kern_event.c revision 1.134 1 /* $NetBSD: kern_event.c,v 1.134 2021/10/21 01:11:21 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * Copyright (c) 2009 Apple, Inc
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59 */
60
61 #ifdef _KERNEL_OPT
62 #include "opt_ddb.h"
63 #endif /* _KERNEL_OPT */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.134 2021/10/21 01:11:21 thorpej Exp $");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/wait.h>
72 #include <sys/proc.h>
73 #include <sys/file.h>
74 #include <sys/select.h>
75 #include <sys/queue.h>
76 #include <sys/event.h>
77 #include <sys/eventvar.h>
78 #include <sys/poll.h>
79 #include <sys/kmem.h>
80 #include <sys/stat.h>
81 #include <sys/filedesc.h>
82 #include <sys/syscallargs.h>
83 #include <sys/kauth.h>
84 #include <sys/conf.h>
85 #include <sys/atomic.h>
86
87 static int kqueue_scan(file_t *, size_t, struct kevent *,
88 const struct timespec *, register_t *,
89 const struct kevent_ops *, struct kevent *,
90 size_t);
91 static int kqueue_ioctl(file_t *, u_long, void *);
92 static int kqueue_fcntl(file_t *, u_int, void *);
93 static int kqueue_poll(file_t *, int);
94 static int kqueue_kqfilter(file_t *, struct knote *);
95 static int kqueue_stat(file_t *, struct stat *);
96 static int kqueue_close(file_t *);
97 static void kqueue_restart(file_t *);
98 static int kqueue_register(struct kqueue *, struct kevent *);
99 static void kqueue_doclose(struct kqueue *, struct klist *, int);
100
101 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
102 static void knote_enqueue(struct knote *);
103 static void knote_activate(struct knote *);
104 static void knote_activate_locked(struct knote *);
105
106 static void filt_kqdetach(struct knote *);
107 static int filt_kqueue(struct knote *, long hint);
108 static int filt_procattach(struct knote *);
109 static void filt_procdetach(struct knote *);
110 static int filt_proc(struct knote *, long hint);
111 static int filt_fileattach(struct knote *);
112 static void filt_timerexpire(void *x);
113 static int filt_timerattach(struct knote *);
114 static void filt_timerdetach(struct knote *);
115 static int filt_timer(struct knote *, long hint);
116 static int filt_userattach(struct knote *);
117 static void filt_userdetach(struct knote *);
118 static int filt_user(struct knote *, long hint);
119 static void filt_usertouch(struct knote *, struct kevent *, long type);
120
121 static const struct fileops kqueueops = {
122 .fo_name = "kqueue",
123 .fo_read = (void *)enxio,
124 .fo_write = (void *)enxio,
125 .fo_ioctl = kqueue_ioctl,
126 .fo_fcntl = kqueue_fcntl,
127 .fo_poll = kqueue_poll,
128 .fo_stat = kqueue_stat,
129 .fo_close = kqueue_close,
130 .fo_kqfilter = kqueue_kqfilter,
131 .fo_restart = kqueue_restart,
132 };
133
134 static const struct filterops kqread_filtops = {
135 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
136 .f_attach = NULL,
137 .f_detach = filt_kqdetach,
138 .f_event = filt_kqueue,
139 };
140
141 static const struct filterops proc_filtops = {
142 .f_flags = FILTEROP_MPSAFE,
143 .f_attach = filt_procattach,
144 .f_detach = filt_procdetach,
145 .f_event = filt_proc,
146 };
147
148 /*
149 * file_filtops is not marked MPSAFE because it's going to call
150 * fileops::fo_kqfilter(), which might not be. That function,
151 * however, will override the knote's filterops, and thus will
152 * inherit the MPSAFE-ness of the back-end at that time.
153 */
154 static const struct filterops file_filtops = {
155 .f_flags = FILTEROP_ISFD,
156 .f_attach = filt_fileattach,
157 .f_detach = NULL,
158 .f_event = NULL,
159 };
160
161 static const struct filterops timer_filtops = {
162 .f_flags = FILTEROP_MPSAFE,
163 .f_attach = filt_timerattach,
164 .f_detach = filt_timerdetach,
165 .f_event = filt_timer,
166 };
167
168 static const struct filterops user_filtops = {
169 .f_flags = FILTEROP_MPSAFE,
170 .f_attach = filt_userattach,
171 .f_detach = filt_userdetach,
172 .f_event = filt_user,
173 .f_touch = filt_usertouch,
174 };
175
176 static u_int kq_ncallouts = 0;
177 static int kq_calloutmax = (4 * 1024);
178
179 #define KN_HASHSIZE 64 /* XXX should be tunable */
180 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
181
182 extern const struct filterops fs_filtops; /* vfs_syscalls.c */
183 extern const struct filterops sig_filtops; /* kern_sig.c */
184
185 /*
186 * Table for for all system-defined filters.
187 * These should be listed in the numeric order of the EVFILT_* defines.
188 * If filtops is NULL, the filter isn't implemented in NetBSD.
189 * End of list is when name is NULL.
190 *
191 * Note that 'refcnt' is meaningless for built-in filters.
192 */
193 struct kfilter {
194 const char *name; /* name of filter */
195 uint32_t filter; /* id of filter */
196 unsigned refcnt; /* reference count */
197 const struct filterops *filtops;/* operations for filter */
198 size_t namelen; /* length of name string */
199 };
200
201 /* System defined filters */
202 static struct kfilter sys_kfilters[] = {
203 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
204 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
205 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
206 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
207 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
208 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
209 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
210 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
211 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
212 { NULL, 0, 0, NULL, 0 },
213 };
214
215 /* User defined kfilters */
216 static struct kfilter *user_kfilters; /* array */
217 static int user_kfilterc; /* current offset */
218 static int user_kfiltermaxc; /* max size so far */
219 static size_t user_kfiltersz; /* size of allocated memory */
220
221 /*
222 * Global Locks.
223 *
224 * Lock order:
225 *
226 * kqueue_filter_lock
227 * -> kn_kq->kq_fdp->fd_lock
228 * -> object lock (e.g., device driver lock, &c.)
229 * -> kn_kq->kq_lock
230 *
231 * Locking rules:
232 *
233 * f_attach: fdp->fd_lock, KERNEL_LOCK
234 * f_detach: fdp->fd_lock, KERNEL_LOCK
235 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
236 * f_event via knote: whatever caller guarantees
237 * Typically, f_event(NOTE_SUBMIT) via knote: object lock
238 * f_event(!NOTE_SUBMIT) via knote: nothing,
239 * acquires/releases object lock inside.
240 *
241 * Locking rules when detaching knotes:
242 *
243 * There are some situations where knote submission may require dropping
244 * locks (see knote_proc_fork()). In order to support this, it's possible
245 * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to
246 * be detached while it remains in-flux. Because it will not be detached,
247 * locks can be dropped so e.g. memory can be allocated, locks on other
248 * data structures can be acquired, etc. During this time, any attempt to
249 * detach an in-flux knote must wait until the knote is no longer in-flux.
250 * When this happens, the knote is marked for death (KN_WILLDETACH) and the
251 * LWP who gets to finish the detach operation is recorded in the knote's
252 * 'udata' field (which is no longer required for its original purpose once
253 * a knote is so marked). Code paths that lead to knote_detach() must ensure
254 * that their LWP is the one tasked with its final demise after waiting for
255 * the in-flux status of the knote to clear. Note that once a knote is
256 * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
257 *
258 * Once the special circumstances have been handled, the locks are re-
259 * acquired in the proper order (object lock -> kq_lock), the knote taken
260 * out of flux, and any waiters are notified. Because waiters must have
261 * also dropped *their* locks in order to safely block, they must re-
262 * validate all of their assumptions; see knote_detach_quiesce(). See also
263 * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
264 * cases.
265 *
266 * When kqueue_scan() encounters an in-flux knote, the situation is
267 * treated like another LWP's list marker.
268 *
269 * LISTEN WELL: It is important to not hold knotes in flux for an
270 * extended period of time! In-flux knotes effectively block any
271 * progress of the kqueue_scan() operation. Any code paths that place
272 * knotes in-flux should be careful to not block for indefinite periods
273 * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
274 * KM_SLEEP is not).
275 */
276 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
277
278 #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock)
279 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
280
281 static inline bool
282 kn_in_flux(struct knote *kn)
283 {
284 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
285 return kn->kn_influx != 0;
286 }
287
288 static inline bool
289 kn_enter_flux(struct knote *kn)
290 {
291 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
292
293 if (kn->kn_status & KN_WILLDETACH) {
294 return false;
295 }
296
297 KASSERT(kn->kn_influx < UINT_MAX);
298 kn->kn_influx++;
299
300 return true;
301 }
302
303 static inline bool
304 kn_leave_flux(struct knote *kn)
305 {
306 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
307 KASSERT(kn->kn_influx > 0);
308 kn->kn_influx--;
309 return kn->kn_influx == 0;
310 }
311
312 static void
313 kn_wait_flux(struct knote *kn, bool can_loop)
314 {
315 bool loop;
316
317 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
318
319 /*
320 * It may not be safe for us to touch the knote again after
321 * dropping the kq_lock. The caller has let us know in
322 * 'can_loop'.
323 */
324 for (loop = true; loop && kn->kn_influx != 0; loop = can_loop) {
325 KQ_FLUX_WAIT(kn->kn_kq);
326 }
327 }
328
329 #define KNOTE_WILLDETACH(kn) \
330 do { \
331 (kn)->kn_status |= KN_WILLDETACH; \
332 (kn)->kn_kevent.udata = curlwp; \
333 } while (/*CONSTCOND*/0)
334
335 /*
336 * Wait until the specified knote is in a quiescent state and
337 * safe to detach. Returns true if we potentially blocked (and
338 * thus dropped our locks).
339 */
340 static bool
341 knote_detach_quiesce(struct knote *kn)
342 {
343 struct kqueue *kq = kn->kn_kq;
344 filedesc_t *fdp = kq->kq_fdp;
345
346 KASSERT(mutex_owned(&fdp->fd_lock));
347
348 mutex_spin_enter(&kq->kq_lock);
349 /*
350 * There are two cases where we might see KN_WILLDETACH here:
351 *
352 * 1. Someone else has already started detaching the knote but
353 * had to wait for it to settle first.
354 *
355 * 2. We had to wait for it to settle, and had to come back
356 * around after re-acquiring the locks.
357 *
358 * When KN_WILLDETACH is set, we also set the LWP that claimed
359 * the prize of finishing the detach in the 'udata' field of the
360 * knote (which will never be used again for its usual purpose
361 * once the note is in this state). If it doesn't point to us,
362 * we must drop the locks and let them in to finish the job.
