kern_event.c revision 1.125 1 /* $NetBSD: kern_event.c,v 1.125 2021/09/26 23:34:46 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * Copyright (c) 2009 Apple, Inc
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.125 2021/09/26 23:34:46 thorpej Exp $");
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/kernel.h>
67 #include <sys/wait.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/select.h>
71 #include <sys/queue.h>
72 #include <sys/event.h>
73 #include <sys/eventvar.h>
74 #include <sys/poll.h>
75 #include <sys/kmem.h>
76 #include <sys/stat.h>
77 #include <sys/filedesc.h>
78 #include <sys/syscallargs.h>
79 #include <sys/kauth.h>
80 #include <sys/conf.h>
81 #include <sys/atomic.h>
82
83 static int kqueue_scan(file_t *, size_t, struct kevent *,
84 const struct timespec *, register_t *,
85 const struct kevent_ops *, struct kevent *,
86 size_t);
87 static int kqueue_ioctl(file_t *, u_long, void *);
88 static int kqueue_fcntl(file_t *, u_int, void *);
89 static int kqueue_poll(file_t *, int);
90 static int kqueue_kqfilter(file_t *, struct knote *);
91 static int kqueue_stat(file_t *, struct stat *);
92 static int kqueue_close(file_t *);
93 static void kqueue_restart(file_t *);
94 static int kqueue_register(struct kqueue *, struct kevent *);
95 static void kqueue_doclose(struct kqueue *, struct klist *, int);
96
97 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
98 static void knote_enqueue(struct knote *);
99 static void knote_activate(struct knote *);
100
101 static void filt_kqdetach(struct knote *);
102 static int filt_kqueue(struct knote *, long hint);
103 static int filt_procattach(struct knote *);
104 static void filt_procdetach(struct knote *);
105 static int filt_proc(struct knote *, long hint);
106 static int filt_fileattach(struct knote *);
107 static void filt_timerexpire(void *x);
108 static int filt_timerattach(struct knote *);
109 static void filt_timerdetach(struct knote *);
110 static int filt_timer(struct knote *, long hint);
111 static int filt_userattach(struct knote *);
112 static void filt_userdetach(struct knote *);
113 static int filt_user(struct knote *, long hint);
114 static void filt_usertouch(struct knote *, struct kevent *, long type);
115
116 static const struct fileops kqueueops = {
117 .fo_name = "kqueue",
118 .fo_read = (void *)enxio,
119 .fo_write = (void *)enxio,
120 .fo_ioctl = kqueue_ioctl,
121 .fo_fcntl = kqueue_fcntl,
122 .fo_poll = kqueue_poll,
123 .fo_stat = kqueue_stat,
124 .fo_close = kqueue_close,
125 .fo_kqfilter = kqueue_kqfilter,
126 .fo_restart = kqueue_restart,
127 };
128
129 static const struct filterops kqread_filtops = {
130 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
131 .f_attach = NULL,
132 .f_detach = filt_kqdetach,
133 .f_event = filt_kqueue,
134 };
135
136 static const struct filterops proc_filtops = {
137 .f_flags = 0,
138 .f_attach = filt_procattach,
139 .f_detach = filt_procdetach,
140 .f_event = filt_proc,
141 };
142
143 /*
144 * file_filtops is not marked MPSAFE because it's going to call
145 * fileops::fo_kqfilter(), which might not be. That function,
146 * however, will override the knote's filterops, and thus will
147 * inherit the MPSAFE-ness of the back-end at that time.
148 */
149 static const struct filterops file_filtops = {
150 .f_flags = FILTEROP_ISFD,
151 .f_attach = filt_fileattach,
152 .f_detach = NULL,
153 .f_event = NULL,
154 };
155
156 static const struct filterops timer_filtops = {
157 .f_flags = FILTEROP_MPSAFE,
158 .f_attach = filt_timerattach,
159 .f_detach = filt_timerdetach,
160 .f_event = filt_timer,
161 };
162
163 static const struct filterops user_filtops = {
164 .f_flags = FILTEROP_MPSAFE,
165 .f_attach = filt_userattach,
166 .f_detach = filt_userdetach,
167 .f_event = filt_user,
168 .f_touch = filt_usertouch,
169 };
170
171 static u_int kq_ncallouts = 0;
172 static int kq_calloutmax = (4 * 1024);
173
174 #define KN_HASHSIZE 64 /* XXX should be tunable */
175 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
176
177 extern const struct filterops fs_filtops; /* vfs_syscalls.c */
178 extern const struct filterops sig_filtops; /* kern_sig.c */
179
180 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
181
182 /*
183 * Table for for all system-defined filters.
184 * These should be listed in the numeric order of the EVFILT_* defines.
185 * If filtops is NULL, the filter isn't implemented in NetBSD.
186 * End of list is when name is NULL.
187 *
188 * Note that 'refcnt' is meaningless for built-in filters.
189 */
190 struct kfilter {
191 const char *name; /* name of filter */
192 uint32_t filter; /* id of filter */
193 unsigned refcnt; /* reference count */
194 const struct filterops *filtops;/* operations for filter */
195 size_t namelen; /* length of name string */
196 };
197
198 /* System defined filters */
199 static struct kfilter sys_kfilters[] = {
200 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
201 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
202 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
203 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
204 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
205 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
206 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
207 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
208 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
209 { NULL, 0, 0, NULL, 0 },
210 };
211
212 /* User defined kfilters */
213 static struct kfilter *user_kfilters; /* array */
214 static int user_kfilterc; /* current offset */
215 static int user_kfiltermaxc; /* max size so far */
216 static size_t user_kfiltersz; /* size of allocated memory */
217
218 /*
219 * Global Locks.
220 *
221 * Lock order:
222 *
223 * kqueue_filter_lock
224 * -> kn_kq->kq_fdp->fd_lock
225 * -> object lock (e.g., device driver lock, &c.)
226 * -> kn_kq->kq_lock
227 *
228 * Locking rules:
229 *
230 * f_attach: fdp->fd_lock, KERNEL_LOCK
231 * f_detach: fdp->fd_lock, KERNEL_LOCK
232 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
233 * f_event via knote: whatever caller guarantees
234 * Typically, f_event(NOTE_SUBMIT) via knote: object lock
235 * f_event(!NOTE_SUBMIT) via knote: nothing,
236 * acquires/releases object lock inside.
237 */
238 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
239 static kmutex_t kqueue_timer_lock; /* for EVFILT_TIMER */
240
241 static int
242 filter_attach(struct knote *kn)
243 {
244 int rv;
245
246 KASSERT(kn->kn_fop != NULL);
247 KASSERT(kn->kn_fop->f_attach != NULL);
248
249 /*
250 * N.B. that kn->kn_fop may change as the result of calling
251 * f_attach().
