kern_event.c revision 1.129 1 /* $NetBSD: kern_event.c,v 1.129 2021/10/10 18:07:51 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * Copyright (c) 2009 Apple, Inc
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59 */
60
61 #include "opt_ddb.h"
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.129 2021/10/10 18:07:51 thorpej Exp $");
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/kernel.h>
69 #include <sys/wait.h>
70 #include <sys/proc.h>
71 #include <sys/file.h>
72 #include <sys/select.h>
73 #include <sys/queue.h>
74 #include <sys/event.h>
75 #include <sys/eventvar.h>
76 #include <sys/poll.h>
77 #include <sys/kmem.h>
78 #include <sys/stat.h>
79 #include <sys/filedesc.h>
80 #include <sys/syscallargs.h>
81 #include <sys/kauth.h>
82 #include <sys/conf.h>
83 #include <sys/atomic.h>
84
85 static int kqueue_scan(file_t *, size_t, struct kevent *,
86 const struct timespec *, register_t *,
87 const struct kevent_ops *, struct kevent *,
88 size_t);
89 static int kqueue_ioctl(file_t *, u_long, void *);
90 static int kqueue_fcntl(file_t *, u_int, void *);
91 static int kqueue_poll(file_t *, int);
92 static int kqueue_kqfilter(file_t *, struct knote *);
93 static int kqueue_stat(file_t *, struct stat *);
94 static int kqueue_close(file_t *);
95 static void kqueue_restart(file_t *);
96 static int kqueue_register(struct kqueue *, struct kevent *);
97 static void kqueue_doclose(struct kqueue *, struct klist *, int);
98
99 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
100 static void knote_enqueue(struct knote *);
101 static void knote_activate(struct knote *);
102
103 static void filt_kqdetach(struct knote *);
104 static int filt_kqueue(struct knote *, long hint);
105 static int filt_procattach(struct knote *);
106 static void filt_procdetach(struct knote *);
107 static int filt_proc(struct knote *, long hint);
108 static int filt_fileattach(struct knote *);
109 static void filt_timerexpire(void *x);
110 static int filt_timerattach(struct knote *);
111 static void filt_timerdetach(struct knote *);
112 static int filt_timer(struct knote *, long hint);
113 static int filt_userattach(struct knote *);
114 static void filt_userdetach(struct knote *);
115 static int filt_user(struct knote *, long hint);
116 static void filt_usertouch(struct knote *, struct kevent *, long type);
117
118 static const struct fileops kqueueops = {
119 .fo_name = "kqueue",
120 .fo_read = (void *)enxio,
121 .fo_write = (void *)enxio,
122 .fo_ioctl = kqueue_ioctl,
123 .fo_fcntl = kqueue_fcntl,
124 .fo_poll = kqueue_poll,
125 .fo_stat = kqueue_stat,
126 .fo_close = kqueue_close,
127 .fo_kqfilter = kqueue_kqfilter,
128 .fo_restart = kqueue_restart,
129 };
130
131 static const struct filterops kqread_filtops = {
132 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
133 .f_attach = NULL,
134 .f_detach = filt_kqdetach,
135 .f_event = filt_kqueue,
136 };
137
138 static const struct filterops proc_filtops = {
139 .f_flags = FILTEROP_MPSAFE,
140 .f_attach = filt_procattach,
141 .f_detach = filt_procdetach,
142 .f_event = filt_proc,
143 };
144
145 /*
146 * file_filtops is not marked MPSAFE because it's going to call
147 * fileops::fo_kqfilter(), which might not be. That function,
148 * however, will override the knote's filterops, and thus will
149 * inherit the MPSAFE-ness of the back-end at that time.
150 */
151 static const struct filterops file_filtops = {
152 .f_flags = FILTEROP_ISFD,
153 .f_attach = filt_fileattach,
154 .f_detach = NULL,
155 .f_event = NULL,
156 };
157
158 static const struct filterops timer_filtops = {
159 .f_flags = FILTEROP_MPSAFE,
160 .f_attach = filt_timerattach,
161 .f_detach = filt_timerdetach,
162 .f_event = filt_timer,
163 };
164
165 static const struct filterops user_filtops = {
166 .f_flags = FILTEROP_MPSAFE,
167 .f_attach = filt_userattach,
168 .f_detach = filt_userdetach,
169 .f_event = filt_user,
170 .f_touch = filt_usertouch,
171 };
172
173 static u_int kq_ncallouts = 0;
174 static int kq_calloutmax = (4 * 1024);
175
176 #define KN_HASHSIZE 64 /* XXX should be tunable */
177 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
178
179 extern const struct filterops fs_filtops; /* vfs_syscalls.c */
180 extern const struct filterops sig_filtops; /* kern_sig.c */
181
182 /*
183 * Table for for all system-defined filters.
184 * These should be listed in the numeric order of the EVFILT_* defines.
185 * If filtops is NULL, the filter isn't implemented in NetBSD.
186 * End of list is when name is NULL.
187 *
188 * Note that 'refcnt' is meaningless for built-in filters.
189 */
190 struct kfilter {
191 const char *name; /* name of filter */
192 uint32_t filter; /* id of filter */
193 unsigned refcnt; /* reference count */
194 const struct filterops *filtops;/* operations for filter */
195 size_t namelen; /* length of name string */
196 };
197
198 /* System defined filters */
199 static struct kfilter sys_kfilters[] = {
200 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
201 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
202 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
203 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
204 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
205 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
206 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
207 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
208 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
209 { NULL, 0, 0, NULL, 0 },
210 };
211
212 /* User defined kfilters */
213 static struct kfilter *user_kfilters; /* array */
214 static int user_kfilterc; /* current offset */
215 static int user_kfiltermaxc; /* max size so far */
216 static size_t user_kfiltersz; /* size of allocated memory */
217
218 /*
219 * Global Locks.
220 *
221 * Lock order:
222 *
223 * kqueue_filter_lock
224 * -> kn_kq->kq_fdp->fd_lock
225 * -> object lock (e.g., device driver lock, &c.)
226 * -> kn_kq->kq_lock
227 *
228 * Locking rules:
229 *
230 * f_attach: fdp->fd_lock, KERNEL_LOCK
231 * f_detach: fdp->fd_lock, KERNEL_LOCK
232 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
233 * f_event via knote: whatever caller guarantees
234 * Typically, f_event(NOTE_SUBMIT) via knote: object lock
235 * f_event(!NOTE_SUBMIT) via knote: nothing,
236 * acquires/releases object lock inside.
237 *
238 * Locking rules when detaching knotes:
239 *
240 * There are some situations where knote submission may require dropping
241 * locks (see knote_proc_fork()). In order to support this, it's possible
242 * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to
243 * be detached while it remains in-flux. Because it will not be detached,
244 * locks can be dropped so e.g. memory can be allocated, locks on other
245 * data structures can be acquired, etc. During this time, any attempt to
246 * detach an in-flux knote must wait until the knote is no longer in-flux.
247 * When this happens, the knote is marked for death (KN_WILLDETACH) and the
248 * LWP who gets to finish the detach operation is recorded in the knote's
249 * 'udata' field (which is no longer required for its original purpose once
250 * a knote is so marked). Code paths that lead to knote_detach() must ensure
251 * that their LWP is the one tasked with its final demise after waiting for
252 * the in-flux status of the knote to clear. Note that once a knote is
253 * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
254 *
255 * Once the special circumstances have been handled, the locks are re-
256 * acquired in the proper order (object lock -> kq_lock), the knote taken
257 * out of flux, and any waiters are notified. Because waiters must have
258 * also dropped *their* locks in order to safely block, they must re-
259 * validate all of their assumptions; see knote_detach_quiesce(). See also
260 * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
261 * cases.
262 *
263 * When kqueue_scan() encounters an in-flux knote, the situation is
264 * treated like another LWP's list marker.
265 *
266 * LISTEN WELL: It is important to not hold knotes in flux for an
267 * extended period of time! In-flux knotes effectively block any
268 * progress of the kqueue_scan() operation. Any code paths that place
269 * knotes in-flux should be careful to not block for indefinite periods
270 * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
271 * KM_SLEEP is not).
272 */
273 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
274 static kmutex_t kqueue_timer_lock; /* for EVFILT_TIMER */
275
276 #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock)
277 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
278
279 static inline bool
280 kn_in_flux(struct knote *kn)
281 {
282 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
283 return kn->kn_influx != 0;
284 }
285
286 static inline bool
287 kn_enter_flux(struct knote *kn)
288 {
289 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
290
291 if (kn->kn_status & KN_WILLDETACH) {
292 return false;
293 }
294
295 KASSERT(kn->kn_influx < UINT_MAX);
296 kn->kn_influx++;
297
298 return true;
299 }
300
301 static inline bool
302 kn_leave_flux(struct knote *kn)
303 {
304 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
305 KASSERT(kn->kn_influx > 0);
306 kn->kn_influx--;
307 return kn->kn_influx == 0;
308 }
309
310 static void
311 kn_wait_flux(struct knote *kn, bool can_loop)
312 {
313 bool loop;
314
315 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
316
317 /*
318 * It may not be safe for us to touch the knote again after
319 * dropping the kq_lock. The caller has let us know in
320 * 'can_loop'.
321 */
322 for (loop = true; loop && kn->kn_influx != 0; loop = can_loop) {
323 KQ_FLUX_WAIT(kn->kn_kq);
324 }
325 }
326
327 #define KNOTE_WILLDETACH(kn) \
328 do { \
329 (kn)->kn_status |= KN_WILLDETACH; \
330 (kn)->kn_kevent.udata = curlwp; \
331 } while (/*CONSTCOND*/0)
332
333 /*
334 * Wait until the specified knote is in a quiescent state and
335 * safe to detach. Returns true if we potentially blocked (and
336 * thus dropped our locks).
337 */
338 static bool
339 knote_detach_quiesce(struct knote *kn)
340 {
341 struct kqueue *kq = kn->kn_kq;
342 filedesc_t *fdp = kq->kq_fdp;
343
344 KASSERT(mutex_owned(&fdp->fd_lock));
345
346 mutex_spin_enter(&kq->kq_lock);
347 /*
348 * There are two cases where we might see KN_WILLDETACH here:
349 *
350 * 1. Someone else has already started detaching the knote but
351 * had to wait for it to settle first.
