern_event.c,v 1.122 2021/09/26 03:12:50 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * Copyright (c) 2009 Apple, Inc
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.122 2021/09/26 03:12:50 thorpej Exp $");
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/kernel.h>
67 #include <sys/wait.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/select.h>
71 #include <sys/queue.h>
72 #include <sys/event.h>
73 #include <sys/eventvar.h>
74 #include <sys/poll.h>
75 #include <sys/kmem.h>
76 #include <sys/stat.h>
77 #include <sys/filedesc.h>
78 #include <sys/syscallargs.h>
79 #include <sys/kauth.h>
80 #include <sys/conf.h>
81 #include <sys/atomic.h>
82
83 static int kqueue_scan(file_t *, size_t, struct kevent *,
84 const struct timespec *, register_t *,
85 const struct kevent_ops *, struct kevent *,
86 size_t);
87 static int kqueue_ioctl(file_t *, u_long, void *);
88 static int kqueue_fcntl(file_t *, u_int, void *);
89 static int kqueue_poll(file_t *, int);
90 static int kqueue_kqfilter(file_t *, struct knote *);
91 static int kqueue_stat(file_t *, struct stat *);
92 static int kqueue_close(file_t *);
93 static void kqueue_restart(file_t *);
94 static int kqueue_register(struct kqueue *, struct kevent *);
95 static void kqueue_doclose(struct kqueue *, struct klist *, int);
96
97 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
98 static void knote_enqueue(struct knote *);
99 static void knote_activate(struct knote *);
100
101 static void filt_kqdetach(struct knote *);
102 static int filt_kqueue(struct knote *, long hint);
103 static int filt_procattach(struct knote *);
104 static void filt_procdetach(struct knote *);
105 static int filt_proc(struct knote *, long hint);
106 static int filt_fileattach(struct knote *);
107 static void filt_timerexpire(void *x);
108 static int filt_timerattach(struct knote *);
109 static void filt_timerdetach(struct knote *);
110 static int filt_timer(struct knote *, long hint);
111 static int filt_fsattach(struct knote *kn);
112 static void filt_fsdetach(struct knote *kn);
113 static int filt_fs(struct knote *kn, long hint);
114 static int filt_userattach(struct knote *);
115 static void filt_userdetach(struct knote *);
116 static int filt_user(struct knote *, long hint);
117 static void filt_usertouch(struct knote *, struct kevent *, long type);
118
119 static const struct fileops kqueueops = {
120 .fo_name = "kqueue",
121 .fo_read = (void *)enxio,
122 .fo_write = (void *)enxio,
123 .fo_ioctl = kqueue_ioctl,
124 .fo_fcntl = kqueue_fcntl,
125 .fo_poll = kqueue_poll,
126 .fo_stat = kqueue_stat,
127 .fo_close = kqueue_close,
128 .fo_kqfilter = kqueue_kqfilter,
129 .fo_restart = kqueue_restart,
130 };
131
132 static const struct filterops kqread_filtops = {
133 .f_flags = FILTEROP_ISFD,
134 .f_attach = NULL,
135 .f_detach = filt_kqdetach,
136 .f_event = filt_kqueue,
137 };
138
139 static const struct filterops proc_filtops = {
140 .f_flags = 0,
141 .f_attach = filt_procattach,
142 .f_detach = filt_procdetach,
143 .f_event = filt_proc,
144 };
145
146 /*
147 * file_filtops is not marked MPSAFE because it's going to call
148 * fileops::fo_kqfilter(), which might not be. That function,
149 * however, will override the knote's filterops, and thus will
150 * inherit the MPSAFE-ness of the back-end at that time.
151 */
152 static const struct filterops file_filtops = {
153 .f_flags = FILTEROP_ISFD,
154 .f_attach = filt_fileattach,
155 .f_detach = NULL,
156 .f_event = NULL,
157 };
158
159 static const struct filterops timer_filtops = {
160 .f_flags = 0,
161 .f_attach = filt_timerattach,
162 .f_detach = filt_timerdetach,
163 .f_event = filt_timer,
164 };
165
166 static const struct filterops fs_filtops = {
167 .f_flags = 0,
168 .f_attach = filt_fsattach,
169 .f_detach = filt_fsdetach,
170 .f_event = filt_fs,
171 };
172
173 static const struct filterops user_filtops = {
174 .f_flags = 0,
175 .f_attach = filt_userattach,
176 .f_detach = filt_userdetach,
177 .f_event = filt_user,
178 .f_touch = filt_usertouch,
179 };
180
181 static u_int kq_ncallouts = 0;
182 static int kq_calloutmax = (4 * 1024);
183
184 #define KN_HASHSIZE 64 /* XXX should be tunable */
185 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
186
187 extern const struct filterops sig_filtops;
188
189 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
190
191 /*
192 * Table for for all system-defined filters.
193 * These should be listed in the numeric order of the EVFILT_* defines.
194 * If filtops is NULL, the filter isn't implemented in NetBSD.
195 * End of list is when name is NULL.
196 *
197 * Note that 'refcnt' is meaningless for built-in filters.
198 */
199 struct kfilter {
200 const char *name; /* name of filter */
201 uint32_t filter; /* id of filter */
202 unsigned refcnt; /* reference count */
203 const struct filterops *filtops;/* operations for filter */
204 size_t namelen; /* length of name string */
205 };
206
207 /* System defined filters */
208 static struct kfilter sys_kfilters[] = {
209 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
210 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
211 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
212 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
213 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
214 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
215 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
216 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
217 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
218 { NULL, 0, 0, NULL, 0 },
219 };
220
221 /* User defined kfilters */
222 static struct kfilter *user_kfilters; /* array */
223 static int user_kfilterc; /* current offset */
224 static int user_kfiltermaxc; /* max size so far */
225 static size_t user_kfiltersz; /* size of allocated memory */
226
227 /*
228 * Global Locks.
229 *
230 * Lock order:
231 *
232 * kqueue_filter_lock
233 * -> kn_kq->kq_fdp->fd_lock
234 * -> object lock (e.g., device driver lock, kqueue_misc_lock, &c.)
235 * -> kn_kq->kq_lock
236 *
237 * Locking rules:
238 *
239 * f_attach: fdp->fd_lock, KERNEL_LOCK
240 * f_detach: fdp->fd_lock, KERNEL_LOCK
241 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
242 * f_event via knote: whatever caller guarantees
243 * Typically, f_event(NOTE_SUBMIT) via knote: object lock
244 * f_event(!NOTE_SUBMIT) via knote: nothing,
245 * acquires/releases object lock inside.
246 */
247 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
248 static kmutex_t kqueue_misc_lock; /* miscellaneous */
249
250 static int
251 filter_attach(struct knote *kn)
252 {
253 int rv;
254
255 KASSERT(kn->kn_fop != NULL);
256 KASSERT(kn->kn_fop->f_attach != NULL);
257
258 /*
259 * N.B. that kn->kn_fop may change as the result of calling
260 * f_attach().
