kern_event.c revision 1.131 1 /* $NetBSD: kern_event.c,v 1.131 2021/10/11 01:07:36 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * Copyright (c) 2009 Apple, Inc
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59 */
60
61 #ifdef _KERNEL_OPT
62 #include "opt_ddb.h"
63 #endif /* _KERNEL_OPT */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.131 2021/10/11 01:07:36 thorpej Exp $");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/wait.h>
72 #include <sys/proc.h>
73 #include <sys/file.h>
74 #include <sys/select.h>
75 #include <sys/queue.h>
76 #include <sys/event.h>
77 #include <sys/eventvar.h>
78 #include <sys/poll.h>
79 #include <sys/kmem.h>
80 #include <sys/stat.h>
81 #include <sys/filedesc.h>
82 #include <sys/syscallargs.h>
83 #include <sys/kauth.h>
84 #include <sys/conf.h>
85 #include <sys/atomic.h>
86
87 static int kqueue_scan(file_t *, size_t, struct kevent *,
88 const struct timespec *, register_t *,
89 const struct kevent_ops *, struct kevent *,
90 size_t);
91 static int kqueue_ioctl(file_t *, u_long, void *);
92 static int kqueue_fcntl(file_t *, u_int, void *);
93 static int kqueue_poll(file_t *, int);
94 static int kqueue_kqfilter(file_t *, struct knote *);
95 static int kqueue_stat(file_t *, struct stat *);
96 static int kqueue_close(file_t *);
97 static void kqueue_restart(file_t *);
98 static int kqueue_register(struct kqueue *, struct kevent *);
99 static void kqueue_doclose(struct kqueue *, struct klist *, int);
100
101 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
102 static void knote_enqueue(struct knote *);
103 static void knote_activate(struct knote *);
104
105 static void filt_kqdetach(struct knote *);
106 static int filt_kqueue(struct knote *, long hint);
107 static int filt_procattach(struct knote *);
108 static void filt_procdetach(struct knote *);
109 static int filt_proc(struct knote *, long hint);
110 static int filt_fileattach(struct knote *);
111 static void filt_timerexpire(void *x);
112 static int filt_timerattach(struct knote *);
113 static void filt_timerdetach(struct knote *);
114 static int filt_timer(struct knote *, long hint);
115 static int filt_userattach(struct knote *);
116 static void filt_userdetach(struct knote *);
117 static int filt_user(struct knote *, long hint);
118 static void filt_usertouch(struct knote *, struct kevent *, long type);
119
120 static const struct fileops kqueueops = {
121 .fo_name = "kqueue",
122 .fo_read = (void *)enxio,
123 .fo_write = (void *)enxio,
124 .fo_ioctl = kqueue_ioctl,
125 .fo_fcntl = kqueue_fcntl,
126 .fo_poll = kqueue_poll,
127 .fo_stat = kqueue_stat,
128 .fo_close = kqueue_close,
129 .fo_kqfilter = kqueue_kqfilter,
130 .fo_restart = kqueue_restart,
131 };
132
133 static const struct filterops kqread_filtops = {
134 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
135 .f_attach = NULL,
136 .f_detach = filt_kqdetach,
137 .f_event = filt_kqueue,
138 };
139
140 static const struct filterops proc_filtops = {
141 .f_flags = FILTEROP_MPSAFE,
142 .f_attach = filt_procattach,
143 .f_detach = filt_procdetach,
144 .f_event = filt_proc,
145 };
146
147 /*
148 * file_filtops is not marked MPSAFE because it's going to call
149 * fileops::fo_kqfilter(), which might not be. That function,
150 * however, will override the knote's filterops, and thus will
151 * inherit the MPSAFE-ness of the back-end at that time.
152 */
153 static const struct filterops file_filtops = {
154 .f_flags = FILTEROP_ISFD,
155 .f_attach = filt_fileattach,
156 .f_detach = NULL,
157 .f_event = NULL,
158 };
159
160 static const struct filterops timer_filtops = {
161 .f_flags = FILTEROP_MPSAFE,
162 .f_attach = filt_timerattach,
163 .f_detach = filt_timerdetach,
164 .f_event = filt_timer,
165 };
166
167 static const struct filterops user_filtops = {
168 .f_flags = FILTEROP_MPSAFE,
169 .f_attach = filt_userattach,
170 .f_detach = filt_userdetach,
171 .f_event = filt_user,
172 .f_touch = filt_usertouch,
173 };
174
175 static u_int kq_ncallouts = 0;
176 static int kq_calloutmax = (4 * 1024);
177
178 #define KN_HASHSIZE 64 /* XXX should be tunable */
179 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
180
181 extern const struct filterops fs_filtops; /* vfs_syscalls.c */
182 extern const struct filterops sig_filtops; /* kern_sig.c */
183
184 /*
185 * Table for for all system-defined filters.
186 * These should be listed in the numeric order of the EVFILT_* defines.
187 * If filtops is NULL, the filter isn't implemented in NetBSD.
188 * End of list is when name is NULL.
189 *
190 * Note that 'refcnt' is meaningless for built-in filters.
191 */
192 struct kfilter {
193 const char *name; /* name of filter */
194 uint32_t filter; /* id of filter */
195 unsigned refcnt; /* reference count */
196 const struct filterops *filtops;/* operations for filter */
197 size_t namelen; /* length of name string */
198 };
199
200 /* System defined filters */
201 static struct kfilter sys_kfilters[] = {
202 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
203 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
204 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
205 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
206 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
207 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
208 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
209 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
210 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
211 { NULL, 0, 0, NULL, 0 },
212 };
213
214 /* User defined kfilters */
215 static struct kfilter *user_kfilters; /* array */
216 static int user_kfilterc; /* current offset */
217 static int user_kfiltermaxc; /* max size so far */
218 static size_t user_kfiltersz; /* size of allocated memory */
219
220 /*
221 * Global Locks.
222 *
223 * Lock order:
224 *
225 * kqueue_filter_lock
226 * -> kn_kq->kq_fdp->fd_lock
227 * -> object lock (e.g., device driver lock, &c.)
228 * -> kn_kq->kq_lock
229 *
230 * Locking rules:
231 *
232 * f_attach: fdp->fd_lock, KERNEL_LOCK
233 * f_detach: fdp->fd_lock, KERNEL_LOCK
234 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
235 * f_event via knote: whatever caller guarantees
236 * Typically, f_event(NOTE_SUBMIT) via knote: object lock
237 * f_event(!NOTE_SUBMIT) via knote: nothing,
238 * acquires/releases object lock inside.
239 *
240 * Locking rules when detaching knotes:
241 *
242 * There are some situations where knote submission may require dropping
243 * locks (see knote_proc_fork()). In order to support this, it's possible
244 * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to
245 * be detached while it remains in-flux. Because it will not be detached,
246 * locks can be dropped so e.g. memory can be allocated, locks on other
247 * data structures can be acquired, etc. During this time, any attempt to
248 * detach an in-flux knote must wait until the knote is no longer in-flux.
249 * When this happens, the knote is marked for death (KN_WILLDETACH) and the
250 * LWP who gets to finish the detach operation is recorded in the knote's
251 * 'udata' field (which is no longer required for its original purpose once
252 * a knote is so marked). Code paths that lead to knote_detach() must ensure
253 * that their LWP is the one tasked with its final demise after waiting for
254 * the in-flux status of the knote to clear. Note that once a knote is
255 * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
256 *
257 * Once the special circumstances have been handled, the locks are re-
258 * acquired in the proper order (object lock -> kq_lock), the knote taken
259 * out of flux, and any waiters are notified. Because waiters must have
260 * also dropped *their* locks in order to safely block, they must re-
261 * validate all of their assumptions; see knote_detach_quiesce(). See also
262 * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
263 * cases.
264 *
265 * When kqueue_scan() encounters an in-flux knote, the situation is
266 * treated like another LWP's list marker.
267 *
268 * LISTEN WELL: It is important to not hold knotes in flux for an
269 * extended period of time! In-flux knotes effectively block any
270 * progress of the kqueue_scan() operation. Any code paths that place
271 * knotes in-flux should be careful to not block for indefinite periods
272 * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
273 * KM_SLEEP is not).
274 */
275 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
276 static kmutex_t kqueue_timer_lock; /* for EVFILT_TIMER */
277
278 #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock)
279 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
280
281 static inline bool
282 kn_in_flux(struct knote *kn)
283 {
284 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
285 return kn->kn_influx != 0;
286 }
287
288 static inline bool
289 kn_enter_flux(struct knote *kn)
290 {
291 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
292
293 if (kn->kn_status & KN_WILLDETACH) {
294 return false;
295 }
296
297 KASSERT(kn->kn_influx < UINT_MAX);
298 kn->kn_influx++;
299
300 return true;
301 }
302
303 static inline bool
304 kn_leave_flux(struct knote *kn)
305 {
306 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
307 KASSERT(kn->kn_influx > 0);
308 kn->kn_influx--;
309 return kn->kn_influx == 0;
310 }
311
312 static void
313 kn_wait_flux(struct knote *kn, bool can_loop)
314 {
315 bool loop;
316
317 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
318
319 /*
320 * It may not be safe for us to touch the knote again after
321 * dropping the kq_lock. The caller has let us know in
322 * 'can_loop'.
323 */
324 for (loop = true; loop && kn->kn_influx != 0; loop = can_loop) {
325 KQ_FLUX_WAIT(kn->kn_kq);
326 }
327 }
328
329 #define KNOTE_WILLDETACH(kn) \
330 do { \
331 (kn)->kn_status |= KN_WILLDETACH; \
332 (kn)->kn_kevent.udata = curlwp; \
333 } while (/*CONSTCOND*/0)
334
335 /*
336 * Wait until the specified knote is in a quiescent state and
337 * safe to detach. Returns true if we potentially blocked (and
338 * thus dropped our locks).
339 */
340 static bool
341 knote_detach_quiesce(struct knote *kn)
342 {
343 struct kqueue *kq = kn->kn_kq;
344 filedesc_t *fdp = kq->kq_fdp;
345
346 KASSERT(mutex_owned(&fdp->fd_lock));
347
348 mutex_spin_enter(&kq->kq_lock);
349 /*
350 * There are two cases where we might see KN_WILLDETACH here:
351 *
352 * 1. Someone else has already started detaching the knote but
353 * had to wait for it to settle first.