352 *
353 * 2. We had to wait for it to settle, and had to come back
354 * around after re-acquiring the locks.
355 *
356 * When KN_WILLDETACH is set, we also set the LWP that claimed
357 * the prize of finishing the detach in the 'udata' field of the
358 * knote (which will never be used again for its usual purpose
359 * once the note is in this state). If it doesn't point to us,
360 * we must drop the locks and let them in to finish the job.
361 *
362 * Otherwise, once we have claimed the knote for ourselves, we
363 * can finish waiting for it to settle. The is the only scenario
364 * where touching a detaching knote is safe after dropping the
365 * locks.
366 */
367 if ((kn->kn_status & KN_WILLDETACH) != 0 &&
368 kn->kn_kevent.udata != curlwp) {
369 /*
370 * N.B. it is NOT safe for us to touch the knote again
371 * after dropping the locks here. The caller must go
372 * back around and re-validate everything. However, if
373 * the knote is in-flux, we want to block to minimize
374 * busy-looping.
375 */
376 mutex_exit(&fdp->fd_lock);
377 if (kn_in_flux(kn)) {
378 kn_wait_flux(kn, false);
379 mutex_spin_exit(&kq->kq_lock);
380 return true;
381 }
382 mutex_spin_exit(&kq->kq_lock);
383 preempt_point();
384 return true;
385 }
386 /*
387 * If we get here, we know that we will be claiming the
388 * detach responsibilies, or that we already have and
389 * this is the second attempt after re-validation.
390 */
391 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
392 kn->kn_kevent.udata == curlwp);
393 /*
394 * Similarly, if we get here, either we are just claiming it
395 * and may have to wait for it to settle, or if this is the
396 * second attempt after re-validation that no other code paths
397 * have put it in-flux.
398 */
399 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
400 kn_in_flux(kn) == false);
401 KNOTE_WILLDETACH(kn);
402 if (kn_in_flux(kn)) {
403 mutex_exit(&fdp->fd_lock);
404 kn_wait_flux(kn, true);
405 /*
406 * It is safe for us to touch the knote again after
407 * dropping the locks, but the caller must still
408 * re-validate everything because other aspects of
409 * the environment may have changed while we blocked.
410 */
411 KASSERT(kn_in_flux(kn) == false);
412 mutex_spin_exit(&kq->kq_lock);
413 return true;
414 }
415 mutex_spin_exit(&kq->kq_lock);
416
417 return false;
418 }
419
420 static int
421 filter_attach(struct knote *kn)
422 {
423 int rv;
424
425 KASSERT(kn->kn_fop != NULL);
426 KASSERT(kn->kn_fop->f_attach != NULL);
427
428 /*
429 * N.B. that kn->kn_fop may change as the result of calling
430 * f_attach().
431 */
432 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
433 rv = kn->kn_fop->f_attach(kn);
434 } else {
435 KERNEL_LOCK(1, NULL);
436 rv = kn->kn_fop->f_attach(kn);
437 KERNEL_UNLOCK_ONE(NULL);
438 }
439
440 return rv;
441 }
442
443 static void
444 filter_detach(struct knote *kn)
445 {
446 KASSERT(kn->kn_fop != NULL);
447 KASSERT(kn->kn_fop->f_detach != NULL);
448
449 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
450 kn->kn_fop->f_detach(kn);
451 } else {
452 KERNEL_LOCK(1, NULL);
453 kn->kn_fop->f_detach(kn);
454 KERNEL_UNLOCK_ONE(NULL);
455 }
456 }
457
458 static int
459 filter_event(struct knote *kn, long hint)
460 {
461 int rv;
462
463 KASSERT(kn->kn_fop != NULL);
464 KASSERT(kn->kn_fop->f_event != NULL);
465
466 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
467 rv = kn->kn_fop->f_event(kn, hint);
468 } else {
469 KERNEL_LOCK(1, NULL);
470 rv = kn->kn_fop->f_event(kn, hint);
471 KERNEL_UNLOCK_ONE(NULL);
472 }
473
474 return rv;
475 }
476
477 static void
478 filter_touch(struct knote *kn, struct kevent *kev, long type)
479 {
480 kn->kn_fop->f_touch(kn, kev, type);
481 }
482
483 static kauth_listener_t kqueue_listener;
484
485 static int
486 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
487 void *arg0, void *arg1, void *arg2, void *arg3)
488 {
489 struct proc *p;
490 int result;
491
492 result = KAUTH_RESULT_DEFER;
493 p = arg0;
494
495 if (action != KAUTH_PROCESS_KEVENT_FILTER)
496 return result;
497
498 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
499 ISSET(p->p_flag, PK_SUGID)))
500 return result;
501
502 result = KAUTH_RESULT_ALLOW;
503
504 return result;
505 }
506
507 /*
508 * Initialize the kqueue subsystem.
509 */
510 void
511 kqueue_init(void)
512 {
513
514 rw_init(&kqueue_filter_lock);
515 mutex_init(&kqueue_timer_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK);
516
517 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
518 kqueue_listener_cb, NULL);
519 }
520
521 /*
522 * Find kfilter entry by name, or NULL if not found.
523 */
524 static struct kfilter *
525 kfilter_byname_sys(const char *name)
526 {
527 int i;
528
529 KASSERT(rw_lock_held(&kqueue_filter_lock));
530
531 for (i = 0; sys_kfilters[i].name != NULL; i++) {
532 if (strcmp(name, sys_kfilters[i].name) == 0)
533 return &sys_kfilters[i];
534 }
535 return NULL;
536 }
537
538 static struct kfilter *
539 kfilter_byname_user(const char *name)
540 {
541 int i;
542
543 KASSERT(rw_lock_held(&kqueue_filter_lock));
544
545 /* user filter slots have a NULL name if previously deregistered */
546 for (i = 0; i < user_kfilterc ; i++) {
547 if (user_kfilters[i].name != NULL &&
548 strcmp(name, user_kfilters[i].name) == 0)
549 return &user_kfilters[i];
550 }
551 return NULL;
552 }
553
554 static struct kfilter *
555 kfilter_byname(const char *name)
556 {
557 struct kfilter *kfilter;
558
559 KASSERT(rw_lock_held(&kqueue_filter_lock));
560
561 if ((kfilter = kfilter_byname_sys(name)) != NULL)
562 return kfilter;
563
564 return kfilter_byname_user(name);
565 }
566
567 /*
568 * Find kfilter entry by filter id, or NULL if not found.
569 * Assumes entries are indexed in filter id order, for speed.
570 */
571 static struct kfilter *
572 kfilter_byfilter(uint32_t filter)
573 {
574 struct kfilter *kfilter;
575
576 KASSERT(rw_lock_held(&kqueue_filter_lock));
577
578 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
579 kfilter = &sys_kfilters[filter];
580 else if (user_kfilters != NULL &&
581 filter < EVFILT_SYSCOUNT + user_kfilterc)
582 /* it's a user filter */
583 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
584 else
585 return (NULL); /* out of range */
586 KASSERT(kfilter->filter == filter); /* sanity check! */
587 return (kfilter);
588 }
589
590 /*
591 * Register a new kfilter. Stores the entry in user_kfilters.
592 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
593 * If retfilter != NULL, the new filterid is returned in it.
594 */
595 int
596 kfilter_register(const char *name, const struct filterops *filtops,
597 int *retfilter)
598 {
599 struct kfilter *kfilter;
600 size_t len;
601 int i;
602
603 if (name == NULL || name[0] == '\0' || filtops == NULL)
604 return (EINVAL); /* invalid args */
605
606 rw_enter(&kqueue_filter_lock, RW_WRITER);
607 if (kfilter_byname(name) != NULL) {
608 rw_exit(&kqueue_filter_lock);
609 return (EEXIST); /* already exists */
610 }
611 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
612 rw_exit(&kqueue_filter_lock);
613 return (EINVAL); /* too many */
614 }
615
616 for (i = 0; i < user_kfilterc; i++) {
617 kfilter = &user_kfilters[i];
618 if (kfilter->name == NULL) {
619 /* Previously deregistered slot. Reuse. */
620 goto reuse;
621 }
622 }
623
624 /* check if need to grow user_kfilters */
625 if (user_kfilterc + 1 > user_kfiltermaxc) {
626 /* Grow in KFILTER_EXTENT chunks. */
627 user_kfiltermaxc += KFILTER_EXTENT;
628 len = user_kfiltermaxc * sizeof(*kfilter);
629 kfilter = kmem_alloc(len, KM_SLEEP);
630 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
631 if (user_kfilters != NULL) {
632 memcpy(kfilter, user_kfilters, user_kfiltersz);
633 kmem_free(user_kfilters, user_kfiltersz);
634 }
635 user_kfiltersz = len;
636 user_kfilters = kfilter;
637 }
638 /* Adding new slot */
639 kfilter = &user_kfilters[user_kfilterc++];
640 reuse:
641 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
642
643 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
644
645 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
646 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
647
648 if (retfilter != NULL)
649 *retfilter = kfilter->filter;
650 rw_exit(&kqueue_filter_lock);
651
652 return (0);
653 }
654
655 /*
656 * Unregister a kfilter previously registered with kfilter_register.
657 * This retains the filter id, but clears the name and frees filtops (filter
658 * operations), so that the number isn't reused during a boot.