363 *
364 * Otherwise, once we have claimed the knote for ourselves, we
365 * can finish waiting for it to settle. The is the only scenario
366 * where touching a detaching knote is safe after dropping the
367 * locks.
368 */
369 if ((kn->kn_status & KN_WILLDETACH) != 0 &&
370 kn->kn_kevent.udata != curlwp) {
371 /*
372 * N.B. it is NOT safe for us to touch the knote again
373 * after dropping the locks here. The caller must go
374 * back around and re-validate everything. However, if
375 * the knote is in-flux, we want to block to minimize
376 * busy-looping.
377 */
378 mutex_exit(&fdp->fd_lock);
379 if (kn_in_flux(kn)) {
380 kn_wait_flux(kn, false);
381 mutex_spin_exit(&kq->kq_lock);
382 return true;
383 }
384 mutex_spin_exit(&kq->kq_lock);
385 preempt_point();
386 return true;
387 }
388 /*
389 * If we get here, we know that we will be claiming the
390 * detach responsibilies, or that we already have and
391 * this is the second attempt after re-validation.
392 */
393 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
394 kn->kn_kevent.udata == curlwp);
395 /*
396 * Similarly, if we get here, either we are just claiming it
397 * and may have to wait for it to settle, or if this is the
398 * second attempt after re-validation that no other code paths
399 * have put it in-flux.
400 */
401 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
402 kn_in_flux(kn) == false);
403 KNOTE_WILLDETACH(kn);
404 if (kn_in_flux(kn)) {
405 mutex_exit(&fdp->fd_lock);
406 kn_wait_flux(kn, true);
407 /*
408 * It is safe for us to touch the knote again after
409 * dropping the locks, but the caller must still
410 * re-validate everything because other aspects of
411 * the environment may have changed while we blocked.
412 */
413 KASSERT(kn_in_flux(kn) == false);
414 mutex_spin_exit(&kq->kq_lock);
415 return true;
416 }
417 mutex_spin_exit(&kq->kq_lock);
418
419 return false;
420 }
421
422 static int
423 filter_attach(struct knote *kn)
424 {
425 int rv;
426
427 KASSERT(kn->kn_fop != NULL);
428 KASSERT(kn->kn_fop->f_attach != NULL);
429
430 /*
431 * N.B. that kn->kn_fop may change as the result of calling
432 * f_attach().
433 */
434 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
435 rv = kn->kn_fop->f_attach(kn);
436 } else {
437 KERNEL_LOCK(1, NULL);
438 rv = kn->kn_fop->f_attach(kn);
439 KERNEL_UNLOCK_ONE(NULL);
440 }
441
442 return rv;
443 }
444
445 static void
446 filter_detach(struct knote *kn)
447 {
448 KASSERT(kn->kn_fop != NULL);
449 KASSERT(kn->kn_fop->f_detach != NULL);
450
451 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
452 kn->kn_fop->f_detach(kn);
453 } else {
454 KERNEL_LOCK(1, NULL);
455 kn->kn_fop->f_detach(kn);
456 KERNEL_UNLOCK_ONE(NULL);
457 }
458 }
459
460 static int
461 filter_event(struct knote *kn, long hint)
462 {
463 int rv;
464
465 KASSERT(kn->kn_fop != NULL);
466 KASSERT(kn->kn_fop->f_event != NULL);
467
468 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
469 rv = kn->kn_fop->f_event(kn, hint);
470 } else {
471 KERNEL_LOCK(1, NULL);
472 rv = kn->kn_fop->f_event(kn, hint);
473 KERNEL_UNLOCK_ONE(NULL);
474 }
475
476 return rv;
477 }
478
479 static void
480 filter_touch(struct knote *kn, struct kevent *kev, long type)
481 {
482 kn->kn_fop->f_touch(kn, kev, type);
483 }
484
485 static kauth_listener_t kqueue_listener;
486
487 static int
488 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
489 void *arg0, void *arg1, void *arg2, void *arg3)
490 {
491 struct proc *p;
492 int result;
493
494 result = KAUTH_RESULT_DEFER;
495 p = arg0;
496
497 if (action != KAUTH_PROCESS_KEVENT_FILTER)
498 return result;
499
500 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
501 ISSET(p->p_flag, PK_SUGID)))
502 return result;
503
504 result = KAUTH_RESULT_ALLOW;
505
506 return result;
507 }
508
509 /*
510 * Initialize the kqueue subsystem.
511 */
512 void
513 kqueue_init(void)
514 {
515
516 rw_init(&kqueue_filter_lock);
517
518 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
519 kqueue_listener_cb, NULL);
520 }
521
522 /*
523 * Find kfilter entry by name, or NULL if not found.
524 */
525 static struct kfilter *
526 kfilter_byname_sys(const char *name)
527 {
528 int i;
529
530 KASSERT(rw_lock_held(&kqueue_filter_lock));
531
532 for (i = 0; sys_kfilters[i].name != NULL; i++) {
533 if (strcmp(name, sys_kfilters[i].name) == 0)
534 return &sys_kfilters[i];
535 }
536 return NULL;
537 }
538
539 static struct kfilter *
540 kfilter_byname_user(const char *name)
541 {
542 int i;
543
544 KASSERT(rw_lock_held(&kqueue_filter_lock));
545
546 /* user filter slots have a NULL name if previously deregistered */
547 for (i = 0; i < user_kfilterc ; i++) {
548 if (user_kfilters[i].name != NULL &&
549 strcmp(name, user_kfilters[i].name) == 0)
550 return &user_kfilters[i];
551 }
552 return NULL;
553 }
554
555 static struct kfilter *
556 kfilter_byname(const char *name)
557 {
558 struct kfilter *kfilter;
559
560 KASSERT(rw_lock_held(&kqueue_filter_lock));
561
562 if ((kfilter = kfilter_byname_sys(name)) != NULL)
563 return kfilter;
564
565 return kfilter_byname_user(name);
566 }
567
568 /*
569 * Find kfilter entry by filter id, or NULL if not found.
570 * Assumes entries are indexed in filter id order, for speed.
571 */
572 static struct kfilter *
573 kfilter_byfilter(uint32_t filter)
574 {
575 struct kfilter *kfilter;
576
577 KASSERT(rw_lock_held(&kqueue_filter_lock));
578
579 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
580 kfilter = &sys_kfilters[filter];
581 else if (user_kfilters != NULL &&
582 filter < EVFILT_SYSCOUNT + user_kfilterc)
583 /* it's a user filter */
584 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
585 else
586 return (NULL); /* out of range */
587 KASSERT(kfilter->filter == filter); /* sanity check! */
588 return (kfilter);
589 }
590
591 /*
592 * Register a new kfilter. Stores the entry in user_kfilters.
593 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
594 * If retfilter != NULL, the new filterid is returned in it.
595 */
596 int
597 kfilter_register(const char *name, const struct filterops *filtops,
598 int *retfilter)
599 {
600 struct kfilter *kfilter;
601 size_t len;
602 int i;
603
604 if (name == NULL || name[0] == '\0' || filtops == NULL)
605 return (EINVAL); /* invalid args */
606
607 rw_enter(&kqueue_filter_lock, RW_WRITER);
608 if (kfilter_byname(name) != NULL) {
609 rw_exit(&kqueue_filter_lock);
610 return (EEXIST); /* already exists */
611 }
612 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
613 rw_exit(&kqueue_filter_lock);
614 return (EINVAL); /* too many */
615 }
616
617 for (i = 0; i < user_kfilterc; i++) {
618 kfilter = &user_kfilters[i];
619 if (kfilter->name == NULL) {
620 /* Previously deregistered slot. Reuse. */
621 goto reuse;
622 }
623 }
624
625 /* check if need to grow user_kfilters */
626 if (user_kfilterc + 1 > user_kfiltermaxc) {
627 /* Grow in KFILTER_EXTENT chunks. */
628 user_kfiltermaxc += KFILTER_EXTENT;
629 len = user_kfiltermaxc * sizeof(*kfilter);
630 kfilter = kmem_alloc(len, KM_SLEEP);
631 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
632 if (user_kfilters != NULL) {
633 memcpy(kfilter, user_kfilters, user_kfiltersz);
634 kmem_free(user_kfilters, user_kfiltersz);
635 }
636 user_kfiltersz = len;
637 user_kfilters = kfilter;
638 }
639 /* Adding new slot */
640 kfilter = &user_kfilters[user_kfilterc++];
641 reuse:
642 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
643
644 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
645
646 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
647 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
648
649 if (retfilter != NULL)
650 *retfilter = kfilter->filter;
651 rw_exit(&kqueue_filter_lock);
652
653 return (0);
654 }
655
656 /*
657 * Unregister a kfilter previously registered with kfilter_register.
658 * This retains the filter id, but clears the name and frees filtops (filter
659 * operations), so that the number isn't reused during a boot.
660 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
661 */
662 int
663 kfilter_unregister(const char *name)
664 {
665 struct kfilter *kfilter;
666
667 if (name == NULL || name[0] == '\0')
668 return (EINVAL); /* invalid name */
669
670 rw_enter(&kqueue_filter_lock, RW_WRITER);
671 if (kfilter_byname_sys(name) != NULL) {
672 rw_exit(&kqueue_filter_lock);
673 return (EINVAL); /* can't detach system filters */
674 }
675
676 kfilter = kfilter_byname_user(name);
677 if (kfilter == NULL) {
678 rw_exit(&kqueue_filter_lock);
679 return (ENOENT);
680 }
681 if (kfilter->refcnt != 0) {
682 rw_exit(&kqueue_filter_lock);
683 return (EBUSY);
684 }
685
686 /* Cast away const (but we know it's safe. */
687 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
688 kfilter->name = NULL; /* mark as `not implemented' */
689
690 if (kfilter->filtops != NULL) {
691 /* Cast away const (but we know it's safe. */
692 kmem_free(__UNCONST(kfilter->filtops),
693 sizeof(*kfilter->filtops));
694 kfilter->filtops = NULL; /* mark as `not implemented' */
695 }
696 rw_exit(&kqueue_filter_lock);
697
698 return (0);
699 }
700
701
702 /*
703 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
704 * descriptors. Calls fileops kqfilter method for given file descriptor.
705 */
706 static int
707 filt_fileattach(struct knote *kn)
708 {
709 file_t *fp;
710
711 fp = kn->kn_obj;
712
713 return (*fp->f_ops->fo_kqfilter)(fp, kn);
714 }
715
716 /*
717 * Filter detach method for EVFILT_READ on kqueue descriptor.