354 *
355 * 2. We had to wait for it to settle, and had to come back
356 * around after re-acquiring the locks.
357 *
358 * When KN_WILLDETACH is set, we also set the LWP that claimed
359 * the prize of finishing the detach in the 'udata' field of the
360 * knote (which will never be used again for its usual purpose
361 * once the note is in this state). If it doesn't point to us,
362 * we must drop the locks and let them in to finish the job.
363 *
364 * Otherwise, once we have claimed the knote for ourselves, we
365 * can finish waiting for it to settle. The is the only scenario
366 * where touching a detaching knote is safe after dropping the
367 * locks.
368 */
369 if ((kn->kn_status & KN_WILLDETACH) != 0 &&
370 kn->kn_kevent.udata != curlwp) {
371 /*
372 * N.B. it is NOT safe for us to touch the knote again
373 * after dropping the locks here. The caller must go
374 * back around and re-validate everything. However, if
375 * the knote is in-flux, we want to block to minimize
376 * busy-looping.
377 */
378 mutex_exit(&fdp->fd_lock);
379 if (kn_in_flux(kn)) {
380 kn_wait_flux(kn, false);
381 mutex_spin_exit(&kq->kq_lock);
382 return true;
383 }
384 mutex_spin_exit(&kq->kq_lock);
385 preempt_point();
386 return true;
387 }
388 /*
389 * If we get here, we know that we will be claiming the
390 * detach responsibilies, or that we already have and
391 * this is the second attempt after re-validation.
392 */
393 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
394 kn->kn_kevent.udata == curlwp);
395 /*
396 * Similarly, if we get here, either we are just claiming it
397 * and may have to wait for it to settle, or if this is the
398 * second attempt after re-validation that no other code paths
399 * have put it in-flux.
400 */
401 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
402 kn_in_flux(kn) == false);
403 KNOTE_WILLDETACH(kn);
404 if (kn_in_flux(kn)) {
405 mutex_exit(&fdp->fd_lock);
406 kn_wait_flux(kn, true);
407 /*
408 * It is safe for us to touch the knote again after
409 * dropping the locks, but the caller must still
410 * re-validate everything because other aspects of
411 * the environment may have changed while we blocked.
412 */
413 KASSERT(kn_in_flux(kn) == false);
414 mutex_spin_exit(&kq->kq_lock);
415 return true;
416 }
417 mutex_spin_exit(&kq->kq_lock);
418
419 return false;
420 }
421
422 static int
423 filter_attach(struct knote *kn)
424 {
425 int rv;
426
427 KASSERT(kn->kn_fop != NULL);
428 KASSERT(kn->kn_fop->f_attach != NULL);
429
430 /*
431 * N.B. that kn->kn_fop may change as the result of calling
432 * f_attach().
433 */
434 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
435 rv = kn->kn_fop->f_attach(kn);
436 } else {
437 KERNEL_LOCK(1, NULL);
438 rv = kn->kn_fop->f_attach(kn);
439 KERNEL_UNLOCK_ONE(NULL);
440 }
441
442 return rv;
443 }
444
445 static void
446 filter_detach(struct knote *kn)
447 {
448 KASSERT(kn->kn_fop != NULL);
449 KASSERT(kn->kn_fop->f_detach != NULL);
450
451 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
452 kn->kn_fop->f_detach(kn);
453 } else {
454 KERNEL_LOCK(1, NULL);
455 kn->kn_fop->f_detach(kn);
456 KERNEL_UNLOCK_ONE(NULL);
457 }
458 }
459
460 static int
461 filter_event(struct knote *kn, long hint)
462 {
463 int rv;
464
465 KASSERT(kn->kn_fop != NULL);
466 KASSERT(kn->kn_fop->f_event != NULL);
467
468 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
469 rv = kn->kn_fop->f_event(kn, hint);
470 } else {
471 KERNEL_LOCK(1, NULL);
472 rv = kn->kn_fop->f_event(kn, hint);
473 KERNEL_UNLOCK_ONE(NULL);
474 }
475
476 return rv;
477 }
478
479 static void
480 filter_touch(struct knote *kn, struct kevent *kev, long type)
481 {
482 kn->kn_fop->f_touch(kn, kev, type);
483 }
484
485 static kauth_listener_t kqueue_listener;
486
487 static int
488 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
489 void *arg0, void *arg1, void *arg2, void *arg3)
490 {
491 struct proc *p;
492 int result;
493
494 result = KAUTH_RESULT_DEFER;
495 p = arg0;
496
497 if (action != KAUTH_PROCESS_KEVENT_FILTER)
498 return result;
499
500 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
501 ISSET(p->p_flag, PK_SUGID)))
502 return result;
503
504 result = KAUTH_RESULT_ALLOW;
505
506 return result;
507 }
508
509 /*
510 * Initialize the kqueue subsystem.
511 */
512 void
513 kqueue_init(void)
514 {
515
516 rw_init(&kqueue_filter_lock);
517 mutex_init(&kqueue_timer_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK);
518
519 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
520 kqueue_listener_cb, NULL);
521 }
522
523 /*
524 * Find kfilter entry by name, or NULL if not found.
525 */
526 static struct kfilter *
527 kfilter_byname_sys(const char *name)
528 {
529 int i;
530
531 KASSERT(rw_lock_held(&kqueue_filter_lock));
532
533 for (i = 0; sys_kfilters[i].name != NULL; i++) {
534 if (strcmp(name, sys_kfilters[i].name) == 0)
535 return &sys_kfilters[i];
536 }
537 return NULL;
538 }
539
540 static struct kfilter *
541 kfilter_byname_user(const char *name)
542 {
543 int i;
544
545 KASSERT(rw_lock_held(&kqueue_filter_lock));
546
547 /* user filter slots have a NULL name if previously deregistered */
548 for (i = 0; i < user_kfilterc ; i++) {
549 if (user_kfilters[i].name != NULL &&
550 strcmp(name, user_kfilters[i].name) == 0)
551 return &user_kfilters[i];
552 }
553 return NULL;
554 }
555
556 static struct kfilter *
557 kfilter_byname(const char *name)
558 {
559 struct kfilter *kfilter;
560
561 KASSERT(rw_lock_held(&kqueue_filter_lock));
562
563 if ((kfilter = kfilter_byname_sys(name)) != NULL)
564 return kfilter;
565
566 return kfilter_byname_user(name);
567 }
568
569 /*
570 * Find kfilter entry by filter id, or NULL if not found.
571 * Assumes entries are indexed in filter id order, for speed.
572 */
573 static struct kfilter *
574 kfilter_byfilter(uint32_t filter)
575 {
576 struct kfilter *kfilter;
577
578 KASSERT(rw_lock_held(&kqueue_filter_lock));
579
580 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
581 kfilter = &sys_kfilters[filter];
582 else if (user_kfilters != NULL &&
583 filter < EVFILT_SYSCOUNT + user_kfilterc)
584 /* it's a user filter */
585 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
586 else
587 return (NULL); /* out of range */
588 KASSERT(kfilter->filter == filter); /* sanity check! */
589 return (kfilter);
590 }
591
592 /*
593 * Register a new kfilter. Stores the entry in user_kfilters.
594 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
595 * If retfilter != NULL, the new filterid is returned in it.
596 */
597 int
598 kfilter_register(const char *name, const struct filterops *filtops,
599 int *retfilter)
600 {
601 struct kfilter *kfilter;
602 size_t len;
603 int i;
604
605 if (name == NULL || name[0] == '\0' || filtops == NULL)
606 return (EINVAL); /* invalid args */
607
608 rw_enter(&kqueue_filter_lock, RW_WRITER);
609 if (kfilter_byname(name) != NULL) {
610 rw_exit(&kqueue_filter_lock);
611 return (EEXIST); /* already exists */
612 }
613 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
614 rw_exit(&kqueue_filter_lock);
615 return (EINVAL); /* too many */
616 }
617
618 for (i = 0; i < user_kfilterc; i++) {
619 kfilter = &user_kfilters[i];
620 if (kfilter->name == NULL) {
621 /* Previously deregistered slot. Reuse. */
622 goto reuse;
623 }
624 }
625
626 /* check if need to grow user_kfilters */
627 if (user_kfilterc + 1 > user_kfiltermaxc) {
628 /* Grow in KFILTER_EXTENT chunks. */
629 user_kfiltermaxc += KFILTER_EXTENT;
630 len = user_kfiltermaxc * sizeof(*kfilter);
631 kfilter = kmem_alloc(len, KM_SLEEP);
632 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
633 if (user_kfilters != NULL) {
634 memcpy(kfilter, user_kfilters, user_kfiltersz);
635 kmem_free(user_kfilters, user_kfiltersz);
636 }
637 user_kfiltersz = len;
638 user_kfilters = kfilter;
639 }
640 /* Adding new slot */
641 kfilter = &user_kfilters[user_kfilterc++];
642 reuse:
643 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
644
645 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
646
647 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
648 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
649
650 if (retfilter != NULL)
651 *retfilter = kfilter->filter;
652 rw_exit(&kqueue_filter_lock);
653
654 return (0);
655 }
656
657 /*
658 * Unregister a kfilter previously registered with kfilter_register.
659 * This retains the filter id, but clears the name and frees filtops (filter
660 * operations), so that the number isn't reused during a boot.
661 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
662 */
663 int
664 kfilter_unregister(const char *name)
665 {
666 struct kfilter *kfilter;
667
668 if (name == NULL || name[0] == '\0')
669 return (EINVAL); /* invalid name */
670
671 rw_enter(&kqueue_filter_lock, RW_WRITER);
672 if (kfilter_byname_sys(name) != NULL) {
673 rw_exit(&kqueue_filter_lock);
674 return (EINVAL); /* can't detach system filters */
675 }
676
677 kfilter = kfilter_byname_user(name);
678 if (kfilter == NULL) {
679 rw_exit(&kqueue_filter_lock);
680 return (ENOENT);
681 }
682 if (kfilter->refcnt != 0) {
683 rw_exit(&kqueue_filter_lock);
684 return (EBUSY);
685 }
686
687 /* Cast away const (but we know it's safe. */
688 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
689 kfilter->name = NULL; /* mark as `not implemented' */
690
691 if (kfilter->filtops != NULL) {
692 /* Cast away const (but we know it's safe. */
693 kmem_free(__UNCONST(kfilter->filtops),
694 sizeof(*kfilter->filtops));
695 kfilter->filtops = NULL; /* mark as `not implemented' */
696 }
697 rw_exit(&kqueue_filter_lock);
698
699 return (0);
700 }
701
702
703 /*
704 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
705 * descriptors. Calls fileops kqfilter method for given file descriptor.