261 */
262 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
263 rv = kn->kn_fop->f_attach(kn);
264 } else {
265 KERNEL_LOCK(1, NULL);
266 rv = kn->kn_fop->f_attach(kn);
267 KERNEL_UNLOCK_ONE(NULL);
268 }
269
270 return rv;
271 }
272
273 static void
274 filter_detach(struct knote *kn)
275 {
276 KASSERT(kn->kn_fop != NULL);
277 KASSERT(kn->kn_fop->f_detach != NULL);
278
279 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
280 kn->kn_fop->f_detach(kn);
281 } else {
282 KERNEL_LOCK(1, NULL);
283 kn->kn_fop->f_detach(kn);
284 KERNEL_UNLOCK_ONE(NULL);
285 }
286 }
287
288 static int
289 filter_event(struct knote *kn, long hint)
290 {
291 int rv;
292
293 KASSERT(kn->kn_fop != NULL);
294 KASSERT(kn->kn_fop->f_event != NULL);
295
296 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
297 rv = kn->kn_fop->f_event(kn, hint);
298 } else {
299 KERNEL_LOCK(1, NULL);
300 rv = kn->kn_fop->f_event(kn, hint);
301 KERNEL_UNLOCK_ONE(NULL);
302 }
303
304 return rv;
305 }
306
307 static void
308 filter_touch(struct knote *kn, struct kevent *kev, long type)
309 {
310 kn->kn_fop->f_touch(kn, kev, type);
311 }
312
313 static kauth_listener_t kqueue_listener;
314
315 static int
316 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
317 void *arg0, void *arg1, void *arg2, void *arg3)
318 {
319 struct proc *p;
320 int result;
321
322 result = KAUTH_RESULT_DEFER;
323 p = arg0;
324
325 if (action != KAUTH_PROCESS_KEVENT_FILTER)
326 return result;
327
328 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
329 ISSET(p->p_flag, PK_SUGID)))
330 return result;
331
332 result = KAUTH_RESULT_ALLOW;
333
334 return result;
335 }
336
337 /*
338 * Initialize the kqueue subsystem.
339 */
340 void
341 kqueue_init(void)
342 {
343
344 rw_init(&kqueue_filter_lock);
345 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
346
347 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
348 kqueue_listener_cb, NULL);
349 }
350
351 /*
352 * Find kfilter entry by name, or NULL if not found.
353 */
354 static struct kfilter *
355 kfilter_byname_sys(const char *name)
356 {
357 int i;
358
359 KASSERT(rw_lock_held(&kqueue_filter_lock));
360
361 for (i = 0; sys_kfilters[i].name != NULL; i++) {
362 if (strcmp(name, sys_kfilters[i].name) == 0)
363 return &sys_kfilters[i];
364 }
365 return NULL;
366 }
367
368 static struct kfilter *
369 kfilter_byname_user(const char *name)
370 {
371 int i;
372
373 KASSERT(rw_lock_held(&kqueue_filter_lock));
374
375 /* user filter slots have a NULL name if previously deregistered */
376 for (i = 0; i < user_kfilterc ; i++) {
377 if (user_kfilters[i].name != NULL &&
378 strcmp(name, user_kfilters[i].name) == 0)
379 return &user_kfilters[i];
380 }
381 return NULL;
382 }
383
384 static struct kfilter *
385 kfilter_byname(const char *name)
386 {
387 struct kfilter *kfilter;
388
389 KASSERT(rw_lock_held(&kqueue_filter_lock));
390
391 if ((kfilter = kfilter_byname_sys(name)) != NULL)
392 return kfilter;
393
394 return kfilter_byname_user(name);
395 }
396
397 /*
398 * Find kfilter entry by filter id, or NULL if not found.
399 * Assumes entries are indexed in filter id order, for speed.
400 */
401 static struct kfilter *
402 kfilter_byfilter(uint32_t filter)
403 {
404 struct kfilter *kfilter;
405
406 KASSERT(rw_lock_held(&kqueue_filter_lock));
407
408 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
409 kfilter = &sys_kfilters[filter];
410 else if (user_kfilters != NULL &&
411 filter < EVFILT_SYSCOUNT + user_kfilterc)
412 /* it's a user filter */
413 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
414 else
415 return (NULL); /* out of range */
416 KASSERT(kfilter->filter == filter); /* sanity check! */
417 return (kfilter);
418 }
419
420 /*
421 * Register a new kfilter. Stores the entry in user_kfilters.
422 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
423 * If retfilter != NULL, the new filterid is returned in it.
424 */
425 int
426 kfilter_register(const char *name, const struct filterops *filtops,
427 int *retfilter)
428 {
429 struct kfilter *kfilter;
430 size_t len;
431 int i;
432
433 if (name == NULL || name[0] == '\0' || filtops == NULL)
434 return (EINVAL); /* invalid args */
435
436 rw_enter(&kqueue_filter_lock, RW_WRITER);
437 if (kfilter_byname(name) != NULL) {
438 rw_exit(&kqueue_filter_lock);
439 return (EEXIST); /* already exists */
440 }
441 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
442 rw_exit(&kqueue_filter_lock);
443 return (EINVAL); /* too many */
444 }
445
446 for (i = 0; i < user_kfilterc; i++) {
447 kfilter = &user_kfilters[i];
448 if (kfilter->name == NULL) {
449 /* Previously deregistered slot. Reuse. */
450 goto reuse;
451 }
452 }
453
454 /* check if need to grow user_kfilters */
455 if (user_kfilterc + 1 > user_kfiltermaxc) {
456 /* Grow in KFILTER_EXTENT chunks. */
457 user_kfiltermaxc += KFILTER_EXTENT;
458 len = user_kfiltermaxc * sizeof(*kfilter);
459 kfilter = kmem_alloc(len, KM_SLEEP);
460 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
461 if (user_kfilters != NULL) {
462 memcpy(kfilter, user_kfilters, user_kfiltersz);
463 kmem_free(user_kfilters, user_kfiltersz);
464 }
465 user_kfiltersz = len;
466 user_kfilters = kfilter;
467 }
468 /* Adding new slot */
469 kfilter = &user_kfilters[user_kfilterc++];
470 reuse:
471 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
472
473 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
474
475 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
476 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
477
478 if (retfilter != NULL)
479 *retfilter = kfilter->filter;
480 rw_exit(&kqueue_filter_lock);
481
482 return (0);
483 }
484
485 /*
486 * Unregister a kfilter previously registered with kfilter_register.
487 * This retains the filter id, but clears the name and frees filtops (filter
488 * operations), so that the number isn't reused during a boot.
489 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
490 */
491 int
492 kfilter_unregister(const char *name)
493 {
494 struct kfilter *kfilter;
495
496 if (name == NULL || name[0] == '\0')
497 return (EINVAL); /* invalid name */
498
499 rw_enter(&kqueue_filter_lock, RW_WRITER);
500 if (kfilter_byname_sys(name) != NULL) {
501 rw_exit(&kqueue_filter_lock);
502 return (EINVAL); /* can't detach system filters */
503 }
504
505 kfilter = kfilter_byname_user(name);
506 if (kfilter == NULL) {
507 rw_exit(&kqueue_filter_lock);
508 return (ENOENT);
509 }
510 if (kfilter->refcnt != 0) {
511 rw_exit(&kqueue_filter_lock);
512 return (EBUSY);
513 }
514
515 /* Cast away const (but we know it's safe. */
516 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
517 kfilter->name = NULL; /* mark as `not implemented' */
518
519 if (kfilter->filtops != NULL) {
520 /* Cast away const (but we know it's safe. */
521 kmem_free(__UNCONST(kfilter->filtops),
522 sizeof(*kfilter->filtops));
523 kfilter->filtops = NULL; /* mark as `not implemented' */
524 }
525 rw_exit(&kqueue_filter_lock);
526
527 return (0);
528 }
529
530
531 /*
532 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
533 * descriptors. Calls fileops kqfilter method for given file descriptor.
534 */
535 static int
536 filt_fileattach(struct knote *kn)
537 {
538 file_t *fp;
539
540 fp = kn->kn_obj;
541
542 return (*fp->f_ops->fo_kqfilter)(fp, kn);
543 }
544
545 /*
546 * Filter detach method for EVFILT_READ on kqueue descriptor.