659 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
660 */
661 int
662 kfilter_unregister(const char *name)
663 {
664 struct kfilter *kfilter;
665
666 if (name == NULL || name[0] == '\0')
667 return (EINVAL); /* invalid name */
668
669 rw_enter(&kqueue_filter_lock, RW_WRITER);
670 if (kfilter_byname_sys(name) != NULL) {
671 rw_exit(&kqueue_filter_lock);
672 return (EINVAL); /* can't detach system filters */
673 }
674
675 kfilter = kfilter_byname_user(name);
676 if (kfilter == NULL) {
677 rw_exit(&kqueue_filter_lock);
678 return (ENOENT);
679 }
680 if (kfilter->refcnt != 0) {
681 rw_exit(&kqueue_filter_lock);
682 return (EBUSY);
683 }
684
685 /* Cast away const (but we know it's safe. */
686 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
687 kfilter->name = NULL; /* mark as `not implemented' */
688
689 if (kfilter->filtops != NULL) {
690 /* Cast away const (but we know it's safe. */
691 kmem_free(__UNCONST(kfilter->filtops),
692 sizeof(*kfilter->filtops));
693 kfilter->filtops = NULL; /* mark as `not implemented' */
694 }
695 rw_exit(&kqueue_filter_lock);
696
697 return (0);
698 }
699
700
701 /*
702 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
703 * descriptors. Calls fileops kqfilter method for given file descriptor.
704 */
705 static int
706 filt_fileattach(struct knote *kn)
707 {
708 file_t *fp;
709
710 fp = kn->kn_obj;
711
712 return (*fp->f_ops->fo_kqfilter)(fp, kn);
713 }
714
715 /*
716 * Filter detach method for EVFILT_READ on kqueue descriptor.
717 */
718 static void
719 filt_kqdetach(struct knote *kn)
720 {
721 struct kqueue *kq;
722
723 kq = ((file_t *)kn->kn_obj)->f_kqueue;
724
725 mutex_spin_enter(&kq->kq_lock);
726 selremove_knote(&kq->kq_sel, kn);
727 mutex_spin_exit(&kq->kq_lock);
728 }
729
730 /*
731 * Filter event method for EVFILT_READ on kqueue descriptor.
732 */
733 /*ARGSUSED*/
734 static int
735 filt_kqueue(struct knote *kn, long hint)
736 {
737 struct kqueue *kq;
738 int rv;
739
740 kq = ((file_t *)kn->kn_obj)->f_kqueue;
741
742 if (hint != NOTE_SUBMIT)
743 mutex_spin_enter(&kq->kq_lock);
744 kn->kn_data = KQ_COUNT(kq);
745 rv = (kn->kn_data > 0);
746 if (hint != NOTE_SUBMIT)
747 mutex_spin_exit(&kq->kq_lock);
748
749 return rv;
750 }
751
752 /*
753 * Filter attach method for EVFILT_PROC.
754 */
755 static int
756 filt_procattach(struct knote *kn)
757 {
758 struct proc *p;
759
760 mutex_enter(&proc_lock);
761 p = proc_find(kn->kn_id);
762 if (p == NULL) {
763 mutex_exit(&proc_lock);
764 return ESRCH;
765 }
766
767 /*
768 * Fail if it's not owned by you, or the last exec gave us
769 * setuid/setgid privs (unless you're root).
770 */
771 mutex_enter(p->p_lock);
772 mutex_exit(&proc_lock);
773 if (kauth_authorize_process(curlwp->l_cred,
774 KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
775 mutex_exit(p->p_lock);
776 return EACCES;
777 }
778
779 kn->kn_obj = p;
780 kn->kn_flags |= EV_CLEAR; /* automatically set */
781
782 /*
783 * NOTE_CHILD is only ever generated internally; don't let it
784 * leak in from user-space. See knote_proc_fork_track().
785 */
786 kn->kn_sfflags &= ~NOTE_CHILD;
787
788 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
789 mutex_exit(p->p_lock);
790
791 return 0;
792 }
793
794 /*
795 * Filter detach method for EVFILT_PROC.
796 *
797 * The knote may be attached to a different process, which may exit,
798 * leaving nothing for the knote to be attached to. So when the process
799 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
800 * it will be deleted when read out. However, as part of the knote deletion,
801 * this routine is called, so a check is needed to avoid actually performing
802 * a detach, because the original process might not exist any more.
803 */
804 static void
805 filt_procdetach(struct knote *kn)
806 {
807 struct kqueue *kq = kn->kn_kq;
808 struct proc *p;
809
810 /*
811 * We have to synchronize with knote_proc_exit(), but we
812 * are forced to acquire the locks in the wrong order here
813 * because we can't be sure kn->kn_obj is valid unless
814 * KN_DETACHED is not set.
815 */
816 again:
817 mutex_spin_enter(&kq->kq_lock);
818 if ((kn->kn_status & KN_DETACHED) == 0) {
819 p = kn->kn_obj;
820 if (!mutex_tryenter(p->p_lock)) {
821 mutex_spin_exit(&kq->kq_lock);
822 preempt_point();
823 goto again;
824 }
825 kn->kn_status |= KN_DETACHED;
826 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
827 mutex_exit(p->p_lock);
828 }
829 mutex_spin_exit(&kq->kq_lock);
830 }
831
832 /*
833 * Filter event method for EVFILT_PROC.
834 *
835 * Due to some of the complexities of process locking, we have special
836 * entry points for delivering knote submissions. filt_proc() is used
837 * only to check for activation from kqueue_register() and kqueue_scan().
838 */
839 static int
840 filt_proc(struct knote *kn, long hint)
841 {
842 struct kqueue *kq = kn->kn_kq;
843 uint32_t fflags;
844
845 /*
846 * Because we share the same klist with signal knotes, just
847 * ensure that we're not being invoked for the proc-related
848 * submissions.
849 */
850 KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
851
852 mutex_spin_enter(&kq->kq_lock);
853 fflags = kn->kn_fflags;
854 mutex_spin_exit(&kq->kq_lock);
855
856 return fflags != 0;
857 }
858
859 void
860 knote_proc_exec(struct proc *p)
861 {
862 struct knote *kn, *tmpkn;
863 struct kqueue *kq;
864 uint32_t fflags;
865
866 mutex_enter(p->p_lock);
867
868 SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
869 /* N.B. EVFILT_SIGNAL knotes are on this same list. */
870 if (kn->kn_fop == &sig_filtops) {
871 continue;
872 }
873 KASSERT(kn->kn_fop == &proc_filtops);
874
875 kq = kn->kn_kq;
876 mutex_spin_enter(&kq->kq_lock);
877 fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
878 mutex_spin_exit(&kq->kq_lock);
879 if (fflags) {
880 knote_activate(kn);
881 }
882 }
883
884 mutex_exit(p->p_lock);
885 }
886
887 static int __noinline
888 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
889 {
890 struct kqueue *kq = okn->kn_kq;
891
892 KASSERT(mutex_owned(&kq->kq_lock));
893 KASSERT(mutex_owned(p1->p_lock));
894
895 /*
896 * We're going to put this knote into flux while we drop
897 * the locks and create and attach a new knote to track the
898 * child. If we are not able to enter flux, then this knote
899 * is about to go away, so skip the notification.
900 */
901 if (!kn_enter_flux(okn)) {
902 return 0;
903 }
904
905 mutex_spin_exit(&kq->kq_lock);
906 mutex_exit(p1->p_lock);
907
908 /*
909 * We actually have to register *two* new knotes:
910 *
911 * ==> One for the NOTE_CHILD notification. This is a forced
912 * ONESHOT note.
913 *
914 * ==> One to actually track the child process as it subsequently
915 * forks, execs, and, ultimately, exits.
916 *
917 * If we only register a single knote, then it's possible for
918 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
919 * notification if the child exits before the tracking process
920 * has received the NOTE_CHILD notification, which applications
921 * aren't expecting (the event's 'data' field would be clobbered,
922 * for exmaple).
923 *
924 * To do this, what we have here is an **extremely** stripped-down
925 * version of kqueue_register() that has the following properties:
926 *
927 * ==> Does not block to allocate memory. If we are unable
928 * to allocate memory, we return ENOMEM.
929 *
930 * ==> Does not search for existing knotes; we know there
931 * are not any because this is a new process that isn't
932 * even visible to other processes yet.
933 *
934 * ==> Assumes that the knhash for our kq's descriptor table
935 * already exists (after all, we're already tracking
936 * processes with knotes if we got here).
937 *
938 * ==> Directly attaches the new tracking knote to the child
939 * process.
940 *
941 * The whole point is to do the minimum amount of work while the
942 * knote is held in-flux, and to avoid doing extra work in general
943 * (we already have the new child process; why bother looking it
944 * up again?).
945 */
946 filedesc_t *fdp = kq->kq_fdp;
947 struct knote *knchild, *kntrack;
948 int error = 0;
949
950 knchild = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
951 kntrack = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
952 if (__predict_false(knchild == NULL || kntrack == NULL)) {
953 error = ENOMEM;
954 goto out;
955 }
956
957 kntrack->kn_obj = p2;
958 kntrack->kn_id = p2->p_pid;
959 kntrack->kn_kq = kq;
960 kntrack->kn_fop = okn->kn_fop;
961 kntrack->kn_kfilter = okn->kn_kfilter;
962 kntrack->kn_sfflags = okn->kn_sfflags;
963 kntrack->kn_sdata = p1->p_pid;
964
965 kntrack->kn_kevent.ident = p2->p_pid;
966 kntrack->kn_kevent.filter = okn->kn_filter;
967 kntrack->kn_kevent.flags =
968 okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
969 kntrack->kn_kevent.fflags = 0;
970 kntrack->kn_kevent.data = 0;
971 kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
972
973 /*
974 * The child note does not need to be attached to the
975 * new proc's klist at all.
976 */
977 *knchild = *kntrack;
978 knchild->kn_status = KN_DETACHED;
979 knchild->kn_sfflags = 0;
980 knchild->kn_kevent.flags |= EV_ONESHOT;
981 knchild->kn_kevent.fflags = NOTE_CHILD;
982 knchild->kn_kevent.data = p1->p_pid; /* parent */
983
984 mutex_enter(&fdp->fd_lock);
985
986 /*
987 * We need to check to see if the kq is closing, and skip
988 * attaching the knote if so. Normally, this isn't necessary
989 * when coming in the front door because the file descriptor
990 * layer will synchronize this.
991 *
992 * It's safe to test KQ_CLOSING without taking the kq_lock
993 * here because that flag is only ever set when the fd_lock
994 * is also held.
995 */
996 if (__predict_false(kq->kq_count & KQ_CLOSING)) {
997 mutex_exit(&fdp->fd_lock);
998 goto out;
999 }
1000
1001 /*
1002 * We do the "insert into FD table" and "attach to klist" steps
1003 * in the opposite order of kqueue_register() here to avoid
1004 * having to take p2->p_lock twice. But this is OK because we
1005 * hold fd_lock across the entire operation.