718 */
719 static void
720 filt_kqdetach(struct knote *kn)
721 {
722 struct kqueue *kq;
723
724 kq = ((file_t *)kn->kn_obj)->f_kqueue;
725
726 mutex_spin_enter(&kq->kq_lock);
727 selremove_knote(&kq->kq_sel, kn);
728 mutex_spin_exit(&kq->kq_lock);
729 }
730
731 /*
732 * Filter event method for EVFILT_READ on kqueue descriptor.
733 */
734 /*ARGSUSED*/
735 static int
736 filt_kqueue(struct knote *kn, long hint)
737 {
738 struct kqueue *kq;
739 int rv;
740
741 kq = ((file_t *)kn->kn_obj)->f_kqueue;
742
743 if (hint != NOTE_SUBMIT)
744 mutex_spin_enter(&kq->kq_lock);
745 kn->kn_data = KQ_COUNT(kq);
746 rv = (kn->kn_data > 0);
747 if (hint != NOTE_SUBMIT)
748 mutex_spin_exit(&kq->kq_lock);
749
750 return rv;
751 }
752
753 /*
754 * Filter attach method for EVFILT_PROC.
755 */
756 static int
757 filt_procattach(struct knote *kn)
758 {
759 struct proc *p;
760
761 mutex_enter(&proc_lock);
762 p = proc_find(kn->kn_id);
763 if (p == NULL) {
764 mutex_exit(&proc_lock);
765 return ESRCH;
766 }
767
768 /*
769 * Fail if it's not owned by you, or the last exec gave us
770 * setuid/setgid privs (unless you're root).
771 */
772 mutex_enter(p->p_lock);
773 mutex_exit(&proc_lock);
774 if (kauth_authorize_process(curlwp->l_cred,
775 KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
776 mutex_exit(p->p_lock);
777 return EACCES;
778 }
779
780 kn->kn_obj = p;
781 kn->kn_flags |= EV_CLEAR; /* automatically set */
782
783 /*
784 * NOTE_CHILD is only ever generated internally; don't let it
785 * leak in from user-space. See knote_proc_fork_track().
786 */
787 kn->kn_sfflags &= ~NOTE_CHILD;
788
789 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
790 mutex_exit(p->p_lock);
791
792 return 0;
793 }
794
795 /*
796 * Filter detach method for EVFILT_PROC.
797 *
798 * The knote may be attached to a different process, which may exit,
799 * leaving nothing for the knote to be attached to. So when the process
800 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
801 * it will be deleted when read out. However, as part of the knote deletion,
802 * this routine is called, so a check is needed to avoid actually performing
803 * a detach, because the original process might not exist any more.
804 */
805 static void
806 filt_procdetach(struct knote *kn)
807 {
808 struct kqueue *kq = kn->kn_kq;
809 struct proc *p;
810
811 /*
812 * We have to synchronize with knote_proc_exit(), but we
813 * are forced to acquire the locks in the wrong order here
814 * because we can't be sure kn->kn_obj is valid unless
815 * KN_DETACHED is not set.
816 */
817 again:
818 mutex_spin_enter(&kq->kq_lock);
819 if ((kn->kn_status & KN_DETACHED) == 0) {
820 p = kn->kn_obj;
821 if (!mutex_tryenter(p->p_lock)) {
822 mutex_spin_exit(&kq->kq_lock);
823 preempt_point();
824 goto again;
825 }
826 kn->kn_status |= KN_DETACHED;
827 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
828 mutex_exit(p->p_lock);
829 }
830 mutex_spin_exit(&kq->kq_lock);
831 }
832
833 /*
834 * Filter event method for EVFILT_PROC.
835 *
836 * Due to some of the complexities of process locking, we have special
837 * entry points for delivering knote submissions. filt_proc() is used
838 * only to check for activation from kqueue_register() and kqueue_scan().
839 */
840 static int
841 filt_proc(struct knote *kn, long hint)
842 {
843 struct kqueue *kq = kn->kn_kq;
844 uint32_t fflags;
845
846 /*
847 * Because we share the same klist with signal knotes, just
848 * ensure that we're not being invoked for the proc-related
849 * submissions.
850 */
851 KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
852
853 mutex_spin_enter(&kq->kq_lock);
854 fflags = kn->kn_fflags;
855 mutex_spin_exit(&kq->kq_lock);
856
857 return fflags != 0;
858 }
859
860 void
861 knote_proc_exec(struct proc *p)
862 {
863 struct knote *kn, *tmpkn;
864 struct kqueue *kq;
865 uint32_t fflags;
866
867 mutex_enter(p->p_lock);
868
869 SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
870 /* N.B. EVFILT_SIGNAL knotes are on this same list. */
871 if (kn->kn_fop == &sig_filtops) {
872 continue;
873 }
874 KASSERT(kn->kn_fop == &proc_filtops);
875
876 kq = kn->kn_kq;
877 mutex_spin_enter(&kq->kq_lock);
878 fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
879 if (fflags) {
880 knote_activate_locked(kn);
881 }
882 mutex_spin_exit(&kq->kq_lock);
883 }
884
885 mutex_exit(p->p_lock);
886 }
887
888 static int __noinline
889 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
890 {
891 struct kqueue *kq = okn->kn_kq;
892
893 KASSERT(mutex_owned(&kq->kq_lock));
894 KASSERT(mutex_owned(p1->p_lock));
895
896 /*
897 * We're going to put this knote into flux while we drop
898 * the locks and create and attach a new knote to track the
899 * child. If we are not able to enter flux, then this knote
900 * is about to go away, so skip the notification.
901 */
902 if (!kn_enter_flux(okn)) {
903 return 0;
904 }
905
906 mutex_spin_exit(&kq->kq_lock);
907 mutex_exit(p1->p_lock);
908
909 /*
910 * We actually have to register *two* new knotes:
911 *
912 * ==> One for the NOTE_CHILD notification. This is a forced
913 * ONESHOT note.
914 *
915 * ==> One to actually track the child process as it subsequently
916 * forks, execs, and, ultimately, exits.
917 *
918 * If we only register a single knote, then it's possible for
919 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
920 * notification if the child exits before the tracking process
921 * has received the NOTE_CHILD notification, which applications
922 * aren't expecting (the event's 'data' field would be clobbered,
923 * for exmaple).
924 *
925 * To do this, what we have here is an **extremely** stripped-down
926 * version of kqueue_register() that has the following properties:
927 *
928 * ==> Does not block to allocate memory. If we are unable
929 * to allocate memory, we return ENOMEM.
930 *
931 * ==> Does not search for existing knotes; we know there
932 * are not any because this is a new process that isn't
933 * even visible to other processes yet.
934 *
935 * ==> Assumes that the knhash for our kq's descriptor table
936 * already exists (after all, we're already tracking
937 * processes with knotes if we got here).
938 *
939 * ==> Directly attaches the new tracking knote to the child
940 * process.
941 *
942 * The whole point is to do the minimum amount of work while the
943 * knote is held in-flux, and to avoid doing extra work in general
944 * (we already have the new child process; why bother looking it
945 * up again?).
946 */
947 filedesc_t *fdp = kq->kq_fdp;
948 struct knote *knchild, *kntrack;
949 int error = 0;
950
951 knchild = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
952 kntrack = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
953 if (__predict_false(knchild == NULL || kntrack == NULL)) {
954 error = ENOMEM;
955 goto out;
956 }
957
958 kntrack->kn_obj = p2;
959 kntrack->kn_id = p2->p_pid;
960 kntrack->kn_kq = kq;
961 kntrack->kn_fop = okn->kn_fop;
962 kntrack->kn_kfilter = okn->kn_kfilter;
963 kntrack->kn_sfflags = okn->kn_sfflags;
964 kntrack->kn_sdata = p1->p_pid;
965
966 kntrack->kn_kevent.ident = p2->p_pid;
967 kntrack->kn_kevent.filter = okn->kn_filter;
968 kntrack->kn_kevent.flags =
969 okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
970 kntrack->kn_kevent.fflags = 0;
971 kntrack->kn_kevent.data = 0;
972 kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
973
974 /*
975 * The child note does not need to be attached to the
976 * new proc's klist at all.
977 */
978 *knchild = *kntrack;
979 knchild->kn_status = KN_DETACHED;
980 knchild->kn_sfflags = 0;
981 knchild->kn_kevent.flags |= EV_ONESHOT;
982 knchild->kn_kevent.fflags = NOTE_CHILD;
983 knchild->kn_kevent.data = p1->p_pid; /* parent */
984
985 mutex_enter(&fdp->fd_lock);
986
987 /*
988 * We need to check to see if the kq is closing, and skip
989 * attaching the knote if so. Normally, this isn't necessary
990 * when coming in the front door because the file descriptor
991 * layer will synchronize this.
992 *
993 * It's safe to test KQ_CLOSING without taking the kq_lock
994 * here because that flag is only ever set when the fd_lock
995 * is also held.
996 */
997 if (__predict_false(kq->kq_count & KQ_CLOSING)) {
998 mutex_exit(&fdp->fd_lock);
999 goto out;
1000 }
1001
1002 /*
1003 * We do the "insert into FD table" and "attach to klist" steps
1004 * in the opposite order of kqueue_register() here to avoid
1005 * having to take p2->p_lock twice. But this is OK because we
1006 * hold fd_lock across the entire operation.
1007 */
1008
1009 mutex_enter(p2->p_lock);
1010 error = kauth_authorize_process(curlwp->l_cred,
1011 KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
1012 if (__predict_false(error != 0)) {
1013 mutex_exit(p2->p_lock);
1014 mutex_exit(&fdp->fd_lock);
1015 error = EACCES;
1016 goto out;
1017 }
1018 SLIST_INSERT_HEAD(&p2->p_klist, kntrack, kn_selnext);
1019 mutex_exit(p2->p_lock);
1020
1021 KASSERT(fdp->fd_knhashmask != 0);
1022 KASSERT(fdp->fd_knhash != NULL);
1023 struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
1024 fdp->fd_knhashmask)];
1025 SLIST_INSERT_HEAD(list, kntrack, kn_link);
1026 SLIST_INSERT_HEAD(list, knchild, kn_link);
1027
1028 /* This adds references for knchild *and* kntrack. */
1029 atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
1030
1031 knote_activate(knchild);
1032
1033 kntrack = NULL;
1034 knchild = NULL;
1035
1036 mutex_exit(&fdp->fd_lock);
1037
1038 out:
1039 if (__predict_false(knchild != NULL)) {
1040 kmem_free(knchild, sizeof(*knchild));
1041 }
1042 if (__predict_false(kntrack != NULL)) {
1043 kmem_free(kntrack, sizeof(*kntrack));
1044 }
1045 mutex_enter(p1->p_lock);
1046 mutex_spin_enter(&kq->kq_lock);
1047
1048 if (kn_leave_flux(okn)) {
1049 KQ_FLUX_WAKEUP(kq);
1050 }
1051
1052 return error;
1053 }
1054
1055 void
1056 knote_proc_fork(struct proc *p1, struct proc *p2)
1057 {
1058 struct knote *kn;
1059 struct kqueue *kq;
1060 uint32_t fflags;
1061
1062 mutex_enter(p1->p_lock);
1063
1064 /*
1065 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
1066 * don't want to pre-fetch the next knote; in the event we
1067 * have to drop p_lock, we will have put the knote in-flux,
1068 * meaning that no one will be able to detach it until we
1069 * have taken the knote out of flux. However, that does
1070 * NOT stop someone else from detaching the next note in the
1071 * list while we have it unlocked. Thus, we want to fetch
1072 * the next note in the list only after we have re-acquired
1073 * the lock, and using SLIST_FOREACH() will satisfy that.