547 */
548 static void
549 filt_kqdetach(struct knote *kn)
550 {
551 struct kqueue *kq;
552
553 kq = ((file_t *)kn->kn_obj)->f_kqueue;
554
555 mutex_spin_enter(&kq->kq_lock);
556 selremove_knote(&kq->kq_sel, kn);
557 mutex_spin_exit(&kq->kq_lock);
558 }
559
560 /*
561 * Filter event method for EVFILT_READ on kqueue descriptor.
562 */
563 /*ARGSUSED*/
564 static int
565 filt_kqueue(struct knote *kn, long hint)
566 {
567 struct kqueue *kq;
568 int rv;
569
570 kq = ((file_t *)kn->kn_obj)->f_kqueue;
571
572 if (hint != NOTE_SUBMIT)
573 mutex_spin_enter(&kq->kq_lock);
574 kn->kn_data = KQ_COUNT(kq);
575 rv = (kn->kn_data > 0);
576 if (hint != NOTE_SUBMIT)
577 mutex_spin_exit(&kq->kq_lock);
578
579 return rv;
580 }
581
582 /*
583 * Filter attach method for EVFILT_PROC.
584 */
585 static int
586 filt_procattach(struct knote *kn)
587 {
588 struct proc *p;
589 struct lwp *curl;
590
591 curl = curlwp;
592
593 mutex_enter(&proc_lock);
594 if (kn->kn_flags & EV_FLAG1) {
595 /*
596 * NOTE_TRACK attaches to the child process too early
597 * for proc_find, so do a raw look up and check the state
598 * explicitly.
599 */
600 p = proc_find_raw(kn->kn_id);
601 if (p != NULL && p->p_stat != SIDL)
602 p = NULL;
603 } else {
604 p = proc_find(kn->kn_id);
605 }
606
607 if (p == NULL) {
608 mutex_exit(&proc_lock);
609 return ESRCH;
610 }
611
612 /*
613 * Fail if it's not owned by you, or the last exec gave us
614 * setuid/setgid privs (unless you're root).
615 */
616 mutex_enter(p->p_lock);
617 mutex_exit(&proc_lock);
618 if (kauth_authorize_process(curl->l_cred,
619 KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
620 mutex_exit(p->p_lock);
621 return EACCES;
622 }
623
624 kn->kn_obj = p;
625 kn->kn_flags |= EV_CLEAR; /* automatically set */
626
627 /*
628 * internal flag indicating registration done by kernel
629 */
630 if (kn->kn_flags & EV_FLAG1) {
631 kn->kn_data = kn->kn_sdata; /* ppid */
632 kn->kn_fflags = NOTE_CHILD;
633 kn->kn_flags &= ~EV_FLAG1;
634 }
635 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
636 mutex_exit(p->p_lock);
637
638 return 0;
639 }
640
641 /*
642 * Filter detach method for EVFILT_PROC.
643 *
644 * The knote may be attached to a different process, which may exit,
645 * leaving nothing for the knote to be attached to. So when the process
646 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
647 * it will be deleted when read out. However, as part of the knote deletion,
648 * this routine is called, so a check is needed to avoid actually performing
649 * a detach, because the original process might not exist any more.
650 */
651 static void
652 filt_procdetach(struct knote *kn)
653 {
654 struct proc *p;
655
656 if (kn->kn_status & KN_DETACHED)
657 return;
658
659 p = kn->kn_obj;
660
661 mutex_enter(p->p_lock);
662 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
663 mutex_exit(p->p_lock);
664 }
665
666 /*
667 * Filter event method for EVFILT_PROC.
668 */
669 static int
670 filt_proc(struct knote *kn, long hint)
671 {
672 u_int event, fflag;
673 struct kevent kev;
674 struct kqueue *kq;
675 int error;
676
677 event = (u_int)hint & NOTE_PCTRLMASK;
678 kq = kn->kn_kq;
679 fflag = 0;
680
681 /* If the user is interested in this event, record it. */
682 if (kn->kn_sfflags & event)
683 fflag |= event;
684
685 if (event == NOTE_EXIT) {
686 struct proc *p = kn->kn_obj;
687
688 if (p != NULL)
689 kn->kn_data = P_WAITSTATUS(p);
690 /*
691 * Process is gone, so flag the event as finished.
692 *
693 * Detach the knote from watched process and mark
694 * it as such. We can't leave this to kqueue_scan(),
695 * since the process might not exist by then. And we
696 * have to do this now, since psignal KNOTE() is called
697 * also for zombies and we might end up reading freed
698 * memory if the kevent would already be picked up
699 * and knote g/c'ed.
700 */
701 filt_procdetach(kn);
702
703 mutex_spin_enter(&kq->kq_lock);
704 kn->kn_status |= KN_DETACHED;
705 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
706 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
707 kn->kn_fflags |= fflag;
708 mutex_spin_exit(&kq->kq_lock);
709
710 return 1;
711 }
712
713 mutex_spin_enter(&kq->kq_lock);
714 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
715 /*
716 * Process forked, and user wants to track the new process,
717 * so attach a new knote to it, and immediately report an
718 * event with the parent's pid. Register knote with new
719 * process.
720 */
721 memset(&kev, 0, sizeof(kev));
722 kev.ident = hint & NOTE_PDATAMASK; /* pid */
723 kev.filter = kn->kn_filter;
724 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
725 kev.fflags = kn->kn_sfflags;
726 kev.data = kn->kn_id; /* parent */
727 kev.udata = kn->kn_kevent.udata; /* preserve udata */
728 mutex_spin_exit(&kq->kq_lock);
729 error = kqueue_register(kq, &kev);
730 mutex_spin_enter(&kq->kq_lock);
731 if (error != 0)
732 kn->kn_fflags |= NOTE_TRACKERR;
733 }
734 kn->kn_fflags |= fflag;
735 fflag = kn->kn_fflags;
736 mutex_spin_exit(&kq->kq_lock);
737
738 return fflag != 0;
739 }
740
741 static void
742 filt_timerexpire(void *knx)
743 {
744 struct knote *kn = knx;
745 int tticks;
746
747 mutex_enter(&kqueue_misc_lock);
748 kn->kn_data++;
749 knote_activate(kn);
750 if ((kn->kn_flags & EV_ONESHOT) == 0) {
751 tticks = mstohz(kn->kn_sdata);
752 if (tticks <= 0)
753 tticks = 1;
754 callout_schedule((callout_t *)kn->kn_hook, tticks);
755 }
756 mutex_exit(&kqueue_misc_lock);
757 }
758
759 /*
760 * data contains amount of time to sleep, in milliseconds
761 */
762 static int
763 filt_timerattach(struct knote *kn)
764 {
765 callout_t *calloutp;
766 struct kqueue *kq;
767 int tticks;
768
769 tticks = mstohz(kn->kn_sdata);
770
771 /* if the supplied value is under our resolution, use 1 tick */
772 if (tticks == 0) {
773 if (kn->kn_sdata == 0)
774 return EINVAL;
775 tticks = 1;
776 }
777
778 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
779 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
780 atomic_dec_uint(&kq_ncallouts);
781 return ENOMEM;
782 }
783 callout_init(calloutp, CALLOUT_MPSAFE);
784
785 kq = kn->kn_kq;
786 mutex_spin_enter(&kq->kq_lock);
787 kn->kn_flags |= EV_CLEAR; /* automatically set */
788 kn->kn_hook = calloutp;
789 mutex_spin_exit(&kq->kq_lock);
790
791 callout_reset(calloutp, tticks, filt_timerexpire, kn);
792
793 return (0);
794 }
795
796 static void
797 filt_timerdetach(struct knote *kn)
798 {
799 callout_t *calloutp;
800 struct kqueue *kq = kn->kn_kq;
801
802 mutex_spin_enter(&kq->kq_lock);
803 /* prevent rescheduling when we expire */
804 kn->kn_flags |= EV_ONESHOT;
805 mutex_spin_exit(&kq->kq_lock);
806
807 calloutp = (callout_t *)kn->kn_hook;
808 callout_halt(calloutp, NULL);
809 callout_destroy(calloutp);
810 kmem_free(calloutp, sizeof(*calloutp));
811 atomic_dec_uint(&kq_ncallouts);
812 }
813
814 static int
815 filt_timer(struct knote *kn, long hint)
816 {
817 int rv;
818
819 mutex_enter(&kqueue_misc_lock);
820 rv = (kn->kn_data != 0);
821 mutex_exit(&kqueue_misc_lock);
822
823 return rv;
824 }
825
826 /*
827 * Filter event method for EVFILT_FS.