1006 */
1007
1008 mutex_enter(p2->p_lock);
1009 error = kauth_authorize_process(curlwp->l_cred,
1010 KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
1011 if (__predict_false(error != 0)) {
1012 mutex_exit(p2->p_lock);
1013 mutex_exit(&fdp->fd_lock);
1014 error = EACCES;
1015 goto out;
1016 }
1017 SLIST_INSERT_HEAD(&p2->p_klist, kntrack, kn_selnext);
1018 mutex_exit(p2->p_lock);
1019
1020 KASSERT(fdp->fd_knhashmask != 0);
1021 KASSERT(fdp->fd_knhash != NULL);
1022 struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
1023 fdp->fd_knhashmask)];
1024 SLIST_INSERT_HEAD(list, kntrack, kn_link);
1025 SLIST_INSERT_HEAD(list, knchild, kn_link);
1026
1027 /* This adds references for knchild *and* kntrack. */
1028 atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
1029
1030 knote_activate(knchild);
1031
1032 kntrack = NULL;
1033 knchild = NULL;
1034
1035 mutex_exit(&fdp->fd_lock);
1036
1037 out:
1038 if (__predict_false(knchild != NULL)) {
1039 kmem_free(knchild, sizeof(*knchild));
1040 }
1041 if (__predict_false(kntrack != NULL)) {
1042 kmem_free(kntrack, sizeof(*kntrack));
1043 }
1044 mutex_enter(p1->p_lock);
1045 mutex_spin_enter(&kq->kq_lock);
1046
1047 if (kn_leave_flux(okn)) {
1048 KQ_FLUX_WAKEUP(kq);
1049 }
1050
1051 return error;
1052 }
1053
1054 void
1055 knote_proc_fork(struct proc *p1, struct proc *p2)
1056 {
1057 struct knote *kn;
1058 struct kqueue *kq;
1059 uint32_t fflags;
1060
1061 mutex_enter(p1->p_lock);
1062
1063 /*
1064 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
1065 * don't want to pre-fetch the next knote; in the event we
1066 * have to drop p_lock, we will have put the knote in-flux,
1067 * meaning that no one will be able to detach it until we
1068 * have taken the knote out of flux. However, that does
1069 * NOT stop someone else from detaching the next note in the
1070 * list while we have it unlocked. Thus, we want to fetch
1071 * the next note in the list only after we have re-acquired
1072 * the lock, and using SLIST_FOREACH() will satisfy that.
1073 */
1074 SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
1075 /* N.B. EVFILT_SIGNAL knotes are on this same list. */
1076 if (kn->kn_fop == &sig_filtops) {
1077 continue;
1078 }
1079 KASSERT(kn->kn_fop == &proc_filtops);
1080
1081 kq = kn->kn_kq;
1082 mutex_spin_enter(&kq->kq_lock);
1083 kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
1084 if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
1085 /*
1086 * This will drop kq_lock and p_lock and
1087 * re-acquire them before it returns.
1088 */
1089 if (knote_proc_fork_track(p1, p2, kn)) {
1090 kn->kn_fflags |= NOTE_TRACKERR;
1091 }
1092 KASSERT(mutex_owned(p1->p_lock));
1093 KASSERT(mutex_owned(&kq->kq_lock));
1094 }
1095 fflags = kn->kn_fflags;
1096 mutex_spin_exit(&kq->kq_lock);
1097 if (fflags) {
1098 knote_activate(kn);
1099 }
1100 }
1101
1102 mutex_exit(p1->p_lock);
1103 }
1104
1105 void
1106 knote_proc_exit(struct proc *p)
1107 {
1108 struct knote *kn;
1109 struct kqueue *kq;
1110
1111 KASSERT(mutex_owned(p->p_lock));
1112
1113 while (!SLIST_EMPTY(&p->p_klist)) {
1114 kn = SLIST_FIRST(&p->p_klist);
1115 kq = kn->kn_kq;
1116
1117 KASSERT(kn->kn_obj == p);
1118
1119 mutex_spin_enter(&kq->kq_lock);
1120 kn->kn_data = P_WAITSTATUS(p);
1121 /*
1122 * Mark as ONESHOT, so that the knote is g/c'ed
1123 * when read.
1124 */
1125 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1126 kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
1127
1128 /*
1129 * Detach the knote from the process and mark it as such.
1130 * N.B. EVFILT_SIGNAL are also on p_klist, but by the
1131 * time we get here, all open file descriptors for this
1132 * process have been released, meaning that signal knotes
1133 * will have already been detached.
1134 *
1135 * We need to synchronize this with filt_procdetach().
1136 */
1137 KASSERT(kn->kn_fop == &proc_filtops);
1138 if ((kn->kn_status & KN_DETACHED) == 0) {
1139 kn->kn_status |= KN_DETACHED;
1140 SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
1141 }
1142 mutex_spin_exit(&kq->kq_lock);
1143
1144 /*
1145 * Always activate the knote for NOTE_EXIT regardless
1146 * of whether or not the listener cares about it.
1147 * This matches historical behavior.
1148 */
1149 knote_activate(kn);
1150 }
1151 }
1152
1153 static void
1154 filt_timerexpire(void *knx)
1155 {
1156 struct knote *kn = knx;
1157 int tticks;
1158
1159 mutex_enter(&kqueue_timer_lock);
1160 kn->kn_data++;
1161 knote_activate(kn);
1162 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1163 tticks = mstohz(kn->kn_sdata);
1164 if (tticks <= 0)
1165 tticks = 1;
1166 callout_schedule((callout_t *)kn->kn_hook, tticks);
1167 }
1168 mutex_exit(&kqueue_timer_lock);
1169 }
1170
1171 /*
1172 * data contains amount of time to sleep, in milliseconds
1173 */
1174 static int
1175 filt_timerattach(struct knote *kn)
1176 {
1177 callout_t *calloutp;
1178 struct kqueue *kq;
1179 int tticks;
1180
1181 tticks = mstohz(kn->kn_sdata);
1182
1183 /* if the supplied value is under our resolution, use 1 tick */
1184 if (tticks == 0) {
1185 if (kn->kn_sdata == 0)
1186 return EINVAL;
1187 tticks = 1;
1188 }
1189
1190 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
1191 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
1192 atomic_dec_uint(&kq_ncallouts);
1193 return ENOMEM;
1194 }
1195 callout_init(calloutp, CALLOUT_MPSAFE);
1196
1197 kq = kn->kn_kq;
1198 mutex_spin_enter(&kq->kq_lock);
1199 kn->kn_flags |= EV_CLEAR; /* automatically set */
1200 kn->kn_hook = calloutp;
1201 mutex_spin_exit(&kq->kq_lock);
1202
1203 callout_reset(calloutp, tticks, filt_timerexpire, kn);
1204
1205 return (0);
1206 }
1207
1208 static void
1209 filt_timerdetach(struct knote *kn)
1210 {
1211 callout_t *calloutp;
1212 struct kqueue *kq = kn->kn_kq;
1213
1214 /*
1215 * We don't need to hold the kqueue_timer_lock here; even
1216 * if filt_timerexpire() misses our setting of EV_ONESHOT,
1217 * we are guaranteed that the callout will no longer be
1218 * scheduled even if we attempted to halt it after it already
1219 * started running, even if it rescheduled itself.
1220 */
1221
1222 mutex_spin_enter(&kq->kq_lock);
1223 /* prevent rescheduling when we expire */
1224 kn->kn_flags |= EV_ONESHOT;
1225 mutex_spin_exit(&kq->kq_lock);
1226
1227 calloutp = (callout_t *)kn->kn_hook;
1228
1229 /*
1230 * Attempt to stop the callout. This will block if it's
1231 * already running.
1232 */
1233 callout_halt(calloutp, NULL);
1234
1235 callout_destroy(calloutp);
1236 kmem_free(calloutp, sizeof(*calloutp));
1237 atomic_dec_uint(&kq_ncallouts);
1238 }
1239
1240 static int
1241 filt_timer(struct knote *kn, long hint)
1242 {
1243 int rv;
1244
1245 mutex_enter(&kqueue_timer_lock);
1246 rv = (kn->kn_data != 0);
1247 mutex_exit(&kqueue_timer_lock);
1248
1249 return rv;
1250 }
1251
1252 static int
1253 filt_userattach(struct knote *kn)
1254 {
1255 struct kqueue *kq = kn->kn_kq;
1256
1257 /*
1258 * EVFILT_USER knotes are not attached to anything in the kernel.
1259 */
1260 mutex_spin_enter(&kq->kq_lock);
1261 kn->kn_hook = NULL;
1262 if (kn->kn_fflags & NOTE_TRIGGER)
1263 kn->kn_hookid = 1;
1264 else
1265 kn->kn_hookid = 0;
1266 mutex_spin_exit(&kq->kq_lock);
1267 return (0);
1268 }
1269
1270 static void
1271 filt_userdetach(struct knote *kn)
1272 {
1273
1274 /*
1275 * EVFILT_USER knotes are not attached to anything in the kernel.