1074 */
1075 SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
1076 /* N.B. EVFILT_SIGNAL knotes are on this same list. */
1077 if (kn->kn_fop == &sig_filtops) {
1078 continue;
1079 }
1080 KASSERT(kn->kn_fop == &proc_filtops);
1081
1082 kq = kn->kn_kq;
1083 mutex_spin_enter(&kq->kq_lock);
1084 kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
1085 if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
1086 /*
1087 * This will drop kq_lock and p_lock and
1088 * re-acquire them before it returns.
1089 */
1090 if (knote_proc_fork_track(p1, p2, kn)) {
1091 kn->kn_fflags |= NOTE_TRACKERR;
1092 }
1093 KASSERT(mutex_owned(p1->p_lock));
1094 KASSERT(mutex_owned(&kq->kq_lock));
1095 }
1096 fflags = kn->kn_fflags;
1097 if (fflags) {
1098 knote_activate_locked(kn);
1099 }
1100 mutex_spin_exit(&kq->kq_lock);
1101 }
1102
1103 mutex_exit(p1->p_lock);
1104 }
1105
1106 void
1107 knote_proc_exit(struct proc *p)
1108 {
1109 struct knote *kn;
1110 struct kqueue *kq;
1111
1112 KASSERT(mutex_owned(p->p_lock));
1113
1114 while (!SLIST_EMPTY(&p->p_klist)) {
1115 kn = SLIST_FIRST(&p->p_klist);
1116 kq = kn->kn_kq;
1117
1118 KASSERT(kn->kn_obj == p);
1119
1120 mutex_spin_enter(&kq->kq_lock);
1121 kn->kn_data = P_WAITSTATUS(p);
1122 /*
1123 * Mark as ONESHOT, so that the knote is g/c'ed
1124 * when read.
1125 */
1126 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1127 kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
1128
1129 /*
1130 * Detach the knote from the process and mark it as such.
1131 * N.B. EVFILT_SIGNAL are also on p_klist, but by the
1132 * time we get here, all open file descriptors for this
1133 * process have been released, meaning that signal knotes
1134 * will have already been detached.
1135 *
1136 * We need to synchronize this with filt_procdetach().
1137 */
1138 KASSERT(kn->kn_fop == &proc_filtops);
1139 if ((kn->kn_status & KN_DETACHED) == 0) {
1140 kn->kn_status |= KN_DETACHED;
1141 SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
1142 }
1143
1144 /*
1145 * Always activate the knote for NOTE_EXIT regardless
1146 * of whether or not the listener cares about it.
1147 * This matches historical behavior.
1148 */
1149 knote_activate_locked(kn);
1150 mutex_spin_exit(&kq->kq_lock);
1151 }
1152 }
1153
1154 #define FILT_TIMER_NOSCHED ((uintptr_t)-1)
1155
1156 static int
1157 filt_timercompute(struct kevent *kev, uintptr_t *tticksp)
1158 {
1159 struct timespec ts;
1160 uintptr_t tticks;
1161
1162 if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) {
1163 return EINVAL;
1164 }
1165
1166 /*
1167 * Convert the event 'data' to a timespec, then convert the
1168 * timespec to callout ticks.
1169 */
1170 switch (kev->fflags & NOTE_TIMER_UNITMASK) {
1171 case NOTE_SECONDS:
1172 ts.tv_sec = kev->data;
1173 ts.tv_nsec = 0;
1174 break;
1175
1176 case NOTE_MSECONDS: /* == historical value 0 */
1177 ts.tv_sec = kev->data / 1000;
1178 ts.tv_nsec = (kev->data % 1000) * 1000000;
1179 break;
1180
1181 case NOTE_USECONDS:
1182 ts.tv_sec = kev->data / 1000000;
1183 ts.tv_nsec = (kev->data % 1000000) * 1000;
1184 break;
1185
1186 case NOTE_NSECONDS:
1187 ts.tv_sec = kev->data / 1000000000;
1188 ts.tv_nsec = kev->data % 1000000000;
1189 break;
1190
1191 default:
1192 return EINVAL;
1193 }
1194
1195 if (kev->fflags & NOTE_ABSTIME) {
1196 struct timespec deadline = ts;
1197
1198 /*
1199 * Get current time.
1200 *
1201 * XXX This is CLOCK_REALTIME. There is no way to
1202 * XXX specify CLOCK_MONOTONIC.
1203 */
1204 nanotime(&ts);
1205
1206 /* Absolute timers do not repeat. */
1207 kev->data = FILT_TIMER_NOSCHED;
1208
1209 /* If we're past the deadline, then the event will fire. */
1210 if (timespeccmp(&deadline, &ts, <=)) {
1211 tticks = FILT_TIMER_NOSCHED;
1212 goto out;
1213 }
1214
1215 /* Calculate how much time is left. */
1216 timespecsub(&deadline, &ts, &ts);
1217 } else {
1218 /* EV_CLEAR automatically set for relative timers. */
1219 kev->flags |= EV_CLEAR;
1220 }
1221
1222 tticks = tstohz(&ts);
1223
1224 /* if the supplied value is under our resolution, use 1 tick */
1225 if (tticks == 0) {
1226 if (kev->data == 0)
1227 return EINVAL;
1228 tticks = 1;
1229 } else if (tticks > INT_MAX) {
1230 return EINVAL;
1231 }
1232
1233 if ((kev->flags & EV_ONESHOT) != 0) {
1234 /* Timer does not repeat. */
1235 kev->data = FILT_TIMER_NOSCHED;
1236 } else {
1237 KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED);
1238 kev->data = tticks;
1239 }
1240
1241 out:
1242 *tticksp = tticks;
1243
1244 return 0;
1245 }
1246
1247 static void
1248 filt_timerexpire(void *knx)
1249 {
1250 struct knote *kn = knx;
1251 struct kqueue *kq = kn->kn_kq;
1252
1253 mutex_spin_enter(&kq->kq_lock);
1254 kn->kn_data++;
1255 knote_activate_locked(kn);
1256 if (kn->kn_sdata != FILT_TIMER_NOSCHED) {
1257 KASSERT(kn->kn_sdata > 0 && kn->kn_sdata <= INT_MAX);
1258 callout_schedule((callout_t *)kn->kn_hook,
1259 (int)kn->kn_sdata);
1260 }
1261 mutex_spin_exit(&kq->kq_lock);
1262 }
1263
1264 static int
1265 filt_timerattach(struct knote *kn)
1266 {
1267 callout_t *calloutp;
1268 struct kqueue *kq;
1269 uintptr_t tticks;
1270 int error;
1271
1272 struct kevent kev = {
1273 .flags = kn->kn_flags,
1274 .fflags = kn->kn_sfflags,
1275 .data = kn->kn_sdata,
1276 };
1277
1278 error = filt_timercompute(&kev, &tticks);
1279 if (error) {
1280 return error;
1281 }
1282
1283 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
1284 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
1285 atomic_dec_uint(&kq_ncallouts);
1286 return ENOMEM;
1287 }
1288 callout_init(calloutp, CALLOUT_MPSAFE);
1289
1290 kq = kn->kn_kq;
1291 mutex_spin_enter(&kq->kq_lock);
1292
1293 kn->kn_sdata = kev.data;
1294 kn->kn_flags = kev.flags;
1295 KASSERT(kn->kn_sfflags == kev.fflags);
1296 kn->kn_hook = calloutp;
1297
1298 if (__predict_false(tticks == FILT_TIMER_NOSCHED)) {
1299 kn->kn_data = 1;
1300 } else {
1301 KASSERT(tticks <= INT_MAX);
1302 callout_reset(calloutp, (int)tticks, filt_timerexpire, kn);
1303 }
1304
1305 mutex_spin_exit(&kq->kq_lock);
1306
1307 return (0);
1308 }
1309
1310 static void
1311 filt_timerdetach(struct knote *kn)
1312 {
1313 callout_t *calloutp;
1314 struct kqueue *kq = kn->kn_kq;
1315
1316 /* prevent rescheduling when we expire */
1317 mutex_spin_enter(&kq->kq_lock);
1318 kn->kn_sdata = FILT_TIMER_NOSCHED;
1319 mutex_spin_exit(&kq->kq_lock);
1320
1321 calloutp = (callout_t *)kn->kn_hook;
1322
1323 /*
1324 * Attempt to stop the callout. This will block if it's
1325 * already running.
1326 */
1327 callout_halt(calloutp, NULL);
1328
1329 callout_destroy(calloutp);
1330 kmem_free(calloutp, sizeof(*calloutp));
1331 atomic_dec_uint(&kq_ncallouts);
1332 }
1333
1334 static int
1335 filt_timer(struct knote *kn, long hint)
1336 {
1337 struct kqueue *kq = kn->kn_kq;
1338 int rv;
1339
1340 mutex_spin_enter(&kq->kq_lock);
1341 rv = (kn->kn_data != 0);
1342 mutex_spin_exit(&kq->kq_lock);
1343
1344 return rv;
1345 }
1346
1347 static int
1348 filt_userattach(struct knote *kn)
1349 {
1350 struct kqueue *kq = kn->kn_kq;
1351
1352 /*
1353 * EVFILT_USER knotes are not attached to anything in the kernel.
1354 */
1355 mutex_spin_enter(&kq->kq_lock);
1356 kn->kn_hook = NULL;
1357 if (kn->kn_fflags & NOTE_TRIGGER)
1358 kn->kn_hookid = 1;
1359 else
1360 kn->kn_hookid = 0;
1361 mutex_spin_exit(&kq->kq_lock);
1362 return (0);
1363 }
1364
1365 static void
1366 filt_userdetach(struct knote *kn)
1367 {
1368
1369 /*
1370 * EVFILT_USER knotes are not attached to anything in the kernel.