828 */
829 struct klist fs_klist = SLIST_HEAD_INITIALIZER(&fs_klist);
830
831 static int
832 filt_fsattach(struct knote *kn)
833 {
834
835 mutex_enter(&kqueue_misc_lock);
836 kn->kn_flags |= EV_CLEAR;
837 SLIST_INSERT_HEAD(&fs_klist, kn, kn_selnext);
838 mutex_exit(&kqueue_misc_lock);
839
840 return 0;
841 }
842
843 static void
844 filt_fsdetach(struct knote *kn)
845 {
846
847 mutex_enter(&kqueue_misc_lock);
848 SLIST_REMOVE(&fs_klist, kn, knote, kn_selnext);
849 mutex_exit(&kqueue_misc_lock);
850 }
851
852 static int
853 filt_fs(struct knote *kn, long hint)
854 {
855 int rv;
856
857 mutex_enter(&kqueue_misc_lock);
858 kn->kn_fflags |= hint;
859 rv = (kn->kn_fflags != 0);
860 mutex_exit(&kqueue_misc_lock);
861
862 return rv;
863 }
864
865 static int
866 filt_userattach(struct knote *kn)
867 {
868 struct kqueue *kq = kn->kn_kq;
869
870 /*
871 * EVFILT_USER knotes are not attached to anything in the kernel.
872 */
873 mutex_spin_enter(&kq->kq_lock);
874 kn->kn_hook = NULL;
875 if (kn->kn_fflags & NOTE_TRIGGER)
876 kn->kn_hookid = 1;
877 else
878 kn->kn_hookid = 0;
879 mutex_spin_exit(&kq->kq_lock);
880 return (0);
881 }
882
883 static void
884 filt_userdetach(struct knote *kn)
885 {
886
887 /*
888 * EVFILT_USER knotes are not attached to anything in the kernel.
889 */
890 }
891
892 static int
893 filt_user(struct knote *kn, long hint)
894 {
895 struct kqueue *kq = kn->kn_kq;
896 int hookid;
897
898 mutex_spin_enter(&kq->kq_lock);
899 hookid = kn->kn_hookid;
900 mutex_spin_exit(&kq->kq_lock);
901
902 return hookid;
903 }
904
905 static void
906 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
907 {
908 int ffctrl;
909
910 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
911
912 switch (type) {
913 case EVENT_REGISTER:
914 if (kev->fflags & NOTE_TRIGGER)
915 kn->kn_hookid = 1;
916
917 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
918 kev->fflags &= NOTE_FFLAGSMASK;
919 switch (ffctrl) {
920 case NOTE_FFNOP:
921 break;
922
923 case NOTE_FFAND:
924 kn->kn_sfflags &= kev->fflags;
925 break;
926
927 case NOTE_FFOR:
928 kn->kn_sfflags |= kev->fflags;
929 break;
930
931 case NOTE_FFCOPY:
932 kn->kn_sfflags = kev->fflags;
933 break;
934
935 default:
936 /* XXX Return error? */
937 break;
938 }
939 kn->kn_sdata = kev->data;
940 if (kev->flags & EV_CLEAR) {
941 kn->kn_hookid = 0;
942 kn->kn_data = 0;
943 kn->kn_fflags = 0;
944 }
945 break;
946
947 case EVENT_PROCESS:
948 *kev = kn->kn_kevent;
949 kev->fflags = kn->kn_sfflags;
950 kev->data = kn->kn_sdata;
951 if (kn->kn_flags & EV_CLEAR) {
952 kn->kn_hookid = 0;
953 kn->kn_data = 0;
954 kn->kn_fflags = 0;
955 }
956 break;
957
958 default:
959 panic("filt_usertouch() - invalid type (%ld)", type);
960 break;
961 }
962 }
963
964 /*
965 * filt_seltrue:
966 *
967 * This filter "event" routine simulates seltrue().
968 */
969 int
970 filt_seltrue(struct knote *kn, long hint)
971 {
972
973 /*
974 * We don't know how much data can be read/written,
975 * but we know that it *can* be. This is about as
976 * good as select/poll does as well.
977 */
978 kn->kn_data = 0;
979 return (1);
980 }
981
982 /*
983 * This provides full kqfilter entry for device switch tables, which
984 * has same effect as filter using filt_seltrue() as filter method.
985 */
986 static void
987 filt_seltruedetach(struct knote *kn)
988 {
989 /* Nothing to do */
990 }
991
992 const struct filterops seltrue_filtops = {
993 .f_flags = FILTEROP_ISFD,
994 .f_attach = NULL,
995 .f_detach = filt_seltruedetach,
996 .f_event = filt_seltrue,
997 };
998
999 int
1000 seltrue_kqfilter(dev_t dev, struct knote *kn)
1001 {
1002 switch (kn->kn_filter) {
1003 case EVFILT_READ:
1004 case EVFILT_WRITE:
1005 kn->kn_fop = &seltrue_filtops;
1006 break;
1007 default:
1008 return (EINVAL);
1009 }
1010
1011 /* Nothing more to do */
1012 return (0);
1013 }
1014
1015 /*
1016 * kqueue(2) system call.
1017 */
1018 static int
1019 kqueue1(struct lwp *l, int flags, register_t *retval)
1020 {
1021 struct kqueue *kq;
1022 file_t *fp;
1023 int fd, error;
1024
1025 if ((error = fd_allocfile(&fp, &fd)) != 0)
1026 return error;
1027 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
1028 fp->f_type = DTYPE_KQUEUE;
1029 fp->f_ops = &kqueueops;
1030 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
1031 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
1032 cv_init(&kq->kq_cv, "kqueue");
1033 selinit(&kq->kq_sel);
1034 TAILQ_INIT(&kq->kq_head);
1035 fp->f_kqueue = kq;
1036 *retval = fd;
1037 kq->kq_fdp = curlwp->l_fd;
1038 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1039 fd_affix(curproc, fp, fd);
1040 return error;
1041 }
1042
1043 /*
1044 * kqueue(2) system call.
1045 */
1046 int
1047 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
1048 {
1049 return kqueue1(l, 0, retval);
1050 }
1051
1052 int
1053 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
1054 register_t *retval)
1055 {
1056 /* {
1057 syscallarg(int) flags;
1058 } */
1059 return kqueue1(l, SCARG(uap, flags), retval);
1060 }
1061
1062 /*
1063 * kevent(2) system call.