1276 */
1277 }
1278
1279 static int
1280 filt_user(struct knote *kn, long hint)
1281 {
1282 struct kqueue *kq = kn->kn_kq;
1283 int hookid;
1284
1285 mutex_spin_enter(&kq->kq_lock);
1286 hookid = kn->kn_hookid;
1287 mutex_spin_exit(&kq->kq_lock);
1288
1289 return hookid;
1290 }
1291
1292 static void
1293 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
1294 {
1295 int ffctrl;
1296
1297 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1298
1299 switch (type) {
1300 case EVENT_REGISTER:
1301 if (kev->fflags & NOTE_TRIGGER)
1302 kn->kn_hookid = 1;
1303
1304 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1305 kev->fflags &= NOTE_FFLAGSMASK;
1306 switch (ffctrl) {
1307 case NOTE_FFNOP:
1308 break;
1309
1310 case NOTE_FFAND:
1311 kn->kn_sfflags &= kev->fflags;
1312 break;
1313
1314 case NOTE_FFOR:
1315 kn->kn_sfflags |= kev->fflags;
1316 break;
1317
1318 case NOTE_FFCOPY:
1319 kn->kn_sfflags = kev->fflags;
1320 break;
1321
1322 default:
1323 /* XXX Return error? */
1324 break;
1325 }
1326 kn->kn_sdata = kev->data;
1327 if (kev->flags & EV_CLEAR) {
1328 kn->kn_hookid = 0;
1329 kn->kn_data = 0;
1330 kn->kn_fflags = 0;
1331 }
1332 break;
1333
1334 case EVENT_PROCESS:
1335 *kev = kn->kn_kevent;
1336 kev->fflags = kn->kn_sfflags;
1337 kev->data = kn->kn_sdata;
1338 if (kn->kn_flags & EV_CLEAR) {
1339 kn->kn_hookid = 0;
1340 kn->kn_data = 0;
1341 kn->kn_fflags = 0;
1342 }
1343 break;
1344
1345 default:
1346 panic("filt_usertouch() - invalid type (%ld)", type);
1347 break;
1348 }
1349 }
1350
1351 /*
1352 * filt_seltrue:
1353 *
1354 * This filter "event" routine simulates seltrue().
1355 */
1356 int
1357 filt_seltrue(struct knote *kn, long hint)
1358 {
1359
1360 /*
1361 * We don't know how much data can be read/written,
1362 * but we know that it *can* be. This is about as
1363 * good as select/poll does as well.
1364 */
1365 kn->kn_data = 0;
1366 return (1);
1367 }
1368
1369 /*
1370 * This provides full kqfilter entry for device switch tables, which
1371 * has same effect as filter using filt_seltrue() as filter method.
1372 */
1373 static void
1374 filt_seltruedetach(struct knote *kn)
1375 {
1376 /* Nothing to do */
1377 }
1378
1379 const struct filterops seltrue_filtops = {
1380 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1381 .f_attach = NULL,
1382 .f_detach = filt_seltruedetach,
1383 .f_event = filt_seltrue,
1384 };
1385
1386 int
1387 seltrue_kqfilter(dev_t dev, struct knote *kn)
1388 {
1389 switch (kn->kn_filter) {
1390 case EVFILT_READ:
1391 case EVFILT_WRITE:
1392 kn->kn_fop = &seltrue_filtops;
1393 break;
1394 default:
1395 return (EINVAL);
1396 }
1397
1398 /* Nothing more to do */
1399 return (0);
1400 }
1401
1402 /*
1403 * kqueue(2) system call.
1404 */
1405 static int
1406 kqueue1(struct lwp *l, int flags, register_t *retval)
1407 {
1408 struct kqueue *kq;
1409 file_t *fp;
1410 int fd, error;
1411
1412 if ((error = fd_allocfile(&fp, &fd)) != 0)
1413 return error;
1414 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
1415 fp->f_type = DTYPE_KQUEUE;
1416 fp->f_ops = &kqueueops;
1417 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
1418 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
1419 cv_init(&kq->kq_cv, "kqueue");
1420 selinit(&kq->kq_sel);
1421 TAILQ_INIT(&kq->kq_head);
1422 fp->f_kqueue = kq;
1423 *retval = fd;
1424 kq->kq_fdp = curlwp->l_fd;
1425 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1426 fd_affix(curproc, fp, fd);
1427 return error;
1428 }
1429
1430 /*
1431 * kqueue(2) system call.
1432 */
1433 int
1434 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
1435 {
1436 return kqueue1(l, 0, retval);
1437 }
1438
1439 int
1440 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
1441 register_t *retval)
1442 {
1443 /* {
1444 syscallarg(int) flags;
1445 } */
1446 return kqueue1(l, SCARG(uap, flags), retval);
1447 }
1448
1449 /*
1450 * kevent(2) system call.
1451 */
1452 int
1453 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
1454 struct kevent *changes, size_t index, int n)
1455 {
1456
1457 return copyin(changelist + index, changes, n * sizeof(*changes));
1458 }
1459
1460 int
1461 kevent_put_events(void *ctx, struct kevent *events,
1462 struct kevent *eventlist, size_t index, int n)
1463 {
1464
1465 return copyout(events, eventlist + index, n * sizeof(*events));
1466 }
1467
1468 static const struct kevent_ops kevent_native_ops = {
1469 .keo_private = NULL,
1470 .keo_fetch_timeout = copyin,
1471 .keo_fetch_changes = kevent_fetch_changes,
1472 .keo_put_events = kevent_put_events,
1473 };
1474
1475 int
1476 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1477 register_t *retval)
1478 {
1479 /* {
1480 syscallarg(int) fd;
1481 syscallarg(const struct kevent *) changelist;
1482 syscallarg(size_t) nchanges;
1483 syscallarg(struct kevent *) eventlist;
1484 syscallarg(size_t) nevents;
1485 syscallarg(const struct timespec *) timeout;
1486 } */
1487
1488 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1489 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1490 SCARG(uap, timeout), &kevent_native_ops);
1491 }
1492
1493 int
1494 kevent1(register_t *retval, int fd,
1495 const struct kevent *changelist, size_t nchanges,
1496 struct kevent *eventlist, size_t nevents,
1497 const struct timespec *timeout,
1498 const struct kevent_ops *keops)
1499 {
1500 struct kevent *kevp;
1501 struct kqueue *kq;
1502 struct timespec ts;
1503 size_t i, n, ichange;
1504 int nerrors, error;
1505 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
1506 file_t *fp;
1507
1508 /* check that we're dealing with a kq */
1509 fp = fd_getfile(fd);
1510 if (fp == NULL)
1511 return (EBADF);
1512
1513 if (fp->f_type != DTYPE_KQUEUE) {
1514 fd_putfile(fd);
1515 return (EBADF);
1516 }
1517
1518 if (timeout != NULL) {
1519 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1520 if (error)
1521 goto done;
1522 timeout = &ts;
1523 }
1524
1525 kq = fp->f_kqueue;
1526 nerrors = 0;
1527 ichange = 0;
1528
1529 /* traverse list of events to register */
1530 while (nchanges > 0) {
1531 n = MIN(nchanges, __arraycount(kevbuf));
1532 error = (*keops->keo_fetch_changes)(keops->keo_private,
1533 changelist, kevbuf, ichange, n);
1534 if (error)
1535 goto done;
1536 for (i = 0; i < n; i++) {
1537 kevp = &kevbuf[i];
1538 kevp->flags &= ~EV_SYSFLAGS;
1539 /* register each knote */
1540 error = kqueue_register(kq, kevp);
1541 if (!error && !(kevp->flags & EV_RECEIPT))
1542 continue;
1543 if (nevents == 0)
1544 goto done;
1545 kevp->flags = EV_ERROR;
1546 kevp->data = error;
1547 error = (*keops->keo_put_events)
1548 (keops->keo_private, kevp,
1549 eventlist, nerrors, 1);
1550 if (error)
1551 goto done;
1552 nevents--;
1553 nerrors++;
1554 }
1555 nchanges -= n; /* update the results */
1556 ichange += n;
1557 }
1558 if (nerrors) {
1559 *retval = nerrors;
1560 error = 0;
1561 goto done;
1562 }
1563
1564 /* actually scan through the events */
1565 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1566 kevbuf, __arraycount(kevbuf));
1567 done:
1568 fd_putfile(fd);
1569 return (error);
1570 }
1571
1572 /*
1573 * Register a given kevent kev onto the kqueue
1574 */
1575 static int
1576 kqueue_register(struct kqueue *kq, struct kevent *kev)
1577 {
1578 struct kfilter *kfilter;
1579 filedesc_t *fdp;
1580 file_t *fp;
1581 fdfile_t *ff;
1582 struct knote *kn, *newkn;
1583 struct klist *list;
1584 int error, fd, rv;
1585
1586 fdp = kq->kq_fdp;
1587 fp = NULL;
1588 kn = NULL;
1589 error = 0;
1590 fd = 0;
1591
1592 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1593
1594 rw_enter(&kqueue_filter_lock, RW_READER);
1595 kfilter = kfilter_byfilter(kev->filter);
1596 if (kfilter == NULL || kfilter->filtops == NULL) {
1597 /* filter not found nor implemented */
1598 rw_exit(&kqueue_filter_lock);
1599 kmem_free(newkn, sizeof(*newkn));
1600 return (EINVAL);
1601 }
1602
1603 /* search if knote already exists */
1604 if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
1605 /* monitoring a file descriptor */
1606 /* validate descriptor */
1607 if (kev->ident > INT_MAX
1608 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1609 rw_exit(&kqueue_filter_lock);
1610 kmem_free(newkn, sizeof(*newkn));
1611 return EBADF;
1612 }
1613 mutex_enter(&fdp->fd_lock);
1614 ff = fdp->fd_dt->dt_ff[fd];
1615 if (ff->ff_refcnt & FR_CLOSING) {
1616 error = EBADF;
1617 goto doneunlock;
1618 }
1619 if (fd <= fdp->fd_lastkqfile) {
1620 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1621 if (kq == kn->kn_kq &&
1622 kev->filter == kn->kn_filter)
1623 break;
1624 }
1625 }
1626 } else {
1627 /*
1628 * not monitoring a file descriptor, so
1629 * lookup knotes in internal hash table
1630 */
1631 mutex_enter(&fdp->fd_lock);
1632 if (fdp->fd_knhashmask != 0) {
1633 list = &fdp->fd_knhash[
1634 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1635 SLIST_FOREACH(kn, list, kn_link) {
1636 if (kev->ident == kn->kn_id &&
1637 kq == kn->kn_kq &&
1638 kev->filter == kn->kn_filter)
1639 break;
1640 }
1641 }
1642 }
1643
1644 /* It's safe to test KQ_CLOSING while holding only the fd_lock. */
1645 KASSERT(mutex_owned(&fdp->fd_lock));
1646 KASSERT((kq->kq_count & KQ_CLOSING) == 0);
1647
1648 /*
1649 * kn now contains the matching knote, or NULL if no match
1650 */
1651 if (kn == NULL) {
1652 if (kev->flags & EV_ADD) {
1653 /* create new knote */
1654 kn = newkn;
1655 newkn = NULL;
1656 kn->kn_obj = fp;
1657 kn->kn_id = kev->ident;
1658 kn->kn_kq = kq;
1659 kn->kn_fop = kfilter->filtops;
1660 kn->kn_kfilter = kfilter;
1661 kn->kn_sfflags = kev->fflags;
1662 kn->kn_sdata = kev->data;
1663 kev->fflags = 0;
1664 kev->data = 0;
1665 kn->kn_kevent = *kev;
1666
1667 KASSERT(kn->kn_fop != NULL);
1668 /*
1669 * apply reference count to knote structure, and
1670 * do not release it at the end of this routine.