1371 */
1372 }
1373
1374 static int
1375 filt_user(struct knote *kn, long hint)
1376 {
1377 struct kqueue *kq = kn->kn_kq;
1378 int hookid;
1379
1380 mutex_spin_enter(&kq->kq_lock);
1381 hookid = kn->kn_hookid;
1382 mutex_spin_exit(&kq->kq_lock);
1383
1384 return hookid;
1385 }
1386
1387 static void
1388 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
1389 {
1390 int ffctrl;
1391
1392 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1393
1394 switch (type) {
1395 case EVENT_REGISTER:
1396 if (kev->fflags & NOTE_TRIGGER)
1397 kn->kn_hookid = 1;
1398
1399 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1400 kev->fflags &= NOTE_FFLAGSMASK;
1401 switch (ffctrl) {
1402 case NOTE_FFNOP:
1403 break;
1404
1405 case NOTE_FFAND:
1406 kn->kn_sfflags &= kev->fflags;
1407 break;
1408
1409 case NOTE_FFOR:
1410 kn->kn_sfflags |= kev->fflags;
1411 break;
1412
1413 case NOTE_FFCOPY:
1414 kn->kn_sfflags = kev->fflags;
1415 break;
1416
1417 default:
1418 /* XXX Return error? */
1419 break;
1420 }
1421 kn->kn_sdata = kev->data;
1422 if (kev->flags & EV_CLEAR) {
1423 kn->kn_hookid = 0;
1424 kn->kn_data = 0;
1425 kn->kn_fflags = 0;
1426 }
1427 break;
1428
1429 case EVENT_PROCESS:
1430 *kev = kn->kn_kevent;
1431 kev->fflags = kn->kn_sfflags;
1432 kev->data = kn->kn_sdata;
1433 if (kn->kn_flags & EV_CLEAR) {
1434 kn->kn_hookid = 0;
1435 kn->kn_data = 0;
1436 kn->kn_fflags = 0;
1437 }
1438 break;
1439
1440 default:
1441 panic("filt_usertouch() - invalid type (%ld)", type);
1442 break;
1443 }
1444 }
1445
1446 /*
1447 * filt_seltrue:
1448 *
1449 * This filter "event" routine simulates seltrue().
1450 */
1451 int
1452 filt_seltrue(struct knote *kn, long hint)
1453 {
1454
1455 /*
1456 * We don't know how much data can be read/written,
1457 * but we know that it *can* be. This is about as
1458 * good as select/poll does as well.
1459 */
1460 kn->kn_data = 0;
1461 return (1);
1462 }
1463
1464 /*
1465 * This provides full kqfilter entry for device switch tables, which
1466 * has same effect as filter using filt_seltrue() as filter method.
1467 */
1468 static void
1469 filt_seltruedetach(struct knote *kn)
1470 {
1471 /* Nothing to do */
1472 }
1473
1474 const struct filterops seltrue_filtops = {
1475 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1476 .f_attach = NULL,
1477 .f_detach = filt_seltruedetach,
1478 .f_event = filt_seltrue,
1479 };
1480
1481 int
1482 seltrue_kqfilter(dev_t dev, struct knote *kn)
1483 {
1484 switch (kn->kn_filter) {
1485 case EVFILT_READ:
1486 case EVFILT_WRITE:
1487 kn->kn_fop = &seltrue_filtops;
1488 break;
1489 default:
1490 return (EINVAL);
1491 }
1492
1493 /* Nothing more to do */
1494 return (0);
1495 }
1496
1497 /*
1498 * kqueue(2) system call.
1499 */
1500 static int
1501 kqueue1(struct lwp *l, int flags, register_t *retval)
1502 {
1503 struct kqueue *kq;
1504 file_t *fp;
1505 int fd, error;
1506
1507 if ((error = fd_allocfile(&fp, &fd)) != 0)
1508 return error;
1509 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
1510 fp->f_type = DTYPE_KQUEUE;
1511 fp->f_ops = &kqueueops;
1512 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
1513 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
1514 cv_init(&kq->kq_cv, "kqueue");
1515 selinit(&kq->kq_sel);
1516 TAILQ_INIT(&kq->kq_head);
1517 fp->f_kqueue = kq;
1518 *retval = fd;
1519 kq->kq_fdp = curlwp->l_fd;
1520 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1521 fd_affix(curproc, fp, fd);
1522 return error;
1523 }
1524
1525 /*
1526 * kqueue(2) system call.
1527 */
1528 int
1529 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
1530 {
1531 return kqueue1(l, 0, retval);
1532 }
1533
1534 int
1535 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
1536 register_t *retval)
1537 {
1538 /* {
1539 syscallarg(int) flags;
1540 } */
1541 return kqueue1(l, SCARG(uap, flags), retval);
1542 }
1543
1544 /*
1545 * kevent(2) system call.
1546 */
1547 int
1548 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
1549 struct kevent *changes, size_t index, int n)
1550 {
1551
1552 return copyin(changelist + index, changes, n * sizeof(*changes));
1553 }
1554
1555 int
1556 kevent_put_events(void *ctx, struct kevent *events,
1557 struct kevent *eventlist, size_t index, int n)
1558 {
1559
1560 return copyout(events, eventlist + index, n * sizeof(*events));
1561 }
1562
1563 static const struct kevent_ops kevent_native_ops = {
1564 .keo_private = NULL,
1565 .keo_fetch_timeout = copyin,
1566 .keo_fetch_changes = kevent_fetch_changes,
1567 .keo_put_events = kevent_put_events,
1568 };
1569
1570 int
1571 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1572 register_t *retval)
1573 {
1574 /* {
1575 syscallarg(int) fd;
1576 syscallarg(const struct kevent *) changelist;
1577 syscallarg(size_t) nchanges;
1578 syscallarg(struct kevent *) eventlist;
1579 syscallarg(size_t) nevents;
1580 syscallarg(const struct timespec *) timeout;
1581 } */
1582
1583 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1584 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1585 SCARG(uap, timeout), &kevent_native_ops);
1586 }
1587
1588 int
1589 kevent1(register_t *retval, int fd,
1590 const struct kevent *changelist, size_t nchanges,
1591 struct kevent *eventlist, size_t nevents,
1592 const struct timespec *timeout,
1593 const struct kevent_ops *keops)
1594 {
1595 struct kevent *kevp;
1596 struct kqueue *kq;
1597 struct timespec ts;
1598 size_t i, n, ichange;
1599 int nerrors, error;
1600 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
1601 file_t *fp;
1602
1603 /* check that we're dealing with a kq */
1604 fp = fd_getfile(fd);
1605 if (fp == NULL)
1606 return (EBADF);
1607
1608 if (fp->f_type != DTYPE_KQUEUE) {
1609 fd_putfile(fd);
1610 return (EBADF);
1611 }
1612
1613 if (timeout != NULL) {
1614 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1615 if (error)
1616 goto done;
1617 timeout = &ts;
1618 }
1619
1620 kq = fp->f_kqueue;
1621 nerrors = 0;
1622 ichange = 0;
1623
1624 /* traverse list of events to register */
1625 while (nchanges > 0) {
1626 n = MIN(nchanges, __arraycount(kevbuf));
1627 error = (*keops->keo_fetch_changes)(keops->keo_private,
1628 changelist, kevbuf, ichange, n);
1629 if (error)
1630 goto done;
1631 for (i = 0; i < n; i++) {
1632 kevp = &kevbuf[i];
1633 kevp->flags &= ~EV_SYSFLAGS;
1634 /* register each knote */
1635 error = kqueue_register(kq, kevp);
1636 if (!error && !(kevp->flags & EV_RECEIPT))
1637 continue;
1638 if (nevents == 0)
1639 goto done;
1640 kevp->flags = EV_ERROR;
1641 kevp->data = error;
1642 error = (*keops->keo_put_events)
1643 (keops->keo_private, kevp,
1644 eventlist, nerrors, 1);
1645 if (error)
1646 goto done;
1647 nevents--;
1648 nerrors++;
1649 }
1650 nchanges -= n; /* update the results */
1651 ichange += n;
1652 }
1653 if (nerrors) {
1654 *retval = nerrors;
1655 error = 0;
1656 goto done;
1657 }
1658
1659 /* actually scan through the events */
1660 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1661 kevbuf, __arraycount(kevbuf));
1662 done:
1663 fd_putfile(fd);
1664 return (error);
1665 }
1666
1667 /*
1668 * Register a given kevent kev onto the kqueue
1669 */
1670 static int
1671 kqueue_register(struct kqueue *kq, struct kevent *kev)
1672 {
1673 struct kfilter *kfilter;
1674 filedesc_t *fdp;
1675 file_t *fp;
1676 fdfile_t *ff;
1677 struct knote *kn, *newkn;
1678 struct klist *list;
1679 int error, fd, rv;
1680
1681 fdp = kq->kq_fdp;
1682 fp = NULL;
1683 kn = NULL;
1684 error = 0;
1685 fd = 0;
1686
1687 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1688
1689 rw_enter(&kqueue_filter_lock, RW_READER);
1690 kfilter = kfilter_byfilter(kev->filter);
1691 if (kfilter == NULL || kfilter->filtops == NULL) {
1692 /* filter not found nor implemented */
1693 rw_exit(&kqueue_filter_lock);
1694 kmem_free(newkn, sizeof(*newkn));
1695 return (EINVAL);
1696 }
1697
1698 /* search if knote already exists */
1699 if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
1700 /* monitoring a file descriptor */
1701 /* validate descriptor */
1702 if (kev->ident > INT_MAX
1703 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1704 rw_exit(&kqueue_filter_lock);
1705 kmem_free(newkn, sizeof(*newkn));
1706 return EBADF;
1707 }
1708 mutex_enter(&fdp->fd_lock);
1709 ff = fdp->fd_dt->dt_ff[fd];
1710 if (ff->ff_refcnt & FR_CLOSING) {
1711 error = EBADF;
1712 goto doneunlock;
1713 }
1714 if (fd <= fdp->fd_lastkqfile) {
1715 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1716 if (kq == kn->kn_kq &&
1717 kev->filter == kn->kn_filter)
1718 break;
1719 }
1720 }
1721 } else {
1722 /*
1723 * not monitoring a file descriptor, so
1724 * lookup knotes in internal hash table
1725 */
1726 mutex_enter(&fdp->fd_lock);
1727 if (fdp->fd_knhashmask != 0) {
1728 list = &fdp->fd_knhash[
1729 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1730 SLIST_FOREACH(kn, list, kn_link) {
1731 if (kev->ident == kn->kn_id &&
1732 kq == kn->kn_kq &&
1733 kev->filter == kn->kn_filter)
1734 break;
1735 }
1736 }
1737 }
1738
1739 /* It's safe to test KQ_CLOSING while holding only the fd_lock. */
1740 KASSERT(mutex_owned(&fdp->fd_lock));
1741 KASSERT((kq->kq_count & KQ_CLOSING) == 0);
1742
1743 /*
1744 * kn now contains the matching knote, or NULL if no match
1745 */
1746 if (kn == NULL) {
1747 if (kev->flags & EV_ADD) {
1748 /* create new knote */
1749 kn = newkn;
1750 newkn = NULL;
1751 kn->kn_obj = fp;
1752 kn->kn_id = kev->ident;
1753 kn->kn_kq = kq;
1754 kn->kn_fop = kfilter->filtops;
1755 kn->kn_kfilter = kfilter;
1756 kn->kn_sfflags = kev->fflags;
1757 kn->kn_sdata = kev->data;
1758 kev->fflags = 0;
1759 kev->data = 0;
1760 kn->kn_kevent = *kev;
1761
1762 KASSERT(kn->kn_fop != NULL);
1763 /*
1764 * apply reference count to knote structure, and
1765 * do not release it at the end of this routine.