706 */
707 static int
708 filt_fileattach(struct knote *kn)
709 {
710 file_t *fp;
711
712 fp = kn->kn_obj;
713
714 return (*fp->f_ops->fo_kqfilter)(fp, kn);
715 }
716
717 /*
718 * Filter detach method for EVFILT_READ on kqueue descriptor.
719 */
720 static void
721 filt_kqdetach(struct knote *kn)
722 {
723 struct kqueue *kq;
724
725 kq = ((file_t *)kn->kn_obj)->f_kqueue;
726
727 mutex_spin_enter(&kq->kq_lock);
728 selremove_knote(&kq->kq_sel, kn);
729 mutex_spin_exit(&kq->kq_lock);
730 }
731
732 /*
733 * Filter event method for EVFILT_READ on kqueue descriptor.
734 */
735 /*ARGSUSED*/
736 static int
737 filt_kqueue(struct knote *kn, long hint)
738 {
739 struct kqueue *kq;
740 int rv;
741
742 kq = ((file_t *)kn->kn_obj)->f_kqueue;
743
744 if (hint != NOTE_SUBMIT)
745 mutex_spin_enter(&kq->kq_lock);
746 kn->kn_data = KQ_COUNT(kq);
747 rv = (kn->kn_data > 0);
748 if (hint != NOTE_SUBMIT)
749 mutex_spin_exit(&kq->kq_lock);
750
751 return rv;
752 }
753
754 /*
755 * Filter attach method for EVFILT_PROC.
756 */
757 static int
758 filt_procattach(struct knote *kn)
759 {
760 struct proc *p;
761
762 mutex_enter(&proc_lock);
763 p = proc_find(kn->kn_id);
764 if (p == NULL) {
765 mutex_exit(&proc_lock);
766 return ESRCH;
767 }
768
769 /*
770 * Fail if it's not owned by you, or the last exec gave us
771 * setuid/setgid privs (unless you're root).
772 */
773 mutex_enter(p->p_lock);
774 mutex_exit(&proc_lock);
775 if (kauth_authorize_process(curlwp->l_cred,
776 KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
777 mutex_exit(p->p_lock);
778 return EACCES;
779 }
780
781 kn->kn_obj = p;
782 kn->kn_flags |= EV_CLEAR; /* automatically set */
783
784 /*
785 * NOTE_CHILD is only ever generated internally; don't let it
786 * leak in from user-space. See knote_proc_fork_track().
787 */
788 kn->kn_sfflags &= ~NOTE_CHILD;
789
790 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
791 mutex_exit(p->p_lock);
792
793 return 0;
794 }
795
796 /*
797 * Filter detach method for EVFILT_PROC.
798 *
799 * The knote may be attached to a different process, which may exit,
800 * leaving nothing for the knote to be attached to. So when the process
801 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
802 * it will be deleted when read out. However, as part of the knote deletion,
803 * this routine is called, so a check is needed to avoid actually performing
804 * a detach, because the original process might not exist any more.
805 */
806 static void
807 filt_procdetach(struct knote *kn)
808 {
809 struct kqueue *kq = kn->kn_kq;
810 struct proc *p;
811
812 /*
813 * We have to synchronize with knote_proc_exit(), but we
814 * are forced to acquire the locks in the wrong order here
815 * because we can't be sure kn->kn_obj is valid unless
816 * KN_DETACHED is not set.
817 */
818 again:
819 mutex_spin_enter(&kq->kq_lock);
820 if ((kn->kn_status & KN_DETACHED) == 0) {
821 p = kn->kn_obj;
822 if (!mutex_tryenter(p->p_lock)) {
823 mutex_spin_exit(&kq->kq_lock);
824 preempt_point();
825 goto again;
826 }
827 kn->kn_status |= KN_DETACHED;
828 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
829 mutex_exit(p->p_lock);
830 }
831 mutex_spin_exit(&kq->kq_lock);
832 }
833
834 /*
835 * Filter event method for EVFILT_PROC.
836 *
837 * Due to some of the complexities of process locking, we have special
838 * entry points for delivering knote submissions. filt_proc() is used
839 * only to check for activation from kqueue_register() and kqueue_scan().
840 */
841 static int
842 filt_proc(struct knote *kn, long hint)
843 {
844 struct kqueue *kq = kn->kn_kq;
845 uint32_t fflags;
846
847 /*
848 * Because we share the same klist with signal knotes, just
849 * ensure that we're not being invoked for the proc-related
850 * submissions.
851 */
852 KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
853
854 mutex_spin_enter(&kq->kq_lock);
855 fflags = kn->kn_fflags;
856 mutex_spin_exit(&kq->kq_lock);
857
858 return fflags != 0;
859 }
860
861 void
862 knote_proc_exec(struct proc *p)
863 {
864 struct knote *kn, *tmpkn;
865 struct kqueue *kq;
866 uint32_t fflags;
867
868 mutex_enter(p->p_lock);
869
870 SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
871 /* N.B. EVFILT_SIGNAL knotes are on this same list. */
872 if (kn->kn_fop == &sig_filtops) {
873 continue;
874 }
875 KASSERT(kn->kn_fop == &proc_filtops);
876
877 kq = kn->kn_kq;
878 mutex_spin_enter(&kq->kq_lock);
879 fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
880 mutex_spin_exit(&kq->kq_lock);
881 if (fflags) {
882 knote_activate(kn);
883 }
884 }
885
886 mutex_exit(p->p_lock);
887 }
888
889 static int __noinline
890 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
891 {
892 struct kqueue *kq = okn->kn_kq;
893
894 KASSERT(mutex_owned(&kq->kq_lock));
895 KASSERT(mutex_owned(p1->p_lock));
896
897 /*
898 * We're going to put this knote into flux while we drop
899 * the locks and create and attach a new knote to track the
900 * child. If we are not able to enter flux, then this knote
901 * is about to go away, so skip the notification.
902 */
903 if (!kn_enter_flux(okn)) {
904 return 0;
905 }
906
907 mutex_spin_exit(&kq->kq_lock);
908 mutex_exit(p1->p_lock);
909
910 /*
911 * We actually have to register *two* new knotes:
912 *
913 * ==> One for the NOTE_CHILD notification. This is a forced
914 * ONESHOT note.
915 *
916 * ==> One to actually track the child process as it subsequently
917 * forks, execs, and, ultimately, exits.
918 *
919 * If we only register a single knote, then it's possible for
920 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
921 * notification if the child exits before the tracking process
922 * has received the NOTE_CHILD notification, which applications
923 * aren't expecting (the event's 'data' field would be clobbered,
924 * for exmaple).
925 *
926 * To do this, what we have here is an **extremely** stripped-down
927 * version of kqueue_register() that has the following properties:
928 *
929 * ==> Does not block to allocate memory. If we are unable
930 * to allocate memory, we return ENOMEM.
931 *
932 * ==> Does not search for existing knotes; we know there
933 * are not any because this is a new process that isn't
934 * even visible to other processes yet.
935 *
936 * ==> Assumes that the knhash for our kq's descriptor table
937 * already exists (after all, we're already tracking
938 * processes with knotes if we got here).
939 *
940 * ==> Directly attaches the new tracking knote to the child
941 * process.
942 *
943 * The whole point is to do the minimum amount of work while the
944 * knote is held in-flux, and to avoid doing extra work in general
945 * (we already have the new child process; why bother looking it
946 * up again?).
947 */
948 filedesc_t *fdp = kq->kq_fdp;
949 struct knote *knchild, *kntrack;
950 int error = 0;
951
952 knchild = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
953 kntrack = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
954 if (__predict_false(knchild == NULL || kntrack == NULL)) {
955 error = ENOMEM;
956 goto out;
957 }
958
959 kntrack->kn_obj = p2;
960 kntrack->kn_id = p2->p_pid;
961 kntrack->kn_kq = kq;
962 kntrack->kn_fop = okn->kn_fop;
963 kntrack->kn_kfilter = okn->kn_kfilter;
964 kntrack->kn_sfflags = okn->kn_sfflags;
965 kntrack->kn_sdata = p1->p_pid;
966
967 kntrack->kn_kevent.ident = p2->p_pid;
968 kntrack->kn_kevent.filter = okn->kn_filter;
969 kntrack->kn_kevent.flags =
970 okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
971 kntrack->kn_kevent.fflags = 0;
972 kntrack->kn_kevent.data = 0;
973 kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
974
975 /*
976 * The child note does not need to be attached to the
977 * new proc's klist at all.
978 */
979 *knchild = *kntrack;
980 knchild->kn_status = KN_DETACHED;
981 knchild->kn_sfflags = 0;
982 knchild->kn_kevent.flags |= EV_ONESHOT;
983 knchild->kn_kevent.fflags = NOTE_CHILD;
984 knchild->kn_kevent.data = p1->p_pid; /* parent */
985
986 mutex_enter(&fdp->fd_lock);
987
988 /*
989 * We need to check to see if the kq is closing, and skip
990 * attaching the knote if so. Normally, this isn't necessary
991 * when coming in the front door because the file descriptor
992 * layer will synchronize this.
993 *
994 * It's safe to test KQ_CLOSING without taking the kq_lock
995 * here because that flag is only ever set when the fd_lock
996 * is also held.
997 */
998 if (__predict_false(kq->kq_count & KQ_CLOSING)) {
999 mutex_exit(&fdp->fd_lock);
1000 goto out;
1001 }
1002
1003 /*
1004 * We do the "insert into FD table" and "attach to klist" steps
1005 * in the opposite order of kqueue_register() here to avoid
1006 * having to take p2->p_lock twice. But this is OK because we
1007 * hold fd_lock across the entire operation.