1064 */
1065 int
1066 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
1067 struct kevent *changes, size_t index, int n)
1068 {
1069
1070 return copyin(changelist + index, changes, n * sizeof(*changes));
1071 }
1072
1073 int
1074 kevent_put_events(void *ctx, struct kevent *events,
1075 struct kevent *eventlist, size_t index, int n)
1076 {
1077
1078 return copyout(events, eventlist + index, n * sizeof(*events));
1079 }
1080
1081 static const struct kevent_ops kevent_native_ops = {
1082 .keo_private = NULL,
1083 .keo_fetch_timeout = copyin,
1084 .keo_fetch_changes = kevent_fetch_changes,
1085 .keo_put_events = kevent_put_events,
1086 };
1087
1088 int
1089 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1090 register_t *retval)
1091 {
1092 /* {
1093 syscallarg(int) fd;
1094 syscallarg(const struct kevent *) changelist;
1095 syscallarg(size_t) nchanges;
1096 syscallarg(struct kevent *) eventlist;
1097 syscallarg(size_t) nevents;
1098 syscallarg(const struct timespec *) timeout;
1099 } */
1100
1101 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1102 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1103 SCARG(uap, timeout), &kevent_native_ops);
1104 }
1105
1106 int
1107 kevent1(register_t *retval, int fd,
1108 const struct kevent *changelist, size_t nchanges,
1109 struct kevent *eventlist, size_t nevents,
1110 const struct timespec *timeout,
1111 const struct kevent_ops *keops)
1112 {
1113 struct kevent *kevp;
1114 struct kqueue *kq;
1115 struct timespec ts;
1116 size_t i, n, ichange;
1117 int nerrors, error;
1118 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
1119 file_t *fp;
1120
1121 /* check that we're dealing with a kq */
1122 fp = fd_getfile(fd);
1123 if (fp == NULL)
1124 return (EBADF);
1125
1126 if (fp->f_type != DTYPE_KQUEUE) {
1127 fd_putfile(fd);
1128 return (EBADF);
1129 }
1130
1131 if (timeout != NULL) {
1132 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1133 if (error)
1134 goto done;
1135 timeout = &ts;
1136 }
1137
1138 kq = fp->f_kqueue;
1139 nerrors = 0;
1140 ichange = 0;
1141
1142 /* traverse list of events to register */
1143 while (nchanges > 0) {
1144 n = MIN(nchanges, __arraycount(kevbuf));
1145 error = (*keops->keo_fetch_changes)(keops->keo_private,
1146 changelist, kevbuf, ichange, n);
1147 if (error)
1148 goto done;
1149 for (i = 0; i < n; i++) {
1150 kevp = &kevbuf[i];
1151 kevp->flags &= ~EV_SYSFLAGS;
1152 /* register each knote */
1153 error = kqueue_register(kq, kevp);
1154 if (!error && !(kevp->flags & EV_RECEIPT))
1155 continue;
1156 if (nevents == 0)
1157 goto done;
1158 kevp->flags = EV_ERROR;
1159 kevp->data = error;
1160 error = (*keops->keo_put_events)
1161 (keops->keo_private, kevp,
1162 eventlist, nerrors, 1);
1163 if (error)
1164 goto done;
1165 nevents--;
1166 nerrors++;
1167 }
1168 nchanges -= n; /* update the results */
1169 ichange += n;
1170 }
1171 if (nerrors) {
1172 *retval = nerrors;
1173 error = 0;
1174 goto done;
1175 }
1176
1177 /* actually scan through the events */
1178 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1179 kevbuf, __arraycount(kevbuf));
1180 done:
1181 fd_putfile(fd);
1182 return (error);
1183 }
1184
1185 /*
1186 * Register a given kevent kev onto the kqueue
1187 */
1188 static int
1189 kqueue_register(struct kqueue *kq, struct kevent *kev)
1190 {
1191 struct kfilter *kfilter;
1192 filedesc_t *fdp;
1193 file_t *fp;
1194 fdfile_t *ff;
1195 struct knote *kn, *newkn;
1196 struct klist *list;
1197 int error, fd, rv;
1198
1199 fdp = kq->kq_fdp;
1200 fp = NULL;
1201 kn = NULL;
1202 error = 0;
1203 fd = 0;
1204
1205 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1206
1207 rw_enter(&kqueue_filter_lock, RW_READER);
1208 kfilter = kfilter_byfilter(kev->filter);
1209 if (kfilter == NULL || kfilter->filtops == NULL) {
1210 /* filter not found nor implemented */
1211 rw_exit(&kqueue_filter_lock);
1212 kmem_free(newkn, sizeof(*newkn));
1213 return (EINVAL);
1214 }
1215
1216 /* search if knote already exists */
1217 if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
1218 /* monitoring a file descriptor */
1219 /* validate descriptor */
1220 if (kev->ident > INT_MAX
1221 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1222 rw_exit(&kqueue_filter_lock);
1223 kmem_free(newkn, sizeof(*newkn));
1224 return EBADF;
1225 }
1226 mutex_enter(&fdp->fd_lock);
1227 ff = fdp->fd_dt->dt_ff[fd];
1228 if (ff->ff_refcnt & FR_CLOSING) {
1229 error = EBADF;
1230 goto doneunlock;
1231 }
1232 if (fd <= fdp->fd_lastkqfile) {
1233 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1234 if (kq == kn->kn_kq &&
1235 kev->filter == kn->kn_filter)
1236 break;
1237 }
1238 }
1239 } else {
1240 /*
1241 * not monitoring a file descriptor, so
1242 * lookup knotes in internal hash table
1243 */
1244 mutex_enter(&fdp->fd_lock);
1245 if (fdp->fd_knhashmask != 0) {
1246 list = &fdp->fd_knhash[
1247 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1248 SLIST_FOREACH(kn, list, kn_link) {
1249 if (kev->ident == kn->kn_id &&
1250 kq == kn->kn_kq &&
1251 kev->filter == kn->kn_filter)
1252 break;
1253 }
1254 }
1255 }
1256
1257 /*
1258 * kn now contains the matching knote, or NULL if no match
1259 */
1260 if (kn == NULL) {
1261 if (kev->flags & EV_ADD) {
1262 /* create new knote */
1263 kn = newkn;
1264 newkn = NULL;
1265 kn->kn_obj = fp;
1266 kn->kn_id = kev->ident;
1267 kn->kn_kq = kq;
1268 kn->kn_fop = kfilter->filtops;
1269 kn->kn_kfilter = kfilter;
1270 kn->kn_sfflags = kev->fflags;
1271 kn->kn_sdata = kev->data;
1272 kev->fflags = 0;
1273 kev->data = 0;
1274 kn->kn_kevent = *kev;
1275
1276 KASSERT(kn->kn_fop != NULL);
1277 /*
1278 * apply reference count to knote structure, and
1279 * do not release it at the end of this routine.
1280 */
1281 fp = NULL;
1282
1283 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
1284 /*
1285 * If knote is not on an fd, store on
1286 * internal hash table.
1287 */
1288 if (fdp->fd_knhashmask == 0) {
1289 /* XXXAD can block with fd_lock held */
1290 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1291 HASH_LIST, true,
1292 &fdp->fd_knhashmask);
1293 }
1294 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1295 fdp->fd_knhashmask)];
1296 } else {
1297 /* Otherwise, knote is on an fd. */
1298 list = (struct klist *)
1299 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1300 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1301 fdp->fd_lastkqfile = kn->kn_id;
1302 }
1303 SLIST_INSERT_HEAD(list, kn, kn_link);
1304
1305 /*
1306 * N.B. kn->kn_fop may change as the result
1307 * of filter_attach()!