252 */
253 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
254 rv = kn->kn_fop->f_attach(kn);
255 } else {
256 KERNEL_LOCK(1, NULL);
257 rv = kn->kn_fop->f_attach(kn);
258 KERNEL_UNLOCK_ONE(NULL);
259 }
260
261 return rv;
262 }
263
264 static void
265 filter_detach(struct knote *kn)
266 {
267 KASSERT(kn->kn_fop != NULL);
268 KASSERT(kn->kn_fop->f_detach != NULL);
269
270 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
271 kn->kn_fop->f_detach(kn);
272 } else {
273 KERNEL_LOCK(1, NULL);
274 kn->kn_fop->f_detach(kn);
275 KERNEL_UNLOCK_ONE(NULL);
276 }
277 }
278
279 static int
280 filter_event(struct knote *kn, long hint)
281 {
282 int rv;
283
284 KASSERT(kn->kn_fop != NULL);
285 KASSERT(kn->kn_fop->f_event != NULL);
286
287 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
288 rv = kn->kn_fop->f_event(kn, hint);
289 } else {
290 KERNEL_LOCK(1, NULL);
291 rv = kn->kn_fop->f_event(kn, hint);
292 KERNEL_UNLOCK_ONE(NULL);
293 }
294
295 return rv;
296 }
297
298 static void
299 filter_touch(struct knote *kn, struct kevent *kev, long type)
300 {
301 kn->kn_fop->f_touch(kn, kev, type);
302 }
303
304 static kauth_listener_t kqueue_listener;
305
306 static int
307 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
308 void *arg0, void *arg1, void *arg2, void *arg3)
309 {
310 struct proc *p;
311 int result;
312
313 result = KAUTH_RESULT_DEFER;
314 p = arg0;
315
316 if (action != KAUTH_PROCESS_KEVENT_FILTER)
317 return result;
318
319 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
320 ISSET(p->p_flag, PK_SUGID)))
321 return result;
322
323 result = KAUTH_RESULT_ALLOW;
324
325 return result;
326 }
327
328 /*
329 * Initialize the kqueue subsystem.
330 */
331 void
332 kqueue_init(void)
333 {
334
335 rw_init(&kqueue_filter_lock);
336 mutex_init(&kqueue_timer_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK);
337
338 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
339 kqueue_listener_cb, NULL);
340 }
341
342 /*
343 * Find kfilter entry by name, or NULL if not found.
344 */
345 static struct kfilter *
346 kfilter_byname_sys(const char *name)
347 {
348 int i;
349
350 KASSERT(rw_lock_held(&kqueue_filter_lock));
351
352 for (i = 0; sys_kfilters[i].name != NULL; i++) {
353 if (strcmp(name, sys_kfilters[i].name) == 0)
354 return &sys_kfilters[i];
355 }
356 return NULL;
357 }
358
359 static struct kfilter *
360 kfilter_byname_user(const char *name)
361 {
362 int i;
363
364 KASSERT(rw_lock_held(&kqueue_filter_lock));
365
366 /* user filter slots have a NULL name if previously deregistered */
367 for (i = 0; i < user_kfilterc ; i++) {
368 if (user_kfilters[i].name != NULL &&
369 strcmp(name, user_kfilters[i].name) == 0)
370 return &user_kfilters[i];
371 }
372 return NULL;
373 }
374
375 static struct kfilter *
376 kfilter_byname(const char *name)
377 {
378 struct kfilter *kfilter;
379
380 KASSERT(rw_lock_held(&kqueue_filter_lock));
381
382 if ((kfilter = kfilter_byname_sys(name)) != NULL)
383 return kfilter;
384
385 return kfilter_byname_user(name);
386 }
387
388 /*
389 * Find kfilter entry by filter id, or NULL if not found.
390 * Assumes entries are indexed in filter id order, for speed.
391 */
392 static struct kfilter *
393 kfilter_byfilter(uint32_t filter)
394 {
395 struct kfilter *kfilter;
396
397 KASSERT(rw_lock_held(&kqueue_filter_lock));
398
399 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
400 kfilter = &sys_kfilters[filter];
401 else if (user_kfilters != NULL &&
402 filter < EVFILT_SYSCOUNT + user_kfilterc)
403 /* it's a user filter */
404 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
405 else
406 return (NULL); /* out of range */
407 KASSERT(kfilter->filter == filter); /* sanity check! */
408 return (kfilter);
409 }
410
411 /*
412 * Register a new kfilter. Stores the entry in user_kfilters.
413 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
414 * If retfilter != NULL, the new filterid is returned in it.
415 */
416 int
417 kfilter_register(const char *name, const struct filterops *filtops,
418 int *retfilter)
419 {
420 struct kfilter *kfilter;
421 size_t len;
422 int i;
423
424 if (name == NULL || name[0] == '\0' || filtops == NULL)
425 return (EINVAL); /* invalid args */
426
427 rw_enter(&kqueue_filter_lock, RW_WRITER);
428 if (kfilter_byname(name) != NULL) {
429 rw_exit(&kqueue_filter_lock);
430 return (EEXIST); /* already exists */
431 }
432 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
433 rw_exit(&kqueue_filter_lock);
434 return (EINVAL); /* too many */
435 }
436
437 for (i = 0; i < user_kfilterc; i++) {
438 kfilter = &user_kfilters[i];
439 if (kfilter->name == NULL) {
440 /* Previously deregistered slot. Reuse. */
441 goto reuse;
442 }
443 }
444
445 /* check if need to grow user_kfilters */
446 if (user_kfilterc + 1 > user_kfiltermaxc) {
447 /* Grow in KFILTER_EXTENT chunks. */
448 user_kfiltermaxc += KFILTER_EXTENT;
449 len = user_kfiltermaxc * sizeof(*kfilter);
450 kfilter = kmem_alloc(len, KM_SLEEP);
451 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
452 if (user_kfilters != NULL) {
453 memcpy(kfilter, user_kfilters, user_kfiltersz);
454 kmem_free(user_kfilters, user_kfiltersz);
455 }
456 user_kfiltersz = len;
457 user_kfilters = kfilter;
458 }
459 /* Adding new slot */
460 kfilter = &user_kfilters[user_kfilterc++];
461 reuse:
462 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
463
464 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
465
466 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
467 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
468
469 if (retfilter != NULL)
470 *retfilter = kfilter->filter;
471 rw_exit(&kqueue_filter_lock);
472
473 return (0);
474 }
475
476 /*
477 * Unregister a kfilter previously registered with kfilter_register.
478 * This retains the filter id, but clears the name and frees filtops (filter
479 * operations), so that the number isn't reused during a boot.
480 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
481 */
482 int
483 kfilter_unregister(const char *name)
484 {
485 struct kfilter *kfilter;
486
487 if (name == NULL || name[0] == '\0')
488 return (EINVAL); /* invalid name */
489
490 rw_enter(&kqueue_filter_lock, RW_WRITER);
491 if (kfilter_byname_sys(name) != NULL) {
492 rw_exit(&kqueue_filter_lock);
493 return (EINVAL); /* can't detach system filters */
494 }
495
496 kfilter = kfilter_byname_user(name);
497 if (kfilter == NULL) {
498 rw_exit(&kqueue_filter_lock);
499 return (ENOENT);
500 }
501 if (kfilter->refcnt != 0) {
502 rw_exit(&kqueue_filter_lock);
503 return (EBUSY);
504 }
505
506 /* Cast away const (but we know it's safe. */
507 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
508 kfilter->name = NULL; /* mark as `not implemented' */
509
510 if (kfilter->filtops != NULL) {
511 /* Cast away const (but we know it's safe. */
512 kmem_free(__UNCONST(kfilter->filtops),
513 sizeof(*kfilter->filtops));
514 kfilter->filtops = NULL; /* mark as `not implemented' */
515 }
516 rw_exit(&kqueue_filter_lock);
517
518 return (0);
519 }
520
521
522 /*
523 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
524 * descriptors. Calls fileops kqfilter method for given file descriptor.
525 */
526 static int
527 filt_fileattach(struct knote *kn)
528 {
529 file_t *fp;
530
531 fp = kn->kn_obj;
532
533 return (*fp->f_ops->fo_kqfilter)(fp, kn);
534 }
535
536 /*
537 * Filter detach method for EVFILT_READ on kqueue descriptor.