1008 */
1009
1010 mutex_enter(p2->p_lock);
1011 error = kauth_authorize_process(curlwp->l_cred,
1012 KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
1013 if (__predict_false(error != 0)) {
1014 mutex_exit(p2->p_lock);
1015 mutex_exit(&fdp->fd_lock);
1016 error = EACCES;
1017 goto out;
1018 }
1019 SLIST_INSERT_HEAD(&p2->p_klist, kntrack, kn_selnext);
1020 mutex_exit(p2->p_lock);
1021
1022 KASSERT(fdp->fd_knhashmask != 0);
1023 KASSERT(fdp->fd_knhash != NULL);
1024 struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
1025 fdp->fd_knhashmask)];
1026 SLIST_INSERT_HEAD(list, kntrack, kn_link);
1027 SLIST_INSERT_HEAD(list, knchild, kn_link);
1028
1029 /* This adds references for knchild *and* kntrack. */
1030 atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
1031
1032 knote_activate(knchild);
1033
1034 kntrack = NULL;
1035 knchild = NULL;
1036
1037 mutex_exit(&fdp->fd_lock);
1038
1039 out:
1040 if (__predict_false(knchild != NULL)) {
1041 kmem_free(knchild, sizeof(*knchild));
1042 }
1043 if (__predict_false(kntrack != NULL)) {
1044 kmem_free(kntrack, sizeof(*kntrack));
1045 }
1046 mutex_enter(p1->p_lock);
1047 mutex_spin_enter(&kq->kq_lock);
1048
1049 if (kn_leave_flux(okn)) {
1050 KQ_FLUX_WAKEUP(kq);
1051 }
1052
1053 return error;
1054 }
1055
1056 void
1057 knote_proc_fork(struct proc *p1, struct proc *p2)
1058 {
1059 struct knote *kn;
1060 struct kqueue *kq;
1061 uint32_t fflags;
1062
1063 mutex_enter(p1->p_lock);
1064
1065 /*
1066 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
1067 * don't want to pre-fetch the next knote; in the event we
1068 * have to drop p_lock, we will have put the knote in-flux,
1069 * meaning that no one will be able to detach it until we
1070 * have taken the knote out of flux. However, that does
1071 * NOT stop someone else from detaching the next note in the
1072 * list while we have it unlocked. Thus, we want to fetch
1073 * the next note in the list only after we have re-acquired
1074 * the lock, and using SLIST_FOREACH() will satisfy that.
1075 */
1076 SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
1077 /* N.B. EVFILT_SIGNAL knotes are on this same list. */
1078 if (kn->kn_fop == &sig_filtops) {
1079 continue;
1080 }
1081 KASSERT(kn->kn_fop == &proc_filtops);
1082
1083 kq = kn->kn_kq;
1084 mutex_spin_enter(&kq->kq_lock);
1085 kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
1086 if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
1087 /*
1088 * This will drop kq_lock and p_lock and
1089 * re-acquire them before it returns.
1090 */
1091 if (knote_proc_fork_track(p1, p2, kn)) {
1092 kn->kn_fflags |= NOTE_TRACKERR;
1093 }
1094 KASSERT(mutex_owned(p1->p_lock));
1095 KASSERT(mutex_owned(&kq->kq_lock));
1096 }
1097 fflags = kn->kn_fflags;
1098 mutex_spin_exit(&kq->kq_lock);
1099 if (fflags) {
1100 knote_activate(kn);
1101 }
1102 }
1103
1104 mutex_exit(p1->p_lock);
1105 }
1106
1107 void
1108 knote_proc_exit(struct proc *p)
1109 {
1110 struct knote *kn;
1111 struct kqueue *kq;
1112
1113 KASSERT(mutex_owned(p->p_lock));
1114
1115 while (!SLIST_EMPTY(&p->p_klist)) {
1116 kn = SLIST_FIRST(&p->p_klist);
1117 kq = kn->kn_kq;
1118
1119 KASSERT(kn->kn_obj == p);
1120
1121 mutex_spin_enter(&kq->kq_lock);
1122 kn->kn_data = P_WAITSTATUS(p);
1123 /*
1124 * Mark as ONESHOT, so that the knote is g/c'ed
1125 * when read.
1126 */
1127 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1128 kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
1129
1130 /*
1131 * Detach the knote from the process and mark it as such.
1132 * N.B. EVFILT_SIGNAL are also on p_klist, but by the
1133 * time we get here, all open file descriptors for this
1134 * process have been released, meaning that signal knotes
1135 * will have already been detached.
1136 *
1137 * We need to synchronize this with filt_procdetach().
1138 */
1139 KASSERT(kn->kn_fop == &proc_filtops);
1140 if ((kn->kn_status & KN_DETACHED) == 0) {
1141 kn->kn_status |= KN_DETACHED;
1142 SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
1143 }
1144 mutex_spin_exit(&kq->kq_lock);
1145
1146 /*
1147 * Always activate the knote for NOTE_EXIT regardless
1148 * of whether or not the listener cares about it.
1149 * This matches historical behavior.
1150 */
1151 knote_activate(kn);
1152 }
1153 }
1154
1155 static void
1156 filt_timerexpire(void *knx)
1157 {
1158 struct knote *kn = knx;
1159 int tticks;
1160
1161 mutex_enter(&kqueue_timer_lock);
1162 kn->kn_data++;
1163 knote_activate(kn);
1164 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1165 tticks = mstohz(kn->kn_sdata);
1166 if (tticks <= 0)
1167 tticks = 1;
1168 callout_schedule((callout_t *)kn->kn_hook, tticks);
1169 }
1170 mutex_exit(&kqueue_timer_lock);
1171 }
1172
1173 /*
1174 * data contains amount of time to sleep, in milliseconds
1175 */
1176 static int
1177 filt_timerattach(struct knote *kn)
1178 {
1179 callout_t *calloutp;
1180 struct kqueue *kq;
1181 int tticks;
1182
1183 tticks = mstohz(kn->kn_sdata);
1184
1185 /* if the supplied value is under our resolution, use 1 tick */
1186 if (tticks == 0) {
1187 if (kn->kn_sdata == 0)
1188 return EINVAL;
1189 tticks = 1;
1190 }
1191
1192 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
1193 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
1194 atomic_dec_uint(&kq_ncallouts);
1195 return ENOMEM;
1196 }
1197 callout_init(calloutp, CALLOUT_MPSAFE);
1198
1199 kq = kn->kn_kq;
1200 mutex_spin_enter(&kq->kq_lock);
1201 kn->kn_flags |= EV_CLEAR; /* automatically set */
1202 kn->kn_hook = calloutp;
1203 mutex_spin_exit(&kq->kq_lock);
1204
1205 callout_reset(calloutp, tticks, filt_timerexpire, kn);
1206
1207 return (0);
1208 }
1209
1210 static void
1211 filt_timerdetach(struct knote *kn)
1212 {
1213 callout_t *calloutp;
1214 struct kqueue *kq = kn->kn_kq;
1215
1216 /*
1217 * We don't need to hold the kqueue_timer_lock here; even
1218 * if filt_timerexpire() misses our setting of EV_ONESHOT,
1219 * we are guaranteed that the callout will no longer be
1220 * scheduled even if we attempted to halt it after it already
1221 * started running, even if it rescheduled itself.
1222 */
1223
1224 mutex_spin_enter(&kq->kq_lock);
1225 /* prevent rescheduling when we expire */
1226 kn->kn_flags |= EV_ONESHOT;
1227 mutex_spin_exit(&kq->kq_lock);
1228
1229 calloutp = (callout_t *)kn->kn_hook;
1230
1231 /*
1232 * Attempt to stop the callout. This will block if it's
1233 * already running.
1234 */
1235 callout_halt(calloutp, NULL);
1236
1237 callout_destroy(calloutp);
1238 kmem_free(calloutp, sizeof(*calloutp));
1239 atomic_dec_uint(&kq_ncallouts);
1240 }
1241
1242 static int
1243 filt_timer(struct knote *kn, long hint)
1244 {
1245 int rv;
1246
1247 mutex_enter(&kqueue_timer_lock);
1248 rv = (kn->kn_data != 0);
1249 mutex_exit(&kqueue_timer_lock);
1250
1251 return rv;
1252 }
1253
1254 static int
1255 filt_userattach(struct knote *kn)
1256 {
1257 struct kqueue *kq = kn->kn_kq;
1258
1259 /*
1260 * EVFILT_USER knotes are not attached to anything in the kernel.
1261 */
1262 mutex_spin_enter(&kq->kq_lock);
1263 kn->kn_hook = NULL;
1264 if (kn->kn_fflags & NOTE_TRIGGER)
1265 kn->kn_hookid = 1;
1266 else
1267 kn->kn_hookid = 0;
1268 mutex_spin_exit(&kq->kq_lock);
1269 return (0);
1270 }
1271
1272 static void
1273 filt_userdetach(struct knote *kn)
1274 {
1275
1276 /*
1277 * EVFILT_USER knotes are not attached to anything in the kernel.
1278 */
1279 }
1280
1281 static int
1282 filt_user(struct knote *kn, long hint)
1283 {
1284 struct kqueue *kq = kn->kn_kq;
1285 int hookid;
1286
1287 mutex_spin_enter(&kq->kq_lock);
1288 hookid = kn->kn_hookid;
1289 mutex_spin_exit(&kq->kq_lock);
1290
1291 return hookid;
1292 }
1293
1294 static void
1295 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
1296 {
1297 int ffctrl;
1298
1299 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1300
1301 switch (type) {
1302 case EVENT_REGISTER:
1303 if (kev->fflags & NOTE_TRIGGER)
1304 kn->kn_hookid = 1;
1305
1306 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1307 kev->fflags &= NOTE_FFLAGSMASK;
1308 switch (ffctrl) {
1309 case NOTE_FFNOP:
1310 break;
1311
1312 case NOTE_FFAND:
1313 kn->kn_sfflags &= kev->fflags;
1314 break;
1315
1316 case NOTE_FFOR:
1317 kn->kn_sfflags |= kev->fflags;
1318 break;
1319
1320 case NOTE_FFCOPY:
1321 kn->kn_sfflags = kev->fflags;
1322 break;
1323
1324 default:
1325 /* XXX Return error? */
1326 break;
1327 }
1328 kn->kn_sdata = kev->data;
1329 if (kev->flags & EV_CLEAR) {
1330 kn->kn_hookid = 0;
1331 kn->kn_data = 0;
1332 kn->kn_fflags = 0;
1333 }
1334 break;
1335
1336 case EVENT_PROCESS:
1337 *kev = kn->kn_kevent;
1338 kev->fflags = kn->kn_sfflags;
1339 kev->data = kn->kn_sdata;
1340 if (kn->kn_flags & EV_CLEAR) {
1341 kn->kn_hookid = 0;
1342 kn->kn_data = 0;
1343 kn->kn_fflags = 0;
1344 }
1345 break;
1346
1347 default:
1348 panic("filt_usertouch() - invalid type (%ld)", type);
1349 break;
1350 }
1351 }
1352
1353 /*
1354 * filt_seltrue:
1355 *
1356 * This filter "event" routine simulates seltrue().