1671 */
1672 fp = NULL;
1673
1674 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
1675 /*
1676 * If knote is not on an fd, store on
1677 * internal hash table.
1678 */
1679 if (fdp->fd_knhashmask == 0) {
1680 /* XXXAD can block with fd_lock held */
1681 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1682 HASH_LIST, true,
1683 &fdp->fd_knhashmask);
1684 }
1685 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1686 fdp->fd_knhashmask)];
1687 } else {
1688 /* Otherwise, knote is on an fd. */
1689 list = (struct klist *)
1690 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1691 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1692 fdp->fd_lastkqfile = kn->kn_id;
1693 }
1694 SLIST_INSERT_HEAD(list, kn, kn_link);
1695
1696 /*
1697 * N.B. kn->kn_fop may change as the result
1698 * of filter_attach()!
1699 */
1700 error = filter_attach(kn);
1701 if (error != 0) {
1702 #ifdef DEBUG
1703 struct proc *p = curlwp->l_proc;
1704 const file_t *ft = kn->kn_obj;
1705 printf("%s: %s[%d]: event type %d not "
1706 "supported for file type %d/%s "
1707 "(error %d)\n", __func__,
1708 p->p_comm, p->p_pid,
1709 kn->kn_filter, ft ? ft->f_type : -1,
1710 ft ? ft->f_ops->fo_name : "?", error);
1711 #endif
1712
1713 /*
1714 * N.B. no need to check for this note to
1715 * be in-flux, since it was never visible
1716 * to the monitored object.
1717 *
1718 * knote_detach() drops fdp->fd_lock
1719 */
1720 mutex_enter(&kq->kq_lock);
1721 KNOTE_WILLDETACH(kn);
1722 KASSERT(kn_in_flux(kn) == false);
1723 mutex_exit(&kq->kq_lock);
1724 knote_detach(kn, fdp, false);
1725 goto done;
1726 }
1727 atomic_inc_uint(&kfilter->refcnt);
1728 goto done_ev_add;
1729 } else {
1730 /* No matching knote and the EV_ADD flag is not set. */
1731 error = ENOENT;
1732 goto doneunlock;
1733 }
1734 }
1735
1736 if (kev->flags & EV_DELETE) {
1737 /*
1738 * Let the world know that this knote is about to go
1739 * away, and wait for it to settle if it's currently
1740 * in-flux.
1741 */
1742 mutex_spin_enter(&kq->kq_lock);
1743 if (kn->kn_status & KN_WILLDETACH) {
1744 /*
1745 * This knote is already on its way out,
1746 * so just be done.
1747 */
1748 mutex_spin_exit(&kq->kq_lock);
1749 goto doneunlock;
1750 }
1751 KNOTE_WILLDETACH(kn);
1752 if (kn_in_flux(kn)) {
1753 mutex_exit(&fdp->fd_lock);
1754 /*
1755 * It's safe for us to conclusively wait for
1756 * this knote to settle because we know we'll
1757 * be completing the detach.
1758 */
1759 kn_wait_flux(kn, true);
1760 KASSERT(kn_in_flux(kn) == false);
1761 mutex_spin_exit(&kq->kq_lock);
1762 mutex_enter(&fdp->fd_lock);
1763 } else {
1764 mutex_spin_exit(&kq->kq_lock);
1765 }
1766
1767 /* knote_detach() drops fdp->fd_lock */
1768 knote_detach(kn, fdp, true);
1769 goto done;
1770 }
1771
1772 /*
1773 * The user may change some filter values after the
1774 * initial EV_ADD, but doing so will not reset any
1775 * filter which have already been triggered.
1776 */
1777 kn->kn_kevent.udata = kev->udata;
1778 KASSERT(kn->kn_fop != NULL);
1779 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1780 kn->kn_fop->f_touch != NULL) {
1781 mutex_spin_enter(&kq->kq_lock);
1782 filter_touch(kn, kev, EVENT_REGISTER);
1783 mutex_spin_exit(&kq->kq_lock);
1784 } else {
1785 kn->kn_sfflags = kev->fflags;
1786 kn->kn_sdata = kev->data;
1787 }
1788
1789 /*
1790 * We can get here if we are trying to attach
1791 * an event to a file descriptor that does not
1792 * support events, and the attach routine is
1793 * broken and does not return an error.
1794 */
1795 done_ev_add:
1796 rv = filter_event(kn, 0);
1797 if (rv)
1798 knote_activate(kn);
1799
1800 /* disable knote */
1801 if ((kev->flags & EV_DISABLE)) {
1802 mutex_spin_enter(&kq->kq_lock);
1803 if ((kn->kn_status & KN_DISABLED) == 0)
1804 kn->kn_status |= KN_DISABLED;
1805 mutex_spin_exit(&kq->kq_lock);
1806 }
1807
1808 /* enable knote */
1809 if ((kev->flags & EV_ENABLE)) {
1810 knote_enqueue(kn);
1811 }
1812 doneunlock:
1813 mutex_exit(&fdp->fd_lock);
1814 done:
1815 rw_exit(&kqueue_filter_lock);
1816 if (newkn != NULL)
1817 kmem_free(newkn, sizeof(*newkn));
1818 if (fp != NULL)
1819 fd_putfile(fd);
1820 return (error);
1821 }
1822
1823 #define KN_FMT(buf, kn) \
1824 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1825
1826 #if defined(DDB)
1827 void
1828 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
1829 {
1830 const struct knote *kn;
1831 u_int count;
1832 int nmarker;
1833 char buf[128];
1834
1835 count = 0;
1836 nmarker = 0;
1837
1838 (*pr)("kqueue %p (restart=%d count=%u):\n", kq,
1839 !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
1840 (*pr)(" Queued knotes:\n");
1841 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1842 if (kn->kn_status & KN_MARKER) {
1843 nmarker++;
1844 } else {
1845 count++;
1846 }
1847 (*pr)(" knote %p: kq=%p status=%s\n",
1848 kn, kn->kn_kq, KN_FMT(buf, kn));
1849 (*pr)(" id=0x%lx (%lu) filter=%d\n",
1850 (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
1851 if (kn->kn_kq != kq) {
1852 (*pr)(" !!! kn->kn_kq != kq\n");
1853 }
1854 }
1855 if (count != KQ_COUNT(kq)) {
1856 (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n",
1857 count, KQ_COUNT(kq));
1858 }
1859 }
1860 #endif /* DDB */
1861
1862 #if defined(DEBUG)
1863 static void
1864 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1865 {
1866 const struct knote *kn;
1867 u_int count;
1868 int nmarker;
1869 char buf[128];
1870
1871 KASSERT(mutex_owned(&kq->kq_lock));
1872
1873 count = 0;
1874 nmarker = 0;
1875 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1876 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1877 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1878 func, line, kq, kn, KN_FMT(buf, kn));
1879 }
1880 if ((kn->kn_status & KN_MARKER) == 0) {
1881 if (kn->kn_kq != kq) {
1882 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1883 func, line, kq, kn, kn->kn_kq,
1884 KN_FMT(buf, kn));
1885 }
1886 if ((kn->kn_status & KN_ACTIVE) == 0) {
1887 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1888 func, line, kq, kn, KN_FMT(buf, kn));
1889 }
1890 count++;
1891 if (count > KQ_COUNT(kq)) {
1892 panic("%s,%zu: kq=%p kq->kq_count(%u) != "
1893 "count(%d), nmarker=%d",
1894 func, line, kq, KQ_COUNT(kq), count,
1895 nmarker);
1896 }
1897 } else {
1898 nmarker++;
1899 }
1900 }
1901 }
1902 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1903 #else /* defined(DEBUG) */
1904 #define kq_check(a) /* nothing */
1905 #endif /* defined(DEBUG) */
1906
1907 static void
1908 kqueue_restart(file_t *fp)
1909 {
1910 struct kqueue *kq = fp->f_kqueue;
1911 KASSERT(kq != NULL);
1912
1913 mutex_spin_enter(&kq->kq_lock);
1914 kq->kq_count |= KQ_RESTART;
1915 cv_broadcast(&kq->kq_cv);
1916 mutex_spin_exit(&kq->kq_lock);
1917 }
1918
1919 /*
1920 * Scan through the list of events on fp (for a maximum of maxevents),
1921 * returning the results in to ulistp. Timeout is determined by tsp; if
1922 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1923 * as appropriate.