1766 */
1767 fp = NULL;
1768
1769 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
1770 /*
1771 * If knote is not on an fd, store on
1772 * internal hash table.
1773 */
1774 if (fdp->fd_knhashmask == 0) {
1775 /* XXXAD can block with fd_lock held */
1776 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1777 HASH_LIST, true,
1778 &fdp->fd_knhashmask);
1779 }
1780 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1781 fdp->fd_knhashmask)];
1782 } else {
1783 /* Otherwise, knote is on an fd. */
1784 list = (struct klist *)
1785 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1786 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1787 fdp->fd_lastkqfile = kn->kn_id;
1788 }
1789 SLIST_INSERT_HEAD(list, kn, kn_link);
1790
1791 /*
1792 * N.B. kn->kn_fop may change as the result
1793 * of filter_attach()!
1794 */
1795 error = filter_attach(kn);
1796 if (error != 0) {
1797 #ifdef DEBUG
1798 struct proc *p = curlwp->l_proc;
1799 const file_t *ft = kn->kn_obj;
1800 printf("%s: %s[%d]: event type %d not "
1801 "supported for file type %d/%s "
1802 "(error %d)\n", __func__,
1803 p->p_comm, p->p_pid,
1804 kn->kn_filter, ft ? ft->f_type : -1,
1805 ft ? ft->f_ops->fo_name : "?", error);
1806 #endif
1807
1808 /*
1809 * N.B. no need to check for this note to
1810 * be in-flux, since it was never visible
1811 * to the monitored object.
1812 *
1813 * knote_detach() drops fdp->fd_lock
1814 */
1815 mutex_enter(&kq->kq_lock);
1816 KNOTE_WILLDETACH(kn);
1817 KASSERT(kn_in_flux(kn) == false);
1818 mutex_exit(&kq->kq_lock);
1819 knote_detach(kn, fdp, false);
1820 goto done;
1821 }
1822 atomic_inc_uint(&kfilter->refcnt);
1823 goto done_ev_add;
1824 } else {
1825 /* No matching knote and the EV_ADD flag is not set. */
1826 error = ENOENT;
1827 goto doneunlock;
1828 }
1829 }
1830
1831 if (kev->flags & EV_DELETE) {
1832 /*
1833 * Let the world know that this knote is about to go
1834 * away, and wait for it to settle if it's currently
1835 * in-flux.
1836 */
1837 mutex_spin_enter(&kq->kq_lock);
1838 if (kn->kn_status & KN_WILLDETACH) {
1839 /*
1840 * This knote is already on its way out,
1841 * so just be done.
1842 */
1843 mutex_spin_exit(&kq->kq_lock);
1844 goto doneunlock;
1845 }
1846 KNOTE_WILLDETACH(kn);
1847 if (kn_in_flux(kn)) {
1848 mutex_exit(&fdp->fd_lock);
1849 /*
1850 * It's safe for us to conclusively wait for
1851 * this knote to settle because we know we'll
1852 * be completing the detach.
1853 */
1854 kn_wait_flux(kn, true);
1855 KASSERT(kn_in_flux(kn) == false);
1856 mutex_spin_exit(&kq->kq_lock);
1857 mutex_enter(&fdp->fd_lock);
1858 } else {
1859 mutex_spin_exit(&kq->kq_lock);
1860 }
1861
1862 /* knote_detach() drops fdp->fd_lock */
1863 knote_detach(kn, fdp, true);
1864 goto done;
1865 }
1866
1867 /*
1868 * The user may change some filter values after the
1869 * initial EV_ADD, but doing so will not reset any
1870 * filter which have already been triggered.
1871 */
1872 kn->kn_kevent.udata = kev->udata;
1873 KASSERT(kn->kn_fop != NULL);
1874 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1875 kn->kn_fop->f_touch != NULL) {
1876 mutex_spin_enter(&kq->kq_lock);
1877 filter_touch(kn, kev, EVENT_REGISTER);
1878 mutex_spin_exit(&kq->kq_lock);
1879 } else {
1880 kn->kn_sfflags = kev->fflags;
1881 kn->kn_sdata = kev->data;
1882 }
1883
1884 /*
1885 * We can get here if we are trying to attach
1886 * an event to a file descriptor that does not
1887 * support events, and the attach routine is
1888 * broken and does not return an error.
1889 */
1890 done_ev_add:
1891 rv = filter_event(kn, 0);
1892 if (rv)
1893 knote_activate(kn);
1894
1895 /* disable knote */
1896 if ((kev->flags & EV_DISABLE)) {
1897 mutex_spin_enter(&kq->kq_lock);
1898 if ((kn->kn_status & KN_DISABLED) == 0)
1899 kn->kn_status |= KN_DISABLED;
1900 mutex_spin_exit(&kq->kq_lock);
1901 }
1902
1903 /* enable knote */
1904 if ((kev->flags & EV_ENABLE)) {
1905 knote_enqueue(kn);
1906 }
1907 doneunlock:
1908 mutex_exit(&fdp->fd_lock);
1909 done:
1910 rw_exit(&kqueue_filter_lock);
1911 if (newkn != NULL)
1912 kmem_free(newkn, sizeof(*newkn));
1913 if (fp != NULL)
1914 fd_putfile(fd);
1915 return (error);
1916 }
1917
1918 #define KN_FMT(buf, kn) \
1919 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1920
1921 #if defined(DDB)
1922 void
1923 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
1924 {
1925 const struct knote *kn;
1926 u_int count;
1927 int nmarker;
1928 char buf[128];
1929
1930 count = 0;
1931 nmarker = 0;
1932
1933 (*pr)("kqueue %p (restart=%d count=%u):\n", kq,
1934 !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
1935 (*pr)(" Queued knotes:\n");
1936 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1937 if (kn->kn_status & KN_MARKER) {
1938 nmarker++;
1939 } else {
1940 count++;
1941 }
1942 (*pr)(" knote %p: kq=%p status=%s\n",
1943 kn, kn->kn_kq, KN_FMT(buf, kn));
1944 (*pr)(" id=0x%lx (%lu) filter=%d\n",
1945 (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
1946 if (kn->kn_kq != kq) {
1947 (*pr)(" !!! kn->kn_kq != kq\n");
1948 }
1949 }
1950 if (count != KQ_COUNT(kq)) {
1951 (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n",
1952 count, KQ_COUNT(kq));
1953 }
1954 }
1955 #endif /* DDB */
1956
1957 #if defined(DEBUG)
1958 static void
1959 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1960 {
1961 const struct knote *kn;
1962 u_int count;
1963 int nmarker;
1964 char buf[128];
1965
1966 KASSERT(mutex_owned(&kq->kq_lock));
1967
1968 count = 0;
1969 nmarker = 0;
1970 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1971 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1972 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1973 func, line, kq, kn, KN_FMT(buf, kn));
1974 }
1975 if ((kn->kn_status & KN_MARKER) == 0) {
1976 if (kn->kn_kq != kq) {
1977 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1978 func, line, kq, kn, kn->kn_kq,
1979 KN_FMT(buf, kn));
1980 }
1981 if ((kn->kn_status & KN_ACTIVE) == 0) {
1982 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1983 func, line, kq, kn, KN_FMT(buf, kn));
1984 }
1985 count++;
1986 if (count > KQ_COUNT(kq)) {
1987 panic("%s,%zu: kq=%p kq->kq_count(%u) != "
1988 "count(%d), nmarker=%d",
1989 func, line, kq, KQ_COUNT(kq), count,
1990 nmarker);
1991 }
1992 } else {
1993 nmarker++;
1994 }
1995 }
1996 }
1997 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1998 #else /* defined(DEBUG) */
1999 #define kq_check(a) /* nothing */
2000 #endif /* defined(DEBUG) */
2001
2002 static void
2003 kqueue_restart(file_t *fp)
2004 {
2005 struct kqueue *kq = fp->f_kqueue;
2006 KASSERT(kq != NULL);
2007
2008 mutex_spin_enter(&kq->kq_lock);
2009 kq->kq_count |= KQ_RESTART;
2010 cv_broadcast(&kq->kq_cv);
2011 mutex_spin_exit(&kq->kq_lock);
2012 }
2013
2014 /*
2015 * Scan through the list of events on fp (for a maximum of maxevents),
2016 * returning the results in to ulistp. Timeout is determined by tsp; if
2017 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
2018 * as appropriate.