1357 */
1358 int
1359 filt_seltrue(struct knote *kn, long hint)
1360 {
1361
1362 /*
1363 * We don't know how much data can be read/written,
1364 * but we know that it *can* be. This is about as
1365 * good as select/poll does as well.
1366 */
1367 kn->kn_data = 0;
1368 return (1);
1369 }
1370
1371 /*
1372 * This provides full kqfilter entry for device switch tables, which
1373 * has same effect as filter using filt_seltrue() as filter method.
1374 */
1375 static void
1376 filt_seltruedetach(struct knote *kn)
1377 {
1378 /* Nothing to do */
1379 }
1380
1381 const struct filterops seltrue_filtops = {
1382 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1383 .f_attach = NULL,
1384 .f_detach = filt_seltruedetach,
1385 .f_event = filt_seltrue,
1386 };
1387
1388 int
1389 seltrue_kqfilter(dev_t dev, struct knote *kn)
1390 {
1391 switch (kn->kn_filter) {
1392 case EVFILT_READ:
1393 case EVFILT_WRITE:
1394 kn->kn_fop = &seltrue_filtops;
1395 break;
1396 default:
1397 return (EINVAL);
1398 }
1399
1400 /* Nothing more to do */
1401 return (0);
1402 }
1403
1404 /*
1405 * kqueue(2) system call.
1406 */
1407 static int
1408 kqueue1(struct lwp *l, int flags, register_t *retval)
1409 {
1410 struct kqueue *kq;
1411 file_t *fp;
1412 int fd, error;
1413
1414 if ((error = fd_allocfile(&fp, &fd)) != 0)
1415 return error;
1416 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
1417 fp->f_type = DTYPE_KQUEUE;
1418 fp->f_ops = &kqueueops;
1419 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
1420 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
1421 cv_init(&kq->kq_cv, "kqueue");
1422 selinit(&kq->kq_sel);
1423 TAILQ_INIT(&kq->kq_head);
1424 fp->f_kqueue = kq;
1425 *retval = fd;
1426 kq->kq_fdp = curlwp->l_fd;
1427 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1428 fd_affix(curproc, fp, fd);
1429 return error;
1430 }
1431
1432 /*
1433 * kqueue(2) system call.
1434 */
1435 int
1436 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
1437 {
1438 return kqueue1(l, 0, retval);
1439 }
1440
1441 int
1442 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
1443 register_t *retval)
1444 {
1445 /* {
1446 syscallarg(int) flags;
1447 } */
1448 return kqueue1(l, SCARG(uap, flags), retval);
1449 }
1450
1451 /*
1452 * kevent(2) system call.
1453 */
1454 int
1455 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
1456 struct kevent *changes, size_t index, int n)
1457 {
1458
1459 return copyin(changelist + index, changes, n * sizeof(*changes));
1460 }
1461
1462 int
1463 kevent_put_events(void *ctx, struct kevent *events,
1464 struct kevent *eventlist, size_t index, int n)
1465 {
1466
1467 return copyout(events, eventlist + index, n * sizeof(*events));
1468 }
1469
1470 static const struct kevent_ops kevent_native_ops = {
1471 .keo_private = NULL,
1472 .keo_fetch_timeout = copyin,
1473 .keo_fetch_changes = kevent_fetch_changes,
1474 .keo_put_events = kevent_put_events,
1475 };
1476
1477 int
1478 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1479 register_t *retval)
1480 {
1481 /* {
1482 syscallarg(int) fd;
1483 syscallarg(const struct kevent *) changelist;
1484 syscallarg(size_t) nchanges;
1485 syscallarg(struct kevent *) eventlist;
1486 syscallarg(size_t) nevents;
1487 syscallarg(const struct timespec *) timeout;
1488 } */
1489
1490 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1491 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1492 SCARG(uap, timeout), &kevent_native_ops);
1493 }
1494
1495 int
1496 kevent1(register_t *retval, int fd,
1497 const struct kevent *changelist, size_t nchanges,
1498 struct kevent *eventlist, size_t nevents,
1499 const struct timespec *timeout,
1500 const struct kevent_ops *keops)
1501 {
1502 struct kevent *kevp;
1503 struct kqueue *kq;
1504 struct timespec ts;
1505 size_t i, n, ichange;
1506 int nerrors, error;
1507 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
1508 file_t *fp;
1509
1510 /* check that we're dealing with a kq */
1511 fp = fd_getfile(fd);
1512 if (fp == NULL)
1513 return (EBADF);
1514
1515 if (fp->f_type != DTYPE_KQUEUE) {
1516 fd_putfile(fd);
1517 return (EBADF);
1518 }
1519
1520 if (timeout != NULL) {
1521 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1522 if (error)
1523 goto done;
1524 timeout = &ts;
1525 }
1526
1527 kq = fp->f_kqueue;
1528 nerrors = 0;
1529 ichange = 0;
1530
1531 /* traverse list of events to register */
1532 while (nchanges > 0) {
1533 n = MIN(nchanges, __arraycount(kevbuf));
1534 error = (*keops->keo_fetch_changes)(keops->keo_private,
1535 changelist, kevbuf, ichange, n);
1536 if (error)
1537 goto done;
1538 for (i = 0; i < n; i++) {
1539 kevp = &kevbuf[i];
1540 kevp->flags &= ~EV_SYSFLAGS;
1541 /* register each knote */
1542 error = kqueue_register(kq, kevp);
1543 if (!error && !(kevp->flags & EV_RECEIPT))
1544 continue;
1545 if (nevents == 0)
1546 goto done;
1547 kevp->flags = EV_ERROR;
1548 kevp->data = error;
1549 error = (*keops->keo_put_events)
1550 (keops->keo_private, kevp,
1551 eventlist, nerrors, 1);
1552 if (error)
1553 goto done;
1554 nevents--;
1555 nerrors++;
1556 }
1557 nchanges -= n; /* update the results */
1558 ichange += n;
1559 }
1560 if (nerrors) {
1561 *retval = nerrors;
1562 error = 0;
1563 goto done;
1564 }
1565
1566 /* actually scan through the events */
1567 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1568 kevbuf, __arraycount(kevbuf));
1569 done:
1570 fd_putfile(fd);
1571 return (error);
1572 }
1573
1574 /*
1575 * Register a given kevent kev onto the kqueue
1576 */
1577 static int
1578 kqueue_register(struct kqueue *kq, struct kevent *kev)
1579 {
1580 struct kfilter *kfilter;
1581 filedesc_t *fdp;
1582 file_t *fp;
1583 fdfile_t *ff;
1584 struct knote *kn, *newkn;
1585 struct klist *list;
1586 int error, fd, rv;
1587
1588 fdp = kq->kq_fdp;
1589 fp = NULL;
1590 kn = NULL;
1591 error = 0;
1592 fd = 0;
1593
1594 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1595
1596 rw_enter(&kqueue_filter_lock, RW_READER);
1597 kfilter = kfilter_byfilter(kev->filter);
1598 if (kfilter == NULL || kfilter->filtops == NULL) {
1599 /* filter not found nor implemented */
1600 rw_exit(&kqueue_filter_lock);
1601 kmem_free(newkn, sizeof(*newkn));
1602 return (EINVAL);
1603 }
1604
1605 /* search if knote already exists */
1606 if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
1607 /* monitoring a file descriptor */
1608 /* validate descriptor */
1609 if (kev->ident > INT_MAX
1610 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1611 rw_exit(&kqueue_filter_lock);
1612 kmem_free(newkn, sizeof(*newkn));
1613 return EBADF;
1614 }
1615 mutex_enter(&fdp->fd_lock);
1616 ff = fdp->fd_dt->dt_ff[fd];
1617 if (ff->ff_refcnt & FR_CLOSING) {
1618 error = EBADF;
1619 goto doneunlock;
1620 }
1621 if (fd <= fdp->fd_lastkqfile) {
1622 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1623 if (kq == kn->kn_kq &&
1624 kev->filter == kn->kn_filter)
1625 break;
1626 }
1627 }
1628 } else {
1629 /*
1630 * not monitoring a file descriptor, so
1631 * lookup knotes in internal hash table
1632 */
1633 mutex_enter(&fdp->fd_lock);
1634 if (fdp->fd_knhashmask != 0) {
1635 list = &fdp->fd_knhash[
1636 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1637 SLIST_FOREACH(kn, list, kn_link) {
1638 if (kev->ident == kn->kn_id &&
1639 kq == kn->kn_kq &&
1640 kev->filter == kn->kn_filter)
1641 break;
1642 }
1643 }
1644 }
1645
1646 /* It's safe to test KQ_CLOSING while holding only the fd_lock. */
1647 KASSERT(mutex_owned(&fdp->fd_lock));
1648 KASSERT((kq->kq_count & KQ_CLOSING) == 0);
1649
1650 /*
1651 * kn now contains the matching knote, or NULL if no match
1652 */
1653 if (kn == NULL) {
1654 if (kev->flags & EV_ADD) {
1655 /* create new knote */
1656 kn = newkn;
1657 newkn = NULL;
1658 kn->kn_obj = fp;
1659 kn->kn_id = kev->ident;
1660 kn->kn_kq = kq;
1661 kn->kn_fop = kfilter->filtops;
1662 kn->kn_kfilter = kfilter;
1663 kn->kn_sfflags = kev->fflags;
1664 kn->kn_sdata = kev->data;
1665 kev->fflags = 0;
1666 kev->data = 0;
1667 kn->kn_kevent = *kev;
1668
1669 KASSERT(kn->kn_fop != NULL);
1670 /*
1671 * apply reference count to knote structure, and
1672 * do not release it at the end of this routine.