1924 */
1925 static int
1926 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1927 const struct timespec *tsp, register_t *retval,
1928 const struct kevent_ops *keops, struct kevent *kevbuf,
1929 size_t kevcnt)
1930 {
1931 struct kqueue *kq;
1932 struct kevent *kevp;
1933 struct timespec ats, sleepts;
1934 struct knote *kn, *marker, morker;
1935 size_t count, nkev, nevents;
1936 int timeout, error, touch, rv, influx;
1937 filedesc_t *fdp;
1938
1939 fdp = curlwp->l_fd;
1940 kq = fp->f_kqueue;
1941 count = maxevents;
1942 nkev = nevents = error = 0;
1943 if (count == 0) {
1944 *retval = 0;
1945 return 0;
1946 }
1947
1948 if (tsp) { /* timeout supplied */
1949 ats = *tsp;
1950 if (inittimeleft(&ats, &sleepts) == -1) {
1951 *retval = maxevents;
1952 return EINVAL;
1953 }
1954 timeout = tstohz(&ats);
1955 if (timeout <= 0)
1956 timeout = -1; /* do poll */
1957 } else {
1958 /* no timeout, wait forever */
1959 timeout = 0;
1960 }
1961
1962 memset(&morker, 0, sizeof(morker));
1963 marker = &morker;
1964 marker->kn_kq = kq;
1965 marker->kn_status = KN_MARKER;
1966 mutex_spin_enter(&kq->kq_lock);
1967 retry:
1968 kevp = kevbuf;
1969 if (KQ_COUNT(kq) == 0) {
1970 if (timeout >= 0) {
1971 error = cv_timedwait_sig(&kq->kq_cv,
1972 &kq->kq_lock, timeout);
1973 if (error == 0) {
1974 if (KQ_COUNT(kq) == 0 &&
1975 (kq->kq_count & KQ_RESTART)) {
1976 /* return to clear file reference */
1977 error = ERESTART;
1978 } else if (tsp == NULL || (timeout =
1979 gettimeleft(&ats, &sleepts)) > 0) {
1980 goto retry;
1981 }
1982 } else {
1983 /* don't restart after signals... */
1984 if (error == ERESTART)
1985 error = EINTR;
1986 if (error == EWOULDBLOCK)
1987 error = 0;
1988 }
1989 }
1990 mutex_spin_exit(&kq->kq_lock);
1991 goto done;
1992 }
1993
1994 /* mark end of knote list */
1995 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1996 influx = 0;
1997
1998 /*
1999 * Acquire the fdp->fd_lock interlock to avoid races with
2000 * file creation/destruction from other threads.
2001 */
2002 mutex_spin_exit(&kq->kq_lock);
2003 relock:
2004 mutex_enter(&fdp->fd_lock);
2005 mutex_spin_enter(&kq->kq_lock);
2006
2007 while (count != 0) {
2008 /*
2009 * Get next knote. We are guaranteed this will never
2010 * be NULL because of the marker we inserted above.
2011 */
2012 kn = TAILQ_FIRST(&kq->kq_head);
2013
2014 bool kn_is_other_marker =
2015 (kn->kn_status & KN_MARKER) != 0 && kn != marker;
2016 bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
2017 bool kn_is_in_flux = kn_in_flux(kn);
2018
2019 /*
2020 * If we found a marker that's not ours, or this knote
2021 * is in a state of flux, then wait for everything to
2022 * settle down and go around again.
2023 */
2024 if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
2025 if (influx) {
2026 influx = 0;
2027 KQ_FLUX_WAKEUP(kq);
2028 }
2029 mutex_exit(&fdp->fd_lock);
2030 if (kn_is_other_marker || kn_is_in_flux) {
2031 KQ_FLUX_WAIT(kq);
2032 mutex_spin_exit(&kq->kq_lock);
2033 } else {
2034 /*
2035 * Detaching but not in-flux? Someone is
2036 * actively trying to finish the job; just
2037 * go around and try again.
2038 */
2039 KASSERT(kn_is_detaching);
2040 mutex_spin_exit(&kq->kq_lock);
2041 preempt_point();
2042 }
2043 goto relock;
2044 }
2045
2046 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2047 if (kn == marker) {
2048 /* it's our marker, stop */
2049 KQ_FLUX_WAKEUP(kq);
2050 if (count == maxevents) {
2051 mutex_exit(&fdp->fd_lock);
2052 goto retry;
2053 }
2054 break;
2055 }
2056 KASSERT((kn->kn_status & KN_BUSY) == 0);
2057
2058 kq_check(kq);
2059 kn->kn_status &= ~KN_QUEUED;
2060 kn->kn_status |= KN_BUSY;
2061 kq_check(kq);
2062 if (kn->kn_status & KN_DISABLED) {
2063 kn->kn_status &= ~KN_BUSY;
2064 kq->kq_count--;
2065 /* don't want disabled events */
2066 continue;
2067 }
2068 if ((kn->kn_flags & EV_ONESHOT) == 0) {
2069 mutex_spin_exit(&kq->kq_lock);
2070 KASSERT(mutex_owned(&fdp->fd_lock));
2071 rv = filter_event(kn, 0);
2072 mutex_spin_enter(&kq->kq_lock);
2073 /* Re-poll if note was re-enqueued. */
2074 if ((kn->kn_status & KN_QUEUED) != 0) {
2075 kn->kn_status &= ~KN_BUSY;
2076 /* Re-enqueue raised kq_count, lower it again */
2077 kq->kq_count--;
2078 influx = 1;
2079 continue;
2080 }
2081 if (rv == 0) {
2082 /*
2083 * non-ONESHOT event that hasn't triggered
2084 * again, so it will remain de-queued.
2085 */
2086 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2087 kq->kq_count--;
2088 influx = 1;
2089 continue;
2090 }
2091 } else {
2092 /*
2093 * This ONESHOT note is going to be detached
2094 * below. Mark the knote as not long for this
2095 * world before we release the kq lock so that
2096 * no one else will put it in a state of flux.
2097 */
2098 KNOTE_WILLDETACH(kn);
2099 }
2100 KASSERT(kn->kn_fop != NULL);
2101 touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
2102 kn->kn_fop->f_touch != NULL);
2103 /* XXXAD should be got from f_event if !oneshot. */
2104 if (touch) {
2105 filter_touch(kn, kevp, EVENT_PROCESS);
2106 } else {
2107 *kevp = kn->kn_kevent;
2108 }
2109 kevp++;
2110 nkev++;
2111 influx = 1;
2112 if (kn->kn_flags & EV_ONESHOT) {
2113 /* delete ONESHOT events after retrieval */
2114 kn->kn_status &= ~KN_BUSY;
2115 kq->kq_count--;
2116 KASSERT(kn_in_flux(kn) == false);
2117 KASSERT((kn->kn_status & KN_WILLDETACH) != 0 &&
2118 kn->kn_kevent.udata == curlwp);
2119 mutex_spin_exit(&kq->kq_lock);
2120 knote_detach(kn, fdp, true);
2121 mutex_enter(&fdp->fd_lock);
2122 mutex_spin_enter(&kq->kq_lock);
2123 } else if (kn->kn_flags & EV_CLEAR) {
2124 /* clear state after retrieval */
2125 kn->kn_data = 0;
2126 kn->kn_fflags = 0;
2127 /*
2128 * Manually clear knotes who weren't
2129 * 'touch'ed.
2130 */
2131 if (touch == 0) {
2132 kn->kn_data = 0;
2133 kn->kn_fflags = 0;
2134 }
2135 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2136 kq->kq_count--;
2137 } else if (kn->kn_flags & EV_DISPATCH) {
2138 kn->kn_status |= KN_DISABLED;
2139 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2140 kq->kq_count--;
2141 } else {
2142 /* add event back on list */
2143 kq_check(kq);
2144 kn->kn_status |= KN_QUEUED;
2145 kn->kn_status &= ~KN_BUSY;
2146 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2147 kq_check(kq);
2148 }
2149
2150 if (nkev == kevcnt) {
2151 /* do copyouts in kevcnt chunks */
2152 influx = 0;
2153 KQ_FLUX_WAKEUP(kq);
2154 mutex_spin_exit(&kq->kq_lock);
2155 mutex_exit(&fdp->fd_lock);
2156 error = (*keops->keo_put_events)
2157 (keops->keo_private,
2158 kevbuf, ulistp, nevents, nkev);
2159 mutex_enter(&fdp->fd_lock);
2160 mutex_spin_enter(&kq->kq_lock);
2161 nevents += nkev;
2162 nkev = 0;
2163 kevp = kevbuf;
2164 }
2165 count--;
2166 if (error != 0 || count == 0) {
2167 /* remove marker */
2168 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2169 break;
2170 }
2171 }
2172 KQ_FLUX_WAKEUP(kq);
2173 mutex_spin_exit(&kq->kq_lock);
2174 mutex_exit(&fdp->fd_lock);
2175
2176 done:
2177 if (nkev != 0) {
2178 /* copyout remaining events */
2179 error = (*keops->keo_put_events)(keops->keo_private,
2180 kevbuf, ulistp, nevents, nkev);
2181 }
2182 *retval = maxevents - count;
2183
2184 return error;
2185 }
2186
2187 /*
2188 * fileops ioctl method for a kqueue descriptor.
2189 *
2190 * Two ioctls are currently supported. They both use struct kfilter_mapping:
2191 * KFILTER_BYNAME find name for filter, and return result in
2192 * name, which is of size len.
2193 * KFILTER_BYFILTER find filter for name. len is ignored.
2194 */
2195 /*ARGSUSED*/
2196 static int
2197 kqueue_ioctl(file_t *fp, u_long com, void *data)
2198 {
2199 struct kfilter_mapping *km;
2200 const struct kfilter *kfilter;
2201 char *name;
2202 int error;
2203
2204 km = data;
2205 error = 0;
2206 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
2207
2208 switch (com) {
2209 case KFILTER_BYFILTER: /* convert filter -> name */
2210 rw_enter(&kqueue_filter_lock, RW_READER);
2211 kfilter = kfilter_byfilter(km->filter);
2212 if (kfilter != NULL) {
2213 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
2214 rw_exit(&kqueue_filter_lock);
2215 error = copyoutstr(name, km->name, km->len, NULL);
2216 } else {
2217 rw_exit(&kqueue_filter_lock);
2218 error = ENOENT;
2219 }
2220 break;
2221
2222 case KFILTER_BYNAME: /* convert name -> filter */
2223 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
2224 if (error) {
2225 break;
2226 }
2227 rw_enter(&kqueue_filter_lock, RW_READER);
2228 kfilter = kfilter_byname(name);
2229 if (kfilter != NULL)
2230 km->filter = kfilter->filter;
2231 else
2232 error = ENOENT;
2233 rw_exit(&kqueue_filter_lock);
2234 break;
2235
2236 default:
2237 error = ENOTTY;
2238 break;
2239
2240 }
2241 kmem_free(name, KFILTER_MAXNAME);
2242 return (error);
2243 }
2244
2245 /*
2246 * fileops fcntl method for a kqueue descriptor.