538 */
539 static void
540 filt_kqdetach(struct knote *kn)
541 {
542 struct kqueue *kq;
543
544 kq = ((file_t *)kn->kn_obj)->f_kqueue;
545
546 mutex_spin_enter(&kq->kq_lock);
547 selremove_knote(&kq->kq_sel, kn);
548 mutex_spin_exit(&kq->kq_lock);
549 }
550
551 /*
552 * Filter event method for EVFILT_READ on kqueue descriptor.
553 */
554 /*ARGSUSED*/
555 static int
556 filt_kqueue(struct knote *kn, long hint)
557 {
558 struct kqueue *kq;
559 int rv;
560
561 kq = ((file_t *)kn->kn_obj)->f_kqueue;
562
563 if (hint != NOTE_SUBMIT)
564 mutex_spin_enter(&kq->kq_lock);
565 kn->kn_data = KQ_COUNT(kq);
566 rv = (kn->kn_data > 0);
567 if (hint != NOTE_SUBMIT)
568 mutex_spin_exit(&kq->kq_lock);
569
570 return rv;
571 }
572
573 /*
574 * Filter attach method for EVFILT_PROC.
575 */
576 static int
577 filt_procattach(struct knote *kn)
578 {
579 struct proc *p;
580 struct lwp *curl;
581
582 curl = curlwp;
583
584 mutex_enter(&proc_lock);
585 if (kn->kn_flags & EV_FLAG1) {
586 /*
587 * NOTE_TRACK attaches to the child process too early
588 * for proc_find, so do a raw look up and check the state
589 * explicitly.
590 */
591 p = proc_find_raw(kn->kn_id);
592 if (p != NULL && p->p_stat != SIDL)
593 p = NULL;
594 } else {
595 p = proc_find(kn->kn_id);
596 }
597
598 if (p == NULL) {
599 mutex_exit(&proc_lock);
600 return ESRCH;
601 }
602
603 /*
604 * Fail if it's not owned by you, or the last exec gave us
605 * setuid/setgid privs (unless you're root).
606 */
607 mutex_enter(p->p_lock);
608 mutex_exit(&proc_lock);
609 if (kauth_authorize_process(curl->l_cred,
610 KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
611 mutex_exit(p->p_lock);
612 return EACCES;
613 }
614
615 kn->kn_obj = p;
616 kn->kn_flags |= EV_CLEAR; /* automatically set */
617
618 /*
619 * internal flag indicating registration done by kernel
620 */
621 if (kn->kn_flags & EV_FLAG1) {
622 kn->kn_data = kn->kn_sdata; /* ppid */
623 kn->kn_fflags = NOTE_CHILD;
624 kn->kn_flags &= ~EV_FLAG1;
625 }
626 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
627 mutex_exit(p->p_lock);
628
629 return 0;
630 }
631
632 /*
633 * Filter detach method for EVFILT_PROC.
634 *
635 * The knote may be attached to a different process, which may exit,
636 * leaving nothing for the knote to be attached to. So when the process
637 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
638 * it will be deleted when read out. However, as part of the knote deletion,
639 * this routine is called, so a check is needed to avoid actually performing
640 * a detach, because the original process might not exist any more.
641 */
642 static void
643 filt_procdetach(struct knote *kn)
644 {
645 struct proc *p;
646
647 if (kn->kn_status & KN_DETACHED)
648 return;
649
650 p = kn->kn_obj;
651
652 mutex_enter(p->p_lock);
653 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
654 mutex_exit(p->p_lock);
655 }
656
657 /*
658 * Filter event method for EVFILT_PROC.
659 */
660 static int
661 filt_proc(struct knote *kn, long hint)
662 {
663 u_int event, fflag;
664 struct kevent kev;
665 struct kqueue *kq;
666 int error;
667
668 event = (u_int)hint & NOTE_PCTRLMASK;
669 kq = kn->kn_kq;
670 fflag = 0;
671
672 /* If the user is interested in this event, record it. */
673 if (kn->kn_sfflags & event)
674 fflag |= event;
675
676 if (event == NOTE_EXIT) {
677 struct proc *p = kn->kn_obj;
678
679 if (p != NULL)
680 kn->kn_data = P_WAITSTATUS(p);
681 /*
682 * Process is gone, so flag the event as finished.
683 *
684 * Detach the knote from watched process and mark
685 * it as such. We can't leave this to kqueue_scan(),
686 * since the process might not exist by then. And we
687 * have to do this now, since psignal KNOTE() is called
688 * also for zombies and we might end up reading freed
689 * memory if the kevent would already be picked up
690 * and knote g/c'ed.
691 */
692 filt_procdetach(kn);
693
694 mutex_spin_enter(&kq->kq_lock);
695 kn->kn_status |= KN_DETACHED;
696 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
697 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
698 kn->kn_fflags |= fflag;
699 mutex_spin_exit(&kq->kq_lock);
700
701 return 1;
702 }
703
704 mutex_spin_enter(&kq->kq_lock);
705 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
706 /*
707 * Process forked, and user wants to track the new process,
708 * so attach a new knote to it, and immediately report an
709 * event with the parent's pid. Register knote with new
710 * process.
711 */
712 memset(&kev, 0, sizeof(kev));
713 kev.ident = hint & NOTE_PDATAMASK; /* pid */
714 kev.filter = kn->kn_filter;
715 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
716 kev.fflags = kn->kn_sfflags;
717 kev.data = kn->kn_id; /* parent */
718 kev.udata = kn->kn_kevent.udata; /* preserve udata */
719 mutex_spin_exit(&kq->kq_lock);
720 error = kqueue_register(kq, &kev);
721 mutex_spin_enter(&kq->kq_lock);
722 if (error != 0)
723 kn->kn_fflags |= NOTE_TRACKERR;
724 }
725 kn->kn_fflags |= fflag;
726 fflag = kn->kn_fflags;
727 mutex_spin_exit(&kq->kq_lock);
728
729 return fflag != 0;
730 }
731
732 static void
733 filt_timerexpire(void *knx)
734 {
735 struct knote *kn = knx;
736 int tticks;
737
738 mutex_enter(&kqueue_timer_lock);
739 kn->kn_data++;
740 knote_activate(kn);
741 if ((kn->kn_flags & EV_ONESHOT) == 0) {
742 tticks = mstohz(kn->kn_sdata);
743 if (tticks <= 0)
744 tticks = 1;
745 callout_schedule((callout_t *)kn->kn_hook, tticks);
746 }
747 mutex_exit(&kqueue_timer_lock);
748 }
749
750 /*
751 * data contains amount of time to sleep, in milliseconds
752 */
753 static int
754 filt_timerattach(struct knote *kn)
755 {
756 callout_t *calloutp;
757 struct kqueue *kq;
758 int tticks;
759
760 tticks = mstohz(kn->kn_sdata);
761
762 /* if the supplied value is under our resolution, use 1 tick */
763 if (tticks == 0) {
764 if (kn->kn_sdata == 0)
765 return EINVAL;
766 tticks = 1;
767 }
768
769 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
770 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
771 atomic_dec_uint(&kq_ncallouts);
772 return ENOMEM;
773 }
774 callout_init(calloutp, CALLOUT_MPSAFE);
775
776 kq = kn->kn_kq;
777 mutex_spin_enter(&kq->kq_lock);
778 kn->kn_flags |= EV_CLEAR; /* automatically set */
779 kn->kn_hook = calloutp;
780 mutex_spin_exit(&kq->kq_lock);
781
782 callout_reset(calloutp, tticks, filt_timerexpire, kn);
783
784 return (0);
785 }
786
787 static void
788 filt_timerdetach(struct knote *kn)
789 {
790 callout_t *calloutp;
791 struct kqueue *kq = kn->kn_kq;
792
793 /*
794 * We don't need to hold the kqueue_timer_lock here; even
795 * if filt_timerexpire() misses our setting of EV_ONESHOT,
796 * we are guaranteed that the callout will no longer be
797 * scheduled even if we attempted to halt it after it already
798 * started running, even if it rescheduled itself.