1673 */
1674 fp = NULL;
1675
1676 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
1677 /*
1678 * If knote is not on an fd, store on
1679 * internal hash table.
1680 */
1681 if (fdp->fd_knhashmask == 0) {
1682 /* XXXAD can block with fd_lock held */
1683 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1684 HASH_LIST, true,
1685 &fdp->fd_knhashmask);
1686 }
1687 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1688 fdp->fd_knhashmask)];
1689 } else {
1690 /* Otherwise, knote is on an fd. */
1691 list = (struct klist *)
1692 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1693 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1694 fdp->fd_lastkqfile = kn->kn_id;
1695 }
1696 SLIST_INSERT_HEAD(list, kn, kn_link);
1697
1698 /*
1699 * N.B. kn->kn_fop may change as the result
1700 * of filter_attach()!
1701 */
1702 error = filter_attach(kn);
1703 if (error != 0) {
1704 #ifdef DEBUG
1705 struct proc *p = curlwp->l_proc;
1706 const file_t *ft = kn->kn_obj;
1707 printf("%s: %s[%d]: event type %d not "
1708 "supported for file type %d/%s "
1709 "(error %d)\n", __func__,
1710 p->p_comm, p->p_pid,
1711 kn->kn_filter, ft ? ft->f_type : -1,
1712 ft ? ft->f_ops->fo_name : "?", error);
1713 #endif
1714
1715 /*
1716 * N.B. no need to check for this note to
1717 * be in-flux, since it was never visible
1718 * to the monitored object.
1719 *
1720 * knote_detach() drops fdp->fd_lock
1721 */
1722 mutex_enter(&kq->kq_lock);
1723 KNOTE_WILLDETACH(kn);
1724 KASSERT(kn_in_flux(kn) == false);
1725 mutex_exit(&kq->kq_lock);
1726 knote_detach(kn, fdp, false);
1727 goto done;
1728 }
1729 atomic_inc_uint(&kfilter->refcnt);
1730 goto done_ev_add;
1731 } else {
1732 /* No matching knote and the EV_ADD flag is not set. */
1733 error = ENOENT;
1734 goto doneunlock;
1735 }
1736 }
1737
1738 if (kev->flags & EV_DELETE) {
1739 /*
1740 * Let the world know that this knote is about to go
1741 * away, and wait for it to settle if it's currently
1742 * in-flux.
1743 */
1744 mutex_spin_enter(&kq->kq_lock);
1745 if (kn->kn_status & KN_WILLDETACH) {
1746 /*
1747 * This knote is already on its way out,
1748 * so just be done.
1749 */
1750 mutex_spin_exit(&kq->kq_lock);
1751 goto doneunlock;
1752 }
1753 KNOTE_WILLDETACH(kn);
1754 if (kn_in_flux(kn)) {
1755 mutex_exit(&fdp->fd_lock);
1756 /*
1757 * It's safe for us to conclusively wait for
1758 * this knote to settle because we know we'll
1759 * be completing the detach.
1760 */
1761 kn_wait_flux(kn, true);
1762 KASSERT(kn_in_flux(kn) == false);
1763 mutex_spin_exit(&kq->kq_lock);
1764 mutex_enter(&fdp->fd_lock);
1765 } else {
1766 mutex_spin_exit(&kq->kq_lock);
1767 }
1768
1769 /* knote_detach() drops fdp->fd_lock */
1770 knote_detach(kn, fdp, true);
1771 goto done;
1772 }
1773
1774 /*
1775 * The user may change some filter values after the
1776 * initial EV_ADD, but doing so will not reset any
1777 * filter which have already been triggered.
1778 */
1779 kn->kn_kevent.udata = kev->udata;
1780 KASSERT(kn->kn_fop != NULL);
1781 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1782 kn->kn_fop->f_touch != NULL) {
1783 mutex_spin_enter(&kq->kq_lock);
1784 filter_touch(kn, kev, EVENT_REGISTER);
1785 mutex_spin_exit(&kq->kq_lock);
1786 } else {
1787 kn->kn_sfflags = kev->fflags;
1788 kn->kn_sdata = kev->data;
1789 }
1790
1791 /*
1792 * We can get here if we are trying to attach
1793 * an event to a file descriptor that does not
1794 * support events, and the attach routine is
1795 * broken and does not return an error.
1796 */
1797 done_ev_add:
1798 rv = filter_event(kn, 0);
1799 if (rv)
1800 knote_activate(kn);
1801
1802 /* disable knote */
1803 if ((kev->flags & EV_DISABLE)) {
1804 mutex_spin_enter(&kq->kq_lock);
1805 if ((kn->kn_status & KN_DISABLED) == 0)
1806 kn->kn_status |= KN_DISABLED;
1807 mutex_spin_exit(&kq->kq_lock);
1808 }
1809
1810 /* enable knote */
1811 if ((kev->flags & EV_ENABLE)) {
1812 knote_enqueue(kn);
1813 }
1814 doneunlock:
1815 mutex_exit(&fdp->fd_lock);
1816 done:
1817 rw_exit(&kqueue_filter_lock);
1818 if (newkn != NULL)
1819 kmem_free(newkn, sizeof(*newkn));
1820 if (fp != NULL)
1821 fd_putfile(fd);
1822 return (error);
1823 }
1824
1825 #define KN_FMT(buf, kn) \
1826 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1827
1828 #if defined(DDB)
1829 void
1830 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
1831 {
1832 const struct knote *kn;
1833 u_int count;
1834 int nmarker;
1835 char buf[128];
1836
1837 count = 0;
1838 nmarker = 0;
1839
1840 (*pr)("kqueue %p (restart=%d count=%u):\n", kq,
1841 !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
1842 (*pr)(" Queued knotes:\n");
1843 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1844 if (kn->kn_status & KN_MARKER) {
1845 nmarker++;
1846 } else {
1847 count++;
1848 }
1849 (*pr)(" knote %p: kq=%p status=%s\n",
1850 kn, kn->kn_kq, KN_FMT(buf, kn));
1851 (*pr)(" id=0x%lx (%lu) filter=%d\n",
1852 (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
1853 if (kn->kn_kq != kq) {
1854 (*pr)(" !!! kn->kn_kq != kq\n");
1855 }
1856 }
1857 if (count != KQ_COUNT(kq)) {
1858 (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n",
1859 count, KQ_COUNT(kq));
1860 }
1861 }
1862 #endif /* DDB */
1863
1864 #if defined(DEBUG)
1865 static void
1866 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1867 {
1868 const struct knote *kn;
1869 u_int count;
1870 int nmarker;
1871 char buf[128];
1872
1873 KASSERT(mutex_owned(&kq->kq_lock));
1874
1875 count = 0;
1876 nmarker = 0;
1877 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1878 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1879 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1880 func, line, kq, kn, KN_FMT(buf, kn));
1881 }
1882 if ((kn->kn_status & KN_MARKER) == 0) {
1883 if (kn->kn_kq != kq) {
1884 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1885 func, line, kq, kn, kn->kn_kq,
1886 KN_FMT(buf, kn));
1887 }
1888 if ((kn->kn_status & KN_ACTIVE) == 0) {
1889 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1890 func, line, kq, kn, KN_FMT(buf, kn));
1891 }
1892 count++;
1893 if (count > KQ_COUNT(kq)) {
1894 panic("%s,%zu: kq=%p kq->kq_count(%u) != "
1895 "count(%d), nmarker=%d",
1896 func, line, kq, KQ_COUNT(kq), count,
1897 nmarker);
1898 }
1899 } else {
1900 nmarker++;
1901 }
1902 }
1903 }
1904 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1905 #else /* defined(DEBUG) */
1906 #define kq_check(a) /* nothing */
1907 #endif /* defined(DEBUG) */
1908
1909 static void
1910 kqueue_restart(file_t *fp)
1911 {
1912 struct kqueue *kq = fp->f_kqueue;
1913 KASSERT(kq != NULL);
1914
1915 mutex_spin_enter(&kq->kq_lock);
1916 kq->kq_count |= KQ_RESTART;
1917 cv_broadcast(&kq->kq_cv);
1918 mutex_spin_exit(&kq->kq_lock);
1919 }
1920
1921 /*
1922 * Scan through the list of events on fp (for a maximum of maxevents),
1923 * returning the results in to ulistp. Timeout is determined by tsp; if
1924 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1925 * as appropriate.
1926 */
1927 static int
1928 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1929 const struct timespec *tsp, register_t *retval,
1930 const struct kevent_ops *keops, struct kevent *kevbuf,
1931 size_t kevcnt)
1932 {
1933 struct kqueue *kq;
1934 struct kevent *kevp;
1935 struct timespec ats, sleepts;
1936 struct knote *kn, *marker, morker;
1937 size_t count, nkev, nevents;
1938 int timeout, error, touch, rv, influx;
1939 filedesc_t *fdp;
1940
1941 fdp = curlwp->l_fd;
1942 kq = fp->f_kqueue;
1943 count = maxevents;
1944 nkev = nevents = error = 0;
1945 if (count == 0) {
1946 *retval = 0;
1947 return 0;
1948 }
1949
1950 if (tsp) { /* timeout supplied */
1951 ats = *tsp;
1952 if (inittimeleft(&ats, &sleepts) == -1) {
1953 *retval = maxevents;
1954 return EINVAL;
1955 }
1956 timeout = tstohz(&ats);
1957 if (timeout <= 0)
1958 timeout = -1; /* do poll */
1959 } else {
1960 /* no timeout, wait forever */
1961 timeout = 0;
1962 }
1963
1964 memset(&morker, 0, sizeof(morker));
1965 marker = &morker;
1966 marker->kn_kq = kq;
1967 marker->kn_status = KN_MARKER;
1968 mutex_spin_enter(&kq->kq_lock);
1969 retry:
1970 kevp = kevbuf;
1971 if (KQ_COUNT(kq) == 0) {
1972 if (timeout >= 0) {
1973 error = cv_timedwait_sig(&kq->kq_cv,
1974 &kq->kq_lock, timeout);
1975 if (error == 0) {
1976 if (KQ_COUNT(kq) == 0 &&
1977 (kq->kq_count & KQ_RESTART)) {
1978 /* return to clear file reference */
1979 error = ERESTART;
1980 } else if (tsp == NULL || (timeout =
1981 gettimeleft(&ats, &sleepts)) > 0) {
1982 goto retry;
1983 }
1984 } else {
1985 /* don't restart after signals... */
1986 if (error == ERESTART)
1987 error = EINTR;
1988 if (error == EWOULDBLOCK)
1989 error = 0;
1990 }
1991 }
1992 mutex_spin_exit(&kq->kq_lock);
1993 goto done;
1994 }
1995
1996 /* mark end of knote list */
1997 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1998 influx = 0;
1999
2000 /*
2001 * Acquire the fdp->fd_lock interlock to avoid races with
2002 * file creation/destruction from other threads.