1308 */
1309 error = filter_attach(kn);
1310 if (error != 0) {
1311 #ifdef DEBUG
1312 struct proc *p = curlwp->l_proc;
1313 const file_t *ft = kn->kn_obj;
1314 printf("%s: %s[%d]: event type %d not "
1315 "supported for file type %d/%s "
1316 "(error %d)\n", __func__,
1317 p->p_comm, p->p_pid,
1318 kn->kn_filter, ft ? ft->f_type : -1,
1319 ft ? ft->f_ops->fo_name : "?", error);
1320 #endif
1321
1322 /* knote_detach() drops fdp->fd_lock */
1323 knote_detach(kn, fdp, false);
1324 goto done;
1325 }
1326 atomic_inc_uint(&kfilter->refcnt);
1327 goto done_ev_add;
1328 } else {
1329 /* No matching knote and the EV_ADD flag is not set. */
1330 error = ENOENT;
1331 goto doneunlock;
1332 }
1333 }
1334
1335 if (kev->flags & EV_DELETE) {
1336 /* knote_detach() drops fdp->fd_lock */
1337 knote_detach(kn, fdp, true);
1338 goto done;
1339 }
1340
1341 /*
1342 * The user may change some filter values after the
1343 * initial EV_ADD, but doing so will not reset any
1344 * filter which have already been triggered.
1345 */
1346 kn->kn_kevent.udata = kev->udata;
1347 KASSERT(kn->kn_fop != NULL);
1348 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1349 kn->kn_fop->f_touch != NULL) {
1350 mutex_spin_enter(&kq->kq_lock);
1351 filter_touch(kn, kev, EVENT_REGISTER);
1352 mutex_spin_exit(&kq->kq_lock);
1353 } else {
1354 kn->kn_sfflags = kev->fflags;
1355 kn->kn_sdata = kev->data;
1356 }
1357
1358 /*
1359 * We can get here if we are trying to attach
1360 * an event to a file descriptor that does not
1361 * support events, and the attach routine is
1362 * broken and does not return an error.
1363 */
1364 done_ev_add:
1365 rv = filter_event(kn, 0);
1366 if (rv)
1367 knote_activate(kn);
1368
1369 /* disable knote */
1370 if ((kev->flags & EV_DISABLE)) {
1371 mutex_spin_enter(&kq->kq_lock);
1372 if ((kn->kn_status & KN_DISABLED) == 0)
1373 kn->kn_status |= KN_DISABLED;
1374 mutex_spin_exit(&kq->kq_lock);
1375 }
1376
1377 /* enable knote */
1378 if ((kev->flags & EV_ENABLE)) {
1379 knote_enqueue(kn);
1380 }
1381 doneunlock:
1382 mutex_exit(&fdp->fd_lock);
1383 done:
1384 rw_exit(&kqueue_filter_lock);
1385 if (newkn != NULL)
1386 kmem_free(newkn, sizeof(*newkn));
1387 if (fp != NULL)
1388 fd_putfile(fd);
1389 return (error);
1390 }
1391
1392 #if defined(DEBUG)
1393 #define KN_FMT(buf, kn) \
1394 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1395
1396 static void
1397 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1398 {
1399 const struct knote *kn;
1400 u_int count;
1401 int nmarker;
1402 char buf[128];
1403
1404 KASSERT(mutex_owned(&kq->kq_lock));
1405 KASSERT(KQ_COUNT(kq) < UINT_MAX / 2);
1406
1407 count = 0;
1408 nmarker = 0;
1409 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1410 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1411 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1412 func, line, kq, kn, KN_FMT(buf, kn));
1413 }
1414 if ((kn->kn_status & KN_MARKER) == 0) {
1415 if (kn->kn_kq != kq) {
1416 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1417 func, line, kq, kn, kn->kn_kq,
1418 KN_FMT(buf, kn));
1419 }
1420 if ((kn->kn_status & KN_ACTIVE) == 0) {
1421 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1422 func, line, kq, kn, KN_FMT(buf, kn));
1423 }
1424 count++;
1425 if (count > KQ_COUNT(kq)) {
1426 panic("%s,%zu: kq=%p kq->kq_count(%d) != "
1427 "count(%d), nmarker=%d",
1428 func, line, kq, KQ_COUNT(kq), count,
1429 nmarker);
1430 }
1431 } else {
1432 nmarker++;
1433 }
1434 }
1435 }
1436 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1437 #else /* defined(DEBUG) */
1438 #define kq_check(a) /* nothing */
1439 #endif /* defined(DEBUG) */
1440
1441 static void
1442 kqueue_restart(file_t *fp)
1443 {
1444 struct kqueue *kq = fp->f_kqueue;
1445 KASSERT(kq != NULL);
1446
1447 mutex_spin_enter(&kq->kq_lock);
1448 kq->kq_count |= KQ_RESTART;
1449 cv_broadcast(&kq->kq_cv);
1450 mutex_spin_exit(&kq->kq_lock);
1451 }
1452
1453 /*
1454 * Scan through the list of events on fp (for a maximum of maxevents),
1455 * returning the results in to ulistp. Timeout is determined by tsp; if
1456 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1457 * as appropriate.
1458 */
1459 static int
1460 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1461 const struct timespec *tsp, register_t *retval,
1462 const struct kevent_ops *keops, struct kevent *kevbuf,
1463 size_t kevcnt)
1464 {
1465 struct kqueue *kq;
1466 struct kevent *kevp;
1467 struct timespec ats, sleepts;
1468 struct knote *kn, *marker, morker;
1469 size_t count, nkev, nevents;
1470 int timeout, error, touch, rv, influx;
1471 filedesc_t *fdp;
1472
1473 fdp = curlwp->l_fd;
1474 kq = fp->f_kqueue;
1475 count = maxevents;
1476 nkev = nevents = error = 0;
1477 if (count == 0) {
1478 *retval = 0;
1479 return 0;
1480 }
1481
1482 if (tsp) { /* timeout supplied */
1483 ats = *tsp;
1484 if (inittimeleft(&ats, &sleepts) == -1) {
1485 *retval = maxevents;
1486 return EINVAL;
1487 }
1488 timeout = tstohz(&ats);
1489 if (timeout <= 0)
1490 timeout = -1; /* do poll */
1491 } else {
1492 /* no timeout, wait forever */
1493 timeout = 0;
1494 }
1495
1496 memset(&morker, 0, sizeof(morker));
1497 marker = &morker;
1498 marker->kn_status = KN_MARKER;
1499 mutex_spin_enter(&kq->kq_lock);
1500 retry:
1501 kevp = kevbuf;
1502 if (KQ_COUNT(kq) == 0) {
1503 if (timeout >= 0) {
1504 error = cv_timedwait_sig(&kq->kq_cv,
1505 &kq->kq_lock, timeout);
1506 if (error == 0) {
1507 if (KQ_COUNT(kq) == 0 &&
1508 (kq->kq_count & KQ_RESTART)) {
1509 /* return to clear file reference */
1510 error = ERESTART;
1511 } else if (tsp == NULL || (timeout =
1512 gettimeleft(&ats, &sleepts)) > 0) {
1513 goto retry;
1514 }
1515 } else {
1516 /* don't restart after signals... */
1517 if (error == ERESTART)
1518 error = EINTR;
1519 if (error == EWOULDBLOCK)
1520 error = 0;
1521 }
1522 }
1523 mutex_spin_exit(&kq->kq_lock);
1524 goto done;
1525 }
1526
1527 /* mark end of knote list */
1528 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1529 influx = 0;
1530
1531 /*
1532 * Acquire the fdp->fd_lock interlock to avoid races with
1533 * file creation/destruction from other threads.