799 */
800
801 mutex_spin_enter(&kq->kq_lock);
802 /* prevent rescheduling when we expire */
803 kn->kn_flags |= EV_ONESHOT;
804 mutex_spin_exit(&kq->kq_lock);
805
806 calloutp = (callout_t *)kn->kn_hook;
807
808 /*
809 * Attempt to stop the callout. This will block if it's
810 * already running.
811 */
812 callout_halt(calloutp, NULL);
813
814 callout_destroy(calloutp);
815 kmem_free(calloutp, sizeof(*calloutp));
816 atomic_dec_uint(&kq_ncallouts);
817 }
818
819 static int
820 filt_timer(struct knote *kn, long hint)
821 {
822 int rv;
823
824 mutex_enter(&kqueue_timer_lock);
825 rv = (kn->kn_data != 0);
826 mutex_exit(&kqueue_timer_lock);
827
828 return rv;
829 }
830
831 static int
832 filt_userattach(struct knote *kn)
833 {
834 struct kqueue *kq = kn->kn_kq;
835
836 /*
837 * EVFILT_USER knotes are not attached to anything in the kernel.
838 */
839 mutex_spin_enter(&kq->kq_lock);
840 kn->kn_hook = NULL;
841 if (kn->kn_fflags & NOTE_TRIGGER)
842 kn->kn_hookid = 1;
843 else
844 kn->kn_hookid = 0;
845 mutex_spin_exit(&kq->kq_lock);
846 return (0);
847 }
848
849 static void
850 filt_userdetach(struct knote *kn)
851 {
852
853 /*
854 * EVFILT_USER knotes are not attached to anything in the kernel.
855 */
856 }
857
858 static int
859 filt_user(struct knote *kn, long hint)
860 {
861 struct kqueue *kq = kn->kn_kq;
862 int hookid;
863
864 mutex_spin_enter(&kq->kq_lock);
865 hookid = kn->kn_hookid;
866 mutex_spin_exit(&kq->kq_lock);
867
868 return hookid;
869 }
870
871 static void
872 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
873 {
874 int ffctrl;
875
876 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
877
878 switch (type) {
879 case EVENT_REGISTER:
880 if (kev->fflags & NOTE_TRIGGER)
881 kn->kn_hookid = 1;
882
883 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
884 kev->fflags &= NOTE_FFLAGSMASK;
885 switch (ffctrl) {
886 case NOTE_FFNOP:
887 break;
888
889 case NOTE_FFAND:
890 kn->kn_sfflags &= kev->fflags;
891 break;
892
893 case NOTE_FFOR:
894 kn->kn_sfflags |= kev->fflags;
895 break;
896
897 case NOTE_FFCOPY:
898 kn->kn_sfflags = kev->fflags;
899 break;
900
901 default:
902 /* XXX Return error? */
903 break;
904 }
905 kn->kn_sdata = kev->data;
906 if (kev->flags & EV_CLEAR) {
907 kn->kn_hookid = 0;
908 kn->kn_data = 0;
909 kn->kn_fflags = 0;
910 }
911 break;
912
913 case EVENT_PROCESS:
914 *kev = kn->kn_kevent;
915 kev->fflags = kn->kn_sfflags;
916 kev->data = kn->kn_sdata;
917 if (kn->kn_flags & EV_CLEAR) {
918 kn->kn_hookid = 0;
919 kn->kn_data = 0;
920 kn->kn_fflags = 0;
921 }
922 break;
923
924 default:
925 panic("filt_usertouch() - invalid type (%ld)", type);
926 break;
927 }
928 }
929
930 /*
931 * filt_seltrue:
932 *
933 * This filter "event" routine simulates seltrue().
934 */
935 int
936 filt_seltrue(struct knote *kn, long hint)
937 {
938
939 /*
940 * We don't know how much data can be read/written,
941 * but we know that it *can* be. This is about as
942 * good as select/poll does as well.
943 */
944 kn->kn_data = 0;
945 return (1);
946 }
947
948 /*
949 * This provides full kqfilter entry for device switch tables, which
950 * has same effect as filter using filt_seltrue() as filter method.
951 */
952 static void
953 filt_seltruedetach(struct knote *kn)
954 {
955 /* Nothing to do */
956 }
957
958 const struct filterops seltrue_filtops = {
959 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
960 .f_attach = NULL,
961 .f_detach = filt_seltruedetach,
962 .f_event = filt_seltrue,
963 };
964
965 int
966 seltrue_kqfilter(dev_t dev, struct knote *kn)
967 {
968 switch (kn->kn_filter) {
969 case EVFILT_READ:
970 case EVFILT_WRITE:
971 kn->kn_fop = &seltrue_filtops;
972 break;
973 default:
974 return (EINVAL);
975 }
976
977 /* Nothing more to do */
978 return (0);
979 }
980
981 /*
982 * kqueue(2) system call.
983 */
984 static int
985 kqueue1(struct lwp *l, int flags, register_t *retval)
986 {
987 struct kqueue *kq;
988 file_t *fp;
989 int fd, error;
990
991 if ((error = fd_allocfile(&fp, &fd)) != 0)
992 return error;
993 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
994 fp->f_type = DTYPE_KQUEUE;
995 fp->f_ops = &kqueueops;
996 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
997 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
998 cv_init(&kq->kq_cv, "kqueue");
999 selinit(&kq->kq_sel);
1000 TAILQ_INIT(&kq->kq_head);
1001 fp->f_kqueue = kq;
1002 *retval = fd;
1003 kq->kq_fdp = curlwp->l_fd;
1004 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1005 fd_affix(curproc, fp, fd);
1006 return error;
1007 }
1008
1009 /*
1010 * kqueue(2) system call.
1011 */
1012 int
1013 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
1014 {
1015 return kqueue1(l, 0, retval);
1016 }
1017
1018 int
1019 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
1020 register_t *retval)
1021 {
1022 /* {
1023 syscallarg(int) flags;
1024 } */
1025 return kqueue1(l, SCARG(uap, flags), retval);
1026 }
1027
1028 /*
1029 * kevent(2) system call.