2019 */
2020 static int
2021 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
2022 const struct timespec *tsp, register_t *retval,
2023 const struct kevent_ops *keops, struct kevent *kevbuf,
2024 size_t kevcnt)
2025 {
2026 struct kqueue *kq;
2027 struct kevent *kevp;
2028 struct timespec ats, sleepts;
2029 struct knote *kn, *marker, morker;
2030 size_t count, nkev, nevents;
2031 int timeout, error, touch, rv, influx;
2032 filedesc_t *fdp;
2033
2034 fdp = curlwp->l_fd;
2035 kq = fp->f_kqueue;
2036 count = maxevents;
2037 nkev = nevents = error = 0;
2038 if (count == 0) {
2039 *retval = 0;
2040 return 0;
2041 }
2042
2043 if (tsp) { /* timeout supplied */
2044 ats = *tsp;
2045 if (inittimeleft(&ats, &sleepts) == -1) {
2046 *retval = maxevents;
2047 return EINVAL;
2048 }
2049 timeout = tstohz(&ats);
2050 if (timeout <= 0)
2051 timeout = -1; /* do poll */
2052 } else {
2053 /* no timeout, wait forever */
2054 timeout = 0;
2055 }
2056
2057 memset(&morker, 0, sizeof(morker));
2058 marker = &morker;
2059 marker->kn_kq = kq;
2060 marker->kn_status = KN_MARKER;
2061 mutex_spin_enter(&kq->kq_lock);
2062 retry:
2063 kevp = kevbuf;
2064 if (KQ_COUNT(kq) == 0) {
2065 if (timeout >= 0) {
2066 error = cv_timedwait_sig(&kq->kq_cv,
2067 &kq->kq_lock, timeout);
2068 if (error == 0) {
2069 if (KQ_COUNT(kq) == 0 &&
2070 (kq->kq_count & KQ_RESTART)) {
2071 /* return to clear file reference */
2072 error = ERESTART;
2073 } else if (tsp == NULL || (timeout =
2074 gettimeleft(&ats, &sleepts)) > 0) {
2075 goto retry;
2076 }
2077 } else {
2078 /* don't restart after signals... */
2079 if (error == ERESTART)
2080 error = EINTR;
2081 if (error == EWOULDBLOCK)
2082 error = 0;
2083 }
2084 }
2085 mutex_spin_exit(&kq->kq_lock);
2086 goto done;
2087 }
2088
2089 /* mark end of knote list */
2090 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
2091 influx = 0;
2092
2093 /*
2094 * Acquire the fdp->fd_lock interlock to avoid races with
2095 * file creation/destruction from other threads.
2096 */
2097 mutex_spin_exit(&kq->kq_lock);
2098 relock:
2099 mutex_enter(&fdp->fd_lock);
2100 mutex_spin_enter(&kq->kq_lock);
2101
2102 while (count != 0) {
2103 /*
2104 * Get next knote. We are guaranteed this will never
2105 * be NULL because of the marker we inserted above.
2106 */
2107 kn = TAILQ_FIRST(&kq->kq_head);
2108
2109 bool kn_is_other_marker =
2110 (kn->kn_status & KN_MARKER) != 0 && kn != marker;
2111 bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
2112 bool kn_is_in_flux = kn_in_flux(kn);
2113
2114 /*
2115 * If we found a marker that's not ours, or this knote
2116 * is in a state of flux, then wait for everything to
2117 * settle down and go around again.
2118 */
2119 if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
2120 if (influx) {
2121 influx = 0;
2122 KQ_FLUX_WAKEUP(kq);
2123 }
2124 mutex_exit(&fdp->fd_lock);
2125 if (kn_is_other_marker || kn_is_in_flux) {
2126 KQ_FLUX_WAIT(kq);
2127 mutex_spin_exit(&kq->kq_lock);
2128 } else {
2129 /*
2130 * Detaching but not in-flux? Someone is
2131 * actively trying to finish the job; just
2132 * go around and try again.
2133 */
2134 KASSERT(kn_is_detaching);
2135 mutex_spin_exit(&kq->kq_lock);
2136 preempt_point();
2137 }
2138 goto relock;
2139 }
2140
2141 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2142 if (kn == marker) {
2143 /* it's our marker, stop */
2144 KQ_FLUX_WAKEUP(kq);
2145 if (count == maxevents) {
2146 mutex_exit(&fdp->fd_lock);
2147 goto retry;
2148 }
2149 break;
2150 }
2151 KASSERT((kn->kn_status & KN_BUSY) == 0);
2152
2153 kq_check(kq);
2154 kn->kn_status &= ~KN_QUEUED;
2155 kn->kn_status |= KN_BUSY;
2156 kq_check(kq);
2157 if (kn->kn_status & KN_DISABLED) {
2158 kn->kn_status &= ~KN_BUSY;
2159 kq->kq_count--;
2160 /* don't want disabled events */
2161 continue;
2162 }
2163 if ((kn->kn_flags & EV_ONESHOT) == 0) {
2164 mutex_spin_exit(&kq->kq_lock);
2165 KASSERT(mutex_owned(&fdp->fd_lock));
2166 rv = filter_event(kn, 0);
2167 mutex_spin_enter(&kq->kq_lock);
2168 /* Re-poll if note was re-enqueued. */
2169 if ((kn->kn_status & KN_QUEUED) != 0) {
2170 kn->kn_status &= ~KN_BUSY;
2171 /* Re-enqueue raised kq_count, lower it again */
2172 kq->kq_count--;
2173 influx = 1;
2174 continue;
2175 }
2176 if (rv == 0) {
2177 /*
2178 * non-ONESHOT event that hasn't triggered
2179 * again, so it will remain de-queued.
2180 */
2181 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2182 kq->kq_count--;
2183 influx = 1;
2184 continue;
2185 }
2186 } else {
2187 /*
2188 * This ONESHOT note is going to be detached
2189 * below. Mark the knote as not long for this
2190 * world before we release the kq lock so that
2191 * no one else will put it in a state of flux.
2192 */
2193 KNOTE_WILLDETACH(kn);
2194 }
2195 KASSERT(kn->kn_fop != NULL);
2196 touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
2197 kn->kn_fop->f_touch != NULL);
2198 /* XXXAD should be got from f_event if !oneshot. */
2199 if (touch) {
2200 filter_touch(kn, kevp, EVENT_PROCESS);
2201 } else {
2202 *kevp = kn->kn_kevent;
2203 }
2204 kevp++;
2205 nkev++;
2206 influx = 1;
2207 if (kn->kn_flags & EV_ONESHOT) {
2208 /* delete ONESHOT events after retrieval */
2209 kn->kn_status &= ~KN_BUSY;
2210 kq->kq_count--;
2211 KASSERT(kn_in_flux(kn) == false);
2212 KASSERT((kn->kn_status & KN_WILLDETACH) != 0 &&
2213 kn->kn_kevent.udata == curlwp);
2214 mutex_spin_exit(&kq->kq_lock);
2215 knote_detach(kn, fdp, true);
2216 mutex_enter(&fdp->fd_lock);
2217 mutex_spin_enter(&kq->kq_lock);
2218 } else if (kn->kn_flags & EV_CLEAR) {
2219 /* clear state after retrieval */
2220 kn->kn_data = 0;
2221 kn->kn_fflags = 0;
2222 /*
2223 * Manually clear knotes who weren't
2224 * 'touch'ed.
2225 */
2226 if (touch == 0) {
2227 kn->kn_data = 0;
2228 kn->kn_fflags = 0;
2229 }
2230 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2231 kq->kq_count--;
2232 } else if (kn->kn_flags & EV_DISPATCH) {
2233 kn->kn_status |= KN_DISABLED;
2234 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2235 kq->kq_count--;
2236 } else {
2237 /* add event back on list */
2238 kq_check(kq);
2239 kn->kn_status |= KN_QUEUED;
2240 kn->kn_status &= ~KN_BUSY;
2241 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2242 kq_check(kq);
2243 }
2244
2245 if (nkev == kevcnt) {
2246 /* do copyouts in kevcnt chunks */
2247 influx = 0;
2248 KQ_FLUX_WAKEUP(kq);
2249 mutex_spin_exit(&kq->kq_lock);
2250 mutex_exit(&fdp->fd_lock);
2251 error = (*keops->keo_put_events)
2252 (keops->keo_private,
2253 kevbuf, ulistp, nevents, nkev);
2254 mutex_enter(&fdp->fd_lock);
2255 mutex_spin_enter(&kq->kq_lock);
2256 nevents += nkev;
2257 nkev = 0;
2258 kevp = kevbuf;
2259 }
2260 count--;
2261 if (error != 0 || count == 0) {
2262 /* remove marker */
2263 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2264 break;
2265 }
2266 }
2267 KQ_FLUX_WAKEUP(kq);
2268 mutex_spin_exit(&kq->kq_lock);
2269 mutex_exit(&fdp->fd_lock);
2270
2271 done:
2272 if (nkev != 0) {
2273 /* copyout remaining events */
2274 error = (*keops->keo_put_events)(keops->keo_private,
2275 kevbuf, ulistp, nevents, nkev);
2276 }
2277 *retval = maxevents - count;
2278
2279 return error;
2280 }
2281
2282 /*
2283 * fileops ioctl method for a kqueue descriptor.
2284 *
2285 * Two ioctls are currently supported. They both use struct kfilter_mapping:
2286 * KFILTER_BYNAME find name for filter, and return result in
2287 * name, which is of size len.
2288 * KFILTER_BYFILTER find filter for name. len is ignored.
2289 */
2290 /*ARGSUSED*/
2291 static int
2292 kqueue_ioctl(file_t *fp, u_long com, void *data)
2293 {
2294 struct kfilter_mapping *km;
2295 const struct kfilter *kfilter;
2296 char *name;
2297 int error;
2298
2299 km = data;
2300 error = 0;
2301 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
2302
2303 switch (com) {
2304 case KFILTER_BYFILTER: /* convert filter -> name */
2305 rw_enter(&kqueue_filter_lock, RW_READER);
2306 kfilter = kfilter_byfilter(km->filter);
2307 if (kfilter != NULL) {
2308 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
2309 rw_exit(&kqueue_filter_lock);
2310 error = copyoutstr(name, km->name, km->len, NULL);
2311 } else {
2312 rw_exit(&kqueue_filter_lock);
2313 error = ENOENT;
2314 }
2315 break;
2316
2317 case KFILTER_BYNAME: /* convert name -> filter */
2318 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
2319 if (error) {
2320 break;
2321 }
2322 rw_enter(&kqueue_filter_lock, RW_READER);
2323 kfilter = kfilter_byname(name);
2324 if (kfilter != NULL)
2325 km->filter = kfilter->filter;
2326 else
2327 error = ENOENT;
2328 rw_exit(&kqueue_filter_lock);
2329 break;
2330
2331 default:
2332 error = ENOTTY;
2333 break;
2334
2335 }
2336 kmem_free(name, KFILTER_MAXNAME);
2337 return (error);
2338 }
2339
2340 /*
2341 * fileops fcntl method for a kqueue descriptor.
2342 */
2343 static int
2344 kqueue_fcntl(file_t *fp, u_int com, void *data)
2345 {
2346
2347 return (ENOTTY);
2348 }
2349
2350 /*
2351 * fileops poll method for a kqueue descriptor.
2352 * Determine if kqueue has events pending.
2353 */
2354 static int
2355 kqueue_poll(file_t *fp, int events)
2356 {
2357 struct kqueue *kq;
2358 int revents;
2359
2360 kq = fp->f_kqueue;
2361
2362 revents = 0;
2363 if (events & (POLLIN | POLLRDNORM)) {
2364 mutex_spin_enter(&kq->kq_lock);
2365 if (KQ_COUNT(kq) != 0) {
2366 revents |= events & (POLLIN | POLLRDNORM);
2367 } else {
2368 selrecord(curlwp, &kq->kq_sel);
2369 }
2370 kq_check(kq);
2371 mutex_spin_exit(&kq->kq_lock);
2372 }
2373
2374 return revents;
2375 }
2376
2377 /*
2378 * fileops stat method for a kqueue descriptor.