1534 */
1535 relock:
1536 mutex_spin_exit(&kq->kq_lock);
1537 mutex_enter(&fdp->fd_lock);
1538 mutex_spin_enter(&kq->kq_lock);
1539
1540 while (count != 0) {
1541 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1542
1543 if ((kn->kn_status & KN_MARKER) != 0 && kn != marker) {
1544 if (influx) {
1545 influx = 0;
1546 KQ_FLUX_WAKEUP(kq);
1547 }
1548 mutex_exit(&fdp->fd_lock);
1549 (void)cv_wait(&kq->kq_cv, &kq->kq_lock);
1550 goto relock;
1551 }
1552
1553 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1554 if (kn == marker) {
1555 /* it's our marker, stop */
1556 KQ_FLUX_WAKEUP(kq);
1557 if (count == maxevents) {
1558 mutex_exit(&fdp->fd_lock);
1559 goto retry;
1560 }
1561 break;
1562 }
1563 KASSERT((kn->kn_status & KN_BUSY) == 0);
1564
1565 kq_check(kq);
1566 kn->kn_status &= ~KN_QUEUED;
1567 kn->kn_status |= KN_BUSY;
1568 kq_check(kq);
1569 if (kn->kn_status & KN_DISABLED) {
1570 kn->kn_status &= ~KN_BUSY;
1571 kq->kq_count--;
1572 /* don't want disabled events */
1573 continue;
1574 }
1575 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1576 mutex_spin_exit(&kq->kq_lock);
1577 KASSERT(mutex_owned(&fdp->fd_lock));
1578 rv = filter_event(kn, 0);
1579 mutex_spin_enter(&kq->kq_lock);
1580 /* Re-poll if note was re-enqueued. */
1581 if ((kn->kn_status & KN_QUEUED) != 0) {
1582 kn->kn_status &= ~KN_BUSY;
1583 /* Re-enqueue raised kq_count, lower it again */
1584 kq->kq_count--;
1585 influx = 1;
1586 continue;
1587 }
1588 if (rv == 0) {
1589 /*
1590 * non-ONESHOT event that hasn't
1591 * triggered again, so de-queue.
1592 */
1593 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1594 kq->kq_count--;
1595 influx = 1;
1596 continue;
1597 }
1598 }
1599 KASSERT(kn->kn_fop != NULL);
1600 touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1601 kn->kn_fop->f_touch != NULL);
1602 /* XXXAD should be got from f_event if !oneshot. */
1603 if (touch) {
1604 filter_touch(kn, kevp, EVENT_PROCESS);
1605 } else {
1606 *kevp = kn->kn_kevent;
1607 }
1608 kevp++;
1609 nkev++;
1610 influx = 1;
1611 if (kn->kn_flags & EV_ONESHOT) {
1612 /* delete ONESHOT events after retrieval */
1613 kn->kn_status &= ~KN_BUSY;
1614 kq->kq_count--;
1615 mutex_spin_exit(&kq->kq_lock);
1616 knote_detach(kn, fdp, true);
1617 mutex_enter(&fdp->fd_lock);
1618 mutex_spin_enter(&kq->kq_lock);
1619 } else if (kn->kn_flags & EV_CLEAR) {
1620 /* clear state after retrieval */
1621 kn->kn_data = 0;
1622 kn->kn_fflags = 0;
1623 /*
1624 * Manually clear knotes who weren't
1625 * 'touch'ed.
1626 */
1627 if (touch == 0) {
1628 kn->kn_data = 0;
1629 kn->kn_fflags = 0;
1630 }
1631 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1632 kq->kq_count--;
1633 } else if (kn->kn_flags & EV_DISPATCH) {
1634 kn->kn_status |= KN_DISABLED;
1635 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1636 kq->kq_count--;
1637 } else {
1638 /* add event back on list */
1639 kq_check(kq);
1640 kn->kn_status |= KN_QUEUED;
1641 kn->kn_status &= ~KN_BUSY;
1642 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1643 kq_check(kq);
1644 }
1645
1646 if (nkev == kevcnt) {
1647 /* do copyouts in kevcnt chunks */
1648 influx = 0;
1649 KQ_FLUX_WAKEUP(kq);
1650 mutex_spin_exit(&kq->kq_lock);
1651 mutex_exit(&fdp->fd_lock);
1652 error = (*keops->keo_put_events)
1653 (keops->keo_private,
1654 kevbuf, ulistp, nevents, nkev);
1655 mutex_enter(&fdp->fd_lock);
1656 mutex_spin_enter(&kq->kq_lock);
1657 nevents += nkev;
1658 nkev = 0;
1659 kevp = kevbuf;
1660 }
1661 count--;
1662 if (error != 0 || count == 0) {
1663 /* remove marker */
1664 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1665 break;
1666 }
1667 }
1668 KQ_FLUX_WAKEUP(kq);
1669 mutex_spin_exit(&kq->kq_lock);
1670 mutex_exit(&fdp->fd_lock);
1671
1672 done:
1673 if (nkev != 0) {
1674 /* copyout remaining events */
1675 error = (*keops->keo_put_events)(keops->keo_private,
1676 kevbuf, ulistp, nevents, nkev);
1677 }
1678 *retval = maxevents - count;
1679
1680 return error;
1681 }
1682
1683 /*
1684 * fileops ioctl method for a kqueue descriptor.
1685 *
1686 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1687 * KFILTER_BYNAME find name for filter, and return result in
1688 * name, which is of size len.
1689 * KFILTER_BYFILTER find filter for name. len is ignored.
1690 */
1691 /*ARGSUSED*/
1692 static int
1693 kqueue_ioctl(file_t *fp, u_long com, void *data)
1694 {
1695 struct kfilter_mapping *km;
1696 const struct kfilter *kfilter;
1697 char *name;
1698 int error;
1699
1700 km = data;
1701 error = 0;
1702 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1703
1704 switch (com) {
1705 case KFILTER_BYFILTER: /* convert filter -> name */
1706 rw_enter(&kqueue_filter_lock, RW_READER);
1707 kfilter = kfilter_byfilter(km->filter);
1708 if (kfilter != NULL) {
1709 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1710 rw_exit(&kqueue_filter_lock);
1711 error = copyoutstr(name, km->name, km->len, NULL);
1712 } else {
1713 rw_exit(&kqueue_filter_lock);
1714 error = ENOENT;
1715 }
1716 break;
1717
1718 case KFILTER_BYNAME: /* convert name -> filter */
1719 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1720 if (error) {
1721 break;
1722 }
1723 rw_enter(&kqueue_filter_lock, RW_READER);
1724 kfilter = kfilter_byname(name);
1725 if (kfilter != NULL)
1726 km->filter = kfilter->filter;
1727 else
1728 error = ENOENT;
1729 rw_exit(&kqueue_filter_lock);
1730 break;
1731
1732 default:
1733 error = ENOTTY;
1734 break;
1735
1736 }
1737 kmem_free(name, KFILTER_MAXNAME);
1738 return (error);
1739 }
1740
1741 /*
1742 * fileops fcntl method for a kqueue descriptor.
1743 */
1744 static int
1745 kqueue_fcntl(file_t *fp, u_int com, void *data)
1746 {
1747
1748 return (ENOTTY);
1749 }
1750
1751 /*
1752 * fileops poll method for a kqueue descriptor.
1753 * Determine if kqueue has events pending.
1754 */
1755 static int
1756 kqueue_poll(file_t *fp, int events)
1757 {
1758 struct kqueue *kq;
1759 int revents;
1760
1761 kq = fp->f_kqueue;
1762
1763 revents = 0;
1764 if (events & (POLLIN | POLLRDNORM)) {
1765 mutex_spin_enter(&kq->kq_lock);
1766 if (KQ_COUNT(kq) != 0) {
1767 revents |= events & (POLLIN | POLLRDNORM);
1768 } else {
1769 selrecord(curlwp, &kq->kq_sel);
1770 }
1771 kq_check(kq);
1772 mutex_spin_exit(&kq->kq_lock);
1773 }
1774
1775 return revents;
1776 }
1777
1778 /*
1779 * fileops stat method for a kqueue descriptor.