1030 */
1031 int
1032 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
1033 struct kevent *changes, size_t index, int n)
1034 {
1035
1036 return copyin(changelist + index, changes, n * sizeof(*changes));
1037 }
1038
1039 int
1040 kevent_put_events(void *ctx, struct kevent *events,
1041 struct kevent *eventlist, size_t index, int n)
1042 {
1043
1044 return copyout(events, eventlist + index, n * sizeof(*events));
1045 }
1046
1047 static const struct kevent_ops kevent_native_ops = {
1048 .keo_private = NULL,
1049 .keo_fetch_timeout = copyin,
1050 .keo_fetch_changes = kevent_fetch_changes,
1051 .keo_put_events = kevent_put_events,
1052 };
1053
1054 int
1055 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1056 register_t *retval)
1057 {
1058 /* {
1059 syscallarg(int) fd;
1060 syscallarg(const struct kevent *) changelist;
1061 syscallarg(size_t) nchanges;
1062 syscallarg(struct kevent *) eventlist;
1063 syscallarg(size_t) nevents;
1064 syscallarg(const struct timespec *) timeout;
1065 } */
1066
1067 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1068 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1069 SCARG(uap, timeout), &kevent_native_ops);
1070 }
1071
1072 int
1073 kevent1(register_t *retval, int fd,
1074 const struct kevent *changelist, size_t nchanges,
1075 struct kevent *eventlist, size_t nevents,
1076 const struct timespec *timeout,
1077 const struct kevent_ops *keops)
1078 {
1079 struct kevent *kevp;
1080 struct kqueue *kq;
1081 struct timespec ts;
1082 size_t i, n, ichange;
1083 int nerrors, error;
1084 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
1085 file_t *fp;
1086
1087 /* check that we're dealing with a kq */
1088 fp = fd_getfile(fd);
1089 if (fp == NULL)
1090 return (EBADF);
1091
1092 if (fp->f_type != DTYPE_KQUEUE) {
1093 fd_putfile(fd);
1094 return (EBADF);
1095 }
1096
1097 if (timeout != NULL) {
1098 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1099 if (error)
1100 goto done;
1101 timeout = &ts;
1102 }
1103
1104 kq = fp->f_kqueue;
1105 nerrors = 0;
1106 ichange = 0;
1107
1108 /* traverse list of events to register */
1109 while (nchanges > 0) {
1110 n = MIN(nchanges, __arraycount(kevbuf));
1111 error = (*keops->keo_fetch_changes)(keops->keo_private,
1112 changelist, kevbuf, ichange, n);
1113 if (error)
1114 goto done;
1115 for (i = 0; i < n; i++) {
1116 kevp = &kevbuf[i];
1117 kevp->flags &= ~EV_SYSFLAGS;
1118 /* register each knote */
1119 error = kqueue_register(kq, kevp);
1120 if (!error && !(kevp->flags & EV_RECEIPT))
1121 continue;
1122 if (nevents == 0)
1123 goto done;
1124 kevp->flags = EV_ERROR;
1125 kevp->data = error;
1126 error = (*keops->keo_put_events)
1127 (keops->keo_private, kevp,
1128 eventlist, nerrors, 1);
1129 if (error)
1130 goto done;
1131 nevents--;
1132 nerrors++;
1133 }
1134 nchanges -= n; /* update the results */
1135 ichange += n;
1136 }
1137 if (nerrors) {
1138 *retval = nerrors;
1139 error = 0;
1140 goto done;
1141 }
1142
1143 /* actually scan through the events */
1144 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1145 kevbuf, __arraycount(kevbuf));
1146 done:
1147 fd_putfile(fd);
1148 return (error);
1149 }
1150
1151 /*
1152 * Register a given kevent kev onto the kqueue
1153 */
1154 static int
1155 kqueue_register(struct kqueue *kq, struct kevent *kev)
1156 {
1157 struct kfilter *kfilter;
1158 filedesc_t *fdp;
1159 file_t *fp;
1160 fdfile_t *ff;
1161 struct knote *kn, *newkn;
1162 struct klist *list;
1163 int error, fd, rv;
1164
1165 fdp = kq->kq_fdp;
1166 fp = NULL;
1167 kn = NULL;
1168 error = 0;
1169 fd = 0;
1170
1171 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1172
1173 rw_enter(&kqueue_filter_lock, RW_READER);
1174 kfilter = kfilter_byfilter(kev->filter);
1175 if (kfilter == NULL || kfilter->filtops == NULL) {
1176 /* filter not found nor implemented */
1177 rw_exit(&kqueue_filter_lock);
1178 kmem_free(newkn, sizeof(*newkn));
1179 return (EINVAL);
1180 }
1181
1182 /* search if knote already exists */
1183 if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
1184 /* monitoring a file descriptor */
1185 /* validate descriptor */
1186 if (kev->ident > INT_MAX
1187 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1188 rw_exit(&kqueue_filter_lock);
1189 kmem_free(newkn, sizeof(*newkn));
1190 return EBADF;
1191 }
1192 mutex_enter(&fdp->fd_lock);
1193 ff = fdp->fd_dt->dt_ff[fd];
1194 if (ff->ff_refcnt & FR_CLOSING) {
1195 error = EBADF;
1196 goto doneunlock;
1197 }
1198 if (fd <= fdp->fd_lastkqfile) {
1199 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1200 if (kq == kn->kn_kq &&
1201 kev->filter == kn->kn_filter)
1202 break;
1203 }
1204 }
1205 } else {
1206 /*
1207 * not monitoring a file descriptor, so
1208 * lookup knotes in internal hash table
1209 */
1210 mutex_enter(&fdp->fd_lock);
1211 if (fdp->fd_knhashmask != 0) {
1212 list = &fdp->fd_knhash[
1213 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1214 SLIST_FOREACH(kn, list, kn_link) {
1215 if (kev->ident == kn->kn_id &&
1216 kq == kn->kn_kq &&
1217 kev->filter == kn->kn_filter)
1218 break;
1219 }
1220 }
1221 }
1222
1223 /*
1224 * kn now contains the matching knote, or NULL if no match
1225 */
1226 if (kn == NULL) {
1227 if (kev->flags & EV_ADD) {
1228 /* create new knote */
1229 kn = newkn;
1230 newkn = NULL;
1231 kn->kn_obj = fp;
1232 kn->kn_id = kev->ident;
1233 kn->kn_kq = kq;
1234 kn->kn_fop = kfilter->filtops;
1235 kn->kn_kfilter = kfilter;
1236 kn->kn_sfflags = kev->fflags;
1237 kn->kn_sdata = kev->data;
1238 kev->fflags = 0;
1239 kev->data = 0;
1240 kn->kn_kevent = *kev;
1241
1242 KASSERT(kn->kn_fop != NULL);
1243 /*
1244 * apply reference count to knote structure, and
1245 * do not release it at the end of this routine.
1246 */
1247 fp = NULL;
1248
1249 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
1250 /*
1251 * If knote is not on an fd, store on
1252 * internal hash table.
1253 */
1254 if (fdp->fd_knhashmask == 0) {
1255 /* XXXAD can block with fd_lock held */
1256 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1257 HASH_LIST, true,
1258 &fdp->fd_knhashmask);
1259 }
1260 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1261 fdp->fd_knhashmask)];
1262 } else {
1263 /* Otherwise, knote is on an fd. */
1264 list = (struct klist *)
1265 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1266 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1267 fdp->fd_lastkqfile = kn->kn_id;
1268 }
1269 SLIST_INSERT_HEAD(list, kn, kn_link);
1270
1271 /*
1272 * N.B. kn->kn_fop may change as the result
1273 * of filter_attach()!