2003 */
2004 mutex_spin_exit(&kq->kq_lock);
2005 relock:
2006 mutex_enter(&fdp->fd_lock);
2007 mutex_spin_enter(&kq->kq_lock);
2008
2009 while (count != 0) {
2010 /*
2011 * Get next knote. We are guaranteed this will never
2012 * be NULL because of the marker we inserted above.
2013 */
2014 kn = TAILQ_FIRST(&kq->kq_head);
2015
2016 bool kn_is_other_marker =
2017 (kn->kn_status & KN_MARKER) != 0 && kn != marker;
2018 bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
2019 bool kn_is_in_flux = kn_in_flux(kn);
2020
2021 /*
2022 * If we found a marker that's not ours, or this knote
2023 * is in a state of flux, then wait for everything to
2024 * settle down and go around again.
2025 */
2026 if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
2027 if (influx) {
2028 influx = 0;
2029 KQ_FLUX_WAKEUP(kq);
2030 }
2031 mutex_exit(&fdp->fd_lock);
2032 if (kn_is_other_marker || kn_is_in_flux) {
2033 KQ_FLUX_WAIT(kq);
2034 mutex_spin_exit(&kq->kq_lock);
2035 } else {
2036 /*
2037 * Detaching but not in-flux? Someone is
2038 * actively trying to finish the job; just
2039 * go around and try again.
2040 */
2041 KASSERT(kn_is_detaching);
2042 mutex_spin_exit(&kq->kq_lock);
2043 preempt_point();
2044 }
2045 goto relock;
2046 }
2047
2048 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2049 if (kn == marker) {
2050 /* it's our marker, stop */
2051 KQ_FLUX_WAKEUP(kq);
2052 if (count == maxevents) {
2053 mutex_exit(&fdp->fd_lock);
2054 goto retry;
2055 }
2056 break;
2057 }
2058 KASSERT((kn->kn_status & KN_BUSY) == 0);
2059
2060 kq_check(kq);
2061 kn->kn_status &= ~KN_QUEUED;
2062 kn->kn_status |= KN_BUSY;
2063 kq_check(kq);
2064 if (kn->kn_status & KN_DISABLED) {
2065 kn->kn_status &= ~KN_BUSY;
2066 kq->kq_count--;
2067 /* don't want disabled events */
2068 continue;
2069 }
2070 if ((kn->kn_flags & EV_ONESHOT) == 0) {
2071 mutex_spin_exit(&kq->kq_lock);
2072 KASSERT(mutex_owned(&fdp->fd_lock));
2073 rv = filter_event(kn, 0);
2074 mutex_spin_enter(&kq->kq_lock);
2075 /* Re-poll if note was re-enqueued. */
2076 if ((kn->kn_status & KN_QUEUED) != 0) {
2077 kn->kn_status &= ~KN_BUSY;
2078 /* Re-enqueue raised kq_count, lower it again */
2079 kq->kq_count--;
2080 influx = 1;
2081 continue;
2082 }
2083 if (rv == 0) {
2084 /*
2085 * non-ONESHOT event that hasn't triggered
2086 * again, so it will remain de-queued.
2087 */
2088 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2089 kq->kq_count--;
2090 influx = 1;
2091 continue;
2092 }
2093 } else {
2094 /*
2095 * This ONESHOT note is going to be detached
2096 * below. Mark the knote as not long for this
2097 * world before we release the kq lock so that
2098 * no one else will put it in a state of flux.
2099 */
2100 KNOTE_WILLDETACH(kn);
2101 }
2102 KASSERT(kn->kn_fop != NULL);
2103 touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
2104 kn->kn_fop->f_touch != NULL);
2105 /* XXXAD should be got from f_event if !oneshot. */
2106 if (touch) {
2107 filter_touch(kn, kevp, EVENT_PROCESS);
2108 } else {
2109 *kevp = kn->kn_kevent;
2110 }
2111 kevp++;
2112 nkev++;
2113 influx = 1;
2114 if (kn->kn_flags & EV_ONESHOT) {
2115 /* delete ONESHOT events after retrieval */
2116 kn->kn_status &= ~KN_BUSY;
2117 kq->kq_count--;
2118 KASSERT(kn_in_flux(kn) == false);
2119 KASSERT((kn->kn_status & KN_WILLDETACH) != 0 &&
2120 kn->kn_kevent.udata == curlwp);
2121 mutex_spin_exit(&kq->kq_lock);
2122 knote_detach(kn, fdp, true);
2123 mutex_enter(&fdp->fd_lock);
2124 mutex_spin_enter(&kq->kq_lock);
2125 } else if (kn->kn_flags & EV_CLEAR) {
2126 /* clear state after retrieval */
2127 kn->kn_data = 0;
2128 kn->kn_fflags = 0;
2129 /*
2130 * Manually clear knotes who weren't
2131 * 'touch'ed.
2132 */
2133 if (touch == 0) {
2134 kn->kn_data = 0;
2135 kn->kn_fflags = 0;
2136 }
2137 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2138 kq->kq_count--;
2139 } else if (kn->kn_flags & EV_DISPATCH) {
2140 kn->kn_status |= KN_DISABLED;
2141 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2142 kq->kq_count--;
2143 } else {
2144 /* add event back on list */
2145 kq_check(kq);
2146 kn->kn_status |= KN_QUEUED;
2147 kn->kn_status &= ~KN_BUSY;
2148 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2149 kq_check(kq);
2150 }
2151
2152 if (nkev == kevcnt) {
2153 /* do copyouts in kevcnt chunks */
2154 influx = 0;
2155 KQ_FLUX_WAKEUP(kq);
2156 mutex_spin_exit(&kq->kq_lock);
2157 mutex_exit(&fdp->fd_lock);
2158 error = (*keops->keo_put_events)
2159 (keops->keo_private,
2160 kevbuf, ulistp, nevents, nkev);
2161 mutex_enter(&fdp->fd_lock);
2162 mutex_spin_enter(&kq->kq_lock);
2163 nevents += nkev;
2164 nkev = 0;
2165 kevp = kevbuf;
2166 }
2167 count--;
2168 if (error != 0 || count == 0) {
2169 /* remove marker */
2170 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2171 break;
2172 }
2173 }
2174 KQ_FLUX_WAKEUP(kq);
2175 mutex_spin_exit(&kq->kq_lock);
2176 mutex_exit(&fdp->fd_lock);
2177
2178 done:
2179 if (nkev != 0) {
2180 /* copyout remaining events */
2181 error = (*keops->keo_put_events)(keops->keo_private,
2182 kevbuf, ulistp, nevents, nkev);
2183 }
2184 *retval = maxevents - count;
2185
2186 return error;
2187 }
2188
2189 /*
2190 * fileops ioctl method for a kqueue descriptor.
2191 *
2192 * Two ioctls are currently supported. They both use struct kfilter_mapping:
2193 * KFILTER_BYNAME find name for filter, and return result in
2194 * name, which is of size len.
2195 * KFILTER_BYFILTER find filter for name. len is ignored.
2196 */
2197 /*ARGSUSED*/
2198 static int
2199 kqueue_ioctl(file_t *fp, u_long com, void *data)
2200 {
2201 struct kfilter_mapping *km;
2202 const struct kfilter *kfilter;
2203 char *name;
2204 int error;
2205
2206 km = data;
2207 error = 0;
2208 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
2209
2210 switch (com) {
2211 case KFILTER_BYFILTER: /* convert filter -> name */
2212 rw_enter(&kqueue_filter_lock, RW_READER);
2213 kfilter = kfilter_byfilter(km->filter);
2214 if (kfilter != NULL) {
2215 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
2216 rw_exit(&kqueue_filter_lock);
2217 error = copyoutstr(name, km->name, km->len, NULL);
2218 } else {
2219 rw_exit(&kqueue_filter_lock);
2220 error = ENOENT;
2221 }
2222 break;
2223
2224 case KFILTER_BYNAME: /* convert name -> filter */
2225 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
2226 if (error) {
2227 break;
2228 }
2229 rw_enter(&kqueue_filter_lock, RW_READER);
2230 kfilter = kfilter_byname(name);
2231 if (kfilter != NULL)
2232 km->filter = kfilter->filter;
2233 else
2234 error = ENOENT;
2235 rw_exit(&kqueue_filter_lock);
2236 break;
2237
2238 default:
2239 error = ENOTTY;
2240 break;
2241
2242 }
2243 kmem_free(name, KFILTER_MAXNAME);
2244 return (error);
2245 }
2246
2247 /*
2248 * fileops fcntl method for a kqueue descriptor.
2249 */
2250 static int
2251 kqueue_fcntl(file_t *fp, u_int com, void *data)
2252 {
2253
2254 return (ENOTTY);
2255 }
2256
2257 /*
2258 * fileops poll method for a kqueue descriptor.
2259 * Determine if kqueue has events pending.
2260 */
2261 static int
2262 kqueue_poll(file_t *fp, int events)
2263 {
2264 struct kqueue *kq;
2265 int revents;
2266
2267 kq = fp->f_kqueue;
2268
2269 revents = 0;
2270 if (events & (POLLIN | POLLRDNORM)) {
2271 mutex_spin_enter(&kq->kq_lock);
2272 if (KQ_COUNT(kq) != 0) {
2273 revents |= events & (POLLIN | POLLRDNORM);
2274 } else {
2275 selrecord(curlwp, &kq->kq_sel);
2276 }
2277 kq_check(kq);
2278 mutex_spin_exit(&kq->kq_lock);
2279 }
2280
2281 return revents;
2282 }
2283
2284 /*
2285 * fileops stat method for a kqueue descriptor.