1780 * Returns dummy info, with st_size being number of events pending.
1781 */
1782 static int
1783 kqueue_stat(file_t *fp, struct stat *st)
1784 {
1785 struct kqueue *kq;
1786
1787 kq = fp->f_kqueue;
1788
1789 memset(st, 0, sizeof(*st));
1790 st->st_size = KQ_COUNT(kq);
1791 st->st_blksize = sizeof(struct kevent);
1792 st->st_mode = S_IFIFO;
1793
1794 return 0;
1795 }
1796
1797 static void
1798 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1799 {
1800 struct knote *kn;
1801 filedesc_t *fdp;
1802
1803 fdp = kq->kq_fdp;
1804
1805 KASSERT(mutex_owned(&fdp->fd_lock));
1806
1807 for (kn = SLIST_FIRST(list); kn != NULL;) {
1808 if (kq != kn->kn_kq) {
1809 kn = SLIST_NEXT(kn, kn_link);
1810 continue;
1811 }
1812 knote_detach(kn, fdp, true);
1813 mutex_enter(&fdp->fd_lock);
1814 kn = SLIST_FIRST(list);
1815 }
1816 }
1817
1818
1819 /*
1820 * fileops close method for a kqueue descriptor.
1821 */
1822 static int
1823 kqueue_close(file_t *fp)
1824 {
1825 struct kqueue *kq;
1826 filedesc_t *fdp;
1827 fdfile_t *ff;
1828 int i;
1829
1830 kq = fp->f_kqueue;
1831 fp->f_kqueue = NULL;
1832 fp->f_type = 0;
1833 fdp = curlwp->l_fd;
1834
1835 mutex_enter(&fdp->fd_lock);
1836 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1837 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1838 continue;
1839 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1840 }
1841 if (fdp->fd_knhashmask != 0) {
1842 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1843 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1844 }
1845 }
1846 mutex_exit(&fdp->fd_lock);
1847
1848 KASSERT(KQ_COUNT(kq) == 0);
1849 mutex_destroy(&kq->kq_lock);
1850 cv_destroy(&kq->kq_cv);
1851 seldestroy(&kq->kq_sel);
1852 kmem_free(kq, sizeof(*kq));
1853
1854 return (0);
1855 }
1856
1857 /*
1858 * struct fileops kqfilter method for a kqueue descriptor.
1859 * Event triggered when monitored kqueue changes.
1860 */
1861 static int
1862 kqueue_kqfilter(file_t *fp, struct knote *kn)
1863 {
1864 struct kqueue *kq;
1865
1866 kq = ((file_t *)kn->kn_obj)->f_kqueue;
1867
1868 KASSERT(fp == kn->kn_obj);
1869
1870 if (kn->kn_filter != EVFILT_READ)
1871 return 1;
1872
1873 kn->kn_fop = &kqread_filtops;
1874 mutex_enter(&kq->kq_lock);
1875 selrecord_knote(&kq->kq_sel, kn);
1876 mutex_exit(&kq->kq_lock);
1877
1878 return 0;
1879 }
1880
1881
1882 /*
1883 * Walk down a list of knotes, activating them if their event has
1884 * triggered. The caller's object lock (e.g. device driver lock)
1885 * must be held.
1886 */
1887 void
1888 knote(struct klist *list, long hint)
1889 {
1890 struct knote *kn, *tmpkn;
1891
1892 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1893 KASSERT(kn->kn_fop != NULL);
1894 KASSERT(kn->kn_fop->f_event != NULL);
1895 if ((*kn->kn_fop->f_event)(kn, hint))
1896 knote_activate(kn);
1897 }
1898 }
1899
1900 /*
1901 * Remove all knotes referencing a specified fd
1902 */
1903 void
1904 knote_fdclose(int fd)
1905 {
1906 struct klist *list;
1907 struct knote *kn;
1908 filedesc_t *fdp;
1909
1910 fdp = curlwp->l_fd;
1911 mutex_enter(&fdp->fd_lock);
1912 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1913 while ((kn = SLIST_FIRST(list)) != NULL) {
1914 knote_detach(kn, fdp, true);
1915 mutex_enter(&fdp->fd_lock);
1916 }
1917 mutex_exit(&fdp->fd_lock);
1918 }
1919
1920 /*
1921 * Drop knote. Called with fdp->fd_lock held, and will drop before
1922 * returning.
1923 */
1924 static void
1925 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1926 {
1927 struct klist *list;
1928 struct kqueue *kq;
1929
1930 kq = kn->kn_kq;
1931
1932 KASSERT((kn->kn_status & KN_MARKER) == 0);
1933 KASSERT(mutex_owned(&fdp->fd_lock));
1934
1935 KASSERT(kn->kn_fop != NULL);
1936 /* Remove from monitored object. */
1937 if (dofop) {
1938 filter_detach(kn);
1939 }
1940
1941 /* Remove from descriptor table. */
1942 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1943 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1944 else
1945 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1946
1947 SLIST_REMOVE(list, kn, knote, kn_link);
1948
1949 /* Remove from kqueue. */
1950 again:
1951 mutex_spin_enter(&kq->kq_lock);
1952 if ((kn->kn_status & KN_QUEUED) != 0) {
1953 kq_check(kq);
1954 kq->kq_count--;
1955 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1956 kn->kn_status &= ~KN_QUEUED;
1957 kq_check(kq);
1958 } else if (kn->kn_status & KN_BUSY) {
1959 mutex_spin_exit(&kq->kq_lock);
1960 goto again;
1961 }
1962 mutex_spin_exit(&kq->kq_lock);
1963
1964 mutex_exit(&fdp->fd_lock);
1965 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1966 fd_putfile(kn->kn_id);
1967 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1968 kmem_free(kn, sizeof(*kn));
1969 }
1970
1971 /*
1972 * Queue new event for knote.
1973 */
1974 static void
1975 knote_enqueue(struct knote *kn)
1976 {
1977 struct kqueue *kq;
1978
1979 KASSERT((kn->kn_status & KN_MARKER) == 0);
1980
1981 kq = kn->kn_kq;
1982
1983 mutex_spin_enter(&kq->kq_lock);
1984 if ((kn->kn_status & KN_DISABLED) != 0) {
1985 kn->kn_status &= ~KN_DISABLED;
1986 }
1987 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1988 kq_check(kq);
1989 kn->kn_status |= KN_QUEUED;
1990 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1991 kq->kq_count++;
1992 kq_check(kq);
1993 cv_broadcast(&kq->kq_cv);
1994 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1995 }
1996 mutex_spin_exit(&kq->kq_lock);
1997 }
1998 /*
1999 * Queue new event for knote.
2000 */
2001 static void
2002 knote_activate(struct knote *kn)
2003 {
2004 struct kqueue *kq;
2005
2006 KASSERT((kn->kn_status & KN_MARKER) == 0);
2007
2008 kq = kn->kn_kq;
2009
2010 mutex_spin_enter(&kq->kq_lock);
2011 kn->kn_status |= KN_ACTIVE;
2012 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
2013 kq_check(kq);
2014 kn->kn_status |= KN_QUEUED;
2015 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2016 kq->kq_count++;
2017 kq_check(kq);
2018 cv_broadcast(&kq->kq_cv);
2019 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2020 }
2021 mutex_spin_exit(&kq->kq_lock);
2022 }
2023