1274 */
1275 error = filter_attach(kn);
1276 if (error != 0) {
1277 #ifdef DEBUG
1278 struct proc *p = curlwp->l_proc;
1279 const file_t *ft = kn->kn_obj;
1280 printf("%s: %s[%d]: event type %d not "
1281 "supported for file type %d/%s "
1282 "(error %d)\n", __func__,
1283 p->p_comm, p->p_pid,
1284 kn->kn_filter, ft ? ft->f_type : -1,
1285 ft ? ft->f_ops->fo_name : "?", error);
1286 #endif
1287
1288 /* knote_detach() drops fdp->fd_lock */
1289 knote_detach(kn, fdp, false);
1290 goto done;
1291 }
1292 atomic_inc_uint(&kfilter->refcnt);
1293 goto done_ev_add;
1294 } else {
1295 /* No matching knote and the EV_ADD flag is not set. */
1296 error = ENOENT;
1297 goto doneunlock;
1298 }
1299 }
1300
1301 if (kev->flags & EV_DELETE) {
1302 /* knote_detach() drops fdp->fd_lock */
1303 knote_detach(kn, fdp, true);
1304 goto done;
1305 }
1306
1307 /*
1308 * The user may change some filter values after the
1309 * initial EV_ADD, but doing so will not reset any
1310 * filter which have already been triggered.
1311 */
1312 kn->kn_kevent.udata = kev->udata;
1313 KASSERT(kn->kn_fop != NULL);
1314 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1315 kn->kn_fop->f_touch != NULL) {
1316 mutex_spin_enter(&kq->kq_lock);
1317 filter_touch(kn, kev, EVENT_REGISTER);
1318 mutex_spin_exit(&kq->kq_lock);
1319 } else {
1320 kn->kn_sfflags = kev->fflags;
1321 kn->kn_sdata = kev->data;
1322 }
1323
1324 /*
1325 * We can get here if we are trying to attach
1326 * an event to a file descriptor that does not
1327 * support events, and the attach routine is
1328 * broken and does not return an error.
1329 */
1330 done_ev_add:
1331 rv = filter_event(kn, 0);
1332 if (rv)
1333 knote_activate(kn);
1334
1335 /* disable knote */
1336 if ((kev->flags & EV_DISABLE)) {
1337 mutex_spin_enter(&kq->kq_lock);
1338 if ((kn->kn_status & KN_DISABLED) == 0)
1339 kn->kn_status |= KN_DISABLED;
1340 mutex_spin_exit(&kq->kq_lock);
1341 }
1342
1343 /* enable knote */
1344 if ((kev->flags & EV_ENABLE)) {
1345 knote_enqueue(kn);
1346 }
1347 doneunlock:
1348 mutex_exit(&fdp->fd_lock);
1349 done:
1350 rw_exit(&kqueue_filter_lock);
1351 if (newkn != NULL)
1352 kmem_free(newkn, sizeof(*newkn));
1353 if (fp != NULL)
1354 fd_putfile(fd);
1355 return (error);
1356 }
1357
1358 #if defined(DEBUG)
1359 #define KN_FMT(buf, kn) \
1360 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1361
1362 static void
1363 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1364 {
1365 const struct knote *kn;
1366 u_int count;
1367 int nmarker;
1368 char buf[128];
1369
1370 KASSERT(mutex_owned(&kq->kq_lock));
1371 KASSERT(KQ_COUNT(kq) < UINT_MAX / 2);
1372
1373 count = 0;
1374 nmarker = 0;
1375 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1376 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1377 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1378 func, line, kq, kn, KN_FMT(buf, kn));
1379 }
1380 if ((kn->kn_status & KN_MARKER) == 0) {
1381 if (kn->kn_kq != kq) {
1382 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1383 func, line, kq, kn, kn->kn_kq,
1384 KN_FMT(buf, kn));
1385 }
1386 if ((kn->kn_status & KN_ACTIVE) == 0) {
1387 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1388 func, line, kq, kn, KN_FMT(buf, kn));
1389 }
1390 count++;
1391 if (count > KQ_COUNT(kq)) {
1392 panic("%s,%zu: kq=%p kq->kq_count(%d) != "
1393 "count(%d), nmarker=%d",
1394 func, line, kq, KQ_COUNT(kq), count,
1395 nmarker);
1396 }
1397 } else {
1398 nmarker++;
1399 }
1400 }
1401 }
1402 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1403 #else /* defined(DEBUG) */
1404 #define kq_check(a) /* nothing */
1405 #endif /* defined(DEBUG) */
1406
1407 static void
1408 kqueue_restart(file_t *fp)
1409 {
1410 struct kqueue *kq = fp->f_kqueue;
1411 KASSERT(kq != NULL);
1412
1413 mutex_spin_enter(&kq->kq_lock);
1414 kq->kq_count |= KQ_RESTART;
1415 cv_broadcast(&kq->kq_cv);
1416 mutex_spin_exit(&kq->kq_lock);
1417 }
1418
1419 /*
1420 * Scan through the list of events on fp (for a maximum of maxevents),
1421 * returning the results in to ulistp. Timeout is determined by tsp; if
1422 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1423 * as appropriate.
1424 */
1425 static int
1426 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1427 const struct timespec *tsp, register_t *retval,
1428 const struct kevent_ops *keops, struct kevent *kevbuf,
1429 size_t kevcnt)
1430 {
1431 struct kqueue *kq;
1432 struct kevent *kevp;
1433 struct timespec ats, sleepts;
1434 struct knote *kn, *marker, morker;
1435 size_t count, nkev, nevents;
1436 int timeout, error, touch, rv, influx;
1437 filedesc_t *fdp;
1438
1439 fdp = curlwp->l_fd;
1440 kq = fp->f_kqueue;
1441 count = maxevents;
1442 nkev = nevents = error = 0;
1443 if (count == 0) {
1444 *retval = 0;
1445 return 0;
1446 }
1447
1448 if (tsp) { /* timeout supplied */
1449 ats = *tsp;
1450 if (inittimeleft(&ats, &sleepts) == -1) {
1451 *retval = maxevents;
1452 return EINVAL;
1453 }
1454 timeout = tstohz(&ats);
1455 if (timeout <= 0)
1456 timeout = -1; /* do poll */
1457 } else {
1458 /* no timeout, wait forever */
1459 timeout = 0;
1460 }
1461
1462 memset(&morker, 0, sizeof(morker));
1463 marker = &morker;
1464 marker->kn_status = KN_MARKER;
1465 mutex_spin_enter(&kq->kq_lock);
1466 retry:
1467 kevp = kevbuf;
1468 if (KQ_COUNT(kq) == 0) {
1469 if (timeout >= 0) {
1470 error = cv_timedwait_sig(&kq->kq_cv,
1471 &kq->kq_lock, timeout);
1472 if (error == 0) {
1473 if (KQ_COUNT(kq) == 0 &&
1474 (kq->kq_count & KQ_RESTART)) {
1475 /* return to clear file reference */
1476 error = ERESTART;
1477 } else if (tsp == NULL || (timeout =
1478 gettimeleft(&ats, &sleepts)) > 0) {
1479 goto retry;
1480 }
1481 } else {
1482 /* don't restart after signals... */
1483 if (error == ERESTART)
1484 error = EINTR;
1485 if (error == EWOULDBLOCK)
1486 error = 0;
1487 }
1488 }
1489 mutex_spin_exit(&kq->kq_lock);
1490 goto done;
1491 }
1492
1493 /* mark end of knote list */
1494 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1495 influx = 0;
1496
1497 /*
1498 * Acquire the fdp->fd_lock interlock to avoid races with
1499 * file creation/destruction from other threads.