2286 * Returns dummy info, with st_size being number of events pending.
2287 */
2288 static int
2289 kqueue_stat(file_t *fp, struct stat *st)
2290 {
2291 struct kqueue *kq;
2292
2293 kq = fp->f_kqueue;
2294
2295 memset(st, 0, sizeof(*st));
2296 st->st_size = KQ_COUNT(kq);
2297 st->st_blksize = sizeof(struct kevent);
2298 st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
2299 st->st_blocks = 1;
2300 st->st_uid = kauth_cred_geteuid(fp->f_cred);
2301 st->st_gid = kauth_cred_getegid(fp->f_cred);
2302
2303 return 0;
2304 }
2305
2306 static void
2307 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
2308 {
2309 struct knote *kn;
2310 filedesc_t *fdp;
2311
2312 fdp = kq->kq_fdp;
2313
2314 KASSERT(mutex_owned(&fdp->fd_lock));
2315
2316 again:
2317 for (kn = SLIST_FIRST(list); kn != NULL;) {
2318 if (kq != kn->kn_kq) {
2319 kn = SLIST_NEXT(kn, kn_link);
2320 continue;
2321 }
2322 if (knote_detach_quiesce(kn)) {
2323 mutex_enter(&fdp->fd_lock);
2324 goto again;
2325 }
2326 knote_detach(kn, fdp, true);
2327 mutex_enter(&fdp->fd_lock);
2328 kn = SLIST_FIRST(list);
2329 }
2330 }
2331
2332 /*
2333 * fileops close method for a kqueue descriptor.
2334 */
2335 static int
2336 kqueue_close(file_t *fp)
2337 {
2338 struct kqueue *kq;
2339 filedesc_t *fdp;
2340 fdfile_t *ff;
2341 int i;
2342
2343 kq = fp->f_kqueue;
2344 fp->f_kqueue = NULL;
2345 fp->f_type = 0;
2346 fdp = curlwp->l_fd;
2347
2348 KASSERT(kq->kq_fdp == fdp);
2349
2350 mutex_enter(&fdp->fd_lock);
2351
2352 /*
2353 * We're doing to drop the fd_lock multiple times while
2354 * we detach knotes. During this time, attempts to register
2355 * knotes via the back door (e.g. knote_proc_fork_track())
2356 * need to fail, lest they sneak in to attach a knote after
2357 * we've already drained the list it's destined for.
2358 *
2359 * We must aquire kq_lock here to set KQ_CLOSING (to serialize
2360 * with other code paths that modify kq_count without holding
2361 * the fd_lock), but once this bit is set, it's only safe to
2362 * test it while holding the fd_lock, and holding kq_lock while
2363 * doing so is not necessary.
2364 */
2365 mutex_enter(&kq->kq_lock);
2366 kq->kq_count |= KQ_CLOSING;
2367 mutex_exit(&kq->kq_lock);
2368
2369 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
2370 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
2371 continue;
2372 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
2373 }
2374 if (fdp->fd_knhashmask != 0) {
2375 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
2376 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
2377 }
2378 }
2379
2380 mutex_exit(&fdp->fd_lock);
2381
2382 #if defined(DEBUG)
2383 mutex_enter(&kq->kq_lock);
2384 kq_check(kq);
2385 mutex_exit(&kq->kq_lock);
2386 #endif /* DEBUG */
2387 KASSERT(TAILQ_EMPTY(&kq->kq_head));
2388 KASSERT(KQ_COUNT(kq) == 0);
2389 mutex_destroy(&kq->kq_lock);
2390 cv_destroy(&kq->kq_cv);
2391 seldestroy(&kq->kq_sel);
2392 kmem_free(kq, sizeof(*kq));
2393
2394 return (0);
2395 }
2396
2397 /*
2398 * struct fileops kqfilter method for a kqueue descriptor.
2399 * Event triggered when monitored kqueue changes.
2400 */
2401 static int
2402 kqueue_kqfilter(file_t *fp, struct knote *kn)
2403 {
2404 struct kqueue *kq;
2405
2406 kq = ((file_t *)kn->kn_obj)->f_kqueue;
2407
2408 KASSERT(fp == kn->kn_obj);
2409
2410 if (kn->kn_filter != EVFILT_READ)
2411 return EINVAL;
2412
2413 kn->kn_fop = &kqread_filtops;
2414 mutex_enter(&kq->kq_lock);
2415 selrecord_knote(&kq->kq_sel, kn);
2416 mutex_exit(&kq->kq_lock);
2417
2418 return 0;
2419 }
2420
2421
2422 /*
2423 * Walk down a list of knotes, activating them if their event has
2424 * triggered. The caller's object lock (e.g. device driver lock)
2425 * must be held.
2426 */
2427 void
2428 knote(struct klist *list, long hint)
2429 {
2430 struct knote *kn, *tmpkn;
2431
2432 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
2433 if (filter_event(kn, hint)) {
2434 knote_activate(kn);
2435 }
2436 }
2437 }
2438
2439 /*
2440 * Remove all knotes referencing a specified fd
2441 */
2442 void
2443 knote_fdclose(int fd)
2444 {
2445 struct klist *list;
2446 struct knote *kn;
2447 filedesc_t *fdp;
2448
2449 again:
2450 fdp = curlwp->l_fd;
2451 mutex_enter(&fdp->fd_lock);
2452 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
2453 while ((kn = SLIST_FIRST(list)) != NULL) {
2454 if (knote_detach_quiesce(kn)) {
2455 goto again;
2456 }
2457 knote_detach(kn, fdp, true);
2458 mutex_enter(&fdp->fd_lock);
2459 }
2460 mutex_exit(&fdp->fd_lock);
2461 }
2462
2463 /*
2464 * Drop knote. Called with fdp->fd_lock held, and will drop before
2465 * returning.
2466 */
2467 static void
2468 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
2469 {
2470 struct klist *list;
2471 struct kqueue *kq;
2472
2473 kq = kn->kn_kq;
2474
2475 KASSERT((kn->kn_status & KN_MARKER) == 0);
2476 KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
2477 KASSERT(kn->kn_fop != NULL);
2478 KASSERT(mutex_owned(&fdp->fd_lock));
2479
2480 /* Remove from monitored object. */
2481 if (dofop) {
2482 filter_detach(kn);
2483 }
2484
2485 /* Remove from descriptor table. */
2486 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2487 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
2488 else
2489 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2490
2491 SLIST_REMOVE(list, kn, knote, kn_link);
2492
2493 /* Remove from kqueue. */
2494 again:
2495 mutex_spin_enter(&kq->kq_lock);
2496 KASSERT(kn_in_flux(kn) == false);
2497 if ((kn->kn_status & KN_QUEUED) != 0) {
2498 kq_check(kq);
2499 KASSERT(KQ_COUNT(kq) != 0);
2500 kq->kq_count--;
2501 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2502 kn->kn_status &= ~KN_QUEUED;
2503 kq_check(kq);
2504 } else if (kn->kn_status & KN_BUSY) {
2505 mutex_spin_exit(&kq->kq_lock);
2506 goto again;
2507 }
2508 mutex_spin_exit(&kq->kq_lock);
2509
2510 mutex_exit(&fdp->fd_lock);
2511 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2512 fd_putfile(kn->kn_id);
2513 atomic_dec_uint(&kn->kn_kfilter->refcnt);
2514 kmem_free(kn, sizeof(*kn));
2515 }
2516
2517 /*
2518 * Queue new event for knote.
2519 */
2520 static void
2521 knote_enqueue(struct knote *kn)
2522 {
2523 struct kqueue *kq;
2524
2525 KASSERT((kn->kn_status & KN_MARKER) == 0);
2526
2527 kq = kn->kn_kq;
2528
2529 mutex_spin_enter(&kq->kq_lock);
2530 if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2531 /* Don't bother enqueueing a dying knote. */
2532 goto out;
2533 }
2534 if ((kn->kn_status & KN_DISABLED) != 0) {
2535 kn->kn_status &= ~KN_DISABLED;
2536 }
2537 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
2538 kq_check(kq);
2539 kn->kn_status |= KN_QUEUED;
2540 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2541 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2542 kq->kq_count++;
2543 kq_check(kq);
2544 cv_broadcast(&kq->kq_cv);
2545 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2546 }
2547 out:
2548 mutex_spin_exit(&kq->kq_lock);
2549 }
2550 /*
2551 * Queue new event for knote.
2552 */
2553 static void
2554 knote_activate(struct knote *kn)
2555 {
2556 struct kqueue *kq;
2557
2558 KASSERT((kn->kn_status & KN_MARKER) == 0);
2559
2560 kq = kn->kn_kq;
2561
2562 mutex_spin_enter(&kq->kq_lock);
2563 if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2564 /* Don't bother enqueueing a dying knote. */
2565 goto out;
2566 }
2567 kn->kn_status |= KN_ACTIVE;
2568 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
2569 kq_check(kq);
2570 kn->kn_status |= KN_QUEUED;
2571 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2572 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2573 kq->kq_count++;
2574 kq_check(kq);
2575 cv_broadcast(&kq->kq_cv);
2576 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2577 }
2578 out:
2579 mutex_spin_exit(&kq->kq_lock);
2580 }
2581
2582 /*
2583 * Set EV_EOF on the specified knote. Also allows additional
2584 * EV_* flags to be set (e.g. EV_ONESHOT).
2585 */
2586 void
2587 knote_set_eof(struct knote *kn, uint32_t flags)
2588 {
2589 struct kqueue *kq = kn->kn_kq;
2590
2591 mutex_spin_enter(&kq->kq_lock);
2592 kn->kn_flags |= EV_EOF | flags;
2593 mutex_spin_exit(&kq->kq_lock);
2594 }
2595
2596 /*
2597 * Clear EV_EOF on the specified knote.
2598 */
2599 void
2600 knote_clear_eof(struct knote *kn)
2601 {
2602 struct kqueue *kq = kn->kn_kq;
2603
2604 mutex_spin_enter(&kq->kq_lock);
2605 kn->kn_flags &= ~EV_EOF;
2606 mutex_spin_exit(&kq->kq_lock);
2607 }
2608