2247 */
2248 static int
2249 kqueue_fcntl(file_t *fp, u_int com, void *data)
2250 {
2251
2252 return (ENOTTY);
2253 }
2254
2255 /*
2256 * fileops poll method for a kqueue descriptor.
2257 * Determine if kqueue has events pending.
2258 */
2259 static int
2260 kqueue_poll(file_t *fp, int events)
2261 {
2262 struct kqueue *kq;
2263 int revents;
2264
2265 kq = fp->f_kqueue;
2266
2267 revents = 0;
2268 if (events & (POLLIN | POLLRDNORM)) {
2269 mutex_spin_enter(&kq->kq_lock);
2270 if (KQ_COUNT(kq) != 0) {
2271 revents |= events & (POLLIN | POLLRDNORM);
2272 } else {
2273 selrecord(curlwp, &kq->kq_sel);
2274 }
2275 kq_check(kq);
2276 mutex_spin_exit(&kq->kq_lock);
2277 }
2278
2279 return revents;
2280 }
2281
2282 /*
2283 * fileops stat method for a kqueue descriptor.
2284 * Returns dummy info, with st_size being number of events pending.
2285 */
2286 static int
2287 kqueue_stat(file_t *fp, struct stat *st)
2288 {
2289 struct kqueue *kq;
2290
2291 kq = fp->f_kqueue;
2292
2293 memset(st, 0, sizeof(*st));
2294 st->st_size = KQ_COUNT(kq);
2295 st->st_blksize = sizeof(struct kevent);
2296 st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
2297 st->st_blocks = 1;
2298 st->st_uid = kauth_cred_geteuid(fp->f_cred);
2299 st->st_gid = kauth_cred_getegid(fp->f_cred);
2300
2301 return 0;
2302 }
2303
2304 static void
2305 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
2306 {
2307 struct knote *kn;
2308 filedesc_t *fdp;
2309
2310 fdp = kq->kq_fdp;
2311
2312 KASSERT(mutex_owned(&fdp->fd_lock));
2313
2314 again:
2315 for (kn = SLIST_FIRST(list); kn != NULL;) {
2316 if (kq != kn->kn_kq) {
2317 kn = SLIST_NEXT(kn, kn_link);
2318 continue;
2319 }
2320 if (knote_detach_quiesce(kn)) {
2321 mutex_enter(&fdp->fd_lock);
2322 goto again;
2323 }
2324 knote_detach(kn, fdp, true);
2325 mutex_enter(&fdp->fd_lock);
2326 kn = SLIST_FIRST(list);
2327 }
2328 }
2329
2330 /*
2331 * fileops close method for a kqueue descriptor.
2332 */
2333 static int
2334 kqueue_close(file_t *fp)
2335 {
2336 struct kqueue *kq;
2337 filedesc_t *fdp;
2338 fdfile_t *ff;
2339 int i;
2340
2341 kq = fp->f_kqueue;
2342 fp->f_kqueue = NULL;
2343 fp->f_type = 0;
2344 fdp = curlwp->l_fd;
2345
2346 KASSERT(kq->kq_fdp == fdp);
2347
2348 mutex_enter(&fdp->fd_lock);
2349
2350 /*
2351 * We're doing to drop the fd_lock multiple times while
2352 * we detach knotes. During this time, attempts to register
2353 * knotes via the back door (e.g. knote_proc_fork_track())
2354 * need to fail, lest they sneak in to attach a knote after
2355 * we've already drained the list it's destined for.
2356 *
2357 * We must aquire kq_lock here to set KQ_CLOSING (to serialize
2358 * with other code paths that modify kq_count without holding
2359 * the fd_lock), but once this bit is set, it's only safe to
2360 * test it while holding the fd_lock, and holding kq_lock while
2361 * doing so is not necessary.
2362 */
2363 mutex_enter(&kq->kq_lock);
2364 kq->kq_count |= KQ_CLOSING;
2365 mutex_exit(&kq->kq_lock);
2366
2367 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
2368 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
2369 continue;
2370 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
2371 }
2372 if (fdp->fd_knhashmask != 0) {
2373 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
2374 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
2375 }
2376 }
2377
2378 mutex_exit(&fdp->fd_lock);
2379
2380 #if defined(DEBUG)
2381 mutex_enter(&kq->kq_lock);
2382 kq_check(kq);
2383 mutex_exit(&kq->kq_lock);
2384 #endif /* DEBUG */
2385 KASSERT(TAILQ_EMPTY(&kq->kq_head));
2386 KASSERT(KQ_COUNT(kq) == 0);
2387 mutex_destroy(&kq->kq_lock);
2388 cv_destroy(&kq->kq_cv);
2389 seldestroy(&kq->kq_sel);
2390 kmem_free(kq, sizeof(*kq));
2391
2392 return (0);
2393 }
2394
2395 /*
2396 * struct fileops kqfilter method for a kqueue descriptor.
2397 * Event triggered when monitored kqueue changes.
2398 */
2399 static int
2400 kqueue_kqfilter(file_t *fp, struct knote *kn)
2401 {
2402 struct kqueue *kq;
2403
2404 kq = ((file_t *)kn->kn_obj)->f_kqueue;
2405
2406 KASSERT(fp == kn->kn_obj);
2407
2408 if (kn->kn_filter != EVFILT_READ)
2409 return EINVAL;
2410
2411 kn->kn_fop = &kqread_filtops;
2412 mutex_enter(&kq->kq_lock);
2413 selrecord_knote(&kq->kq_sel, kn);
2414 mutex_exit(&kq->kq_lock);
2415
2416 return 0;
2417 }
2418
2419
2420 /*
2421 * Walk down a list of knotes, activating them if their event has
2422 * triggered. The caller's object lock (e.g. device driver lock)
2423 * must be held.
2424 */
2425 void
2426 knote(struct klist *list, long hint)
2427 {
2428 struct knote *kn, *tmpkn;
2429
2430 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
2431 if (filter_event(kn, hint)) {
2432 knote_activate(kn);
2433 }
2434 }
2435 }
2436
2437 /*
2438 * Remove all knotes referencing a specified fd
2439 */
2440 void
2441 knote_fdclose(int fd)
2442 {
2443 struct klist *list;
2444 struct knote *kn;
2445 filedesc_t *fdp;
2446
2447 again:
2448 fdp = curlwp->l_fd;
2449 mutex_enter(&fdp->fd_lock);
2450 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
2451 while ((kn = SLIST_FIRST(list)) != NULL) {
2452 if (knote_detach_quiesce(kn)) {
2453 goto again;
2454 }
2455 knote_detach(kn, fdp, true);
2456 mutex_enter(&fdp->fd_lock);
2457 }
2458 mutex_exit(&fdp->fd_lock);
2459 }
2460
2461 /*
2462 * Drop knote. Called with fdp->fd_lock held, and will drop before
2463 * returning.
2464 */
2465 static void
2466 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
2467 {
2468 struct klist *list;
2469 struct kqueue *kq;
2470
2471 kq = kn->kn_kq;
2472
2473 KASSERT((kn->kn_status & KN_MARKER) == 0);
2474 KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
2475 KASSERT(kn->kn_fop != NULL);
2476 KASSERT(mutex_owned(&fdp->fd_lock));
2477
2478 /* Remove from monitored object. */
2479 if (dofop) {
2480 filter_detach(kn);
2481 }
2482
2483 /* Remove from descriptor table. */
2484 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2485 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
2486 else
2487 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2488
2489 SLIST_REMOVE(list, kn, knote, kn_link);
2490
2491 /* Remove from kqueue. */
2492 again:
2493 mutex_spin_enter(&kq->kq_lock);
2494 KASSERT(kn_in_flux(kn) == false);
2495 if ((kn->kn_status & KN_QUEUED) != 0) {
2496 kq_check(kq);
2497 KASSERT(KQ_COUNT(kq) != 0);
2498 kq->kq_count--;
2499 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2500 kn->kn_status &= ~KN_QUEUED;
2501 kq_check(kq);
2502 } else if (kn->kn_status & KN_BUSY) {
2503 mutex_spin_exit(&kq->kq_lock);
2504 goto again;
2505 }
2506 mutex_spin_exit(&kq->kq_lock);
2507
2508 mutex_exit(&fdp->fd_lock);
2509 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2510 fd_putfile(kn->kn_id);
2511 atomic_dec_uint(&kn->kn_kfilter->refcnt);
2512 kmem_free(kn, sizeof(*kn));
2513 }
2514
2515 /*
2516 * Queue new event for knote.
2517 */
2518 static void
2519 knote_enqueue(struct knote *kn)
2520 {
2521 struct kqueue *kq;
2522
2523 KASSERT((kn->kn_status & KN_MARKER) == 0);
2524
2525 kq = kn->kn_kq;
2526
2527 mutex_spin_enter(&kq->kq_lock);
2528 if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2529 /* Don't bother enqueueing a dying knote. */
2530 goto out;
2531 }
2532 if ((kn->kn_status & KN_DISABLED) != 0) {
2533 kn->kn_status &= ~KN_DISABLED;
2534 }
2535 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
2536 kq_check(kq);
2537 kn->kn_status |= KN_QUEUED;
2538 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2539 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2540 kq->kq_count++;
2541 kq_check(kq);
2542 cv_broadcast(&kq->kq_cv);
2543 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2544 }
2545 out:
2546 mutex_spin_exit(&kq->kq_lock);
2547 }
2548 /*
2549 * Queue new event for knote.
2550 */
2551 static void
2552 knote_activate(struct knote *kn)
2553 {
2554 struct kqueue *kq;
2555
2556 KASSERT((kn->kn_status & KN_MARKER) == 0);
2557
2558 kq = kn->kn_kq;
2559
2560 mutex_spin_enter(&kq->kq_lock);
2561 if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2562 /* Don't bother enqueueing a dying knote. */
2563 goto out;
2564 }
2565 kn->kn_status |= KN_ACTIVE;
2566 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
2567 kq_check(kq);
2568 kn->kn_status |= KN_QUEUED;
2569 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2570 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2571 kq->kq_count++;
2572 kq_check(kq);
2573 cv_broadcast(&kq->kq_cv);
2574 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2575 }
2576 out:
2577 mutex_spin_exit(&kq->kq_lock);
2578 }
2579