2379 * Returns dummy info, with st_size being number of events pending.
2380 */
2381 static int
2382 kqueue_stat(file_t *fp, struct stat *st)
2383 {
2384 struct kqueue *kq;
2385
2386 kq = fp->f_kqueue;
2387
2388 memset(st, 0, sizeof(*st));
2389 st->st_size = KQ_COUNT(kq);
2390 st->st_blksize = sizeof(struct kevent);
2391 st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
2392 st->st_blocks = 1;
2393 st->st_uid = kauth_cred_geteuid(fp->f_cred);
2394 st->st_gid = kauth_cred_getegid(fp->f_cred);
2395
2396 return 0;
2397 }
2398
2399 static void
2400 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
2401 {
2402 struct knote *kn;
2403 filedesc_t *fdp;
2404
2405 fdp = kq->kq_fdp;
2406
2407 KASSERT(mutex_owned(&fdp->fd_lock));
2408
2409 again:
2410 for (kn = SLIST_FIRST(list); kn != NULL;) {
2411 if (kq != kn->kn_kq) {
2412 kn = SLIST_NEXT(kn, kn_link);
2413 continue;
2414 }
2415 if (knote_detach_quiesce(kn)) {
2416 mutex_enter(&fdp->fd_lock);
2417 goto again;
2418 }
2419 knote_detach(kn, fdp, true);
2420 mutex_enter(&fdp->fd_lock);
2421 kn = SLIST_FIRST(list);
2422 }
2423 }
2424
2425 /*
2426 * fileops close method for a kqueue descriptor.
2427 */
2428 static int
2429 kqueue_close(file_t *fp)
2430 {
2431 struct kqueue *kq;
2432 filedesc_t *fdp;
2433 fdfile_t *ff;
2434 int i;
2435
2436 kq = fp->f_kqueue;
2437 fp->f_kqueue = NULL;
2438 fp->f_type = 0;
2439 fdp = curlwp->l_fd;
2440
2441 KASSERT(kq->kq_fdp == fdp);
2442
2443 mutex_enter(&fdp->fd_lock);
2444
2445 /*
2446 * We're doing to drop the fd_lock multiple times while
2447 * we detach knotes. During this time, attempts to register
2448 * knotes via the back door (e.g. knote_proc_fork_track())
2449 * need to fail, lest they sneak in to attach a knote after
2450 * we've already drained the list it's destined for.
2451 *
2452 * We must aquire kq_lock here to set KQ_CLOSING (to serialize
2453 * with other code paths that modify kq_count without holding
2454 * the fd_lock), but once this bit is set, it's only safe to
2455 * test it while holding the fd_lock, and holding kq_lock while
2456 * doing so is not necessary.
2457 */
2458 mutex_enter(&kq->kq_lock);
2459 kq->kq_count |= KQ_CLOSING;
2460 mutex_exit(&kq->kq_lock);
2461
2462 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
2463 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
2464 continue;
2465 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
2466 }
2467 if (fdp->fd_knhashmask != 0) {
2468 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
2469 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
2470 }
2471 }
2472
2473 mutex_exit(&fdp->fd_lock);
2474
2475 #if defined(DEBUG)
2476 mutex_enter(&kq->kq_lock);
2477 kq_check(kq);
2478 mutex_exit(&kq->kq_lock);
2479 #endif /* DEBUG */
2480 KASSERT(TAILQ_EMPTY(&kq->kq_head));
2481 KASSERT(KQ_COUNT(kq) == 0);
2482 mutex_destroy(&kq->kq_lock);
2483 cv_destroy(&kq->kq_cv);
2484 seldestroy(&kq->kq_sel);
2485 kmem_free(kq, sizeof(*kq));
2486
2487 return (0);
2488 }
2489
2490 /*
2491 * struct fileops kqfilter method for a kqueue descriptor.
2492 * Event triggered when monitored kqueue changes.
2493 */
2494 static int
2495 kqueue_kqfilter(file_t *fp, struct knote *kn)
2496 {
2497 struct kqueue *kq;
2498
2499 kq = ((file_t *)kn->kn_obj)->f_kqueue;
2500
2501 KASSERT(fp == kn->kn_obj);
2502
2503 if (kn->kn_filter != EVFILT_READ)
2504 return EINVAL;
2505
2506 kn->kn_fop = &kqread_filtops;
2507 mutex_enter(&kq->kq_lock);
2508 selrecord_knote(&kq->kq_sel, kn);
2509 mutex_exit(&kq->kq_lock);
2510
2511 return 0;
2512 }
2513
2514
2515 /*
2516 * Walk down a list of knotes, activating them if their event has
2517 * triggered. The caller's object lock (e.g. device driver lock)
2518 * must be held.
2519 */
2520 void
2521 knote(struct klist *list, long hint)
2522 {
2523 struct knote *kn, *tmpkn;
2524
2525 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
2526 if (filter_event(kn, hint)) {
2527 knote_activate(kn);
2528 }
2529 }
2530 }
2531
2532 /*
2533 * Remove all knotes referencing a specified fd
2534 */
2535 void
2536 knote_fdclose(int fd)
2537 {
2538 struct klist *list;
2539 struct knote *kn;
2540 filedesc_t *fdp;
2541
2542 again:
2543 fdp = curlwp->l_fd;
2544 mutex_enter(&fdp->fd_lock);
2545 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
2546 while ((kn = SLIST_FIRST(list)) != NULL) {
2547 if (knote_detach_quiesce(kn)) {
2548 goto again;
2549 }
2550 knote_detach(kn, fdp, true);
2551 mutex_enter(&fdp->fd_lock);
2552 }
2553 mutex_exit(&fdp->fd_lock);
2554 }
2555
2556 /*
2557 * Drop knote. Called with fdp->fd_lock held, and will drop before
2558 * returning.
2559 */
2560 static void
2561 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
2562 {
2563 struct klist *list;
2564 struct kqueue *kq;
2565
2566 kq = kn->kn_kq;
2567
2568 KASSERT((kn->kn_status & KN_MARKER) == 0);
2569 KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
2570 KASSERT(kn->kn_fop != NULL);
2571 KASSERT(mutex_owned(&fdp->fd_lock));
2572
2573 /* Remove from monitored object. */
2574 if (dofop) {
2575 filter_detach(kn);
2576 }
2577
2578 /* Remove from descriptor table. */
2579 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2580 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
2581 else
2582 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2583
2584 SLIST_REMOVE(list, kn, knote, kn_link);
2585
2586 /* Remove from kqueue. */
2587 again:
2588 mutex_spin_enter(&kq->kq_lock);
2589 KASSERT(kn_in_flux(kn) == false);
2590 if ((kn->kn_status & KN_QUEUED) != 0) {
2591 kq_check(kq);
2592 KASSERT(KQ_COUNT(kq) != 0);
2593 kq->kq_count--;
2594 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2595 kn->kn_status &= ~KN_QUEUED;
2596 kq_check(kq);
2597 } else if (kn->kn_status & KN_BUSY) {
2598 mutex_spin_exit(&kq->kq_lock);
2599 goto again;
2600 }
2601 mutex_spin_exit(&kq->kq_lock);
2602
2603 mutex_exit(&fdp->fd_lock);
2604 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2605 fd_putfile(kn->kn_id);
2606 atomic_dec_uint(&kn->kn_kfilter->refcnt);
2607 kmem_free(kn, sizeof(*kn));
2608 }
2609
2610 /*
2611 * Queue new event for knote.
2612 */
2613 static void
2614 knote_enqueue(struct knote *kn)
2615 {
2616 struct kqueue *kq;
2617
2618 KASSERT((kn->kn_status & KN_MARKER) == 0);
2619
2620 kq = kn->kn_kq;
2621
2622 mutex_spin_enter(&kq->kq_lock);
2623 if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2624 /* Don't bother enqueueing a dying knote. */
2625 goto out;
2626 }
2627 if ((kn->kn_status & KN_DISABLED) != 0) {
2628 kn->kn_status &= ~KN_DISABLED;
2629 }
2630 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
2631 kq_check(kq);
2632 kn->kn_status |= KN_QUEUED;
2633 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2634 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2635 kq->kq_count++;
2636 kq_check(kq);
2637 cv_broadcast(&kq->kq_cv);
2638 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2639 }
2640 out:
2641 mutex_spin_exit(&kq->kq_lock);
2642 }
2643 /*
2644 * Queue new event for knote.
2645 */
2646 static void
2647 knote_activate_locked(struct knote *kn)
2648 {
2649 struct kqueue *kq;
2650
2651 KASSERT((kn->kn_status & KN_MARKER) == 0);
2652
2653 kq = kn->kn_kq;
2654
2655 if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2656 /* Don't bother enqueueing a dying knote. */
2657 return;
2658 }
2659 kn->kn_status |= KN_ACTIVE;
2660 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
2661 kq_check(kq);
2662 kn->kn_status |= KN_QUEUED;
2663 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2664 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2665 kq->kq_count++;
2666 kq_check(kq);
2667 cv_broadcast(&kq->kq_cv);
2668 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2669 }
2670 }
2671
2672 static void
2673 knote_activate(struct knote *kn)
2674 {
2675 struct kqueue *kq = kn->kn_kq;
2676
2677 mutex_spin_enter(&kq->kq_lock);
2678 knote_activate_locked(kn);
2679 mutex_spin_exit(&kq->kq_lock);
2680 }
2681
2682 /*
2683 * Set EV_EOF on the specified knote. Also allows additional
2684 * EV_* flags to be set (e.g. EV_ONESHOT).
2685 */
2686 void
2687 knote_set_eof(struct knote *kn, uint32_t flags)
2688 {
2689 struct kqueue *kq = kn->kn_kq;
2690
2691 mutex_spin_enter(&kq->kq_lock);
2692 kn->kn_flags |= EV_EOF | flags;
2693 mutex_spin_exit(&kq->kq_lock);
2694 }
2695
2696 /*
2697 * Clear EV_EOF on the specified knote.
2698 */
2699 void
2700 knote_clear_eof(struct knote *kn)
2701 {
2702 struct kqueue *kq = kn->kn_kq;
2703
2704 mutex_spin_enter(&kq->kq_lock);
2705 kn->kn_flags &= ~EV_EOF;
2706 mutex_spin_exit(&kq->kq_lock);
2707 }
2708