1500 */
1501 relock:
1502 mutex_spin_exit(&kq->kq_lock);
1503 mutex_enter(&fdp->fd_lock);
1504 mutex_spin_enter(&kq->kq_lock);
1505
1506 while (count != 0) {
1507 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1508
1509 if ((kn->kn_status & KN_MARKER) != 0 && kn != marker) {
1510 if (influx) {
1511 influx = 0;
1512 KQ_FLUX_WAKEUP(kq);
1513 }
1514 mutex_exit(&fdp->fd_lock);
1515 (void)cv_wait(&kq->kq_cv, &kq->kq_lock);
1516 goto relock;
1517 }
1518
1519 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1520 if (kn == marker) {
1521 /* it's our marker, stop */
1522 KQ_FLUX_WAKEUP(kq);
1523 if (count == maxevents) {
1524 mutex_exit(&fdp->fd_lock);
1525 goto retry;
1526 }
1527 break;
1528 }
1529 KASSERT((kn->kn_status & KN_BUSY) == 0);
1530
1531 kq_check(kq);
1532 kn->kn_status &= ~KN_QUEUED;
1533 kn->kn_status |= KN_BUSY;
1534 kq_check(kq);
1535 if (kn->kn_status & KN_DISABLED) {
1536 kn->kn_status &= ~KN_BUSY;
1537 kq->kq_count--;
1538 /* don't want disabled events */
1539 continue;
1540 }
1541 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1542 mutex_spin_exit(&kq->kq_lock);
1543 KASSERT(mutex_owned(&fdp->fd_lock));
1544 rv = filter_event(kn, 0);
1545 mutex_spin_enter(&kq->kq_lock);
1546 /* Re-poll if note was re-enqueued. */
1547 if ((kn->kn_status & KN_QUEUED) != 0) {
1548 kn->kn_status &= ~KN_BUSY;
1549 /* Re-enqueue raised kq_count, lower it again */
1550 kq->kq_count--;
1551 influx = 1;
1552 continue;
1553 }
1554 if (rv == 0) {
1555 /*
1556 * non-ONESHOT event that hasn't
1557 * triggered again, so de-queue.
1558 */
1559 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1560 kq->kq_count--;
1561 influx = 1;
1562 continue;
1563 }
1564 }
1565 KASSERT(kn->kn_fop != NULL);
1566 touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1567 kn->kn_fop->f_touch != NULL);
1568 /* XXXAD should be got from f_event if !oneshot. */
1569 if (touch) {
1570 filter_touch(kn, kevp, EVENT_PROCESS);
1571 } else {
1572 *kevp = kn->kn_kevent;
1573 }
1574 kevp++;
1575 nkev++;
1576 influx = 1;
1577 if (kn->kn_flags & EV_ONESHOT) {
1578 /* delete ONESHOT events after retrieval */
1579 kn->kn_status &= ~KN_BUSY;
1580 kq->kq_count--;
1581 mutex_spin_exit(&kq->kq_lock);
1582 knote_detach(kn, fdp, true);
1583 mutex_enter(&fdp->fd_lock);
1584 mutex_spin_enter(&kq->kq_lock);
1585 } else if (kn->kn_flags & EV_CLEAR) {
1586 /* clear state after retrieval */
1587 kn->kn_data = 0;
1588 kn->kn_fflags = 0;
1589 /*
1590 * Manually clear knotes who weren't
1591 * 'touch'ed.
1592 */
1593 if (touch == 0) {
1594 kn->kn_data = 0;
1595 kn->kn_fflags = 0;
1596 }
1597 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1598 kq->kq_count--;
1599 } else if (kn->kn_flags & EV_DISPATCH) {
1600 kn->kn_status |= KN_DISABLED;
1601 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1602 kq->kq_count--;
1603 } else {
1604 /* add event back on list */
1605 kq_check(kq);
1606 kn->kn_status |= KN_QUEUED;
1607 kn->kn_status &= ~KN_BUSY;
1608 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1609 kq_check(kq);
1610 }
1611
1612 if (nkev == kevcnt) {
1613 /* do copyouts in kevcnt chunks */
1614 influx = 0;
1615 KQ_FLUX_WAKEUP(kq);
1616 mutex_spin_exit(&kq->kq_lock);
1617 mutex_exit(&fdp->fd_lock);
1618 error = (*keops->keo_put_events)
1619 (keops->keo_private,
1620 kevbuf, ulistp, nevents, nkev);
1621 mutex_enter(&fdp->fd_lock);
1622 mutex_spin_enter(&kq->kq_lock);
1623 nevents += nkev;
1624 nkev = 0;
1625 kevp = kevbuf;
1626 }
1627 count--;
1628 if (error != 0 || count == 0) {
1629 /* remove marker */
1630 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1631 break;
1632 }
1633 }
1634 KQ_FLUX_WAKEUP(kq);
1635 mutex_spin_exit(&kq->kq_lock);
1636 mutex_exit(&fdp->fd_lock);
1637
1638 done:
1639 if (nkev != 0) {
1640 /* copyout remaining events */
1641 error = (*keops->keo_put_events)(keops->keo_private,
1642 kevbuf, ulistp, nevents, nkev);
1643 }
1644 *retval = maxevents - count;
1645
1646 return error;
1647 }
1648
1649 /*
1650 * fileops ioctl method for a kqueue descriptor.
1651 *
1652 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1653 * KFILTER_BYNAME find name for filter, and return result in
1654 * name, which is of size len.
1655 * KFILTER_BYFILTER find filter for name. len is ignored.
1656 */
1657 /*ARGSUSED*/
1658 static int
1659 kqueue_ioctl(file_t *fp, u_long com, void *data)
1660 {
1661 struct kfilter_mapping *km;
1662 const struct kfilter *kfilter;
1663 char *name;
1664 int error;
1665
1666 km = data;
1667 error = 0;
1668 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1669
1670 switch (com) {
1671 case KFILTER_BYFILTER: /* convert filter -> name */
1672 rw_enter(&kqueue_filter_lock, RW_READER);
1673 kfilter = kfilter_byfilter(km->filter);
1674 if (kfilter != NULL) {
1675 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1676 rw_exit(&kqueue_filter_lock);
1677 error = copyoutstr(name, km->name, km->len, NULL);
1678 } else {
1679 rw_exit(&kqueue_filter_lock);
1680 error = ENOENT;
1681 }
1682 break;
1683
1684 case KFILTER_BYNAME: /* convert name -> filter */
1685 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1686 if (error) {
1687 break;
1688 }
1689 rw_enter(&kqueue_filter_lock, RW_READER);
1690 kfilter = kfilter_byname(name);
1691 if (kfilter != NULL)
1692 km->filter = kfilter->filter;
1693 else
1694 error = ENOENT;
1695 rw_exit(&kqueue_filter_lock);
1696 break;
1697
1698 default:
1699 error = ENOTTY;
1700 break;
1701
1702 }
1703 kmem_free(name, KFILTER_MAXNAME);
1704 return (error);
1705 }
1706
1707 /*
1708 * fileops fcntl method for a kqueue descriptor.
1709 */
1710 static int
1711 kqueue_fcntl(file_t *fp, u_int com, void *data)
1712 {
1713
1714 return (ENOTTY);
1715 }
1716
1717 /*
1718 * fileops poll method for a kqueue descriptor.
1719 * Determine if kqueue has events pending.
1720 */
1721 static int
1722 kqueue_poll(file_t *fp, int events)
1723 {
1724 struct kqueue *kq;
1725 int revents;
1726
1727 kq = fp->f_kqueue;
1728
1729 revents = 0;
1730 if (events & (POLLIN | POLLRDNORM)) {
1731 mutex_spin_enter(&kq->kq_lock);
1732 if (KQ_COUNT(kq) != 0) {
1733 revents |= events & (POLLIN | POLLRDNORM);
1734 } else {
1735 selrecord(curlwp, &kq->kq_sel);
1736 }
1737 kq_check(kq);
1738 mutex_spin_exit(&kq->kq_lock);
1739 }
1740
1741 return revents;
1742 }
1743
1744 /*
1745 * fileops stat method for a kqueue descriptor.
1746 * Returns dummy info, with st_size being number of events pending.
1747 */
1748 static int
1749 kqueue_stat(file_t *fp, struct stat *st)
1750 {
1751 struct kqueue *kq;
1752
1753 kq = fp->f_kqueue;
1754
1755 memset(st, 0, sizeof(*st));
1756 st->st_size = KQ_COUNT(kq);
1757 st->st_blksize = sizeof(struct kevent);
1758 st->st_mode = S_IFIFO;
1759
1760 return 0;
1761 }
1762
1763 static void
1764 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1765 {
1766 struct knote *kn;
1767 filedesc_t *fdp;
1768
1769 fdp = kq->kq_fdp;
1770
1771 KASSERT(mutex_owned(&fdp->fd_lock));
1772
1773 for (kn = SLIST_FIRST(list); kn != NULL;) {
1774 if (kq != kn->kn_kq) {
1775 kn = SLIST_NEXT(kn, kn_link);
1776 continue;
1777 }
1778 knote_detach(kn, fdp, true);
1779 mutex_enter(&fdp->fd_lock);
1780 kn = SLIST_FIRST(list);
1781 }
1782 }
1783
1784
1785 /*
1786 * fileops close method for a kqueue descriptor.
1787 */
1788 static int
1789 kqueue_close(file_t *fp)
1790 {
1791 struct kqueue *kq;
1792 filedesc_t *fdp;
1793 fdfile_t *ff;
1794 int i;
1795
1796 kq = fp->f_kqueue;
1797 fp->f_kqueue = NULL;
1798 fp->f_type = 0;
1799 fdp = curlwp->l_fd;
1800
1801 mutex_enter(&fdp->fd_lock);
1802 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1803 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1804 continue;
1805 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1806 }
1807 if (fdp->fd_knhashmask != 0) {
1808 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1809 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1810 }
1811 }
1812 mutex_exit(&fdp->fd_lock);
1813
1814 KASSERT(KQ_COUNT(kq) == 0);
1815 mutex_destroy(&kq->kq_lock);
1816 cv_destroy(&kq->kq_cv);
1817 seldestroy(&kq->kq_sel);
1818 kmem_free(kq, sizeof(*kq));
1819
1820 return (0);
1821 }
1822
1823 /*
1824 * struct fileops kqfilter method for a kqueue descriptor.
1825 * Event triggered when monitored kqueue changes.
1826 */
1827 static int
1828 kqueue_kqfilter(file_t *fp, struct knote *kn)
1829 {
1830 struct kqueue *kq;
1831
1832 kq = ((file_t *)kn->kn_obj)->f_kqueue;
1833
1834 KASSERT(fp == kn->kn_obj);
1835
1836 if (kn->kn_filter != EVFILT_READ)
1837 return 1;
1838
1839 kn->kn_fop = &kqread_filtops;
1840 mutex_enter(&kq->kq_lock);
1841 selrecord_knote(&kq->kq_sel, kn);
1842 mutex_exit(&kq->kq_lock);
1843
1844 return 0;
1845 }
1846
1847
1848 /*
1849 * Walk down a list of knotes, activating them if their event has
1850 * triggered. The caller's object lock (e.g. device driver lock)
1851 * must be held.
1852 */
1853 void
1854 knote(struct klist *list, long hint)
1855 {
1856 struct knote *kn, *tmpkn;
1857
1858 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1859 KASSERT(kn->kn_fop != NULL);
1860 KASSERT(kn->kn_fop->f_event != NULL);
1861 if ((*kn->kn_fop->f_event)(kn, hint))
1862 knote_activate(kn);
1863 }
1864 }
1865
1866 /*
1867 * Remove all knotes referencing a specified fd
1868 */
1869 void
1870 knote_fdclose(int fd)
1871 {
1872 struct klist *list;
1873 struct knote *kn;
1874 filedesc_t *fdp;
1875
1876 fdp = curlwp->l_fd;
1877 mutex_enter(&fdp->fd_lock);
1878 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1879 while ((kn = SLIST_FIRST(list)) != NULL) {
1880 knote_detach(kn, fdp, true);
1881 mutex_enter(&fdp->fd_lock);
1882 }
1883 mutex_exit(&fdp->fd_lock);
1884 }
1885
1886 /*
1887 * Drop knote. Called with fdp->fd_lock held, and will drop before
1888 * returning.
1889 */
1890 static void
1891 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1892 {
1893 struct klist *list;
1894 struct kqueue *kq;
1895
1896 kq = kn->kn_kq;
1897
1898 KASSERT((kn->kn_status & KN_MARKER) == 0);
1899 KASSERT(mutex_owned(&fdp->fd_lock));
1900
1901 KASSERT(kn->kn_fop != NULL);
1902 /* Remove from monitored object. */
1903 if (dofop) {
1904 filter_detach(kn);
1905 }
1906
1907 /* Remove from descriptor table. */
1908 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1909 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1910 else
1911 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1912
1913 SLIST_REMOVE(list, kn, knote, kn_link);
1914
1915 /* Remove from kqueue. */
1916 again:
1917 mutex_spin_enter(&kq->kq_lock);
1918 if ((kn->kn_status & KN_QUEUED) != 0) {
1919 kq_check(kq);
1920 kq->kq_count--;
1921 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1922 kn->kn_status &= ~KN_QUEUED;
1923 kq_check(kq);
1924 } else if (kn->kn_status & KN_BUSY) {
1925 mutex_spin_exit(&kq->kq_lock);
1926 goto again;
1927 }
1928 mutex_spin_exit(&kq->kq_lock);
1929
1930 mutex_exit(&fdp->fd_lock);
1931 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1932 fd_putfile(kn->kn_id);
1933 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1934 kmem_free(kn, sizeof(*kn));
1935 }
1936
1937 /*
1938 * Queue new event for knote.
1939 */
1940 static void
1941 knote_enqueue(struct knote *kn)
1942 {
1943 struct kqueue *kq;
1944
1945 KASSERT((kn->kn_status & KN_MARKER) == 0);
1946
1947 kq = kn->kn_kq;
1948
1949 mutex_spin_enter(&kq->kq_lock);
1950 if ((kn->kn_status & KN_DISABLED) != 0) {
1951 kn->kn_status &= ~KN_DISABLED;
1952 }
1953 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1954 kq_check(kq);
1955 kn->kn_status |= KN_QUEUED;
1956 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1957 kq->kq_count++;
1958 kq_check(kq);
1959 cv_broadcast(&kq->kq_cv);
1960 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1961 }
1962 mutex_spin_exit(&kq->kq_lock);
1963 }
1964 /*
1965 * Queue new event for knote.
1966 */
1967 static void
1968 knote_activate(struct knote *kn)
1969 {
1970 struct kqueue *kq;
1971
1972 KASSERT((kn->kn_status & KN_MARKER) == 0);
1973
1974 kq = kn->kn_kq;
1975
1976 mutex_spin_enter(&kq->kq_lock);
1977 kn->kn_status |= KN_ACTIVE;
1978 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1979 kq_check(kq);
1980 kn->kn_status |= KN_QUEUED;
1981 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1982 kq->kq_count++;
1983 kq_check(kq);
1984 cv_broadcast(&kq->kq_cv);
1985 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1986 }
1987 mutex_spin_exit(&kq->kq_lock);
1988 }
1989